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Revisiting Secure Two-Party Computation with
Rational Players

Arpita Maitra, Goutam Paul, and Asim K. Pal

Abstract—A seminal result of Cleve (STOC 1986) showed that fairness, in general, is impossible to achieve in case of two-party
computation if one of them is malicious. Later, Gordon et al. (STOC 2008, JACM 2011) observed that there exist two distinct classes of
functions for which fairness can be achieved. One is any function without an embedded XOR, and the other one is a particular function
containing an embedded XOR. In this paper, we revisit both classes of functions in two-party computation under rational players for the
first time. We identify that the protocols proposed by Gordon et al. achieve fairness in non-rational setting only. In this direction, we
design two protocols, one for the millionares’ problem or the greater-than function (any function without embedded XOR can be
converted to this function) and the other for the particular embedded XOR function of Gordon et al., and show that with rational players,
our protocols achieve fairness, correctness and strict Nash equilibrium under suitable choice of parameters in complete information
game setting. The dealer is offline in both of our protocols and this is in contrast with the work of Groce et al. (Eurocrypt 2012) which
shows fairness and Bayesian Nash equilibrium in two party computation with rational players for arbitrary function in an incomplete
information game setting.

Index Terms—Cryptography, embedded XOR, fairness, millionaires’ problem, secure computation.

F

1 INTRODUCTION

In a secure two-party computation, two parties or players
want to compute a particular function of their inputs while
preserving specific security notions under certain adversar-
ial model. In [7], Cleve showed an impossibility result that
certain functions cannot be computed with complete fair-
ness without an honest majority. From this, the community
conjectured that no function can be computed without an
honest majority. However, in [4], [6] the authors showed that
absolute correctness can be achieved for certain other types
of functions in case of multi-party computation with one-
third faulty players. The positive results of [4], [6] do not
conflict with the negative result of [7] as the impossibility
result is shown for a different type of functions. The solution
proposed in [4], [6] consider broadcast channel model. After
more than two decades, Gordon et al. [9] came out with two
sets of functions for which complete fairness is possible for
two-party computation in non-simultaneous channel model,
even if one of the players is malicious.

One particular function of interest in [9] was the Yao’s
millionaires’ problem [22], or more precisely, the ‘greater
than’ function. The problem deals with two millionaires,
Alice and Bob, who are interested in finding who amongst
them is richer, without revealing their actual wealth to
each other. Since the subsequent work [10] by Gordon
et al. showed that any function over polynomial-size do-
mains which does not contain an “embedded XOR” can be
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converted into the greater than function, the millionaires’
problem covers all functions without embedded XOR.

In this paper, for the first time we study the fairness and
correctness in millionaires’ problem with rational players.
Rational players are neither ‘good’ nor ‘malicious’, they
are utility maximizing. Each rational party wishes to learn
the output while allowing as few others as possible to
learn the output. Thus, each rational party chooses abort
to maximize its utility. We show that the solution of Gordon
et al. for millionaires’ problem in non-rational setting no
longer remains fair in rational setting. We also propose a
modification in the protocol with the help of a third player
(explained later) so that fairness, correctness and strict Nash
equilibrium can be established.

The work by Gordon et al. [9], [10] also studied the
function that belongs to the class of embedded XOR. The
XOR function simply checks whether the inputs chosen by
two players (from a specified domain) are equal or not.
They showed that under certain parameter value of a hybrid
model, fairness is achieved. In this paper, we also revisit
this problem with rational players and show that fairness
is no longer guaranteed. We propose a modified version of
the protocol by Gordon et al. in non-rational setting and
prove its fairness and strict Nash equilibrium under suitable
choice of the parameters.

In [3], Asharov et al. gave the full characterization of
the functions which never be computed with complete
fairness in two party setting when one of the parties is
malicious. They actually extended the negative result of
Cleve [7]. Interestingly, neither the greater than function nor
the embedded XOR function belongs to these groups.

1.1 Related Works
In [2] it is shown that it is impossible to compute a function
in two party setting with complete fairness if the players
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are rational. However, in [12] the authors identified that
the impossibility results of [2] are valid for some specific
functions, specific input distribution and for specific set of
utilities. They [12] came out with an algorithm for arbitrary
function which can be computed with complete fairness in
two party setting considering rational players. However,
their protocol is an incomplete information game and thus
achieves Bayesian Nash equilibrium. Contrary to this, our pro-
posed protocols are a complete information game and achieves
strict Nash equilibrium. Moreover, in [12], the following is
mentioned.

“Before continuing, it is helpful to introduce two
modifications to the protocol that can only increase
P0’s utility. First, in each iteration i we tell P0

whether i∗ < i. (One can easily see that P0 cannot
increase its utility by aborting when i∗ < i, and so
the interesting case to analyze is whether P0 can
improve its utility by aborting when i∗ ≥ i.) Second,
if P0 ever aborts the protocol in some iteration i with
i∗ ≥ i, then we tell P0 whether i∗ = i before P0

generates its output. (P0 is not, however, allowed to
change its decision to abort.)”

It is not clear how “we” can let the player know whether
i∗ < i or i∗ ≥ i. Note that in [12], the symbol i stands
for any iteration in which player P0 (in our case it is P1)
aborts the protocol and symbol i∗ stands for the revelation
round (in our case it is r). One may interpret this “we” as a
dealer who has to remain online throughout the game. This
is not very practical, as in each iteration the dealer has to
interact with the players and has to ask them whether they
will choose to abort. Another restriction in their scheme is
that the deviating player can not escape from its decision,
knowing that the round it has chosen to abort is less than
or equal to the revelation round. Exploiting the idea of an
intermediate player who is a different entity from the dealer,
we are able to make the dealer off-line in the millionares’
problem. Note that our protocol for the embedded XOR
requires neither an online dealer, nor an intermediate player.

One may think that the use of a third player is no
different than the use of a dealer. But the fact is that our
third player is less restrictive in comparison with the dealer.
In the literature, the dealer is always assumed to be honest
and this is a strong assumption. On the other hand, the third
player in our model is assumed to be rational in nature and
this is a more pragmatic assumption. Moreover, the dealer is
a special distinct entity from the players, whereas the role of
our intermediate third player can be adopted by any rational
player who is not interested in the outcome of the game,
rather his only objective is to earn some revenue at the end
of the game. The analogy can be of a referee conducting a
match. A referee remains true to the game and only deviates
for a huge (monitory) gain at the risk of losing his reputation
or job. A third player can also be referred as a ‘service
provider’ entity, e.g. a cloud or an outsourcing agent. For
simplicity, we assume that this third player is fail-stop in
nature.

Making the dealer offline in the rational secret sharing
was once a challenging task and it was overcome by intro-
ducing an indicator bit [14] or a signal [8] to make the player
aware of the fact that they have passed the revelation round.

To the best of our knowledge, there is no protocol in two
party secure computation with rational players where the
dealer is made offline. We believe that introduction of a third
player is not a weakness of our protocol for the millionares’
problem, rather it may be considered as the first effort to
make the dealer offline in secure two party protocol with
rational players.

In case of embedded XOR problem, one may easily
notice that when a player chooses x3 as his input, he knows
with certainty that his output will be 1. So he should have
no incentive to play the game anymore. According to [12],
if a party aborts the game, the other party outputs 0 or 1
depending on his input. Thus, there is a non-negligible prob-
ability that the protocol of [12] does not achieve fairness. On
the other hand, our proposed protocol for the embedded
XOR problem is free from this problem. We summarize all
the positive and negative results in the context of multiparty
computation in Table 1.

1.2 Contributions

We list our key contributions one by one.

1) We revisit fairness in two prominent Secure Two-
Party Computation problems, namely, Yao’s mil-
lionaires’ problem [22] and the Embedded XOR
problems [9], [10], for the first time with rational
players.

2) We show that the protocol of Gordon et al. [9],
[10] for solving the millionaires’ problem which was
meant for the non-rational setting does not auto-
matically extend to the rational setting, in the sense
that the fairness breaks down when the players are
rational (Theorem 1).

3) We propose a variant of this protocol and show that
fairness can be regained when players are rational
(Theorem 4). We also establish correctness (Theo-
rem 3) and strict Nash equilibrium (Theorem 5) for
the new protocol.

4) We get away with the online dealer by introducing
a rational third party for solving the millionaires’
problem. This helps us to establish the fairness of
our protocol.

5) We show that the problem in the embedded XOR
category [9], [10] also no longer remains fair with
rational players (Theorem 6).

6) We propose a variant of the protocol in [9], [10]
for embedded XOR and show that fairness can be
guaranteed under certain assumptions (Theorem 7).
We also establish strict Nash equilibrium for our
protocol (Theorem 8).

7) For both the problems, we discuss the issues with
unequal vs. equal domain sizes.

2 PRELIMINARIES

In this section we try to explain what is meant by function-
ality, two party computation, ideal and real world model,
Byzantine and fail-stop adversary. We also define utilities
and fairness in rational setting which is used in this work.
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TABLE 1
Possibility and Impossibility Results in the Context of Multiparty Computation

Maximum
Authors Year / Model Possibility Number of Security

Venue Results faulty players Notions

Cleve 1986 Non-rational Impossibility result : One out of Complete fairness
[7] STOC (Malicious) for certain functions two

Ben -Or et al. 1988 Non-rational Positive result: n
3

Chaum et al. STOC (Malicious) for certain other out of n Complete correctness
[4], [6] functions

Positive results for
Gordon et al. 2008 Non-rational two distinct One out of Complete fairness

[9] STOC (Malicious) sets of functions two

Asharov et al. 2011 Rational, Impossibility result: One out of Complete fairness
[2] Eurocrypt Incomplete information game, for a specific function two

Incentive incompatible
Rational, Complete fairness,

Groce et al. 2012 Incomplete information game, Positive result: One out of Bayesian
[12] Eurocrypt Incentive compatible any function two Nash equilibrium

Impossibility result:
Asharov et al. 2013 Non-rational full characterization

[3] TCC (Malicious) of the functions One out of Complete fairness
(extension of Cleve) two

Positive results: Fairness,
Proposed 2016 Rational, two distinct types One out of Correctness (for the

Complete information game, of functions two greater than function),
Incentive compatible considered by Gordon et al. Strict

Nash equilibrium

2.1 Functionality
In classical domain and in two party setting, a functionality
F = {fλ}λ∈N is a sequence of randomized processes, where
λ is the security parameter and fλ maps pairs of inputs to
pairs of outputs (one for each party). Explicitly, we can write
fλ = (f1λ, f

2
λ), where f1λ (resp., f2λ) represents the output of

the first party, say P1 (resp., output of the second party,
say P2). The domain of fλ is Xλ × Yλ, where Xλ (resp.
Yλ) denotes the possible inputs of the first (resp. second)
party. If |Xλ| and |Yλ| are polynomial in λ, then we say that
F is defined over polynomial size domains. If each fλ is
deterministic we say that each fλ as well as the collection F
is a function [10].

2.2 Two Party Computation
In classical domain the two party computation of a func-
tionality F = {f1λ, f2λ} is defined as follows: If party P1 is
holding 1λ and a input x ∈ Xλ and party P2 is holding 1λ

and a input y ∈ Yλ, then the joint distribution of the outputs
of the parties is statistically close to (f1λ(x, y), f2λ(x, y)) [10].

2.3 Ideal vs. Real world model
In ideal world model we assume that there is an incorruptible
trusted third party who computes the function on behalf of
P1 and P2. P1 and P2 send their inputs to the TTP who
computes the functionality and returns the value to each
party. On the other hand, in real world model there is no
trusted party to compute the functionality. In real model a
protocol is executed to compute the functionality.

In the same line of [9], [10], we here assume a hybrid world
model, where there is a trusted party who just computes the

function and distributes the shares of the function’s output
as in the ideal world. This is the counterpart of the case in
secret sharing [16] in the non-rational setting.The players
construct the output by exchanging their shares. In our
model, we call this TTP as dealer.

2.4 Rational secret sharing

Secure Multiparty Computation (SMC) is the generalization
of the classical rational secret sharing [12]. In this subsection,
we briefly describe what is meant by classical rational secret
sharing.

Rational secret sharing proceeds in two phases: 1) share
generation and distribution and 2) secret reconstruction.
Dealer generates the shares of the secret and distributes
among the players in the 1st phase. One important dif-
ference to be noted here that in the rational setting there
can be multiple shares including fake shares in contrast
to just one share in the non-rational setting. The dealer in
a classical rational secret sharing (RSS) protocol is honest
and can be online or offline. An online dealer remains
available throughout the secret reconstruction protocol i.e in
the 2nd phase, whereas an offline dealer is unavailable after
distributing the shares of the secret ( i.e unavailable after 1st
phase). Note that an online dealer is not very practical as
he repeatedly interacts with the players and such a dealer
can directly provide the secret to the players. In 2008, Kol
and Naor [14] discussed rational secret sharing in the non-
simultaneous channel model and in the presence of an
offline dealer, in an information theoretic setting. Almost
all the subsequent works [1], [21], [17], [8] on rational secret
sharing assumed the dealer to be offline.
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Share generation and distribution: If the dealer is online,
then at the beginning of each round, he distributes to each
player Pw the share of the actual secret with probability γ
or that of a fake secret with probability (1 − γ). The value
of γ is kept secret from the parties and is dependent on
the utility values of the parties [13], [11]. An offline dealer
distributes to each party Pw a list of shares, one of which
is that of the actual secret s and the remaining of fake
secrets [14], [8], [17]. The position r of this actual share in the
lists is not revealed to the players and is chosen according
to a geometric distribution G(γ), where the parameter γ in
turn depends on the utility values of players. The dealer
generates shares using Shamir’s secret sharing scheme [16].

Secret Reconstruction: In the lth round of communi-
cation, each player Pw (either simultaneously or non-
simultaneously) broadcasts or sends individually to each
of the other players (in presence of synchronous, point-to-
point channels) the share swl corresponding to that round.
The shares are signed by the dealer. Hence, no player can
give out false shares undetected and the only possible action
of a player in a round is to either 1) send the message or 2)
remain silent. The round in which the shares of the actual
secret are revealed and hence the secret is reconstructed is
called revelation or definitive round. When the dealer is
offline, players are made aware that they have crossed the
revelation round by the reconstruction or exchange of an
indicator (a bit in [14], a signal in [8]). For simultaneous
channel model, parties can identify a revelation round as
soon as it occurs. However, for non-simultaneous channels,
the indication is delayed till the subsequent round to avoid
rushing strategy. In this case, the indicator cannot be recon-
structed or interpreted by all the players. The player who
communicates last during the reconstruction of the indicator
is the first and only one to know that the last round was
the revelation round. Once he comes to know this, he has
no incentive to send his share of the indicator to the other
players for reconstruction. Instead, he simply quits. The fact
that this player quits signals to the other players that the
secret has been reconstructed.

2.5 Computation of a functionality in Rational setting
We define a mechanism for computing a functionality with
rational adversary to be a pair (Γ,−→σ ), where Γ is
the game (i.e., specification of allowable actions) and
−→σ =(σ1, . . . , σn) denotes the suggested strategies followed
by n number of players. We use the notations −→σ −w and
(σ′w,

−→σ −w) respectively for (σ1, . . . , σw−1, σw+1, . . . , σn)
and (σ1, . . . , σw−1, σ

′
w, σw+1, . . . , σn). Here, σ′w stands for

deviated strategy. The outcome of the game is denoted by
−→o (Γ,−→σ )=(o1, . . . , on). The set of possible outcomes with
respect to a party Pw is as follows. 1) Pw correctly computes
f , while others do not; 2) everybody correctly computes f ; 3)
nobody computes f ; 4) others computes f correctly, while
Pw does not and 5) others believe in a wrong functional
value, while Pw does not.

The output that no function is computed is denoted by
⊥ (i.e., null as in [9]) and output of wrong computation is
denoted by ⇁.

In classical domain, the adversary that controls a player
may be computationally bounded. Here, we assume the
adversary has probabilistic polynomial time complexity.

2.6 Utilities and Preferences

The utility function uw of each party Pw is defined over
the set of possible outcomes of the game. The outcomes
and corresponding utilities for two parties are described in
Table 2. We here assume Bernoulli utility function.

TABLE 2
Outcomes and Utilities for (2, 2) rational function reconstruction

P1’s outcome P2’s outcome P1’s Utility P2’s Utility
(o1) (o2) U1(o1, o2) U2(o1, o2)

o1=f o2=f UTT
1 UTT

2
o1=⊥ o2=⊥ UNN

1 UNN
2

o1=f o2=⊥ UTN
1 UNT

2
o1=⊥ o2=f UNT

1 UTN
2

o1=⊥ o2=⇁ UNF
1 UFN

2
o1=⇁ o2=⊥ UFN

1 UNF
2

Players have their preferences based on the different
possible outcomes. In this work, a rational player w is
assumed to have the following preference:

R1 : UTNw > UTTw > UNNw > UNTw .

Some players may have the additional preference UNFw ≥
UTTw , whereas the rest have UNFw < UTTw .

2.7 Fairness

In non-rational setting, the security of a protocol is ana-
lyzed [9], [10], [15] by comparing what an adversary can
do in a real protocol execution to what it can do in an ideal
scenario that is secure by definition. This is formalized by
considering an ideal computation involving an incorruptible
trusted party to whom the parties send their inputs. The
trusted party computes the functionality on the inputs and
returns to each party its respective output. Loosely speak-
ing, a protocol is secure if any adversary interacting in the
real protocol (where no trusted party exists) can do no more
harm than if it were involved in the above-described ideal
computation.

A rational player, being selfish, desires an unfair out-
come, i.e., computing the function alone. Therefore, the basic
aim of rational computation has been to achieve fairness.
According to Von Neumann and Morgenstern expected util-
ity theorem [20], under natural assumptions, the individual
would prefer one prospect O1 over another prospect O2 if
and only if E[U(O1)] ≥ E[U(O2)]. The work [1] implicitly
uses the expected utility theorem to derive its results. We
also use the same approach and accordingly redefine fair-
ness as follows.

Definition 1. (Fairness) A function reconstruction mechanism
(Γ,−→σ ) with rational players is said to be completely fair if for
a party Pw, (w ∈ {1, 2}), who is corrupted by a probabilistic
polynomial time adversary, the following holds:

UTTw ≥ E[Uw(Ol)],

where Ol = {o1w, . . . , on
′

w ; p1, . . . , pn′} is a prospect when the
player deviates from the suggested strategy (σw). n′ is the number
of possible outcomes.
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2.8 Correctness of the Output
Secure two party computation in hybrid model with rational
players is the generalization of rational secret sharing [11],
[13], [14]. In rational secret sharing, the dealer is not a part
of the reconstruction mechanism and therefore the output is
well-defined. Whereas, in secure two party computation, the
parties may not be committed to their inputs, and therefore
the output is not uniquely defined. We here assume that the
players have negligible probability to send arbitrary inputs.
This is quite justified in the sense that the players are ratio-
nal in nature, i.e., each wants to compute the function itself
and does not want anyone else to compute the function. If
a player sends wrong inputs, then it itself cannot learn the
correct output. Thus, the players have no motivation to send
wrong inputs. Rather they try to maximize their utility [12].

2.9 Complete Information Game and Nash Equilibrium
In a complete information game each player knows the
other player’s payoff function and the rule of the game. It is
defined as Γ = (Aw, uw), where Aw is the set of allowable
actions of each player w and uw is the utility function of the
player w [1].

A suggested strategy −→σ of a mechanism (Γ,−→σ ) is said
to be in Nash equilibrium when there is no incentive for a
player Pw to deviate from the suggested strategy, given that
everyone else is following this strategy. There are several
variants of Nash equilibrium in the literature. In our context,
we focus on strict Nash equilibrium.

Definition 2. (Strict Nash equilibrium) The suggested strategy
−→σ in the mechanism (Γ,−→σ ) is a strict Nash equilibrium if for
every Pw and for any strategy σ′w, we have uw(σ′w,

−→σ −w) <
uw(−→σ ).

In computational Nash equilibrium [1], the players will
not change their strategy if their gain is negligible [5]. Since
we show strict Nash for our protocols and strict Nash im-
plies computational Nash, henceforth we do not talk about
computational Nash anymore.

2.10 Fail-stop and Byzantine Adversarial model
In the fail-stop setting, each party follows the protocol as
directed except that it may choose to abort at any time [12]
and a party is assumed not to change its input when running
the protocol. On the other hand, in Byzantine setting, a
deviating party may behave arbitrarily. It may change the
inputs or may choose to abort. Since Byzantine adversary
covers all the characteristics of a fail-stop adversary, it is
very natural to consider only Byzantine setting. If a protocol
is secure against a Byzantine adversary, it must be secure
against a fail-stop adversary. Hence, throughout the paper
we analyze the security issues against Byzantine adversary
only.

2.11 Our Assumptions
Here we list the assumptions that we consider in this work.

1) The channel permits non-simultaneous mode of
communication.

2) Players are computationally bounded to probabilis-
tic polynomial time complexity.

3) We consider complete information game unlike [12].
4) The same utility relationship holds as considered

by Groce et al. [12]. In addition, the preference of
UNFw ≥ UTTw [1] is considered.

5) The adversary may be fail-stop as well as Byzantine.

3 SMC FOR FUNCTIONS EXCLUDING EMBEDDED
XOR WITH RATIONAL PLAYERS IN EQUAL DOMAIN
SIZE

In this section, we first describe the solution of millionaires’
problem or, more precisely, the computation of the greater
than function, proposed by Gordon et al. [9], [10]. We, then,
will show how fairness condition is affected in the presence
of the rational players having the preferences R1 (refer
to subsection 2.6). Let us denote two players by P1 and
P2. Suppose P1 has the secret i and P2 has the secret j,
1 ≤ i ≤ M , 1 ≤ j ≤ M , where M = M(λ) is the size
of the domain of each input [9]. The trusted third party in
hybrid model gives an ordered list X = {x1, x2, . . . , xM}
to P1 and another ordered list Y = {y1, y2, . . . , yM} to
P2. We call this TTP as dealer. Then P1 sends xi to the
dealer and P2 sends yj to the dealer. Let f be a deter-
ministic function which maps X × Y → {0, 1} × {0, 1}.
The function f(xi, yj) can be defined as a pair of outputs,
i.e., f(xi, yj) = (f1(xi, yj), f2(xi, yj)), where f1(xi, yj) is
the output of the first party and f2(xi, yj) is the output of
the second party. For millionaires’ problem, the function is
defined as follows [9], [10]. For w = 1, 2,

fw(xi, yj) =

{
1 if i > j;

0 if i ≤ j.
(1)

The protocol proceeds in a series of M iterations. The dealer
creates two sequences {al} and {bl}, l = 1, 2, . . . ,M , as
follows.

ai = bj = f1(xi, yj) = f2(xi, yj).

For l 6= i, al =⊥ and for l 6= j, bl =⊥.
Next, the dealer splits the secret al into the shares a1l and

a2l , and the secret bl into the shares b1l and b2l , so that al =
a1l ⊕ a2l and bl = b1l ⊕ b2l , and gives the shares {(a1l , b1l )} to
P1 and the shares {(a2l , b2l )} to P2. In each round l, P2 sends
a2l to P1, who, in turn sends b1l to P2. P1 learns the output
value f1(xi, yj) in iteration i, and P2 learns the output in
iteration j. As we require three elements, 0, 1 and ⊥, we
define 0 by 00, 1 by 11 and ⊥ by 01. The algorithm for the
functionality share generation in fail-stop setting is revisited
in Algorithm 1. Here we assume that the dealer who will
distribute the shares is honest and can compute the function
described in Equation (1). The protocol for computing f is
described in Algorithm 2.

The algorithms in the Byzantine setting are the same as
those in the fail-stop setting except some additional steps. In
Byzantine setting, the shares are signed by the dealer. Along
with the shares of the function, the dealer also distributes
some secret keys ka, kb ← Gen(1λ), where λ is the security
parameter. For 1 ≤ l ≤ M , let tal = Macka(l ‖ a2l )
and tbl = Mackb(l ‖ b1l ). P1 receives a11, a

1
2, . . . , a

1
M and

(b11, t
b
1), (b12, t

b
2), . . . , (b1M , t

b
M ) and MAC key ka. Similarly

P2 is given (a21, t
a
1), (a22, t

a
2), . . . , (a2M , t

a
M ) and b21, b

2
2, . . . , b

2
M

and MAC key kb. After receiving the share in the round l



6

Inputs:
1 xi from P1 and yj from P2. If one of the received

input is not in the correct domain, then both the
parties are given ⊥.
Computation:
The dealer does the following:

2 Sets ai = bj = f1(xi, yj) = f2(xi, yj).
3 For l ∈ {1, . . . ,M}, l 6= i, sets al =⊥.
4 For l ∈ {1, . . . ,M}, l 6= j, sets bl =⊥.
5 For l ∈ {1, . . . ,M}, chooses a1l randomly from
{0, 1}2, and sets a2l = a1l ⊕ al.

6 For l ∈ {1, . . . ,M}, chooses b1l randomly from
{0, 1}2, and sets b2l = b1l ⊕ bl.
Output:

7 The dealer prepares a list listw of shares for each
party Pw, where w ∈ {1, 2} such that
P1 receives the values of a11, a

1
2, . . . , a

1
M and

b11, b
1
2, . . . , b

1
M .

P2 receives the values of a21, a
2
2, . . . , a

2
M and

b21, b
2
2, . . . , b

2
M .

Algorithm 1: ShareGen

Inputs:
1 P1 obtains a11, a

1
2, . . . , a

1
M and b11, b

1
2, . . . , b

1
M .

2 P2 obtains a21, a
2
2, . . . , a

2
M and b21, b

2
2, . . . , b

2
M .

Computation:
There are M number of iterations. In each iteration
l ∈ {1, 2, . . . ,M} do:

3 P2 sends a2l to P1 and P1 computes al = a1l ⊕ a2l .
4 P1 sends b1l to P2 and P2 computes bl = b1l ⊕ b2l .

Output:
5 If P2 aborts in round l, i.e., does not send its share at

that round and l ≤ i, P1 outputs 1. If l > i, P1 has
already determined the output in some earlier
iteration. Thus it outputs that value.

6 If P1 aborts in round l, i.e., does not send its share at
that round and l ≤ j, P2 outputs 0. If l > j, P2 has
already determined the output in some earlier
iteration. Thus it outputs that value.

Algorithm 2: ΠCMP

from P2, P1 verifies by the algorithm V rfyka(l ‖ a2l , tal ).
If V rfyka(l ‖ a2l , tal ) = 0, P1 halts. Similarly, after receiving
the share in the round l from P1, P2 verifies by the algorithm
V rfykb(l ‖ b1l , tbl ). If V rfykb(l ‖ b1l , tbl ) = 0, P2 halts. Oth-
erwise both continues the protocol ΠCMP which outputs
ai(bj) for P1(P2).

Exploiting the MAC signature, we can resist the players
to send a false share.

3.1 ΠCMP is not fair when players are rational

In this section, we revisit the fairness issue in the million-
aires’ problem [9] considering the rational players. We also
assume that the players, P1 and P2 have the preferences
R1 (refer to subsection 2.6). Either of the players also has
UNFw ≥ UTTw . We observe that Gordon et al.’s protocol

ΠCMP [9], [10], that was designed for non-rational setting,
is no longer fair in the rational setting.

Theorem 1. Provided R1 and UNFw ≥ UTTw for some player
Pw, the protocol ΠCMP is not completely fair in rational setting.

Proof. Suppose P1 aborts before giving its share in round
l, where 1 ≤ l ≤ M . Now, if i ≤ j, we list all possible
mutually exclusive and exhaustive outcomes as follows:

1) When 1 ≤ l < i, P2 outputs 0 and correctly
concludes that i ≤ j, but P1 outputs ⊥.

2) When i ≤ l ≤ M , P1 obtains the function and both
correctly conclude that i ≤ j.

In this case, the utility of P1 is given by

U≤1 =

{
UNT1 if 1 ≤ l < i;

UTT1 if i ≤ l ≤M ;
(2)

If i > j, all possible mutually exclusive and exhaustive
outcomes are:

1) When 1 ≤ l ≤ j, P2 outputs 0 and wrongly
concludes that i ≤ j, but P1 outputs ⊥.

2) When j < l < i, P1 outputs ⊥, but P2 correctly
concludes that i > j.

3) When i ≤ l ≤ M , both computes the function and
both correctly conclude that i > j.

Thus, the corresponding utility for this event is given by

U>1 =


UNF1 if 1 ≤ l ≤ j;
UNT1 if j < l < i;

UTT1 if i ≤ l ≤M ;

(3)

Since i is known to P1, the expected utility of P1 is given
by

E[U1] = Pr(i ≤ j) · E[U≤1 ] + Pr(i > j) · E[U>1 ], (4)

where Pr(i ≤ j) = M−i+1
M and Pr(i > j) = i−1

M . Here, we
assume that i and j are uniformly distributed over their do-
mains. Plugging in the values from Equation (2) and (3) into
Equation (4), we get for 1 ≤ l < i, E[U1] =

(
M−i+1
M

)
UNT1 +(

i−1
M

) ((
l−1
i−1

)
UNT1 +

(
i−l
i−1

)
UNF1

)
, and for i ≤ l ≤M , it is

equal to
(
M−i+1
M

)
UTT1 +

(
i−1
M

)
UTT1 .

In other words,

E[U1] =

{(
M−i+l
M

)
UNT1 +

(
i−l
M

)
UNF1 if 1 ≤ l < i;

UTT1 if i ≤ l ≤M.
Note that in the first case, i.e., for 1 ≤ l < i, the second

term corresponding to i > j involves two sub cases, namely,
1 ≤ j < l < i and l ≤ j < i.

Observe that when i ≤ l ≤ M , P1 has already obtained
the secret, but by aborting it cannot increase its utility
beyond UTT1 .

However, when l < i, we may have E[U1] > UTT1 ,
depending on the value of UNF1 .Thus, dependence on UNF1

prevents the protocol to achieve fairness in this case. In other
words, we can say that when a party aborts before it obtains
the output, the only reason would be if he is significantly
more interested in cheating the other party rather than him
not getting it.

The analysis for P2 is similar, except that we have the
role of i and j interchanged.
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3.2 How to make ΠCMP fair when players are rational

In this section, we propose a variant of the protocol by
Gordon et al. [9], [10]. In the earlier section, we have
observed that ΠCMP suffers from early abort. Exploiting
the idea of an intermediate player P3, we are able to make
the dealer off-line. We have already discussed the difference
between online dealer and the intermediate player in detail
in Section 1.1. The key point is that P3 need not to be
assumed to be honest, it is just another rational player, like
P1 or P2.

Our protocol is described in Algorithm 3 and Algo-
rithm 4. Though our protocol initially addresses towards
the millionaires’ problem, it is applicable for any function
which does not have any embedded XOR [10]. Our protocol
is UNF (refer to subsection 2.6) independent and hence cor-
rect [1]. We also prove fairness and strict Nash equilibrium
for our protocol.

Inputs:
1 xi from P1 and yj from P2. If one of the received

input is not in the correct domain, then both the
parties are given ⊥.
Computation:
The dealer does the following:

2 Chooses an intermediate player P3.
3 Chooses r according to a geometric distribution
G(γ) with parameter γ and sets r as the revelation
round, i.e., the round in which the value of f is
either (0, 0) or (1, 1) (refer to subsection 2.4).

4 Chooses d according to the geometrical distribution
G(γ) and sets the total number of iterations as
m = r + d.
The dealer does the following:

5 Sets ar = br = f1(xi, yj) = f2(xi, yj).
6 For l ∈ {1, . . . ,M}, l 6= r, sets al = bl =⊥.
7 For l ∈ {1, . . . ,M}, chooses a1l and a2l randomly

from {0, 1}2, and sets a3l = a1l ⊕ a2l ⊕ al.
8 For l ∈ {1, . . . ,M}, chooses b1l and b2l randomly

from {0, 1}2, and sets b3l = b1l ⊕ b2l ⊕ bl.
9 For l ∈ {1, . . . ,M}, chooses c2l randomly from
{0, 1}2, and sets c3l = c2l ⊕ a3l and c1l = c3l ⊕ b3l .
Output:

10 The dealer prepares a list listw of shares for each
party Pw, where w ∈ {1, 2, 3} such that
P1 receives the values of a11, a

1
2, . . . , a

1
m,

b11, b
1
2, . . . , b

1
m and c11, c

1
2, . . . c

1
m.

P2 receives the values of a21, a
2
2, . . . , a

2
m,

b21, b
2
2, . . . , b

2
m and c21, c

2
2, . . . c

2
m.

P3 receives the values of c31, c
3
2, . . . , c

3
m.

Algorithm 3: ShareGen for ΠCMP
fair

We assume that P3 has a positive threshold value of
revenue. We denote this threshold value by ε. If any player
offers him a revenue δ ≥ ε, P3 will help the player to get the
output alone. Otherwise he will play the game according to
the suggested strategy. This threshold value may depend on
the reputation value of P3. We take the idea of reputation
from [19]. Thus, P3 has following two options:

Inputs:
1 P1 obtains a11, a

1
2, . . . , a

1
m, b11, b

1
2, . . . , b

1
m and

c11, c
1
2, . . . , c

1
m.

2 P2 obtains a21, a
2
2, . . . , a

2
m, b21, b

2
2, . . . , b

2
m and

c21, c
2
2, . . . , c

2
m.

3 P3 obtains c31, c
3
2, . . . , c

3
m.

Computation:
There are m number of iterations. In each iteration
l ∈ {1, 2, . . . ,m} do the following.

4 P2 sends a2l to P1 and P1 sends b1l to P2.
5 After receiving the share fromP2, P1 sends c1l to
P3, else halts.

6 After receiving the share fromP1, P2 sends c2l to
P3, else halts.

7 P3 computes the values of a3l and b3l and sends a3l
to P1 and then b3l to P2.
Output:

8 If P2 aborts in round l, i.e., does not send its share at
that round and l ≤ r, P1 outputs ⊥. If l > r, P1 has
already determined the output in some earlier
iteration. Thus it outputs that value.

9 If P1 aborts in round l, i.e., does not send its share at
that round and l ≤ r, P2 outputs ⊥. If l > r, P2 has
already determined the output in some earlier
iteration. Thus it outputs that value.

10 If P1 or P2 does not send its share to P3, P3 outputs
⊥ to the both of the players.

11 If P3 does not send its computed share to any one of
the party Pw, w ∈ {1, 2}, in a round l, Pw chooses to
abort from the very next round and the protocol will
be terminated.

Algorithm 4: ΠCMP
fair

• Option 1: He can follow the protocol, i.e., he can send
the shares to both the parties.

• Option 2: If any one of the players gives him a
revenue δ ≥ ε, he will send the share only to that
player and help him obtain the output alone.

As P3 is rational and hence utility maximizer, he first
checks whether any one of the players indeed gives him the
revenue. Without loss of generality, we assume that P1 gives
him the revenue δ ≥ ε. In this case, P3 will send the share
only to P1 but not to P2. The following result shows that
P1 should have no incentive to give the revenue to P3 in
the motivation to get the output by himself only provided
certain conditions hold.

Theorem 2. Provided ε > 0, ε ≤ δ ≤ UTNw −UTTw , 0 < γ < 1
and γUTNw +(1−γ)UNNw < UTTw for all w ∈ {1, 2}, P3 always
plays the game according to the suggested strategy.

Proof. According to the protocol, to obtain the secret alone
with the help of P3, P1 has to guess correctly the revelation
round. Otherwise, the protocol will be terminated from the
very next round and none of the players get any information
about the output. P1 will not be interested to give the money
to P3 after the revelation round as he has already got the
output at the revelation round. Conditioned on the event
that r ≥ l, suppose P1 guesses the l-th round to be the
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revelation round and gives P3 the money for that round so
that P3 will not send the corresponding share to P2 for that
round. If the guess is correct, i.e., r = l, the probability of
which is γ, its utility is (UTN1 − δ). Otherwise, its utility is
(UNN1 −δ), as in this case P2 will abort from the next round.
So the expected utility of P1 is given by

γ(UTN1 − δ) + (1− γ)(UNN1 − δ)
= γUTN1 + (1− γ)UNN1 − δ < UTT1 − δ < UTT1 .

The last inequality follows from our assumptions that δ is
positive and γUTN1 + (1− γ)UNN1 < UTT1 . Thus P1 has no
incentive to offer money to the intermediate player P3 in the
motivation to get the output alone. Similar analysis can be
done for P2.

Thus, P3 has no option but to play the game according
to the suggested strategy.

In our mechanism, there are three players, namely P1,
P2 and P3. For the condition of achieving correctness and
fairness, we have to assume that when one of the players
deviates, others are sticking to the protocol. From the above
analysis we have seen that P3 has no incentive to deviate
from the protocol. Thus, we have to consider the following
two cases.

1) P1 deviates (P2 follows the protocol).
2) P2 deviates (P1 follows the protocol).

In fail-stop setting, the deviation of P1 and P2 is consid-
ered as early abort whereas in Byzantine setting the players
behave arbitrarily. That means they can abort early as well
as can send the arbitrary inputs or can swap the inputs.

We analyze the security notions such as correctness and
fairness considering all the above issues. The following
theorems show that our proposed mechanism is correct and
fair.

In Byzantine setting, the shares given to the players are
signed by the dealer so that no player can send a false
share to the other player. The signing procedure discussed
in Section 3 remains similar in our protocol expect M is
replaced by m and with some additional steps.

• For 1 ≤ l ≤ m, P1 is given (c1l , t
c1
l ), where tc1l =

Mackc1 (l ‖ c1l ).
• For 1 ≤ l ≤ m, P2 is given (c2l , t

c2
l ), where tc2l =

Mackc2 (l ‖ c2l ).
• P3 is given MAC key kc1 and MAC key kc2 so that

for 1 ≤ l ≤ m, it can verify the shares by algorithm
V rfykc1 (l ‖ c1l , t

c1
l ) for P1 and V rfykc2 (l ‖ c2l , t

c2
l )

for P2. If V rfykcw (l ‖ cwl , t
cw
l ) = 0, P3 halts, else

continues, where w ∈ {1, 2}.

There is no need to sign the shares given to P3, as P3

is fail-stop by nature. We assume P3 as a fail-stop player
for simplicity. One may consider P3 as a Byzantine player.
In that case P1 and P2 are given additional MAC keys to
verify the shares coming from P3.

The following result establishes the correctness of the
protocol.

Theorem 3. The protocol ΠCMP
Fair is UNFw -independent for w ∈

{1, 2} and hence correct.

Proof. We should recall that the deviations of P1 and P2

are similar. Thus for simplicity, here, we only consider the
deviations of P1.

In fail-stop setting, if P1 aborts early and the round in
which he aborts is less than j, according to Gordon et al.’s
protocol, P2 will output 0 and conclude that i ≤ j. When
i > j, it is the situation when P2 is deceived by P1. However,
our protocol is designed in such a way that if P1 has chosen
abort in any round before r, P2 will output ⊥ and does not
conclude anything. Thus, P1 can not deceive P2 by early
abort. There is no incentive for P1 to abort in a round l > r,
as P2 has already determined the output in some earlier
iteration.

In case of Byzantine setting, P1 can send arbitrary shares
to both P2 and P3, so that P2 will finally compute a wrong
function. But since each share is signed by the dealer,
no one can send an arbitrary share to the other. Another
important deviation of P1 in this setting is to swap the
inputs. By swapping the inputs, P1 can make P2 compute
a wrong function. As all the inputs came from the same
dealer, there is no chance to catch this type of deviation by
considering only the signature scheme. However, we con-
sider signature with tagging. P1 receives a11, a

1
2, . . . , a

1
m and

(b11, t
b
1), (b12, t

b
2), . . . , (b1m, t

b
m) and MAC key ka. Similarly P2

is given (a21, t
a
1), (a22, t

a
2), . . . , (a2m, t

a
m) and b21, b

2
2, . . . , b

2
m and

MAC key kb. After receiving the share in the round l from
P1, if V rfykb(l ‖ b1l , tbl ) = 0, then P2 halts. Similar checking
is done by P3 as well. Thus, by input swapping no one can
make the other believe in a wrong output.

Thus, assuming P1 has UNF1 > UTT1 , the mechanism is
designed in such a way that it becomes UNF1 independent
and hence correct. Proceeding in the same way for P2, we
can prove the UNF2 independence.

Now we are in a position to establish fairness of ΠCMP
Fair .

Theorem 4. Provided R1 and P3 always plays the game ac-
cording to the suggested strategy, the protocol ΠCMP

Fair achieves
fairness.

Proof. Without loss of generality, let us assume that P3

is following the suggested strategy and the player P1 is
deviating. The analysis when P2 deviates is similar.

In this case, the reason for deviation is to get the function
alone. In fail-stop as well as in Byzantine setting P1 can
abort in round l.

P1 may choose three types of abort in round l.

1) It may not send its share to only P2.
2) It may not send its share to only P3.
3) It may not send its share to both P2 and P3.

If P1 does not send its share to P2, then P2 will not send
its share to P3. As a result the protocol will be terminated
without producing any result either for P1 or P2. Similarly,
if P1 does not send its share to P3, according to the protocol
P3 will output ⊥ to both the players. In the third case, the
protocol will be terminated from the beginning of the round
l. Thus, there is no incentive for P1 to abort early in the
motivation to get the secret alone.

Theorem 5. Provided R1, 0 < γ < 1 , ε ≤ δ ≤ UTNw − UTTw ,
and γUTNw + (1− γ)UNNw < UTTw for all w ∈ {1, 2}, ΠCMP

Fair

achieves strict Nash equilibrium.
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Proof. In Theorem 2, we proved that provided R1, 0 < γ <
1 , ε ≤ δ ≤ UTNw − UTTw and γUTNw + (1 − γ)UNNw <
UTTw for all w ∈ {1, 2}, P3 can not increase his utility value
by deviating from the suggested strategy. We also proved
that provided R1 and given that P3 follows the protocol,
neither P1 nor P2 can increase his utility value beyond UTTw
(utility when each player follows the suggested strategy) by
deviating from the suggested strategy (Theorem 4). In other
words,

uw(σ′w,
−→σ −w) < uw(−→σ ),

which concludes the proof.

3.3 Fairness analysis of ΠCMP when players have un-
equal domain size
As discussed in [10, Section 3.2], when the domain sizes
of the players are unequal, the analysis in the non-rational
setting does not change. It is easy to see from our analysis
of Section 3.1 that even in the rational setting, we can carry
out an analogous calculation to conclude that the protocol
is UNF -dependent and hence not fair.

4 SECURE TWO-PARTY COMPUTATION FOR FUNC-
TIONS INVOLVING EMBEDDED XOR WITH RATIONAL
PLAYERS
In this section, we first describe the embedded XOR problem
proposed by Gordon et al. [9]. We, then, will show how
fairness condition is affected in the presence of the rational
players having the preferences R1 (refer to subsection 2.6).
Let us denote two players by P1 and P2. Player P1 is given
an ordered list {x1, x2, x3} and P2 is given an ordered list
{y1, y2}. P1 randomly chooses the input from the ordered
list and sends to the dealer (the trusted party in the hybrid
model). P2 also randomly chooses the input from his list and
delivers to the dealer. Dealer calculates the function. For
convenience, we here recall the table for f given in [9].

y1 y2
x1 0 1
x2 1 0
x3 1 1

The function can be described as, for w ∈ {1, 2}

f(xi, yj) =

{
1 if i 6= j;

0 if i = j.
(5)

As described in [9], the protocol proceeds in a series
of M iterations, where M = ω(γ−1 log λ), λ being the
security parameter. Let x and y denote the inputs from
P1 and P2 respectively. The dealer chooses the revelation
round r according to geometric distribution with parameter
γ. The dealer then creates two sequences {al} and {bl},
l = 1, 2, . . . ,M , as follows.

For l ≥ r, al = bl = f(x, y).

For l < r, al = f(x, ŷ), bl = f(x̂, y),

where x̂ (or ŷ) is a random value of x (or y) chosen by the
dealer.

Next, the dealer splits the secret al into the shares a1l
and a2l , and the secret bl into the shares b1l and b2l , so
that al = a1l ⊕ a2l and bl = b1l ⊕ b2l , and gives the shares

{(a1l , b1l )} to P1 and the shares {(a2l , b2l )} to P2. In each
round l, P2 sends a2l to P1, who, in turn sends b1l to P2.
P1 and P2 both learns the output value f(x, y) in iteration
r, unlike the millionaires’ problem. The algorithm for the
functionality share generation in fail-stop setting is revisited
in Algorithm 5. Here we assume that the dealer who will
distribute the shares is honest and can compute the function
described in Equation (5). The protocol for computing f is
described in Algorithm 6.

Inputs:
1 x from P1 and y from P2. If one of the received

input is not in the correct domain, then both the
parties are given ⊥.
Computation:
The dealer does the following:

2 Chooses r according to a geometric distribution
G(γ) with parameter γ. Here r is the revelation
round, i.e., the round in which the value of f is
either (0, 0) or (1, 1).

3 For l < r, sets al = f(x, ŷ) and bl = f(x̂, y).
4 For l ≥ r, sets al = ar and bl = br .
5 For l ∈ {1, . . . ,M}, chooses a1l randomly from
{0, 1}2, and sets a2l = a1l ⊕ al.

6 For l ∈ {1, . . . ,M}, chooses b1l randomly from
{0, 1}2, and sets b2l = b1l ⊕ bl.
Output:

7 The dealer prepares a list listw of shares for each
party Pw, where w ∈ {1, 2} such that
P1 receives the values of a11, a

1
2, . . . , a

1
M and

b11, b
1
2, . . . , b

1
M .

P2 receives the values of a21, a
2
2, . . . , a

2
M and

b21, b
2
2, . . . , b

2
M .

Algorithm 5: ShareGen2

Inputs:
1 P1 obtains a11, a

1
2, . . . , a

1
M and b11, b

1
2, . . . , b

1
M .

2 P2 obtains a21, a
2
2, . . . , a

2
M and b21, b

2
2, . . . , b

2
M .

Computation:
There are M number of iterations. In each iteration
l ∈ {1, 2, . . . ,M} do:

3 P2 sends a2l to P1 and P1 computes al = a1l ⊕ a2l .
4 P1 sends b1l to P2 and P2 computes bl = b1l ⊕ b2l .

Output:
5 If P2 aborts in round l, i.e., does not send its share at

that round and l ≤ r, P1 outputs al−1 = f(x, ŷ). If
l > r, P1 has already determined the output in some
earlier iteration. Thus it outputs that value.

6 If P1 aborts in round l, i.e., P1 computes its output
and does not send its share at that round and l ≤ r,
P2 outputs bl = f(x̂, y). If l > r, P2 has already
determined the output in some earlier iteration.
Thus it outputs that value.

Algorithm 6: ΠCEP2

The algorithms in the Byzantine setting are the same as
those in the fail-stop setting except some additional steps. In
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Byzantine setting, the shares are signed by the dealer. The
signing message distribution procedure is same as Section 3.

4.1 ΠCEP2 is not fair when players are rational

In this subsection, we analyze the fairness condition of the
function in rational setting. We assume that the players, P1

and P2 have the preferences R1.

4.1.1 Early abort by P2

Let us first assume that P2 be corrupted by a probabilistic
polynomial time adversaryA and chooses to abort in the
round l ≤ r. Let U2 be the utility of P2 when he aborts. We
have two cases depending on P2’s choice of y.

Case 1: y = y1 Thus, Pr(bl−1 = 0|y = y1) = Pr(x̂ =
x1) = 1

3 and Pr(bl−1 = 1|y = y1) = Pr(x̂ ∈ {x2, x3}) = 2
3 .

Under this case, three different subcases are possible
depending on P1’s choice of x.
Subcase 1.(a): x = x1. Now, Pr(al−1 = 0|x = x1) = Pr(ŷ =
y1) = 1

2 and Pr(al−1 = 1|x = x1) = Pr(ŷ = y2) = 1
2 . The

following table enumerates the different possibilities for U2
when x = x1 and y = y1.

(al−1, bl−1) U2 Probability
(0,0) UTT

2
1
2
· 1
3
= 1

6

(0,1) UNT
2

1
2
· 2
3
= 1

3

(1,0) UTN
2

1
2
· 1
3
= 1

6

(1,1) UNN
2

1
2
· 2
3
= 1

3

Thus, E[U2|(x1, y1)] =
[
1
6 (UTN2 + UTT2 ) + 1

3 (UNT2 +

UNN2 )
]
.

Subcase 1.(b): x = x2. Now, Pr(al−1 = 0|x = x2) = Pr(ŷ =
y2) = 1

2 and Pr(al−1 = 1|x = x2) = Pr(ŷ = y1) = 1
2 .

The following table enumerates the different possibilities
for U2 when x = x2 and y = y1.

(al−1, bl−1) U2 Probability
(0,0) UNN

2
1
2
· 1
3
= 1

6

(0,1) UTN
2

1
2
· 2
3
= 1

3

(1,0) UNT
2

1
2
· 1
3
= 1

6

(1,1) UTT
2

1
2
· 2
3
= 1

3

Thus, E[U2|(x2, y1)] =
[
1
6 (UNN2 + UNT2 ) + 1

3 (UTN2 +

UTT2 )
]
.

Subcase 1.(c): x = x3. In this case, P1 knows the output
with certainty. That means, Pr(al−1 = 0|x = x3) = 0 and
Pr(al−1 = 1|x = x3) = 1.

The following table enumerates the different possibilities
for U2 when x = x3 and y = y1.

(al−1, bl−1) U2 Probability
(0,0) UNN

2 0 · 1
3
= 0

(0,1) UTN
2 0 · 2

3
= 0

(1,0) UNT
2 1 · 1

3
= 1

3

(1,1) UTT
2 1 · 2

3
= 2

3

Thus, E[U2|(x3, y1)] = 1
3U

NT
2 + 2

3U
TT
2 .

Now, combining all three subcases, we get

E[U2|y1] = E[U2|(x1, y1)] · Pr(x = x1)

+E[U2|(x2, y1)] · Pr(x = x2)

+E[U2|(x3, y1)] · Pr(x = x3)

=
[1

6
(UTN2 + UTT2 ) +

1

3
(UNT2 + UNN2 )

]
· 1

3

+
[1

6
(UNN2 + UNT2 ) +

1

3
(UTN2 + UTT2 )

]
· 1

3

+
[1

3
UNT2 +

2

3
UTT2

]
· 1

3

=
1

18

[
3UTN2 + 7UTT2 + 3UNN2 + 5UNT2

]
.

If the above expression is greater than UTT2 , P2 aborts
early, otherwise he plays the game.

Case 2: y = y2 The analysis is similar and we obtain the
same expression for E[U2|y2]. More specifically, we have the
following observation.
Subcase 2.(a): x = x1. The analysis is exactly identical to
Subcase 1.(b).
Subcase 2.(b): x = x2. The analysis is exactly identical to
Subcase 1.(a).
Subcase 2.(c): x = x3. The analysis is exactly identical to
Subcase 1.(c).

4.1.2 Early abort by P1

Now, we consider the aborting of P1. We assume that there
is a probabilistic polynomial time adversaryAwho corrupts
P1 and makes P1 to choose abort in round l. Let U1 be the
utility of P1 when he aborts. We have three cases depending
on P1’s choice of x.

Case 1: x = x1 We have Pr(al = 0|x = x1) = Pr(ŷ =
y1) = 1

2 and Pr(al = 1|x = x1) = Pr(ŷ = y2) = 1
2 , for

l < r. Note that for l = r, P1 will abort after receiving the
exact value of y. Hence, in case of y = y1,

Pr(ar = 0|(x1, y1)) = 1, Pr(ar = 1|(x1, y1)) = 0;

in case of y = y2,

Pr(ar = 0|(x1, y2)) = 0, Pr(ar = 1|(x1, y2)) = 1.

Subcase 1.(a): y = y1. Now, we have Pr(bl = 0|y = y1) =
Pr(x̂ = x1) = 1

3 and Pr(bl = 1|y = y1) = Pr(x̂ ∈
{x2, x3}) = 2

3 .
The following table enumerates the different possibilities

for U1 when x = x1 and y = y1.

(al, bl) U1 Probability
l < r l = r

(0,0) UTT
1 (1− γ) · 1

2
· 1
3
= (1− γ) · 1

6
γ · 1 · 1

3
= γ · 1

3

(0,1) UTN
1 (1− γ) · 1

2
· 2
3
= (1− γ) · 1

3
γ · 1 · 2

3
= γ · 2

3

(1,0) UNT
1 (1− γ) · 1

2
· 1
3
= (1− γ) · 1

6
γ · 0 · 1

3
= 0

(1,1) UNN
1 (1− γ) · 1

2
· 2
3
= (1− γ) · 1

3
γ · 0 · 2

3
= 0

Thus,

E[U1|(x1, y1)]

= (1− γ)
[1

3
UTN1 +

1

6
UTT1 +

1

3
UNN1 +

1

6
UNT1

]
+γ
[2

3
UTN1 +

1

3
UTT1

]
=

(1 + γ)

6

(
2UTN1 + UTT1

)
+

(1− γ)

6

(
2UNN1 + UNT1

)
.
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Subcase 1.(b): y = y2. Now, we have Pr(bl = 0|y = y2) =
Pr(x̂ = x2) = 1

3 and Pr(bl = 1|y = y2) = Pr(x̂ ∈
{x1, x3}) = 2

3 .
The following table enumerates the different possibilities

for U1 when x = x1 and y = y2.

(al, bl) U1 Probability
l < r l = r

(0,0) UNN
1 (1− γ) · 1

2
· 1
3
= (1− γ) · 1

6
γ · 0 · 1

3
= 0

(0,1) UNT
1 (1− γ) · 1

2
· 2
3
= (1− γ) · 1

3
γ · 0 · 2

3
= 0

(1,0) UTN
1 (1− γ) · 1

2
· 1
3
= (1− γ) · 1

6
γ · 1 · 1

3
= 1

3

(1,1) UTT
1 (1− γ) · 1

2
· 2
3
= (1− γ) · 1

3
γ · 1 · 2

3
= 2

3

E[U1|(x1, y2)] = (1− γ)
(1

6
UTN1 +

1

3
UTT1 +

1

6
UNN1

+
1

3
UNT1

)
+ γ

(1

3
UTN1 +

2

3
UTT1

)
=

(1 + γ)

6

(
UTN1 + 2UTT1

)
+

(1− γ)

6

(
UNN1 + 2UNT1

)
.

Now, combining all two subcases, we get
E[U1|x1]

= E[U1|(x1, y1)] · Pr(y = y1) + E[U1|(x1, y2)] · Pr(y = y2)

=
[
(1+γ)

6

(
2UTN1 + UTT1

)
+ (1−γ)

6

(
2UNN1 + UNT1

)]
· 12

+
[
(1+γ)

6

(
UTN1 + 2UTT1

)
+ (1−γ)

6

(
UNN1 + 2UNT1

)]
· 12

= 1+γ
4

(
UTN1 + UTT1

)
+ 1−γ

4

(
UNN1 + UNT1

)
.

If the above expression is greater than UTT1 , P1 chooses
abort.

Case 2: x = x2 The analysis is similar and we obtain the
same expression forE[U1|x2]. More specifically, we have the
following observation.
Subcase 2.(a): y = y1. The analysis is exactly identical to
Subcase 1.(b).
Subcase 2.(b): y = y2. The analysis is exactly identical to
Subcase 1.(a).

Case 3: x = x3 In this case, P1 has no incentive to play
as he knows in certainty that the output should be 1. For
any l ≤ r, P1 always has expected utility

[
2
3U

TT
1 + 1

3U
TN
1

]
,

which is always greater than UTT1 . Thus, if P1 chooses x3,
he always aborts early and fairness can not be achieved.

4.1.3 Summary of the analysis

From the above analysis, it is clear that aborting of P2 does
not affect fairness. If P2 aborts and l ≤ r, then no one
obtains the output. However, if l > r, then both obtain the
output. Contrary to this, aborting of P1 affects fairness, as
he computes the output first from the input received from
P2. When x = x3, P1 should have no incentive to continue
the game as he knows the output with certainty. Thus, we
observe that Gordon et al.’s protocol ΠCEP2 of [9], [10], that
was designed for non-rational setting, is no longer fair in the
rational setting.

Theorem 6. The protocol ΠCEP2 can not achieve fairness with
rational players.

4.2 How to make ΠCEP2 fair when players are rational
In this subsection we suggest a variant of Gordon et al.’s
protocol with fairness in the presence of a rational adver-
sary. Here, we only modify the step 6 of Algorithm 6:
ΠCEP2, and call the resulting protocol ΠCEP2

Fair . When P1

aborts in any round l, instead of obtaining f(x̂, y), P2

outputs 1. Every other steps are remain same. We now prove
the fairness of the protocol.

4.2.1 Early abort by P2

The analysis in this case is exactly identical to Section 4.1.1.
Thus, for fairness, we need to ensure that

1

18

[
3UTN2 + 7UTT2 + 3UNN2 + 5UNT2

]
≤ UTT2 ,

i.e.,

UTT2 ≥ 1

11

[
3UTN2 + 3UNN2 + 5UNT2

]
. (6)

4.2.2 Early abort by P1

Now, we discuss each case one by one.
Case 1: x = x1 We have Pr(al = 0|x = x1) = Pr(ŷ =

y1) = 1
2 and Pr(al = 1|x = x1) = Pr(ŷ = y2) = 1

2 , for
l < r. Note that for l = r, P1 will abort after receiving the
exact value of y. Hence, in case of y = y1,

Pr(ar = 0|(x1, y1)) = 1, Pr(ar = 1|(x1, y1)) = 0;

in case of y = y2,

Pr(ar = 0|(x1, y2)) = 0, Pr(ar = 1|(x1, y2)) = 1.

Subcase 1.(a): y = y1. Now, we have Pr(bl = 0|y = y1) = 0
and Pr(bl = 1|y = y1) = 1.

The following table enumerates the different possibilities
for U1 when x = x1 and y = y1.

(al, bl) U1 Probability
l < r l = r

(0,0) UTT
1 (1− γ) · 1

2
· 0 = 0 γ · 1 · 0 = 0

(0,1) UTN
1 (1− γ) · 1

2
· 1 = (1− γ) · 1

2
γ · 1 · 1 = γ · 1

(1,0) UNT
1 (1− γ) · 1

2
· 0 = (1− γ) · 0 γ · 0 · 0 = 0

(1,1) UNN
1 (1− γ) · 1

2
· 1 = (1− γ) · 1

2
γ · 0 · 1 = 0

Thus,

E[U1|(x1, y1)] = (1− γ)
[1

2
UTN1 +

1

2
UNN1

]
+ γ

[
UTN1

]
=

(1 + γ)

2

(
UTN1

)
+

(1− γ)

2

(
UNN1

)
.

Subcase 1.(b): y = y2. Now, we have Pr(bl = 0|y = y2) = 0
and Pr(bl = 1|y = y2) = 1.

The following table enumerates the different possibilities
for U1 when x = x1 and y = y2.

(al, bl) U1 Probability
l < r l = r

(0,0) UNN
1 (1− γ) · 1

2
· 0 = (1− γ) · 0 γ · 0 · 0 = 0

(0,1) UNT
1 (1− γ) · 1

2
· 1 = (1− γ) · 1

2
γ · 0 · 1 = 0

(1,0) UTN
1 (1− γ) · 1

2
· 0 = (1− γ) · 0 γ · 1 · 0 = 0

(1,1) UTT
1 (1− γ) · 1

2
· 1 = (1− γ) · 1

2
γ · 1 · 1 = γ

E[U1|(x1, y2)] = (1− γ)
(1

2
UTT1 +

1

2
UNT1

)
+ γ

(
UTT1

)
=

(1 + γ)

2

(
UTT1

)
+

(1− γ)

2

(
UNT1

)
.
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Now, combining all two subcases, we get

E[U1|x1] = E[U1|(x1, y1)] · Pr(y = y1)

+E[U1|(x1, y2)] · Pr(y = y2)

=
[ (1 + γ)

2

(
UTN1

)
+

(1− γ)

2

(
UNN1

)]
· 1

2

+
[ (1 + γ)

2

(
UTT1

)
+

(1− γ)

2

(
UNT1

)]
· 1

2

=
(1 + γ)

4

(
UTN1 + UTT1

)
+

(1− γ)

4

(
UNN1 + UNT1

)
.

If the above expression is greater than UTT1 , P1 chooses
abort. Thus, for fairness, we need to ensure that UTT1 ≥
(1+γ)

4

(
UTN1 + UTT1

)
+ (1−γ)

4

(
UNN1 + UNT1

)
, i.e.,

γ ≤ 3UTT1 − UTN1 − UNN1 − UNT1

UTN1 + UTT1 − UNN1 − UNT1

. (7)

Case 2: x = x2 The analysis is similar and we obtain the
same expression forE[U1|x2]. More specifically, we have the
following observation.
Subcase 2.(a): y = y1. The analysis is exactly identical to
Subcase 1.(b).
Subcase 2.(b): y = y2. The analysis is exactly identical to
Subcase 1.(a).

Case 3: x = x3 When x = x3, P1 will abort as he knows
the output with certainty. In this case, he needs no help from
P2 to compute the function. However, when P1 chooses to
abort, P2 outputs 1. Thus, for x = x3, both get the correct
output of the function. The utility for both the player is UTTw ,
w ∈ {1, 2}. Hence, the fairness condition in rational setting
is always maintained.

4.2.3 Fairness condition

From the above analysis, we can state the following result.

Theorem 7. Provided R1, UTT2 ≥ 1
11

[
3UTN2 + 3UNN2 +

5UNT2

]
, and

0 < γ ≤ 3UTT1 − UTN1 − UNN1 − UNT1

UTN1 + UTT1 − UNN1 − UNT1

,

the protocol ΠCEP2
Fair achieves fairness.

Proof. The proof follows from Equations (6) and (7). From
the condition γ ≤ 3UTT

1 −UTN
1 −UNN

1 −UNT
1

UTN
1 +UTT

1 −UNN
1 −UNT

1
, it is easy to see

that the natural restriction γ ≤ 1 always holds.

Note that γ > 0 naturally implies that the numerator
3UTT1 − UTN1 − UNN1 − UNT1 is also > 0, i.e.,

(UTT1 − UNN1 ) + (UTT1 − UNT1 ) > (UTN1 − UTT1 ). (8)

In Equation (8), all the three terms within the parentheses
are non-negative according to R1.

Again, the condition UTT2 ≥ 1
11

[
3UTN2 +3UNN2 +5UNT2

]
can be re-written as

3(UTT2 − UNN2 ) + 5(UTT2 − UNT2 ) ≥ 3(UTN2 − UTT2 ). (9)

If the utilities are symmetric, i.e., if Uxy1 = Uxy2 , then
Equation (8) implies Equation (9), and hence we need one
less condition. The following corollary is immediate.

Corollary 1. Provided R1, and

0 < γ ≤ 3UTT − UTN − UNN − UNT

UTN + UTT − UNN − UNT
,

the protocol ΠCEP2
Fair with symmetric utilities achieves fairness.

4.3 Fairness analysis of ΠCEP2 when players have
equal domain sizes
In rational setting, the analysis of the original ΠCEP2 pro-
tocol [9], [10], is exactly the same as in Section 4.1 except
that the cases corresponding to x3 would not be there. In
this situation, the protocol need not be modified. In order
to maintain fairness, we keep the original steps of [9], [10],
as in Algorithm 6, and Theorem 7 guarantees fairness. Note
that the fairness condition is the same for unequal as well as
equal domain sizes.

Theorem 8. Provided R1, UTT2 ≥ 1
11

[
3UTN2 + 3UNN2 +

5UNT2

]
, and

0 < γ ≤ 3UTT1 − UTN1 − UNN1 − UNT1

UTN1 + UTT1 − UNN1 − UNT1

,

the protocol ΠCEP2
Fair achieves strict Nash equilibrium.

Proof. ProvidedR1 andUTT2 ≥ 1
11

[
3UTN2 +3UNN2 +5UNT2

]
,

P2 can not increase his utility beyond UTT2 by choosing
deviating strategy (here early abort, Section 4.2.1). Similarly,
provided R1, and

0 < γ ≤ 3UTT1 − UTN1 − UNN1 − UNT1

UTN1 + UTT1 − UNN1 − UNT1

,

P1 can not increase his utility beyond UTT1 by choosing
deviating strategy (here, early abort, Section 4.2.2). In other
words, for every player Pw

uw(σ′w,
−→σ −w) < uw(−→σ ).

This concludes the proof.

5 CONCLUSION

In this paper, we revisit the ‘greater than’ function proposed
by Gordon et al. [9], [10] as well as the problem of [10] that
is an instance of the embedded XOR class. We show that
in rational domain, none of the above two remains fair and
then we propose variants that achieve fairness when the
players are rational.

In 2011 Asharov et al. [2] showed the impossibility of
the secure computation in two party setting in the rational
domain. However, in 2012 Groce and Katz [12] proved
that the results of Asharov et al. is correct for a specific
function, specific input distribution and specific set of util-
ities. They [12] proposed a scheme for secure two party
computation in rational setting for arbitrary function in
incentive compatible settings. Their proposed protocol is an
incomplete information game and thus achieves Bayesian
strict Nash equilibrium. Also, the dealer is not completely
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offline in their protocol. Contrary to this, our proposed
protocols for ‘greater than’ as well as the embedded XOR
functions are complete information games and achieve strict
Nash equilibrium without the necessity of an online dealer.
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