
Selene: Voting with Transparent Verifiability
and Coercion-Mitigation

Peter Y A Ryan, Peter B Rønne, Vincenzo Iovino

Abstract. End-to-end verifiable voting schemes typically involves vot-
ers handling an encrypted ballot in order to confirm that their vote is
accurately included in the tally. While this may be technically valid,
from a public acceptance standpoint is may be problematic: many voters
may not really understand the purpose of the encrypted ballot and the
various checks that they can perform. In this paper we take a different
approach and revisit an old idea: to provide each voter with a private
tracking number. Votes are posted on a bulletin board in the clear along
with their associated tracking number. This is appealing in that it pro-
vides voters with a very simple, intuitive way to verify their vote, in the
clear. However, there are obvious drawbacks: we must ensure that no two
voters are assigned the same tracker and we need to keep the trackers
private.
In this paper, we propose a scheme that addresses both of these problems:
we ensure that voters get unique trackers and we close off the coercer’s
window of opportunity by ensuring that the voters only learn their track-
ing numbers after votes have been posted. The resulting scheme provides
receipt-freeness, and indeed a good level of coercion-resistance while also
providesinga more immediately understandable form of verifiability. The
cryptographyis under the bonnet as far as the voter is concerned.
The basic scheme still has a problem in some contexts: if the coercer is
himself a voter there is a chance that the coerced voter might light on the
coercer’s tracker, or the coercer simply claims that it is his. We argue that
in many contexts this may be an acceptable threat when weighed against
the more transparent verification provided by the scheme. Nonetheless,
we describe some elaborations of the basic scheme to mitigate such
threats.

1 Introduction

The challenge with voting systems is to provide sufficient evidence to render
the outcome beyond dispute while at the same time ensuring ballot secrecy and
coercion resistance. Furthermore, the system has to be very easy to use and easily
understandable. The response from the crypto community has been to develop
the notion of End-to-End (E2E) Verifiability. A number of schemes have been
proposed and some even implemented and deployed, for example, Pret a Voter
[28] Wombat [3] and Scantegrity II [29], Helios https://vote.heliosvoting.org/,
Civitas [10], Pretty Good Democracy [27].

Typically these schemes involve the creation of an encrypted version of the
vote at the time of casting. The voter gets to retain a copy of the encrypted

vote which she can later confirm is correctly posted to a secure, append-only
Web Bulletin Board (WBB). All the posted, encrypted ballots are then anony-
mously tabulated, either using mixes and decryption or exploiting homomorphic
properties of the encryption to tabulate under encryption and then decrypt the
result.

The assurance arguments are rather subtle though, and some people object
to the use of crypto in voting on the grounds that the majority of the electorate
will not really understand it and its role. Indeed, German Federal law, according
to some interpretations, rules out the use of cryptography on the grounds that
anyone should be able to understand the mechanisms without requiring any spe-
cial knowledge. It is interesting therefore to explore the possibility of achieving
some form of verifiability without the use of crypto. An early example of this is
the article of Randell and Ryan [25] that uses scratch strips as an analogue of
crypto. Another fine example is Rivest’s ThreeBallot system [26].

Another approach is to have private ballot identifiers that allow voters to look
up their vote in the clear on the WBB. Schneier in his book [30] for example
suggests such an approach: voters are invited to invent their own random code
and submit it with their vote. A slightly more sophisticated approach, in which
the system and/or the voter’s devices generates the numbers is presented in [1].

Introducing ballot identifiers has the appeal that it provides voters with a
very simple, direct and easy to understand way to confirm that their vote is
present and correct in the tally. There are however two significant drawbacks:
care has to be taken to ensure that voters get distinct trackers and there is a
danger of coercion. The first is an issue if for example the system could identify
two voters likely to vote the same way and assigns them the same tracker. In
this case it just posts one vote against this tracker and is free to stuff another
vote of its own choice. The second danger is that a coercer requires the voter to
hand over her tracker to allow him to check how she voted. Notice though that
in this style of attack the coercer has a limited window of opportunity: he must
request that the tracker be handed over before the results are published. It is
this observation that we exploit to counter this threat: we arrange for the voters
to learn their tracker numbers only after the information has been posted to the
WBB.

This paper presents a scheme that addresses both of these shortcomings by:

– Guaranteeing that voters get unique trackers.
– Arranging for voters to learn their tracker only after the votes and corre-

sponding tracking numbers have been posted (in the clear).

We hope that by putting all the crypto under the bonnet, voters, election
officials etc. may find such a scheme more acceptable that conventional E2E
verifiable schemes, that require voters to handle encrypted ballots. Here the
voters just have to handle tracking numbers and votes in the clear. The scheme
is also interesting in that it appears to shift the trust model for voter devices:
in usual E2E schemes we need to worry about the voter’s device encrypting the
vote correctly. This typically necessitates complicating the protocol with Benaloh

challenges, [4], or similar ballot assurance mechanisms. Now that voters get to
check their vote in the clear, a misbehaving device can be detected more readily,
and resulting in a simpler voting ceremony.

A possible problem with the basic scheme, pointed out by Bill Roscoe, is that
a coerced voter might by mis-chance choose the coercer’s tracking number when
she is deploying her coercion evasion strategy. Perhaps even more worrying is the
possibility that the coercer will simply claim, falsely, that the tracker revealed
by the voter is his and hence he “knows” that voter has not revealed her true
tracker. This puts the voter in a very difficult situation. It seems that her best
strategy is to stick to her guns and insist that she has revealed her true tracker.
She does not know whether or not the coercer is telling the truth and indeed,
ironically, the coercer does not have any means to prove to her that it is his
tracker.

In a large elections with a small number of candidates the odds of lighting
on the coercer’s tracker will typically be small (unless the coercer is backing a
serious loser), but even the remote possibility may be worrying to some voters.
Furthermore, the coercer might claim, falsely, that the tracker is his, placing the
voter in a difficult situation. Of course, for this to arise, the coercer must himself
be a voter, and so the attack does not arise if the coercer is an outsider.

It is not immediately obvious how to counter this danger, but an enhancement
to the basic scheme which counter this possibility is described in section 8,
however it comes at a cost of a less transparent tally. The Selene scheme is in
any case targeted at low coercion threat environments and so in such a context
this problem could be regarded as minor. We argue that, in some contexts, the
benefits arising from the greater degree of transparency outweigh the rather
remote threat. In any event, we will argue that the basic scheme still provides
receipt-freeness, if not complete coercion resistance.

It is worth noting that the constructions presented here could be thought of as
a possible add-on to other schemes to provide a transparent form of verifiability.
Indeed we could start with a simple, un-verifiable scheme that simply delivers
encrypted votes to the server.

2 Background

Coercion can come in many flavours, from implicit, the coercer does’t have to say
anything, folk just know how they are expected to vote, to full-on: your personal
coercer is on hand 24/7 to assist you in making the right voting choice. Making
a voting system resistant to the latter form is extremely difficult, arguably im-
possible if the coercer really is observing the voter throughout the voting period.
The Selene scheme is aimed at contexts where the coercion threat is closer to
the former end of the spectrum: the coercer will issue some instructions and
ask some questions. Selene will manage to mitigate such coercion attacks and at
the same time allow the voters to directly verify that their vote is counted as
intended.

3 Cryptographic Primitives

The parties involved. The parties involved in the protocol are: the n voters, the
t Tellers, and the Election Authority (EA) that initially sets up the protocol.
Further a public WBB is used for verifiable communication whereas private
channels are used to send secret information which need to equivocated in case
of coercion.

Web Bulletin Board. In common with most E2E verifiable systems we will as-
sume the existence of a secure WBB. This can be thought of as an append-only
secure broadcast mechanism: everyone has a consistent view of the information
posted and, once posted, information cannot be removed. For a more detailed
discussion and a possible implementation see [20].

Signature, threshold encryption and verifiable re-encryption mix protocols. We
assume an (k, t)-threshold ElGamal encryption system without any trusted au-
thority and with verifiable proofs of honest decryption. The cryptosystem must
be such that any subset k of the t parties are able to securely decrypt a given
ciphertext with a corresponding transcript of correct decryption. In our case
the t parties correspond to the Tellers. One example of such scheme is given in
Cramer et al. [13]. In this work we denote by {x} the ElGamal encryption of
x. In addition we will make use of a digital signature scheme S = (Sign,Verify)
to sign the encrypted votes [16]. Further, we will use re-encryption mix nets, in
particular also parallel verifiable shuffles protocols [24].

Plaintext equivalence test and proofs. Consider two ElGamal ciphertexts (a1, b1)
and (a2, b2), encrypted with the same key sk, whose plaintexts are respectively
m1 andm2. Assume that the private part sk is distributed among Tellers T1, . . . , Tt.
Then T1, . . . , Tt can execute a protocol to determine if m1 = m2 without leaking
anything else. To do that, they compute (a, b) = (a1/b1, a2/b2) and execute a
threshold decryption of (ar, br) for a random distributively generated exponent
r. At the end if the decryption returns 1, then they agree on m1 = m2, or on
m1 6= m2 otherwise. For two ciphertexts c1 and c2, we denote by PET(c1, c2) = 1
if the plaintext equivalence test holds for c1 and c2. Proofs of correct threshold
decryption performed in a plaintext equivalence test are added for public verifi-
ability.

RO model, the Fiat-Shamir heuristic, NIZKPoK and signatures. In our protocol
we will make use of an ideal hash function modelled as a Random Oracle (RO, in
short) [2]. The Fiat-Shamir heuristic [14] combined with the RO model will offer
us the powerful tool of Non-Interactive Zero-Knowledge Proofs of Knowledge
(NIZKPoK, in short). Actually we will need stronger variants of the Fiat-Shamir
heuristic [6]. We will give more details in Appendix A.

Exponentiation mixes. Our protocol will benefit from the exponentiation mix
construct from [19]. Here a list of Public Keys pki of the voters are put through
a sequence of exponentiation mixes: the i-th mix server MSi takes the batch of
outputs from the previous server, raises each term to a secret common power
si, subjects the resulting terms to a secret shuffle πi and outputs the result to
MSi+1. The first server takes the original list of PKs. The net effect is a list:

(gxρ(i)·s)i∈[n],

where:

π =

[n]∏
1

ρi, s =

[n]∏
1

si,

and gs is also published by the last Teller.
Any voter Vi, i ∈ [n] can identify her pseudo-PK, pk∗ in the list by computing

(gs)xi and finding the match.

4 Related Work

E2E verifiable voting now has quite a long and rich literature, with many schemes
having been proposed, both for in-person and remote, e.g. internet, voting. Here
we will just mention some of the most closely related schemes. Note, Selene
as presented here is intended for internet voting, but it would doubtless be
straigforward to adapt it to in-person voting.

The most notable verifiable, internet voting scheme is Adida’s Helios,
https://vote.heliosvoting.org/. Helios is not receipt-free, but recently the Bele-
nios RF scheme, [11], has been proposed to provide receipt freeness.

Juels et al [21] proposed a formal definition of coercion resistance and a
credential-based mechanism to achieve this. The Civitas system, [10],
http://www.cs.cornell.edu/projects/civitas/, implements this approach, with some
enhancements.

The idea of voters having a private tracking number with which they can look
up their vote in the clear on a bulletin board appears to go back the Schneier’s
“Applied Cryptography” book in which he suggests that voters choose a pass-
word to identify their vote. Much later the idea is revived for use in voting during
ANR (Agence National de la Rechrche) funding committee meetings. A scheme
that has some similarities to Selene in that votes appear in the clear alongside
identifying number, is Trivitas, [8]. Here however the clear-text votes appear
on the bulletin board at an intermediate step, followed by further mixing and
filtering. Hence the voters do not verify their vote directly in the tally.

5 The Set-up Phase

The EA creates the threshold election key and keys share. Ideally this should
be in a distributed, dealerless fashion [13]. We assume that voters already have

PK/SK pairs. When voters register for the election we assume that they, or more
precisely their devices, create a fresh, ephemeral trapdoor key pair.

We now describe the construction whose goal is to inform voters of their
tracking numbers, i.e. the number assigned to them and unique to them, in a way
that provides them with high confidence that it is correct but allowing them to
deny it if coerced. We do this generating trapdoor, Pedersen-style commitments
to the tracking numbers.

The tracking numbers should be rather sparse and easily distinguishable.
Each voter holds the trapdoor to her commitment which allows her to lie to
a coercer if necessary. An additional advantage of this construction is that it
would appear unnecessary to authenticate the message notifying the voter of
the recommitment value as it would be hard for an attacker to compute an
alternative value that would open the commitment to another valid tracking
number. This avoids the need to introduce an authentication mechanism to such
notifications which could introduce coercion threats if done naively. Designated
Verifier Signatures would be a way to sidestep such coercion threats, but they
would significantly complicate the scheme. Now the voter can construct such a
message herself for any tracking number of her choice.

Distributed Generation of the Encrypted Tracker Numbers The Elec-
tion Authority publicly creates the tracking numbers ni and also computes gni

(to ensure that the resulting values fall in the appropriate subgroup) as well as
the (trivial) ElGamal encryptions of the gni : {gni}PKT and posts these terms
to the WBB.

ni, g
ni , {gni}pkT

The (Mix) Tellers now put the last, encrypted terms through a sequence of
verifiable, re-encryption mixes to yield:

{gnπ(i)}′pkT
These are now assigned to the voters’ PKs

(pki, {gnπ(i)}′pkT)

Note that, thanks to the mixing, the assignment of these numbers to the
voters is not known to any party, aside from a collusion of all the mix Tellers.
Note also that as this is a verified mix, as long as all the input numbers are
unique it is guaranteed that each voter will be assigned a unique (encrypted)
number. We still need to ensure that the number revealed to each voter is the
number assigned to them in the above construction, and we will see this next.

5.1 Distributed Generation of the Tracker Number Commitments

Now, each Teller is required to produce n pairs of terms of the form:

({hri,ji }pkT , {g
ri,j}pkT)

We have to provide NIZKPoK proofs that these terms are well-formed, i.e.
that the ri,j exponents in the two terms are indeed identical and known and that
the Teller knows such value, we present these in Appendix A. In addition we will
have to assume that such proofs be non-malleable as we will explain later.

Here, for notational convenience, hi := gxi = pki.

Thus we now have a n × t array of such pairs, the columns corresponding
to the Tellers and the rows to the voter ids. Now, for each voter, we form the
product across the columns of the first elements to give:

{hrii }pkT =
t∏

j=1

{hri,ji }pkT

Where, due to the multiplicative homomorphic properties of ElGamal,

ri :=

t∑
j=1

ri,j

Now we form the product of the {hrii }pkT and the {gnπ(i)}pkT :

{hrii · g
nπ(i)}pkT = {hrii }pkT · {g

nπ(i)}pkT

This gives us the encryption under the Teller’s PK of the trapdoor com-
mitments to the tracking numbers: (hrii · gnπ(i)). We can now have a threshold
set of Tellers perform verified, partial decryptions of these terms to reveal the
commitments:

Ci := hrii · g
nπ(i)

All of these steps are posted, along with NIZKPoK proofs and audits, to the
WBB.

It seems that the Tellers cannot cheat in any effective way here aside from
injecting invalid randoms which will result eventually in the voters being unable
to open their commitment to a valid tracking number. But in any case, any such
cheating will be detected by checks on the NIZKPoK proofs or random audits.

Now, for each voter there will be a tuple of terms posted to the WBB:

(pki, {gnπ(i)}pkT , hrii · g
nπ(i) ,)

The last entry of this tuple is left blank awaiting the voter’s encrypted vote.

5.2 Voting

Voter Vi casts her vote in the form:

(SignVi({Votei}pkT),Πi),

where the ballot is signed either with the voter’s true PK, or with her pseudo-
PK if this has been configured (see Section 3), and Πi is a non-interactive proof
of knowledge of the plaintext. The signature and proofs are needed to ensure
ballot independence [15, 12], and to prevent an attacker copying, re-encrypting
a previously cast vote as his own.1 Note that in conjunction with Selene such a
copying attack would be particularly virulent: the attacker copies the victim’s
vote and casts it as his own. When the votes and trackers are reveled he sees
exactly how the victim voted.

It is important that the server check for duplication of encrypted votes. It is
also advisable to post the votes only once voting is closed. The signatures and
proofs are checked for validity and, if valid, the encrypted votes are now paired
off with the PK or pseudo-PK (and encrypted tracking number) with which they
were signed. Double votes are handled according to the policy in operation, e.g.
only the last vote cast by Vi is retained. Thus we get a list of tuples on the WBB:

(pki, {gnπ(i)}pkT , (hrii · g
nπ(i)), SignVi({Votei}pkT ,Πi))

After voting has closed, the encrypted ballots are posted alongside their
(pseudo-)identity.

5.3 Mixing and Decryption

Now, for each row on the WBB, the second and forth terms of these tuples are
extracted and the signature and proofs striped off the forth term. This gives
pairs of the form:

({gnπ(i)}pkT , {Votei}pkT)

These are now put through a verifiable, parallel shuffle, e.g. [24]. Once this
is done, a threshold set of the Tellers perform a verifiable decryption of these
shuffled pairs. All of these steps along with the proofs are posted to the WBB.
Thus, finally we have a list of pairs: tracking number, vote:

(gnπ(i) ,Votei)

from which the tracker/vote pair can immediately be derived: (nπ(i),Votei).

1 Actually, even though it is largely used it is not known which form of non-malleability
is achieved by the so called Enc+PoK paradigm where one adds a proof of knowledge
to an ElGamal ciphertext. Another possibility is to resort to threshold Cramer and
Shoup [32]. Note that change will be completely transparent in Selene where the
cast system can be essentially arbitrary.

5.4 Notification of Tracker Numbers

For the notification of tracking numbers we will think of the Pedersen commit-
ments whose construction we described earlier as forming the β component, i.e.
the hr · m, of an ElGamal encryption under the voter’s PK, but with the α
component, i.e. the gr, kept hidden. Thus we think of an ElGamal encryption
as being represented:

(α, β) := (gr, hr ·m)

The goal then is to reveal the α term to the voter in a deniable fashion.
Once the trackers and votes have been made available on the WBB for a

sufficient period for the voters to note any alternative trackers as may be required
to parry any attempted coercion, the Tellers send the voter Vj their share of the
grj,i over a private channel:

Tj → Vi : grj,i

Once Vi’s device has received these from all the Tellers it combines them to
form gri , the α term which along with the β term of the commitment hrii · gnπ(i)

to give the ElGamal encryption of gnπ(i) w.r.t. the voter’s PK hi:

(gri , hrii · g
nπ(i))

The voter can now decrypt this in the usual fashion using her secret key xi,
thus revealing gnπ(i) and hence nπ(i).

The potential attacks of the Tellers and how we counter them. The α term is sent
to the voter without any proof of origin. This is more user-friendly because such
communications have to be deniable and should be faked by the voter in case of
coercion. The point is that an adversary, even if colluding with all the Tellers,
can only construct an α term that opens up to a valid tracker different from the
true tracker of the voter with negligible probability. The precise statement and
assumptions can be found in Appendix B.

The voter, or more precisely her device, can compute an alternative g′ri term
that will decrypt to an alternative, valid tracker of her choice. Suppose that she
wants her commitment to decrypt to the tracker value m∗ := gn

∗
, she inputs

this to her device along with the commitment value βi and the device computes
the fake α term α′:

α′ =

(
βi
m∗

)x−1

On the other hand it is intractable to anyone not knowing the trapdoor, i.e.
xi, to perform such a computation, see Appendix B for a proof. Note also that
for the privacy of the tracking numbers we don’t really need to encrypt the gri

terms, the trackers are still protected by the encryption under the voter’s PK.

However, it is still important to send these terms to the voter over a private
channel to ensure that they are deniable.

Another potential attack lies in the fact that a Teller could create his grj

term with knowledge of the gri ’s terms of the other Tellers so that the product
of all ri’s be known to him. This would be possible if the NIZKPoK proofs be
malleable and in fact this is the case if care is not taken when applying the Fiat-
Shamir heuristic. In Appendix A we discuss how it is possible to use standard
technique to make a NIZKPoK non-malleable. We stress that assuming that the
NIZKPoK be non-malleable the aforementioned attack is nullified.

6 The Voter Experience

A goal of the design of this protocol is to make the voter experience as simple and
intuitive as possible. We assume that the voters already possess public (signing)
keys and trapdoor keys. First we describe the ceremony in the case that the
voter does not experience any coercion. Then we describe the steps needed to
counter a coercer.

6.1 The Core Ceremony

– The voter receives an invitation to vote along with a ballot.
– The voter inputs her choice and her device encrypts this under the Election

PK and signs this. The device sends this to the Election Server. The device
stores a copy of this.

After a suitable period the tracking number/vote pairs are anonymised and
decrypted and displayed on the WBB. The voters receive an invite to visit the
WBB, but will only be necessary at this stage if the voter has been coerced.

– After a suitable delay, the voter receives a notification of the α term, which
she inputs to her device to allow it to extract her tracking number. Once she
has this she can visit the WBB and confirm that her vote appears correctly
against this tracker.

The last step is optional, to enable to voter to check that her vote was
correctly recorded and entered into the tally. She can skip this if she is not
interested in performing such a check.

6.2 The Ceremony in the Event of Coercion

If she is being coerced she needs to take some additional, coercion evasion steps,
shown in italics:

– The voter receives an invitation to vote along with a ballot.

– The voter inputs her choice and her device encrypts this under the Election
PK and signs this. The device sends this to the Election Server. The device
stores a copy of this and the tracker commitment.
This is strictly optional (and arguably perhaps unnecessary).

– After a suitable period the Tracker numbers and votes are anonymised and
decrypted. The (tracker, vote) pairs are displayed on the WBB and the voter
receives an invite to visit this. She visits the WBB and notes down a tracking
number that appears against the vote demanded by the coercer.

– The voter inputs this fake tracking number into her device and it outputs a
fake α′ term that coupled with her commitment, the β term of the ElGamal
encryption of her tracker, will decrypt to the fake tracker.

– After a suitable delay, the voter receives a notification of her “true” α term,
which she inputs to her device to allow it to extract her tracking number
from the commitment.

– If the coercer demands that she reveal her tracking number she “reveals” the
fake one. If he further demands that she reveals the alpha notification value,
she reveals the fake α′ she computed earlier.

– Once she has her tracker she can visit the WBB and confirm that her vote
appears correctly against this tracker.

Of course, she should also notify the appropriate authorities that coercion
was attempted.

6.3 Enhancements

Here we describe some optional enhancements to the basic scheme.

Pseudonymous Credentials We can add an extra layer of anonymity by
generating pseudonyms using the rather elegant exponentiation mix described
in Section 3.

After the mixing, the WBB will be equipped with a list of pairs comprising
a pseudo-PK, and an encrypted tracking number:

(pk∗ρ(i), {gnπ(i)}pkT)

This helps conceal the identities of those who cast votes, thus helping to
counter forced abstention attacks. Note however that a really determined coercer
can still force a voter to reveal her singing key and so can breach this anonymity.
To counter such a coercer we need a more sophisticated mechanism described in
the next section.

6.4 Malleable Signatures

Cortier et al. [11], following Blazy et al. [7], put forward an elegant mechanism
to make the voter to lose control and knowledge of the randomness used to form
the final ballot stored in the ballot box. This is done by introducing a voting

server, that is trusted for receipt-freeness (i.e., it is assumed not to collaborate
with potential coercers) but not for privacy and correctness.

The voting server receives a ballot c of a voter along with her signature σ.
The server then re-randomizes c producing the new ballot c′ and is further able
to compute a new signature σ′ for c′. The voting server posts on the WBB c′ and
σ′ and anyone can check that σ′ be a valid signature on c′ under the verification
key of the voter.

Moreover, the voting server can compute this transformed signature on the
re-randomized ciphertext without knowing neither decryption key nor signing
key nor the plaintext. The security guarantess that it is infeasible to compute a
signature on a ciphertext that encrypts a message of which no encryption has
been signed. The same mechanism can be added to Selene to prevent coercion
attacks at casting time.

6.5 Selene as an Add-on

It is interesting to note that the constructions described above could in many
cases be added to an existing scheme, one without any verification features or
perhaps one having conventional E2E verification involving encrypted receipts.
Indeed, in some cases it could even be retro-fitted to an election that had already
taken place. Suppose that a Helios vote had been conducted and contested. The
trapdoor commitments to the trackers could be generated and associated to the
voters as described above and the mixes and decryptions performed afresh. For
this to work, the base scheme must use encryption such that we can run a parallel
shuffle with the corresponding encrypted trackers.

7 Analysis

In this section we give a brief informal analysis of the security properties of
Selene. A full, formal security analysis is postponed for future research.

7.1 Verifiability and Verification

If we think of Selene as an add-on to a base scheme, the universal verifiability
of Selene is at least as strong as the base vote casting. In section 5.2 this is
a Helios like scheme, but as mentioned in section 6.5 it could also be a more
general scheme. Such schemes most often provide tallied-as-stored security, i.e.
that the vote is tallied as cast by the device of the voter.

However, Selene could also to some extent be added to a vote casting scheme
without universal verifiability. Indeed, the strength of Selene is to provide ad-
ditional individual direct verification that the vote is tallied as intended by the
voter.

The security of the tracker construction relies on interested parties checking
the proofs and calculations done on WBB as follows, but note the latter are
universally verifiable:

– Check that the trackers, ni, written in plain on the WBB are indeed unique
and their exponentiations gni and the trivial encryptions thereof are correct
(section 5).

– Check the ZK proofs for the mix of the encrypted trackers (section 5). This
is to ensure both privacy and verifiability. We will elaborate on this in next
subsection.

– Check the ZK proofs from the Tellers that the terms {hri,ji }pkT , {g
ri,j}pkT

are well-formed. Further, it is checked that these are correctly multiplied
together to give a commitment to the tracking number (section 5.1). It then
follows from the theorem in appendix B that an adversary with overwhelming
probability cannot fake the α term, which the voter receives and uses together
with the commitment to decrypt the tracker. This of course assumes that
the voter’s secret key xi = logg hi is not known to the adversary. We will
comment on this below.

– Check the proofs in the verifiable parallel shuffle of the voter/tracker pairs
and their decryption (section 5.3). As in a standard voting scheme using
mixing for tallying this ensures that the tally is correct and in this case it
further means that the tracker in the commitment is indeed the one shown
next to the vote in the tally.

We conclude that if these checks are performed then a voter, who decrypts to
a valid tracker, can be confident that this is the unique tracker assigned to her
and the corresponding vote on the tally board is the vote stored encrypted on
WBB.

More elaborate schemes also provide some security for the vote being stored
as intended, even when the voter’s device is malicious e.g. via Benaloh challenges
[4] or by employing hardware tokens [18]. Selene, can however also provide ver-
ifiability in this respect. Checking the vote in the tally can reveal if a malicious
device altered the intended vote. This requires that the voter checks her vote on
an app or another device not controlled by the adversary. Further, the signature
key used to cast the vote can also be different from the secret key xi used to
retrieve the tracker. In this case the device used to cast the vote does not even
need to know xi. This means that the adversary cannot calculate an alternative
value for the α term and it will be more difficult to launch an attack. A voter
can then even use the same device to receive the α term, then store it and first
then reveal the secret key to get the tracker. Later the voter can then check if it
gives the right tracker on another device.

7.2 Ballot privacy

The Selene scheme requires that the underlying ballot casting mechanism pro-
vides good privacy. Thus the encryption algorithm and its implementation used
to encrypt the vote should ensure the secrecy of the vote. The first mix of the
encrypted trackers means that only an adversary controlling all the mix servers
would know the association of the tracking numbers to the voters, assuming
that the proofs of the mixing have been checked. The posted commitments to

the tracking numbers are perfectly hiding unless the adversary colludes with all
the Tellers. Finally the parallel mix preserve ballot privacy for both the vote
and the tracker just like in a standard vote scheme using tallying via mix nets.
Finally, the α term, if this should come in the hand of an adversary, does not
reveal the tracker since it just a part of an ElGamal encryption of the tracker.

7.3 Receipt-freeness

In their seminal paper Benaloh and Tuinstra [5] defines receipt-free (which they
call uncoercibility) informally as “no voter should be able to convince any other
participant of the value of its vote”.

If the vote casting scheme is receipt-free, e.g. by employing the model of
BeleniosRF [11] for the vote casting, then Selene is receipt-free. Basically the
extra information that the voter has in Selene is the unique tracking number.
However, the voter can simply fake this (and importantly the corresponding
α term) since the tally board is presented before the tracker retrieval. We do
need to assume that he attacker cannot monitor the communication of the α
terms to the voters. As mentioned before, it can happen that the voter chooses
a fake tracker which coincide the tracker of the coercer, however, this does not
constitute a proof of how she voted, it just undermines her claim to that tracker
and associated vote.

To which extent this makes Selene vote buyer resistant is a subject of future
research. The point is that even though the voter cannot prove her vote, she
does have extra information, namely the tracker which is unique to her.

We also mention that Italian style (aka signature) attacks may be possible
here when we are dealing with complex ballots. For some voting methods we may
be able to counter this by splitting up the ballot into components and mixing
separately.

7.4 Coercion: Threats and Mitigation

For Selene to be coercion resistant, we firstly need that this is true for the vote
casting part. Some degree of coercion resistance can be obtained by combining
BeleniosRF [11] with vote updating. Another possibility for partial coercion
resistance is to use the scheme by Kulyk, Teague and Volkamer [22] where each
voter can cast several vote values and only the sum of these will count in the
end. The total number of votes are hidden in a cloud of null votes which any
participant can cast for the voter.

For Selene the extra tracker verification step however also opens up for a
coercion possibility: the coercer can demand to observe the receipt of the grj,i .
Of course the voter can always create a fake term gr

′
j,i and pretend to the coercer

that this is the term that was sent to her, see section 5.4. Further, the terms
are sent at randomized times and the coercer will thus have to intensively follow
the voter. However, the possibility of receiving a wrong term while the coercer
is present, might be discouraging for the voter. A possibility to circumvent this
is to allow voters to secretly contact the voting authorities to request that only

the fake grj,i term that the voter has calculated be communicated back to her.
They are now safe from the coercion threat, but a coerced voter have lost the
individual verifiability. This suggests a novel form of coercion resistance, distinct
from the conventional one in which the voter gets to cast her intended vote and
to verify it, or coercion evidence, [17], in which she gets to verify her vote but
it might be nullified. Here she gets to cast her vote but if coerced may lose the
possibility to verify it.

The coercion problem might escalate if the coercer is colluding (or pretends
to be) with one of the Tellers. The voter then has to guess which grj,i to fake (this
is incidentally also a problem in Civitas [10]). In the BeleniosRF construction
there is a voting authority which is trusted for the receipt-freeness, and in this
case we can circumvent this danger by letting this authority receive the grj,i

terms and only forward the gri to the voter.

True coercion-resistant vote schemes often work with credentials, e.g. Civitas
[10]. The voting authority knows the true credential, and the voter can provide
the coercer(s) with fake credential(s). Where Civitas is not directly compatible
with Selene, one can imagine to combine its credential construction and the extra
null votes of [22] to create a true coercion-resistant scheme compatible with the
tracker construction. In this case the extra credentials can also be used to make
the tracker retrieval coercion-resistant. A scheme could be as follows. After the
tally board is created we allow a certain time for the voters to note the trackers,
construct fake α-terms and contact the voting authorities privately with these
terms. After this time the voter can log in to the voting system to get the α term,
however the credential is also used in this process. The voting authority provide
the true α term if the correct credential is used. If a fake credential is used, the
system outputs the corresponding faked α-term which has been provided by the
voter.

7.5 Dispute Resolution

Dispute resolution, the ability for a judge to determine the cheating or malfunc-
tioning component or party when an error is reported, is quite hard to achieve,
especially in the internet voting context. In Selene this could be tricky. If a voter
claims that the vote corresponding to their tracker is not what they cast, it is
hard to determine if it is the voter who is lying or mis-remembering, or the
system that cheated. But this is a problem with the tracking number approach
anyway.

If a voter insists that the vote on the WBB is wrong, we could resolve this
if the voter is prepared to sacrifice their ballot privacy by allowing threshold
decryptions of their ballot for example. This has to be performed with great care
and suitable controls, and presumably in camera to avoid introducing coercion
opportunities.

8 Selene II

The drawback of Selene is that a coerced voter might have the misfortune of
choosing the coercer’s tracking number, or the coercer simply claims, falsely,
that this is his tracker. If the threats of the coercer are sufficiently unpleasant
this possibility could be enough to deflect the voter from voting her intent. The
goal of this construction is to provide voters with a set of alternative trackers,
each pointing to one of the candidates, in such a way that these trackers are
unique to her. If coerced she simply points to the tracker from this set that
points to the coercers requested candidate, and now the coercer cannot claim
ownership of this tracker. The tally board will now contain c·v additional tracking
numbers, where c is the number of the candidates and v is the number of the
voters. These will give one extra vote per candidate per voter which has to be
subtracted in the tally. This is ok for simple plurality style elections, but not
for more elaborate social choice functions, at least not without some adaptation.
This aspect of the scheme is reminiscent of Rivest’s ThreeBallot [26].

The necessary extra assumption for this construction is that the encryption
scheme used to encrypt the cast votes must support Plaintext Equivalence Tests
(PETs) (see Section 3). This happens to hold for both the schemes [11] and [22]
discussed above. For the uncoerced voter this alternative scheme will be just like
standard Selene. For the coerced voter, the difference is that she can request
c extra trackers corresponding to a vote for each of the candidates, and these
trackers are unique to her and cannot coincide with the one of the coercer. Of
course, care is needed to ensure that a coercer cannot detect such a request, but
in fact, as we will see shortly, it is possible to make public the c trackers assigned
to each voter. This removes the need for a coerced voter to specifically request
them.

Thus we start by constructing a total of v · (c + 1) tracking numbers which
are exponentiated and encrypted trivially as in Selene I:

na, g
na , {gna}PKT , a = 1, . . . , c · v + v

As before, the (Mix) Tellers put the last encrypted terms through a sequence
of verifiable, re-encryption mixes and get:

{gnπ(a)}′PKT
These are now assigned to the voters’ PKs in groups of c + 1. Let us for

simplicity denote the trackers given to voter i as ni,k with i = 1, . . . , v, k =
1, . . . , c+ 1

(PKi, {gni,k}′PKT)

Nobody knows the permutation relating the original nas and the ni,ks. Just as
in Selene, the Tellers construct a trapdoor commitment, in this case to the last
tracker ni,c+1

Ci := hrii · g
ni,c+1

where ri :=
∑t
j=1 ri,j

Now, for each voter there will be a tuple of terms posted to the WBB:(
PKi, ({gni,1}PKT , {Cand1}PKT

) . . . , ({gni,c}PKT
, {Candc}PKT

),

({gni,c+1}PKT , h
ri
i · g

ni,c+1 ,)
)
.

The last entry of this tuple is left blank awaiting the voter’s encrypted vote.
The first c trackers are assigned to a vote for each of the candidates, named
Cand1 to Candc here. The encryptions of these candidates are done with trivial
randomness for verifiability.

The voter now cast her vote {Votei}PKT
which is added to the last entry with

a corresponding signature and a non-interactive zero knowledge proof. Let us
denote this Πi. The WBB now have the following tuple for each voter(

PKi, ({gni,1}PKT , {Cand1}PKT
), . . . , ({gni,c}PKT

, {Candc}PKT
),

({gni,c+1}PKT , h
ri
i · g

ni,c+1 , {Votei}PKT
,Πi)

)
.

The tally board is then created by running all pairs of trackers and corre-
sponding votes through the Mix-net and decrypting to get

(gna ,Votea), a = 1, . . . , c · v + v

By construction this contains an extra vote for each candidate for all voters.

8.1 Notification of Tracker Numbers

Finally the voters are notified of their tracker ni,c+1 as in Selene, and they can
use this to check their vote on the tally board. Of course, the verification is not as
transparent as for the basic Selene scheme: as we will see each voter has revealed
to them c trackers each of which points to a distinct candidate or option. The
basic Selene construction notifies them of their “real” tracker, which should point
to the vote that they cast. Furthermore, the construction guarantees that there
will be another vote on the WBB identical to the one their tracker points to.
But this requires a degree of understanding or at least confidence in the crypto.
It seems that this loss of transparency is an inevitable consequence of seeking a
higher level of coercion resistance.

For the corresponding voter, the Election Authority takes the pairs

({gni,1}PKT , {Cand1}PKT
), . . . , ({gni,c}PKT

, {Candc}PKT
), ({gni,c+1}PKT

, {Votei}PKT
)

and re-encrypts these for anonymity of the coerced voter. Then it sends these
re-encrypted terms to a Mix-net that mixes the first c pairs to get:

({gni,π′(1)}PKT , {Candπ′(1)}PKT
), . . . , ({gni,π′(c)}PKT

, {Candπ′(c)}PKT
),

({gni,c+1}PKT , {Votei}PKT
).

These pairs are then sent to the Tellers which performs a PET between
the first c encrypted votes and the last actually cast vote Votei. Only one of
these should match assuming a valid vote has been cast. Let us denote the
corresponding tracker ni,?, that is Votei = Cand?. The corresponding pair is
removed, then the remaining c encrypted tracking numbers are run through a
further Mix-net (to ensure ballot privacy) and decrypted by the tellers. The
result is a set of c trackers

{ni,k| k = 1, . . . , c+ 1} \ {ni,?}

in which each points to a different candidate. These are posted to the WBB
against the voter’s ID. Since these are unique to the voter, she can use these safely
as fake trackers. Of course, the tracker corresponding to the chosen candidate is
precisely the tracker that the voter will get via the standard Selene approach.

8.2 Alternative Approach

We will now briefly describe an alternative way of decreasing the chance of
being caught lying about a faked tracker. The main advantage compared to the
previous approach is that the tally board this time contains precisely all the votes
and no extra votes. The idea is simply to remove some of the trackers from this
final tally on the WBB, say at least two for each candidate, the precise number
can be changed according to the coercion level. The coerced voter can now claim
that she is one of the unlucky participants who do not have a tracker on the
tally board. This could also have happened to the coercer, but since there is at
least two blanks for every candidate, this is still a possible scenario. If we want
protection against a coercer who is controlling more voters even more trackers
need to be removed.

Unlike standard Selene, the real trackers, which in this case need to be ran-
dom, cannot be shown before the tally board creation. Instead the trackers gni

are created secretly by the EA, i.e. they are directly posted on WBB as

{gni}pkT .

Further, the trackers are drawn from a domain M which has a cardinality being
polynomial in the security parameter. We think of this set as being known to
the participants and there has to be an efficient algorithm searching it.

The scheme now follows the basic scheme until after the parallel shuffle.
The decryption of the voter/tracker pairs is now done such that the vote part
is decrypted first. In the first two instances of a vote for a given candidate the
corresponding tracker is not decrypted, but the remaining are. The EA assists in
retrieving the trackers from the exponentiated trackers. Alternatively a version
of the scheme without exponentiation can also be used. The uniqueness of the
(revealed) trackers can directly be checked.

All voters can retrieve their trackers as in basic Selene, however, a few will not
find their tracker because it was not decrypted. These voters can check whether
their tracker belong to M . Since this set is polynomial in size, Theorem 2 in

Appendix B will also hold in this case, i.e. it is with overwhelming probability
impossible for an adversary, even colluding with all Tellers, to construct a faked
α term opening to an element in the set M .

The major drawback is than some voters now have lost their ability to check
their cast vote in the tally. These might protest and even reveal their tracker
number which they obtain in the Selene construction, and which will be one
of the removed trackers. However, they cannot prove that this was really their
tracker. This is important because the coercer can ask the coerced voter what
her tracker number is, but she can then simply choose a random number from
M different from all the published trackers. The main danger is if the coerced
voter by chance then chooses the actual tracker of the coercer (in case he really
also have one of the missing trackers). However, this probability is

2

L
· 1

|M | − 2c

if we removed 2c trackers and in the case that L votes were cast for the coercer’s
candidate. This is not negligible, but can be controlled and kept very low by
adjusting the size of M and the security parameter.

9 Conclusions

We present a new voting protocol, based on the idea of tracking numbers but with
the twist that voters do not learn their number until after voting has finished
and the tracker/vote pairs have been posted to the bulletin board. This prevents
the usual coercer attack on such tracking number systems: the coercer demands
that the voter hand over her tracking number before the results are posted. We
also provide a mix net construction that ensures that each voter gets a unique
tracking number, preventing the attack of assigning the same tracker to voters
likely to vote the same way. Furthermore, the construction ensures a high level
of assurance that the voter receives the correct tracker while ensuring that this
is deniable to a third party.

The resulting scheme provides a good level of verifiability and coercion resis-
tance while at the same time providing a very direct and simple to understand
mechanism for voter verification. The protocol is not crypto free, but the crypto
is used in a way that is quite transparent to the voter it is all under the bonnet
as it were. In particular the voter verification step involves just tracking numbers
and votes in the clear. Voters do not have to handle encrypted ballots as is the
case for previous E2E verifiable schemes. A further advantage appears to be that
we avoid the need to audit the ballots created by the voter’s device. Typically
this necessitates the introduction of some kind of cut-and-chose protocol into the
voting ceremony, significantly complicating the voter experience. Now, because
the voter gets to check her vote in the clear we can sidestep this complication,
but at the cost of a more complex dispute resolution procedure.

In is interesting to note that the Selene construction can be thought of as
an add-on to an existing non-verifiable scheme, or indeed a conventional E2E

verifiable scheme for which people want a greater degree of transparency in the
verification. Indeed Selene could even be retrofitted to a cryptographic election
that has been contested. Note further that an option is to run the basic Selene
I scheme but if a significant level of coercion is reported before and during the
vote casting period, the Selene II constructions could be dynamically added to
the WBB give the higher degree of coercion resistance.

References

1. Mathilde Arnaud, Véronique Cortier, and Cyrille Wiedling. Analysis of an elec-
tronic boardroom voting system. In 4th International Conference on e-Voting and
Identity (VoteID’13), volume 7985 of Lecture Notes in Computer Science, Surrey,
UK, July 2013. Springer.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73. ACM Press, November
1993.

3. Jonathan Ben-Nun, Niko Fahri, Morgan Llewellyn, Ben Riva, Alon Rosen, Am-
non Ta-Shma, and Douglas Wikström. A new implementation of a dual (paper
and cryptographic) voting system. In 5th International Conference on Electronic
Voting, (EVOTE), 2012.

4. Josh Benaloh. Simple verifiable elections. In Dan S. Wallach and Ronald L.
Rivest, editors, 2006 USENIX/ACCURATE Electronic Voting Technology Work-
shop, EVT’06, Vancouver, BC, Canada, August 1, 2006. USENIX Association,
2006.

5. Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (ex-
tended abstract). In Frank Thomson Leighton and Michael T. Goodrich, editors,
Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Comput-
ing, 23-25 May 1994, Montréal, Québec, Canada, pages 544–553. ACM, 1994.

6. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself:
Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In Xiaoyun Wang
and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume
7658 of Lecture Notes in Computer Science, pages 626–643. Springer, December
2012.

7. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Sig-
natures on randomizable ciphertexts. In Dario Catalano, Nelly Fazio, Rosario
Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th International Workshop
on Theory and Practice in Public Key Cryptography, volume 6571 of Lecture Notes
in Computer Science, pages 403–422. Springer, March 2011.

8. Sergiu Bursuc, Gurchetan S. Grewal, and Mark Dermot Ryan. Trivitas: Voters di-
rectly verifying votes. In Aggelos Kiayias and Helger Lipmaa, editors, E-Voting and
Identity - Third International Conference, VoteID 2011, Tallinn, Estonia, Septem-
ber 28-30, 2011, Revised Selected Papers, volume 7187 of Lecture Notes in Com-
puter Science, pages 190–207. Springer, 2011.

9. David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume 740 of
Lecture Notes in Computer Science, pages 89–105. Springer, August 1993.

10. Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: A secure
voting system. In In IEEE Symposium on Security and Privacy, 2008.

11. Véronique Cortier, Georg Fuchsbauer, and David Galindo. Beleniosrf: A strongly
receipt-free electronic voting scheme. IACR Cryptology ePrint Archive, 2015:629,
2015.

12. Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis of
ballot secrecy. In Proceedings of the 24th IEEE Computer Security Foundations
Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011, pages 297–311,
2011.

13. Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and opti-
mally efficient multi-authority election scheme. In Walter Fumy, editor, Advances
in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Sci-
ence, pages 103–118. Springer, May 1997.

14. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology – CRYPTO’86, volume 263 of Lecture Notes in Computer Science,
pages 186–194. Springer, August 1987.

15. Rosario Gennaro. Achieving independence efficiently and securely. In James H.
Anderson, editor, 14th ACM Symposium Annual on Principles of Distributed Com-
puting, pages 130–136. Association for Computing Machinery, August 1995.

16. Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

17. Gurchetan S. Grewal, Mark Dermot Ryan, Sergiu Bursuc, and Peter Y. A. Ryan.
Caveat coercitor: Coercion-evidence in electronic voting. In 2013 IEEE Symposium
on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages
367–381. IEEE Computer Society, 2013.

18. Gurchetan S. Grewal, Mark Dermot Ryan, Liqun Chen, and Michael R. Clarkson.
Du-vote: Remote electronic voting with untrusted computers. In Cédric Fournet,
Michael W. Hicks, and Luca Viganò, editors, IEEE 28th Computer Security Foun-
dations Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015, pages 155–169.
IEEE, 2015.

19. Rolf Haenni and Oliver Spycher. Secure internet voting on limited devices with
anonymized DSA public keys. In 2011 Electronic Voting Technology Workshop /
Workshop on Trustworthy Elections, EVT/WOTE ’11, San Francisco, CA, USA,
August 8-9, 2011, 2011.

20. James Heather and David Lundin. The append-only web bulletin board. In Formal
Aspects in Security and Trust, 5th International Workshop, FAST 2008, Malaga,
Spain, October 9-10, 2008, Revised Selected Papers, pages 242–256, 2008.

21. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Proceedings of the 2005 ACM Workshop on Privacy in the Electronic
Society, WPES 2005, Alexandria, VA, USA, November 7, 2005, pages 61–70, 2005.

22. Oksana Kulyk, Vanessa Teague, and Melanie Volkamer. Extending helios towards
private eligibility verifiability. In Rolf Haenni, Reto E. Koenig, and Douglas Wik-
ström, editors, E-Voting and Identity - 5th International Conference, VoteID 2015,
Bern, Switzerland, September 2-4, 2015, Proceedings, volume 9269 of Lecture Notes
in Computer Science, pages 57–73. Springer, 2015.

23. Birgit Pfitzmann and Ahmad-Reza Sadeghi. Anonymous fingerprinting with di-
rect non-repudiation. In Tatsuaki Okamoto, editor, Advances in Cryptology – ASI-
ACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 401–414.
Springer, December 2000.

24. Kim Ramchen and Vanessa Teague. Parallel shuffling and its application to prêt à
voter. In 2010 Electronic Voting Technology Workshop / Workshop on Trustworthy
Elections, EVT/WOTE ’10, Washington, D.C., USA, August 9-10, 2010, 2010.

25. Brian Randell and Peter Y A Ryan. Voting technologies and trust. In In IEEE
Symposium on Security and Privacy, pages 50–56, 2006.

26. Ronald L. Rivest. The ThreeBallot Voting System.
https://people.csail.mit.edu/rivest/Rivest-TheThreeBallotVotingSystem.pdf.

27. Peter Y A Ryan and Vanessa Teague. Pretty good democracy. In IN: WORKSHOP
ON SECURITY PROTOCOLS, 2009.

28. P.Y.A. Ryan and S. A. Schneider. Prêt à voter with re-encryption mixes. Technical
Report CS-TR-956, University of Newcastle, 2006.

29. Scantegrity Team. Scantegrity. http://www.scantegrity.org/papers/whitepaper.pdf.
30. Bruce Schneier. Applied cryptography - protocols, algorithms, and source code in

C (2. ed.). Wiley, 1996.
31. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In

Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of
Lecture Notes in Computer Science, pages 239–252. Springer, August 1990.

32. Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against
chosen ciphertext attack. In Kaisa Nyberg, editor, Advances in Cryptology – EU-
ROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 1–16.
Springer, May / June 1998.

33. Hoeteck Wee. Zero knowledge in the random oracle model, revisited. In Mit-
suru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912 of
Lecture Notes in Computer Science, pages 417–434. Springer, December 2009.

A Efficient NIZKPoK for the well-formedness of the
Tellers’ ciphertexts

NIZKPok in the RO. In section 5.1 we need ZK proofs to ensure that the Tellers
construct the commitments correctly. We will use non-interactive zero-knowledge
proofs of knowledge (NIZKPoK) in the RO model. These can be constructed
taking a sigma protocol and making it non-interactive using the Fiat-Shamir
heuristic [14].

Precisely a NIZKPoK in the RO consists of two algorithms

NIZK = (NIZK.Prove,NIZK.Verify)

with the usual syntax and semantics of NIZKs [16] except that they have oracle
access to a function O(·) that acts like a random oracle. A NIZKPoK in the RO
has to satisfy the properties of completeness, soundness, zero-knowledge, and
proof of knowledge (that implies soundness), where the latter are stated in the
programmable random oracle.

Precisely, the simulator for the zero-knowledge can program the RO at some
points and the distinguisher between the real experiment and the simulated
experiment will be given access to an oracle modified at those points when it is
fed with the output of the simulated experiment or with the original experiment
otherwise [33]. Recall that in a sigma protocol, special soundness means that
from two executions of the protocol (a, b1, c1) and (a, b2, c2) accepted by the
verifier and with b1 6= b2, it is possible to extract the witness.

When a sigma protocol is made non-interactive in the RO model with the
Fiat-Shamir heuristic, the proof of knowledge property is modeled by stating

that if a prover can convince a verifier with some probability p then there exist
an extractor that, having oracle access to the prover and having the capability
of programming the RO, can extract the witness with probability polynomially
related to p.

Our relation. Fix a DH-group2 G of order p and two group elements g, h ∈ G
and a public-key pkT for the ElGamal cryptosystem. We want to prove the well-
formedness of {gr} := (A1, A2) and {hr} := (B1, B2). Precisely, we are given
two ciphertexts c1 := (A1, A2) and c2 := (B1, B2) and we want to construct a
NIZKPoK system that allows to prove knowledge of values r, s1 and s2 in Zp

such that a := gr, b := hr, c1 := (A1, A2) = (gs1 , a · pks1T) and c2 := (B1, B2) =
(gs2 , b · pks2T).

Our NIZKPoK. We construct a NIZKPoK system (in the RO)
NIZK := (NIZK.Prove,NIZK.Verify) that uses an underlying NIZKPoK system
NIZK1 := (NIZK1.Prove,NIZK1.Verify) for Chaum-Pedersen’s proofs of knowl-
edge of discrete log equality [9] and a NIZKPoK system
NIZK2 := (NIZK2.Prove,NIZK2.Verify) (in the RO) for Schnorr’s proofs of knowl-
edge of an exponent [31]. NIZK1 and, respectively, NIZK2 can be constructed
taking a Chaum-Pedersen’s sigma protocol and, respectively, a Schnorr’s sigma
protocol, and making them non-interactive using the Fiat-Shamir heuristic (ac-
tually we will need the strong Fiat-Shamir heuristic [6] as we will elaborate at
the end of the section).

First we describe the prover.

1. NIZK.Prove has embedded G, p, g, h and pkT and takes as input the statement
(A1, A2, B1, B2) satisfying the above relation and the corresponding witness
r, s1 and s2 for it. The algorithm starts setting a := gr and b := hr.

2. NIZK.Prove computes π1,1 := NIZK2.Prove(A1, s1), i.e., it computes a proof
of knowledge of the randomness in A1, and π1,2 := NIZK2.Prove(B1, s1), i.e.,
it computes a proof of knowledge of the randomness in B1.

3. NIZK.Prove chooses random element t ∈ Zp and computes (A′1, A
′
2) :=

(At1, A
t
2) and (B′1, B

′
2) := (Bt1, B

t
2).

4. NIZK.Prove shows that this is done correctly, by publishing 3 proofs π2,1,
π2,2, π2,3 of the following equations: (1) logA1

A′1 = logA2
A′2, (2) logB1

B′1 =
logB2

B′2 and (3) logA1
A′1 = logB1

B′1. Such proofs are computed using

NIZK1.Prove using the witness t.
5. NIZK.Prove computes C := at and D := bt.
6. NIZK.Prove proves that (A′1, A

′
2) and (B′1, B

′
2) encrypt these by two proofs

π3,1 and π3,2 for the following facts: (4) logg A
′
1 = logPKT A

′
2/C and (5)

logg B
′
1 = logPKT A

′
2/D. These proofs are computed using NIZK1.Prove with

witness s1t for π3,1 and s2t for the proof π3,2.
7. NIZK.Prove uses NIZK1.Prove with witness t to compute a proof π4 for the

fact that the two exponents in C and D are the same: (6) logg C = loghD.

2 Henceforth, by DH-group we mean a group where the Decision Diffie-Hellman as-
sumption holds.

8. NIZK.Prove computes π5 := NIZK2.Prove((g, C), rt), i.e., it computes a proof
of knowledge of the randomness rt in C.

9. Finally NIZK.Prove outputs proof
π := (A′1, A

′
2, B

′
1, B

′
2, C,D, π1,1, π1,2, π2,1, π2,2, π2,3, π3,1, π3,2, π4, π5).

A verification algorithm NIZK.Verify is constructed in the obvious way by
verifying in sequence all proofs in π using the verification algorithms of the two
underlying systems. It is straightforward to observe that the system be complete.

Security. ZKness follows from a standard hybrid argument by observing that any
proof is either the output of NIZK1.Prove or NIZK2.Prove with valid witnesses,
and thus a simulator can just invoke in sequence the simulators for the latter
two systems, and the proof contains (A′1, A

′
2, B

′
1, B

′
2, C,D) that, under the Diffie-

Hellman assumption, can be simulated as well.
Soundness follows from the following simple observations. Suppose towards

a contradiction that there exist a false statement (A1, A2, B1, B2) and a proof
π = (A′1, A

′
2, B

′
1, B

′
2, C,D, π1,1, π1,2, π2,1, π2,2, π2,3, π3,1, π3,2, π4, π5) accepted by

NIZK.Verify. By construction that means that all sub-proofs π2,1, π2,2, π2,3,
π3,1, π3,2, π4 and π5 are accepted by NIZK1.Verify. By soundness of NIZK1 and
by definition of step 4 in the construction of NIZK.Prove it follows that (1)
logA1

A′1 = logA2
A′2, (2) logB1

B′1 = logB2
B′2 and (3) logA1

A′1 = logB1
B′1.

The latter three equations imply that there exist value t such that the equa-
tions (1)-(3) in step 2 in the construction of NIZK1.Prove hold.

By soundness of NIZK1 and by definition of steps 6 and 7 in the construction
of NIZK.Prove and by the fact that the sub-proofs π3,1, π3,2, π4 are verified, it fol-
lows that the equations (4)-(6) given in step 5 of the construction of NIZK.Prove
hold.

Now equation (6) implies that there exists t′ such that C = gt
′

and D = ht
′
.

Now equations (4)-(5) prove that (A′1, A
′
2) encrypts C and (B′1, B

′
2) encrypts

D.
By equations (1)-(3) it follows that if (A′1, A

′
2) encrypts a plaintext C and

(B′1, B
′
2) encrypts D then (A1, A2) encrypts a := Cs

′
and (B1, B2) encrypts

b := Ds′ for some s′ ∈ Zp. Thus, by previous implications it follows that a = gs
′t′

and b = gs
′t′ . This contradicts the hypothesis that the statement be false.

Using a similar argument and the programmability of the random oracle it
is easy to construct an extractor that invoke the extractors for the underlying
systems to extract the witnesses, and in particular observing that the proof of
knowledge NIZK1 used in steps 8 allow to extract rt and in step 4 to extract t
and thus r, and the proofs of knowledge NIZK2 in step 2 allow to extract s1 and
s2.

About non-malleability. As further security guard we assume that the underlying
NIZK proof systems, NIZK1 and NIZK2 be non-malleable3 to prevent malleability

3 In the case of Chaum-Pedersen or Schnorr’s proofs made non-interactive with the
Fiat-Shamir heuristic, this can be guaranteed by including an identifier in the hash
of the statement.

attacks where a teller could wait for the proofs provided by the other tellers and
thus compute a valid (sound) proof without knowing the underlying randomness.
We refer the reader to Bernhard et al. [6] for a deeper discussion on these attacks
and how to defeat them.

B About the hardness of constructing a fake α term

In Section 5.4 we claim that it is hard to calculate an alternative α term that the
voter would decrypt to a valid tracker different from the unique tracker assigned
to the voter. This is true even if the adversary is colluding with the Tellers. We
now make this statement and its assumptions precise.

Remember that we consider a Schnorr group [31] of prime order q where we
calculate modulo p and g is a generator of the group.

We will assume that the commitments C = gnhr are correctly constructed
by the tellers, where n is the tracker of the voter, h the public key and r is
the randomness used in the α-term gr. If the Tellers could write {gr}PKT and
{gahr}PKT to the bulletin board for some a instead of {gr}PKT and {hr}PKT ,
then the Tellers would easily be able to construct an α-term opening to a fake
tracker. However, the NIZKPoK proofs given in Appendix A prevent such ma-
licious behaviour.

Further, we assume that the set of trackers, T , has a cardinality which is at
most polynomial in the security parameter (being the bit-size of p or q). This
means, on one hand, that a random drawn number in the group has negligible
probability of being a tracker, and on the other hand that the set {gm}m∈T can
be constructed and searched by a PPT algorithm.

Finally we assume the hardness of the 1-Diffie-Hellman Inversion Problem
(1-DHI, in short) [23].

Assumption 1 (1-DHI). Given a description of a DH-group G of prime order
p, a generator g for it, and an element gx ∈ G, where x is randomly chosen
in Zp, no PPT algorithm can output with non-negligible probability an element
g1/x.

We then claim that the following theorem is true.

Theorem 2. If the 1-DHI assumption holds there exists no PPT algorithm A
which takes as inputs a description of a DH-group G along with a generator g for
it, a set T of tracker number of polynomial size, two values C = gnhr, h = gx ∈ G
and outputs with non-negligible probability a term α such that C/αx is of the form
gn
′

where n′ 6= n is a valid tracker, n′ ∈ T . Further, this holds true even if the
algorithm is given n and r.

Proof. The reduction is simple. Suppose towards a contradiction that there exist
such algorithm A outputting with non-negligible probability some value α sat-
isfying the assumed property. We can then construct another PPT algorithm B
that first constructs and searches {gm}m∈T to obtain n′ (if succesful otherwise
it halts) and then computes and outputs β = (α/gr)1/(n−n

′) as its guess for

g1/x. The probability that B breaks the 1-DHI assumption is greater or equal to
the probability that α satisfy the assumption: in fact if α satisfies the equation
C/αr = gn

′
, where C = gnhr, then α = gs with s := r + (n− n′)/x.

