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Abstract

Recently, Goyal (STOC’13) proposed a new non-black-box simulation techniques for fully
concurrent zero knowledge with straight-line simulation. Unfortunately, so far this technique is
limited to the setting of concurrent zero knowledge. The goal of this paper is to study what
can be achieved in the setting of concurrent secure computation using non-black-box simulation
techniques, building upon the work of Goyal. The main contribution of our work is a secure
computation protocol in the fully concurrent setting with a straight-line simulator, that allows
us to achieve several new results:

• We give first positive results for concurrent blind signatures and verifiable random functions
in the plain model as per the ideal/real world security definition. Our positive result is
somewhat surprising in light of the impossibility result of Lindell (STOC’03) for black-box
simulation. We circumvent this impossibility using non-black-box simulation. This gives
us a quite natural example of a functionality in concurrent setting which is impossible
to realize using black-box simulation but can be securely realized using non-black-box
simulation.

• Moreover, we expand the class of realizable functionalities in the concurrent setting. Our
main theorem is a positive result for concurrent secure computation as long as the ideal
world satisfies the bounded pseudo-entropy condition (BPC) of Goyal (FOCS’12). The BPC
requires that in the ideal world experiment, the total amount of information learnt by the
adversary (via calls to the ideal functionality) should have “bounded pseudoentropy”.

• We also improve the round complexity of protocols in the single-input setting of Goyal
(FOCS’12) both qualitatively and quantitatively. In Goyal’s work, the number of rounds
depended on the length of honest party inputs. In our protocol, the round complexity
depends only on the security parameter, and is completely independent of the length of
the honest party inputs.

Our results are based on a non-black-box simulation technique using a new language (which
allows the simulator to commit to an Oracle program that can access information with bounded
pseudoentropy), and a simulation-sound version of the concurrent zero-knowledge protocol of
Goyal (STOC’13). We assume the existence of collision resistant hash functions and constant
round semi-honest oblivious transfer.



1 Introduction

Secure computation protocols enable a set of mutually distrustful parties to securely perform a
task by interacting with each other. Traditional security notions for secure computation [Yao86,
GMW87] were defined for the stand-alone setting where security holds only if a single protocol
session is executed in isolation. In today’s connected world (and especially over internet), many
instances of these protocols may be executing concurrently. In such a scenario, a protocol that
is secure in the classical stand-alone setting may become completely insecure [Lin03b, BPS06].
Ambitious efforts have been made to generalize the results for the stand-alone setting, starting
with concurrently-secure zero-knowledge protocols [DNS98, RK99, CKPR01, KP01, PRS02].

However, in the plain model, the effort to go beyond the zero-knowledge functionality were, un-
fortunately, less than fully satisfactory. In fact, for the plain model far reaching unconditional im-
possibility results were shown in a series of works [CKL03, Lin03b, Lin08, BPS06, Goy12, AGJ+12,
GKOV12]. Two notable exceptions giving positive results in the plain model are the works on
bounded concurrency [Lin03a, PR03, Pas04] (where there is an a-priori fixed bound on the total
number of concurrent sessions in the system and the protocol in turn can depend on this bound),
and, the positive results for a large class of functionalities in the so called “single input” setting
[Goy12]. In this setting, there is a server interacting with multiple clients concurrently with the
restriction that the server (if honest) is required to use the same input in all sessions. There is
a large body of literature on getting concurrently secure computation in weaker models such as
using a super-polynomial time simulator, or a trusted setup. A short survey of these works is given
later in this section. We emphasize that in this work, we are interested in concurrently secure
computation protocols with no trusted set up assumptions where the security holds according to
standard ideal/real paradigm.

An intriguing functionality that cannot be realized in the fully concurrent setting by these results
is blind signatures in the plain model. The blind signature functionality, introduced by [Cha82],
allows users to obtain unforgeable signatures on messages of their choice without revealing the mes-
sage being signed to the signer (blindness property). The question of whether a concurrently-secure
protocol for this functionality can be constructed as per the ideal/real model simulation paradigm
has been open so far. Moreover, given the impossibility result for concurrent blind signatures for
black box simulation by Lindell [Lin03b], it is clear that we need to use non-black box techniques.
Until recently, no non-black box technique was known which applies to full concurrency with poly-
nomial time simulation. However, Goyal [Goy13] recently proposed new non-black box simulation
techniques for (fully) concurrent zero-knowledge with straight line simulation. Unfortunately, the
result of Goyal is limited to the setting of concurrent zero-knowledge. We ask the question: Can
we construct non-box black techniques for (fully) concurrent secure computation, building upon the
work of Goyal [Goy13]?

Our Contributions. The main contribution of our work is a secure computation protocol in the
fully concurrent setting with a straight-line simulator, that allows us to achieve several new results.
In short, we expand the class of realizable functionalities in the concurrent setting and give the first
positive results for concurrent blind signatures and verifiable random functions in the plain model
as per the ideal/real world security definition. Moreover, the round complexity of our protocol
depends only on the security parameter and hence, improves the round complexity of [Goy12] both
qualitatively and quantitatively. Finally, our work can be seen as a unifying framework, which



essentially subsumes all the previous work on positive results for concurrent secure computation
achieving polynomial time simulation based security in the plain model. For detailed description
of our results, see Section 1.1.

Other models. In order to circumvent the above mentioned impossibility results in the plain
model, there has been quite some work studying various trust assumptions such as common ref-
erence string (CRS) model and tamper proof hardware tokens [CLOS02, BCNP04, Kat07]. An-
other interesting line of work has studied weaker security definitions [GM00, Pas03, PS04, MPR06]
while still remaining in the plain model, and most notably obtains positive results in models like
super polynomial time simulation [PS04, BS05, CLP10, GGJS12] and input indistinguishable se-
curity [MPR06, GGJS12].

Note that these trust assumptions and these relaxed notions of security are sometimes restrictive
and are not applicable to many situations. We again emphasize that the focus of this work is
concurrent secure computation in the plain model achieving polynomial time simulation. In the
plain model, there are point to point authenticated channels between the parties, but there is no
global trusted third party.

What goes wrong in concurrent setting in plain model? A well established approach to
constructing secure computation protocols is to use the GMW compiler: take a semi-honest secure
computation protocol and “compile” it with zero-knowledge arguments. The natural starting point
in the concurrent setting is to follow the same principles: somehow compile a semi-honest secure
computation protocol with a concurrent zero-knowledge protocol (actually compile with concurrent
non-malleable zero-knowledge [BPS06]). Does such an approach (or minor variants) already give
us protocols secure according to the standard ideal/real world definition in the plain model?

There is a fundamental problem with this approach which poses a key bottleneck in a number
of previous works (see [GS09, GJO10, GM11, GGJS12, Goy12, GGJ13]). All known concurrent
zero-knowledge simulators in the fully concurrent setting work by rewinding the adversarial parties.
Such an approach is highly problematic for secure computation in the concurrent setting, where
the adversary controls the scheduling of the messages of different sessions. For instance, consider
the following scenario: Due to nesting of sessions by the adversary, a rewinding based simulator
may need to execute some sessions more than once. Since the adversary can choose a different
input in each execution (e.g. based on transcript so far), the simulator would have to query the
ideal functionality for than once. However, for any session, the simulator is allowed at most one
query! Indeed, such problems are rather inherent as indicated by various impossibility results
[Lin08, BPS06].

Trying to solve this bottleneck of “handling extra queries” in various ways has inspired a number
of different works which revolve around a unified theme: first construct a protocol where the
simulator requires multiple queries per session in the ideal world, and then, somehow manage to
either eliminate or answer these extra queries by exploiting some property of the specific setting in
question. Examples of these include Resettable and Stateless computation [GS09, GM11], Multiple
Ideal Query model [GJO10, GJ13, GGJ13], Single-Input setting [Goy12], Leaky Ideal Query model
[GGJ13], etc1.

Indeed, as is natural to expect, there are limitations on how much one can achieve using the
above paradigm of constructing protocols. A very natural question that arises is whether there

1For a detailed survey of these works, see Appendix G



exists a different approach which allows us to construct concurrent secure computation protocols
in the plain model without the need of additional output queries? Moreover, if such a different
approach does exist, we know that due to impossibility results[CKL03, Lin03b, Lin08, BPS06,
Goy12, AGJ+12, GKOV12], there will be some limitations on the scope of its applicability. This
leads to some more natural questions. What all can we achieve using this approach? In particular,
can we expand the class of realizable functionalities in the concurrent setting? Can we improve the
parameters (e.g. round complexity) of the protocols which exist in the plain model?

1.1 Our Results

The key contribution of this work is a new way of approaching the problem of concurrent secure
computation in the plain model facilitated by recent advances in concurrent non-black box sim-
ulation [Goy13]. We give a protocol with non-black box and straightline simulator. Since, very
informally, our simulator does not rely on rewinding at all, we are able to avoid the key bottleneck
of additional output queries to the ideal functionality during the rewinds.

However, our simulator has to overcome a number of additional obstacles not present in [Goy13].
Note that unlike secure computation, an adversary in concurrent zero-knowledge does not receive
any outputs. Dealing with the outputs given to the adversary in each session is a key difficulty we
have to overcome. In particular, one might think that a straightline simulator for concurrent zero-
knowledge should give a concurrently secure computation protocol trivially for all functionalities
and in particular for concurrently secure oblivious transfer. Note that this cannot be true given
unconditional impossibility results for oblivious transfer. For more on such technical hurdles, please
refer to the technical overview (Section 1.2).

Informally stated, our main theorem is a general positive result for concurrent secure compu-
tation as long as the ideal world satisfies our so called bounded pseudo-entropy condition (BPC).
Very informally, the bounded pseudoentropy condition requires that in the ideal world experiment,
the total amount of information learnt by the adversary (via calls to the trusted party) should
have “bounded pseudoentropy”. The origin of the bounded pseudoentropy condition comes from
a conjecture of Goyal [Goy12]. More precisely, the bounded pseudoentropy condition says the
following:

Definition 1 (Bounded Pseudoentropy Condition (BPC)) An ideal world experiment sat-
isfies bounded pseudoentropy condition if there exists B ∈ N and a PPT algorithm T such that
for all m = m(n) concurrent sessions, for all adversarial input vectors ~I (where an element of the
vector represents the input of the adversary in that session), there exists a set S of possible output
vectors such that the following conditions are satisfied

• All valid output vectors corresponding to the input vector ~I of the adversary are contained
in S. Observe that for a given ~I, for different honest party input vectors, the output vectors
may be different. We require that any such output vector be contained in S. Furthermore,
|S| ≤ 2B.

• For every ~O ∈ S, T (~I, ~O) = 1, and for every ~O /∈ S, T (~I, ~O) = 0. That is, the set S is
efficiently recognizable.

Intuitively, this condition says the following: The adversary might be scheduling an unbounded
polynomial number of sessions and gaining information from each of the outputs obtained. However
for any vector of adversarial inputs, the number of possible output vectors is bounded (and hence



so is the information that adversary learns). Further note that this condition places a restriction
only on the ideal world experiment, which consists of the functionality being computed and the
honest party inputs. There is no restriction on the ideal world adversary, which may follow any
(possibly unbounded state) polynomial time strategy.

It can be seen that in concurrent zero-knowledge, as well as, in the bounded concurrency setting,
the BPC is satisfied. Also note that the class of ideal worlds which satisfy BPC is significantly
more general compared to the single input setting of [Goy12]. For a formal proof of this claim,
refer to Appendix C. In our work, we prove the following main theorem.

Theorem 1 Assume the existence of collision resistant hash functions and constant-round semi-
honest oblivious transfer. If the ideal world for the functionality F satisfies the bounded pseudoen-
tropy condition in Definition 1, then for any constant ε, there exists a O(nε) round real world
protocol Π which securely realizes the ideal world for functionality F .

To understand the power of our result, a positive result for all ideal worlds satisfying BPC
allows us to get the following “concrete” results:

• Resolving the bounded pseudoentropy conjecture. Goyal [Goy12] considered the so
called “single input setting” and obtained a positive result for many functionalities in the
plain model. Goyal further left open the so called bounded pseudoentropy conjecture which
if resolved would give a more general and cleaner result (see [Goy12] for the exact statement).

Our BPC is inspired from this conjecture (and can be seen as one way of formalizing it).
Thus, Theorem 1 allows us to resolve the bounded pseudoentropy conjecture in the positive.
Our positive result for the BPC subsumes most known positive results for concurrent secure
computation in the plain model such as for zero-knowledge [RK99, KP01, PRS02], bounded
concurrent computation [Lin03a, PR03, Pas04], and the positive results in the single input
setting [Goy12].

• Improving the round complexity of protocols in the single input setting. The
round complexity of the construction of Goyal [Goy12] in the single input setting was a large
polynomial depending not only upon the security parameter but also on the length of the
input and the nature of the functionality. For example, for concurrent private information
retrieval, the round complexity would depend multiplicatively of the number of bits in the
database and the security parameter. Our construction only has nε rounds, where n is the
security parameter. Therefore, we obtain a significant qualitative improvement in the round
complexity for protocols in the single input setting.

• Expanding the class of realizable functionalities, and, getting blind signatures.
The blind signature functionality is an interesting case in the paradigm of secure computation
both from theoretical as well as practical standpoints. The question of whether concurrent
blind signatures (secure as per the ideal/real model simulation paradigm) exist is currently
unresolved. Lindell [Lin03a, Lin08] showed an impossibility result for concurrent blind signa-
ture based on black-box simulation. This result has also been used as a motivation to resort
to weaker security notions (such as game based security) or setup assumptions in various
subsequent works (see e.g., [Fis06, Oka06, KZ06, HKKL07, GRS+11, GG14]). We show that
a positive result for BPC directly implies a construction of concurrent blind signatures secure
in the plain model as per the standard ideal/real world security notion. Prior to our work, the



only known construction of concurrently secure blind signatures was according to the weaker
game based security notion due to Hazay et al. [HKKL07].

This implies that concurrent blind signatures is a “natural” example of a functionality which
is impossible to realize using black-box simulation but can be securely realized using non-black
box simulation in the concurrent setting.2 The only previous such example known [GM11] was
for a reactive (and arguably rather contrived) functionality. Another concrete (and related)
example of a new functionality that can be directly realized using our techniques is that of a
secure verifiable random function.

It would also be interesting to see what our approach yields in the plain model for different
settings and security notions where the previous rewinding based approach has been useful (such
as resettable computation, super-polynomial simulation, etc). We leave that as future work.

1.2 Our Techniques

Our protocol and analysis for the concurrent secure computation is admittedly quite complex and
we face a number of hurdles on the way. Below, we try to sketch the main difficulties and our ideas
to circumvent them at a high level.

To construct concurrent secure computation, we roughly follow the [GMW87] strategy of
first constructing an appropriate zero-knowledge protocol, and then “somehow compiling” a semi
honest secure computation protocol using that. In our concurrent setting, in order to avoid the
multiple output queries per session, we need a concurrently secure protocol for zero-knowledge
with a straightline simulator. Recently, the first such protocol was given by Goyal [Goy13] based
on non-black box techniques3.

Another property of the zero-knowledge protocol which is crucial for compilation is simulation-
soundness. Our first (and arguably smaller) technical hurdle is to construct a simulation-sound
version of Goyal’s protocol. This is necessary because the simulator would rely on the soundness
of the proofs given by the adversary while simulating the proofs where it is acting as the prover.
Another issue is that in our protocol for concurrent secure computation, the adversary is allowed
to choose the statement proved till a very late stage in the protocol. Hence, we need simulation-
soundness to hold even when the statements to prove are being chosen adaptively by the adversary.
We note that this issue is somewhat subtle to deal with. Our construction of simulation-sound
concurrent zero-knowledge relies on the following ingredients: Goyal’s concurrent simulation strat-
egy, a robust non-malleable commitment scheme [LP09], and a special language to be used in the
universal arguments. The final construction along with a description of the main ideas is given in
Section 3.

The next (and arguably bigger) difficulty is the following. In secure computation, the adversary
receives an output in each session (this is unlike the case of zero-knowledge). It turns that that
it is not clear how to handle these outputs while performing non-black box simulation. Note that

2Previous separations between the power of black-box and non-black box simulation are known only if we place
additional constraints on the design of the real world protocol (e.g., it should be public coin, or constant rounds, etc.)

3Before this, all the (fully) concurrent zero-knowledge protocols were based on rewinding techniques, while, the
construction of [Bar01] (which had a non-rewinding simulator) worked only in the bounded concurrent setting. The
main result in [Goy13] was the first public-coin concurrent zero-knowledge protocol where the non-rewinding nature
of the simulation technique was not crucial. However in the current work, we would crucially exploit the fact that
the simulation strategy was straightline.



some such challenge is inherent in the light of the long list of general impossibility results known
[Lin08, BPS06]. Before we describe the challenge faced in detail, it would be helpful to recall how
the non-black box techniques based on [Bar01] work at a high level.

• Non-black box technique. In each session, the simulator has to commit to a program
Π, which has to generate the adversary’s random string r in that session. In the transcript
between the commitment to Π and r, there may be messages of other sessions, which Π
has to regenerate. Even if the program Π consists of the entire state of the simulator and
the adversary at the point of the commitment, it runs into a problem in the case of secure
computation (where the adversary is getting non-trivial output in each session).

• Key challenge. Note that to reach from the commitment of Π to the message r, the simulator
makes use of some external information: namely the outputs it learns by querying the ideal
functionality as it proceeds in the simulation. This information, however, is not available
with the program Π (since the simulator may query the ideal functionality after the program
Π was committed to). Also, note that the number of outputs learnt could be any unbounded
polynomial. Hence, it is not clear how to regenerate the transcript.

The first obvious solution, which does not work, is to allow the program Π to take inputs of
unbounded length. This would allow the simulator to pass all the outputs obtained to the program
Π. But now the soundness of the protocol seems to be completely compromised. On the other
hand, if Π does not receive all the outputs, it cannot regenerate the transcript!

To resolve this issue, we use the idea of “Oracle programs” due to Deng, Goyal, and Sahai
[DGS09]. The program Π, while running, is allowed to make any (polynomially unbounded) number
of queries (to be answered by the simulator) as long as the the response to each query is information
theoretically fixed by the query. The soundness is still preserved: an adversarial prover still cannot
communicate any information about the verifier’s random string r to Π. However, the program Π
can still access a potentially unbounded length string using such an “Oracle interface”.

Unfortunately, the above idea is still not sufficient for our purpose: the outputs given by the
ideal functionality are not fixed given the adversary’s input in the session. Here we rely on the fact
that we are only considering the ideal worlds which satisfy the bounded pseudoentropy condition.
Very roughly, it is guaranteed that the entire output vector has only bounded pseudoentropy (B),
given the input of the adversary. Moreover, given the adversary’s input vector, all possible output
vectors are efficiently testable by the PPT algorithm T . In other words, for every vector of queries,
there is only a bounded (although potentially exponential) number of response vectors accepted
by T . We allow the program Π to make any number of queries such that the response vector is
accepted by T . More details regarding our precise language for non-black box simulation may be
found in Figure 1. This idea allows the simulator to supply the entire output vector (learnt from
the ideal functionality) to Π while still preserving soundness. The soundness proof relies on the
fact that the queries only allow for communication of up to B-bit string to Π, which is still not
sufficient for communicating the string r.

Finally, there are additional challenges due to the requirement of straightline extraction. To-
wards that end, we rely on input indistinguishable computation introduced by Micali, Pass, and
Rosen [MPR06]. Challenges also arise with performing hybrid arguments in the setting where the
code of the simulator itself is committed (because of non-black box simulation). The full construc-
tion along with the main ideas is given in Appendix 4.



Other Related Work: Though Goyal et al. [Goy13] gave the first protocol for concurrent zero-
knowledge with a straightline simulator, recently, Chung et al. [CLP13b] gave a constant round con-
current zero-knowledge protocol for uniform adversaries based on a new assumption of P-certificates,
which is also straightline simulatable. Their protocol represents an exciting idea which opens an
avenue for getting constant round concurrently secure computation protocols (albeit for uniform
adversaries only, and, based on a new assumption). We believe that our techniques could also be
applicable in constructing concurrent secure computation protocols using the protocol of [CLP13b].

2 Concurrently Secure Computation: Our Model

In this section, we begin by giving a brief sketch of our model. Formal description is given in
Appendix B (building upon the model of [Lin08]). In this work, we consider a malicious, static and
probabilistic polynomial time adversary that chooses whom to corrupt before the execution of the
protocol and controls the scheduling of the concurrent executions. Additionally, the adversary can
choose the inputs of different sessions adaptively. We denote the security parameter by n. We give
a real world/ideal world based security definition. There are k parties Q1, Q2, . . . , Qk, where each
party may be involved in multiple sessions with possibly interchangeable roles. In the ideal world,
there is a trusted party for computing the desired two-party functionality F : {0, 1}r1 × {0, 1}r2 →
{0, 1}s1 × {0, 1}s2 . Let the total number of executions be m = m(n). Note that there is no a-
priori bound on the number of sessions m and the adversary can start any (possibly unbounded)
polynomial number of sessions. On the other hand, in the real world there is no trusted party and
the two parties involved in a session, say P1 and P2, execute a two party protocol Π for computing
F . Our security definition (see Definition 3, Appendix B) requires that any adversary in the real
model can be emulated by an adversary in the ideal model.

2.1 Our Result and its Applications.

As mentioned in the introduction, our main result (see Theorem 1, Section 1.1) is a general positive
result for concurrent secure computation as long as the ideal world satisfies the bounded pseudo-
entropy condition (Definition 1, Section 1.1).

Next, we show that our theorem not only subsumes the positive results of [Goy12] in the single
input setting but also improves the round complexity.

Comparing our results with [Goy12]. In [Goy12], Goyal showed that if the ideal world satisfies
the “key technical property” (KTP), then there exists a real world protocol which securely realizes
this ideal world. The key technical property, taken verbatim from [Goy12], is as follows:

Definition 2 (Key technical Property (definition 3, [Goy12])) The key technical property
(KTP) of an ideal world experiment requires the existence of a PPT predictor P satisfying the
following conditions. For all sufficiently large n, there exists a bound D such that for all adversaries
and honest party inputs, ∣∣∣{j : P({I[`]}`≤j , {O[`]}`<j) 6= O[j]

}∣∣∣ < D

For the ideal worlds which satisfy KTP, [Goy12] gave a O(n3D2) round secure protocol which
realizes the functionality, where D is the parameter in Definition 2.



We show that if an ideal world experiment satisfies the key technical property, then it also
satisfies the bounded pseudoentropy condition.

Lemma 1 If an ideal world experiment satisfies the key technical property (Definition 2), then it
also satisfies the bounded pseudoentropy condition (Definition 1).

For the proof of this lemma refer to Appendix C.
As mentioned before, the round complexity of Goyal [Goy12] is O(n3D2) which is a polynomial

in security parameter n as well as D (which depends upon length of single input as well as nature
of functionality). Our Theorem 1 and Lemma 1 imply a quantitative and qualitative improvement
in round complexity. This leads to lower round protocols for applications like private database
search, secure set intersection, computing kth ranked element etc. For details see Appendix D.

Moreover, [Goy12] only gave a positive result for functionalities with hardness free ideal world,
i.e. in the ideal world the trusted party is not required to perform any cryptographic operations.
There is no such restriction in our setting. In fact, we show that blind signatures and verifiable
random functions satisfy the bounded pseudoentropy condition. More interestingly, they do not
satisfy the key technical property. We next describe our results for these functionalities.

Blind Signatures. Blind signatures, introduced by [Cha82], allow users to obtain signatures
on messages of their choice without revealing the message being signed to the signer (blindness
property). In addition, they also need to satisfy the unforgeability property of the digital signature
schemes. In this work, we give the following positive result for concurrent blind signatures.

Theorem 2 Assume the existence of collision resistant hash functions and constant-round semi-
honest oblivious transfer. Then for any constant ε, there exists a O(nε) round secure protocol which
realizes the ideal world for concurrent blind signature functionality.

We prove this theorem by using unique signatures [GO92] as the underlying signature scheme and
showing that blind signatures satisfy the bounded pseudoentropy condition when the underlying
signature scheme is unique. (Note that Lindell’s black box impossibility result also holds in this
setting.) A signature scheme is said to be unique if for each public key and each message, there
exists at most one valid signature which verifies.

We can model blind signature as a two party computation between the signer and the user
for the circuit for generating signatures. Note that the circuit will have the verification key vk
hardcoded. At the end of the protocol, the user outputs a valid signature σ if obtained, and signer
always outputs ⊥. Now we show that this functionality satisfies BPC for B = 0 and T algorithm
which is same as the signature verification algorithm. Note that if the adversary is playing the
role of the user, its output is unique and is completely determined by its input message since vk is
fixed by the function being computed. If the adversary is playing the role of the signer, its output
is always ⊥. Hence, set S will contain only one output vector, which is information theoretically
fixed by the adversary inputs and the ideal world experiment (which fixes the verification keys for
all the sessions). The algorithm T simply verifies the user’s signatures w.r.t. corresponding vk and
ensures that signer’s outputs are ⊥.

Finally note that blind signatures will not satisfy the key technical property. Consider the case
when the adversary is acting as the user in all the sessions. By the unforgeability property of the
scheme, any PPT predictor which receives k valid input/output (message/signature) pairs cannot



predict the signature on the next message with non-negligible probability. Also, note that blind sig-
natures will not satisfy the generalized key technical property discussed in the full version [Goy11]
for the same reason. For more formal description see Appendix D.1.

Verifiable Random Functions. Verifiable random functions (VRFs) were introduced by Micali,
Rabin, and Vadhan [MRV99]. They combine the properties of pseudo-random functions with the
verifiability property. Intuitively, they are pseudo-random functions with a public key and proofs
for verification. Along with pseudo-randomness, they are required to satisfy uniqueness, i.e., given
the public key, for any input x, there is a unique y which can verify. In this work, we show the
following:

Theorem 3 Assume the existence of collision resistant hash functions and constant-round semi-
honest oblivious transfer. Then for any constant ε, there exists a O(nε) round concurrent real world
protocol which realizes the ideal world experiment for verifiable random functions.

We again prove this theorem by showing that VRFs satisfy BPC for B = 0 and T algorithm
which is same as verification algorithm. Here, we again rely on the uniqueness property. Finally,
note that VRFs too will not satisfy the key technical property due to pseudo-randomness guarantee.
For details see Appendix D.2.

3 Our Simulation-Sound Non-Black Box Zero-knowledge Protocol

Constructing a family of polynomially many zero-knowledge protocols which are simulation-sound
with respect to each other under (unbounded polynomially many) concurrent executions is one
of the difficulties in constructing protocols for fully concurrent multi-party computation (MPC).
Simulation-soundness, introduced by Sahai [Sah99], means that the soundness of each of the proofs
given by the adversary should hold even when the adversary is getting unbounded polynomial num-
ber of simulated proofs. To avoid the problem of providing multiple outputs due to a rewinding
based simulator for concurrent MPC, we need to construct simulation-sound zero-knowledge proto-
cols which are straight-line simulatable. Note that Pass [Pas04] also gave a construction of polyno-
mially many protocols which are concurrent zero-knowledge and simulation-sound w.r.t. each other
in the restricted setting of bounded concurrency. In this work, we construct such simulation-sound
zero-knowledge protocols building upon the non-black box public coin concurrent zero-knowledge
protocol of Goyal [Goy13].

First, we give a brief overview of [Goy13]. Some of the text has been taken verbatim from [Goy13].
One of the main technical ideas in [Goy13] is to have N = nε non-black box slots, for any constant
ε (each consisting of a commitment to a machine and a verifier challenge string). Each slot is
followed by a universal argument (UA) execution. Any of the UA’s in a session may be picked for
simulation. If a UA is picked for simulation, to make the analysis go through, the simulator could
choose of any of the previously completed slots and prefer the slots which are computationally
lighter. In a UA execution, the prover proves that in one of the completed slots, the machine com-
mitted successfully outputs the verifier challenge string. Other main idea was to have encrypted
executions of the UAs (using its public coin property) to hide the location of the convincing UA
executions in the transcript. Finally there is an execution of a witness-indistinguishable argument
of knowledge (WIAOK), where the prover proves that either the statement x ∈ L or there exists a
decryption of one of the UAs which is accepting. In the subsequent discussion, we will refer to the



The language Λ is defined w.r.t. an algorithm T and bound B with the following property: For
any vector ~x (of possibly unbounded polynomial length) there exists a set S containing vectors ~y
such that |S| ≤ 2B and for all ~y′ /∈ S, T (~x, ~y′) = 0. Now the language Λ is defined as follows:
We say that (h, z, r) ∈ Λ if there exists an oracle program Π s.t. z = com(h(Π)) and there exist

strings y1 ∈ {0, 1}≤|r|−B−n, y2 ∈ {0, 1}≤n
loglogn

and y3 ∈ {0, 1}≤n
loglogn

with the following properties.
The oracle program Π takes y1 as input and outputs r within nloglogn steps. Program Π can make
two kinds of calls to the oracle

1. Produce a query of the form decommit(str) and expecting (r) with str = com(r) in return such
that the tuple (str, r) is guaranteed to be found in the string y2 (as per a suitable encoding
of y2). Thus, such oracle calls by Π can be answered using y2.

2. Produce a query of the form output(x) and expecting y in return, such that the tuple (x, y) is
guaranteed to be found in the string y3 (as per a suitable encoding of y3). Thus, such oracle
calls by Π can be answered using y3.

If the program Π makes a query that cannot be answered by strings y2 or y3, Π aborts and we
have that (h, z, r) /∈ Λ. Also, let ~x denote the vector containing all the output(·) queries made by
Π (throughout its execution) and ~y be the corresponding responses, then Π aborts if T (~x, ~y) = 0
and we have that (h, z, r) /∈ Λ.

Figure 1: Our language for zero-knowledge with non-black-box simulation

part of the protocol with non black box slots and encrypted UAs as the preamble phase and last
phase as the wiaok phase.

Two main ideas are required to transform the above described protocol into simulation-sound
zero-knowledge protocols, which can then be used to construct protocols for concurrent MPC.
Firstly, observe that unless the parties have identities it is impossible to construct a simulation-
sound protocol because a man-in-the-middle attack cannot be prevented. Hence, we focus on a
setting where each party has a unique identity of n bits. Let NMCom be a k-robust identity-based
non-malleable commitment scheme (Appendix A.6). Now, after the preamble phase of the protocol,
the prover with identity id gives a non-malleable commitment to the witness under its identity id.
More precisely, the prover, having witness w to x ∈ L, gives a commitment c = NMCom(w) under
his identity id. In the final wiaok phase, the prover proves that either there exists a w such
that c = NMCom(w) and w ∈ RL(x) or one of the UA executions was convincing. We will be
able to prove the simulation-soundness of our protocol using the non-malleability and k-robustness
of NMCom. Note that (as described later) our protocol will be simulation-sound even when the
adversary is allowed to choose the statements to be proven adaptively till the point when he gives
this non-malleable commitment.

Secondly, in our UA executions we will use a special generalized language Λ (see Figure 1)
for the UA executions. Here, along with [DGS09] kind of queries decommit(·) whose response is
information theoretically fixed given the query itself, we will also have a second kind of queries,
which we will denote by output(·). Note that though the responses of these queries is not information
theoretically fixed, they have a bounded pseudoentropy. Next, we give some intuition about the
use of these oracle queries.
Intuition behind the oracle queries output(·) in language Λ. The algorithm T and the bound
B are introduced to capture the information learnt by the adversary. When only concurrent ses-



sions of zero-knowledge are running, there is no information passed to the adversary, hence we can
have T to reject all outputs and still be able to simulate the view of the adversary. This notion
will be important for the concurrent executions of multiparty computation because the adversary
learns non-trivial information from calls to the trusted party. In particular, it learns the output
of the function in each session. We will use the oracle queries output(·) to communicate the in-
formation learnt from the trusted party to the adversary in the ideal world. But still to get our
positive result, we will need to bound the amount of information learnt by the adversary. The
bound B will be the number of bits of information passed on to the adversary. This is intuitively
captured by the condition that there are only 2B vectors of oracle responses which might be ac-
cepted by T . Looking ahead, the description of T will depend on the functionality being computed.

Formal Protocol Description. Let com(·) denote a non-interactive perfectly binding commit-
ment scheme (Appendix A). Whenever we need to be explicit about the randomness, we denote
by com(s; r) a commitment to a string s computed with randomness r. Unless stated otherwise,
all commitments in the protocol are executed using this commitment scheme. Let NMCom be the
k-robust non-malleable commitment scheme (Appendix A.6), where k is a parameter computed
later. Let len = n2 +B + η, where B and η are parameters computed later.

The common input to P and V is the security parameter n. The input to P is x in the language
L ∈ NP , and a witness w to x ∈ L. Let id be the n bit identity of the prover. Our protocol 〈P, V 〉
or cZKid, where id is the identity of the prover, proceeds as follows: Parts of the protocol have
been taken verbatim from [Goy13].

1. The verifier V chooses a random collision resistant hash function h from a function family H
and sends it to P .

2. For i ∈ [n6], the protocol proceeds as follows:4

• The prover P computes zi = com(h(0)) and sends it to V .

• The verifier V selects a challenge string ri
$← {0, 1}len and sends it to the prover P . The

above two messages (consisting of the prover commitment and the verifier challenge) are
referred to as a “slot”.

• The prover P and the verifier V will now start a three-round public coin universal
argument (of knowledge) [BG02] where P proves to V that there exists j ≤ i, s.t.,
τj(= (h, zj , rj)) is in the language Λ (see figure 1).

The three messages of this UA protocol are called as the first UA message, verifier UA
challenge, and, the last UA message.

Observe that the UA does not just refer to the slot immediately preceding it but rather
has a choice of using any of the slots that have completed in the protocol so far.

• The prover computes the first UA message and sends a commitment to this message to
the verifier. The honest prover will simply commit to a random string of appropriate
size.

• The verifier now sends the UA challenge message.

• The prover computes the last UA message and again sends only a commitment to this
message to the verifier. The honest prover will simply commit to a random string of

4Note that the round complexity of our protocol can be made nε using standard techniques involving “scaling
down” the security parameter.



appropriate size.

3. The prover declares the statement x ∈ L and commits to the witness w using the non-
malleable commitment scheme NMCom under prover’s identity id.

Note that a cheating prover can adaptively choose the statement x here.

4. Finally, the prover proves the following statement to V using WIAOK

1. The value committed to in Step 3 is a value w such that it is a valid witness to x ∈ L,
(i.e. w ∈ RL(x)), or

2. There exists i such that the i-th UA execution was “convincing”. That is, there exists
an i ∈ [n6] such that there exists an opening to the prover first and last UA messages
such that an honest verifier would have accepted the transcript of the UA execution.

An honest prover simply commits to the witness for x ∈ L in Step 3 and uses the first part
of the statement to complete the witness-indistinguishable argument of knowledge protocol.

Observe that a witness to the second part of the above statement would be the opening of
the commitments to the UA first and last messages. Hence, the size of the witness is fixed
and depends only upon the communication complexity of the 3-round UA system being used.

Remark 1 We call the Steps 1 and 2 of the protocol as non-black box preamble, step 3 as the
nmcom phase and step 4 as the wiaok phase.

Parameter k. We set k to be the round complexity of WIAOK. Hence, we set k = 3.

Parameter B. Note that the parameter B in len is same as the one in Figure 1, i.e. the parameter
specified for algorithm T in the description of language Λ.

Setting the parameter η. Let η be the sum of the following: prover’s maximum communica-
tion complexity in different primitives used in the protocol described above, and communication
complexity of NMCom. More precisely, we set

η = max(cz, cua1, cua2, cwiaok, cNMCom,S) + cNMCom,R,

where cz is the length of the the slot begin message z, cua1 is the length of the UA first message,
cua2 is the length of the UA last message, cwiaok is the prover’s communication complexity in
the final WIAOK execution, cNMCom,S is the sender’s communication complexity in NMCom and
cNMCom,R is the receiver’s communication complexity in NMCom.

Looking ahead, (very informally) while proving the simulation-soundness of the above protocol,
different parts of the protocol will be taken externally and NMCom given by the adversary will be
exposed to an external receiver, etc. Hence, different parts of the protocol will be given externally
to the machine committed by the simulator as part of the string y1 in Λ.

Note that the entire 〈P, V 〉 protocol is run w.r.t. to language Λ having a specific algorithm T
and bound B. We will prove that the security properties hold for any such T and bound B when
η is chosen as above. Next, we prove the soundness of the protocol for any fixed value of B. Then
we will prove the simulation-soundness of the protocol. Our ZK simulator will not use the oracle
queries of the type output(·). Later on our MPC simulator will make a non-trivial use of these
oracle queries.

The proof of security of simulation-sound non-black box zero-knowledge protocol proceeds along
the lines discussed in the introduction (see Section 1.2). We give a detailed formal proof of security
in Appendix E.



4 Concurrently Secure Computation: Our Protocol

In this section, we will describe our protocol Σ for concurrently secure computation for ideal world
experiments which satisfy the bounded pseudoentropy condition (Definition 1) for some parameter
B ∈ N and algorithm T .

Our Construction. In order to describe our construction, we first recall the notation associated
with the primitives that we use in our protocol. Let com(·) denote the commitment function
of a non-interactive perfectly binding commitment scheme (Appendix A). Let 〈P, V 〉 denote the
simulation-sound non-black box concurrent zero-knowledge protocol as described in Section 3 with
length of challenge strings modified to be len = n2 +B+ θ, where θ is a parameter computed later.
Let 〈P iic

1 , P iic
2 〉 be the constant round protocol for input indistinguishable computation described in

Appendix A.5. Let NMCom be the k-robust non-malleable commitment scheme (Appendix A.6),
where k is a parameter computed later. Further, let 〈Pwi, Vwi〉 denote a witness indistinguishable
argument (Appendix A.3) and let 〈P sh

1 , P sh
2 〉 denote a constant round semi-honest two party compu-

tation protocol 〈P sh
1 , P sh

2 〉 that securely computes F in the stand-alone setting as per the standard
definition of secure computation (Appendix A.4).

Let P1 and P2 be two parties with inputs x1 and x2. Let n be the security parameter. Protocol
Σ = 〈P1, P2〉 proceeds as follows:
I. Non-Black Box Simulation Phase.

1. P1 ⇒ P2 : P1 and P2 engage in the preamble phase of 〈P, V 〉 where P1 is the prover. Next,
in the nmcom phase, P1 creates a non-malleable commitment com1 to bit 0, i.e. com1 =
NMCom(0) and sends com1 to P2. P1 and P2 now engage in the wiaok phase where P1

proves that either (1) com1 is a commitment to 0 , or (2) there exists i such that the i-th UA
execution in the preamble phase was “convincing”.

2. P2 ⇒ P1 : P2 now acts symmetrically. P1 and P2 engage in the preamble phase of 〈P, V 〉
where P2 is the prover. Next, P2 creates a non-malleable commitment com2 to bit 0, i.e.
com2 = NMCom(0) to bit 0 and sends com2 to P1. P1 and P2 now engage in the wiaok phase
where P2 proves that either (1) com2 is a commitment to 0 , or (2) there exists i such that
the i-th UA execution in the preamble phase was “convincing”.

Informally speaking, the purpose of this phase is to aid the simulator in obtaining a “trapdoor”
to be used during the simulation of the other two phases of the protocol.

Common input: Let com(·) be a non-interactive perfectly binding commitment scheme. The
functionality fcom1,com2 is parameterized by two commitments com1 and com2 under com(·), which
are the common inputs to the functionality and the parties P iic

1 and P iic
2 .

Inputs: Let (z1, td1) and (z2, td2) be the inputs of P iic
1 and P iic

2 respectively.

Computation: Party P iic
1 sends its input (z1, td1) and party P iic

2 sends its input (z2, td2) to the
trusted functionality fcom1,com2 .
If td1 is a valid opening of com1 to bit 1, fcom1,com2 sends z2 to P iic

1 , otherwise it sends ⊥. Similarly,
if td2 is a valid opening of com2 to bit 1, fcom1,com2 sends z1 to P iic

2 , otherwise it sends ⊥.

Figure 2: The Functionality fcom1,com2



II. Input Indistinguishable Computation Phase. Intuitively speaking, in this phase, the
parties “commit” to their inputs and random coins (to be used in the final secure computation
phase) by engaging in a execution of 〈P iic

1 , P iic
2 〉 for the functionality fcom1,com2 described in Figure 2.

More precisely, P1 and P2 engage in an execution of 〈P iic
1 , P iic

2 〉 for the functionality fcom1,com2 where
P1 plays the role of P iic

1 , while P2 plays the role of P iic
2 as follows:

1. P1 first samples a random string r1 (of appropriate length, to be used as P1’s randomness in
the execution of 〈P sh

1 , P sh
2 〉 in Phase III) and uses input z1 = x1‖r1 and td1 = ⊥ in execution

of 〈P iic
1 , P iic

2 〉 for fcom1,com2 .

2. P2 ⇒ P1 : P2 now acts symmetrically. P2 first samples a random string r2 (of appropriate
length, to be used as P2’s randomness in the execution of 〈P sh

1 , P sh
2 〉 in Phase III) and uses

input z2 = x2‖r2 and td2 = ⊥ in execution of 〈P iic
1 , P iic

2 〉 for fcom1,com2 .

Informally speaking, the purpose of this phase is to aid the simulator in extracting the adver-
sary’s input and randomness with the help of the trapdoor obtained in the previous phase. As we
will show later, an adversary will never be able to input a valid trapdoor.

III. Final Secure Computation Phase.5 In this phase, P1 and P2 engage in an execution of
〈P sh

1 , P sh
2 〉 where P1 plays the role of P sh

1 , while P2 plays the role of P sh
2 . Since 〈P sh

1 , P sh
2 〉 is secure

only against semi-honest adversaries, parties first run a coin-flipping protocol to enforce that the
coins of each party are truly random. We then compile the semi-honest 〈P sh

1 , P sh
2 〉 with 〈Pwi, Vwi〉 to

ensure correct behavior on part of each party. More precisely, after sending each protocol message, a
party also gives a proof using 〈Pwi, Vwi〉 that the message generated is consistent with the transcript
so far and the input used in the previous phase. More precisely, this phase proceeds as follows:

1. P1 ↔ P2 : P1 samples a random string r′2 (of same length as r2) and sends it to P2. Similarly,
P2 samples a random string r′1 (of same length as r1) and sends it to P1. Let r′′1 = r1 ⊕ r′1
and r′′2 = r2 ⊕ r′2. Now, r′′1 and r′′2 are the random coins that P1 and P2 will use during the
execution of 〈P sh

1 , P sh
2 〉.

2. Let q be the number of rounds in 〈P sh
1 , P sh

2 〉, where one round consists of a message from P sh
1

followed by a reply from P sh
2 . Let transcript T1,j (resp., T2,j) be defined to contain all the

messages exchanged between P sh
1 and P sh

2 before the point P sh
1 (resp., P sh

2 ) is supposed to
send a message in round j. For j = 1, . . . , q:

(a) P1 ⇒ P2 : Compute β1,j = P sh
1 (T1,j , x1, r

′′
1) and send it to P2. P1 and P2 now engage in

an execution of 〈Pwi, Vwi〉, where P1 proves the following statement:

i. either there exist values x̂1, r̂1 and t̂d1 such that (a) the fcom1,com2 is valid with

respect to the value ẑ1 = x̂1‖r̂1 and t̂d1 and (b) β1,j = P sh
1 (T1,j , x̂1, r̂1 ⊕ r′1)

ii. or, the non-malleable commitment com1 is a commitment to bit 1.

(b) P2 ⇒ P1 : P2 now acts symmetrically.

This completes the description of the protocol Σ = 〈P1, P2〉. Note that Π consists of several in-
stances of WI, such that the proof statement for each WI instance consists of two parts. Specifically,

5Part of the text in this phase has been taken verbarim from [GGJS12]



the second part of the statement states that prover committed to bit 1 in the non-black box simu-
lation phase. In the sequel, we will refer to the second part of the proof statement as the trapdoor
condition. Further, we will call the witness corresponding to the first part of the statement as real
witness and that corresponding to the second part of the statement as the trapdoor witness.
Parameter k. We will set k to be the maximum round complexity among UA, WIAOK, 〈P iic

1 , P iic
2 〉

and 〈P sh
1 , P sh

2 〉.
Setting the parameter θ. We will set θ to be the sum of the following: a party’s maximum
communication complexity in different primitives used in the protocol described above (excluding
when it acts as a verifier in 〈P, V 〉), and communication complexity of NMCom. More precisely, we
set

θ = max(cz, cua1, cua2, cwiaok, cwi, ciic, ctpc, cNMCom,S) + cNMCom,R,

where cz is the length of the message z (the slot begin message), cua1 is the length of the UA
first message, cua2 is the length of the UA last message, cwiaok is the prover’s communication
complexity in the final WIAOK execution, cwi is the prover’s communication complexity in WI,
ciic is the communication complexity of any party in 〈P iic

1 , P iic
2 〉, ctpc is the total communication

complexity of the semi-honest two party computation 〈P sh
1 , P sh

2 〉 for the functionality F , cNMCom,S

is the sender’s communication complexity in NMCom and cNMCom,R is the receiver’s communication
complexity in NMCom. Looking ahead, while proving the security of the above protocol, different
parts of the protocol will be taken externally and NMCom given by the adversary will be exposed
to external receiver, etc. Hence, all of these will be given externally to the machine committed by
the simulator as part of the string y1 in Λ.

The proof of Theorem 1 proceeds along the lines discussed in the introduction (see Section 1.2).
We give a detailed formal description of the simulator and proof of security in Appendix F.
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A Preliminaries

We now briefly mention some of the main cryptographic primitives that we use in our construction.
The first two definitions have been taken verbatim from [Goy13].

A.1 Non-interactive perfectly binding commitment scheme with a unique de-
commitment

In our protocol, we shall use a non-interactive perfectly binding commitment scheme with the
properties that every commitment has a unique decommitment and the verification of the decom-
mitment is deterministic. An example of such a scheme is the scheme that commits to the bit b by
com(b; (r, x)) = r||π(x)||(x · r)⊕ b where π is a one-to-one one-way function on the domain {0, 1}n,
x · y denotes the inner-product of x and y over GF (2), and x, r ← Un. We denote this commitment
scheme by com.

As pointed out in [Goy13], we can remove the 1-to-1 one-way function assumption in our work
by relying on a simple trick from [CLP13a]. In particular, [CLP13a] uses a notion of forward-secure
pseudo-random functions (based only on one-way functions) which can also be employed in our
construction (as opposed to non-interactive commitment schemes with a unique decommitment).

A.2 Three-round public-coin universal-arguments

Universal arguments [BG02] are used in order to provide efficient proofs to statements of the form
y = (M,x, t), where y is considered to be a true statement if M is a non-deterministic machine that
accepts x within t steps. We shall make use of public-coin universal-arguments from [BG02] which
is only 3-rounds assuming the prover and the verifier have agreed upon a function from a CRHF
family before the protocol starts. In addition, we shall make use of the fact that the universal
argument system from [BG02] is a weak proof of knowledge.

Security notions. For definition of universal arguments and zero-knowledge argument of knowl-
edge, we refer the reader to previous works [Bar01, BG02].



A.3 Witness Indistinguishable Arguments

In our construction, we shall use a witness indistinguishable (WI) argument 〈Pwi, Vwi〉 for proving
membership in any NP language with perfect completeness and negligible soundness error. Three
round WI arguments can be constructed by running ω(log n) parallel copies of Blum’s Hamiltonicity
protocol [Blu86]. Moreover, it is a witness indistinguishable argument of knowledge.

A.4 Constant-Round Semi-Honest Two Party Computation

We will use a semi-honest two party computation protocol 〈P sh
1 , P sh

2 〉 that emulates the function-
ality F (as described in section B) in the stand-alone setting. The existence of such a proto-
col 〈P sh

1 , P sh
2 〉 follows from the existence of constant-round semi-honest 1-out-of-2 oblivious trans-

fer [Yao86, GMW87, Kil88].

A.5 Constant-Round Input Indistinguishable Computation (IIC)

Micali et al. [MPR06] introduced the notion of input indistinguishable computation (IIC) similar
to witness indistinguishability for proofs. In IIC, very roughly, given the output vector (consisting
of outputs in all concurrent sessions), consider any two honest party input vectors ~x1 and ~x2,
consistent with the output vector. The security guarantee requires that the adversary only has a
negligible advantage in distinguishing which of these is the actual honest party input vector. In
IIC, no guarantees are provided for any two input vectors which don’t lead to the identical output.

In this work, we will use the constant round IIC protocol by Garg et al. [GGJS12] which is
secure even when unbounded number of executions are composed together under the assumption
of constant round semi-honest oblivious transfer and collision resistant hash functions.

A.6 Non-Malleable Commitments Robust w.r.t. k-round Protocols

The notion of non-malleability w.r.t. arbitrary k-round protocols was introduced in [LP09]. Fol-
lowing text has been taken verbatim from [Lin11]. A non-malleable commitment scheme 〈C,R〉 is
said to be robust w.r.t. to arbitrary k round protocols if the following holds: Consider a one-one
man-in-the-middle adversary A that participates in one left interaction- communicating with a ma-
chine B- and one right interaction- acting as a committer using the commitment scheme 〈C,R〉. We
denote by nmcB,A〈C,R〉(y, z) the random variable consisting of the view of A(z) in a man-in-the-middle

execution when communicating with B(y) on the left and an honest receiver on the right, combined
with the value A(z) commits to on the right. Intuitively, we say that 〈C,R〉 is non-malleable w.r.t.
B if nmcB,A〈C,R〉(y1, z) and nmcB,A〈C,R〉(y2, z) are computationally indistinguishable whenever B(y1) and

B(y2) are computationally indistinguishable. In our work, we will use commitment schemes which
are non-malleable w.r.t. itself and arbitrary k-round protocols where k is a constant. Under the
assumption that one way functions exist, for any constant k, there exists a constant-round com-
mitment scheme that is k-robust concurrently non-malleable with a black box proof of security.

B Concurrently Secure Computation: Our Model

In this work, we consider a malicious, static adversary that chooses whom to corrupt before the
execution of the protocol. The adversary controls the scheduling of the concurrent executions. We



only consider computational security and therefore restrict our attention to adversaries running in

probabilistic polynomial time. We denote computational indistinguishability by
c≡, and the security

parameter by n. We do not require fairness and hence in the ideal model, we allow a corrupt party
to receive its output in a session and then optionally block the output from being delivered to
the honest party, in that session. Further, we only consider “security with abort”. To formalize
the above requirements and define security, we follow the standard paradigm for defining secure
computation (see also [Lin08]). We define an ideal model of computation and a real model of
computation, and require that any adversary in the real model can be emulated by an adversary
in the ideal model. More details follow.

Ideal Model. We first define the ideal world experiment, where there is a trusted party for
computing the desired two-party functionality F : {0, 1}r1 × {0, 1}r2 → {0, 1}s1 × {0, 1}s2 . Let P1

and P2 denote the two parties in a single execution. In total, let there be k parties Q1, Q2, . . . , Qk,
where each party may be involved in multiple sessions with possibly interchangeable roles, i.e. Qi
may play the role of P1 in one session and P2 in some other session. Let the total number of
executions be m = m(n). For each ` ∈ [m], we will denote by P `1 , the party playing the role of
P1 in session `. P `2 is defined analogously. The adversary may corrupt any subset of the parties in
Q1, Q2, . . . , Qk. The ideal world execution proceeds as follows:

I. Inputs: There is a PPT usage scenario which gives inputs to all the parties. For each session
` ∈ [m], it gives inputs x` ∈ X ⊆ {0, 1}r1 to P `1 and y` ∈ Y ⊆ {0, 1}r2 to P `2 . The adversary
is given auxiliary input z ∈ {0, 1}∗, and chooses the subset of the parties to corrupt, say M .
The adversary receives the inputs of the corrupted parties.

II. Session initiation: When the adversary wishes to initiate the session number `, it sends a
(start-session, `) message to the trusted party. On receiving a message of the form (start-session, `),
the trusted party sends (new-session, `) to both P `1 and P `2 .

III. Honest parties send inputs to the trusted party: Upon receiving (start-session, `) from
the trusted party, an honest party P `i sends its real input along with the session identifier.
More specifically, if P `1 is honest, it sends (`, x`) to the trusted party. Similarly, an honest P `2
sends (`, y`) to the trusted party.

IV. Corrupted parties send inputs to the trusted party: At any point during execution, a
corrupted party P `1 may send a message (`, x′`) to the trusted party, for any string x′` (of
appropriate length) of its choice. Similarly, a corrupted party P `2 sends a message (`, y′`) to
the trusted party, for any string y′` (of appropriate length) of its choice.

V. Trusted party sends results to the adversary: For a session `, when the trusted party has
received messages from both P `1 and P `2 , it computes the output for that session. Let x′` and
y′` be the inputs received from P `1 and P `2 , respectively. It computes the output F(x′`, y

′
`). If

either P `1 or P `2 is corrupted, it sends (`,F(x′`, y
′
`)) to the adversary. If neither of the parties

is corrupted, then the trusted party sends the output message (`,F(x′`, y
′
`)) to both P `1 and

P `2 .

VI. Adversary instructs the trusted party to answer honest players: For a session `, where
exactly one of the party is corrupted, the adversary, depending on its view up to this point,
may send the message (output, `) to the trusted party. Then, the trusted party sends the
output (`,F(x′`, y

′
`)), computed in the previous step, to the honest party in session `.



VII. Outputs: An honest party always outputs the value that it received from the trusted party.
The adversary outputs an arbitrary (PPT computable) function of its entire view (including
the view of all corrupted parties) throughout the execution of the protocol.

The ideal execution of a function F with security parameter n, input vectors ~x, ~y, auxiliary
input z to S and the set of corrupted parties M , denoted by idealFM,S(n, ~x, ~y, z), is defined as the
output pair of the honest parties and the ideal world adversary S from the above ideal execution.

Real model. We now consider the real model in which a real two-party protocol is executed
(and there exists no trusted third party). Let F , ~x, ~y, z be as above and let Π be a two-party
protocol for computing F . Let A denote a non-uniform probabilistic polynomial-time adversary
that controls any subset M of parties Q1, Q2, . . . , Qk. The parties run concurrent executions of
the protocol Π, where the honest parties follow the instructions of Π in all executions. The honest
party initiates a new session `, using the input provided, whenever it receives a start-session message
from A. The scheduling of all messages throughout the execution is controlled by the adversary.
That is, the execution proceeds as follows: the adversary sends a message of the form (`,msg) to
the honest party. The honest party then adds msg to its view of session ` and replies according to
the instructions of Π and this view in that session. At the conclusion of the protocol, an honest
party computes its output as prescribed by the protocol. Without loss of generality, we assume the
adversary outputs exactly its entire view in the execution of the protocol.

The real concurrent execution of Π with security parameter n, input vectors ~x, ~y, auxiliary
input z to A and set of corrupted parties M , denoted realΠ

M,A(n, ~x, ~y, z), is defined as the output
pair of the honest parties and real world adversary A, resulting from the above real-world process.

Definition 3 Let F and Π be as above. Then protocol Π for computing F is a concurrently secure
computation protocol if for every probabilistic polynomial-time adversary A in the real model, there
exists a probabilistic polynomial-time adversary S in the ideal model such that for every polynomial
m = m(n), every input vectors ~x ∈ Xm, ~y ∈ Y m, every z ∈ {0, 1}∗, and every subset of corrupt
parties M , {

idealFM,S(n, ~x, ~y, z)
}
n∈N

c≡
{
realΠ

M,A(n, ~x, ~y, z)
}
n∈N

C Proof of Lemma 1

Proof. Since the ideal world experiment satisfies the key technical property, there exists a predictor
P such that the number of adversary inputs for which it fails to predict the correct output (given
all previous inputs/outputs) is at most D − 1. To show that this ideal world experiment also
satisfies the bounded pseudoentropy condition, we need a bound B ∈ N and need to describe a
PPT algorithm T and a set S which together satisfy the conditions in definition 1.

Existence of a predictor satisfying KTP implies that given an advice of at most D − 1 in-
put/output pairs, it can predict all other outputs correctly. Using this intuition, we will build the
set S as follows: Consider all possible strings str of the form ((i1, O[i1]), . . . , (iD−1, O[iD−1])) such
that i1, . . . , iD−1 are sessions numbers in [m] and O(ij)s are the corresponding possible outputs.
Note that length of str, i.e., |str| ≤ (D− 1) · (log2 n+ size of output in any session). Let |str| = B.
Now we will construct the set S of size 2B as follows. For each str as described above, we will
construct a possible output vector ~O in S as follows. To compute the output for session number j
check if index j is in str. If yes, it output for session number j is the corresponding value in str.



Else, run the predictor on the inputs and outputs computed so far and the input of the adversary in
the current session, i.e. O[j] ← P({I[`]}`≤j , {O[`]}`<j). Since there are 2B possible advice strings
str, the number of distinct output vectors in S is at most 2B.

Next, we will describe the procedure T . Given an input vector ~I and output vector ~O, it does
the following: It internally runs the predictor P session by session. For the session number j, it
computes P({I[`]}`≤j , {O[`]}`<j) and checks whether it is equal to O[j] or not. Procedure T accepts

the output vector ~O for input ~I if the predicted output does not match the corresponding value

in ~O for at most D − 1 locations. More precisely, T returns 1 if
∣∣∣{j : P({I[`]}`≤j , {O[`]}`<j) 6=

O[j]
}∣∣∣ < D, else it returns 0.

Finally, we show that the set S and algorithm T described above satisfy the properties listed
in definition 1. The first condition on the size of the set S is trivially satisfied.

For the second condition, note that since the predictor fails in predicting at most D−1 outputs
of the adversary, and the set S contains all such output vectors which need advice for at most D−1
outputs, S does contain all the possible valid outputs for all possible inputs of the honest parties.

For the last condition, observe that the way the algorithm T would accept all the output vectors
in the set S. It remain to prove that T rejects all the output vectors which are not in S. For this, it
is sufficient to prove that for such vectors, the predictor P would fail on more than D− 1 sessions.
If P fails on less than D sessions, then there exists a advice string str using which all outputs could
have been predicted. But then this output vector would have been in set S. Hence, proved.

D Applications satisfying Bounded Pseudoentropy Condition

We begin by listing the applications in [Goy12] which satisfy the key technical property for different
values of D (Definition 2). We too give positive results for these by Lemma 1. Parts of the text
below has been taken verbatim from [Goy12]. Then we describe the applications of blind signatures
and verifiable random functions which satisfy the bounded pseudoentropy condition (BPC) but do
not satisfy the key technical property (KTP). Hence, these are some of the applications for which
we obtain the first positive result for concurrent composition.

Private Database search. In this scenario, the first (honest) party holds a database consisting
of k entries. The second (adversarial) party has a predicate g(·) as input and gets as output all
database entries on which this predicate evaluates to 1. [Goy12] show that the ideal world satisfies
the KTP for D = k + 1. If each entry of the database has γ bits, by proof of lemma 1, the ideal
world satisfies BPC for B = k · (log2 n+ kγ).

To give more intuition about BPC, below we show independently that the functionality de-
scribed satisfies BPC for B = kγ. Note that the total number of valid honest party inputs are
2kγ . Given the adversary’s input vector, for each possible honest party input i.e. for each possible
database with k entries, there is exactly one output for the adversary. Hence, the number of pos-
sible output vectors is at most the number of databases, i.e. |S| ≤ 2kγ . Algorithm T is also very
simple. Given an output vector ~O, it checks whether it is consistent for some database and in each
session, the database entries in the output vector satisfy the adversary’s input predicate.

In this work, we give a O(nε) round protocol (for any constant ε) in contrast with O(n3k2)
protocol by [Goy12] for this functionality. More precisely,



Theorem 4 Assume the existence the collision resistant hash functions and constant-round semi-
honest oblivious transfer. Then for any constant ε, there exists a O(nε) round real world protocol
which realizes the ideal world experiment for private database search functionality.

As also pointed out in [Goy12], several other problems of interest (such as private information
retrieval, pattern matching, etc) are instances of the general problem of private database search
discussed above. Arguments similar to those used for private database search can be used to show
that other problems such as secure set intersection, computing k-th ranked element, etc also satisfy
the bounded pseudoentropy condition.

Password Checking. Consider the following password checking functionality where a single
honest party might interact with several adversarial parties in an unbounded number of concurrent
sessions. The honest party holds a password p and the ideal functionality is such that if both
parties input the same password, it outputs 1 to the adversarial parties, otherwise it outputs ⊥.
[Goy12] showed that this functionality satisfies the key technical property for D = 2. By lemma 1,
it satisfies BPC for B = log2 n+ 1.

Another way of interpreting this bound is the following: Let the number of sessions be m and
let number of distinct inputs used by the adversary be m̃. Then the total number of possible output
vectors are at most m̃+ 1 because either none of the inputs match or exactly one of them matches.
Since there are only a polynomial number of sessions, B = log2 n+ 1 suffices. The algorithm T is
very simple. For any output vector, it would accept if the output is 1 corresponding to at most one
value of input, otherwise it rejects.

Bounded Concurrent MPC. Now consider the setting where there is an a-priori fixed bound
k on the total number of concurrent sessions in the ideal world (see, e.g., [Lin03a, PR03, Pas04]).
KTP is trivially satisfied for D = k + 1. Let γ be the length of output in any session. It is easy to
see that this ideal world satisfies BPC for B = kγ. The algorithm T is trivial and accepts all the
output vectors of length kγ.

D.1 Blind Signatures.

Next, we consider the application of blind signature introduced by [Cha82]. A blind signature
scheme BS is a tuple of algorithms (KeyGen, Sign,User,Verify). KeyGen is the key generation al-
gorithm using which the signer generates the signing key and the verification key as (sk, vk) ←
KeyGen(1n). If the user wants to obtain a signature on some message Msg, the user and the
signer engage in a signing protocol defined by algorithms Sign(sk) and User(Msg). The verification
algorithm Verify(Msg, σ, vk) outputs 1 is the signature σ is valid and 0 otherwise.

A blind signature scheme BS needs to satisfy blindness and unforgeability. BS satisfies blindness
if any PPT adversarial signer cannot distinguish between the executions of signing protocol for any
two distinct messages. BS satisfies unforgeability if any PPT adversarial user cannot output k + 1
valid message/signature pairs after interacting in k executions of the signing protocol.

Consider a signer with input sk and a user with input Msg to be signed. Then we can model
blind signature as a two party computation between the signer and the user for the circuit for
generating signatures. Note that the circuit will have the verification key vk hardcoded. At the
end of the protocol, the user outputs a valid signature σ if obtained or ⊥ otherwise. There is no



output of the signer, i.e. signer always outputs ⊥. Also, consider the standard simulation based
security definition.

The question whether concurrently secure protocol for blind signatures can be constructed as
per the ideal/real model simulation paradigm was open till now. Lindell [Lin08] showed that
any protocol that computes the blind signature in the plain model and remains secure for m
concurrent executions, where security is proven via black-box simulation, must have at least m
rounds of communication. This result motivated a number of results for concurrently secure blind
signatures either using set up assumptions like common reference string [Fis06, KZ06, Oka06],
random oracles [Bol03] or weaker notions of security (like game based security or synchronized
attacks) [Oka06, HKKL07, GRS+11, GG14].

The black box impossibility result by Lindell [Lin08] implies that non-black box techniques are
essential to get a concurrently secure protocol for blind signatures. In this work, we give a positive
result for concurrently secure blind signatures in the plain model using non-black-box simulation
techniques. In particular, we show the following

Theorem 2 (Restated) Assume the existence of collision resistant hash functions and constant-
round semi-honest oblivious transfer. Then for any constant ε, there exists a O(nε) round real world
protocol which realizes the ideal world for blind signature functionality.

We prove this theorem by using unique signatures as the underlying signature scheme and
showing that blind signatures satisfy the bounded pseudoentropy condition when the underlying
signature scheme is unique. We first define unique signatures introduced by Goldwasser and Ostro-
vsky [GO92]. A signature scheme is said to be unique if for each public key pk and each message
Msg, there exists at most one signature σ such that Verify(Msg, σ, vk) = 1. Note that the black-box
impossibility result of Lindell [Lin08] also holds for blind signature schemes with underlying unique
signatures.

Now we show that the blind signature scheme which uses unique signatures satisfies bounded
pseudoentropy condition. In particular, we show this for B = 0 and T algorithm which is same
as the verification algorithm Verify. Note that if the adversary is playing the role of the user, its
output is unique and is completely determined by its input Msg since vk is fixed by the function
being computed. If the adversary is playing the role of the signer, its output is always ⊥. Hence,
set S will contain only one output vector, which is information theoretically fixed by the adversary
inputs and the ideal world experiment, which fixes the verification keys for all the sessions. The
algorithm T works as follows: It accepts the output vector if the signatures, for the sessions where
the adversary is the user, verify under the corresponding public key and output is ⊥ for the sessions
where the adversary is the signer.

Finally note that blind signatures will not satisfy the key technical property. Consider the
case when the adversary is acting as the user in all the sessions. By the unforgeability property
of the scheme, any PPT predictor which receives k valid input/output (message/signature) pairs
cannot predict the signature on the next message by non-negligible probability. Also, note that blind
signatures will not satisfy the generalized key technical property discussed in the full version [Goy11]
for the same reason.



D.2 Verifiable Random Functions.

Verifiable random functions (VRFs) were introduced by Micali, Rabin, and Vadhan [MRV99]. They
combine the properties of pseudo-random functions with the verifiability property. Intuitively, they
are like a pseudo-random function with a public key and proofs. Parts of the following description
have been taken verbatim from [Lys02].

A function family F(·)(·) : {0, 1}n → {0, 1}n(k) is a verifiable random function (VRF) if there ex-
ist probabilistic algorithmG, and deterministic algorithms Eval and Prove, and algorithm Verify such
that G(1n) generates key pairs PK,SK; Eval(SK, x) computes the value y = FPK(x); Prove(SK, x)
computes a proof π that the value y = FPK(x), and Verify(PK, x, y, π) verifies that y = FPK(x)
using the proof π.

Additionally a VRF should satisfy the following properties: (1) Pseudo-randomness of FPK(x),
i.e. based purely on PK, oracle calls to FPK(·) and corresponding proof oracle, no PPT ad-
versary can distinguish the value FPK(x) from random without explicitly querying the oracle on
x. (2) Uniqueness, i.e. there do not exist values (PK, x, y1, y2, π1, π2) such that y1 6= y2 and
Verify(PK, x, y1, π1) = Verify(PK, x, y2, π2) = Accept.

VRFs are useful tools for protocol design. They can be viewed as a commitment to an expo-
nential number of random looking bits, which can be used in protocols. For example, it is shown
in [MR01] that using VRFs one can reduce the number of rounds for resettable zero-knowledge
proofs to 3 in the bare model. Another example application, due to [MR02], is a non-interactive
lottery system used in micro-payments.

Now consider the two party setting where one party has the secret key and other party wants
to compute the corresponding function FPK on input x of its choice. Output of the first party
is ⊥ and the second party party is y, π such that Verifiy(PK, x, y, π) = Accept. We view this as
two party computation of a circuit corresponding to FPK . We give a positive result for the ideal
world setting where unbounded number of such sessions may be running concurrently even with
interchangeable roles.

Theorem 3 (Restated) Assume the existence of collision resistant hash functions and constant-
round semi-honest oblivious transfer. Then for any constant ε, there exists a O(nε) round real world
protocol which realizes the ideal world experiment for verifiable random functions.

We prove this theorem by showing that VRFs satisfy the bounded pseudoentropy condition. In
particular, we show this for B = 0 and T algorithm same as verification algorithm Verify. Note
that if the adversary is playing the role of the second party, its output is unique and is completely
determined by its input x, since both Eval and Prove are deterministic algorithms for any PK. If
the adversary is playing the role of the first party, its output is always ⊥. Hence, set S will contain
only one output vector, which is information theoretically fixed by the adversary inputs and the
ideal world experiment. The algorithm T works as follows: It accepts the output vector if the
following holds: for the sessions where the adversary is the second party, the output should verify
under Verify and for the sessions where the adversary is the first party, the output is ⊥.

Finally, note that VRFs will not satisfy the key technical property. Consider the case when
the adversary is acting as the second party in all the sessions. A PPT predictor which succeeds in
predicting the output of FPK on x which was not queried before can be used to break the pseudo-
randomness property of FPK(·). Also, note that VRFs will not satisfy the generalized key technical
property discussed in the full version [Goy11] for the same reason.



E Security Analysis

E.1 Soundness and Argument of Knowledge

In this section, we prove the following theorem.

Theorem 5 The interactive argument system described in Section 3 is computationally sound. In
fact, the interactive argument system is also an argument of knowledge.

To prove this theorem we borrow ideas from [Goy13] but we face a couple of technical difficulties.
Intuitively, we need to argue that no PPT cheating prover P ∗ can commit to a code such that it
can output the challenge string r. This analysis was simpler in the earlier works [DGS09, Goy13]
because the output of the program was fixed by the program itself. This is certainly not true in our
case because we allow oracle queries of the type output(·) whose queries do not fix the responses
information theoretically. The main technical difficulty is how to handle these oracle queries since
the adversary can use these to pass non-trivial information to the program Π, which can help him
to predict the verifier challenge r. Our key idea is that there are only 2B valid response vectors for
any vector of such queries. Hence, the adversary can send at most B bits of additional information
to the program Π. This is the place where we crucially use the fact that only a bounded number
of outputs are accepted by the algorithm T .

Another difficulty is that the adversary P ∗ can choose the statement to prove adaptively and
does not declare it before the start of the protocol. Recall that the prover declares the statement
after all the slots and UAs have completed. Hence, our soundness experiment is also over the
coins of P ∗ which are used to define the statement x. The way we handle this issue is as follows:
Intuitively, we prove that no PPT cheating prover can come up with a convincing UA execution
irrespective of the statement x which it chooses. Now we use the soundness and argument of
knowledge property of WIAOK to conclude that if an honest verifier accepts, then P ∗ should have
committed to an actual witness to x ∈ L.

Finally, note that though the prover P and the verifier V are both PPT algorithms, we might
need super-polynomial time to check the validity of the statement x ∈ L. This means that we
cannot always check in polynomial time whether the soundness condition is violated by a malicious
prover. But still the event of a cheating prover breaking the soundness condition is well-defined.
Now we prove the above theorem in detail. Note that we prove this theorem for the 〈P, V 〉 protocol
which was defined w.r.t. to certain Λ, T and bound B. Parts of this proof have been taken verbatim
from [Goy13].
Proof. (of theorem 5) Recall that in the protocol, after receiving h from the verifier, the (possibly
malicious) prover sends z = com(h(Π)) where Π could be any arbitrary program. We first analyze
the probability of such a program being able to output the verifier random bit string r given
the input y1 ∈ {0, 1}|r|−B−n and access to the two kinds of oracle queries which are answered

using y2 ∈ {0, 1}≤n
log logn

and y3 ∈ {0, 1}≤n
log logn

as described in the specification of language
Λ. Now when Π is executed, there are a number of possibilities of the output depending upon
what the input y1 is and how the oracle queries are answered. For the decommitment queries of
the form decommit(str), which expect (r) in return such that str = com(r), by the unique opening
property of the commitment scheme com (See Appendix A), the answer to the query is information
theoretically fixed given the query itself. For any number of queries of the second kind, there can
be at most 2B possible valid vector of answers. Hence the input y1 along with responses to second
kind of queries information theoretically determine the output of Π. Hence, there are a total of



2|r|−n possible outputs of Π. Denote by X the set of these possible outputs. Now the probability of
a string r ∈R {0, 1}|r| being an element of this set is bounded by 2−n which is negligible in n. The
above argument still does not imply that (h, z, r) /∈ Λ since z(= com(h(Π))) does not information
theoretically fix the program Π.

Let P ∗ be a malicious prover which adaptively chooses statements x /∈ L and is still able to
successfully complete the protocol such that an honest verifier V outputs accept with a noticeable
probability. We can assume P ∗ is deterministic without loss of generality. Then, there must
exist indices i and j such the following happens with a noticeable probability ε: (a) P ∗ is able to
successfully complete the protocol such that an honest verifier V outputs accept, and, (b) upon
running extractor of the WIAOK system, we recover the transcript of the i-th universal argument
which was simulating the j-th slot. We denote this event by complete-(i,j). Thus, probability of
complete-(i,j) is ε. Note that this probability is taken over the coins of the entire experiment, i.e.
all the coins of P ∗ and V and, in particular, the coins used to define the NP-statement x.

Now we define prefix1 and prefix2 of the protocol as follows. Call prefix1 to be the point where
the prover has given a commitment z (i.e., has given the slot begin message) in the j-th slot and is
now expecting the verifier message r. Call prefix2 to be point where the prover has given the first
UA prover message of the i-th UA execution and is now expecting the verifier challenge.

Now it has to be the case that for atleast a fraction ε
2 of prefix1 executions, the probability

(over rest of the verifier random coins) that the event complete-(i,j) happens is atleast ε
2 . We call

such prefix1 executions as good1. Furthermore, conditioned on prefix1 being good1, at least for ε
4

fraction of prefix2 executions, the probability that the event complete-(i,j) happens is atleast ε
4 . We

call such prefix2 executions as good2.
Now the verifier executes in two phases as follows. In phase 1:

• The verifier honestly executes the full protocol with the prover and runs the extractor asso-
ciated with the WIAOK system.

• If the event complete-(i,j) happens, the verifier rewinds the adversarial prover to prefix2 (i.e.,
the point where the prover expects the UA challenge in the i-th UA execution). The verifier
aborts otherwise.

Note that due to rewinding to prefix2, the statement x being proven by P ∗ may change. But
the UA first message in i-th execution won’t change.

• Now the verifier starts an external verifier of the 3-round universal argument system. By this
point, the verifier has already extracted the opening of the commitment to the UA first prover
message received in the i-th UA execution with the prover (as part of the witness extracted
from the WIAOK system). The verifier forwards this UA first message to the external UA
verifier.

• The verifier receives the UA challenge from the external UA verifier and simply passes it on
to the prover.

• Now the verifier honestly completes the rest of the protocol with the prover and runs the
extractor associated with the WIAOK system. If the event complete-(i,j) happens again, the
verifier has extracted the last UA prover message (and aborts otherwise). It then forwards
this message to the external UA verifier.



• The probability of this entire phase 1 getting complete without aborting is at least Pr[prefix1 is good1]·
Pr[prefix2 is good2 | prefix1 is good1]·Pr[Event complete-(i, j) happens in two independent trials starting

from prefix2]. This comes out to be ε
2 ·
ε
4 ·
ε
4 ·
ε
4 which is ε4

128 .

• Now employing the weak knowledge extractor associated with the universal argument system
[BG02], we can extract the witness from the UA with probability at least p( ε4

128) where p is
a polynomial (recall that the probability of success of the extractor is polynomially related

to the probability of success of the prover). This is because ε4

128 is the probability with which
the external UA verifier gets a complete accepting UA execution. Thus, we have extracted a
machine Π such that the prover’s commitment z is a commitment to h(Π).

Now in phase 2 of the experiment, the verifier rewinds the execution to prefix1 and completes the
protocol execution honestly with fresh random coins (and in particular, giving a fresh challenge r
to complete the slot). Rest of this phase is identical to phase 1. If the event complete-(i,j) happens,
rewind the prover to prefix2, give the UA first message to the external UA verifier, get the UA
challenge and pass it on to the verifier. Now the verifier honestly completes the rest of the protocol
with the prover and if the event complete-(i,j) happens again, the verifier forwards the UA last
message to the external UA verifier. The knowledge extractor associated with the UA system is
again employed to recover the UA witness.

Note that conditioned on prefix1 being good1, phase 2 is completed without aborting with
probability at least ε

4 ·
ε
4 ·
ε
4 which is ε3

64 . Hence, with probability at least p( ε
3

64), we have extracted
another machine Π′ such the prover commitment z is a commitment to h(Π′)

Now observe that the fresh challenge r (in phase 2) was chosen by the verifier after it received
the program Π in phase 1. As argued in the previous paragraph, if XΠ is the set of all possible
outputs of Π, the probability that r ∈ XΠ is negligible. If phase 2 succeeds, the verifier has
obtained another program Π′. As argued before, except with negligible probability, Π could not
have predicted r and hence Π 6= Π′. However since h(Π) = h(Π′), we have obtained a collision in
the hash function. The probability of this event COLL can be computed as follows:

Pr[COLL] ≥ Pr[Phase 1 succeeds in extracting Π] · Pr[Phase 2 succeeds in extracting Π′]

−Pr[Π = Π′]

≥ p(
ε4

128
) · p( ε

3

64
)− negl(n)

which is still noticeable. This violates the collision resistance property of the function family
H.

This means that for every i, j, the probability of the event complete-(i,j) occurring is negligible.
This must mean that the extractor of the WIAOK instead outputs a witness for x ∈ L which was
committed in the NMCom phase. This proves soundness as well as argument of knowledge property.

Following lemma will be useful in proving the simulation soundness of 〈P, V 〉.

Lemma 2 For any PPT prover P ∗ running an execution of 〈P, V 〉 with an honest verifier such
that the verifier accepts, the following holds: The commitment given in the NMCom phase is a
valid commitment to a witness for x ∈ L, which is the statement being proved by P ∗, with all but
negligible probability.



Proof. This lemma follows by soundness and argument of knowledge property of WIAOK. As
shown above, the probability that the extractor of WIAOK outputs a transcripts of an accepting
UA is negligible for any PPT P ∗. Hence, the extractor always outputs a witness for x ∈ L which
was committed in the NMCom phase. This proves the lemma.

E.2 Description of the Simulator

Let there be k parties in the system where different pairs of parties are involved in one or more
sessions of 〈P, V 〉, such that the total number of sessions is polynomial in the security parameter n.
A party might be playing the role of the prover in one session and the role of the verifier in other
session, i.e. we are in the setting of interchangeable roles. Let A be an adversary who controls an
arbitrary number of parties. For simplicity of exposition, we will assume that exactly one party is
corrupted in each session. We note that if the real and ideal distributions are indistinguishable for
this case, then by using standard techniques we can easily remove this assumption.

Below we describe a simulator for zero-knowledge which works for any given language Λ. In
particular, it works any given algorithm T and bound B (see Figure 1). Since we are in the case
when only zero-knowledge protocols are running concurrently, there are no calls to the trusted party
in the ideal world and the adversary is not getting any non-trivial information in the ideal world.
In other words, no additional information needs to be communicated to the adversary. Looking
ahead, our simulator will not make any queries of the type output(·). Thus, our simulator trivially
works for all possible languages Λ.

Furthermore, let nc be the total number of messages across all concurrent sessions. Let Mark()
be the marking strategy, the combinatorial module used to mark a UA prover message as blank
or simulate when the prover is honest as defined in [Goy13] (see Section 4 in [Goy13]). Note
that this procedure also describes how to pick a slot for simulation for a UA which is marked
simulate . [Goy13] showed that this marking strategy picks at least one UA in each session for
simulation (coverage property) and the slots are picked for simulation such that the simulator runs
in polynomial time. We refer the reader to [Goy13] for more details. For describing our simulator,
we borrow ideas from [Goy13] and parts of the following description has been taken verbatim from
[Goy13].

Description of S. As in [Goy13], the simulator will be divided into two parts: one referred to
as the Oracle, and, the other referred to as the next message machine (or NMM in short). Recall
that the entire transcript has exactly nc messages. We assume that the random tape of the NMM
is divided into nc strings of equal lengths (a pseudo-random generator may be applied on a string
to expand it, if required). The i-th string will be used as randomness to generate the i-th message
of the transcript (or verify the i-th message in case it is an incoming message). Denote these string
by s1, . . . , snc .

As the first step, the Oracle generates these strings and produces nc commitments to these
strings denoted by C1, . . . , Cnc . The strings as well as the randomnesses used to generate these
commitments are retained by the Oracle while the commitments themselves are given to the NMM
(which then stores these commitments). Denote by C = (C1, . . . , Cnc). The combinatorial module
Mark() which is used to mark a UA prover message of an honest party either blank or simulate is
a part of the NMM and has its own random tape s. The string s is generated and stored by the
NMM.



Throughout the simulation, the NMM will not have the randomness required to compute the
next message. This critical missing information is stored by the Oracle. To compute the next
outgoing message, the NMM may access the Oracle through a clearly defined interface: make a call
to the oracle by producing a query of the form decommit(str) and expecting (r) such that str =
com(r) in return. Hence, the NMM slowly learns the required random tapes and the associated
decommitment information as we proceed in the simulation.

The intuition behind such a separation of the simulator into two parts will only be clear once
we go through the hybrid experiments. However, following is a rough justification. To complete the
simulation, the simulator will be required to commit to a machine which can predict the challenge
r of the adversary. One option is to just commit to the entire state of the simulator (and the
adversary) as the machine. However, if all the randomness for all the messages is committed, the
changes to various messages required as part of the hybrid argument seem difficult to perform.
To solve this issue, we commit to a machine which does not have these random tapes for the
future messages. This machine can still regenerate the required transcript with the help of an
external Oracle. The next message machine NMM represents the part of the simulator that will be
committed as the machine while the Oracle represents the external uncommitted information that
will be available to this machine while trying to regenerate the transcript.

The NMM handles each outgoing message as described below. In each of these steps, the ran-
domness required by the NMM is taken from the string si (assuming that the message will be the
i-th message exchanged between the adversary and the NMM). Indeed, the NMM does not have
the required string si but only a commitment ci to it. To get si, it just queries the Oracle with ci.

Prover Messages:

1. The slot begin message z: The NMM defines a machine Π which simply consists of all
the information the NMM has as part of its own state plus the current state of the adversary.
However, the machine Π does not have the information that the Oracle stores (which is not yet
learnt by the NMM). The NMM then computes z = com(h(Π)) and sends z to the adversary.

2. A UA message marked blank : The NMM runs the combinatorial module to see if the UA
message is marked blank . If so, the NMM simply generates a random string of appropriate
size and sends a commitment to that string to the adversary.

3. A UA message marked simulate : If the combinatorial module marks a UA prover message
as simulate , the NMM proceeds as follows. If it is a UA first message, the NMM constructs a
witness for the statement (h, z, r) ∈ Λ and uses that to compute the UA first message (details
of how the witness is constructed is given later on). The NMM now commits to the resulting
UA first message. The resulting UA first message and the opening to the commitment are
now stored by the NMM.

Note that the NMM does not store any other intermediate information resulting from this
step. In particular, it discards the witness and other information required to compute the
UA first message (such as the PCP). This is done to ensure that the state of the NMM (and
hence the machine Π it commits to when a slot begins) is bounded by a fixed polynomial.
This is crucial to keep the simulation polynomial time.

If the message is a last UA prover message such that the corresponding UA first message
was also marked simulate , then the NMM again reconstructs the witness for the appropriate



statement (h, z, r) ∈ Λ, reconstructs the UA first message, and then, computes the UA last
message depending upon the UA challenge given by the adversary. Now the NMM computes
a commitment to this UA last message and sends it to the adversary. The computed message
and the opening to the commitment are again stored by the NMM. Note that, as earlier, the
NMM discards any intermediate information computed in this step.

If the message is a UA last message where the UA first message was marked blank , the NMM
simply generates a random string of appropriate size and sends a commitment to that string
to the adversary.

4. Non-Malleable Commitment: The NMM commits to an all zero string (instead of an
actual witness to x) using the non-malleable commitment scheme NMCom and the identity
of the honest prover.

5. Witness-indistinguishable argument of knowledge: The NMM uses a witness to the
statement: “there exists i such that the i-th UA execution was convincing”. By the coverage
property of the marking strategy, before we reach the WI stage of a session, there must exist
an i such that both the UA first and last messages were marked simulate except with negligible
probability (if this doesn’t happen, the simulation is aborted). This means that for that i,
the NMM must have computed the UA first and last message such that the UA execution
becomes convincing. A witness to this statement is simply the openings to the commitments
to the UA first and last messages, which is a part of the state of the NMM.

Observe that, by the properties of the UA system, the computation required in this step is
similar for each session and, in particular, does not “grow” as the simulation proceeds (since
it depends only on the computational complexity of the UA verifier and not on that of the
UA prover).

Constructing the witness. Now we show that for any universal argument which is selected for
simulation, there exists a witness for the statement (h, z, r) ∈ Λ. This can be seen by construction
of the NMM and the Oracle. We observe the following:

• Consider the point till which the NMM had generated the message z in the transcript. From
this point onwards, the NMM, given only queries to the Oracle and access to A, was able
to continue generating the transcript and arrive at the challenge r. Thus, the machine Π
can perform the same execution since it starts from the same internal state assuming it gets
access to the same Oracle query responses as well.

• Now consider the point when the first UA message is due which is marked simulate . Let
the index of the challenge message r, for the slot picked for simulation, in the transcript be
j and set y1 = j. Note that |y1| is O(log n) and hence, |y1| ≤ |r| − n − B. Furthermore, let
y2 contain all the Oracle queries the NMM made while going from the message z to r (both
inclusive) and the corresponding oracle responses. Now observe that any Oracle queries Π
makes (before it outputs r) can be answered using y2. This is because its execution would be
identical to that of the NMM. Also note that our simulator for zero-knowledge will not make
any oracles calls of kind output(·).

• Now the witness simply consists of Π, y1, y2, and, the opening of the commitment z. The
NMM already has all of these as part of its internal state by the time it reaches r (and in



particular, by the time the first UA message is due). Thus, the NMM has computed the
witness required to complete the universal argument.

Verifier Messages: NMM generates all the honest verifier messages using honest strategy with
a small modification. It generates the honest verifier challenges by applying a suitably expanding
pseudorandom generator to the randomness given for the message.

E.3 Indistinguishability of Views and Simulation Soundness

Informally speaking, in this section we will prove the following two properties for our simulation.

Indistinguishability of Views. For any PPT adversary A (described above), the real and the
simulated executions are computationally indistinguishable.

Simulation Soundness. Each proof given by the adversary A is sound even if it is receiving one
or more simulated proofs.

In this section, we borrow ideas from [GGJS12, Goy13]. In fact, parts of the text has been
taken verbatim from [GGJS11] or [Goy13].

We consider two experiments HReal and HIdeal, where HReal corresponds to the real concur-
rent executions of 〈P, V 〉 while HIdeal corresponds to the simulated executions, as described above
(Section E.2).

Experiment HReal: The simulator S is given the witnesses for all the sessions with honest prover
and adversarial verifier. It interacts with the adversary following the honest party strategies in all
the sessions. The output of the hybrid corresponds to the view of the adversary A and the outputs
of the honest verifiers.

Experiment HIdeal: S simulates all the sessions without the witnesses of the honest provers (in
the same manner as explained in the description of S in Section E.2) and outputs the view of A.
Again the output of the hybrid corresponds to the view of the adversary A and the outputs of the
honest verifiers.

Let νi be a random variable that represents the output of Hi. We now claim that the output
distributions of HReal and HIdeal are indistinguishable, as stated below:

Lemma 3 νReal
c≡ νIdeal

We will prove this lemma using a carefully designed series of intermediate hybrid experiments.
More details are given below.

Soundness Invariant. While proving the indistinguishability of the outputs of our hybrid ex-
periments, we will also argue that in each session where A acts as the prover, the commitment in
the nmcom phase is a valid commitment to the witness w for the statement x being proven. We
refer to this as the soundness condition.

Let the number of sessions where the adversary acts as the prover be m. We denote by
〈P, V 〉`A→H the `th instance of 〈P, V 〉, where A is the prover. Let π`A denote the statement being



proven in 〈P, V 〉`A→H . Let ρ` denote value committed in nmcom phase in 〈P, V 〉`A→H . Note that
the soundness condition “holds” if we prove that in each session ` ∈ [m], A commits to a valid
witness to the statement π`A, i.e. ρ` is a valid witness to π`A.

Now, before we proceed to the description of our hybrids, we claim that the soundness condition
holds in the real execution. We will later argue that the soundness condition still holds as we move
from one hybrid to another. We call this soundness invariant.

Lemma 4 Let 〈P, V 〉`A→H and π`A be as described above corresponding to the real execution. Then,
for each session ` ∈ [m], if the honest verifier accepts 〈P, V 〉`A→H , then ρ` is a valid commitment
to a witness of π`A except with negligible probability.

The above lemma immediately follows the lemma 2 for the stand alone setting (Section E.1).

Lemma 5 Let 〈P, V 〉`A→H and π`A be as described above corresponding to the simulated execution
in HIdeal. Then, for each session ` ∈ [m], if the honest verifier accepts 〈P, V 〉`A→H , then ρ` is a
valid commitment to a witness of π`A except with negligible probability.

Note that this lemma implies simulation soundness. We will prove this lemma using a carefully
designed series of hybrids.

E.3.1 Getting Started

We will prove Lemma 3 and Lemma 5 by contradiction. Suppose that the hybrids HReal and HIdeal

are distinguishable in polynomial time, i.e., there exists a ppt distinguisher D that can distinguish
between the two hybrids with non-negligible probability. We will now consider a series of hybrid
experiments Hfirst followed by Hi:j , where i ∈ [nc], and j ∈ [4] and Hlast. For each intermediate
hybrid Hk, we define a random variable νk that represents the view of A in Hk.

Below, we show that no PPT distinguisher can distinguish between any two consecutive hy-
brids, which will establish (via the hybrid arguments) that no polynomial time distinguisher can
distinguish between νReal and νIdeal with a non-negligible probability, which is a contradiction. Ad-
ditionally, we will prove that soundness invariant holds in the current hybrid assuming that it holds
in the previous hybrid. This will prove lemma 5.

Proving lemma 5 is the main non-trivial part of this section. We need to ensure that as we
change the proofs given to the adversary from being correct (using the witness) to simulated, the
adversary continues to commit to the actual witness to the statement being proven. This requires
certain “non-malleability” from the 〈P, V 〉 protocol. For this, we will rely on the k-robustness and
non-malleability of the commitment scheme NMCom. More intuition about the proof is given later.

In the rest of the section, we will denote by 〈P, V 〉H→A the instances where an honest prover is
giving a proof to A and by 〈P, V 〉A→H the instances where adversary is proving statements of his
choice to honest verifier.

E.4 Description of the Hybrids

We describe the hybrids Hfirst, Hi:j for i ∈ [nc] and j ∈ [4] and Hlast below:



Experiment Hfirst: In this experiment, the simulator is divided into the Oracle and the next
message machine (NMM). The Oracle generates the strings s1, . . . , snc , computes the commitments
C = (C1, . . . , Cnc) and gives C to the NMM. The oracle also has the witnesses for all the sessions
with honest provers and adversarial verifiers and computes cwi = com(wiH) as commitment of
witness in i-th session. It gives Cw = (cw1 , cw2 , . . . , cwm) to NMM, where m are the number of
sessions with honest provers. In addition, the NMM generates randomness s required to run the
combinatorial module. To compute the next message, the NMM queries the Oracle to get the
appropriate random string and honest party witness for that session (if required) and computes
the required message behaving honestly. Furthermore, the NMM runs the combinatorial module
(using the random tape s) and internally marks each UA message either simulate or blank . The
only change between this hybrid and HReal is that the NMM uses a PRG to generate the verifier
challenge strings in all sessions of 〈P, V 〉A→H . We claim that

νReal
c≡ νfirst (1)

∀` ρ`Real
c≡ ρ`first (2)

Proving Equation 1. To prove this, we will consider another sequence of hybrids, in which we
change the honest verifier challenges one by one from being random to pseudorandom. Let HReal:1

be HReal. For 1 ≤ j ≤ p, where p are the total number of honest verifier challenge messages,
consider two consecutive hybrids HReal:j and HReal:(j+1) such that first (j − 1) verifier challenges
are pseudorandom in both HReal:j and HReal:(j+1), and the jth verifier challenge in the transcript is
random in HReal:j and pseudorandom in HReal:(j+1). Rest all verifier challenges will be random in
both HReal:j and HReal:(j+1). Now, this j-th verifier challenge will not be generated by the NMM.
Instead, it will be given to it externally. Moreover, the NMM will not receive any randomness
for this message from the oracle. The indistinguishability of νReal:j and νReal:(j+1) will hold by the
security of the PRG. Equation 1 holds by a standard hybrid argument.

Proving Equation 2. LetHReal:j andHReal:(j+1) be as above. Let us assume there exists a ` such that

ρ`Real:j and ρ`Real:(j+1) are distinguishable by a PPT distinguisher D. We will create a standalone
machine M∗ that is identical to HReal:j , except that it takes this verifier challenge externally from
B and forwards it to A. Additionally, M∗ exposes the NMCom inside 〈P, V 〉`A→H to an external
receiver R. If B sends a random string, then (B,M∗, R) system is identical to HReal:j . On the other
hand, if B sends a pseudorandom string, then (B,M∗, R) system is identical to HReal:(j+1). Since
only one message is changing on the left, by security of PRG and the k-robustness of NMCom, the
value committed by M∗ to R is indistinguishable in two cases. Equation 2 holds by a standard
hybrid argument.

Intuition behind rest of the proof. Next, we shall consider nc sets of intermediate hybrid
experiments Hi:1,Hi:2,Hi:3,Hi:4 for i ∈ [nc]. For each of the hybrids, we will prove that the view
of A in the current hybrid is indistinguishable from the previous hybrid. We will also prove that
the soundness condition holds in the current hybrid assuming that it holds in the previous hybrid.

Intuition behind indistinguishability proof. The basic problem we deal with in these hybrid
experiments occurs because of non-black-box simulation. We are using some cryptographic primi-
tives in our protocol such as commitment schemes com and NMCom (providing hiding property)



and a WIAOK system. We would go through the hybrids by changing what we commit to (and
then rely on the hiding property of the commitment scheme) and by changing the witness we use
in the WIAOK system (rely on the witness indistinguishability).

Now, say that the NMM starts using the opening of the commitment Ci (to the string si) while
either preparing the machine it commits to (as part of the slot begin message), or, while completing
a simulated universal argument. Then, if a primitive is executed using randomness si, we note that
its security properties (which we rely on), may no longer hold. For example, if the commitment is
prepared using randomness si, we can no longer rely on the hiding property of this commitment.

To solve this problem, we shall move forward in the transcript and make changes in a sequential
manner. When we are in the i-th set of hybrids, we will maintain the following invariants: (a)
the NMM will only use the opening of the commitments Cj for j < i, and, (b) from this hybrid
onwards, we will only change messages indexed i and higher. We must have already made all the
required changes in messages before the i-th message.

Intuition behind soundness invariant proof. To argue the soundness of the current hybrid
assuming the soundness condition for the previous hybrid, we will rely on the k-robustness of
NMCom (Appendix A.6). In each hybrid, we change at most k messages in a session on the left
(i.e. a session with honest prover) amd argue that the value inside the non-malleable commitment
given by the adversary cannot change. In a hybrid where we change a non-malleable commitment
on the left, we will rely on the non-malleability of NMCom with respect to itself.

Define H0:4 to be the same as Hfirst.

Experiment Hi:1: This experiment is identical to the previous one except in how the message
with index i in the transcript is handled by the simulator. In this hybrid, if the i-th message is a
slot begin message z, the NMM works as follows. Instead of committing to h(0), the NMM now
constructs a machine Π (which consists of the internal state of NMM and that of the adversary),
computes the commitment z = com(h(Π); si) using the appropriate randomness si and sends it to
the adversary.

We now claim that,

νi−1:4
c≡ νi:1 (3)

∀` ρ`i−1:4
c≡ ρ`i:1 (4)

Proving Equations 3 and 4. We claim that these hold by the (computational) hiding property of
the commitment scheme com and k-robustness of NMCom. The only reason it is non-trivial is that
the string C contains a commitment Ci to the randomness si required to produce the commitment
z. However, we argue that the opening to the commitment Ci is not used by the NMM in any non-
trivial way in the interaction with the adversary and hence, the commitment generated by using si
as randomness is semantically secure. We show this via a sequence of intermediate hybrids.

Experiment Hi:1:1: This is identical to Hi:1 except that the Oracle, upon receiving a query str,
only returns value s.t. str = com(value; r) if str = Cj for j ≥ i. Even given access to such a modified



Oracle, the NMM could produce a transcript which is identically distributed. We claim that

νi:1
s≡ νi:1:1 (5)

∀` ρ`i:1
c≡ ρ`i:1:1 (6)

Proving Equation 5. The openings given by the Oracle to the NMM are used by NMM only to
either construct a witness for a simulated UA, or, to commit to a machine Π (because openings are
part of the state of NMM) when a slot begins. However, there is no simulated UA or a commitment
to a machine after the message i of the transcript in this experiment. Thus, for a message j ≥ i,
the NMM is not using the opening of the commitment Cj in any way in the experiment. Note that
here too the NMM generates the commitment z = com(h(Π); si).

Proving Equation 6. Let us assume that equation 6 is false. That is, ∃` ∈ [m] such that ρ`i:1 and ρ`i:1:1

are distinguishable by a probabilistic polynomial time (PPT) distinguisher. In this case, we can
create an unbounded adversary that extracts the value contained in the non-malleable commitment
and is then able to distinguish between the view of A in Hi:1 and Hi:1:1, which is a contradiction
by equation 5.

Experiment Hi:1:2: This is same as Hi:1:1 except that we change the commitment Ci to be
com(s′i) such that s′i is chosen independently. The oracle is identical to the previous one except on
query str = Ci, it responds with si defined before. We claim that

νi:1:1
c≡ νi:1:2 (7)

∀` ρ`i:1:1
c≡ ρ`i:1:2 (8)

Proving Equations 7 and 8. The first equation holds by the hiding property of com and the second

equation holds by k-robustness of NMCom.
We consider similar experiments Hi−1:4:1 and Hi−1:4:2 corresponding to Hi−1:4 where the NMM

generates the commitment z = com(0; si). We describe them in detail below.

Experiment Hi−1:4:1: This is identical to Hi−1:4 except that the Oracle, upon receiving a query
str, only returns value s.t. str = com(value; r) if str = Cj for j ≥ i. Even given access to such a
modified Oracle, the NMM could produce a transcript which is identically distributed to that in
Hi−1:4. We claim that

νi−1:4
s≡ νi−1:4:1 (9)

∀` ρ`i−1:4
c≡ ρ`i−1:4:1 (10)

Proving Equations 9 and 10. The proof is exactly same as the proof for equations 5 and 6.

Experiment Hi−1:4:2: This is same as Hi−1:4:1 except that we change the commitment Ci to be
com(s′i) such that s′i is chosen independently. The oracle is identical to the previous one except on
query str = Ci, it responds with si defined before. We claim that

νi−1:4:1
c≡ νi−1:4:2 (11)

∀` ρ`i−1:4:1
c≡ ρ`i−1:4:2 (12)



Proving Equations 11 and 12. The proof is exactly same as the proof for equations 7 and 8.

Note that to prove equations 3 and 4 it is sufficient to prove the following:

νi−1:4:2
c≡ νi:1:2 (13)

∀` ρ`i−1:4:2
c≡ ρ`i:1:2 (14)

Proving Equation 13. Note that in experiments Hi−1:4:2 and Hi:1:2, no information is revealed about
the string si, which is used as randomness to generate the commitment z. Now NMM instead of
generating the message z itself by querying the oracle for Ci, takes the message z externally under
randomness si and does not make any query for Ci. If it receives a commitment to h(0) then the
experiment is identical to Hi−1:4:2. If it receives a commitment to h(Π), then the experiment is
identical to Hi:1:2. Since si is semantically secure, any commitment using si as randomness is also
semantically secure. Thus, the experiments Hi−1:4:2 and Hi:1:2 are computationally close. Hence,
the view of the adversary in experiments Hi−1:4 and Hi:1 is computationally close.

Proving Equation 14. It holds by the semantic security of commitment z and the k-robustness of
NMCom. More precisely, let us first assume that the claim is false, i.e., ∃` ∈ [m] such that ρ`i−1:4:2

and ρ`i:1:2 are distinguishable by a PPT distinguisher D. We will create a standalone machine M∗

that is identical to Hi−1:4:2, except that instead of simply committing to h(0) using com, M∗ takes
this commitment from an external sender B and “forwards” it internally to A. Additionally, M∗

“exposes” the NMCom in 〈P, V 〉`A→H to an external receiver R. This is feasible because we chose η
to be more than communication complexity of receiver in NMCom plus the length of commitment
z. Hence, both the receiver messages in NMCom and commitment z can be given externally to
NMM.

Let us describe the interaction between M∗ and B in more detail. M∗ first sends the program Π
to B. Now, when B sends the message z, M∗ forwards this message to A. Note that if B commits
to h(0) in the com execution, then the (B,M∗, R) system is identical to Hi−1:4:2. On the other
hand, if B commits to the program h(Π), then the (B,M∗, R) system is equivalent to Hi:1:2. From
the k-robustness of NMCom and hiding property of com, we establish that the value committed by
M∗ to R must be computationally indistinguishable in both cases.

Experiment Hi:2: This experiment is identical to the previous one except how the message with
index i in the transcript is handled by the simulator. In this hybrid, if the i-th message is a UA
message which is marked simulate , the way the NMM handles this message is identical to the final
NMM (described earlier in Section E.2). In particular, the NMM starts using the witness guaranteed
by the construction of Π for computing this UA message (as opposed to just committing to random
strings). The intermediate information resulting from this step is discarded (as described earlier).
We now claim that,

νi:1
c≡ νi:2 (15)

∀` ρ`i:1
c≡ ρ`i:2 (16)

Proving Equation 15. This relies on the computational hiding property of the commitment scheme
com using which the UA message is committed and is very similar to the previous indistinguisha-
bility proof. The difference between this hybrid and the previous one is only in the computation
of the i-th message (in case it is a UA prover message marked as simulate ). However, similar to



the previous indistinguishability argument, we can argue that the randomness used to compute the
commitment to this UA prover message is not used by the NMM in anyway in the interaction with
the adversary.

Proving Equation 16. After we prove that the randomness used to compute this commitment is not
used by NMM anywhere, this equation follows by the hiding property of com and k-robustness of
NMCom in a way very similar to the proof of equation 4.

Experiment Hi:3: This experiment is identical to the previous one except that now in all the
sessions in which the preamble phase of 〈P, V 〉H→A has completed up to (and including) the i-
th message of the transcript, the NMM starts using the alternative witness (the opening to the
simulated UA messages) to complete the WIAOK. For any such session, up to (and including)
the i-th message of the transcript, there exists a UA both of whose prover messages are marked
simulate . The NMM now starts using the openings of these UA messages as the witness to complete
the WIAOK execution. Note that there can be at most one session, in which the preamble phase
of 〈P, V 〉H→A has completed up to (and including) the i-th message of the transcript and not
completed upto (and including) the (i − 1)th message of the transcript. That is there is only
session where we are changing the witness in WIAOK compared to the previous hybrid. We now
claim that,

νi:2
c≡ νi:3 (17)

∀` ρ`i:2
c≡ ρ`i:3 (18)

Proving Equation 17. This is very similar to the previous proof of indistinguishability. The only
changes made in this hybrid occur after the message with index i in the transcript. However, as
argued earlier, we can prove that the random strings used to compute the prover messages in wiaok
are still semantically secure. Then we can use an external prover to generate the messages of this
wiaok and give these as input to NMM. This can be done since η is chosen to be more than the
length of prover messages in wiaok. Hence, the string y1 can include these messages from external
prover of wiaok. The claim follows by the witness indistinguishability of the wiaok protocol.

Proving Equation 18. This is very similar to the proof of soundness condition in previous hybrids.
Once we have proved that the randomness used to generate these prover messages of wiaok are
semantically secure, this equation follows by witness indistinguishability of the wiaok protocol and
k-robustness of NMCom. Since η is chosen to be greater than the communication complexity of
prover messages of wiaok and receiver messages of NMCom, we can take the prover messages of
wiaok externally and expose any of the commitments under NMCom given by the adversary to
an external receiver R as above. Also, since k is chosen to be greater than 3, which is the round
complexity of wiaok, the indistinguishability of values committed by A follows by WI property of
wiaok and k-robustness of NMCom.

Experiment Hi:4: This experiment in identical to the previous one except that now in all the
sessions in which the preamble phase of 〈P, V 〉H→A has completed up to (and including) the i-th
message of the transcript, the NMM instead of committing to actual witness in nmcom phase,
starts committing to an all zero string. Note that, as argued above, there is only one session where
we are changing the value committed by NMCom compared to the previous hybrid. We now claim



that,

νi:3
c≡ νi:4 (19)

∀` ρ`i:3
c≡ ρ`i:4 (20)

Proving Equation 19. This is very similar to the previous proof of indistinguishability. The only
changes made in this hybrid occur after the message with index i in the interaction transcript.
However, as argued earlier, we can prove that the random strings used to compute this commitment
are still semantically secure. Next, we can provide this commitment externally to the NMM since
we set η more than the sender communication complexity of NMCom. The claim follows by the
hiding property of NMCom.

Proving Equation 20. Once we have proved that the randomness used to generate these sender mes-
sages of NMCom are semantically secure, this equation follows by the non-malleability of NMCom
w.r.t. itself. More precisely, let us assume that ∃` ∈ [m] such that ρ`i:3 and ρ`i:4 are distinguishable
by a PPT distinguisher D. We will create a standalone machine M∗ that is identical to Hi:3, except
that instead of simply committing to witness using NMCom in 〈P, V 〉H→A, M∗ takes this commit-
ment from an external sender B and “forwards” it internally to A. Additionally, M∗ “exposes”
the NMCom in 〈P, V 〉`A→H to an external receiver R. This can be done since η is chosen to be
greater than the communication complexity of sender messages of NMCom plus the communication
complexity of receiver messages of NMCom. Let us describe the interaction between M∗ and B in
more detail. M∗ first sends the witness w to B. Now, when B starts the execution of NMCom in
〈P, V 〉H→A, M∗ forwards the messages from B to A; the responses from A are forwarded externally
to B. Note that if B commits to the witness, then the (B,M∗, R) system is identical to Hi:3. On
the other hand, if B commits to a string of all zeros, then the (B,M∗, R) system is equivalent to
Hi:4. From the non-malleability property of NMCom, we establish that the value committed by M∗

to R must be computationally indistinguishable in both cases.

This way we create the hybrids up to Hnc:4. Note that in this last hybrid, NMM does not use
the honest prover witnesses to generate any message. Hence, it does not query the oracle with the
decommitment for any cwi . So in the final hybrid, we remove the honest prover witnesses from the
oracle. Intuitively, this is possible since oracle is the external uncommitted part of the simulator.

Experiment Hlast: This hybrid is same as Hnc:4 except that now the oracle generates cwi differ-
ently. For each i, it picks a sufficiently long string ri and computes cwi = com(ri) and gives these
commitments to NMM. We claim that

νnc:4
c≡ νlast (21)

∀` ρ`nc:4
c≡ ρ`last (22)

Proving Equation 21. Since NMM in Hnc:4 never queries the oracle for decommitments of any
cwi , the transcript in this hybrid is computationally indistinguishable from the previous hybrid by
security of com.

Proving Equation 20. To prove this we can consider a sequence of intermediate hybrids where we
change the commitments cwi one by one. The computational indistinguishability of ρ` between



any two such consecutive hybrids will follow by the hiding property of com and k-robustness of
NMCom.

Note that Hlast is same as HIdeal. Hence, we have proved that νReal
c≡ νIdeal and that the

soundness of all the proofs given by the adversary holds in HIdeal.

F Description of the Simulator

Let there be k parties in the system where different pairs of parties are involved in one or more
sessions of Σ, such that the total number of sessions m is polynomial in the security parameter
n. A party might be playing the role of P1 in one session and P2 in other session, i.e. we are in
the setting of interchangeable roles. Let A be an adversary who controls an arbitrary number of
parties. For simplicity of exposition, we will assume that exactly one party is corrupted in each
session. We note that if the real and ideal distributions are indistinguishable for this case, then by
using standard techniques we can easily remove this assumption. Now we first fix some notation.

Notation. In the sequel, for any session i ∈ [m], we will use the notation H to denote the honest
party and A to denote the corrupted party. Let 〈P, V 〉H→A denote an instance of 〈P, V 〉 where
H plays the role of the prover and A plays the role of the verifier. Similarly, let 〈Pwi, Vwi〉H→A
denote an instance of 〈Pwi, Vwi〉 where H and A plays the roles of prover and verifier respectively.
Now, recall that the prover in 〈P, V 〉 sends a non-malleable commitment to the other party. We
will denote it by comH→A when H plays the role of the committer. Further, we define 〈P, V 〉A→H ,
〈Pwi, Vwi〉A→H , comA→H in the same manner as above, with the roles of H and A are interchanged.
Also, let xA and rA denote the input and random coins, respectively, of A (to be used in the final
secure computation phase).

Furthermore, let nc be the total number of messages across all concurrent sessions. Let Mark()
be the marking strategy, the combinatorial module used to mark a UA prover message of an honest
party as blank or simulate as defined in [Goy13]. Note that this procedure also describes how to
pick a slot for simulation for a UA which is marked simulate . [Goy13] showed that this marking
strategy picks at least one UA in each session for simulation (coverage property) and the slots
are picked for simulation such that the simulator runs in polynomial time. We refer the reader to
[Goy13] for more details.

New Ideas. The description of the simulator builds upon the simulator of the simulation sound
non-black-box concurrent zero-knowledge in Section E.2, but we face some technical difficulties.
Unlike the adversary of zero-knowledge, the adversary in MPC learns outputs from the trusted
functionality. In other words, there is additional information which needs to be communicated to
the adversary during simulation. To handle this issue we crucially use the fact that the ideal world
experiment satisfies the bounded pseudoentropy condition and hence there are at most 2B output
vectors which would be accepted by the algorithm T in language Λ. Another crucial point to note
is that by the time the simulator needs to recreate the transcript of a slot (while computing the
messages of a simulated UA), the outputs learnt by the adversary in that part of execution are
already known to the simulator. Hence, it can use the oracle queries of the form output(·) to give
this crucial information, i.e. the outputs, to the machine which it committed to earlier.

Parts of the following description have been taken verbatim from [Goy13, GGJS11].



Description of S. As in [Goy13], the simulator will be divided into two parts: one referred to as
the Oracle, and, the other referred to as the next message machine (or NMM in short). We assume
that the random tape of the NMM is divided into nc strings of equal lengths (a pseudo-random
generator may be applied on a string to expand it if required). The i-th string will be used as
randomness to generate the i-th message of the transcript (or verify the i-th message in case it is
an incoming message). Denote these string by s1, . . . , snc .

As the first step, the Oracle generates these strings and produces nc commitments to these
strings denoted as C1, . . . , Cnc . The strings as well as the randomnesses used to generate these
commitments are retained by the Oracle while the commitments themselves are given to the NMM
(which then stores these commitments). Denote by C = (C1, . . . , Cnc). The combinatorial module
Mark(), which is used to mark a UA prover message given to the adversary either blank or simulate
, is part of the NMM and has its own random tape s. The string s is generated and stored by the
NMM.

Throughout the simulation, the NMM will not have the randomness required to compute the
next message. This critical missing information is stored by the Oracle. To compute the next
outgoing message, the NMM may access the Oracle through a clearly defined interface: make
a call to the oracle by producing a query of the form str and expecting (r) with str = com(r) in
return. Hence, the NMM slowly learns the required random tapes and the associated decommitment
information as we proceed in the simulation.

The reason behind such a separation of the simulator into two parts is exactly same as the one
in simulation-sound concurrent zero-knowledge (Section E.2).

Furthermore, just like any other MPC simulator, S will make output queries to the trusted
functionality to get the output in each session by providing the input used by the adversary in that
session. Looking ahead, such queries will also be made by the machine committed as the non-black
box witness. These will be formulated as the oracle queries of the form output(·) defined in the
language Λ (Figure 1). Also note that our simulator will already know these outputs which need
to be provided in a simulated slot by the time it has to generate the witness for any simulated UA
using that slot.

Now we describe our simulator in detail. The NMM handles each outgoing message as described
below. In each of these steps, the randomness required by the NMM is taken from the string si
(assuming that the message will be the i-th message exchanged between the adversary and the
NMM). For the sake of simplicity of exposition, below we only describe the case in which the hon-
est party sends the first message in the protocol. The other case, in which the adversary sends the
first message, can be handled in an analogous manner and is omitted.

Non-Black-Box Simulation Phase. The simulator simulates the protocol 〈P, V 〉H→A on behalf
of the honest party as follows:

1. The slot begin message z: The NMM defines a machine Π which simply consists of all
the information the NMM has as part of its own state plus the current state of the adversary.
However, the machine Π does not have the information that the Oracle stores (which is not
yet learnt by the NMM) and also the outputs which have not been computed yet. The NMM
then computes z = com(h(Π)) and sends z to the adversary.

2. A UA message marked blank : The NMM runs the combinatorial module to see if the UA
message is marked blank . If so, the NMM simply generates a random string of appropriate



size and sends a commitment to that string to the adversary.

3. A UA message marked simulate : If the combinatorial module marks a UA prover message
as simulate , the NMM proceeds as follows. If it is a UA first message, the NMM constructs a
witness for the statement (h, z, r) ∈ Λ and uses that to compute the UA first message (details
of how the witness is constructed is given later on). The NMM now commits to the resulting
UA first message. The resulting UA first message and the opening to the commitment are
now stored by the NMM.

Note that the NMM does not store any other intermediate information resulting from this
step. In particular, it discards the witness and other information required to compute the
UA first message (such as the PCP). This is done to ensure that the state of the NMM (and
hence the machine Π it commits to when a slot begins) is bounded by a fixed polynomial.
This is crucial to keep the simulation polynomial time.

If the message is a last UA prover message such that the corresponding UA first message
was also marked simulate , then the NMM again reconstructs the witness for the appropriate
statement (h, z, r) ∈ Λ, reconstructs the UA first message, and then, computes the UA last
message depending upon the UA challenge given by the adversary. Now the NMM computes
a commitment to this UA last message and sends it to the adversary. The computed message
and the opening to the commitment are again stored by the NMM. Note that, as earlier, the
NMM discards any intermediate information computed in this step.

If the message is a UA last message where the UA first message was marked blank , the NMM
simply generates a random string of appropriate size and sends a commitment to that string
to the adversary.

4. Non-Malleable Commitment: The simulator instead of committing to bit 0, sends com1

as a non-malleable commitment to bit 1 using NMCom and identity of the honest party.

5. Witness-indistinguishable argument of knowledge: The NMM uses a witness to the
statement: “there exists i such that the i-th UA execution was convincing”. By the coverage
property of the marking strategy, before we reach the wiaok stage of a session, there must
exist an i such that both the UA first and last messages were marked simulate except with
negligible probability (if this doesn’t happen, the simulation is aborted). This means that
for that i, the NMM must have computed the UA first and last message such that the UA
execution becomes convincing. A witness to this statement is simply the openings to the
commitments to the UA first and last messages, which is a part of the state of the NMM.

Observe that, by the properties of the UA system, the computation required in this step is
similar for each session and, in particular, does not “grow” as the simulation proceeds (since
it depends only on the computational complexity of the UA verifier and not on that of the
UA prover).

Constructing the witness. Now we show that for any universal argument which is selected
for simulation, there exists a witness for the statement (h, z, r) ∈ Λ. This can be seen by the
construction of the NMM and the Oracle. We observe the following:

• Consider the point till which the NMM had generated the message z in the transcript. From
this point onwards, the NMM, given only queries to the decommitment Oracle and the output



queries to the trusted party, was able to continue generating the transcript and arrive at the
challenge r. Thus, the machine Π can perform the same execution since it starts from the same
internal state assuming it too gets access to the same Oracle query responses and outputs.

• Now consider the point when the first UA message is due which is marked simulate . Let the
index of the challenge message r, for the slot picked for simulation, in the transcript be j. The
simulator sets y1 = j. Let y2 contain all the Oracle queries the NMM made while going from
the message z to r (both inclusive) and corresponding oracle responses. Furthermore, let y3

contain all the outputs obtained from the trusted party and the corresponding inputs while
going from the message z to r. Now observe that any oracle query Π makes (including both
decommit and output queries before it outputs r) can be answered using y2 and y3 because its
execution would be identical to that of the NMM. Note that since the outputs obtained from
the trusted party are valid corresponding to the input used by the adversary, they would be
in set S and hence would be accepted by the algorithm T (see Definition 1).

• Now the witness simply consists of Π, y1, y2, y3, and, the opening of the commitment z. The
NMM already has all of these as part of its internal state by the time it reaches r (and in
particular, by the time the first UA message is due). Thus, the NMM has computed the
witness required to complete the universal argument.

Note that since S will successfully commit to 1 instead of 0, it will have a valid trapdoor td1 to
be used in input indistinguishable computation phase and trapdoor witness for WI in final secure
computation phase.

In the second step of this phase, the adversary runs an instance of 〈P, V 〉A→H preamble and
sends com2 in the nmcom phase and proves in wiaok phase that either com2 is a valid commitment
to 0 or one the UA instances in preamble was convincing. Throughout this phase, S simply uses
the honest party strategy to generate all the messages of the honest party except the verifier chal-
lenge strings in the preamble. It generates the challenge strings by applying a suitably expanding
pseudorandom generator to the randomness given for the message.

Input Indistinguishable Computation Phase. The simulator S and the adversary A run an
instance of 〈P iic

1 , P iic
2 〉 for the functionality fcom1,com2 . S uses a sufficiently long random string and

the trapdoor from the previous phase as input (unlike the honest party that uses its input xH and
randomness rH and ⊥ as the trapdoor). Since the trapdoor input by the simulator is valid, it gets
the input xA and the randomness rA used by the adversary as output of this phase.

Final Secure Computation Phase. Let Ssh denote the simulator for the semi-honest two-party
protocol 〈P sh

1 , P sh
2 〉 used in our construction. S internally runs the simulator Ssh on adversary’s

input xA. Ssh starts executing, and, at some point, it makes a call to the trusted party in the
ideal world with some input (say) xA. At this point, S makes a query (sid, xA) to the trusted
functionality F , where sid is the session identifier. The output value received from F is forwarded
to Ssh. Ssh runs further, and finally halts and outputs a transcript βH,1, βA,1, . . . , βH,q, βA,q of the
execution of 〈P sh

1 , P sh
2 〉, and an associated random string r̂A. S now performs the following steps.

1. S first computes the random string r̃A such that r̃A = rA ⊕ r̂A and sends r̃A to A.



2. Now, in each round j ∈ [q], S sends βH,j . It then engages in an execution of 〈Pwi, Vwi〉H→A
with A where S uses the trapdoor witness (deviating from honest party strategy that used the
real witness). Next, on receiving A’s next message βA,j in the protocol 〈P sh

1 , P sh
2 〉, S engages

in an execution of 〈Pwi, Vwi〉A→H with A where it uses the honest verifier strategy. Finally at
any stage, if the jth message of the adversary is not βA,j and the proof 〈Pwi, Vwi〉A→H given
immediately after this messages is accepted, then the simulator aborts all communication
and outputs ⊥. (Later, we establish in the proof of Lemma 6 that S outputs ⊥ with only
negligible probability.)

This completes the description of our simulator S.
Having defined the simulation, we give some of the extensions of our model. Then in the next

section we will show the indistinguishability of the real and simulated executions.

Extensions of our result. Note that the way we have given our result and applications, it
already handles the case of interchangeable roles and different parties getting different outputs.
Our result can be further extended to more general settings as long as the ideal world experiment
satisfies the bounded pseudoentropy condition. Some of these extensions are as follows:

• Adaptive Inputs Setting: Any honest party can choose its input in a session adaptively
depending upon its initial state and view in the ideal world so far.

• Multiple Functionalities: Our result would also hold for an ideal world in which different
functions are being computed in different sessions as long as the whole ideal world experiment
satisfies the bounded pseudoentropy condition.

• Multiparty case: The above protocol can be generalized to the multi-party case using standard
ideas. We provide a sketch here and defer the details to the full version. Our protocol Σ is
completely symmetric in all steps. In particular, in each stage, first the party P1 acts and
then the party P2 acts symmetrically. Note that the input commitment phase can be split
into two phases: First P1 uses its inputs and randomness and P2 uses the trapdoor followed
by a similar behavior from the other side. When there are more parties, (P3, ...), they would
follow P2 and act symmetrically one by one. Note that our proof strategy only uses the fact
that the ideal world experiment has bounded pseudoentropy, which refers to the complete
output tuple of the adversary.

F.1 Indistinguishability of the Views

We consider two experiments HReal and HIdeal, where HReal corresponds to the real execution of Π
while HIdeal corresponds to the ideal computation of F , as described below. Parts of this section
have been taken verbatim from [GGJS11] and [Goy13].

Experiment HReal: The simulator S is given the inputs of all the honest parties. By running
honest strategy for the honest parties, it generates their outputs along with A’s view. This corre-
sponds to the real execution of the protocol. The output of the hybrid corresponds to the outputs
of the honest parties and the view of the adversary A.



Experiment HIdeal: S simulates all the sessions without the inputs of the honest parties (in the
same manner as explained in the description of S) and outputs the view of A. Each honest party
outputs the response it receives from the trusted party. Again the output of the hybrid corresponds
to the outputs of the honest parties and the view of the adversary A.

Let νi be a random variable that represents the output of Hi. We now claim that the output
distributions of HReal and HIdeal are indistinguishable, as stated below:

Lemma 6 νReal
c≡ νIdeal

We will prove this lemma using a carefully designed series of intermediate hybrid experiments.
More details are given below.

F.2 Getting Started

We will prove Lemma 6 by contradiction. Suppose that the hybrids HReal and HIdeal are distinguish-
able in polynomial time, i.e., there exists a ppt distinguisher D that can distinguish between the
two hybrids with a non-negligible probability. We will now consider a series of hybrid experiments
Hfirst followed by Hi:j , where i ∈ [nc], and j ∈ [7] and Hlast. For each intermediate hybrid Hk, we
define a random variable νk that represents the output (including the view of the adversary and
the outputs of the honest parties) of Hk.

Below, we show that no PPT distinguisher can distinguish between any two consecutive hy-
brids, which will establish (via the hybrid arguments) that no polynomial time distinguisher can
distinguish between νReal and νIdeal with non-negligible probability, which is a contradiction.

In the sequel, we will make use of the notation described in Section F. Also, whenever necessary,
we will augment our notation with a super-script that denotes the session number.

Soundness Invariant. Looking ahead, while proving the indistinguishability of the outputs of
our hybrid experiments, we will need to argue that in each session ` ∈ [m], the commitment comA→H
is a commitment to 0 so that A does not possess a valid trapdoor for input indistinguishable
computation phase and the trapdoor condition is false for each instance of 〈Pwi, Vwi〉A→H . We refer
to this as the soundness condition.

Consider the instance of 〈P, V 〉`A→H in session `. Let π`A denote the statement proven in
〈P, V 〉`A→H . Then, informally speaking, π`A states that A committed to bit 0 (in the nmcom
phase). Note that the soundness condition “holds” if we prove that in each session ` ∈ [m], A
commits to a valid witness to the statement π`A in the non-malleable commitment comA→H inside
〈P, V 〉`A→H . To this end, we define m random variables, {ρ`i}m`=1, where ρ`i is the value committed
in nmcom phase in 〈P, V 〉`A→H as per νi in hybrid Hi.

Now, before we proceed to the description of our hybrids, we first claim that the soundness
condition holds in the real execution. We will later argue that the soundness condition still holds
as we move from one hybrid to another. This call this soundness invariant.

Lemma 7 Let 〈P, V 〉`A→H and π`A be as described above corresponding to the real execution. Then,
for each session ` ∈ [m], if the honest party does not abort the session (before the first message of the
Input Indistinguishable Computation Phase is sent) in the view νReal, then ρ`Real is a valid witness
to the statement π`A, i.e. comA→H is a valid commitment to 0, except with negligible probability.



Intuitively, the above lemma follows from the stand alone soundness of 〈P, V 〉`A→H (Section E.1)
similar to lemma 4.

F.3 Description of the Hybrids

We describe the hybrids Hfirst, Hi:j for i ∈ [nc] and j ∈ [7] and Hlast below:

Experiment Hfirst: In this experiment, the simulator is divided into the Oracle and the next
message machine (NMM). The Oracle generates the strings s1, . . . , snc , computes the commitments
C = (C1, . . . , Cnc) and gives C to the NMM. The oracle also has the inputs of honest parties for
the sessions and computes cxi = com(xiH) as commitment of honest party input in i-th session6.
It gives Cx = (cx1 , cx2 , . . . , cxm) to NMM. In addition, the NMM generates s required to run the
combinatorial module Mark(·). To compute the next message, the NMM queries the Oracle to get
the appropriate random string and honest party input for that session (if required) and computes
the required message behaving honestly. Furthermore, the NMM runs the combinatorial module
(using the random tape s) and internally marks each UA message either simulate or blank . The
only change between this hybrid and HReal is that the NMM uses a PRG to generate the verifier
challenge strings in 〈P, V 〉A→H . We claim that

νReal
c≡ νfirst (23)

∀` ρ`Real
c≡ ρ`first (24)

Proving Equation 23. To prove this, we will consider another sequence of hybrids, in which we
change the honest verifier challenges one by one from being random to pseudorandom. Let HReal:1

be HReal. For 1 ≤ j ≤ p, where p are the total number of honest verifier challenge messages,
consider two consecutive hybrids HReal:j and HReal:(j+1) such that first (j − 1) verifier challenges
are pseudorandom in both HReal:j and HReal:(j+1), and the jth verifier challenge in the transcript is
random in HReal:j and pseudorandom in HReal:(j+1). Rest all verifier challenges will be random in
both HReal:j and HReal:(j+1). Now, this j-th verifier challenge will not be generated by the NMM.
Instead, it will be given to it externally. Moreover, the NMM will not receive any randomness
for this message from the oracle. The indistinguishability of νReal:j and νReal:(j+1) will hold by the
security of the PRG. Equation 23 holds by a standard hybrid argument.

Proving Equation 24. Let HReal:j and HReal:(j+1) be as above. Let us assume there exists a ` such

that ρ`Real:j and ρ`Real:(j+1) are distinguishable by a PPT distinguisher D. We will create a standalone
machine M∗ that is identical to HReal:j , except that it takes jth verifier challenge externally from B
and forwards it to A. Additionally, M∗ exposes the NMCom inside inside 〈P, V 〉`A→H to an external
receiver R. If B sends a random string, then (B,M∗, R) system is identical to HReal:j . On the other
hand, if B sends a pseudorandom string, then (B,M∗, R) system is identical to HReal:(j+1). Since
only one message is changing on the left, by security of PRG and the k-robustness of NMCom, the
value committed by M∗ to R is indistinguishable in two cases. Equation 2 holds by a standard
hybrid argument.

6Though the honest party may be playing the role of P1 in one session and P2 in some other session, for ease of
notation, we will denote the honest party input in i-th session by xi.



Intuition behind rest of the proof. Next, we shall consider nc sets of intermediate hybrid
experiments Hi:1,Hi:2,Hi:3,Hi:4,Hi:5,Hi:6,Hi:7 for i ∈ [nc]. For each of the hybrids, we will prove
that the view of A in the current hybrid is indistinguishable from the previous hybrid. We will
also prove that the soundness condition holds in the current hybrid assuming that it holds in the
previous hybrid.

Intuition behind indistinguishability proof. The basic problem we deal with in these hybrid
experiments occurs because of non-black-box simulation. We are using some cryptographic primi-
tives in our protocol such as commitment schemes com and NMCom (providing hiding property),
a WIAOK system, an IIC protocol, and an WI protocol. We would go through the hybrids by
changing what we commit to (and then rely on the hiding property of the commitment scheme), by
changing the witness we use in the WIAOK system (rely on the witness indistinguishability), by
changing the input used in the IIC protocol (rely on the input indistinguishability of IIC protocol),
and by changing the witness used in WI protocol (again rely on the witness indistinguishability).

Now, say that the NMM starts using the opening of the commitment Ci (to the string si) while
either preparing the machine it commits to (as part of the slot begin message), or, while completing
a simulated universal argument. Then, if a primitive is executed using randomness si, we note that
its security properties (which we rely on), may no longer hold. For example, if the commitment is
prepared using randomness si, we can no longer rely on the hiding property of this commitment.

To solve this problem, we shall move forward in the transcript and make changes in a sequential
manner. When we are in the i-th set of hybrids, we will maintain the following invariants: (a)
the NMM will only use the opening of the commitments Cj for j < i, and, (b) from this hybrid
onwards, we will only change messages indexed i and higher. We must have already made all the
required changes in messages before the i-th message.

Intuition behind soundness invariant proof. To argue the soundness of the current hybrid
assuming the soundness condition for the previous hybrid, we will rely on the k-robustness of
NMCom (Appendix A.6). In each hybrid, we change at most k messages from an honest party to the
adversary and expose any non-malleable commitment given by the adversary to an honest external
receiver R. Then we argue the indistinguishability of the value committed to by the adversary using
k-robustness of NMCom and indistinguishability of those k messages in two hybrids. In a hybrid
where we change a non-malleable commitment on the left, we will rely on the non-malleability of
NMCom with respect to itself.

Define H0:7 to be the same as Hfirst.

Experiment Hi:1: This experiment is identical to the previous one except in how the message
with index i in the transcript is handled by the simulator. In this hybrid, if the i-th message is a
slot begin message z, the NMM works as follows. Instead of committing to h(0), the NMM now
constructs a machine Π (which consists of the internal state of NMM and that of the adversary),
computes the commitment z = com(h(Π); si) using the appropriate randomness si and sends it to
the adversary.

We now claim that,

νi−1:7
c≡ νi:1 (25)

∀` ρ`i−1:7
c≡ ρ`i:1 (26)



Proving Equations 25 and 26. We claim that these hold by the (computational) hiding property of
the commitment scheme com and k-robustness of NMCom. The only reason it is non-trivial is that
the string C contains a commitment Ci to the randomness si required to produce the commitment
z. However, we argue that the opening to the commitment Ci is not used by the NMM in any non-
trivial way in the interaction with the adversary and hence, the commitment generated by using si
as randomness is semantically secure. We show this via a sequence of intermediate hybrids.

Experiment Hi:1:1: This is identical to Hi:1 except that the Oracle, upon receiving a query str,
only returns value s.t. str = com(value; r) if str = Cj for j ≥ i. Even given access to such a modified
Oracle, the NMM could produce a transcript which is identically distributed. We claim that

νi:1
s≡ νi:1:1 (27)

∀` ρ`i:1
c≡ ρ`i:1:1 (28)

Proving Equation 27. The openings given by the Oracle to the NMM are used by NMM only to
either construct a witness for a simulated UA, or, to commit to a machine Π when a slot begins.
However, there is no simulated UA or a commitment to a machine after the message i of the
transcript in this experiment. Thus, for a message j ≥ i, the NMM is not using the opening of
the commitment Cj in any way in the experiment. Note that here too the NMM generates the
commitment z = com(h(Π); si).

Proving Equation 28. Let us assume that equation 28 is false. That is, ∃` ∈ [m] such that ρ`i:1
and ρ`i:1:1 are distinguishable by a probabilistic polynomial time (PPT) distinguisher. In this case,
we can create an unbounded adversary that extracts the value contained in the non-malleable
commitment and is then able to distinguish between the view of A in Hi:1 and Hi:1:1, which is a
contradiction by equation 27.

Experiment Hi:1:2: This is same as Hi:1:1 except that we change the commitment Ci to be
com(s′i) such that s′i is chosen independently. The oracle is identical to the previous one except on
query str = Ci, it responds with si defined before. We claim that

νi:1:1
c≡ νi:1:2 (29)

∀` ρ`i:1:1
c≡ ρ`i:1:2 (30)

Proving Equations 29 and 30. The first equation holds by the hiding property of com and the

second equation holds by k-robustness of NMCom.
We consider similar experiments Hi−1:7:1 and Hi−1:7:2 corresponding to Hi−1:7 where the NMM

generates the commitment z = com(0; si). We describe them in detail below.

Experiment Hi−1:7:1: This is identical to Hi−1:7 except that the Oracle, upon receiving a query
str, only returns value s.t. str = com(value; r) if str = Cj for j ≥ i. Even given access to such a
modified Oracle, the NMM could produce a transcript which is identically distributed to that in
Hi−1:7. We claim that

νi−1:7
s≡ νi−1:7:1 (31)

∀` ρ`i−1:7
c≡ ρ`i−1:7:1 (32)

Proving Equations 31 and 32. The proof is exactly same as the proof for equations 27 and 28.



Experiment Hi−1:7:2: This is same as Hi−1:7:1 except that we change the commitment Ci to be
com(s′i) such that s′i is chosen independently. The oracle is identical to the previous one except on
query str = Ci, it responds with si defined before. We claim that

νi−1:7:1
c≡ νi−1:7:2 (33)

∀` ρ`i−1:7:1
c≡ ρ`i−1:7:2 (34)

Proving Equations 33 and 34. The proof is exactly same as the proof for equations 29 and 30.

Note that to prove equations 25 and 26 it is sufficient to prove the following:

νi−1:7:2
c≡ νi:1:2 (35)

∀` ρ`i−1:7:2
c≡ ρ`i:1:2 (36)

Proving Equation 35. Note that in experiments Hi−1:7:2 and Hi:1:2, no information is revealed about
the string si, which is used as randomness to generate the commitment z. Now NMM instead of
generating the message z itself by querying the oracle for Ci, takes the message z externally under
randomness si and does not make any query for Ci. If it receives a commitment to h(0) then the
experiment is identical to Hi−1:7:2. If it receives a commitment to h(Π), then the experiment is
identical toHi:1:2. Since si is semantically secure and hence any commitment using si as randomness
is also semantically secure. Thus, the experiments Hi−1:7:2 and Hi:1:2 are computationally close.
Hence, the view of the adversary in experiments Hi−1:7 and Hi:1 is computationally close.

Proving Equation 36. It holds by the semantic security of commitment z and the k-robustness of
NMCom. More precisely, let us first assume that the claim is false, i.e., ∃` ∈ [m] such that ρ`i−1:7:2

and ρ`i:1:2 are distinguishable by a PPT distinguisher D. We will create a standalone machine M∗

that is identical to Hi−1:7:2, except that instead of simply committing to h(0) using com, M∗ takes
this commitment from an external sender B and “forwards” it internally to A. Additionally, M∗

“exposes” the NMCom in 〈P, V 〉`A→H to an external receiver R. This is feasible because we chose η
to be more than communication complexity of receiver in NMCom plus the length of commitment
z. Hence, both the receiver messages in NMCom and commitment z can be given externally to
NMM.

Let us describe the interaction between M∗ and B in more detail. M∗ first sends the program
Π to B. Now, when B sends the message z, M∗ forwards this message from B to A. Note that if
B commits to h(0) in the com execution, then the (B,M∗, R) system is identical to Hi−1:7:2. On
the other hand, if B commits to the program h(Π), then the (B,M∗, R) system is equivalent to
Hi:1:2. From the k-robustness of NMCom and hiding property of com, we establish that the value
committed by M∗ to R must be computationally indistinguishable in both cases.

Experiment Hi:2: This experiment is identical to the previous one except how the message with
index i in the transcript is handled by the simulator. In this hybrid, if the i-th message is a UA
message which is marked simulate , the way the NMM handles this message is identical to the final
NMM (described earlier in Section F). In particular, the NMM starts using the witness guaranteed
by the construction of Π for computing this UA message (as opposed to just committing to random
strings). The intermediate information resulting from this step is discarded (as described earlier).



We now claim that,

νi:1
c≡ νi:2 (37)

∀` ρ`i:1
c≡ ρ`i:2 (38)

Proving Equation 37. This relies on the computational hiding property of the commitment scheme
com using which the UA message is committed and is very similar to the previous indistinguisha-
bility proof. The difference between this hybrid and the previous one is only in the computation
of the i-th message (in case it is a UA prover message marked as simulate ). However, similar to
the previous indistinguishability argument, we can argue that the randomness used to compute the
commitment to this UA prover message is not used by the NMM in anyway in the interaction with
the adversary.

Proving Equation 38. After we prove that the randomness used to compute this commitment is not
used by NMM anywhere, this equation follows by the hiding property of com and k-robustness of
NMCom.

Experiment Hi:3: This experiment in identical to the previous one except that now in all the
sessions in which the preamble phase of 〈P, V 〉H→A has completed up to (and including) the i-
th message of the transcript, the NMM starts using the alternative witness (the opening to the
simulated UA messages) to complete the WIAOK. For any such session, up to (and including)
the i-th message of the transcript, there exists a UA both of whose prover messages are marked
simulate . The NMM now starts using the openings of these UA messages as the witness to complete
the WIAOK execution. Note that there can be at most one session, in which the preamble phase
of 〈P, V 〉H→A has completed up to (and including) the i-th message of the transcript and not
completed upto (and including) the (i − 1)th message of the transcript. That is there is only
session where we are changing the witness in WIAOK compared to the previous hybrid. We now
claim that,

νi:2
c≡ νi:3 (39)

∀` ρ`i:2
c≡ ρ`i:3 (40)

Proving Equation 39. This is very similar to the previous proof of indistinguishability. The only
changes made in this hybrid occur after the message with index i in the transcript. However, as
argued earlier, we can prove that the random strings used to compute the prover messages in wiaok
are still semantically secure. Then we can use an external prover to generate the messages of this
wiaok and give these as input to NMM. This can be done since η is chosen to be more than the
length of prover messages in wiaok. The claim follows by the witness indistinguishability of the
wiaok protocol.

Proving Equation 40. This is very similar to the proof of soundness condition in previous hybrids.
Once we have proved that the randomness used to generate these prover messages of wiaok are
semantically secure, this equation follows by witness indistinguishability of the wiaok protocol and
k-robustness of NMCom. Since η is chosen to be greater than the communication complexity of
prover messages of wiaok and receiver messages of NMCom, we can take the prover messages of
wiaok externally and expose any of the commitments under NMCom given by the adversary to
an external receiver R as above. Also, since k is chosen to be greater than 3, which is the round



complexity of wiaok, the indistinguishability follows by WI property of wiaok and k-robustness
of NMCom.

Experiment Hi:4: This experiment is identical to the previous one except that now in all the
sessions in which the preamble phase of 〈P, V 〉H→A has completed up to (and including) the i-th
message of the transcript, the NMM generates comH→A as a commitment to 1 instead of 0 in the
nmcom phase. Note that, as argued above, there is only session where we are changing the value
committed by NMCom compared to the previous hybrid. We now claim that,

νi:3
c≡ νi:4 (41)

∀` ρ`i:3
c≡ ρ`i:4 (42)

Proving Equation 41. This is very similar to the previous proof of indistinguishability. The only
changes made in this hybrid occur after the message with index i in the interaction transcript.
However, as argued earlier, we can prove that the random strings used to compute this commitment
are still semantically secure. Next, we can provide this commitment externally to the NMM since
we set η more than the sender communication complexity of NMCom. The claim follows by the
hiding property of NMCom.

Proving Equation 42. Once we have proved that the randomness used to generate these sender mes-
sages of NMCom are semantically secure, this equation follows by hiding property of the NMCom
and non-malleability of NMCom w.r.t. itself. More precisely, let us assume that ∃` ∈ [m] such that
ρ`i:3 and ρ`i:4 are distinguishable by a PPT distinguisher D. We will create a standalone machine
M∗ that is identical to Hi:3, except that instead of simply committing to witness using NMCom
in 〈P, V 〉H→A, M∗ takes this commitment from an external sender B and “forwards” it internally
to A. Additionally, M∗ “exposes” the NMCom in 〈P, V 〉`A→H to an external receiver R. This can
be done since η is chosen to be greater than the communication complexity of sender messages
of NMCom plus the communication complexity of receiver messages of NMCom. Let us describe
the interaction between M∗ and B in more detail. When B starts the execution of NMCom in
〈P, V 〉H→A, M∗ forwards the messages from B to A; the responses from A are forwarded exter-
nally to B. Note that if B commits to the 0, then the (B,M∗, R) system is identical to Hi:3. On
the other hand, if B commits to 1, then the (B,M∗, R) system is equivalent to Hi:4. From the
non-malleability property of NMCom, we establish that the value committed by M∗ to R must be
computationally indistinguishable in both cases.

Experiment Hi:5: This experiment is identical to the previous one except that now in all the
sessions in which the preamble phase of 〈P, V 〉H→A has completed up to (and including) the i-th
message of the transcript, the NMM uses the trapdoor witness (instead of the real witness) in each
instance of wi where the honest party plays the role of the prover in the final secure computation
phase. Note that the trapdoor witness for each of these wi must be available to NMM at this point
since in the previous hybrid it committed to bit 1. Also note that there can be at most one session,
in which the preamble phase of 〈P, V 〉H→A has completed up to (and including) the i-th message
of the transcript and not completed upto (and including) the (i − 1)th message of the transcript.
That is there is only session where we are changing the witnesses in wi compared to the previous



hybrid. We now claim that

νi:4
c≡ νi:5 (43)

∀` ρ`i:4
c≡ ρ`i:5 (44)

Proving Equation 43. To prove this we will consider another sequence of hybrids, in which we
change the witness used in wi phase of that session one by one. Let Hi:4:1 be Hi:4. For 1 ≤ j ≤ q,
where q are the number of WI executions in one session, consider two consecutive hybrids Hi:4:j

and Hi:4:(j+1) such that first (j − 1) instances of WI use trapdoor witnesses in both Hi:4:j and
Hi:4:(j+1), and the jth instances uses real witness in Hi:4:j and trapdoor witness in Hi:4:(j+1). Rest
all WI instances use real witness both Hi:4:j and Hi:4:(j+1).

As argued earlier, we can prove that the random strings used to compute the prover messages in
jth instance of wi are still semantically secure. Then we can use an external prover to generate the
messages of this wi and give these as input to NMM, since θ is chosen to be more than the length
of prover messages in wi. The indistinguishability of νi:4:j and νi:4:(j+1) follows by the witness
indistinguishability of the wi. Then by a standard hybrid argument, we can extend this proof for
equation 43.

Proving Equation 44. Let Hi:4:j and Hi:4:(j+1) be as above. Then we claim that

∀` ρ`i:4:j
c≡ ρ`i:4:j+1

Let us first assume that the claim is false, i.e., ∃` ∈ [m] such that ρ`i:4:j and ρ`i:4:j+1 are distin-
guishable by a PPT distinguisher D. We will create a standalone machine M∗ that is identical to
Hi:4:j , except that instead of behaving honestly in wi, M∗ takes this proof from an external prover
B and “forwards” it internally to A. Additionally, M∗ “exposes” the NMCom in 〈P, V 〉`A→H to an
external receiver R as described earlier. Let us describe the interaction between M∗ and B in more
detail. M∗ first sends the real and the trapdoor witnesses to B. Now, when B starts the execution
of wi, M∗ forwards the messages from B to A; the responses from A are forwarded externally to
B. Note that if B uses the real witness, then the (B,M∗, R) system is identical to Hi:4:j . On the
other hand, if B uses the trapdoor witness, then the (B,M∗, R) system is equivalent to Hi:4:j+1.
Since k is chosen to be more than the round complexity of WI, the claim follows by k-robustness
of NMCom.

Experiment Hi:6: This experiment in identical to the previous one except that now in all the
sessions in which the preamble phase of 〈P, V 〉H→A has completed up to (and including) the i-th
message of the transcript, the NMM uses a sufficiently long random string and the trapdoor from
the previous phase as input (unlike the honest party that uses its input xH and randomness rH and
⊥ as the trapdoor). Since the trapdoor input by the simulator is valid, it gets the input xA and
the randomness rA used by the adversary in that session as output of this phase. We now claim
that,

νi:5
c≡ νi:6 (45)

∀` ρ`i:5
c≡ ρ`i:6 (46)

Proving Equation 45. This is very similar to the previous proof of indistinguishability. As argued
earlier, we can prove that the random strings used to compute the honest party messages in iic



are still semantically secure. Then we can use an external party to generate the messages of iic
and give these as input to NMM, since θ is chosen to be more than the length of messages of any
party in iic. We have already established from the previous hybrids that the soundness condition
holds at this point. This means that A does not possess a valid trapdoor for this phase. Hence, his
output and view are indistinguishable in the two hybrids by the input indistinguishability of the
iic.

Proving Equation 46. This is very similar to the proof of equation 40. Once we have proved that the
randomness used to generate honest party’s messages in iic are semantically secure, this equation
follows by input indistinguishability of the iic protocol and k-robustness of NMCom. Since θ is
chosen to be greater than the communication complexity of any party in iic and receiver messages
of NMCom, we can take the party’s messages of iic externally and expose any of the commitments
under NMCom given by the adversary to an external receiver R as above. Also, since k is chosen
to be greater than the round complexity of iic, the indistinguishability of committed values by A
follows by k-robustness of NMCom.

Experiment Hi:7: This experiment in identical to the previous one except that now in all the
sessions in which the preamble phase of 〈P, V 〉H→A has completed up to (and including) the i-th
message of the transcript, the NMM simulates the execution of 〈P sh

1 , P sh
2 〉 as follows: Let s(i) be the

session number for the session whose preamble phase ended at the i-th message. Then compared to
the previous hybrids, we are changing the 〈P sh

1 , P sh
2 〉 in session s(i). Let Ssh denote the simulator

for the semi-honest two-party protocol 〈P sh
1 , P sh

2 〉 used in our construction. NMM internally runs
the simulator Ssh on adversary’s input xA. Ssh starts executing, and, at some point, it makes a
call to the trusted party in the ideal world with some input (say) xA. At this point, NMM makes
a query (s(i), xA) to the trusted functionality F . The output value received from F is forwarded
to Ssh. Ssh runs further, and finally halts and outputs a transcript βH,1, βA,1, . . . , βH,q, βA,t of the
execution of 〈P sh

1 , P sh
2 〉, and an associated random string r̂A.

Now, NMM forces this transcript and randomness on A in the same manner as described in
section F. We claim that during the execution of 〈P sh

1 , P sh
2 〉, each reply of A must be consistent

with this transcript, except with negligible probability. Note that we have already established from
the previous hybrids that the soundness condition holds (except with negligible probability) at this

point. This means that the trapdoor condition is false for each instance of 〈Pwi, Vwi〉
s(i)
A→H . By the

soundness property of wi used in our construction, each reply of A must be consistent with this
transcript. We now claim that

νi:6
c≡ νi:7 (47)

∀` ρ`i:6
c≡ ρ`i:7 (48)

Proving Equation 47. Informally speaking,this follows from the semi-honest security of the two-
party computation protocol 〈P sh

1 , P sh
2 〉 used in our construction. We now give more details.

Now our NMM will get the protocol transcript of semi-honest 2PC externally from an external
sender B and forces it on A instead of generating it using Ssh as follows: NMM first queries the ideal
world trusted party on the extracted input of A for session s(i) in the same manner as explained

above. Let x
s(i)
A denote the extracted input of A. Let x

s(i)
H denote the input of the honest party

in session s(i). Let O be the output that NMM receives from the trusted party. Now NMM sends

x
s(i)
H (obtained from the oracle) along with x

s(i)
A and O to B and receives from B a transcript for



〈P sh
1 , P sh

2 〉 and an associated random string. NMM forces this transcript and randomness on A in
the same manner as S does. Now, the following two cases are possible:

1. B computed the transcript and randomness by using both the inputs - x
s(i)
H and x

s(i)
A - along

with the output O. In this case, the transcript output by B is a real transcript of an honest
execution of 〈P sh

1 , P sh
2 〉.

2. B computed the transcript and randomness by using only adversary’s input x
s(i)
A , and the

output O. In this case B simply ran the simulator Ssh on input x
s(i)
A and answered its query

with O. The transcript output by B in this case is a simulated transcript for 〈P sh
1 , P sh

2 〉.

In the first case, the (B,M) system is identical to Hi:6, while in the second case, the (B,M) system
is identical to Hi:7. By the (semi-honest) security of 〈P sh

1 , P sh
2 〉, we establish that the view of A

must be indistinguishable in both the cases, except with negligible probability.

Proving Equation 48. We will leverage the semi-honest security of the two-party computation
protocol 〈P sh

1 , P sh
2 〉 and the k-robustness of the non-malleable commitment scheme NMCom to

prove equation 48.
Specifically, we will construct a standalone machine M∗ that is identical to M as described

above, except that it “exposes” the NMCom in 〈P, V 〉`A→H to an external receiver R, as described
earlier. Note that if B produces a transcript 〈P sh

1 , P sh
2 〉 according to case 1 (as described above),

then the (B,M∗, R) system is identical to Hi:6. On the other hand, if B produces a transcript
for 〈P sh

1 , P sh
2 〉 according to case 2, then the (B,M∗, R) system is identical to Hi:7. However, since

this interaction with B consists of a single message, which is computationally indistinguishable in
the two cases, the commitment of M∗ to R is computationally indistinguishable by k-robustness of
NMCom.

This way we create the hybrids up to Hnc:7. Note that in this last hybrid, NMM does not use
the honest party inputs to generate any message. Hence, it does not query the oracle with the
decommitment for any cxi . So in the final hybrid, we remove the honest party inputs from the
oracle. Intuitively, this is possible since oracle is the external uncommitted part of the simulator.

Experiment Hlast: This hybrid is same as Hnc:7 except that now the oracle generates cxi differ-
ently. For each i, it picks a sufficiently long string ri and computes cxi = com(ri) and gives these
commitments to NMM. We claim that

νnc:7
c≡ νlast (49)

∀` ρ`nc:7
c≡ ρ`last (50)

Proving Equation 49. Since NMM in Hnc:7 never queries the oracle for decommitments of any
cxi , the transcript in this hybrid is computationally indistinguishable from the previous hybrid by
security of com.

Proving Equation 50. To prove this we can consider a sequence of intermediate hybrids where we
change the commitments cxi one by one. The computational indistinguishability of ρ` between any



two such consecutive hybrids will follow by the hiding property of com and k-robustness of NMCom.

Note that Hlast is same as HIdeal. Hence, we have proved that νReal
c≡ νIdeal.

G Related Work on Concurrent Computation in Plain Model

As mentioned in introduction, a rewinding based simulator for concurrent computation gets into
the problem of multiple output queries to the ideal functionality. Trying to solve this bottleneck
of “handling extra queries” in various ways has inspired a number of different works. Below we
describe these relaxed models.

• Resettable and stateless computation: In the resettable setting, Goyal and Sahai [GS09]
(and more recently Goyal and Maji [GM11]) were able to obtain positive results by resetting
the ideal functionality to obtain multiple outputs per session.

• Multiple ideal query model: Goyal, Jain and Ostrovsky [GJO10] proposed the multiple
ideal-query model, where for every session in the real world, the simulator is allowed to query
the functionality multiple times in the ideal world. Subsequent works [GJ13, GGJ13] used
these ideas to resolve seemingly unrelated open problems such as concurrent precise zero-
knowledge [PPS+08], concurrent password-based key exchange [GL01], bounded concurrent
secure computation with graceful degradation [Lin03a], etc.

• The plain model: In the plain model, recently Goyal [Goy12] was able to obtain positive
results for a large class of functionalities in the concurrent single input setting by constructing
an “output predictor” to be utilized by the simulator during rewinds to answer the additional
outputs.

• Leaky ideal query model and others: Recently, Goyal, Gupta and Jain [GGJ13] proposed
the leaky ideal query model where the simulator is allowed to leak upon the secret state of
the trusted functionality in the ideal world. This “extra” information allowed them to answer
the extra output queries. This paradigm has also been relevant to constructing protocols in
the super-polynomial simulation and input-indistinguishable computation models [GGJS12].


