
Secure Distributed Computation
on Private Inputs

Geoffroy Couteau, Thomas Peters, and David Pointcheval

ENS, CNRS & INRIA, PSL Research University, Paris, France

Abstract. The recent notion of encryption switching protocol (ESP) allows two players to obliviously
switch between two encryption schemes. Instantiated from multiplicatively homomorphic encryption and
additively homomorphic encryption, ESPs provide a generic solution to two-party computation and lead
to particularly efficient protocols for arithmetic circuits in terms of interaction and communication.
In this paper, we further investigate their applications and show how ESPs can be used as an alternative
to fully-homomorphic encryption (FHE) to outsource computation on sensitive data to cloud providers.
Our interactive solution relies on two non-colluding servers which obliviously perform the operations on
encrypted data, and eventually send back the outcome in an encrypted form to the appropriate players.
Our solution makes use of a nice combination of the Paillier encryption scheme and the Damgard-Jurik
variant with multiple trapdoors, which notably allows cross-user evaluations on encrypted data.

Keywords. encryption switching protocols, delegation of computations.

1 Introduction

Secure multiparty computation (MPC) targets the following problem: several players, modeled as proba-
bilistic polynomial time Turing machines, wish to jointly compute a public function f of their respective,
private inputs. The players want to guarantee the privacy of their inputs: at the end of the protocol,
no player should be able to deduce from its view during the execution anything that he could not have
deduced from the output and its own input. General solutions for MPC have been proposed, starting
with the work of Yao [Yao86] and followed by [GMW87b,GMW87a].

Delegation of Computations. A particular case of secure MPC is the problem of delegation of
computations where a set of clients, with a limited computational power, would like to perform some
expensive computation on their data. To do so, they can communicate with a powerful server, but they
do not fully trust the server. Typical security requirements for this particular task are both the privacy,
which says that the server will perform computations on the inputs of the clients without gaining any
knowledge about this input, and the verifiability, which says that the clients want to be sure that the
correct functions have been evaluated. In this paper, we propose a solution which guarantees both
requirements in a specific setting, namely the non-collusion of the two servers.

Encryption Switching Protocols. An encryption switching protocol (ESP) is a protocol which
allows two players to obliviously switch from a ciphertext under one encryption scheme to a ciphertext
encrypting the same plaintext under the other encryption scheme. We recall the definition of ESP
as introduced in [GC15]: let (E ,D) and (E ,D) be two encryption schemes, with a common pair of
encryption and decryption keys (pk, sk) —in any case, they can always be the concatenations of the
keys of the two schemes—. An ESP between two players, each player holding a share of sk, on input
an encryption C of some plaintext m under E , outputs an encryption C̄ of the same plaintext m under
E . Informally, an ESP is secure if it satisfies the following requirements:

– Correctness: if both players behave honestly, D(C̄, sk) = D(C, sk);
– Soundness: there is a negligible probability for a malicious player to force an output C̄ such that
D(C̄, sk) 6= D(C, sk) without being detected;

– Zero-Knowledge: no information on either m or sk leaks during the protocol execution.

It should be noted that, as the players hold shares of the secret key sk, the decryption and encryption
switching operations are performed as two-party protocols between the players. They essentially both
involve (2, 2)-threshold decryption.

2

Two-Party Computation from ESP. In [GC15], the authors established that any function on a
ring (R,+,×) can be evaluated on encrypted data by a two-party protocol relying on two encryption
schemes, an additively homomorphic scheme (E⊕,D⊕) and a multiplicatively homomorphic scheme
(E⊗,D⊗), operating on the same plaintext space R, with an ESP to obliviously switch between those
two schemes. We recall the intuition underlying this result by considering two players, Alice and Bob,
who wish to evaluate a N -variate polynomial P (X1, · · · , XN) =

∑M
j=1

∏
X
dij
i in R[X1, . . . , XN] on a

vector of inputs x shared between the two parties. Let xA = (xiA)i≤N (resp. xB = (xiB)i≤N) be Alice’s
share (resp. Bob’s share), such that x = xA + xB, in the ring:

1. Both players start by encrypting their inputs under E⊕, the additively homomorphic encryption
scheme. If we denote � the homomorphic operator on the ciphertexts for the + operator on the
plaintexts, both players can then compute E⊕(x) = E⊕(xA) � E⊕(xB) = (E⊕(xi))i≤N ;

2. Both players then perform N ESPs in parallel to get a vector E⊗(x) of multiplicatively homomor-
phic ciphertexts. Let � and4 be the homomorphic operators for multiplication and exponentiation
by a constant on the plaintexts, then both players can compute (E⊗(yj))j≤M = (E⊗(

∏
i x

dij
i))j≤M =

(�i≤NE⊗(xi)4dij)j≤M ;
3. Alice and Bob eventually perform M ESPs in parallel to get additively homomorphic encryptions

of all the monomials yj . They compute, from the previous result, an encryption of the sum of all
the monomials, which is the target output P (x1, · · · , xN), that they decrypt in a distributed way.

The overall protocol involves two steps of switches (all the other operations are performed locally by
each player), with a communication of O(N + M) ciphertexts: this method avoids the dependency
in the degree of the polynomial which is inherent to most two-party protocols, and is round-efficient
(i.e., independent of the dij ’s, while known protocols for this task typically involve O(log(maxi,j(dij)))
rounds of interaction).

Our Contribution. In this paper, we design a novel application of ESP to delegation of computations
in the cloud. Specifically, we consider two non-colluding servers and design a delegation model with
the following features:

– Any number of users can generate their own encryption and decryption keys;
– Any player can store its data online, encrypted under its own key;
– Any subset of users can ask for the evaluation of an arbitrary function f over their joint data;
– The communication and interactions between the servers are independent of the depth of the

arithmetic circuit to be evaluated, to avoid latency issues;
– If the servers do not collude, then the protocol guarantees the privacy of the data and the correct-

ness of the computation.

For efficiency reasons, we want the computation of the servers to be small, compared to solutions based
on fully-homomorphic encryption [Gen09]. But still, our model expects a single round with the cloud
providers. It means that the users’ encrypted data are sent and stored before any evaluation. At the
end of the evaluation, using the stand-alone two-party computation [GC15] from ESP, all the results
are sent to the appropriate users and the protocol is over.

2 Delegation to Non-Colluding Servers

2.1 Delegating Computations to the Cloud

We consider the following scenario: many individuals, with very limited computational resources, would
like to securely outsource their data and to be able to delegate computations on these data to the more
powerful cloud providers. As the data are possibly sensitive, it should be guaranteed that the privacy
of the inputs of each user will be preserved, preferably without restricting the kind of computation
that can be outsourced.

A natural solution to this problem is fully-homomorphic encryption (FHE): each user generates his
own secret key for an FHE scheme; to outsource its data, the user encrypts his input and sends it to
the cloud. When he wants to delegate computations, the user simply sends the target function to the

3

server. Thanks to the homomorphic properties of the scheme, the latter can evaluate any function on
the encrypted input and send back the encrypted result to the user, which decrypts it to get his output.
Even if secret-key fully-homomorphic encryption is enough in such a context, current schemes remain
prohibitively expensive, making this solution impractical for complex functions, which are typically the
kind of functions for which a user would like to delegate computations. Moreover, evaluating functions
on joint data of several clients, encrypted under different keys, requires the use of a FHE with stronger
properties, namely multi-key FHE [LTV12].

An alternative solution to this problem can be obtained by considering two non-colluding servers
(or more) instead of a single one. Indeed, it would be natural to see two cloud providers collaborate in
order to offer such a service to their customers, but they would arguably not share their own private
data to the other provider, as they do not trust each other. In this setting, the two providers could run
a two-party protocol on the encrypted data to get an encrypted output, which would be sent back to
the user. However, this approach raises two concerns:

1. Multiparty computation protocols to evaluate function on encrypted data typically require the
players (here, the cloud providers) to hold shares of the secret key of the encryption scheme, while
the scenario under consideration involves many users who wish to outsource data encrypted with
their own key and to be able to decrypt the result using their own private key;

2. Two-party computation protocols require many interactions (typically, the players exchange mes-
sages for each product gate of the circuit to be evaluated), and the scenario we consider involves
possibly distant, on-line servers. Therefore, a large number of interactions is highly undesirable
because of the latency of the network.

2.2 The Model

In this paper, we propose a solution to address the constraints of the above scenario. In a nutshell,
our solution works as follows: we rely on the DJ encryption scheme, introduced by Damgard and Jurik
in [DJ03], which improves upon a previous similar scheme of [CS02]. DJ is an encryption scheme with a
particular double trapdoor mechanism which ensures that any ciphertext can be decrypted in two ways,
either with a local secret key specific to a player, or with the global master secrey key. A DJ encryption
scheme is set up, and the master public key mpk (which is an RSA modulus) is made publicly available.
Each player Pi can now generate its own secret key ski, and the corresponding public key pki. Any
message encrypted under the public key pki of a player Pi can therefore be decrypted in two ways:
either using ski, the secret key associated to pki generated by Pi, or by using the master secret secret
key msk, which can decrypt ciphertext regardless of the particular key pki which was used to encrypt
it.

The master secret key is divided into two shares, msk1 and msk2, using a secret sharing scheme;
hence, each mskj for j ∈ {1, 2} does not reveal (statistically) any information on msk. Each of the two
servers receives one share. With these shares, the two servers can now jointly compute functions over
data encrypted under any particular key pki of a player Pi.

Let S1 and S2 be the two non-colluding servers to which the computation will be delegated. All the
players encrypt their data under their own key pki and outsource the ciphertexts. When a subset S of
players (Pi)i∈S asks for the evaluation of some function f on some vector C of data (encrypted under
different keys if S contains at least two users), S1 and S2 first convert C into a vector C+ of Paillier
ciphertexts using a tailored protocol which takes as input their shares of the master secret key msk.
Second, the target function f is divided into layers, each layer containing either linear operations, or
products and exponentiations. To evaluate a layer of linear operations on the encrypted data, S1 and
S2 rely on the homomorphic properties of the Paillier encryption scheme, and can thus independently
make the evaluation in a deterministic way, to get the same results. To evaluate a layer of products
and exponentiations, S1 and S2 first interactively convert C+ into a vector C× of multiplicatively
homomorphic ciphertexts, using an encryption switching protocol; once this is done, S1 and S2 can
independently evaluate the operations on C× using the homomorphic properties of the scheme. They
can then interactively switch the result back to additively homomorphic ciphertexts to evaluate linear
operations, and so on, until the last layer of operations is performed. The result is then switched back

4

S1(msk1, pkA) S2(msk2, pkA)

pkA, skA

E(x, pkA), f E(f(x), pkA)

ESPsLocal
homomorphic
operations

Local
homomorphic
operations

Fig. 1: Delegation of computation to two non-colluding servers

to a vector of DJ ciphertexts, encrypted under the key pki of each Pi for i ∈ S, and sent to those
players. The model is represented Figure 1, in the case of a unique player in S.

Since computations are performed on ciphertexts, the privacy of the data is guaranteed. Since both
servers do the same homomorphic operations, and the encryption switching protocols are secure against
malicious players, if they both output the same result, it is necessarily correct, hence the verifiability,
under the non-colluding servers assumption.

3 Formal Construction

We write a← b to affect the value of b to the variable a, and a $← D to affect a value sampled uniformly
at random from the distribution D to the variable a. To avoid confusions between modular integers
and integers, we use brackets to denote integers: [a mod t] denotes the value of a mod t, between 0 and
t− 1, seen as an integer.

Global Setup. In all the constructions, we assume that the following global setup has been performed:
a trusted dealer generates two primes p and q such that p′ = (p − 1)/2 and q′ = (q − 1)/2 are also
prime, and sets n ← pq. He sets mpk ← n and sk ← (p, q). Let λ ← (p − 1)(q − 1)/2 be the maximal
order of an element in the multiplicative subgroup Z∗n.

Jacobi Symbol. The Jacobi symbol is an extension of the Legendre symbol to groups with odd order.
It maps invertible elements of the group to {−1,+1}. The Jacobi symbol of an element of Z∗n can be
efficiently computed, even when the factorization of the modulus is unknown.

3.1 Assumptions

We review the various assumptions on which the security of the primitives rely.

The Decisional Diffie-Hellman Assumption (DDH). Let G be some group of order t with gen-
erator g. The DDH assumption over G states that it is computationally infeasible to distinguish the
following distributions:

D0 = {(A,B,C) | (a, b, c) $← Z3
t , (A,B,C)← (ga, gb, gc)}

D1 = {(A,B,C) | (a, b) $← Z2
t , (A,B,C)← (ga, gb, gab)}

5

For any integer t, let us write QR(t) the group of squares over Z∗t . The DDH assumption is conjectured
to hold in the groups QR(n) and QR(n2), for RSA moduli n, as defined above in the global setup.

The Quadratic Residuosity Assumption (QR). Let Jn be the group of elements of Z∗n with
Jacobi symbol +1; it holds that Jn = {x ∈ Z∗n | (u, b) ← Z∗n × {0, 1}, x ← (−1)bu2}. The QR

assumption modulo n states that it is computationally infeasible, given some element x $← Jn, to have
a non-negligible advantage in guessing whether x ∈ QR(n) or x ∈ Jn \ QR(n). Note that given the
factorization of n, it is easy to break the QR assumption modulo n. Since an element y ∈ Z∗n2 can
be written as y = xn · (1 + rn) mod n2, with x ∈ Z∗n and r ∈ Zn, and 1 + rn is always a square in
Z∗n2 , y ∈ QR(n2) if and only if x ∈ QR(n), or equivalently xn = y mod n ∈ QR(n). Hence, the QR
assumptions are equivalent modulo n and modulo n2, and so the unique notation QR.

The Decisional Composite Residuosity Assumption (DCR). Let Dn = {x ∈ Z∗n2 | ∃y ∈ Z∗n, x =
yn mod n2}. The DCR assumption states that it is computationally infeasible, given an element x
sampled at random from either Z∗n2 or Dn, to guess whether x ∈ Dn or not with non-negligible
advantage over the random guess.

3.2 Primitives

We recall the descriptions of the primitives which are used in the construction. For convenience, we
will slightly abuse the usual notations for encryption, and write Enc(m) instead of Enc(m; r) with a
random coin r.

Paillier Encryption Scheme. The Paillier encryption scheme was introduced in [Pai99]. The global
setup is run; let msk := d ← [λ−1 mod n] × λ mod nλ; note that the knowledge of sk implies the
knowledge of d.

Enc(pk,m) : On input m ∈ Zn, pick r
$← Zn2 and output c = E⊕(pk,m; r) = (1 + nm) · rn mod n2;

Dec(sk, c) : on input c, output m = ([cd mod n2]− 1)/n

This scheme is IND-CPA under the DCR assumption over Z∗n2 , and additively homomorphic in Zn.

Damgard-Jurik Encryption Scheme. The Damgard-Jurik scheme (DJ) was introduced in [DJ03].
It builds upon the Paillier encryption scheme and enhances it with a double trapdoor mechanism: for
a fixed ring Zn, many pairs of public and secret keys can be generated. This property was explicitly
identified in [BCP03], in which a similar scheme with comparable properties under weaker assumptions
was constructed. A given ciphertext encrypted with a public key pki can be decrypted in two ways,
either with the associated secret key ski in an ElGamal-like fashion, or using the master secret key,
i.e., the Paillier’s decryption key. We denote E i⊕ the DJ scheme for user Pi. Let G be a generator of Jn
added to mpk.

Key(mpk, i) : Pick ai
$← Zn/2 and set Hi ← Gai mod n. Let pki ← Hi be the public key of the player

Pi. The secret key is ski ← ai;
Enc(mpk, pki,m) : On input m ∈ Zn, pick r

$← Zn/2 and output c = E i⊕(m; r) = (Gr mod n, (1 +mn) ·
[Hr

i mod n]n mod n2);
Dec(ski, c) : Parse c as (A,B) and output m = ([B2 · [A2ai mod n]−n mod n2]−1)/n · [2−1 mod n] mod

n.

Alternatively, one can decrypt a ciphertext c with the master secret key msk = d simply by dropping
the first part A of the ciphertext, and by decrypting B using the Paillier decryption procedure, since
the mask [Hr

i mod n]n mod n2 is an n-th power in Z∗n2 .
This scheme is a slight variant of the proof-friendly encryption introduced in [DJ03]. Indeed, in

their first scheme, G and Hi are drawn from QR(n) instead of Jn. The proof-friendly variant lowers the
complexity of zero-knowledge proofs of validity (or knowledge), at the very moderate cost of adding
the QR assumption to the security: by squaring A and B in the decryption process, we ensure to work

6

A = {µ2n mod n2, µ ∈ Z∗
n} C = {µ2 mod n2, µ ∈ Z∗

n2}

B = {−µ2n mod n2, µ ∈ Z∗
n} D = {−µ2 mod n2, µ ∈ Z∗

n2}

DCR:

DCR:

QR:

A ' C

B ' D

C ' DA ∪B DDH is hard over C
X =

Fig. 2: Hardness of DDH over X

in a group without any small subgroup. This allows to decrypt 2m instead of m, but the factor 2 can
be easily removed over Zn (as inverses are easy to compute). In our construction, proofs of knowledge
will be required by the servers to prevent malicious clients from trying to outsource data that they do
not own. Hence, we favor this variant of the scheme in our application to reduce the work of the client
in the model. Note that our construction makes use of another scheme, the Z∗n-EG encryption scheme
which will be described afterward, whose security does already rely on the QR assumption. Thereby,
adding the QR assumption to the DJ scheme does not affect the overall security of our construction.

On the IND-CPA security of the DJ scheme. The security of the scheme is proven in [DJ03]. In a
nutshell, it relies on the DDH assumption over QR(n2), the QR assumption, and the DCR assumption.
Indeed, [Hr

i mod n]n mod n2 is in X = {±µ2n, µ ∈ Z∗n}, hence the DDH assumption over X ensures
that this value masks the plaintext. Figure 2 shows why (informally) the DDH assumption holds over
X if it holds over QR(n2) and if the DCR and QR assumptions hold.

Z∗
n-EG Encryption Scheme. The Z∗n-EG scheme, denoted E⊗ in this paper, is a multiplicatively

homomorphic extension of the ElGamal encryption scheme [ElG85] over Z∗n. It makes a black-box use
of an ElGamal scheme over the group Jn of elements with Jacobi symbol +1, denoted Jn-EG, with
encryption and decryption algorithms Jn-EG.Enc and Jn-EG.Dec.

Setup(p, q) : Pick g0
$← Z∗n, s

$← Zλ, an even tp
$← Zλ, and an odd tq

$← Zλ; set g ← −g20 (a
generator of Jn, of order λ), v ← [p−1 mod q] · p mod n (v = 0 mod p and v = 1 mod q) and
χ← (1− v) · gtp + v · gtq mod n, and g1 ← gs mod n (for the Jn-EG encryption);

Enc(pk,m) : On input m ∈ Z∗n, compute (m1,m2)← (ga, χ−am) ∈ Jn2 for a $← Zn/2, so that Jn(m) =

(−1)a. Then, choose r $← Zn/2 and compute C ← Jn-EG.Enc(m2; r) = (c0 = gr, c1 = m2g
r
1).

Return the ciphertext c← E⊗(m; r) = (C = (c0, c1),m1);
Dec(sk, c) : Parse c = (C = (c0, c1),m1) and check whether Jn(c1) = 1. If not, return ⊥, otherwise

compute m2 ← Jn-EG.Dec(C) = c1/c
s
0 in Z∗n and then m0 ← (1− v) ·mtp

1 + v ·mtq
1 mod n. Return

m← m0m2 mod n.

This scheme is IND-CPA under the QR assumption and the DDH assumption over Z∗p and Z∗q .

Zn-EG Encryption Scheme. The Zn-EG scheme, denoted E0⊗, is an extension of the Z∗n-EG scheme
to Z∗n ∪ {0}. The intuition of the extension is the following: a plaintext m ∈ Z∗n ∪ {0} is encoded as
(m+ b, Rb), where b is a bit equal to 1 if and only if m = 0, and R is a random square (or in Jn). It is
easy to check that this encoding is multiplicatively homomorphic.

Enc(pk,m) : On input m ∈ Z∗n, set b = 1 if m = 0, b = 0 else. Picks (R,R′)
$← J2n. Return the

ciphertext E0⊗(m)← (E⊗(m+ b), Jn-EG.Enc(Rb), Jn-EG.Enc(R′b)).
Dec(sk, c) : Decrypt the second ciphertext. If it contains any value R 6= 1, output 0. If it contains 1,

decrypt the first ciphertext and output the result.

7

The scheme is IND-CPA secure: its IND-CPA security reduces to the IND-CPA security of Jn-EG and
Z∗n-EG. Note that when the decryption of the second part of the ciphertext returnsR 6= 1, decrypting the
first part might compromise the security. This is the reason which the latter should only be decrypted
if the former is different from 1. Note also that the third component of the ciphertext is not used in
the decryption process; in fact, the scheme would be still secure without this last component. However,
this third component is necessary for the encryption switching protocol between this scheme and the
Paillier encryption scheme. Since we will do two-party decryption, this will be guaranteed under the
non-collusion of the two players.

It is important to note that finding an element outside of the plaintext space Z∗n ∪ {0} of the
Zn-EG scheme is equivalent to factoring; hence, when the secret key is secretly shared between the
two players and no single player knows the factorization, with overwhelming probability, no elements
outside Z∗n ∪ {0} will ever be exchanged, making the plaintext space of the Zn-EG scheme equivalent
in practice to the plaintext space Zn of the Paillier scheme: this result implies that ESPs will not
compromise the privacy of the plaintexts.

Threshold Schemes. The Paillier scheme and the Zn-EG scheme admit two-party threshold versions
(see [HMRT12] and [GC15]), in which the secret key is shared between the players and the decryption
is performed as a two-party protocol (in fact, the Zn-EG scheme is secure only in the threshold setting,
as the first part of a ciphertext must not be decrypted if the second part does not encrypt 1, which
can only be guaranteed when the key is shared). As a consequence, the DJ scheme does also admit a
threshold decryption procedure for the alternative decryption procedure, using the master secret key:
the players drop the first component of the ciphertext and perform a two-party Paillier decryption
procedure on the second component.

Overview of ESP between Paillier and Zn-EG (Informal). We outline the intuition underlying
the ESP protocol: to switch from a ciphertext C from an encryption scheme E1 to the other encryption
scheme E2, Alice picks a random mask, uses it to mask C and decrypts the resulting ciphertext with
Bob (Bob gets the result). Bob encrypts the outcome under E2; the mask is then homomorphically
removed in the ciphertext space of the second scheme.

3.3 Protocol

A trusted dealer performs the global setup described Section 3.2 and generates the secret key d ∈ Znλ
of the Paillier scheme, the secret key (v, tp, tq, s) ∈ Zn × Z3

λ of the Zn-EG scheme; he sets msk← d for
the DJ scheme. The dealer secretly shares these keys into two tuples of shares, such that each tuple
does individually not reveal anything about the secret key. The dealer sends the first share to the first
server S1 and the second share to the second server S2. Then, he broadcasts the RSA modulus n.

Outsourcing the Data. To outsource his data, a player Pi performs the Setup algorithm of the DJ
scheme on input (n, i) to get (pki, ski). Let x = (x1, · · · , xN) be his data; then

– Pi computes C ← E i⊕(x) = E i⊕(x1), · · · , E i⊕(xN) and sends it to S1.
– Pi proves, in zero-knowledge, that he knows plaintexts such that all the ciphertext are encryptions

with pki of those plaintexts.

On the Zero-Knowledge Proof of Knowledge. The last step ensures that no player will be able to “steal”
data from other players by sending a (potentially re-randomized) ciphertext of an other player to the
servers as being its own data. Note that the proofs are classical proofs of knowledge of a representation,
à la Schnorr [Sch90].

One can consider two variants: the player can perform an interactive proof of knowledge with each
server, and the servers will let him outsource the data if the proofs succeed. Alternatively, the player
can simply append a non-interactive proof to the data he sends, so that the data can be sent to a single
server and checked by the two servers when they are asked to perform computation over them. This
latter method however requires the random oracle model.

8

Note that the communication of the zero-knowledge proof can be made independent of the number
of inputs by proving the knowledge of the plaintext of the ciphertext �jλjE i⊕(xj), where the λj ’s can be
derived with either a pseudo-random generator from a seed sent by the verifier or a random oracle on
the statement. If the proof succeeds then, with overwhelming probability, all the ciphertexts are valid
encryptions with pki and Pi knows all the corresponding plaintexts. Note however that this method
implies a loss linear in the number of ciphertexts in the security reduction.

Evaluating a Function on Encrypted Data. A subset S of players (Pi)i∈S sends a target function
f to the servers S1 and S2. For convenience, we assume that f is written in a layered form, i.e., as
a sequence of layers, each layer containing either linear combinations or monomials computations.
First, the servers convert the DJ ciphertexts into Paillier ciphertexts (simply by dropping the first
component of each ciphertext). Once this is done, the function is evaluated each layer at a time, by first
switching to the encryption scheme with the appropriate homomorphism (using a secure ESP between
the Paillier scheme and the Zn-EG scheme) and evaluating the layer locally and homomorphically. It
follows immediately from the Theorem 8 of [GC15] (which states that two-party computation from
ESP is secure) that if at least one of the servers is honest, then:

– The output is a (vector of) Paillier ciphertext(s) which encrypts f(x);
– The view of both servers can be simulated without x or the shares of the secret key (hence the

privacy of x is guaranteed).

The number of rounds of the protocol is proportional to the number of layers of f (typically, this
number is 2 for a multivariate polynomial represented by its canonical form, and will be independent
of the degree of f in most practical cases).

Sending the Result Back to Pi for each i ∈ S. For each Paillier ciphertext C obtained as output
of the evaluation of f on the encrypted data of the players (Pi)i∈S , S1 and S2 run the following protocol
for each i ∈ S to convert it into a DJ ciphertext under the key of Pi:

1. S1 picks r $← Zn and sends C1 ← C � E⊕(r) and C2 ← E i⊕(−r) to S2;
2. S1 and S2 jointly decrypt C1; S2 gets the result t and sends back Ci ← E i⊕(t) � C2;
3. Ci is sent to Pi, which decrypts it using ski.

Note that the protocol has been described in the honest-but-curious setting: malicious servers might
deviate from the specifications of the protocol. However, the security can be easily enhanced into full
security: the security against malicious adversaries can be ensured by asking S1 to commit to r and
prove the consistency of C1 and C2 with the commitment using zero-knowledge proofs. S2 can also
prove, in zero-knowledge, that C ′ was constructed consistently from C2 and the plaintext of C1. Then,
both servers send back the result to Pi; if they are not equal, Pi ignores the output. In this setting,
it is sufficient that one of the two servers is being honest to ensure that the privacy of Pi’s input is
guaranteed, and that the output of the protocol is indeed f(x).

Overall, this model ensures the privacy of the data in the stand-alone setting, for a single run of
the function evaluation protocol. It would be an interesting future direction of work to extend that to
multiple adaptive evaluations on dynamically outsourced data.

Acknowledgments

This work was supported in part by the European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud).

References

BCP03. E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key cryptosystem with a double trapdoor
decryption mechanism and its applications. In ASIACRYPT 2003, LNCS 2894, pages 37–54. Springer,
November / December 2003.

9

CS02. R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. In EUROCRYPT 2002, LNCS 2332, pages 45–64. Springer, April / May 2002.

DJ03. I. Damgård and M. Jurik. A length-flexible threshold cryptosystem with applications. In ACISP 03, LNCS
2727, pages 350–364. Springer, July 2003.

ElG85. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans-
actions on Information Theory, 31:469–472, 1985.

GC15. D. P. Geoffroy Couteau, Thomas Peters. Encryption switching protocols. Cryptology ePrint Archive, Report
2015/990, 2015. http://eprint.iacr.org/.

Gen09. C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

GMW87a. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem for
protocols with honest majority. In 19th ACM STOC, pages 218–229. ACM Press, May 1987.

GMW87b. O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP-statements in zero-knowledge, and a
methodology of cryptographic protocol design. In CRYPTO’86, LNCS 263, pages 171–185. Springer, August
1987.

HMRT12. C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft. Efficient RSA key generation and threshold Paillier in
the two-party setting. In CT-RSA 2012, LNCS 7178, pages 313–331. Springer, February / March 2012.

LTV12. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the cloud via
multikey fully homomorphic encryption. In 44th ACM STOC, pages 1219–1234. ACM Press, May 2012.

Pai99. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT’99,
LNCS 1592, pages 223–238. Springer, May 1999.

Sch90. C.-P. Schnorr. Efficient identification and signatures for smart cards (abstract) (rump session). In EURO-
CRYPT’89, LNCS 434, pages 688–689. Springer, April 1990.

Yao86. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages 162–167.
IEEE Computer Society Press, October 1986.

http://eprint.iacr.org/

	Secure Distributed Computation on Private Inputs
	Introduction
	Delegation to Non-Colluding Servers
	Delegating Computations to the Cloud
	The Model

	Formal Construction
	Assumptions
	Primitives
	Protocol

