
Secret, verifiable auctions from elections

Elizabeth A. Quaglia1 and Ben Smyth2

1Information Security Group, Royal Holloway,
University of London

2Interdisciplinary Centre for Security, Reliability and
Trust, University of Luxembourg, Luxembourg

March 28, 2018

Abstract

Auctions and elections are seemingly disjoint. Nevertheless, similar
cryptographic primitives are used in both domains. For instance, mixnets,
homomorphic encryption and trapdoor bit-commitments have been used
by state-of-the-art schemes in both domains. These developments have
appeared independently. For example, the adoption of mixnets in elec-
tions preceded a similar adoption in auctions by over two decades. In
this paper, we demonstrate a relation between auctions and elections: we
present a generic construction for auctions from election schemes. More-
over, we show that the construction guarantees secrecy and verifiability,
assuming the underlying election scheme satisfies analogous security prop-
erties. We demonstrate the applicability of our work by deriving auction
schemes from the Helios family of election schemes. Our results advance
the unification of auctions and elections, thereby facilitating the progres-
sion of both domains.

Keywords. Auctions, elections, privacy, secrecy, verifiability.

1 Introduction

We present a construction for auction schemes from election schemes, and prove
the construction guarantees security, assuming the underlying election scheme
is secure.

Auctions. An auction is a process for the trade of goods and services from
sellers to bidders [Kri00, MM87], with the support of an auctioneer. We study
first-price sealed-bid auctions [Bra10], whereby bidders create bids which en-
capsulate the price they are willing to pay, and the auctioneer opens the bids to
determine the winning price (namely, the highest price bid) and winning bidder.

1

Elections. An election is a decision-making procedure used by voters to choose
a representative from some candidates [Gum05, AH10], with the support of a
tallier. We study first-past-the-post secret ballot elections [LG84, Saa95], which
are defined as follows. First, each voter creates a ballot which encapsulates the
voter’s chosen candidate (i.e., the voter’s vote). Secondly, all ballots are tallied
by the tallier to derive the distribution of votes. Finally, the representative –
namely, the candidate with the most votes – is announced.

Bidders and voters should express their choice freely in auctions and elec-
tions; this can be achieved by participating in private [OSC90, US90, UN48,
OAS69], which has led to the emergence of the following requirements.

• Bid secrecy: A losing bidder cannot be linked to a price.

• Ballot secrecy: A voter cannot be linked to a vote.

Ballot secrecy aims to protect the privacy of all voters, whereas bid secrecy is
only intended to protect the privacy of losing bidders. This intuitive weaken-
ing is necessary, because the auctioneer reveals the winning price and winning
bidder, hence, a winning bidder can be linked to the winning price.

Bidders and voters should be able to check that auctions and elections are
run correctly [JCJ02, Dag07, CRS05, Adi06, Adi08, DJL13]; this is known as
verifiability. Sometimes we write auction verifiability and election verifiabil-
ity to distinguish verifiability in each field. Kremer, Ryan & Smyth [KRS10]
decompose verifiability into the following properties.

• Individual verifiability: bidders/voters can check whether their bid/ballot
is included.

• Universal verifiability: anyone can check whether the result is computed
properly.

Conceptually, individual and universal verifiability do not differ between auc-
tions and elections.

1.1 Constructing auctions from elections

Our construction for auction schemes from election schemes works as follows.

1. We represent prices as candidates, and instruct bidders to create bids by
“voting” for the candidate that represents the price they are willing to
pay.

2. Bids are “tallied” to derive the distribution of prices and the winning price
is determined from this distribution.

The relation between auctions and elections is so far straightforward. The chal-
lenge is to establish the winning bidder. This is non-trivial, because election

2

schemes satisfying ballot secrecy ensure voters cannot be linked to votes, hence,
the bidder mentioned above cannot be linked to the price they are willing to
pay. We overcome this by extending the tallier’s role to additionally reveal the
set of ballots for a specific vote,1 and exploit this extension to complete the final
step.

3. The tallier determines the winning bids and a winning bidder can be se-
lected from these bids.2

Extending the tallier’s role is central to our construction.

1.2 Motivation and related work

There is an abundance of rich research on elections which can be capitalised
upon to advance auctions. This statement can be justified with hindsight:
Chaum [Cha81] exploited mixnets in elections twenty-three years before Peng
et al. [PBDV04] made similar advances in auctions (Jakobsson & Juels [JJ00]
use mixnets in a distinct way from Chaum and Peng et al.), Benaloh & Fis-
cher [CF85] proposed using homomorphic encryption seventeen years before
Abe & Suzuki [AS02a], and Okamoto [Oka96] demonstrated the use of trapdoor
bit-commitments six years before Abe & Suzuki [AS02b].

Magkos, Alexandris & Chrissikopoulos [MAC02] and Her, Imamot & Saku-
rai [HIS05] have studied the relation between auctions and elections. Magkos,
Alexandris & Chrissikopoulos remark that auctions and elections have a similar
structure and share similar security properties. And Her, Imamot & Sakurai
contrast privacy properties of auctions and elections, and compare the use of ho-
momorphic encryption and mixnets between fields. More concretely, McCarthy,
Smyth & Quaglia [MSQ14] derive auction schemes from the Helios and Civitas
election schemes. And Lipmaa, Asokan & Niemi study the converse [LAN02,
§9].

1.3 Contribution

We formally demonstrate a relation between auctions and elections: we present
a generic construction for auction schemes from election schemes, moreover, we
prove that auction schemes produced by our construction satisfy bid secrecy
and auction verifiability, assuming the underlying election scheme satisfies bal-
lot secrecy and election verifiability. To achieve this, we formalise syntax and
security definitions for auction schemes, since these are prerequisites to rigorous,
formal results.

1Ballot secrecy does not prohibit such behaviour, because ballot secrecy assumes the tallier
is trusted.

2Handling tie-breaks (i.e., selecting a winning bid from a set of winning bids) is straight-
forward. For instance, the set could be sampled uniformly at random. So this paper does not
address this problem.

3

Summary of contributions and paper structure. We summarise our con-
tributions as follows.

• We propose auction scheme syntax, and the first computational security
definitions of bid secrecy and verifiability for auctions (§2).

• We present a construction for auction schemes from election schemes (§3).

• We prove that our construction guarantees bid secrecy (§4) and verifia-
bility (§5), assuming the underlying election scheme satisfies analogous
security properties.

• We show that our construction is applicable to a large class of election
schemes and justify our choice of security definitions (§6).

• We use our construction to derive auction schemes from the Helios family
of election schemes (§7).

• We define cryptographic primitives and relevant security definitions in Ap-
pendix A, and we present further supplementary material in the remaining
appendices.

It follows from our results that secure auction schemes can be constructed from
election schemes, allowing advances in election schemes to be capitalised upon
to advance auction schemes.

1.4 Comparison with McCarthy, Smyth & Quaglia

The idea underlying our construction was introduced by McCarthy, Smyth
& Quaglia [MSQ14]. Our contributions improve upon their work by provid-
ing a strong theoretical foundation to their idea. In particular, we provide a
generic construction for auction schemes from election schemes, they consider
the derivation of only two auction schemes from Helios and Civitas. We prove
that auction schemes produced by our construction satisfy bid secrecy and ver-
ifiability, they do not provide security proofs. Thus, the auction schemes we
construct from Helios satisfy bid secrecy and verifiability, whereas the auction
schemes they derive have no such proofs. Moreover, we are the first to introduce
computational security definitions of bid secrecy and auction verifiability.

2 Auction schemes

2.1 Syntax

We formulate syntax for auction schemes, which capture the class of auctions
that consist of the following four steps. First, an auctioneer generates a key pair.
Secondly, each bidder constructs and casts a bid for their price. These bids are
recorded on a bulletin board. Thirdly, the auctioneer opens the recorded bids
and announces the winning price and the winning bids, i.e., bids that contain

4

the winning price. Finally, bidders and other interested parties check that the
result corresponds to the recorded bids.

Definition 1 (Auction scheme). An auction scheme is a tuple of efficient al-
gorithms (Setup,Bid,Open,Verify) such that:

Setup, denoted3 (pk , sk ,mb,mp) ← Setup(κ), is run by the auctioneer, Setup
takes a security parameter κ as input and outputs a key pair pk , sk, a
maximum number of bids mb, and a maximum price mp.

Bid, denoted b← Bid(pk ,np, p, κ), is run by bidders. Bid takes as input a public
key pk, an upper-bound np on the range of biddable prices,4 a bidder’s
chosen price p, and a security parameter κ. A bidder’s price should be
selected from the range 1, . . . ,np of prices. Bid outputs a bid b or error
symbol ⊥.

Open, denoted (p, b, pf)← Open(sk ,np, bb, κ), is run by the auctioneer. Open
takes as input a private key sk, an upper-bound np on the range of biddable
prices, a bulletin board bb, and a security parameter κ, where bb is a set.
It outputs a (winning) price p, a set of (winning) bids b, and a non-
interactive proof pf of correct opening.

Verify, denoted s← Verify(pk ,np, bb, p, b, pf , κ), is run to audit an auction. It
takes as input a public key pk, an upper-bound np on the range of biddable
prices, a bulletin board bb, a price p, a set of bids b, a proof pf , and a
security parameter κ. It outputs a bit s, which is 1 if the auction verifies
successfully and 0 otherwise.

Auction schemes must satisfy correctness, completeness, and injectivity, which
we define in Appendix B.1.

Our proposed syntax is based upon syntax by McCarthy, Smyth & Quaglia
[MSQ14]. Moreover, our correctness, completeness and injectivity properties are
based upon similar properties of election schemes. (Cf. Section 3.1.)

2.1.1 Example: Enc2Bid

We demonstrate the applicability of our syntax with a construction (Enc2Bid)
for auction schemes from asymmetric encryption schemes.

Definition 2 (Enc2Bid). Given an asymmetric encryption scheme Π = (Gen,
Enc,Dec), we define Enc2Bid(Π) as follows.

• Setup(κ) computes (pk , sk)← Gen(κ) and outputs (pk , sk , poly(κ), |m|).

3Let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs x1, . . . , xn
and coins r. Let A(x1, . . . , xn) denote A(x1, . . . , xn; r), where r is chosen uniformly at random.
And let ← denote assignment.

4An upper-bound on the range of biddable prices is sometimes useful for efficiency reasons,
as can be observed from our case studies (§7).

5

• Bid(pk ,np, p, κ) computes b ← Enc(pk , p) and outputs b if 1 ≤ p ≤ np ≤
|m| and ⊥ otherwise.

• Open(sk ,np, bb, κ) proceeds as follows. Computes d ← {(b,Dec(sk , b)) |
b ∈ bb}. Finds the largest integer p such that (b, p) ∈ d ∧ 1 ≤ p ≤ np,
outputting (0, ∅, ε) if no such integer exists. Computes b ← {b | (b, p′) ∈
d ∧ p′ = p}. Outputs (p, b, ε).

• Verify(pk ,np, bb, p, b, pf , κ) outputs 1.

Algorithm Setup requires poly to be a polynomial function, algorithms Setup and
Bid require m = {1, . . . , |m|} to be the encryption scheme’s plaintext space, and
algorithm Open requires ε to be a constant symbol.

To ensure Enc2Bid(Π) is an auction scheme, we require asymmetric encryp-
tion scheme Π to produce distinct ciphertexts with overwhelming probability.
Hence, we must restrict the class of asymmetric encryption schemes used to
instantiate Enc2Bid. We could consider a broad class of schemes that produce
distinct ciphertexts with overwhelming probability, but we favour the narrower
class of schemes satisfying IND-CPA, because we require IND-PA0 (which implies
IND-CPA) for bid secrecy.

Lemma 1. Suppose Π is an asymmetric encryption scheme with perfect correct-
ness that satisfies IND-CPA. We have Enc2Bid(Π) is an auction scheme (i.e.,
correctness, completeness and injectivity are satisfied).

The proof of Lemma 1 and all further proofs, except where otherwise stated,
appear in Appendix C.

2.2 Bid secrecy

Our informal definition of bid secrecy (§1) omits a side condition which is nec-
essary for satisfiability. In particular, we did not stress that a losing bidder
can be linked to a price when a link can be deduced from the winning bidder
and knowledge about the distribution of prices bidders are willing to pay. For
example, suppose Alice, Bob and Charlie participate in an auction and Alice
wins. Bob and Charlie can both deduce the price the other is willing to pay.
Accordingly, our definitions must concede that auction results reveal partial in-
formation about prices bidders are willing to pay, hence, we refine our informal
definition of bid secrecy as follows:

A losing bidder cannot be linked to a price, except when a link can
be deduced from auction results and any partial knowledge about
the distribution of prices bidders are willing to pay.

This refinement ensures that the aforementioned example does not constitute a
violation of bid secrecy. And we formalise the refined notion of bid secrecy as an

6

indistinguishability game between an adversary and a challenger.5 Our game
captures a setting where the challenger generates a key pair using the Setup
algorithm, publishes the public key, and only uses the private key for opening.

The adversary has access to a left-right oracle which can compute bids on
the adversary’s behalf.6 Bids can be computed by the left-right oracle in two
ways, corresponding to a randomly chosen bit β. If β = 0, then, given a pair
of prices p0, p1, the oracle outputs a bid for p0. Otherwise (β = 1), the oracle
outputs a bid for p1. The left-right oracle essentially allows the adversary to
control the distribution of prices in bids, but bids computed by the oracle are
always computed using the prescribed Bid algorithm. The adversary outputs a
bulletin board (this may contain bids output by the oracle and bids generated
by the adversary), which is opened by the challenger to reveal price p, set of
winning bids b, and non-interactive proof pf of correct opening. Using these
values, the adversary must determine whether β = 0 or β = 1.

To avoid trivial distinctions, we insist that a bid for price p was not output
by the left-right oracle, assuming p is the winning price. This assumption is
required to capture attacks that exploit poorly designed Open algorithms, in
particular, we cannot assume that Open outputs the winning price, because al-
gorithm Open might have been designed maliciously or might contain a design
flaw. We ensure winning bids were not output by the left-right oracle using a log-
ical proposition. The proposition uses predicate correct-price(pk ,np, bb, p, κ),
which holds when: (p = 0 ∨ (∃r . Bid(pk ,np, p, κ; r) ∈ bb \ {⊥} ∧ 1 ≤ p ≤
np)) ∧ (¬∃p′, r′ . Bid(pk ,np, p′, κ; r′) ∈ bb \ {⊥} ∧ p < p′ ≤ np). Intuitively, the
predicate holds when price p has been correctly computed: when there exists
a bid for price p on the bulletin board and there is no bid for a higher price,
i.e., when p is the winning price. Moreover, injectivity ensures that the bid was
created for that price.7

By design, our notion of bid secrecy is satisfiable by auction schemes which
reveal losing prices,8 assuming that these prices cannot be linked to bidders,
except in the aforementioned cases. And our construction will produce auction
schemes of this type. Hence, to avoid trivial distinctions, we insist, for each
price p, that the number of bids on the bulletin board produced by the left-
right oracle with left input p, is equal to the number of bids produced by the
left-right oracle with right input p. This can be formalised using predicate
balanced(bb,np, L), which holds when: for all prices p ∈ {1, . . . ,np} we have
|{b | b ∈ bb ∧ (b, p, p1) ∈ L}| = |{b | b ∈ bb ∧ (b, p0, p) ∈ L}|, where L is the set

5Games are algorithms that output 0 or 1. An adversary wins a game by causing it to
output 1. We denote an adversary’s success Succ(Exp(·)) in a game Exp(·) as the probability
that the adversary wins, i.e., Succ(Exp(·)) = Pr[g ← Exp(·) : g = 1]. Adversaries are assumed
to be stateful, i.e., information persists across invocations of the adversary in a single game,
in particular, the adversary can access earlier assignments.

6Bellare et al. introduced left-right oracles in the context of symmetric encryp-
tion [BDJR97]. And Bellare & Rogaway provide a tutorial on their use [BR05].

7The existential quantifiers in correct-price demonstrate the importance of defining injec-
tivity perfectly rather than computationally. In particular, correct-price cannot interpret a
bid for more than one price.

7

of oracle call inputs and outputs.
Intuitively, if the adversary loses the game, then the adversary is unable to

distinguish between bids for different prices, assuming that a bid is not a winning
bid; it follows that losing prices cannot be linked to bidders. By comparison, if
the adversary wins the game, then there exists a strategy to distinguish honestly
cast bids.

Definition 3 (Bid secrecy). Let Σ = (Setup,Bid,Open,Verify) be an auction
scheme, A be an adversary, κ be a security parameter, and Bid-Secrecy(Σ,A, κ)
be the following game.9

Bid-Secrecy(Σ,A, κ) =

(pk , sk ,mb,mp)← Setup(κ);
β ←R {0, 1}; L← ∅;
np ← A(pk , κ); bb← AO();
(p, b, pf)← Open(sk ,np, bb, κ);
g ← A(p, b, pf);
if g = β ∧ balanced(bb,np, L) ∧ |bb| ≤ mb ∧ np ≤ mp
∧ (correct-price(pk ,np, bb, p, κ)⇒ ∀b ∈ bb . (b, p, p1) 6∈ L ∧ (b, p0, p) 6∈ L)
then

return 1
else

return 0

Oracle O is defined as follows:10

• O(p0, p1) computes b ← Bid(pk ,np, pβ , κ);L ← L ∪ {(b, p0, p1)} and out-
puts b, where p0, p1 ∈ {1, ...,np}.

We say Σ satisfies bid secrecy (Bid-Secrecy), if for all probabilistic polynomi-
al-time adversaries A, there exists a negligible function negl, such that for all
security parameters κ, we have Succ(Bid-Secrecy(Σ,A, κ)) ≤ 1

2 + negl(κ).

Roughly speaking, our definition of bid secrecy corresponds to a symbolic bid
secrecy definition by Dreier, Lafourcade & Lakhnech [DLL13, Definition 15].

2.3 Auction verifiability

We formalise individual and universal verifiability as games between an adver-
sary and a challenger. Our definitions are based upon analogous definitions for
election schemes by Smyth, Frink & Clarkson [SFC16] (cf. Section 5.1).11

8The class of auctions that reveal losing prices seem to have been first considered by
Franklin & Reiter [FR96]. Auctions that do not reveal losing prices have also been considered,
e.g., [HTK98].

9We write x←R S for the assignment to x of an element chosen uniformly at random from
set S.

10The oracle may access game parameters, e.g., pk . Henceforth, we allow oracles to access
game parameters without an explicit mention.

11We discuss our motivation to base the definitions on the notions of verifiability by Smyth,
Frink & Clarkson in Section 6.3.

8

2.3.1 Individual verifiability

Individual verifiability challenges the adversary to generate a collision from al-
gorithm Bid. If the adversary cannot win, then bidders can uniquely identify
their bids, hence, bidders can check whether their bid is included.

Definition 4 (Individual verifiability). Let Σ = (Setup,Bid,Open,Verify) be an
auction scheme, A be an adversary, κ be a security parameter, and Exp-IV(Σ,
A, κ) be the following game.

Exp-IV(Σ,A, κ) =

(pk ,np, p, p′)← A(κ);
b← Bid(pk ,np, p, κ);
b′ ← Bid(pk ,np, p′, κ);
if b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥ then

return 1
else

return 0

We say Σ satisfies individual verifiability (Exp-IV), if for all probabilistic poly-
nomial-time adversaries A, there exists a negligible function negl, such that for
all security parameters κ, we have Succ(Exp-IV(Σ,A, κ)) ≤ negl(κ).

Individual verifiability resembles injectivity, but game Exp-IV allows an adver-
sary to choose the public key and prices, whereas there is no adversary in the
definition of injectivity (the public key is an output of algorithm Setup and
prices are universally quantified, under the restriction that prices are distinct).

2.3.2 Universal verifiability

Universal verifiability challenges the adversary to concoct a scenario in which
Verify accepts, but the winning price or the set of winning bids is not cor-
rect.12 Formally, we check the validity of the winning price using predicate
correct-price. And we check the validity of the set of winning bids using
predicate correct-bids(pk ,np, bb, p, b, κ), which holds when b = bb ∩ {b | b =
Bid(pk ,np, p, κ; r)}, i.e., it holds when b is the intersection of the bulletin board
and the set of all bids for the winning price. Since function correct-price will
be parameterised with a public key constructed by the adversary, rather than
one constructed by algorithm Setup (§2.2), we must adopt a stronger definition
of injectivity which holds for adversarial keys. We define strong injectivity in
Appendix B.1.

Definition 5 (Universal verifiability). Let Σ = (Setup,Bid,Open,Verify) be an
auction scheme satisfying strong injectivity, A be an adversary, κ be a security
parameter, and Exp-UV(Σ,A, κ) be the following game.

12Universal verifiability captures a notion of non-repudiation, i.e., anyone can check whether
the winning bids encapsulate the winning price.

9

Exp-UV(Σ,A, κ) =

(pk ,np, bb, p, b, pf)← A(κ);
if (¬correct-price(pk ,np, bb, p, κ) ∨ ¬correct-bids(pk ,np, bb, p, b, κ)) ∧
Verify(pk ,np, bb, p, b, pf , κ) = 1 then

return 1
else

return 0

We say Σ satisfies universal verifiability (Exp-UV), if for all probabilistic poly-
nomial-time adversaries A, there exists a negligible function negl, such that for
all security parameters κ, we have Succ(Exp-UV(Σ,A, κ)) ≤ negl(κ).

3 Auctions from elections

3.1 Election scheme syntax

We recall syntax for election schemes [SFC16], which capture the class of elec-
tions that consist of the following four steps. First, a tallier generates a key
pair. Secondly, each voter constructs and casts a ballot for their choice. These
ballots are recorded on a bulletin board. Thirdly, the tallier tallies the recorded
ballots and announces an outcome, i.e., a distribution of choices. This distri-
bution is used to select a representative. For example, in first-past-the-post
elections the representative corresponds to the choice with highest frequency.
Finally, voters and other interested parties check that the outcome corresponds
to votes expressed in recorded ballots.13 This class of elections includes state-
of-the-art schemes such as the Helios family, but notably excludes schemes re-
liant on paper, e.g., Pret à Voter [CRS05], Scantegrity II [CCC+08], and Re-
motegrity [ZCC+13].

Definition 6 (Election scheme [SFC16]). An election scheme is a tuple of
efficient algorithms (Setup,Vote,Tally,Verify) such that:

Setup, denoted (pk , sk ,mb,mc) ← Setup(κ), is run by the tallier. Setup takes
a security parameter κ as input and outputs a key pair pk , sk, a maximum
number of ballots mb, and a maximum number of candidates mc.

Vote, denoted b ← Vote(pk ,nc, v, κ), is run by voters. Vote takes as input
a public key pk, some number of candidates nc, a voter’s vote v, and a
security parameter κ. A voter’s vote should be selected from a sequence
1, . . . ,nc of candidates.14 Vote outputs a ballot b or error symbol ⊥.

Tally, denoted (v, pf) ← Tally(sk ,nc, bb, κ), is run by the tallier. Tally takes
as input a private key sk, some number of candidates nc, a bulletin board

13Smyth, Frink & Clarkson use the syntax to model first-past-the-post voting systems
and Smyth shows the syntax is sufficiently versatile to capture ranked-choice voting systems
too [Smy17].

14Votes are (abstractly) modelled as integers, rather than alphanumeric strings (such as
representatives’ names), for brevity.

10

bb, and a security parameter κ, where bb is a set. It outputs an election
outcome v and a non-interactive proof pf that the outcome is correct. An
election outcome is a vector v of length nc such that v[v] indicates15 the
number of votes for candidate v.

Verify, denoted s ← Verify(pk ,nc, bb,v, pf , κ), is run to audit an election. It
takes as input a public key pk, some number of candidates nc, a bulletin
board bb, an election outcome v, a proof pf , and a security parameter
κ. It outputs a bit s, which is 1 if the election verifies successfully and 0
otherwise.

Election schemes must satisfy correctness, completeness, and injectivity, which
we define in Appendix B.2.

3.1.1 Example: Enc2Vote

We demonstrate the applicability of our syntax using a construction (Enc2Vote)
for election schemes from asymmetric encryption schemes.16

Definition 7 (Enc2Vote). Given an asymmetric encryption scheme Π = (Gen,
Enc,Dec), we define Enc2Vote(Π) as follows.

• Setup(κ) computes (pk , sk)← Gen(κ) and outputs (pk , sk , poly(κ), |m|).

• Vote(pk ,nc, v, κ) computes b← Enc(pk , v) and outputs b if 1 ≤ v ≤ nc ≤
|m| and ⊥ otherwise.

• Tally(sk ,nc, bb, κ) initialises vector v of length nc, computes for b ∈ bb
do v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v] ← v[v] + 1, and outputs
(v, ε).

• Verify(pk ,nc, bb,v, pf , κ) outputs 1.

Algorithm Setup requires poly to be a polynomial function, algorithms Setup and
Vote require m = {1, . . . , |m|} to be the encryption scheme’s plaintext space, and
algorithm Tally requires ε to be a constant symbol.

To ensure Enc2Vote(Π) is an election scheme, we require asymmetric encryption
scheme Π to produce distinct ciphertexts with overwhelming probability (cf.
§2.1.1). Hence, we restrict the class of asymmetric encryption schemes used to
instantiate Enc2Vote.

Lemma 2. Suppose Π is an asymmetric encryption scheme with perfect cor-
rectness that satisfies IND-CPA. We have Enc2Vote(Π) is an election scheme.

15Let v[v] denote component v of vector v.
16The construction was originally presented by Bernhard et al. [SB14, SB13, BPW12b,

BCP+11] in a slightly different setting.

11

3.1.2 Comparing auction and election schemes

Auction schemes are distinguished from election schemes as follows: auction
schemes open the bulletin board to recover the winning price and winning bids,
whereas, election schemes tally the bulletin board to recover the distribution of
votes. Our goal is to bridge this gulf; we introduce reveal algorithms to do so.

3.2 Reveal algorithm

To achieve the functionality required to construct auction schemes from election
schemes, we define reveal algorithms which link a vote to a set of ballots for
that vote, given the tallier’s private key. We stress that ballot secrecy does not
prohibit the existence of such algorithms, because ballot secrecy asserts that the
tallier’s private key cannot be derived by the adversary.

Definition 8 (Reveal algorithm). A reveal algorithm is an efficient algorithm
Reveal defined as follows:

Reveal, denoted b ← Reveal(sk ,nc, bb, v, κ), is run by the tallier. Reveal takes
as input a private key sk, some number of candidates nc, a bulletin board
bb, a vote v, and a security parameter κ. It outputs a set of ballots b.

Let Γ = (Setup,Vote,Tally,Verify) be an election scheme. A reveal algorithm is
correct with respect to Γ, if there exists a negligible function negl, such that
for all security parametersκ, integers nb and nc, and votes v, v1, . . . , vnb ∈
{1, . . . ,nc}, it holds that:

Pr[(pk , sk ,mb,mc)← Setup(κ);

for 1 ≤ i ≤ nb do
bi ← Vote(pk ,nc, vi, κ);

b← Reveal(sk ,nc, {b1, . . . , bnb}, v, κ)
: nb ≤ mb ∧ nc ≤ mc ⇒ b = {bi | vi = v ∧ 1 ≤ i ≤ nb}] > 1− negl(κ).

Reveal algorithms are run by talliers to disclose sets of ballots for a specific
vote. Hence, we extend the tallier’s role to include the execution of a reveal
algorithm (cf. Section 1.1), thereby bridging the gap between elections and
auctions. It is natural to consider whether this extension is meaningful, i.e.,
given an arbitrary election scheme, does there exist a reveal algorithm that is
correct with respect to that election scheme? We answer this question positively
in Appendix D.

3.3 Construction

We show how to construct auction schemes from election schemes. We first
describe a construction which can produce auction schemes satisfying bid secrecy
(§3.3.1). Building upon this result, we present our second construction which
can produce auction schemes satisfying bid secrecy and auction verifiability
(§3.3.2).

12

3.3.1 Non-verifiable auction schemes

Our first construction follows intuitively from our informal description (§1.1).
Algorithm Bid is derived from Vote, simply by representing prices as candidates.
Algorithm Open uses algorithm Tally to derive the distribution of prices and the
winning price is determined from this distribution. Moreover, we exploit a reveal
algorithm Reveal to disclose the set of winning bids.

Definition 9. Given an election scheme Γ = (SetupΓ,Vote,Tally,VerifyΓ) and
a reveal algorithm Reveal, we define Λ(Γ,Reveal) = (SetupΛ,Bid,Open,VerifyΛ)
as follows.

SetupΛ(κ) computes (pk , sk ,mb,mc)← SetupΓ(κ) and outputs (pk , sk ,mb,mc).

Bid(pk ,np, p, κ) computes b← Vote(pk ,np, p, κ) and outputs b.

Open(sk ,np, bb, κ) proceeds as follows. Computes (v, pf)← Tally(sk ,np, bb, κ).
Finds the largest integer p such that v[p] > 0 ∧ 1 ≤ p ≤ np, outputting
(0, ∅, ε) if no such integer exists. Computes b ← Reveal(sk ,np, bb, p, κ).
And outputs (p, b, ε).

VerifyΛ(pk ,np, bb, p, b, pf ′, κ) outputs 1.

Algorithm Open requires ε to be a constant symbol.

Lemma 3. Let Γ be an election scheme and Reveal be a reveal algorithm. Sup-
pose Reveal is correct with respect to Γ. We have Λ(Γ,Reveal) is an auction
scheme.

3.3.2 Verifiable auction schemes

Our second construction extends our first construction to ensure verifiability, in
particular, algorithm Open is extended to include a proof of correct tallying and
a proof of correct revealing. Moreover, algorithm Verify is used to check proofs.

Definition 10. Given an election scheme Γ = (SetupΓ,Vote,Tally,VerifyΓ), a
reveal algorithm Reveal, and a non-interactive proof system ∆ = (Prove,Verify),
we define Λ(Γ,Reveal,∆) = (SetupΛ,Bid,Open,VerifyΛ) as follows.

SetupΛ(κ) computes (pk , sk ,mb,mc)← SetupΓ(κ) and outputs (pk , sk ,mb,mc).

Bid(pk ,np, p, κ) computes b← Vote(pk ,np, p, κ) and outputs b.

Open(sk ,np, bb, κ) proceeds as follows. Computes (v, pf)← Tally(sk ,np, bb, κ).
Finds the largest integer p such that v[p] > 0 ∧ 1 ≤ p ≤ np, outputting
(0, ∅, ε) if no such integer exists. Computes b ← Reveal(sk ,np, bb, p, κ)
and pf ′ ← Prove((pk ,np, bb, p, b, κ), sk , κ), and outputs (p, b, (v, pf , pf ′)).

VerifyΛ(pk ,np, bb, p, b, σ, κ) proceeds as follows. Parses σ as (v, pf , pf ′), out-
putting 0 if parsing fails. The algorithm performs the following checks:

13

1. Checks that VerifyΓ(pk ,np, bb,v, pf , κ) = 1.

2. Checks that p is the largest integer such that v[p] > 0 ∧ 1 ≤ p ≤ np
or there is no such integer and (p, b, pf ′) = (0, ∅, ε).

3. Checks that Verify((pk ,np, bb, p, b, κ), pf ′, κ) = 1.

Outputs 1 if all of the above checks hold, and outputs 0 otherwise.

Algorithms Tally and Verify require ε to be a constant symbol.

To ensure that our construction produces auction schemes, the non-interactive
proof system must be defined for a suitable relation. We define it as follows.

Definition 11. Given an election scheme Γ = (Setup,Vote,Tally,Verify) and
a reveal algorithm Reveal, we define binary relation R(Γ,Reveal) over vectors
of length 6 and bitstrings such that ((pk ,nc, bb, v, b, κ), sk) ∈ R(Γ,Reveal) ⇔
∃mb,mc, r, r′ . b = Reveal(sk ,nc, bb, v, κ; r) ∧ (pk , sk ,mb,mc) = Setup(κ; r′) ∧
1 ≤ v ≤ nc ≤ mc ∧ |bb| ≤ mb.

Lemma 4. Let Γ be an election scheme, Reveal be a reveal algorithm, and ∆
be a non-interactive proof system for relation R(Γ,Reveal). Suppose Reveal is
correct with respect to Γ. We have Λ(Γ,Reveal,∆) is an auction scheme.

Next, we study the security of auction schemes produced by our construc-
tions, in particular, we present conditions under which our constructions pro-
duce auction schemes satisfying bid secrecy and verifiability.

4 Privacy results

We introduce a definition of ballot secrecy which is sufficient to ensure that our
construction produces auction schemes satisfying bid secrecy (assuming some
soundness conditions on the underlying election scheme and reveal algorithm).17

4.1 Ballot secrecy

Our definition of ballot secrecy strengthens an earlier definition by Smyth
[Smy16].18,19

Definition 12 (Ballot secrecy). Let Γ = (Setup,Vote,Tally,Verify) be an elec-
tion scheme, A be an adversary, κ be a security parameter, and Ballot-Secrecy(
Γ,A, κ) be the following game.

17Our privacy results could be extended to other definitions of bid secrecy and ballot secrecy,
by modifying our proofs.

18We discuss the suitability of Smyth’s definition in Section 6.3.
19Quaglia & Smyth present a tutorial-style introduction to modelling ballot secrecy [QS17],

and Smyth provides a technical introduction [Smy18a].

14

Ballot-Secrecy(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
β ←R {0, 1};L← ∅;W ← ∅;
nc ← A(pk , κ); bb← AO();
(v, pf)← Tally(sk ,nc, bb, κ);
for b ∈ bb ∧ (b, v0, v1) /∈ L do

(v′, pf ′)← Tally(sk ,nc, {b}, κ);
W ←W ∪ {(b,v′)};

g ← A(v, pf ,W);
if g = β ∧ balanced(bb,nc, L) ∧ |bb| ≤ mb ∧ nc ≤ mc then

return 1
else

return 0

Oracle O is defined as follows:

• O(v0, v1) computes b← Vote(pk ,nc, vβ , κ);L← L ∪ {(b, v0, v1)} and out-
puts b, where v0, v1 ∈ {1, ...,nc}.

We say Γ satisfies ballot secrecy (Ballot-Secrecy), if for all probabilistic polyno-
mial-time adversaries A, there exists a negligible function negl, such that for all
security parameters κ, we have Succ(Ballot-Secrecy(Γ,A, κ)) ≤ 1

2 + negl(κ).

Our formalisation of ballot secrecy challenges an adversary to determine
whether the left-right oracle produces ballots for “left” or “right” inputs. In
addition to the oracle’s outputs, the adversary is given the election outcome
and tallying proof derived by tallying the board (intuitively, this captures a
setting where the bulletin board is constructed by an adversary that casts ballots
on behalf of a subset of voters and controls the distribution of votes cast by
the remaining voters). The adversary is also given a mapping, denoted W
in Definition 12, from ballots to votes, for all ballots on the bulletin board
which were not output by the oracle. To avoid trivial distinctions, we insist
that oracle queries are balanced, i.e., predicate balanced must hold. Intuitively,
if the adversary does not succeed, then ballots for different votes cannot be
distinguished, hence, a voter cannot be linked to a vote, i.e., ballot secrecy
is preserved. By comparison, if the adversary succeeds, then ballots can be
distinguished and ballot secrecy is not preserved.

Comparing notions of ballot secrecy. The adversary is given the out-
come corresponding to tallying any ballot that was not computed by the or-
acle in Ballot-Secrecy, whereas the adversary does not have this capability in
the definition by Smyth [Smy16]. Formally, the definition of ballot secrecy by
Smyth, henceforth Smy-Ballot-Secrecy, can be derived from Ballot-Secrecy by
removing the for-loop and replacing A(v, pf ,W) with A(v, pf). It is trivial to
see that Ballot-Secrecy strengthens Smy-Ballot-Secrecy, because any adversary
against Smy-Ballot-Secrecy (without access to W) is also an adversary against

15

Ballot-Secrecy (with access to W). Moreover, Ballot-Secrecy is strictly stronger
(Proposition 5), because the outcome might leak information.20

Proposition 5. Ballot-Secrecy is strictly stronger than Smy-Ballot-Secrecy.

Nonetheless, we present conditions under which the two notions coincide (§6.2).

4.1.1 Example: Enc2Vote satisfies ballot secrecy

Intuitively, given an encryption scheme Π satisfying non-malleability, the elec-
tion scheme Enc2Vote(Π) derives ballot secrecy from the encryption scheme until
tallying and tallying maintains ballot secrecy by only disclosing the number of
votes for each candidate. Formally, the following holds.21

Proposition 6. Suppose Π is an asymmetric encryption scheme with perfect
correctness. If Π satisfies IND-PA0, then Enc2Vote(Π) satisfies Ballot-Secrecy.

4.2 Relations between ballot and bid secrecy

The main distinctions between our formalisations of privacy for elections and
auctions are as follows.

1. Our ballot secrecy game tallies the bulletin board, whereas our bid secrecy
game opens the bulletin board.

2. Our ballot secrecy game is intended to protect the privacy of all voters,
whereas our bid secrecy game is only intended to protect the privacy of
losing bidders.

3. Our ballot secrecy game provides the adversary with the vote correspond-
ing to any ballot that was not computed by the oracle, whereas the ad-
versary is not given a similar mapping in our bid secrecy game.

These distinctions support our intuition: we can construct auction schemes
satisfying bid secrecy from election schemes satisfying ballot secrecy. Yet, in-
terestingly, ballot secrecy alone is insufficient to ensure that our construction
produces auction schemes satisfying bid secrecy. This is because our construc-
tion is reliant upon the underlying tally algorithm, and a poorly designed tally
algorithm could lead to the construction of auction schemes that do not satisfy
bid secrecy. In particular, a tally algorithm that outputs an incorrect winning
price (in the presence of an adversary) can cause the set of bids for this price to
be disclosed, thereby enabling losing bidders that bid at this price to be identi-
fied, which violates bid secrecy. (E.g., suppose Alice, Bob and Charlie bid for
1, 2 and 3, respectively. And suppose 2 is incorrectly announced as the winning

20Parallel decryption leaks information similarly [BPW12b, Appendix A].
21Bellare & Sahai [BS99, §5] show that their notion of non-malleability (CNM-CPA) coincides

with a simpler indistinguishability notion (IND-PA0), thus it suffices to consider IND-PA0 in
Proposition 6.

16

price. Hence, Bob is linked to his bid, which violates bid secrecy.) Tallying
algorithms that output incorrect winning prices can satisfy correctness, because
correctness does not consider an adversary, hence, tallying might produce cor-
rect output under ideal conditions and incorrect output in the presence of an
adversary. This leads to a separation result (cf. Appendix E). Moreover, our
construction is also reliant upon the underlying reveal algorithm, which might
output an incorrect set of ballots (in the presence of an adversary), hence, there
is a further separation. Nevertheless, we can formulate soundness conditions
(that must hold in the presence of adversaries) which capture a class of election
schemes for which our intuition holds.

Weak tally soundness. Correctness for election schemes ensures that algo-
rithm Tally produces the expected election outcome under ideal conditions. A
similar property, which we call weak tally soundness, can hold in the presence
of an adversary. Our formulation of weak tally soundness (Definition 13) chal-
lenges the adversary to concoct a scenario in which the election outcome does
not include the votes of all ballots on the bulletin board that were produced by
Vote.22

We capture correct election outcomes using function correct-outcome,23

which is defined such that for all pk , nc, bb, κ, `, and v ∈ {1, . . . ,nc}, we have
correct-outcome(pk ,nc, bb, κ) is a vector of length nc and correct-outcome(pk ,
nc, bb, κ)[v] = ` ⇐⇒ ∃=`b ∈ bb \ {⊥} : ∃r : b = Vote(pk ,nc, v, κ; r). That
is, component v of vector correct-outcome(pk , bb,nc, k) equals ` iff there exist
` ballots on the bulletin board that are votes for candidate v.

Definition 13 (Weak tally soundness). Let Γ = (Setup,Vote,Tally,Verify) be
an election scheme, A be an adversary, κ be a security parameter, and W-Tally-
Soundness(Γ,A, κ) be the following game.

W-Tally-Soundness(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(nc, bb)← A(pk , κ);
(v, pf)← Tally(sk ,nc, bb, κ);
if ∃v ∈ {1, . . . ,nc} . v[v] < correct-outcome(pk ,nc, bb, κ)[v] ∧ |bb| ≤ mb ∧
nc ≤ mc then

return 1
else

return 0

22Our construction produces auction schemes satisfying bid secrecy when the underlying
tallying algorithm produces election outcomes containing too many votes for some candidates.
(E.g., suppose Alice, Bob and Charlie bid for 1, 2 and 3, respectively. And suppose 4 is
incorrectly announced as the winning price. In this case no bids are linked to that price, thus
bid secrecy is preserved.) And weak tally soundness can be satisfied by such schemes. Thus,
there is a further distinction between weak tally soundness and correctness.

23Function correct-outcome uses a counting quantifier [Sch05] denoted ∃=. Predicate
(∃=`x : P (x)) holds exactly when there are ` distinct values for x such that P (x) is sat-
isfied. Variable x is bound by the quantifier, whereas ` is free.

17

We say Γ satisfies weak tally soundness (W-Tally-Soundness), if for all prob-
abilistic polynomial-time adversaries A, there exists a negligible function negl,
such that for all security parameters κ, we have Succ(W-Tally-Soundness(Γ,A,
κ)) ≤ negl(κ).

Reveal soundness. Correctness for reveal algorithms ensures that algorithm
Reveal produces the set of ballots for a particular vote under ideal conditions.
A similar property, which we call reveal soundness, can hold in the presence of
an adversary. Our formulation of reveal soundness challenges the adversary to
output a vote and bulletin board for which the reveal algorithm produces a set
of ballots that does not coincide with the set of ballots on the bulletin board
that tally to that vote.

Definition 14 (Reveal soundness). Let Γ = (Setup,Vote,Tally,Verify) be an
election scheme, Reveal be a reveal algorithm, A be an adversary, κ be a security
parameter, and Reveal-Soundness(Γ,A, κ) be the following game.

Reveal-Soundness(Γ,A, κ) =

(pk , sk ,mb,mc)← Setup(κ);
(nc, bb, v)← A(pk , κ);
b← Reveal(sk ,nc, bb, v, κ);
W ← ∅;
for b ∈ bb do

(v, pf)← Tally(sk ,nc, {b}, κ);
W ←W ∪ {(b,v)};

if b 6= {b | (b,v) ∈W ∧ v[v] = 1} ∧ |bb| ≤ mb ∧ 1 ≤ v ≤ nc ≤ mc then
return 1

else
return 0

We say Reveal satisfies reveal soundness with respect to Γ, if for all proba-
bilistic polynomial-time adversaries A, there exists a negligible function negl,
such that for all security parameters κ, we have Succ(Reveal-Soundness(Γ,A,
κ)) ≤ negl(κ).

Lemma 7. Let Γ be an election scheme and Reveal be a reveal algorithm. If
Reveal satisfies reveal soundness with respect to Γ, then Reveal is correct with
respect to Γ.

4.2.1 Bid secrecy for non-verifiable auction schemes

We prove that our construction presented in Section 3.3.1 produces auction
schemes satisfying bid secrecy, assuming the underlying election scheme satisfies
ballot secrecy and weak tally soundness, and the underlying reveal algorithm
satisfies reveal soundness.

Proposition 8. Let Γ be an election scheme and Reveal be a reveal algorithm.
If Γ satisfies Ballot-Secrecy and W-Tally-Soundness, and Reveal satisfies reveal
soundness with respect to Γ, then Λ(Γ,Reveal) satisfies Bid-Secrecy.

18

We demonstrate the applicability of our result in the following example.

Example: Enc2Bid satisfies bid secrecy

Intuitively, given a non-malleable asymmetric encryption scheme Π, auction
scheme Enc2Bid(Π) derives bid secrecy from the encryption scheme until opening
and opening maintains bid secrecy by only disclosing winning bids and the
winning price. We can use our construction and accompanying security results
to formally prove this result.

Proposition 9. Suppose Π is an asymmetric encryption scheme with perfect
correctness. If Π satisfies IND-PA0, then Enc2Bid(Π) satisfies Bid-Secrecy.

Proof. Let us suppose there exists a reveal algorithm Reveal-Enc2Bid(Π) such
that Enc2Bid(Π) is equivalent to Λ(Enc2Vote(Π),Reveal-Enc2Bid(Π)). Hence,
we can use Proposition 8 to prove that Enc2Bid(Π) satisfies bid secrecy. We
defer formalising a suitable reveal algorithm to Appendix C.

4.2.2 Bid secrecy for verifiable auction schemes

We generalise Proposition 8 to verifiable auction schemes, assuming the non-
interactive proof system is zero-knowledge.

Theorem 10. Let Γ be an election scheme, Reveal be a reveal algorithm, and
∆ be a non-interactive proof system for relation R(Γ,Reveal). If Γ satisfies
Ballot-Secrecy and W-Tally-Soundness, Reveal satisfies reveal soundness with re-
spect to Γ, and ∆ is zero-knowledge, then Λ(Γ,Reveal,∆) satisfies Bid-Secrecy.

In Section 5.1.2, we show that weak tally soundness is implied by universal
verifiability, hence, a special case of the above theorem requires that Γ satisfies
universal verifiability, rather than weak tally soundness.

5 Verifiability results

We recall definitions of verifiability by Smyth, Frink & Clarkson [SFC16].24,25

We show that these definitions are sufficient to ensure that our construction
produces schemes satisfying auction verifiability.

5.1 Election verifiability

5.1.1 Individual verifiability

Individual verifiability challenges the adversary to generate a collision from al-
gorithm Vote.

24We discuss the suitability of the definition by Smyth, Frink & Clarkson in Section 6.3.
25Quaglia & Smyth present a tutorial-style introduction to modelling verifiability [QS17],

and Smyth provides a technical introduction [Smy18a].

19

Definition 15 (Individual verifiability [SFC16]). Let Γ = (Setup,Vote,Tally,
Verify) be an election scheme, A be an adversary, κ be a security parameter,
and Exp-IV-Ext(Γ,A, κ) be the following game.

Exp-IV-Ext(Γ,A, κ) =

(pk ,nc, v, v′)← A(κ);
b← Vote(pk ,nc, v, κ);
b′ ← Vote(pk ,nc, v′, κ);
if b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥ then

return 1
else

return 0

We say Γ satisfies individual verifiability (Exp-IV-Ext), if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl, such that
for all security parameters κ, we have Succ(Exp-IV-Ext(Γ,A, κ)) ≤ negl(κ).

5.1.2 Universal verifiability

Universal verifiability challenges the adversary to concoct a scenario in which
Verify accepts, but the election outcome is not correct. Formally, we capture
the correct election outcome using function correct-outcome. Since function
correct-outcome will now be parameterised with a public key constructed by
the adversary, rather than a public key constructed by algorithm Setup (cf.
Section 4.2), we must adopt a stronger definition of injectivity which holds for
adversarial keys. We define strong injectivity in Appendix B.2.

Definition 16 (Universal verifiability [SFC16]). Let Γ = (Setup,Vote,Tally,
Verify) be an election scheme satisfying strong injectivity, A be an adversary, κ
be a security parameter, and Exp-UV-Ext(Γ,A, κ) be the following game.

Exp-UV-Ext(Γ,A, κ) =

(pk ,nc, bb,v, pf)← A(κ);
if v 6= correct-outcome(pk ,nc, bb, κ) ∧ Verify(pk ,nc, bb,v, pf , κ) = 1
then

return 1
else

return 0

We say Γ satisfies universal verifiability (Exp-UV-Ext), if for all probabilistic
polynomial-time adversaries A, there exists a negligible function negl, such that
for all security parameters κ, we have Succ(Exp-UV-Ext(Γ,A, κ)) ≤ negl(κ).

Universal verifiability is similar to weak tally soundness, in particular, both
notions challenge the adversary to concoct a scenario in which the election
outcome is not correct. The election outcome is computed by the challenger
using algorithm Tally in W-Tally-Soundness. By comparison, the outcome is
chosen by the adversary in Exp-UV-Ext, under the condition that it must be
accepted by algorithm Verify. Since completeness asserts that outcomes output
by Tally will be accepted by Verify, we have the following result.

20

Lemma 11. Let Γ be an election scheme. If Γ satisfies Exp-UV-Ext, then Γ
satisfies W-Tally-Soundness.

It is trivial to see that universal verifiability is strictly stronger than weak tally
soundness, because Enc2Vote satisfies weak tally soundness (see proof of Propo-
sition 9), but not universal verifiability (it accepts any election outcome).

Corollary 12. Exp-UV-Ext is strictly stronger than W-Tally-Soundness.

The proof of Corollary 12 follows from Lemma 11 and the above reasoning. We
omit a formal proof.

5.2 Election verifiability implies auction verifiability

The following results demonstrate that our second construction (§3.3.2) pro-
duces verifiable auction schemes from verifiable election schemes.

Theorem 13. Let Γ be an election scheme, Reveal be a reveal algorithm, and ∆
be a non-interactive proof system for relation R(Γ,Reveal), such that Reveal is
correct with respect to Γ. If Γ satisfies Exp-IV-Ext, then Λ(Γ,Reveal,∆) satisfies
Exp-IV.

The proof of Theorem 13 follows from Definitions 4, 10 & 15 and we omit a
formal proof.

For universal verifiability, we require the non-interactive proof system to
satisfy a notion of soundness. This notion can be captured by the following
property on relation R(Γ,Reveal).

Definition 17. Given an election scheme Γ = (Setup,Vote,Tally,Verify) and
a reveal algorithm Reveal, we say relation R(Γ,Reveal) is Λ-suitable, if ((pk ,
np, bb, p, b, κ), sk) ∈ R(Γ,Reveal) implies correct-bids(pk ,np, bb, p, b, κ) with
overwhelming probability.

Theorem 14. Let Γ be an election scheme, Reveal be a reveal algorithm that is
correct with respect to Γ, and ∆ be a non-interactive proof system for relation
R(Γ,Reveal). If Γ satisfies Exp-UV-Ext, ∆ satisfies soundness, and R(Γ,Reveal)
is Λ-suitable, then Λ(Γ,Reveal,∆) satisfies Exp-UV.

6 Scope of results

Given an election scheme Γ, the scope of key results (Proposition 8 and The-
orems 10 & 14) depend on the existence of a reveal algorithm Reveal that is
correct with respect to Γ and a non-interactive proof system ∆ for relation
R(Γ,Reveal), such that ∆ satisfies soundness and zero-knowledge, Reveal satis-
fies reveal soundness with respect to Γ, and R(Γ,Reveal) is Λ-suitable. We show
that suitable reveal algorithms exist for all election schemes in Appendix D. And
we demonstrate that suitable non-interactive proof systems exist for a large class
of election schemes (§6.1). Furthermore, since our privacy results (Proposition

21

8 and Theorem 10) depend on a new notion of ballot secrecy, we provide con-
ditions under which the new notion coincides with an existing notion (§6.2).26

Finally, our results apply to election schemes that satisfy definitions of ballot
secrecy (Definition 12) and verifiability (Definitions 15 & 16), and we consider
the suitability of these definitions (§6.3).

6.1 Non-interactive proof systems suitable for our con-
struction

Intuitively, a non-interactive proof system for relation R(Γ,Reveal) must prove
Reveal(sk ,nc, bb, v, κ) outputs the set of ballots b on bulletin board bb for vote
v. Assuming Γ is a verifiable election scheme, this can be achieved by exploiting
the scheme’s tallying algorithm Tally. In particular, if b is a set of ballots for
vote v, then Tally(sk ,nc, b, κ) will output (vb, pf b) such vb is a zero-filled vector
except for index v which will contain |b| (i.e., outcome vb contains |b| votes for
candidate v and no votes for the other candidates) and this can be witnessed
by proof pf b. Moreover, if b is the set of ballots on the bulletin board bb
for vote v, then b ⊆ bb, and Tally(sk ,nc, bb, κ) will output (vbb, pf bb) such
that vb[v] = vbb[v] and this can be witnessed by proof pf bb. Thus, to prove
Reveal(sk ,nc, bb, v, κ) outputs the set of ballots b on bulletin board bb for vote
v, it suffices to output proofs pf b and pf bb. We formalise such a proof system.

Definition 18. Given an election scheme Γ = (Setup,Vote,Tally,VerifyΓ), we
define δ(Γ) = (Prove,Verify) as follows.

Prove(s, sk , κ) parses s as vector (pk ,nc, bb, v, b, κ), outputting ⊥ if parsing
fails; computes (vbb, pf bb) ← Tally(sk ,nc, bb, κ); (vb, pf b) ← Tally(sk ,nc,
b, κ); and outputs (pf bb, pf b).

Verify(s, σ, κ) proceeds as follows. Parse s as vector (pk ,nc, bb, v, b, κ) and σ
as (pf bb, pf b), outputting 0 if parsing fails. Let vb be a vector of length
nc which is zero-filled, except for index v which contains |b|, and let vbb

be the election outcome. If such a vector exists and VerifyΓ(pk ,nc, bb,vbb,
pf bb, κ) = 1 ∧ VerifyΓ(pk ,nc, b,vb, pf b, κ) = 1 ∧ vbb[v] = vb[v] ∧ b ⊆ bb,
then output 1, otherwise, output 0.

Lemma 15. Let Γ be an election scheme and Reveal be a reveal algorithm that
is correct with respect to Γ. If Γ satisfies Exp-UV-Ext and Reveal satisfies reveal
soundness with respect to Γ, then δ(Γ) is a non-interactive proof system for
relation R(Γ,Reveal).

For election schemes ensuring honest key generation (Definition 19), our con-
struction δ produces non-interactive proof systems that are sound (Lemma 16).

Definition 19 (Honest key generation). An election scheme (Setup,Vote,Tally,
Verify) ensures honest key generation, if for all probabilistic polynomial-time

26Helios satisfies the existing notion, which will be useful in our case study (§7).

22

adversaries A, there exists a negligible function negl, such that for all security
parameters κ, we have

Pr[(pk ,nc, bb,v, pf)← A(κ) : Verify(pk ,nc, bb,v, pf , κ) = 1⇒ ∃sk ,mb,mc, r

. (pk , sk ,mb,mc) = Setup(κ; r) ∧ |bb| ≤ mb ∧ nc ≤ mc] > 1− negl(κ).

Honest key generation assures that a public key is produced by an election
scheme’s Setup algorithm, parameterised by some security parameter and coins.
There is no assurance that those coins were chosen uniformly at random. Cor-
rectness and completeness, however, assume coins are chosen uniformly at ran-
dom, while perfect correctness and perfect completeness do not. Consequently,
tallying produces the expected election outcome and verification succeeds for
that outcome, when perfect correctness and perfect completeness are satisfied.

Lemma 16. Let Γ be an election scheme with perfect correctness and perfect
completeness, and let Reveal be a reveal algorithm that is correct with respect to
Γ. Suppose δ(Γ) is a non-interactive proof system for relation R(Γ,Reveal). If
Γ satisfies Exp-UV-Ext and ensures honest key generation, and Reveal satisfies
reveal soundness with respect to Γ, then δ(Γ) is sound.

For election schemes that construct tallying proofs using a zero-knowledge
non-interactive proof systems (Definition 20), our construction δ produces proof
systems satisfying zero-knowledge (Lemma 17).

Definition 20 (Tallying proof system). Let Γ = (Setup,Vote,Tally,VerifyΓ) be
an election scheme and ∆ = (Prove,Verify) be a non-interactive proof system.
We say ∆ is a tallying proof system for Γ, if for all security parameters κ,
integers nc, bulletin boards bb, outputs (pk , sk ,mb,mc) of Setup(κ), and outputs
(v, pf) of Tally(sk ,nc, bb,nc, κ), we have pf = Prove((pk ,nc, bb,v), sk , κ; r),
where coins r are chosen uniformly at random by Tally.

Lemma 17. Let Γ be an election scheme and Reveal be a reveal algorithm that
is correct with respect to Γ. Suppose δ(Γ) is a non-interactive proof system for
relation R(Γ,Reveal). If there exists a tallying proof system for Γ that satisfies
zero-knowledge, then δ(Γ) satisfies zero-knowledge.

6.2 Notions of ballot secrecy

Proposition 5 shows that Ballot-Secrecy is strictly stronger than the definition
by Smyth (Smy-Ballot-Secrecy) [Smy16]. Intuitively, this is because it is not
possible to simulate tallying in the general case (cf. Section 4.1). Neverthe-
less, if an election scheme proves correct key generation using a non-interactive
proof system satisfying simulation sound extractability, then the witness used
to construct the proof can be extracted. This typically enables the private key
to be extracted too. Hence, it is possible to simulate tallying, which suffices
to ensure Ballot-Secrecy and Smy-Ballot-Secrecy coincide. We prove this result
(Proposition 18), using a suitably formulated precondition (Definition 21) that
we straightforwardly derive from simulation sound extractability.

23

Definition 21. Let Γ = (Setup,Vote,Tally,Verify) be an election scheme and H
be a random oracle. We say Γ satisfies simulation sound private key extractibil-
ity, if there exists a probabilistic polynomial-time algorithm K, such that for all
coins r, there exists a negligible function negl and for all security parameters κ,
we have Pr[(pk , sk ,mb,mc) ← SetupH(κ; r); sk ′ ← KSetup′(H, pk) : sk = sk ′] >
1 − negl(κ), where H is a transcript of the random oracle’s input and output,
and oracle Setup′ computes (pk ′, sk ′,mb′,mc′) ← Setup(κ; r), forwarding any
oracle queries by Setup to K, and outputs (pk ′, sk ′,mb′,mc′).

Proposition 18. Given an election scheme Γ satisfying simulation sound pri-
vate key extractibility, we have Γ satisfies Ballot-Secrecy iff Γ satisfies Smy-
Ballot-Secrecy.

6.3 Suitability of security definitions

6.3.1 Ballot secrecy

Discussion of ballot secrecy originates from Chaum [Cha81] and the earliest def-
initions of ballot secrecy are due to Benaloh et al. [BY86, BT94b, Ben96]. More
recently, Bernhard, Pereira & Warinschi [BPW12a] and Cortier et al. [CGGI13a,
CGGI13b] propose definitions of ballot secrecy. Bernhard et al. [BCG+15] show
that those definitions are too weak and propose a strengthening of the definition
by Bernhard, Pereira & Warinschi. Smyth [Smy16] shows that the definition
by Bernhard et al., and other definitions, do not detect attacks that arise when
the adversary controls the bulletin board or the communication channel, and
proposes a definition that does.27 We build upon Smyth’s definition of ballot
secrecy because it appears to detect the largest class of attacks.

The aforementioned definitions of ballot secrecy all assume the tallier is
trusted.28 Hence, an election scheme that leaks the ballot-vote relation dur-
ing tallying can satisfy those definitions, because the tallier is assumed not to
disclose mappings. Indeed, election scheme Enc2Vote satisfies ballot secrecy
(Proposition 6), despite leaking such a map to the tallier. It is desirable to
distribute the tallier’s role amongst several talliers and define a definition of
ballot secrecy that detects such mappings, assuming at least one tallier is hon-
est. However, formulating such a definition would advance the state-of-the-art
in a manner that is beyond the scope of this paper, and extending our results
in this direction is left as a possibility for future work.

6.3.2 Election verifiability

Discussion of universal verifiability seems to originate from Cohen & Fischer
[CF85] and advanced by Benaloh & Tuinstra [BT94a] and Sako & Kilian [SK95].

27Smyth’s definition is based upon a technical report by Smyth [Smy14] and an extended
version of that technical report by Bernhard & Smyth [BS15].

28Perfect ballot secrecy formalises a privacy notion without trusting the tallier, but it is
only known to be satisfied by decentralised voting systems, e.g., [Sch99, KY02, Gro04, HRZ10,
KSRH12], which are unsuitable for large-scale elections.

24

More recently, Juels, Catalano & Jakobsson [JCJ02, JCJ10], Cortier et al.
[CGGI14] and Kiayias, Zacharias & Zhang [KZZ15] present definitions of elec-
tion verifiability. Smyth, Frink & Clarkson [SFC16] show that definitions by
Juels, Catalano & Jakobsson and Cortier et al. do not detect attacks that arise
when tallying and verification procedures collude nor when verification proce-
dures reject legitimate outcomes. Moreover, they show that the definition by
Kiayias, Zacharias & Zhang does not detect the latter class of attacks. Smyth,
Frink & Clarkson propose a definition of election verifiability (§5.1) that de-
tects these attacks.29 We adopt their definition because it appears to detect
the largest class of attacks. Moreover, their definition has proven to be useful
in correctly identifying three schemes that do not satisfy verifiability, and in
identifying two schemes that do. Furthermore, Helios satisfies their definitions,
which will be useful in our case study (§7).

Küsters et al. [KTV10, KTV11, KTV12] propose an alternative, holistic
notion of verifiability called global verifiability, which must be instantiated with
a goal. Smyth, Frink & Clarkson [SFC16] show that goals proposed by Küsters
et al. [KTV15, §5.2] and by Cortier et al. [CGK+16, §10.2] are too strong.
Moreover, Smyth, Frink & Clarkson propose a weakening of the goal by Küsters
et al. and show that their definition of election verifiability (§5.1) is strictly
stronger than global verifiability with that goal, which further motivates the
adoption of their definition of election verifiability. Nonetheless, the “gap” exists
due to an uninteresting technical detail, hence, similar verifiability results might-
well be derivable from global verifiability. Moreover, global verifiability would
suffice if the gap is filled.

7 Case study: Helios

We demonstrate the applicability of our construction by deriving auction
schemes from Helios [Adi08, AMPQ09, BGP11, Per16], an open-source, web-
based electronic voting system, which has been used in binding elections. The
International Association of Cryptologic Research has used Helios annually since
2010 to elect board members [BVQ10, HBH10],30 the ACM used Helios for
their 2014 general election [Sta14], the Catholic University of Louvain used
Helios to elect the university president in 2009 [AMPQ09], and Princeton Uni-
versity has used Helios since 2009 to elect student governments.31,32 Helios
defines two modes of tallying: tallying by homomorphically combining cipher-
texts [AMPQ09] and tallying by mixnet [Adi08, BGP11]. In the former mode,
Helios has been proved to satisfy ballot secrecy and verifiability, hence our re-
sults are immediately applicable. In the latter mode, no such results exist, thus
our results are only applicable if ballot secrecy and verifiability are satisfied.

29Cortier et al. [CGK+16, §8.5 & §10.1] claim that the definition by Smyth, Frink & Clarkson
is flawed, but that claim is false [SFC16, §9].

30http://www.iacr.org/elections/, accessed 13 Jul 2017.
31https://heliosvoting.wordpress.com/2009/10/13/helios-deployed-at-princeton/,

accessed 13 Jul 2017.
32https://princeton.heliosvoting.org/, accessed 13 Jul 2017.

25

This mode is nonetheless interesting, because the auction scheme we derive is
more efficient.

7.1 Tallying by homomorphic combinations

Informally, Helios with tallying by homomorphically combining ciphertexts
[AMPQ09] can be modelled as the following election scheme:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the public
key coupled with the proof.

Vote encrypts the vote, proves in zero-knowledge that the ciphertext is correctly
constructed and that the vote is selected from the sequence of candidates,
and outputs the ciphertext coupled with the proof.

Tally proceeds as follows. First, any ballots on the bulletin board for which
proofs do not hold are discarded. Secondly, the ciphertexts in the remain-
ing ballots are homomorphically combined, the homomorphic combination
is decrypted to reveal the election outcome, and correctness of decryption
is proved in zero-knowledge. Finally, the election outcome and proof of
correct decryption are output.

Verify recomputes the homomorphic combination, checks the proofs, and out-
puts 1 if these checks succeed and 0 otherwise.

The original scheme [AMPQ09] is known to be vulnerable to attacks against
ballot secrecy and verifiability,33 and defences against those attacks have been
proposed [CS11, SC11, Smy12, CS13, SB13, SB14, Smy16, BPW12a, CE16].
We adopt the formal definition of Helios proposed by Smyth, Frink & Clarkson
[SFC16], which adopts non-malleable ballots [SHM15] and uses the Fiat–Shamir
transformation with the inclusion of statements in hashes [BPW12a] to defend
against those attacks. We recall that formalisation in Appendix F and hence-
forth refer to it as Helios’16.

We derive an auction scheme from Helios’16 using our construction param-
eterised with a reveal algorithm Helios-Reveal and non-interactive proof system
δ(Helios’16).34 Reveal algorithm Helios-Reveal exploits some technical details of
Helios’16 that we have not yet discussed, so we defer the formal description to
Appendix G. Our privacy and verifiability results allow us to prove security of
the derived auction scheme.

Theorem 19. Auction scheme Λ(Helios’16,Helios-Reveal, δ(Helios’16)) satis-
fies Bid-Secrecy.

33Beyond secrecy and verifiability, attacks against eligibility are also known [SP13, SP15,
MS17].

34Formally, Λ(Helios’16,Helios-Reveal, δ(Helios’16)) is an auction scheme by Lemmata 4, 15,
& 43.

26

Proof. We have δ(Helios’16) is a non-interactive proof system for relation R(
Helios’16,Helios-Reveal) (Lemma 15) satisfying zero-knowledge (Lemma 17), as-
suming there exists a tallying proof system for Helios’16 that satisfies zero-
knowledge. Moreover, since Smyth has shown that Helios’16 satisfies Smy-
Ballot-Secrecy [Smy16], we have Helios’16 satisfies Ballot-Secrecy (Proposition 18),
assuming Helios’16 satisfies simulation sound private key extractibility. Fur-
thermore, since Smyth, Frink & Clarkson have shown that Helios’16 satisfies
Exp-UV-Ext [SFC16], we have Helios’16 satisfies W-Tally-Soundness (Lemma 11).
Hence, by Theorem 10, it suffices to prove that reveal algorithm Helios-Reveal
satisfies reveal soundness with respect to Helios’16 and to prove our earlier as-
sumptions. We defer those proofs to Lemmata 40, 42 & 44 in Appendix G.

Theorem 20. Auction scheme Λ(Helios’16,Helios-Reveal, δ(Helios’16)) satis-
fies Exp-IV and Exp-UV.

Proof. Smyth, Frink & Clarkson have shown that Helios’16 satisfies Exp-IV-Ext
and Exp-UV-Ext [SFC16]. Hence, we have Λ(Helios’16,Helios-Reveal, δ(Helios’16))
satisfies Exp-IV (Theorem 13). We have δ(Helios’16) is a non-interactive proof
system for relation R(Helios’16,Reveal) (Lemma 15) satisfying soundness
(Lemma 16), assuming Helios’16 ensures honest key generation. Hence, to show
Exp-UV is satisfied, it suffices (Theorem 14) to prove that Helios’16 satisfies
perfect correctness and perfect completeness, R(Helios’16,Helios-Reveal) is Λ-
suitable, and our previous assumption. We defer those proofs to Lemmata 38
& 39 in Appendix F and Lemmata 45 & 41 in Appendix G.

Our construction δ for non-interactive proof systems (§6) demonstrates the scope
of our results. But, more efficient proof systems might exist. Indeed, we tailor
a proof system for Helios’16 in Appendix G.2, which is more efficient than
δ(Helios’16).

Deriving auction schemes from Helios with tallying by homomorphically
combining ciphertexts is not new. Indeed, McCarthy, Smyth & Quaglia [MSQ14]
derive the Hawk auction scheme. However, they only provide an informal secu-
rity analysis for Hawk. By contrast, we derive an auction scheme for which we
provide formal security results.

7.2 Tallying by mixnet

Informally, Helios with tallying by mixnet [Adi08, BGP11] can be modelled as
the following election scheme:

Setup as per above.

Vote encrypts the vote, proves correct ciphertext construction,35 and outputs
the ciphertext coupled with the proof.

35The algorithm does not prove that the vote is selected from the sequence of candidates,
because ciphertexts will be decrypted after mixing, thus, this check can be performed later.

27

Tally proceeds as follows. First, any ballots on the bulletin board for which
proofs do not hold are discarded. Secondly, the ciphertexts in the remain-
ing ballots are mixed. Thirdly, the ciphertexts output by the mix are
decrypted to reveal the election outcome and correctness of decryption
is proved in zero-knowledge. Finally, the election outcome and proof of
correct decryption are output.

Verify checks the proofs and outputs 1 if these checks succeed and 0 otherwise.

Unlike Helios with tallying by homomorphically combining ciphertexts, there
is no description of Helios with tallying by mixnet in the cryptographic model
(indeed, [Adi08] introduces the idea, and [BGP11] describes the general work-
flow of mixnet-based elections). Thus, we must formalise a suitable description.

We formalise Helios with tallying by mixnet as the class of election schemes
HeliosM’16 (see Appendix H). Given an election scheme Γ from HeliosM’16, we
derive auction scheme Λ(Γ,HeliosM-Reveal, δ(Γ)) using a reveal algorithm that
works as follows:

HeliosM-Reveal constructs a ciphertext for the winning bid, performs plaintext
equality tests between that ciphertext and the ciphertexts input to the
mix, and outputs any ballots for which the test succeeds.36

We defer a formal definition to Appendix I.1.
Our privacy and verifiability results allow us to prove security.

Theorem 21. Given an election scheme Γ ∈ HeliosM’16, auction scheme Λ(Γ,
HeliosM-Reveal, δ(Γ)) satisfies Bid-Secrecy, Exp-IV, and Exp-UV.

The proof of Theorem 21 is similar in structure to the proofs of Theorems 19 &
20, and we defer the details to Appendix I.

8 Conclusion

We present a generic construction for auction schemes from election schemes,
and we formulate precise conditions under which auction schemes produced by
our construction are secure. Thereby demonstrating that the seemingly disjoint
research fields of auctions and elections are related. Our results advance the
unification of auctions and elections; facilitating the progression of both fields.
In particular, secure auction schemes can now be constructed from election
schemes, allowing advances in election schemes to be capitalised upon to advance
auction schemes.

36A plaintext equality test [JJ00] is a cryptographic primitive which allows a key holder to
check whether two ciphertexts contain the same plaintext, without decrypting.

28

Acknowledgements

This research was conducted in part at École Normale Supérieure and INRIA,
with support from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC project CRYSP
(259639).

A Cryptographic primitives

A.1 Asymmetric encryption

Definition 22 (Asymmetric encryption scheme [KL07]). An asymmetric en-
cryption scheme is a tuple of efficient algorithms (Gen,Enc,Dec) such that:

• Gen, denoted (pk , sk) ← Gen(κ), takes a security parameter κ as input
and outputs a key pair (pk , sk).

• Enc, denoted c← Enc(pk ,m), takes a public key pk and message m from
the plaintext space37 as input, and outputs a ciphertext c.

• Dec, denoted m← Dec(sk , c), takes a private key sk, and ciphertext c as
input, and outputs a message m or error symbol ⊥. We assume Dec is
deterministic.

Moreover, the scheme must be correct: there exists a negligible function negl,
such that for all security parameters κ and messages m from the plaintext space,
we have Pr[(pk , sk) ← Gen(κ); c ← Enc(pk ,m) : Dec(sk , c) = m] > 1 − negl(κ).
We say correctness is perfect, if the aforementioned probability is one.

Definition 23 (IND-PA0 [BS99]). Let Π = (Gen,Enc,Dec) be an asymmetric
encryption scheme, A be an adversary, κ be a security parameter, and IND-PA0(
Π,A, κ) be the following game.38

IND-PA0(Π,A, κ) =

37Definitions of asymmetric encryption schemes (including the definition by Katz & Lin-
dell [KL07]) typically leave the set defining the plaintext space implicit. Such definitions can
be extended to explicitly include the plaintext space, for instance, Smyth, Frink & Clark-
son [SFC16] present a definition in which algorithm Setup outputs the plaintext space.

38We extend set membership notation to vectors: we write x ∈ x if x is an element of the
set {x[i] : 1 ≤ i ≤ |x|}

29

(pk , sk)← Gen(κ);
β ←R {0, 1};
(m0,m1)← A(pk , κ);
y ← Enc(pk ,mβ);
c← A(y);
p← (Dec(sk , c[1]), . . . ,Dec(sk , c[|c|]));
g ← A(p);
if g = β ∧ y 6∈ c then

return 1
else

return 0

In the above game, we insist m0 and m1 are in the encryption scheme’s plain-
text space and |m0| = |m1|. We say Π satisfies indistinguishability under
chosen plaintext and parallel chosen ciphertext attacks (IND-PA0), if for all
probabilistic polynomial-time adversaries A, there exists a negligible function
negl, such that for all security parameters κ, we have Succ(IND-PA0(Π,A, κ))
≤ 1

2 + negl(κ).

Definition 24 (Homomorphic encryption [SFC16]). An asymmetric encryption
scheme Π = (Gen,Enc,Dec) is homomorphic,39 with respect to ternary operators
�, ⊕, and ⊗,40 if there exists a negligible function negl, such that for all security
parameters κ, the following conditions are satisfied:41

• For all messages m1 and m2 from Π’s plaintext space, we have Pr[(pk , sk)←
Gen(κ); c1 ← Enc(pk ,m1); c2 ← Enc(pk ,m2) : Dec(sk , c1⊗pk c2) = Dec(sk ,
c1)�pk Dec(sk , c2)] > 1− negl(κ).

• For all messages m1 and m2 from Π’s plaintext space, and all coins r1 and
r2, we have Pr[(pk , sk) ← Gen(κ) : Enc(pk ,m1; r1) ⊗pk Enc(pk ,m2; r2) =
Enc(pk ,m1 �pk m2; r1 ⊕pk r2)] > 1− negl(k).

We say Π is additively homomorphic, respectively multiplicatively homomor-
phic, if for all security parameters κ and key pairs pk , sk, such that there exists
coins r and (pk , sk) = Gen(κ; r), we have �pk is the addition operator, respec-
tively multiplication operator, in the group defined by Π’s plaintext space and
�pk .

A.2 Proof systems

Definition 25 (Non-interactive proof system [SFC16]). A non-interactive proof
system for a relation R is a tuple of algorithms (Prove,Verify), such that:

39Our definition of an asymmetric encryption scheme leaves the plaintext space implicit,
whereas, Smyth, Frink & Clarkson [SFC16] explicitly define the plaintext space; this change
is reflected in our definition of homomorphic encryption.

40Henceforth, we implicitly bind ternary operators, i.e., we write Π is a homomorphic asym-
metric encryption scheme as opposed to the more verbose Π is a homomorphic asymmetric
encryption scheme, with respect to ternary operators �, ⊕, and ⊗.

41We write X ◦pk Y for the application of ternary operator ◦ to inputs X, Y , and pk . We
occasionally abbreviate X ◦pk Y as X ◦ Y , when pk is clear from the context.

30

• Prove, denoted σ ← Prove(s, w, κ), is executed by a prover to prove
(s, w) ∈ R.

• Verify, denoted v ← Verify(s, σ, κ), is executed by anyone to check the
validity of a proof. We assume Verify is deterministic.

Moreover, the system must be complete: there exists a negligible function negl,
such that for all statement and witnesses (s, w) ∈ R and security parameters κ,
we have Pr[σ ← Prove(s, w, κ) : Verify(s, σ, κ) = 1] > 1− negl(κ).

Definition 26 (Fiat-Shamir transformation [FS87]). Given a sigma protocol
Σ = (Comm,Chal,Resp,VerifyΣ) for relation R and a hash function H, the Fiat-
Shamir transformation, denoted FS(Σ,H), is the non-interactive proof system
(Prove,Verify), defined as follows:

Prove(s, w, κ) =

(comm, t)← Comm(s, w, κ);
chal← H(comm, s);
resp← Resp(chal, t, κ);
return (comm, resp);

Verify(s, (comm, resp), κ) =

chal← H(comm, s);
return VerifyΣ(s, (comm, chal, resp), κ);

Definition 27 (Soundness). Suppose (Prove,Verify) is a non-interactive proof
system for relation R. We say (Prove,Verify) is sound, if for all probabilis-
tic polynomial-time adversaries A, there exists a negligible function negl, such
that for all security parameters κ, we have Pr[(s, σ) ← A(κ) : (s, w) 6∈ R ∧
Verify(s, σ) = 1] ≤ negl(κ).

Definition 28 (Zero-knowledge). Let ∆ = (Prove,Verify) be a non-interactive
proof system for a relation R, derived by application of the Fiat-Shamir trans-
formation to a random oracle H and a sigma protocol. Moreover, let S be an
algorithm, A be an adversary, κ be a security parameter, and ZK(∆,A,H,S, κ)
be the following game.

ZK(∆,A,H,S, κ) =

β ←R {0, 1};
g ← AH,P(κ);
if g = β then

return 1
else

return 0

Oracle P is defined on inputs (s, w) ∈ R as follows:

• P(s, w) computes if β = 0 then σ ← Prove(s, w, κ) else σ ← S(s, κ) and
outputs σ.

31

And algorithm S can patch random oracle H.42 We say ∆ satisfies
zero-knowledge, if there exists a probabilistic polynomial-time algorithm S, such
that for all probabilistic polynomial-time algorithm adversaries A, there exists a
negligible function negl, and for all security parameters κ, we have Succ(ZK(∆,
A,H,S, κ)) ≤ 1

2 + negl(κ). An algorithm S for which zero-knowledge holds is
called a simulator for (Prove,Verify).

Definition 29 (Simulation sound extractability [SFC16, BPW12a, Gro06]).
Suppose Σ is a sigma protocol for relation R, H is a random oracle, and (Prove,
Verify) is a non-interactive proof system, such that FS(Σ,H) = (Prove,Verify).
Further suppose S is a simulator for (Prove,Verify) and H can be patched by
S. Proof system (Prove,Verify) satisfies simulation sound extractability if there
exists a probabilistic polynomial-time algorithm K, such that for all probabilistic
polynomial-time adversaries A and coins r, there exists a negligible function
negl, such that for all security parameters κ, we have:43

Pr[P← (); Q← AH,P(—; r); W← KA
′
(H,P,Q) :

|Q| 6= |W| ∨ ∃j ∈ {1, . . . , |Q|} . (Q[j][1],W[j]) 6∈ R ∧
∀(s, σ) ∈ Q, (t, τ) ∈ P . Verify(s, σ, κ) = 1 ∧ σ 6= τ] ≤ negl(κ)

where A(—; r) denotes running adversary A with an empty input and coins r,
where H is a transcript of the random oracle’s input and output, and where
oracles A′ and P are defined below:

• A′(). Computes Q′ ← A(—; r), forwarding any of A’s oracle queries to
K, and outputs Q′. By running A(—; r), K is rewinding the adversary.

• P(s). Computes σ ← S(s, κ); P ← (P[1], . . . ,P[|P|], (s, σ)) and outputs
σ.

Algorithm K is an extractor for (Prove,Verify).

Theorem 22 ([BPW12a]). Let Σ be a sigma protocol for relation R, and let
H be a random oracle. Suppose Σ satisfies special soundness and special honest
verifier zero-knowledge. Non-interactive proof system FS(Σ,H) satisfies zero-
knowledge and simulation sound extractability.

The Fiat-Shamir transformation can be generalised to include an optional
string m in the hashes produced by functions Prove and Verify. We write
Prove(s, w,m, κ) and Verify(s, (comm, resp),m, k) for invocations of Prove and
Verify which include an optional string. When m is provided, it is included
in the hashes in both algorithms. That is, given FS(Σ,H) = (Prove,Verify),
the hashes are computed as follows in both algorithms: chal← H(comm, s,m).
Simulators can be generalised to include an optional string m too. We write
S(s,m, κ) for invocations of simulator S which include an optional string. The-
orem 22 can be extended to this generalisation.

42Random oracles can be programmed or patched. We will not need the details of how
patching works, so we omit them here; see Bernhard et al. [BPW12a] for a formalisation.

43We extend set membership notation to vectors: we write x ∈ x if x is an element of the
set {x[i] : 1 ≤ i ≤ |x|}.

32

B Correctness, completeness and injectivity

B.1 Definitions for auctions

Correctness asserts that the price and the set of bids output by algorithm Open
correspond to the winning price and the set of winning bids, assuming the bids
on the bulletin board were all produced by algorithm Bid.

Definition 30 (Correctness). There exists a negligible function negl, such that
for all security parameters κ, integers nb and np, and prices p1, . . . , pnb ∈
{1, . . . ,np}, it holds that

Pr[(pk , sk ,mb,mp)← Setup(κ);

for 1 ≤ i ≤ nb do
bi ← Bid(pk ,np, pi, κ);

(p, b, pf)← Open(sk ,np, {b1, . . . , bnb}, κ)
: nb ≤ mb ∧ np ≤ mp ⇒ p = max(0, p1, . . . , pnb) ∧ b = {bi | pi = p ∧ 1 ≤
i ≤ nb}] > 1− negl(κ).

Completeness stipulates that outputs of algorithm Open will be accepted
by algorithm Verify. This prevents biasing attacks [SFC16], which arise when
algorithm Verify rejects legitimate outcomes, possibly due to presence of a bid
on the bulletin board that was not produced by algorithm Bid.

Definition 31 (Completeness). There exists a negligible function negl, such
that for all security parameters κ, bulletin boards bb, and integers np, we have

Pr[(pk , sk ,mb,mp)← Setup(κ); (p, b, pf)← Open(sk ,np, bb, κ)

: |bb| ≤ mb ∧ np ≤ mp ⇒ Verify(pk ,np, bb, p, b, pf , κ) = 1] > 1− negl(κ).

Injectivity asserts that a bid can only be interpreted for one price, assuming
the public key input to algorithm Bid was produced by algorithm Setup. This
ensures that distinct prices are not mapped to the same bid by algorithm Bid.
Hence, a bid unambiguously encodes a price.

Definition 32 (Injectivity). For all security parameters κ, integers np, and
prices p and p′, such that p 6= p′, we have

Pr[(pk , sk ,mb,mp)← Setup(κ); b← Bid(pk ,np, p, κ);

b′ ← Bid(pk ,np, p′, κ) : b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

To formulate our definition of universal verifiability, we require strong injec-
tivity, which asserts that a bid can only be interpreted for one price, even if the
public key input to algorithm Bid was produced by the adversary.

Definition 33 (Strong injectivity). An auction scheme (Setup,Bid,Open,Verify)
satisfies strong injectivity, if for all security parameters κ, public keys pk, inte-
gers np, and prices p and p′, such that p 6= p′, we have Pr[b← Bid(pk ,np, p, κ);
b′ ← Bid(pk ,np, p′, κ) : b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

33

B.2 Definitions for elections

Definition 34 (Correctness [SFC16]). There exists a negligible function negl,
such that for all security parameters κ, integers nb and nc, and votes v1, . . . ,
vnb ∈ {1, . . . ,nc}, it holds that if v is a vector of length nc whose components
are all 0, then

Pr[(pk , sk ,mb,mc)← Setup(κ);

for 1 ≤ i ≤ nb do
bi ← Vote(pk ,nc, vi, κ);
v[vi]← v[vi] + 1;

(v′, pf)← Tally(sk ,nc, {b1, . . . , bnb}, κ)
: nb ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1− negl(κ).

Definition 35 (Completeness [SFC16]). There exists a negligible function negl,
such that for all security parameters κ, bulletin boards bb, and integers nc, we
have

Pr[(pk , sk ,mb,mc)← Setup(κ);

(v, pf)← Tally(sk ,nc, bb, κ)
: |bb| ≤ mb ∧ nc ≤ mc ⇒ Verify(pk ,nc, bb,v, pf , κ) = 1] > 1− negl(κ).

Definition 36 (Injectivity). For all security parameters κ, integers nc, and
votes v and v′, such that v 6= v′, we have

Pr[(pk , sk ,mb,mc)← Setup(κ); b← Vote(pk ,nc, v, κ);

b′ ← Vote(pk ,nc, v′, κ) : b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1

Injectivity for election schemes (Definition 36) is analogous to injectivity for
auction schemes (Definition 32) and is slightly weaker than the original definition
(Definition 37).

Definition 37 (Strong injectivity [SFC16]). An election scheme (Setup,Vote,
Tally,Verify) satisfies strong injectivity, if for all security parameters κ, public
keys pk, integers nc, and votes v and v′, such that v 6= v′, we have

Pr[b← Vote(pk ,nc, v, κ); b′ ← Vote(pk ,nc, v′, κ) : b 6= ⊥∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

C Proofs

By Definitions 31 & 35, we have the following facts:

Fact 23. Suppose Σ = (Setup,Bid,Open,Verify) is an auction scheme. Further
suppose for all public keys pk, integers p and np, sets b and bb, proofs pf , and
security parameters κ, we have Verify(pk ,np, bb, p, b, pf , κ) = 1. It follows that
Σ satisfies completeness.

34

Fact 24. Suppose Γ = (Setup,Vote,Tally,Verify) is an election scheme. Further
suppose for all public keys pk, integers nc, sets bb, vectors v, proofs pf , and
security parameters κ, we have Verify(pk ,nc, bb,v, pf , κ) = 1. It follows that Γ
satisfies completeness.

C.1 Proof of Lemma 1

Let Enc2Bid(Π) = (Setup,Bid,Open,Verify) and Π = (Gen,Enc,Dec). We prove
that Enc2Bid(Π) satisfies correctness, completeness, and injectivity.

First, correctness. Suppose κ is a security parameter, nb and np are integers,
and p1, . . . , pnb ∈ {1, . . . ,np} are prices. Further suppose (pk , sk ,mb,mp) is an
output of Setup(κ) such that nb ≤ mb∧np ≤ mp and for each 1 ≤ i ≤ nb we have
Bid(pk ,np, pi, κ) outputs bi. Let bb = {b1, . . . , bnb}. Suppose Open(sk ,np, bb, κ)
outputs (p, b, pf). Let d← {(b,Dec(sk , b)) | b ∈ bb}. Since Π satisfies IND-CPA,
we have b1, . . . , bnb are pairwise distinct with overwhelming probability. More-
over, since (pk , sk) are outputs of Gen and since Π is perfectly correct, we have
d = {(b1, p1), . . . , (bnp , pnp)}. By inspection of Open, we have p is the largest
integer such that (b, p) ∈ d∧ 1 ≤ p ≤ np, or no such integer exists and p = 0. It
follows that p = max(0, p1, . . . , pnb) in both cases. By further inspection of Open,
we have b = {b | (b, p′) ∈ d ∧ p′ = p} in the former case and b = ∅ in the latter
case. In the former case, we have b = {bi | pi = p ∧ 1 ≤ i ≤ nb}. And, in the
latter case, we have 0 6∈ {p1, . . . , pnb}, hence, b = {bi | pi = p∧ 1 ≤ i ≤ nb} = ∅.
It follows that correctness is (perfectly) satisfied.

Secondly, completeness. Algorithm Verify always outputs 1, hence, the result
follows from Fact 23.

Finally, injectivity. By contradiction, suppose there exists a security param-
eter κ, integer p, p′,np, and coins r, s, s′ such that

(pk , sk ,mb,mp) = Setup(κ; r) ∧ b = Bid(pk ,np, p, κ; s) ∧
b′ = Bid(pk ,np, p′, κ; s′) ∧ b 6= ⊥ ∧ b′ 6= ⊥ ∧ b = b′ ∧ p 6= p′.

By definition of Setup, we have (pk , sk) ← Gen(κ; r) and mp = {1, . . . , |m|},
where m is the encryption scheme’s plaintext space. Moreover, by definition
of Bid, we have b = Enc(pk , p; s) and b′ = Enc(pk , p′; s′). Furthermore, since
b 6= ⊥ ∧ b′ 6= ⊥, we have, by inspection of Bid, that p and p′ are from the
plaintext space. Since Π is perfectly correct, we have

Dec(sk , b) = p = p′ = Dec(sk , b′),

thus deriving a contradiction and concluding our proof.

C.2 Proof of Lemma 2

Let Enc2Vote(Π) = (Setup,Vote,Tally,Verify) and Π = (Gen,Enc,Dec). Algo-
rithm Verify always outputs 1, hence, it follows from Fact 24 that Enc2Vote(Π)
satisfies completeness. The proof that Enc2Vote(Π) satisfies injectivity is sim-
ilar to the proof that Enc2Bid(Π) satisfies injectivity (Appendix C.1), and we

35

omit a formal proof. We prove that Enc2Vote(Π) satisfies correctness. Suppose
κ is a security parameter, nb and nc are integers, and v1, . . . , vnb ∈ {1, . . . ,nc}
are votes, and v is a vector of length nc whose components are all 0. Further
suppose (pk , sk ,mb,mc) is an output of Setup(κ) such that nb ≤ mb ∧nc ≤ mc
and for each 1 ≤ i ≤ nb we have bi is an output of Vote(pk ,nc, vi, κ). Moreover,
for each 1 ≤ i ≤ nb compute v[vi]← v[vi] + 1. Suppose (v′, pf) is an output of
Tally(sk ,nc, {b1, . . . , bnb}, κ). By inspection of algorithm Tally, we have v′ is a
vector of length nc computed as follows:

for b ∈ {b1, . . . , bnb} do
v ← Dec(sk , b);
if 1 ≤ v ≤ nc then

v[v]← v[v] + 1;

Since Π satisfies IND-CPA, we have b1, . . . , bnb are pairwise distinct with over-
whelming probability. Moreover, since pk , sk are output by Gen and since Π is
perfectly correct, we have Dec(sk , bi) = vi for all i ∈ {1, . . . ,nb}. It follows that
v = v′. Hence, correctness is (perfectly) satisfied.

C.3 Proof of Lemma 3

Let Λ(Γ,Reveal) = (SetupΛ,Bid,Open,VerifyΛ) and Γ = (SetupΓ,Vote,Tally,
VerifyΓ). Algorithm VerifyΓ always outputs 1, hence, it follows from Fact 23
that Λ(Γ,Reveal) satisfies completeness. Moreover, it follows from injectivity
of Γ that Λ(Γ,Reveal) satisfies injectivity. We show that Λ(Γ,Reveal) sat-
isfies correctness. Suppose κ is a security parameter, nb and np are inte-
gers, and p1, . . . , pnb ∈ {1, . . . ,np} are prices. Further suppose (pk , sk ,mb,
mp) is an output of Setup(κ) such that nb ≤ mb ∧ np ≤ mp and for each
1 ≤ i ≤ nb we have Bid(pk ,np, pi, κ) outputs bi. Let bb = {b1, . . . , bnb}. More-
over, suppose Open(sk ,np, bb, κ) outputs (p, b, pf) and Tally(sk ,np, bb, κ) out-
puts (v, pf). Since Γ satisfies correctness, we have with overwhelming probabil-
ity that v can be equivalently computed by initialising v as a zero-filled vector
of length np and by performing the following computation:

for 1 ≤ i ≤ nb do
v[pi]← v[pi] + 1;

By inspection of Open, we have p is the largest integer such that v[p] > 0 ∧
1 ≤ p ≤ np, or no such integer exists and p = 0. It follows that p =
max(0, p1, . . . , pnb) in both cases. By further inspection of Open, we have b is an
output of Reveal(sk ,np, bb, p, κ) in the former case and b = ∅ in the latter. In
the former case we have b = {bi | pi = p∧ 1 ≤ i ≤ nb} with overwhelming prob-
ability, because reveal algorithm Reveal is correct with respect to Γ. And in the
latter case we have 0 6∈ {p1, . . . , pnb}, hence, b = {bi | pi = p ∧ 1 ≤ i ≤ nb} = ∅.
Hence, correctness is satisfied with overwhelming probability.

36

C.4 Proof of Lemma 4

The proof that Λ(Γ,Reveal,∆) satisfies correctness and injectivity is similar to
the proof that Λ(Γ,Reveal) satisfies correctness and injectivity (Appendix C.3),
and we omit a formal proof. We prove that Λ(Γ,Reveal,∆) satisfies complete-
ness.

Let Γ = (SetupΓ,Vote,Tally,VerifyΓ), ∆ = (Prove,Verify), and Λ(Γ,Reveal,
∆) = (SetupΛ,Bid,Open,VerifyΛ). Suppose κ is a security parameter, bb is a
bulletin board, and np is an integer. Further suppose (pk , sk ,mb,mp) is an
output of SetupΛ(κ) such that |bb| ≤ mb ∧ np ≤ mp and (p, b, σ) is an output
of Open(sk ,np, bb, κ). It suffices to show that VerifyΛ(pk ,np, bb, p, b, σ, κ) = 1
with overwhelming probability. By definition of VerifyΛ, we must show that
checks (1) – (3) hold with overwhelming probability.

Check (1) succeeds with overwhelming probability, because Γ satisfies com-
pleteness. Check (2) succeeds by definition of Open. We prove that Check (3)
succeeds with overwhelming probability as follows. If p 6∈ {1, . . . ,np}, then
the check vacuously holds, otherwise, we proceed as follows. Since ∆ satisfies
completeness, it suffices to show that ((pk ,np, bb, p, b, κ), sk) ∈ R(Γ,Reveal).
By aforementioned assumptions, we have 1 ≤ p ≤ np ≤ mp and |bb| ≤ mb,
moreover, there exists coins r such that (pk , sk ,mb,mp) = SetupΛ(κ; r). Fur-
thermore, by inspection of Open, there exist coins r′ such that b = Reveal(sk ,
np, bb, v, κ; r′). The result ((pk ,np, bb, p, b, κ), sk) ∈ R(Γ,Reveal) follows.

We have that VerifyΛ(pk ,np, bb, p, b, pf , κ) outputs 1 with overwhelming
probability, hence, Λ(Γ,Reveal,∆) satisfies completeness.

C.5 Proof of Proposition 5

We introduce a construction for election schemes (Definition 38) which demon-
strates that our notion of ballot secrecy (Ballot-Secrecy) is strictly stronger than
Smyth’s notion (Smy-Ballot-Secrecy).

Definition 38. Suppose Γ = (SetupΓ,VoteΓ,TallyΓ,VerifyΓ) is an election
scheme, and ε and ε′ are constant symbols that do not appear in the codomain
of VoteΓ. Let χ(Γ, ε, ε′) = (Setupχ,Voteχ,Tallyχ,Verifyχ) be defined as follows.

Setupχ(κ). Computes (pk , sk ,mb,mc) ← SetupΓ(κ), generates a nonce k of
the same length as sk, and outputs (pk , (sk , k),mb,mc).

Voteχ(pk ,nc, v, κ). Computes b← VoteΓ(pk ,nc, v, κ) and outputs b.

Tallyχ(sk ′,nc, bb, κ). Parses sk ′ as (sk , k), computes

(v, pf)← TallyΓ(sk ,nc, bb, κ);
if bb = {ε} then

v[0] = sk ⊕ k
else if bb = {ε′} then

v[0] = k

and outputs (v, pf).

37

Verifyχ(pk ,nc, bb,v, pf ′, κ) outputs 1.

Lemma 25. Suppose Γ = (SetupΓ,VoteΓ,TallyΓ,VerifyΓ) is an election scheme,
and ε and ε′ are constant symbols that do not appear in the codomain of VoteΓ.
We have χ(Γ, ε, ε′) = (Setupχ,Voteχ,Tallyχ,Verifyχ) is an election scheme.

Proof sketch. Since constant symbols ε and ε′ do not appear in the codomain of
VoteΓ, correctness of χ(Γ, ε, ε′) follows from correctness of Γ. Moreover, since al-
gorithm Verifyχ always outputs 1, we have completeness of χ(Γ, ε, ε′) by Fact 24.
Furthermore, injectivity of χ(Γ, ε, ε′) trivially follows from injectivity of Γ.

Proof sketch of Proposition 5. Intuitively, given an election scheme Γ satisfying
Smy-Ballot-Secrecy and constant symbols ε and ε′, we have χ(Γ, ε, ε′) satisfies
Smy-Ballot-Secrecy, because tallying may only leak sk ⊕ k or k, but not both.
By comparison, χ(Γ, ε) does not satisfy Ballot-Secrecy, because of the following
attack. The adversary outputs bulletin board bb∪{ε, ε′}, recovers sk ⊕ k and k
from W , and obtains the private key. By election scheme correctness, this key
can be used to recover votes from ballots.

C.6 Proof of Proposition 6

Let BS0, respectively BS1, be the game derived from Ballot-Secrecy by replacing
β ←R {0, 1} with β ← 0, respectively β ← 1. These games are trivially re-
lated to Ballot-Secrecy, namely, Succ(Ballot-Secrecy(Γ,A, κ)) = 1

2 · Succ(BS0(Γ,
A, κ)) + 1

2 · Succ(BS1(Γ,A, κ)). Moreover, let BS1:0 be the game derived from
BS1 by replacing g = β with g = 0. We relate game BS1 to BS1:0, and we
relate games BS0 and BS1:0 to the hybrid games G0,G1, . . . introduced in Def-
inition 39. We use these relations to prove Proposition 6.

Lemma 26. Let Π be an asymmetric encryption scheme satisfying IND-CPA
and let Γ = Enc2Vote(Π). If a probabilistic polynomial-time adversary A wins
game Ballot-Secrecy, then for all security parameters κ we have Succ(BS1(Γ,A,
κ)) = 1− Succ(BS1:0(Γ,A, κ)).

Definition 39. Let Γ = (Setup,Vote,Tally,Verify) be an election scheme, A be
a probabilistic polynomial-time adversary, ε be a constant symbol, and κ be a
security parameter. We introduce games G0,G1, . . . defined as follows.

38

Gi(Γ,A, ε, κ) =

(pk , sk ,mb,mc)← Setup(κ);
L← ∅;W ← ∅;
nc ← A(pk , κ); bb← AO();
v← (0, . . . , 0); // vector of length nc
for b ∈ bb ∧ (b, v0, v1) /∈ L do

(v′, pf)← Tally(sk ,nc, {b}, κ);
W ←W ∪ {(b,v′)};
v← v + v′;

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v[v0]← v[v0] + 1;

g ← A(v, ε,W);
if g = 0 ∧ balanced(bb,nc, L) ∧ |bb| ≤ mb ∧ nc ≤ mc then

return 1
else

return 0

Oracle O is defined such that O(v0, v1) computes, on inputs v0, v1 ∈ {1, ...,nc},
the following:

if |L| < i then
b← Vote(pk ,nc, v1, κ);

else
b← Vote(pk ,nc, v0, κ);

L← L ∪ {(b, v0, v1)};
return b;

Fact 27. Let Π be an asymmetric encryption scheme. Suppose Enc2Vote(Π) =
(Setup,Vote,Tally,Verify). There exists a negligible function negl, such that for
all security parameters κ, bulletin boards bb0 and bb1 such that bb0 ∩ bb1 = ∅,
and integers nc, we have

Pr[(pk , sk ,mb,mc)← Setup(κ);

(v, pf)← Tally(sk ,nc, bb0 ∪ bb1, κ);
(v0, pf 0)← Tally(sk ,nc, bb0, κ);
(v1, pf 1)← Tally(sk ,nc, bb1, κ)
: |bb0 ∪ bb1| ≤ mb ∧ nc ≤ mc ⇒ v = v0 + v1] > 1− negl(κ).

Proof of Fact 27. The proof follows from Definition 7.

Lemma 28. Let Π be an asymmetric encryption scheme satisfying IND-CPA
and let Γ = Enc2Vote(Π). Suppose ε is the constant symbol used by Γ. We
have for all probabilistic polynomial-time adversaries A and security parameters
κ that Succ(BS0(Γ,A, κ)) = Succ(G0(Γ,A, ε, κ)) and Succ(BS1:0(Γ,A, κ)) =
Succ(Gq(Γ,A, ε, κ)), where q is an upper-bound on adversary A’s oracle queries.

39

Proof. The challengers in games BS0 and G0, respectively BS1:0 and Gq, both
construct public keys using the same algorithm and provide those keys, along
with the security parameter, as input to the first adversary call, thus, these
inputs and corresponding outputs are equivalent.

Left-right oracle calls O(v0, v1) in games BS0 and G0 output ballots for
vote v0, hence, the bulletin boards are equivalent in both games. The bulletin
boards in BS1:0 and Gq are similarly equivalent, in particular, left-right oracle
calls O(v0, v1) in both games output ballots for vote v1, because q is an upper-
bound on the left-right oracle queries, therefore, |L| < q in Gq, where L is the
set constructed by the oracle in Gq.

It follows that |bb| ≤ mb ∧ nc ≤ mc in BS0, respectively BS1:0, iff |bb| ≤
mb ∧ nc ≤ mc in G0, respectively Gq. Moreover, predicate balanced is satisfied
in BS0, respectively BS1:0, iff predicate balanced is satisfied in G0, respectively
Gq. Hence, if |bb| ≤ mb ∧nc ≤ mc is not satisfied or if predicate balanced is not
satisfied, then Succ(BS0(Γ,A, κ)) = Succ(G0(Γ,A, ε, κ)) and Succ(BS1:0(Γ,A,
κ)) = Succ(Gq(Γ,A, ε, κ)), concluding our proof. Otherwise, it suffices to show
that the inputs to the third adversary call are equivalent.

By inspection of games BS0 and G0, respectively BS1:0 and Gq, it is trivial to
see that the third element of the triple input to the adversary call is equivalently
computed in each game. Furthermore, the second element of the triple input to
the adversary call in G0, respectively Gq, is ε and, by definition of Γ, it is also
ε in BS0, respectively BS1:0. It remains to show that the first element of the
triple input to the adversary call, namely the outcome, is equivalently computed
in games BS0 and G0, respectively BS1:0 and Gq.

In BS0, respectively BS1:0, the outcome is computed by tallying the bulletin
board. By comparison, in G0, respectively Gq, the outcome is computed by
individually tallying each ballot on the bulletin board that was constructed by
the adversary (i.e., ballots in {b | b ∈ bb ∧ (b, v0, v1) /∈ L}, where bb is the
bulletin board and L is the set constructed by the oracle), and by simulating
the tally of the remaining ballots (i.e., ballots constructed by the oracle, namely,
ballots in {b | b ∈ bb∧ (b, v0, v1) ∈ L}). By Fact 27, it suffices to prove that the
simulations are valid, i.e., in G0 and Gq, computing

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v[v0]← v[v0] + 1

is equivalent to

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v ← Dec(sk , b);
if 1 ≤ v ≤ nc then

v[v]← v[v] + 1

where Π = (Gen,Enc,Dec).
In G0, we have for all (b, v0, v1) ∈ L that b is an output of Enc(pk , v0) such

that 1 ≤ v0 ≤ nc. And v0 is from the plaintext space, thus, Dec(sk , b) = v0

by correctness of Π. Similarly, in Gq, we have for all (b, v0, v1) ∈ L that b is
an output of Enc(pk , v1) such that 1 ≤ v1 ≤ nc. And v1 is from the plaintext

40

space, thus, Dec(sk , b) = v1 by correctness of Π. Hence, computing for b ∈
bb ∧ (b, v0, v1) ∈ L do v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v] ← v[v] + 1 is
equivalent to

for b ∈ bb ∧ (b, v0, v1) ∈ L do
v ← Dec(sk , b);
v[v]← v[v] + 1

In G0, it follows by correctness of Π that the simulation is valid. Moreover,
since predicate balanced holds in Gq, we have for all v ∈ {1, . . . ,nc} that |{b |
b ∈ bb ∧ (b, v, v1) ∈ L}| = |{b | b ∈ bb ∧ (b, v0, v) ∈ L}|, where bb is the bulletin
board and L is the set constructed by the oracle. Hence, in Gq, computing

for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v0]← v[v0] + 1;

is equivalent to

for b ∈ bb ∧ (b, v0, v1) ∈ L do v[v1]← v[v1] + 1;

Thus, the simulation is valid in Gq too, thereby concluding our proof.

Proof of Proposition 6. Let Γ = Enc2Vote(Π). Let us suppose Γ does not satisfy
Ballot-Secrecy, i.e., there exists a probabilistic polynomial-time adversary A,
such that for all negligible functions negl, there exists a security parameter κ
and

1

2
+ negl(κ) < Succ(Ballot-Secrecy(Γ,A, κ))

By definition of BS0 and BS1, we have

=
1

2
· (Succ(BS0(Γ,A, κ)) + Succ(BS1(Γ,A, κ)))

And, by Lemma 26, we have

=
1

2
· (Succ(BS0(Γ,A, κ)) + 1− Succ(BS1:0(Γ,A, κ)))

=
1

2
+

1

2
· (Succ(BS0(Γ,A, κ))− Succ(BS1:0(Γ,A, κ)))

with non-negligible probability. Let ε be the constant symbol used by Γ and let
q be an upper-bound on the number of oracle queries made by A. Hence, by
Lemma 28, we have

=
1

2
+

1

2
· (Succ(G0(Γ,A, ε, κ))− Succ(Gq(Γ,A, ε, κ)))

which can be rewritten as a telescoping series

=
1

2
+

1

2
·
∑

0≤j<q

Succ(Gj(Γ,A, ε, κ))− Succ(Gj+1(Γ,A, ε, κ))

41

Suppose Succ(Gi(Γ,A, ε, κ)) − Succ(Gi+1(Γ,A, ε, κ)) is the largest term in the
series, where i ∈ {0, . . . , q − 1}. Hence,

≤ 1

2
+

1

2
· q · (Succ(Gi(Γ,A, ε, κ))− Succ(Gi+1(Γ,A, ε, κ)))

Thus,

1

2
+

1

q
· negl(κ) <

1

2
+

1

2
· (Succ(Gi(Γ,A, ε, κ))− Succ(Gi+1(Γ,A, ε, κ)))

From A, we construct an adversary B against Π, and show that B wins with
probability at least 1

2 + 1
2 · (Succ(Gi(Γ,A, ε, κ))− Succ(Gi+1(Γ,A, ε, κ))).

Let Γ = (Setup,Vote,Tally,Verify) and Π = (Gen,Enc,Dec). We define ad-
versary B as follows.

• B(pk , κ) computes nc ← A(pk , κ);L← ∅ and runs A, handling oracle calls
O(v0, v1) as follows, namely, if |L| < i, then compute b← Enc(pk , v1);L←
L∪{(b, v0, v1)} and return b to A, otherwise, assign v∗0 ← v0; v∗1 ← v1 and
output (v0, v1).

• B(y) assigns L← L∪{(y, v∗0 , v∗1)}; returns y to A and handles any further
oracle calls O(v0, v1) as follows, namely, computes b ← Enc(pk , v0);L ←
L ∪ {(b, v0, v1)} and returns b to A; assigns A’s output to bb; supposes
{b1, . . . , bk} = bb \ {b | (b, v0, v1) ∈ L}; and outputs (b1, . . . , bk) to the
challenger.

• B(p) initialises W as the empty set and v as a zero-filled vector of length
nc, computes

for 1 ≤ j ≤ k do
v′ ← (0, . . . , 0); // vector of length nc
if 1 ≤ p[j] ≤ nc then

v[p[j]]← v[p[j]] + 1;
v′[p[j]]← 1;

W ←W ∪ {(bj ,v′)};
for b ∈ bb ∧ (b, v0, v1) ∈ L do

v[v0]← v[v0] + 1;

g ← A(v, ε,W);

and outputs g.

We prove that B wins IND-PA0 against Π with non-negligible probability.
Suppose (pk , sk) is an output of Gen(κ). Further suppose we run B(pk , κ).

It is trivial to see that B(pk , κ) simulates the challenger and oracle in both Gi
and Gi+1. In particular, B(pk , κ) simulates the first i − 1 oracle calls. Since
Gi and Gi+1 are equivalent to adversaries that make less than i oracle queries,
adversary A must make at least i queries to ensure that q

2 ·(Succ(Gi(Γ,A, ε, κ))−

42

Succ(Gi+1(Γ,A, ε, κ))) is non-negligible. Hence, termination of B is guaranteed
with non-negligible probability. Suppose B terminates by outputting (m0,m1),
corresponding to the inputs of A’s ith left-right oracle call. Further suppose y
is an output of Enc(pk ,mβ), where β is a bit, and c is an output of B(y). If
β = 0, then B(y) simulates the oracle in Gi, otherwise (β = 1), B(y) simulates
the oracle in Gi+1. By definition of B, we have c = (b1, . . . , bk) such that

{b1, . . . , bk} = bb \ {b | (b, v0, v1) ∈ L} (1)

where bb is A’s output. Let p ← (Dec(sk , c[1]), . . . ,Dec(sk , c[|c|])). And sup-
pose g is an output of B(p). Let us assume that if β = 0, then B(p) simulates
the challenger in Gi, otherwise, B(p) simulates the challenger in Gi+1, i.e., we
assume the following claims:

Claim 29. Computing W as

W ← ∅;
for 1 ≤ j ≤ k do

v← (0, . . . , 0); // vector of length nc
if 1 ≤ p[j] ≤ nc then

v[p[j]]← 1;

W ←W ∪ {(bj ,v)};

is equivalent to computing W as

W ← ∅;
for b ∈ bb ∧ (b, v0, v1) /∈ L do

(v, pf)← Tally(sk ,nc, {b}, κ);
W ←W ∪ {(b,v)};

Claim 30. Computing v as

v← (0, . . . , 0); // vector of length nc
for 1 ≤ j ≤ k do

if 1 ≤ p[j] ≤ nc then
v[p[j]]← v[p[j]] + 1;

is equivalent to computing v as

v← (0, . . . , 0); // vector of length nc
for b ∈ bb ∧ (b, v0, v1) /∈ L do

(v′, pf)← Tally(sk ,nc, {b}, κ);
v← v + v′;

In the above claims, it suffices to consider set L, since it corresponds to the set
generated by the oracle in Gi if β = 0, respectively Gi+1 if β = 1.

By Claims 29 & 30, we have either:

• β = 0 and B(p) simulates the challenger in Gi, thus, g = β with at least
the probability that A wins Gi.

43

• β = 1 and B(p) simulates the challenger in Gi+1, thus, g 6= 0 with at least
the probability that A looses Gi+1 and, since A wins game Ballot-Secrecy,
we have g is a bit, hence, g = β.

It follows that B’s success is at least 1
2 ·Succ(Gi(Γ,A, ε, κ))+ 1

2 ·(1−Succ(Gi+1(Γ,
A, ε, κ))), thus we conclude our proof by proving Claims 29 & 30.

Proof of Claim 29. By definition of p and since Dec is deterministic, the former
computation is equivalent to

W ← ∅;
for 1 ≤ j ≤ k do

v← (0, . . . , 0); // vector of length nc
if 1 ≤ Dec(sk , bj) ≤ nc then

v[Dec(sk , bj)]← 1;

W ←W ∪ {(bj ,v)};

Moreover, by definition of Tally and properties of addition, and since Dec is
deterministic, the later computation is equivalent to

W ← ∅;
for b ∈ bb ∧ (b, v0, v1) /∈ L do

v← (0, . . . , 0); // vector of length nc
if 1 ≤ Dec(sk , b) ≤ nc then

v[Dec(sk , b)]← 1

W ←W ∪ {(b,v)};

Hence, we conclude by (1).

Proof of Claim 30. By definition of p and since Dec is deterministic, the former
computation computes vector v as

v← (0, . . . , 0); // vector of length nc
for 1 ≤ j ≤ k do

if 1 ≤ Dec(sk , bj) ≤ nc then
v[Dec(sk , bj)]← v[Dec(sk , bj)] + 1;

Moreover, by definition of Tally and since Dec is deterministic, the latter com-
putation computes vector v as

v← (0, . . . , 0); // vector of length nc
for b ∈ bb ∧ (b, v0, v1) /∈ L do

v′ ← (0, . . . , 0); // vector of length nc
if 1 ≤ Dec(sk , b) ≤ nc then

v′[Dec(sk , b)]← v′[Dec(sk , b)] + 1

v← v + v′;

which is equivalent to

44

v← (0, . . . , 0); // vector of length nc
for b ∈ bb ∧ (b, v0, v1) /∈ L do

if 1 ≤ Dec(sk , b) ≤ nc then
v[Dec(sk , b)]← v[Dec(sk , b)] + 1

Hence, we conclude by (1).

C.7 Proof of Lemma 7

Let Γ = (Setup,Vote,Tally,Verify). Suppose κ is a security parameter, nb and
nc are integers, v, v1, . . . , vnb ∈ {1, . . . ,nc} are votes, and Setup(κ) outputs
(pk , sk ,mb,mc). Suppose algorithm Reveal is not correct with respect to Γ. We
construct an adversary A against game Reveal-Soundness.

• A(pk , κ) computes for 1 ≤ i ≤ nb do bi ← Vote(pk ,nc, vi, κ) and outputs
(nc, {b1, . . . , bnb}, v).

We consider the interesting case: nb ≤ mb ∧ nc ≤ mc. Since Setup is efficient,
integers mb and mc can be efficiently computed. Moreover, since Vote is efficient,
nb ≤ mb ∧ nc ≤ mc, and v ∈ {1, . . . ,nc}, adversary A is efficient, i.e., A is a
probabilistic polynomial-time adversary.

Suppose A(pk , κ) outputs (nc, {b1, . . . , bnb}, v) and W is computed as fol-
lows.

W ← ∅;
for b ∈ bb do

(v, pf)← Tally(sk ,nc, {b}, κ);
W ←W ∪ {(b,v)};

By correctness of Γ, we have for all 1 ≤ i ≤ nb that Tally(sk ,nc, {bi}, κ) outputs
(v, pf) such that v[vi] = 1. Suppose Reveal(sk ,nc, {b1, . . . , bnb}, v, κ) outputs
b. Since Reveal is not correct with respect to Γ, we have b 6= {bi | vi = v ∧ 1 ≤
i ≤ nb} = {b | (b,v) ∈ W ∧ v[v] = 1}, with non-negligible probability. Hence,
A wins game Reveal-Soundness, concluding our proof.

C.8 Proof of Proposition 8

Let Γ = (SetupΓ,Vote,Tally,VerifyΓ), Σ = Λ(Γ,Reveal) = (SetupΣ,Bid,Open,
VerifyΣ), and ε be the constant used by algorithm Open. Suppose Σ does not
satisfy bid secrecy, hence, there exists an adversary A, such that for all negligible
functions negl, there exists a security parameter κ and Succ(Bid-Secrecy(Σ,A,
κ)) > 1

2 +negl(κ). We construct an adversary B that wins Ballot-Secrecy(Γ,B, κ):

• B(pk , κ) computes np ← A(pk , κ) and outputs np.

• B() initialises L ← ∅, computes bb ← A(), and outputs bb. Any oracle
calls from A on inputs (p0, p1) are forwarded to B’s oracle and a transcript
of calls is maintained, i.e., B computes b← O(p0, p1);L← L∪{(b, p0, p1)}
and returns b to A.

45

• B(v, pf ,W) proceeds as follows. Finds the largest integer p such that
v[p] > 0∧1 ≤ p ≤ np; if no such integer exists, then algorithm B computes
g ← A(0, ∅, ε) and outputs g. If (b, p, p1) ∈ L ∧ b ∈ bb, then abort.
Otherwise, algorithm B assigns b← {b | (b,v′) ∈W∧v′[p] = 1}, computes
g ← A(p, b, ε), and outputs g.

It is trivial to see that B(pk , κ) and B() simulate A’s challenger to A. Let us
prove that B(v, pf ,W) simulates A’s challenger. In essence, we must prove that
B simulates algorithm Open. By inspection of Ballot-Secrecy, we have v and
pf are output by algorithm Tally. By inspection of adversary B and algorithm
Open, if there is no integer p such that v[p] > 0 ∧ 1 ≤ p ≤ np, then it is trivial
to see that B simulates algorithm Open. Otherwise, it suffices to prove that:
1) B aborts with negligible probability, and 2) B simulates Reveal to produce b
with overwhelming probability. We prove each condition as follows.

1. We will prove this by contradiction. Suppose B aborts with non-negligible
probability, hence, (b, p, p1) ∈ L ∧ b ∈ bb, where p is the largest integer
such that v[p] > 0 ∧ 1 ≤ p ≤ np. By definition of Ballot-Secrecy, we
have b was produced by the oracle. And by definition of the oracle, there
exists coins r such that b = Vote(pk ,np, p, κ; r) ∨ b = Vote(pk ,np, p1,
κ; r) and 1 ≤ p, p1 ≤ nc. Since A wins the Bid-Secrecy game, we infer
balanced(bb,np, L), hence, there exists b′, p0, r such that (b′, p0, p) ∈ L ∧
b′ ∈ bb∧ 1 ≤ p0 ≤ nc ∧ ((b′ = Vote(pk ,np, p0, κ; r′)∧ b = Vote(pk ,np, p, κ;
r)) ∨ (b′ = Vote(pk ,np, p, κ; r′) ∧ b = Vote(pk ,np, p1, κ; r))).

Let v0 and v1 be zero-filled vectors of length np. By correctness of Γ, the
computation v0[p] ← 1; v1[p] ← 1; v0[p0] ← v0[p0] + 1; v1[p1] ← v1[p1] +
1; (v′, pf ′)← Tally(sk ,np, {b, b′}, κ) ensures v′ = v0 ∨ v′ = v1, with over-
whelming probability. Moreover, we have v′[p] ≥ correct-outcome(pk ,np,
{b, b′}, κ)[p] by weak tally soundness, and we also have v′[p0] ≥
correct-outcome(pk ,np, {b, b′}, κ)[p0] ∨ v′[p1] ≥ correct-outcome(pk ,np,
{b, b′}, κ)[p1]. Thus, by definition of correct-outcome, we have

b 6= ⊥ ∧ b′ 6= ⊥ (2)

It follows that

∃r . Bid(pk ,np, p, κ; r) ∈ bb \ {⊥} ∧ 1 ≤ p ≤ np (3)

Since Γ satisfies weak tally soundness, we have for all p′ ∈ {1, . . . ,np} that
v[p′] ≥ correct-outcome(pk ,np, bb, κ)[p′], with overwhelming probability.
Moreover, since p is the largest integer such that v[p] > 0 ∧ 1 ≤ p ≤ np,
we have for all p′ ∈ {p+ 1, . . . ,np} that v[p′] ≤ 0. Hence, by definition of
correct-outcome, we have, with overwhelming probability, that:

¬∃p′, r′ . Bid(pk ,np, p′, κ; r′) ∈ bb \ {⊥} ∧ p < p′ ≤ np (4)

By (3) & (4), we derive that correct-price(pk ,np, bb, p, κ) holds with over-
whelming probability. Furthermore, since A wins the Bid-Secrecy game

46

it follows for all b ∈ bb that (b, p, p1) 6∈ L with overwhelming probabil-
ity. However, we have assumed (b, p, p1) ∈ L ∧ b ∈ bb with non-negligible
probability, hence we derive a contradiction.

2. Since B aborts with negligible probability, we can infer b ∈ bb implies
(b, p, p1) 6∈ L with overwhelming probability. By this inference and by
definition of Ballot-Secrecy, we have W is a set of pairs (b,v′) such that
b ∈ bb and (v′, pf ′) is output by Tally for some pf ′. It follows by definition
of B that b = {b | (b,v′) ∈ W ∧ v′[p] = 1}. Since Reveal satisfies reveal
soundness with respect to Γ, we have B simulates Reveal.

We have shown that B simulates A’s challenger with overwhelming probability.
It follows that B determines β correctly with the same success as A with over-
whelming probability, hence, B wins Ballot-Secrecy(Γ,B, κ) with overwhelming
probability, thereby deriving a contradiction and concluding our proof.

C.9 Proof of Proposition 9

Let Enc2Vote(Π) = (Setup,Vote,Tally,Verify) and Π = (Gen,Enc,Dec). More-
over, let Reveal-Enc2Bid(Π) be algorithm Reveal-Enc2Bid such that:

• Reveal-Enc2Bid(sk ,nc, bb, v, κ) computes b← {b | b ∈ bb∧Dec(sk , b) = v}
and outputs b.

It follows from Definitions 2, 9 & 7 that auction schemes Enc2Bid(Π) and Λ(
Enc2Vote(Π),Reveal-Enc2Bid(Π)) are equivalent, assuming the same constant
is used by Enc2Vote(Π), Enc2Bid(Π), and Λ(Enc2Vote(Π),Reveal-Enc2Bid(Π)).
Hence, by Proposition 6 and 8, to show that Enc2Bid(Π) satisfies bid secrecy,
it suffices to show that Enc2Vote(Π) satisfies weak tally soundness and that
Reveal-Enc2Bid(Π) satisfies reveal soundness with respect to Enc2Vote(Π).

We prove Enc2Vote(Π) satisfies weak tally soundness by contradiction. Sup-
pose κ is a security parameter and Setup(κ) outputs (pk , sk ,mb,mc). Further
suppose nc is an integer and bb is a set such that |bb| ≤ mb ∧ nc ≤ mc. More-
over, suppose Tally(sk ,nc, bb, κ) outputs (v, pf). Let ` = correct-outcome(pk ,
nc, bb, κ)[v]. Suppose there exists v ∈ {1, . . . ,nc} such that v[v] < `. By def-
inition of correct-outcome, we have ∃=`b ∈ bb \ {⊥} : ∃r : b = Enc(pk , v; r).
And by definition of Vote, bulletin board bb contains ` ciphertexts for plaintext
v. Since pk , sk are outputs of Gen and since Π is perfectly correct, we have
that those ` ciphertexts all decrypt to v. By definition of Tally, it follows that
v[v] ≥ `, thereby deriving a contradiction.

We prove Reveal-Enc2Bid(Π) satisfies reveal soundness with respect to elec-
tion scheme Enc2Vote(Π). Suppose κ is a security parameter and Setup(κ)
outputs (pk , sk ,mb,mc). Further suppose bb is a set and nc and v are integers
such that |bb| ≤ mb ∧ 1 ≤ v ≤ nc ≤ mc. Moreover, suppose Reveal-Enc2Bid(sk ,
nc, bb, v, κ) outputs b. By definition of Reveal-Enc2Bid, we have

b = {b | b ∈ bb ∧ Dec(sk , b) = v}.

47

Suppose W is computed as follows.

W ← ∅;
for b ∈ bb do

(v, pf)← Tally(sk ,nc, {b}, κ);
W ←W ∪ {(b,v)};

Let v0 be a zero-filled vector of length nc. By definition of Tally, it follows that
W can be equivalently computed as follows.

W ← ∅;
for b ∈ bb do

v← v0;
v′ ← Dec(sk , b);
if 1 ≤ v′ ≤ nc then

v[v′]← 1;

W ←W ∪ {(b,v)};

We have for all (b,v) ∈ W that v[v] = 1 iff Dec(sk , b) = v, hence, we derive
b = {b | (b,v) ∈ W ∧ v[v] = 1}). It follows that reveal soundness with respect
to Enc2Vote(Π) is satisfied.

C.10 Proof of Theorem 10

Let Σ = Λ(Γ,Reveal) and Σ′ = Λ(Γ,Reveal,∆). By Proposition 8, we have
that Σ satisfies bid secrecy. We prove Σ′ satisfies bid secrecy by contradiction.
Suppose Σ′ does not satisfy bid secrecy, hence, there exists an adversary A,
such that for all negligible functions negl, there exists a security parameter κ
and Succ(Bid-Secrecy(Σ′,A, κ)) > 1

2 + negl(κ). Let us construct an adversary B
that wins Bid-Secrecy(Σ,B, κ).

• B(pk , κ) computes nc ← A(pk , κ) and outputs nc.

• B() computes bb← A(), forwarding any oracle calls to its own oracle, and
outputs bb.

• B(p, b, pf) computes pf ′ ← S((pk ,nc, bb, p, b, κ), κ); g ← A(p, b, pf ′) and
outputs g, where S is a simulator for ∆.

It is trivial to see that B(pk , κ) and B() simulate A’s challenger to A. More-
over, there exists a negligible function negl′ such that B(p, b, pf) simulates A’s
challenger to A with overwhelming probability 1 − negl′(κ), because outputs
of S are indistinguishable from proofs output by ∆. Let q be the probability
that A determines β correctly when A does not see the same distribution of
inputs as in Bid-Secrecy(Σ′,A, κ). The success probability of B is greater than
(1 − negl′(κ)) · (1

2 + negl(κ)) + negl′(κ) · q, hence, B wins Bid-Secrecy(Σ,B, κ),
deriving a contradiction and concluding our proof.

48

C.11 Proof of Lemma 11

Let Γ = (Setup,Vote,Tally,Verify). Suppose Γ does not satisfy tally sound-
ness, hence, there exists an adversary A, such that for all negligible func-
tions negl, there exists a security parameter κ and Succ(W-Tally-Soundness(Γ,
A, κ)) > negl(κ). We construct an adversary B that wins Exp-UV-Ext(Γ,B, κ):

• B(κ) computes (pk , sk ,mb,mc) ← Setup(κ); (nc, bb) ← A(pk , κ);
(v, pf)← Tally(sk ,nc, bb, κ) and outputs (pk ,nc, bb,v, pf).

Since A wins W-Tally-Soundness(Γ,A, κ), we have: Pr[(pk ,nc, bb,v, pf)← B(κ)
: v 6= correct-outcome(pk ,nc, bb, κ) ∧ |bb| ≤ mb ∧ nc ≤ mc] > negl(κ). More-
over, by completeness, there exists a negligible function negl′ such that: Pr[(pk ,
nc, bb,v, pf)← B(κ) : |bb| ≤ mb ∧ nc ≤ mc ⇒ Verify(pk ,nc, bb,v, pf , κ) = 1] >
1−negl′(κ). It follows that: Pr[(pk ,nc, bb,v, pf)← B(κ) : v 6= correct-outcome(
pk ,nc, bb, κ) ∧ Verify(pk ,nc, bb,v, pf , κ) = 1] > negl(κ) · (1− negl′(κ)). Hence,
B wins Exp-UV-Ext(Γ,B, κ).

C.12 Proof of Theorem 14

Let Σ = Λ(Γ,Reveal,∆) = (SetupΣ,Bid,Open,VerifyΣ), Γ = (SetupΓ,Vote,Tally,
VerifyΓ), and ∆ = (Prove,Verify).

Suppose Γ satisfies universal verifiability. By definition of universal veri-
fiability, we have Γ satisfies strong injectivity. And, by definition of strong
injectivity and by Definition 10, it is trivial to see that Σ satisfies strong in-
jectivity. We proceed by contradiction. Suppose Σ does not satisfy universal
verifiability, hence, there exists an adversary A, negligible function negl, and
security parameter κ, such that Succ(Exp-UV(Σ,A, κ)) > negl(κ), i.e.,

Pr[(pk ,np, bb, p, b, σ)← A(κ)

: (¬correct-price(pk ,np, bb, p, κ) ∨ ¬correct-bids(pk ,np, bb, p, b, κ))

∧ VerifyΣ(pk ,np, bb, p, b, σ, κ) = 1] > negl(κ) (5)

We construct adversaries B and C, from adversary A, such that either B wins
Exp-UV-Ext(Γ,B, κ) or Pr[(s, τ)← C(κ) : (s, w) 6∈ R(Γ,Reveal)∧Verify(s, τ, κ) =
1] is non-negligible:

• B(κ) computes (pk ,np, bb, p, b, σ) ← A(κ), parses σ as (v, pf , pf ′), and
outputs (pk ,np, bb,v, pf).

• C(κ) computes (pk ,np, bb, p, b, σ)← A(κ), parses σ as (v, pf , pf ′), assigns
s← (pk ,np, bb, p, b, κ), and outputs (s, pf ′).

Henceforth, we assume that adversaries B and C successfully parse σ. This
assumption is necessary for A to win Exp-UV(Σ,A, κ), hence we do not lose
generality.

49

First, we consider adversary B’s success. Let ψ(v, p,np) hold if p is the
largest integer such that v[p] > 0 ∧ 1 ≤ p ≤ np, or there is no such integer and
p = 0. By definition of ψ and by inspection of VerifyΣ, we have:

VerifyΣ(pk ,np, bb, p, b, σ, κ) = 1

⇒ VerifyΓ(pk ,np, bb, σ[1], σ[2], κ) = 1 ∧ ψ(σ[1], p,np) (6)

Let us assume the following:

ψ(v, p,np) ∧ ¬correct-price(pk ,np, bb, p, κ)

⇒ v 6= correct-outcome(pk ,np, bb, κ) (7)

By (6) & (7) and logical reasoning, we have: VerifyΣ(pk ,np, bb, p, b, σ, κ) = 1 ∧
¬correct-price(pk ,np, bb, p, κ) ⇒ VerifyΓ(pk ,np, bb, σ[1], σ[2], κ) = 1 ∧ σ[1] 6=
correct-outcome(pk ,np, bb, κ). It follows that:

Pr[(pk ,nc, bb,v, pf)← B(κ) : VerifyΓ(pk ,nc, bb,v, pf , κ) = 1

∧ v 6= correct-outcome(pk ,nc, bb, κ)]

≥ Pr[(pk ,np, bb, p, b, σ)← A(κ) : VerifyΣ(pk ,np, bb, p, b, σ, κ) = 1

∧ ¬correct-price(pk ,np, bb, p, κ)] (8)

Equation (8) relates B’s success to A’s success.
Secondly, we consider adversary C’s success. By further inspection of VerifyΣ,

we have:

VerifyΣ(pk ,np, bb, p, b, σ, κ) = 1 ⇒ Verify((pk ,np, bb, p, b, κ), σ[3], κ) = 1

Moreover, since relation R(Γ,Reveal) is Λ-suitable, we have:

¬correct-bids(pk ,np, bb, p, b, κ)⇒ ((pk ,np, bb, p, b, κ), sk) 6∈ R(Γ,Reveal)

with overwhelming probability. It follows that:

Pr[(s, τ)← C(κ) : (s, w) 6∈ R(Γ,Reveal) ∧ Verify(s, τ, κ) = 1]

≥ Pr[(pk ,np, bb, p, b, σ)← A(κ) : VerifyΣ(pk ,np, bb, p, b, σ, κ) = 1

∧ ¬correct-bids(pk ,np, bb, p, b, κ)] (9)

with overwhelming probability. Equation (9) relates C’s success to A’s success.
Finally, we use the relations with A’s success to show that either adver-

sary B wins Exp-UV-Ext(Γ,B, κ) or Pr[(s, τ) ← C(κ) : (s, w) 6∈ R(Γ,Reveal) ∧
Verify(s, τ, κ) = 1] is non-negligible, thereby deriving a contradiction. By (5),
(8), & (9), we have:

Pr[(pk ,nc, bb,v, pf)← B(κ) : VerifyΓ(pk ,nc, bb,v, pf , κ) = 1

∧ v 6= correct-outcome(pk ,nc, bb, κ)] > negl(κ)

∨ Pr[(s, τ)← C(κ) : (s, w) 6∈ R(Γ,Reveal) ∧ Verify(s, τ, κ) = 1] > negl(κ)

The above equation shows that A’s success provides an advantage for adversary
B or C. To conclude, it remains to prove (7).

50

Proof of (7). By inspection of correct-price, we have:

ψ(v, p,np) ∧ ¬correct-price(pk ,np, bb, p, κ)

= ψ(v, p,np) ∧ ((∃p′, r′ . Bid(pk ,np, p′, κ; r′) ∈ bb \ {⊥} ∧ p < p′ ≤ np)

∨ p 6∈ {0, . . . ,np}
∨ (p 6= 0 ∧ ¬∃r . Bid(pk ,np, p, κ; r) ∈ bb \ {⊥}))

Moreover, since ψ(v, p,np) ∧ p 6∈ {0, . . . ,np} is false, we have:

= ψ(v, p,np) ∧ ((∃p′, r′ . Bid(pk ,nc, p′, κ; r′) ∈ bb \ {⊥} ∧ p < p′ ≤ np)

∨ (p 6= 0 ∧ ¬∃r . Bid(pk ,np, p, κ; r) ∈ bb \ {⊥}))

Furthermore, we have ψ(v, p,np) ∧ ∃p′, r′ . Bid(pk ,nc, p′, κ; r′) ∈ bb \ {⊥} ∧
p < p′ ≤ np implies v 6= correct-outcome(pk ,np, bb, κ), because v[p′] = 0 by
definition of ψ. We also have ψ(v, p,np) ∧ p 6= 0 ∧ ¬∃r . Bid(pk ,np, p, κ; r) ∈
bb\{⊥} implies v 6= correct-outcome(pk ,np, bb, κ), because v[p] > 0. It follows
that:

⇒ v 6= correct-outcome(pk ,np, bb, κ),

thereby concluding our proof.

C.13 Proof of Lemma 15

Let Γ = (Setup,Vote,Tally,VerifyΓ) and δ(Γ) = (Prove,Verify). Suppose (s, sk) ∈
R(Γ,Reveal), i.e., s is a vector (pk ,nc, bb, v, b, κ) and there exists mb,mc, r, r′

such that b = Reveal(sk ,nc, bb, v, κ; r), (pk , sk ,mb,mc) = Setup(κ; r′), 1 ≤ v ≤
nc ≤ mc, and |bb| ≤ mb. Further suppose σ is an output of Prove(s, sk , κ). By
definition of Prove, we have σ is a pair (pf bb, pf b) such that (vbb, pf bb) is an
output of Tally(sk ,nc, bb, κ) and (vb, pf b) is an output of Tally(sk ,nc, b, κ), for
some vbb and vb.

By completeness of election scheme Γ, we have VerifyΓ(pk ,nc, bb,vbb, pf bb,
κ) = 1 and VerifyΓ(pk ,nc, b,vb, pf b, κ) = 1, with overwhelming probability.
And, since Γ satisfies universal verifiability, we have vbb = correct-outcome(pk ,
nc, bb, κ) and vb = correct-outcome(pk ,nc, b, κ), with overwhelming probabil-
ity.

Since Reveal satisfies reveal soundness with respect to Γ, it is trivial to see
b ⊆ bb, because b is required to be the largest subset of bb such that each element
tallies to a vote for v, i.e., for all b ∈ b and outputs (v, pf) of Tally(sk ,nc, {b}, κ)
we have v[v] = 1, with overwhelming probability. By completeness of Γ, we have
VerifyΓ(pk ,nc, {b},v, pf , κ) = 1, with overwhelming probability. And, since Γ
satisfies universal verifiability, we have v[v] = correct-outcome(pk ,nc, {b}, κ)[v],
with overwhelming probability. By definition of correct-outcome, we have ∃r :
b = Vote(pk ,nc, v, κ; r), with overwhelming probability. Moreover, by strong
injectivity, we have ∃!r : b = Vote(pk ,nc, v, κ; r), with overwhelming probability.

51

Hence, correct-outcome(pk ,nc, b, κ)[v] = |b|, with overwhelming probability.
Furthermore, for all v′ ∈ {1, . . . ,nc} \ {v} we have correct-outcome(pk ,nc, b,
κ)[v′] = 0. Thus, vb is a vector of length nc which is zero-filled, except for index
v which contains |b|.

Since b is required to be the largest subset of bb such that each element tallies
to a vote for v, we have for all b ∈ bb\b and outputs (v, pf) of Tally(sk ,nc, {b}, κ)
that v[v] 6= 1, VerifyΓ(pk ,nc, {b},v, pf , κ) = 1, v[v] = correct-outcome(pk ,nc,
{b}, κ)[v], and ∃=v[v]b ∈ {b} \ {⊥} : ∃r : b = Vote(pk ,nc, v, κ; r), with over-
whelming probability. It follows that v[v] = 0, with overwhelming probability.
Thus, vbb[v] = correct-outcome(pk ,nc, bb, κ)[v] = correct-outcome(pk ,nc, b,
κ)[v] = vb[v].

C.14 Proof of Lemma 16

Let Γ = (Setup,Vote,Tally,VerifyΓ) and δ(Γ) = (Prove,Verify). Suppose δ(Γ)
is not sound, i.e., there exists a probabilistic polynomial-time adversaries A,
such that for all negligible function negl, there exists a security parameters κ,
and Pr[(s, σ) ← A(κ) : (s, w) 6∈ R(Γ,Reveal) ∧ Verify(s, σ) = 1] > negl(κ).
Further suppose (s, σ) is an output of A(κ) such that (s, w) 6∈ R(Γ,Reveal) and
Verify(s, σ) = 1.

By definition of Verify, we have s parses as vector (pk ,nc, bb, v, b, κ) and
σ parses as (pf bb, pf b). Let vb be a vector of length nc that is zero-filled,
except for index v ∈ {1, . . . ,nc} which contains |b|, i.e., vb[v] = |b|. Since
Verify(s, σ) = 1, we have VerifyΓ(pk ,nc, b,vb, pf b, κ) = 1 and VerifyΓ(pk ,nc,
bb,vbb, pf bb, κ) = 1. And, since Γ ensures honest key generation, there exist
integers mb and mc, a private key sk and coins r such that (pk , sk ,mb,mc) =
Setup(κ; r), |b| ≤ mb, |bb| ≤ mb, and nc ≤ mc, with non-negligible probability.
If mb = 0, then |b| = mb and |bb| = mb, hence, b = ∅ and bb = ∅, and by
correctness of Reveal we have ∃r . b = Reveal(sk ,nc, bb, v, κ; r), thereby deriving
a contradiction and concluding our proof. Otherwise (1 ≤ mb), we proceed as
follows.

Since Γ satisfies universal verifiability, we have vb = correct-outcome(pk ,
nc, b, κ), hence, correct-outcome(pk ,nc, b, κ)[v] = |b|, with overwhelming prob-
ability. By definition of correct-outcome, we have ∃=|b|b ∈ b \ {⊥} : ∃r :
b = Vote(pk ,nc, v, κ; r), with overwhelming probability. Moreover, by strong
injectivity, we have ∃=|b|b ∈ b \ {⊥} : ∃!r : b = Vote(pk ,nc, v, κ; r), with over-
whelming probability. Thus, ⊥ 6∈ b, hence,

∃=|b|b ∈ b : ∃!r : b = Vote(pk ,nc, v, κ; r) (10)

That is, b is a set of ballots for vote v, with overwhelming probability. More-
over, by perfect correctness of Γ, we have for all b ∈ b and outputs (v, pf) of
Tally(sk ,nc, {b}, κ) that v[v] = 1, with overwhelming probability. Hence, by
definition of reveal soundness, we have

∃r . b = Reveal(sk ,nc, b, v, κ; r) (11)

52

with overwhelming probability.
Since Verify(s, σ) = 1, we have vbb[v] = vb[v], hence, vbb[v] = |b|. Moreover,

since Γ satisfies universal verifiability, we have vbb = correct-outcome(pk ,nc,
bb, κ), hence, correct-outcome(pk ,nc, bb, κ)[v] = |b|, with overwhelming prob-
ability. By definition of correct-outcome, we have ∃=|b|b ∈ bb \ {⊥} : ∃r :
b = Vote(pk ,nc, v, κ; r). Since Verify(s, σ) = 1, we have b ⊆ bb. And, since
(10), we have ∃=0b ∈ bb \ (b ∪ {⊥}) : ∃r : b = Vote(pk ,nc, v, κ; r), i.e., set
bb \ (b ∪ {⊥}) does not contain any ballot for vote v, with overwhelming prob-
ability. It follows for all b ∈ bb \ (b ∪ {⊥}) that correct-outcome(pk ,nc, {b},
κ)[v] = 0, with overwhelming probability. By perfect completeness of Γ, we
have for all b ∈ bb \ (b ∪ {⊥}) and outputs (v, pf) of Tally(sk ,nc, {b}, κ) that
Verify(pk ,nc, {b},v, pf , κ) = 1. Moreover, since Γ satisfies universal verifiabil-
ity, we have v[v] = 0. Hence, by (11) and definition of reveal soundness, we
have

∃r . b = Reveal(sk ,nc, bb \ {⊥}, v, κ; r) (12)

with overwhelming probability.
By perfect completeness of Γ, we have for all outputs (v, pf) of Tally(sk ,nc,

{⊥}, κ) that Verify(pk ,nc, {⊥},v, pf , κ) = 1. And, since Γ satisfies universal
verifiability, we have v[v] = correct-outcome(pk ,nc, bb, κ)[v]. By definition of
correct-outcome, we have ∃=v[v]b ∈ {⊥} \ {⊥} : ∃r : b = Vote(pk ,nc, v, κ; r),
hence, ∃=0b ∈ ∅ : ∃r : b = Vote(pk ,nc, v, κ; r) and v[v] = 0. Thus, by (12)
and definition of reveal soundness, we have ∃r . b = Reveal(sk ,nc, bb, v, κ; r),
thereby deriving a contradiction and concluding our proof.

C.15 Proof of Lemma 17

Let ∆ = (Prove,Verify) and δ(Γ) = (Proveδ,Verifyδ). Moreover, let S be the
simulator for ∆. We derive a simulator Sδ from Proveδ by replacing

(vbb, pf bb)← Tally(sk ,nc, bb, κ); (vb, pf b)← Tally(sk ,nc, b, κ)

with

(vbb, pf bb)← Tally(sk ,nc, bb, κ); (vb, pf b)← Tally(sk ,nc, b, κ);

pf bb ← S((pk ,nc, bb,vbb), κ); pf b ← S((pk ,nc, b,vb), κ)

Suppose δ(Γ) does not satisfy zero-knowledge, hence, there exists a probabilistic
polynomial-time adversary A, such that for all negligible functions negl, there
exists a security parameter κ and Succ(ZK(δ(Γ),A,H,Sδ, κ)) > 1

2 +negl(κ). We
construct an adversary B against ∆ from A, Sδ, and S. (For clarity, we rename
B’s oracle Q.)

• B(κ) computes g ← AH,P(κ) and outputs g, handling A’s oracle calls to
P(s, w) by computing σ ← Q′(s, w, κ) and returning σ to A, where Q′ is
derived from Sδ by replacing S with Q.

53

We prove the following contradiction: Succ(ZK(∆,B,H,S, κ)) > 1
2 + negl′(κ),

for some negligible function negl′. It suffices to show that adversary B simulates
A’s oracle P to A.

Suppose adversary A calls P(s, sk). We have (s, sk) ∈ R(Γ,Reveal), hence,
s is a vector (pk ,nc, bb, v, b, κ) such that ∃mb,mc, r, r′ . b = Reveal(sk ,nc, bb,
v, κ; r) ∧ (pk , sk ,mb,mc) = Setup(κ; r′) ∧ 1 ≤ v ≤ nc ≤ mc ∧ |bb| ≤ mb. We
distinguish two cases:

• Case I: β = 0. Adversary A expects P(s, sk) to compute σ ← Proveδ(s,
sk , κ) and return σ. By definition of Proveδ, we know σ will be a vector
(pf bb, pf b) such that (vbb, pf bb) is an output of Tally(sk ,nc, bb, κ) for
some vbb and (vb, pf b) is an output of Tally(sk ,nc, b, κ) for some vb.
Since there exists a tallying proof system for Helios’16 that satisfies zero-
knowledge, we have pf bb is an output of Prove((pk ,nc, bb,vbb), sk , κ; rbb),
for some coins rbb chosen uniformly at random. Similarly, we have pf b

is an output of Prove((pk ,nc, bb,vb), sk , κ; rb), for some coins rb chosen
uniformly at random. Thus, computing σ ← Proveδ(s, sk , κ) and returning
σ, is equivalent to computing σ ← Q′(s, w, κ) and returning σ, because
the only distinction between Q′ and Proveδ is resampling Prove.

• Case II: β = 1. Adversary A expects P(s, sk) to compute σ ← Sδ(s, κ)
and return σ, which is trivially equivalent to computing σ ← Q′(s, w, κ)
and returning σ, because Q′ and Sδ are identical in this case.

Hence, in both cases, adversary B simulates A’s oracle P to A, concluding our
proof.

C.16 Proof of Proposition 18

The if implication follows from Proposition 5, and we consider the only if im-
plication. Suppose Γ = (Setup,Vote,Tally,Verify) is an election scheme. Further
suppose Γ satisfies simulation sound private key extractibility, hence, there exists
an algorithm K satisfying the conditions of Definition 21. Moreover, suppose Γ
does not satisfy Ballot-Secrecy, i.e., there exists a probabilistic polynomial-time
adversary A, such that for all negligible functions negl, there exists a security
parameter κ and Succ(Ballot-Secrecy(Γ,A, κ)) ≤ 1

2 + negl(κ). We construct an
adversary B against Smy-Ballot-Secrecy.

• B(pk , κ) computes nc ← A(pk , κ), initialises H as a transcript of the
random oracle’s input and output, computes sk ← K(H, pk), and outputs
nc.

• B() initialises L ← ∅, computes bb ← A(), and outputs bb. Any oracle
calls from A on inputs (v0, v1) are forwarded to B’s oracle and a transcript
of calls is maintained, i.e., B computes b← O(v0, v1);L← L∪{(b, v0, v1)}
and returns b to A.

54

• B(v, pf) computes

W ← ∅;
for b ∈ bb ∧ (b, v0, v1) /∈ L do

(v′, pf ′)← Tally(sk ,nc, {b}, κ);
W ←W ∪ {(b,v′)};

g ← A(v, pf ,W);

and outputs g.

It it trivial to see that B(pk , κ) and B() simulate A’s challenger to A. Moreover,
B’s challenger computes pk such that (pk , sk ′,mb,mc) is an output of Setup(κ),
for some sk ′, mb, and mc. And, since Γ satisfies simulation sound private key
extractibility, we have B(pk , κ) computes sk such that sk = sk ′, with overwhelm-
ing probability. Hence, B(v, pf) simulates A’s challenger to A too. It follows
that B’s success is Succ(Ballot-Secrecy(Γ,A, κ)) with overwhelming probability,
thereby deriving a contradiction and concluding our proof.

D Reveal algorithms exist

We prove that every election scheme has a reveal algorithm (Lemma 31) that is
correct with respect to that election scheme (Proposition 32). Our proof follows
from election scheme correctness: algorithm Tally can be applied to every ballot
on the bulletin board to link votes to ballots. The result is largely theoretical,
because the class of reveal algorithms introduced in the proof leak the ballot-vote
mapping for every ballot on the bulletin board during execution. This does not
violate ballot secrecy, because the tallier is assumed to be trusted, i.e., the tallier
is assumed not to disclose mappings. Nevertheless, reveal algorithms which only
disclose a set of ballots for a particular vote, i.e., revealing the minimal amount
of information, are preferable for privacy, and we demonstrate the existence of
such algorithms in the context of our case study (§7).

Definition 40. Given an election scheme Γ = (Setup,Vote,Tally,Verify), we
define ρ(Γ) = Reveal as follows.

Reveal(sk ,nc, bb, v, κ) =

b← ∅;
for b ∈ bb do

(v, pf)← Tally(sk ,nc, {b}, κ);
if v[v] = 1 then

b← b ∪ {b};

return b

Lemma 31. Given an election scheme Γ, we have ρ(Γ) is a reveal algorithm.

Proposition 32. Given an election scheme Γ = (Setup,Vote,Tally,Verify), we
have ρ(Γ) is correct with respect to Γ.

55

Proof. Let ρ(Γ) = Reveal. Suppose κ is a security parameter, nb and nc
are integers, and v, v1, . . . , vnb ∈ {1, . . . ,nc} are votes. Moreover, suppose
Setup(κ) outputs (pk , sk ,mb,mc) such that nb ≤ mb ∧ nc ≤ mc and for
each 1 ≤ i ≤ nb we have Vote(pk ,nc, vi, κ) outputs bi. Further suppose that
Reveal(sk ,nc, {b1, . . . , bnb}, v, κ) outputs b. By definition of Reveal, we have
bi ∈ b if Tally(sk ,nc, {b}, κ) outputs (v, pf) such that v[v] = 1. By correctness
of Γ, we have v[v] = 1 if vi = v, with overwhelming probability. Furthermore, by
definition of Reveal, we have b ⊆ {b1, . . . , bnb}. It follows that b = {bi | vi = v}
with overwhelming probability, hence Reveal satisfies reveal algorithm correct-
ness.

Given an election scheme Γ, the scope of Proposition 8 & Theorem 10 de-
pends on the existence of a reveal algorithm Reveal satisfying reveal soundness
with respect to Γ. Moreover, the scope of Theorem 14 depends on relation
R(Γ,Reveal) being Λ-suitable. We show that ρ constructs suitable reveal algo-
rithms.

Lemma 33. Given an election scheme Γ = (Setup,Vote,Tally,Verify), we have
ρ(Γ) satisfies reveal soundness with respect to Γ.

Proof sketch. It is trivial to see that the set {b | (b,v) ∈ W ∧ v[v] = 1} con-
structed in game Reveal-Soundness is equal to the set output by ρ(Γ).

Lemma 34. Given an election scheme Γ = (Setup,Vote,Tally,Verify) satisfying
perfect correctness, perfect completeness, and universal verifiability, we have
R(Γ, ρ(Γ)) is Λ-suitable.

Proof. Let reveal algorithm ρ(Γ) = Reveal. Suppose ((pk ,nc, bb, v, b, κ), sk) ∈
R(Γ,Reveal), i.e., there exist mb, mc, r and r′ such that (pk , sk ,mb,mc) =
Setup(κ; r′), b = Reveal(sk ,nc, bb, v, κ; r), 1 ≤ v ≤ nc ≤ mc, and |bb| ≤ mb.
Let b′ = bb ∩ {b | b = Vote(pk ′,nc, v, κ; r′′)}. To prove relation R(Γ,Reveal) is
Λ-suitable, we need to show that predicate correct-bids holds, i.e., b = b′. It
suffices to prove b ∈ b iff b ∈ b′.

Case I: b ∈ b. By definition of Reveal, we have b ∈ bb and Tally(sk ,nc, {b}, κ)
outputs a vector v such that v[v] = 1. Moreover, we have Verify(pk ,nc, {b},v,
pf , κ) = 1, by perfect completeness. And we have v[v] = correct-outcome(pk ,
nc, bb, κ)[v], by universal verifiability. It follows by definition of correct-outcome
that ∃=1b ∈ bb \ {⊥} : ∃r : b = Vote(pk ,nc, v, κ; r), hence, ∃r : b = Vote(pk ,nc,
v, κ; r). Thus, b ∈ b′, concluding the proof of Case I.

Case II: b ∈ b′. By definition of b′, we have b ∈ bb and b is an output of
algorithm Vote. And, by perfect correctness of Γ, we have Tally(sk ,nc, {b}, κ)
outputs a vector v such that v[v] = 1. Thus, by definition of Reveal, we have
b ∈ b, concluding our proof.

56

E Separation result

We prove that every election scheme satisfying ballot secrecy can be modified
such that ballot secrecy is preserved, yet the auction scheme derived from the
modified scheme, using our construction, does not satisfy bid secrecy (Propo-
sition 35). Our proof exploits our construction’s reliance on the tallying algo-
rithm (§4.2): we modify the election scheme’s tallying algorithm such that it
announces an incorrect outcome in the presence of an adversary. The modifi-
cation preserves ballot secrecy, because ballot secrecy does not depend on the
correctness of the outcome. However, auction schemes derived from the mod-
ified scheme do not satisfy bid secrecy, because the adversary can cause the
announcement of an incorrect winning price, which causes the reveal algorithm
to disclose the set of bids for that price, which enables losing bidders that bid
at that price to be identified.

Proposition 35. There exists a function incorrect-price, such that for all elec-
tion schemes Γ (that permits at least two prices and at least three bids for
some security parameter) satisfying ballot secrecy, we have election scheme
incorrect-price(Γ) satisfies ballot secrecy, yet auction scheme Λ(incorrect-price(Γ),
Reveal) does not satisfy bid secrecy, for some reveal algorithm Reveal that is cor-
rect with respect to incorrect-price(Γ).

Definition 41. Let Γ = (Setup,Vote,Tally,Verify) be an election scheme. Sup-
pose ω and ε are constant symbols that cannot be output by Vote. We define
incorrect-price(Γ) = (Setup,Vote,Tally′,Verify′), where Tally′ and Verify′ are de-
fined as follows.

Tally′(pk , sk ,nc, bb, κ) initialises v as a zero-filled vector of length nc, computes
if ω ∈ bb then v[1] ← 1; pf ← ε else (v, pf) ← Tally(pk , sk ,nc, bb, κ),
and outputs (v, pf).

Verify′(pk ,nc, bb,v, pf , κ) outputs 1.

Lemma 36. Given an election scheme Γ, we have incorrect-price(Γ) is an elec-
tion scheme.

Proof sketch. It suffices to show that incorrect-price(Γ) satisfies correctness, com-
pleteness, and injectivity. Let Γ = (Setup,Vote,Tally,Verify). Correctness fol-
lows from the underlying scheme, because ω cannot be output by Vote. Com-
pleteness follows from Fact 24. And Injectivity follows from the underlying
scheme, because we do not modify Setup nor Vote.

Lemma 37. Given an election scheme Γ satisfying ballot secrecy, we have that
incorrect-price(Γ) satisfies ballot secrecy.

Proof sketch. Suppose incorrect-price(Γ) does not satisfy ballot secrecy, i.e., there
exists an adversary that wins game Ballot-Secrecy against incorrect-price(Γ).
From this adversary we can construct an adversary that wins Ballot-Secrecy

57

against Γ, simulating the tally algorithm if necessary (i.e., in cases when the bul-
letin board contains the constant used in set membership tests by incorrect-price),
hence deriving a contradiction.

Proof of Proposition 35. Suppose Γ is an election scheme satisfying ballot se-
crecy. By Lemmata 36 & 37, we have incorrect-price(Γ) is an election scheme
satisfying ballot secrecy. And, by Proposition 32, there exists a reveal algorithm
Reveal that is correct with respect to incorrect-price(Γ). By Lemma 3, we have
Λ(incorrect-price(Γ),Reveal) is an auction scheme. And it remains to show that
Λ(incorrect-price(Γ),Reveal) does not satisfy bid secrecy.

Let incorrect-price(Γ) = (SetupΓ,Vote,Tally,VerifyΓ), Λ(incorrect-price(Γ),
Reveal) = (Setup,Bid,Open,Verify), and ω be the constant used by the set mem-
bership test introduced by incorrect-price. We construct an adversary A against
game Bid-Secrecy.

• A(pk , κ) outputs 2.

• A() computes b0 ← O(1, 2); b1 ← O(2, 1); bb ← {b0, b1, ω} and outputs
bb.

• A(p, b, pf) outputs 0 if b0 ∈ b, and 1 otherwise.

Suppose κ is a security parameter and Setup(κ) outputs (pk , sk ,mb,mp) such
that 3 ≤ mb and 2 ≤ mp, i.e., the scheme permits at least three bids and two
prices. Further suppose A(pk , κ) outputs np and A() outputs bb, hence, we
have bb = {b0, b1, ω}, such that

b0 = Vote(pk ,np, 1 + β, κ; r0) ∧ b1 = Vote(pk ,np, 2− β, κ; r1),

for some coins r0 and r1, where β is the bit chosen by the challenger. Moreover,
suppose Open(sk ,np, bb, κ) outputs (p, b, pf), hence, we have b is an output of
Reveal(sk ,np, bb, p, κ), where p = 1, since ω ∈ bb. By definition of Reveal, set b
is computed as follows:

b← ∅;
for b ∈ bb do

(v, pf)← Tally(sk ,np, {b}, κ);
if v[p] = 1 then

b← b ∪ {b};

By correctness of incorrect-price(Γ), we have Tally(sk ,np, {b0}, κ) outputs (v, pf)
such that v[p] = 1 iff β = 0, with overwhelming probability. It follows that
b0 ∈ b iff β = 0, with overwhelming probability. Hence, A(p, b, pf) outputs
g = β, with overwhelming probability. Moreover, we have balanced(bb,np, L).
And

correct-price(pk ,np, bb, p, κ) ⇒ ∀b ∈ bb . (b, p, p1) 6∈ L ∧ (b, p0, p) 6∈ L

holds vacuously, because b1−β ∈ bb is a bid for 2 > p, hence, correct-price(pk ,
np, bb, p, κ) does not hold. Thus, the adversary wins against game Bid-Secrecy,
concluding our proof.

58

F Helios with tallying by homomorphic combi-
nations

Smyth, Frink & Clarkson [SFC16, SFC17] formalise a generic construction for
Helios-like election schemes (Definition 43), which is instantiated on the choice
of a homomorphic encryption scheme and sigma protocols for the relations in-
troduced in the following definition.44

Definition 42 ([SFC17]). Let (Gen,Enc,Dec) be a homomorphic asymmetric
encryption scheme and Σ be a sigma protocol for a binary relation R.45

• Σ proves correct key construction if a ((κ, pk ,m), (sk , s)) ∈ R ⇔ (pk ,
sk) = Gen(κ; s) and m is the encryption scheme’s plaintext space.

Suppose (pk , sk) = Gen(κ; s), for some security parameter κ and coins s, and m
is the encryption scheme’s plaintext space.

• Σ proves plaintext knowledge in a subspace if ((pk , c,m′), (m, r)) ∈ R ⇔
c = Enc(pk ,m; r) ∧m ∈ m′ ∧m′ ⊆ m.

• Σ proves correct decryption if ((pk , c,m), sk) ∈ R⇔ m = Dec(sk , c).

Definition 43 (Generalised Helios [SFC17]). Suppose Π = (Gen,Enc,Dec) is an
additively homomorphic asymmetric encryption scheme, Σ1 is a sigma protocol
that proves correct key construction, Σ2 is a sigma protocol that proves plaintext
knowledge in a subspace, Σ3 is a sigma protocol that proves correct decryption,
and H is a hash function. Let FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) =
(ProveCiph,VerifyCiph), and FS(Σ3,H) = (ProveDec,VerifyDec). We define elec-
tion scheme generalised Helios, denoted Helios(Π,Σ1,Σ2,Σ3,H) = (Setup,Vote,
Tally,Verify), as follows.

Setup(κ). Select coins s uniformly at random, compute (pk , sk) ← Gen(κ; s);
ρ ← ProveKey((κ, pk ,m), (sk , s), κ); pk ′ ← (pk ,m, ρ); sk ′ ← (pk , sk), let m be
the largest integer such that {0, . . . ,m} ⊆ {0} ∪ m, and output (pk ′, sk ′,m,m),
where m is the encryption scheme’s plaintext space.

Vote(pk ′,nc, v, κ). Parse pk ′ as a vector (pk ,m, ρ). Output ⊥ if parsing fails
or VerKey((κ, pk ,m), ρ, κ) 6= 1 ∨ v 6∈ {1, . . . ,nc}. Select coins r1, . . . , rnc−1

uniformly at random and compute:

44Our presentation of Helios extends algorithm Verify to check that the number of candidates
is less than the maximum number of candidates. Moreover, we insist that the number of ballots
on the bulletin board is less than the maximum number of ballots. This is necessary to ensure
Helios produces election schemes which ensure honest key generation.

45Given a binary relation R, we write ((s1, . . . , sl), (w1, . . . , wk)) ∈ R ⇔ P (s1, . . . , sl, w1,
. . . , wk) for (s, w) ∈ R ⇔ P (s1, . . . , sl, w1, . . . , wk) ∧ s = (s1, . . . , sl) ∧ w = (w1, . . . , wk),
hence, R is only defined over pairs of vectors of lengths l and k.

59

for 1 ≤ j ≤ nc − 1 do
if j = v then mj ← 1; else mj ← 0;
cj ← Enc(pk ,mj ; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (mj , rj), j, κ);

c← c1 ⊗ · · · ⊗ cnc−1;
m← m1 � · · · �mnc−1;
r ← r1 ⊕ · · · ⊕ rnc−1;
σnc ← ProveCiph((pk , c, {0, 1}), (m, r),nc, κ);

Output ballot (c1, . . . , cnc−1, σ1, . . . , σnc).

Tally(sk ′,nc, bb, κ). Initialise vectors v of length nc and pf of length nc − 1.
Compute for 1 ≤ j ≤ nc do v[j] ← 0. Parse sk ′ as a vector (pk , sk). Output
(v, pf) if parsing fails. Let {b1, . . . , b`} be the largest subset of bb such that
b1 < · · · < b` and for all 1 ≤ i ≤ ` we have bi is a vector of length 2 · nc − 1
and

∧nc−1
j=1 VerifyCiph((pk , bi[j], {0, 1}), (bi[j+nc−1]), j, κ) = 1∧VerifyCiph((pk ,

bi[1]⊗· · ·⊗ bi[nc− 1], {0, 1}), (bi[2 ·nc− 1]),nc, κ) = 1. If {b1, . . . , b`} = ∅, then
output (v, pf), otherwise, compute:

for 1 ≤ j ≤ nc − 1 do
c← b1[j]⊗ · · · ⊗ b`[j];
v[j]← Dec(sk , c);
pf [j]← ProveDec((pk , c,v[j]), sk , κ);

v[nc]← `−
∑nc−1
j=1 v[j];

Output (v, pf).

Verify(pk ′,nc, bb,v, pf , κ). Parse v as a vector of length nc, parse pf as a vec-
tor of length nc−1, parse pk ′ as a vector (pk ,m, ρ). Output 0 if parsing fails or
VerKey((κ, pk ,m), ρ, κ) 6= 1. Let {b1, . . . , b`} be the largest subset of bb satisfy-
ing the conditions given by algorithm Tally and let m be the largest integer such
that {0, . . . ,m} ⊆ m. If {b1, . . . , b`} = ∅∧

∧nc
j=1 v[j] = 0∧ |bb| ≤ m∧nc ≤ m or∧nc−1

j=1 VerifyDec(pk , b1[j]⊗· · ·⊗b`[j],v[j], pf [j], κ) = 1∧v[nc] = `−
∑nc−1
j=1 v[j]∧

1 ≤ |bb| ≤ m ∧ nc ≤ m, then output 1, otherwise, output 0.

The above algorithms assume nc > 1. Smyth, Frink & Clarkson define special
cases of Vote, Tally and Verify when nc = 1. We omit those cases for brevity
and, henceforth, assume nc is always greater than one.

Lemma 38. Suppose Π, Σ1, Σ2, Σ3 and H satisfy the preconditions of Defini-
tion 43. Further suppose Π satisfies perfect correctness and is perfectly homo-
morphic. Moreover, suppose Σ1 and Σ2 satisfy perfect completeness. We have
Helios(Π,Σ1,Σ2,Σ3,H) satisfies perfect correctness.

Proof sketch. Smyth, Frink & Clarkson shown that Helios(Π,Σ1,Σ2,Σ3,H) sat-
isfies correctness. And their proof can be adapted to show perfect correctness.
In particular, perfect completeness of Σ1 ensures that algorithm Vote does not

60

output ⊥, perfect completeness of Σ2 ensures that algorithm Tally considers bb
as the largest subset of bb satisfying the tallying conditions, and perfect cor-
rectness of Π ensures that the outcome represents the votes. Moreover, since Π
is perfectly homomorphic, homomorphic combinations are valid.

Lemma 39. Suppose Π, Σ1, Σ2, Σ3 and H satisfy the preconditions of Defi-
nition 43. Further Σ1, Σ2 and Σ3 satisfy perfect completeness, moreover, Σ2

perfectly satisfies special soundness and special honest verifier zero-knowledge,
and H is a random oracle. We have Helios(Π,Σ1,Σ2,Σ3,H) satisfies perfect
completeness.

Proof sketch. Smyth, Frink & Clarkson shown that Helios(Π,Σ1,Σ2,Σ3,H) sat-
isfies completeness. And their proof can be adapted to show perfect complete-
ness (assuming the proof of Theorem 22 can be adapted to show FS(Σ2,H)
satisfies perfect simulation sound extractability), when Σ1 and Σ3 are perfectly
complete.

Instantiations of generalised Helios work as follows [SFC16].

• Setup generates the tallier’s key pair. The public key includes a non-
interactive proof demonstrating that the key pair is correctly constructed.

• Vote takes a vote v ∈ {1, . . . ,nc} and outputs ciphertexts c1, . . . , cnc−1

such that if v < nc, then ciphertext cv contains plaintext 1 and the re-
maining ciphertexts contain plaintext 0, otherwise, all ciphertexts contain
plaintext 0. Vote also outputs proofs σ1, ..., σnc so that this can be ver-
ified. In particular, proof σj demonstrates ciphertext cj contains 0 or 1,
for all 1 ≤ j ≤ nc−1. And proof σnc demonstrates that the homomorphic
combination of ciphertexts c1⊗· · ·⊗cnc−1 contains 0 or 1. (It follows that
the voter’s ballot contains a vote for exactly one candidate.)

• Tally homomorphically combines ciphertexts representing votes for a par-
ticular candidate and decrypts the homomorphic combinations. The num-
ber of votes for a candidate v ∈ {1, . . . ,nc − 1} is simply the homomor-
phic combination of ciphertexts representing votes for that candidate. The
number of votes for candidate nc is equal to the number of votes for all
other candidates subtracted from the total number of valid ballots on the
bulletin board.

• Verify checks that each of the above steps has been performed correctly.

Generalised Helios can be instantiated to derive Helios’16, i.e., a formal defini-
tion of Helios with tallying by homomorphically combining ciphertexts (§7.1).

Definition 44 (Helios’16 [SFC17]). Election scheme Helios’16 is Helios(Π,Σ1,
Σ2,Σ3,H), where Π is additively homomorphic El Gamal [CGS97, §2], Σ1 is
the sigma protocol for proving knowledge of discrete logarithms by Chaum et
al. [CEGP87, Protocol 2], Σ2 is the sigma protocol for proving knowledge of

61

disjunctive equality between discrete logarithms by Cramer et al. [CFSY96, Fig-
ure 1], Σ3 is the sigma protocol for proving knowledge of equality between discrete
logarithms by Chaum & Pedersen [CP93, §3.2], and H is a random oracle.

Although Helios actually uses SHA-256 [NIS12], we assume that H is a random
oracle to prove our results. Moreover, we assume the sigma protocols used
by Helios’16 satisfy the preconditions of generalised Helios, that is, [CEGP87,
Protocol 2] is a sigma protocol for proving correct key construction, [CFSY96,
Figure 1] is a sigma protocol for proving plaintext knowledge in a subspace, and
[CP93, §3.2] is a sigma protocol for proving decryption. Furthermore, we assume
applying the Fiat-Shamir transformation to those sigma protocols results in non-
interactive proof systems satisfying perfect completeness. We leave formally
proving these assumptions as future work.

Bernhard et al. [BPW12a, §4] remark that the sigma protocols used by
Helios’16 to prove discrete logarithms and equality between discrete logarithms
both satisfy special soundness and special honest verifier zero-knowledge, hence,
Theorem 22 is applicable. Bernhard et al. also remark that the sigma protocol
for proving knowledge of disjunctive equality between discrete logarithms satis-
fies special soundness and “almost special honest verifier zero-knowledge” and
argue that “we could fix this[, but] it is easy to see that ... all relevant theorems
[including Theorem 22] still hold.” We adopt the same position and assume that
Theorem 22 is applicable.

G Auction schemes from Helios with tallying by
homomorphic combinations

In this appendix, let (Setup,Vote,Tally,Verify) be Helios’16. And let (Gen,
Enc,Dec) be additively homomorphic El Gamal [CGS97, §2]. Moreover, let
(ProveKey,VerKey), respectively (ProveDec,VerifyDec) and (ProveCiph,
VerifyCiph), be the non-interactive proof system derived by application of the
Fiat-Shamir transformation [FS87] to a random oracleH and the sigma protocol
for proving knowledge of discrete logarithms by Chaum et al. [CEGP87, Proto-
col 2], respectively the sigma protocol for proving knowledge of equality between
discrete logarithms by Chaum & Pedersen [CP93, §3.2], and the sigma protocol
for proving knowledge of disjunctive equality between discrete logarithms by
Cramer et al. [CFSY96].

Lemma 40. There exists a tallying proof system for Helios’16 that satisfies
zero-knowledge.

Proof sketch. Suppose κ is a security parameter, nc is an integer, bb is a bul-
letin board, (pk , sk ,mb,mc) is an output of Setup(κ), and (v, pf) is an out-
put of Tally(sk ,nc, bb,nc, κ). By inspection of Tally, we have pf is a vector of
proofs produced by ProveDec. And, since (ProveDec,VerifyDec) satisfies zero-
knowledge, there trivially exists a tallying proof system for Helios’16 that sat-
isfies zero-knowledge.

62

Lemma 41. Helios’16 ensures honest key generation.

Proof. Suppose Helios’16 does not ensure honest key generation, hence, there
exists a probabilistic polynomial-time adversary, such that for all negligible
functions negl, there exists a security parameter κ and Pr[(pk ,nc, bb,v, pf) ←
A(κ) : Verify(pk ,nc, bb,v, pf , κ) = 1 ⇒ ∃sk ,mb,mc, r . (pk , sk ,mb,mc) =
Setup(κ; r) ∧ 1 ≤ mb ∧ |bb| ≤ mb ∧ nc ≤ mc] ≤ 1 − negl(κ). Further sup-
pose (pk ′,nc, bb,v, pf) is an output of A(κ) such that Verify(pk ′,nc, bb,v, pf ,
κ) = 1. By definition of Verify, we have pk ′ is a vector (pk ,m, ρ) and VerKey((κ,
pk ,m), ρ, κ) = 1. By Theorem 22, we have (ProveKey,VerKey) satisfies simula-
tion sound extractability, hence, there exists a private key sk and coins s such
that (pk , sk) = Gen(κ; s) and m is the plaintext space, with overwhelming prob-
ability. Let m be the largest integer such that {0, . . . ,m} ⊆ m. By definition
of Setup, there exists r such that (pk ′, (pk , sk),m,m) = Setup(κ; r), with over-
whelming probability. Moreover, by definition of Verify, we have |bb| ≤ m and
nc ≤ m. Thus, we derive a contradiction and conclude our proof.

Lemma 42. Helios’16 satisfies simulation sound private key extractibility.

Proof. We have Helios’16 = Helios(Π,Σ1,Σ2,Σ3,H), where Π, Σ1, Σ2, Σ3 and
H satisfy the conditions given in Definition 44. Let FS(Σ1,H) = (ProveKey,
VerKey). Since Σ1 satisfies special soundness and special honest verifier zero-
knowledge, there exists an extractor for (ProveKey,VerKey) by Theorem 22. Let
ExtProve be such an extractor. We define algorithm K using ExtProve.

• K(H, pk ′) parses pk ′ as a vector (pk ,m, ρ), initialises Q as vector (((κ,
pk ,m), ρ)) and P as an empty vector, computes W← ExtProve(H,P,Q),
parses W[1] as a vector (sk , s), and outputs (pk , sk).

Suppose (pk ′, sk ′,mb,mc) is an of Setup(κ). By definition of algorithm Setup,
we have pk ′ = (pk ,m, ρ), sk ′ = (pk , sk), and ρ is an output of ProveKey((κ, pk ,
m), (sk , s), κ), where (pk , sk) = Gen(κ; s) for some coins s. And, since ExtProve
is an extractor for (ProveKey,VerKey), applying ExtProve to statement (κ, pk ,m)
and proof ρ allows us to extract witness (sk , s), with overwhelming probability.
Hence, K(H, pk ′) outputs sk ′, with overwhelming probability, which concludes
our proof.

G.1 Reveal algorithm

Definition 45. We define reveal algorithm Helios-Reveal as follows.

Helios-Reveal(sk ′,nc, bb, v, κ) proceeds as follows. Parse sk ′ as a vector (pk , sk).
Let {b1, . . . , b`} be the largest subset of bb satisfying the conditions given
by algorithm Tally. Compute:

63

b← ∅;
for 1 ≤ i ≤ ` do

if (v = nc ∧ Dec(sk , bi[1]⊗ · · · ⊗ bi[nc − 1]) = 0)
∨ (1 ≤ v < nc ∧ Dec(sk , bi[v]) = 1) then

b← b ∪ {bj};

Output b.

Lemma 43. Reveal algorithm Helios-Reveal is correct with respect to Helios’16.

Proof. Suppose κ is a security parameter, nb and nc are integers, and v, v1, . . . ,
vnb ∈ {1, . . . ,nc} are votes. Further suppose (pk ′, sk ′,mb,mc) is an output of
Setup(κ) such that nb ≤ mb ∧ nc ≤ mc, hence sk ′ is a tuple (pk , sk). Moreover,
suppose for each 1 ≤ i ≤ nb that bi is an output of Vote(pk ′,nc, vi, κ). Let
bb = {b1, . . . , bnb}. Suppose b is an output of Helios-Reveal(sk ′,nc, bb, v, κ). By
definition of Helios’16, the largest subset of bb satisfying the conditions given by
algorithm Tally, hence, Helios-Reveal operates on bb, rather than a strict subset
of bb. We distinguish two cases.

• Case I: 1 ≤ v < nc. By definition of Vote, we have for all b ∈ bb that
b[v] is an El Gamal ciphertext. Moreover, if vi = v, then b[v] enciphers
1, otherwise, b[v] enciphers 0. By correctness of El Gamal, we have with
overwhelming probability that vi = v implies Dec(sk , b[v]) = 1. Hence, by
definition of Helios-Reveal, we have b ∈ b.

• Case II: v = nc. By definition of Vote, we have for all b ∈ bb that
b[1], . . . , b[nc − 1] are El Gamal ciphertexts, each enciphering 0. Given
that El Gamal is homomorphic, we have with overwhelming probability
that Dec(sk , b[1]⊗· · ·⊗b[nc−1]) = 0. Hence, by definition of Helios-Reveal,
we have b ∈ b.

In both cases, it follows that b = {bi | vi = v ∧ 1 ≤ i ≤ nb}, with overwhelming
probability, thereby concluding our proof.

Lemma 44. Reveal algorithm Helios-Reveal satisfies reveal soundness with re-
spect to Helios’16.

Proof. Suppose κ is a security parameter, (pk ′, sk ′,mb,mc) is an output of
Setup(κ), and (nc, bb, v) is an output of A(pk ′, κ), such that 1 ≤ v ≤ nc ≤
mc and |bb| ≤ mb. By definition of algorithm Setup, we have pk ′ is a triple
(pk ,m, ρ), such that (pk , sk) is an output of Gen, m is the plaintext space, and
ρ is a proof of correct key construction. Further suppose that b is an output
of Helios-Reveal. To prove that Helios-Reveal satisfies reveal soundness with
respect to Helios’16, it suffices to show b = {b | (b,v) ∈ W ∧ v[v] = 1} with
overwhelming probability, where W is computed as follows: W ← ∅; for b ∈ bb
do (v, pf)← Tally(sk ′,nc, {b}, κ); W ←W ∪ {(b,v)}.

By definition of algorithm Tally, we have for all (b,v) ∈ W that b ∈ bb and
either ∅ or {b} is the largest subset of {b} satisfying the conditions given by

64

algorithm Tally, moreover, in the former case v is a zero-filled vector of length
nc and in the latter case b[1], . . . , b[nc−1] are ciphertexts on plaintexts in {0, 1}
and v = (Dec(sk , b[1]), . . . ,Dec(sk , b[nc−1]), 1−

∑nc−1
j=1 v[j]), with overwhelming

probability.
Let W ′ be the largest subset of W such that for all (b,v) ∈W ′ we have v is

not a zero-filled vector. It follows that:

{b | (b,v) ∈W ∧ v[v] = 1} = {b | (b,v) ∈W ′ ∧ v[v] = 1} (13)

Let {b1, . . . , b`} be the largest subset of bb satisfying the tallying conditions. It
follows that:

{b1, . . . , b`} = {b | (b,v) ∈W ′} (14)

We distinguish two cases.

• Case I: 1 ≤ v ≤ nc − 1. We have for all (b,v) ∈ W ′ that v[v] =
Dec(sk , b[v]). By syntactic equality and (13), it suffices to prove b =
{b | (b,v) ∈ W ′ ∧ Dec(sk , b[v]) = 1}. By definition of Helios-Reveal, we
have b = {bi | 1 ≤ i ≤ `∧Dec(sk , bi[v]) = 1}. Hence, we conclude by (14).

• Case II: v = nc. We have for all (b,v) ∈W ′ that v[nc] = 1−
∑nc−1
j=1 v[j].

By syntactic equality and (13), it suffices to prove b = {b | (b,v) ∈ W ′ ∧
1−

∑nc−1
j=1 v[j] = 1} = {b | (b,v) ∈W ′∧

∑nc−1
j=1 v[j] = 0}. By definition of

Helios-Reveal, we have b = {bi | 1 ≤ i ≤ `∧Dec(sk , bi[1]⊗· · ·⊗bi[nc−1]) =
0}. By (14), it suffices to prove

∧
b∈{b1,...,b`} Dec(sk , b[1]⊗· · ·⊗b[nc−1]) =∑nc−1

j=1 v[j] =
∑nc−1
j=1 Dec(sk , b[j]). We have for all b ∈ {b1, . . . , b`} that

b[1], . . . , b[nc−1] are ciphertexts on plaintexts in {0, 1}. And, by definition

of Setup, we have {0, . . . ,nc−1} ⊆ m. It follows that
∑nc−1
j=1 Dec(sk , b[j]) ∈

m. Since the encryption scheme is additively homomorphic, we have∑nc−1
j=1 Dec(sk , b[j]) = Dec(sk , b[1]) � · · · � Dec(sk , b[nc − 1]), moreover,

b[1]⊗ · · · ⊗ b[nc − 1] is a ciphertext, with overwhelming probability. And,
by perfect correctness, we have Dec(sk , b[1]) � · · · � Dec(sk , b[nc − 1]) =
Dec(sk , b[1]⊗· · ·⊗b[nc−1]). Hence, we conclude

∧
b∈{b1,...,b`} Dec(sk , b[1]⊗

· · · ⊗ b[nc − 1]) =
∑nc−1
j=1 Dec(sk , b[j]), with overwhelming probability.

Hence, Helios-Reveal satisfies reveal soundness with respect to Helios’16.

Lemma 45. Relation R(Helios’16,Helios-Reveal) is Λ-suitable.

Proof. Suppose ((pk ′,nc, bb, v, b, κ), sk ′) ∈ R(Helios’16,Helios-Reveal). By defi-
nition of R(Helios’16,Helios-Reveal), there exist mb,mc, r, r′ such that (pk ′, sk ′,
mb,mc) = Setup(κ; r′), b = Helios-Reveal(sk ′,nc, bb, v, κ; r), and 1 ≤ v ≤ nc ≤
mc. Let b′ = bb∩{b | b = Vote(pk ′,nc, v, κ; r′′)}. To prove relation R(Helios’16,
Helios-Reveal) is Λ-suitable, we need to show that predicate correct-bids holds,
i.e., b = b′. It suffices to prove b ∈ b iff b ∈ b′.

65

Case I: b ∈ b. By definition of Helios-Reveal, private key sk ′ parses as a vector
(pk , sk) and b ∈ bb, hence, it remains to prove b is an output of algorithm Vote
for vote v.

By definition of Helios-Reveal, we have that b satisfies the conditions given by
algorithm Tally. Thus, b is a vector of length 2 ·nc−1 and

∧nc−1
j=1 VerifyCiph((pk ,

b[j], {0, 1}), (b[j+ nc− 1]), j) = 1∧VerifyCiph((pk , b[1]⊗· · ·⊗ b[nc− 1], {0, 1}), (
b[2·nc−1]),nc) = 1. In their proof that Helios’16 satisfies universal verifiability,
Smyth, Frink & Clarkson [SFC16, SFC17] show:

1. Simulation sound extractability of (ProveCiph,VerifyCiph) implies the ex-
istence of messages m1, . . . ,mnc−1 ∈ {0, 1} and coins r1, . . . , r2·nc−2 such
that for all 1 ≤ j ≤ nc − 1 we have b[j + nc − 1] = ProveCiph((pk , b[j],
{0, 1}), (mj , rj), j, κ; rj+nc−1) and b[j] = Enc(pk ,mj ; rj) with overwhelm-
ing probability.

2. There exist coins ri,2·nc−1 such that b[2·nc−1] = ProveCiph((pk , c, {0, 1}),
(m, r),nc, κ; r2·nc−1) with overwhelming probability, where c← b[1]⊗· · ·⊗
b[nc − 1], m← m1 � · · · �mnc−1, and r ← r1 ⊕ · · · ⊕ rnc−1.

Thus, there exists β, r such that

b = Vote(pk ′,nc, β, κ; r)

and either β = nc ∧
∧nc−1
j=1 mj = 0 or βi ∈ {1, . . . ,nc − 1} ∧ mβ = 1 ∧∧

j∈{1,...,β−1,β+1,...,nc−1}mj = 0. And

∀j ∈ {1, . . . ,nc − 1} . mj = 1⇐⇒ β = j (15)

nc−1∑
j=1

mj = 0⇐⇒ β = nc (16)

Hence, it suffices to prove β = v.
By definition of Helios-Reveal, we have either: 1) Dec(sk , b[v]) = 1, hence,

mv = 1 by perfect correctness of El Gamal, and β = v by (15); or 2) Dec(sk ,
bi[1]⊗· · ·⊗bi[nc−1]) = 0, hence, m1�· · ·�mnc−1 = 0 by the perfect correctness
and perfectly homomorphic properties of El Gamal, and since nc − 1 ≤ mc, we
have m1,j � · · · �m`,j =

∑`
i=1mi,j , thus,

∑`
i=1mi,j = 0, and β = v by (16).

Hence, we conclude Case I.

Case II: b ∈ b′. By definition of b′, there exists r such that b = Vote(pk ′,nc,
v, κ; r) ∈ bb. And by perfect correctness of Helios’16, we have b satisfies the
conditions given by algorithm Tally. Moreover, by definition of algorithm Vote, if
1 ≤ v < nc, then there exist coins r such that b[v] = Enc(pk , 1; r), and by perfect
correctness of El Gamal, we have Dec(sk , b[v]) = 1, thus, b ∈ b. Otherwise
(v = nc), for 1 ≤ j ≤ nc − 1, there exist coins r such that b[j] = Enc(pk , 0; r),
hence, Dec(sk , bi[1]⊗· · ·⊗bi[nc−1]) = 0�· · ·�0 = 0 since El Gamal is perfectly
correct and perfectly homomorphic, thus, b ∈ b, concluding Case II, and our
proof.

66

G.2 Alternative non-interactive proof system

In Section 7.1, we constructed an auction scheme from Helios’16 using reveal
algorithm Helios-Reveal and non-interactive proof system δ(Helios’16). We show
that a more efficient auction scheme can be derived from Helios’16 using an al-
ternative non-interactive proof system, designed ad hoc to optimise the number
of checks required.

Definition 46. We define the tuple of algorithms (ProveReveal,VerifyReveal) as
follows:

ProveReveal(s, sk , κ) proceeds as follows. Parse s as (pk ′,nc, bb, v, b, κ) and
pk ′ as (pk ,m, ρ). Output ⊥ if parsing fails or if VerKey((κ, pk ,m), ρ, κ) 6=
1∨v 6∈ {1, . . . ,nc}∨{1, . . . ,nc} 6⊆ m. Let {b1, . . . , b`} be the largest subset
of bb satisfying the conditions given by algorithm Tally. Initialise vector
Q of length ` and compute:

for 1 ≤ i ≤ ` do
if 1 ≤ v < nc then

Q[i]← ProveDec((pk , bi[v],Dec(sk , bi[v])), sk , κ);

else
c← bi[1]⊗ · · · ⊗ bi[nc − 1];
Q[i]← ProveDec((pk , c,Dec(sk , c)), sk , κ);

Output Q.

VerifyReveal(s,Q) proceeds as follows. Parse s as (pk ′,nc, bb, v, b, κ) and pk ′ as
(pk ,m, ρ). Output 0 if parsing fails or if VerKey((κ, pk ,m), ρ, κ) 6= 1∨ v 6∈
{1, . . . ,nc} ∨ {1, . . . ,nc} 6⊆ m. Let {b1, . . . , b`} be the largest subset of bb
satisfying the conditions given by algorithm Tally. Output 1 if any of the
following checks hold.

1. {b1, . . . , b`} = ∅, |Q| = 0, and b = ∅.
2. 1 ≤ v < nc, |Q| = `, b ⊆ {b1, . . . , b`}, and for all 1 ≤ i ≤ `, if bi ∈ b,

then VerifyDec((pk , bi[v], 1),Q[i], κ) = 1, otherwise, VerifyDec((pk ,
bi[v], 0),Q[i], κ) = 1.

3. v = nc, |Q| = `, b ⊆ {b1, . . . , b`}, and for all, 1 ≤ i ≤ ` if bi ∈ b,
then VerifyDec((pk , bi[1]⊗ · · · ⊗ bi[nc − 1], 0),Q[i], κ) = 1, otherwise,
VerifyDec((pk , bi[1]⊗ · · · ⊗ bi[nc − 1], 1),Q[i], κ) = 1.

Output 0 if all of the checks fail.

Lemma 46. The tuple of algorithms (ProveReveal,VerifyReveal) is a non-in-
teractive proof system for relation R(Helios’16,Helios-Reveal) (i.e., it satisfies
completeness).

Proof sketch. Suppose (s, sk ′) ∈ R(Helios’16,Helios-Reveal) and κ is a security
parameter. Since R(Helios’16,Helios-Reveal) is defined over vectors of length 6

67

and bitstrings, we can parse s as (pk ′,nc, bb, v, b, κ). Moreover, by definition
of R(Helios’16,Helios-Reveal), there exists mb, mc, r, and r′, such that b =
Helios-Reveal(sk ′,nc, bb, v, κ; r), (pk ′, sk ′,mb,mc) = Setup(κ; r′) and 1 ≤ v ≤
nc ≤ mc. And, by definition of Setup, we have pk ′ is a vector (pk ,m, ρ), where
(pk , sk) is an output of Gen, m is the encryption scheme’s message space, ρ is an
output of ProveKey, and mc is the largest integer such that {0, ...,mc} ⊆ {0}∪m.

We have VerKey((κ, pk ,m), ρ, κ) = 1, by perfect completeness of (ProveKey,
VerKey). We also have v ∈ {1, . . . ,nc} and {1, . . . ,nc} ⊆ m. Let {b1, . . . , b`} be
the largest subset of bb satisfying the conditions given by the Helios’16 tallying
algorithm. Suppose ProveReveal(s, sk , κ) outputs Q. By definition of algorithm
ProveReveal, we have Q is a vector of length `. If {b1, . . . , b`} = ∅, then |Q| = 0,
and b = ∅, by definition of algorithms ProveReveal and Helios-Reveal, hence,
VerifyReveal(s,Q) = 1, by definition of algorithm VerifyReveal, concluding our
proof. Otherwise, b ⊆ {b1, . . . , b`} and we proceed by distinguishing two cases.

• Case I: 1 ≤ v < nc. Suppose i ∈ {1, . . . , `}. We have Q[i] is an output of
ProveDec((pk , bi[v],Dec(sk , bi[v])), sk , κ) by definition of ProveReveal. If
bi ∈ b, then Dec(sk , bi[v]) = 1 by definition of Helios-Reveal and, with
overwhelming probability, VerifyDec((pk , bi[v], 1),Q[i], κ) = 1 by perfect
correctness of El Gamal and by perfect completeness of ∆. Otherwise
(bi 6∈ b,), we proceed as follows. We have Dec(sk , bi[v]) 6= 1 by definition
of Helios-Reveal, hence, Dec(sk , bi[v]) = 0, because bi[v] is a encryption
of a plaintext in {0, 1}, by the tallying conditions of Helios’16. By per-
fect correctness of El Gamal and by perfect completeness of ∆, we have
VerifyDec((pk , bi[v], 0),Q[i], κ) = 1, with overwhelming probability.

• Case II: v = nc. Suppose i ∈ {1, . . . , `}. Let c = bi[1]⊗· · ·⊗bi[nc−1]. We
have Q[i] is an output of ProveDec((pk , c,Dec(sk , c)), sk , κ) by definition
of ProveReveal. If bi ∈ b, then Dec(sk , c) = 0 by definition of Helios-Reveal
and, with overwhelming probability, VerifyDec((pk , c, 0),Q[i], κ) = 1 by
perfect correctness of El Gamal and by perfect completeness of ∆. Oth-
erwise (bi 6∈ b), we proceed as follows. We have Dec(sk , c) = 1 by defi-
nition of Helios-Reveal and the tallying conditions of Helios’16. By per-
fect correctness of El Gamal and by perfect completeness of ∆, we have
VerifyDec((pk , c, 1),Q[i], κ) = 1.

In both cases, one of the checks in VerifyReveal will succeed, hence, VerifyReveal(
s,Q) = 1, with overwhelming probability.

Lemma 47. Non-interactive proof system (ProveReveal,VerifyReveal) is zero-
knowledge.

Proof sketch. Bernhard et al. [BPW12a, §4] remark that (ProveDec,VerifyDec)
is zero-knowledge. Let S be the simulator for (ProveDec,VerifyDec). Sup-
pose (ProveReveal,VerifyReveal) does not satisfy zero-knowledge, hence, there
exists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter κ and Succ(ZK((ProveReveal,

68

VerifyReveal),A,H,S, κ)) > 1
2 + negl(κ). We construct an adversary B against

(ProveDec,VerifyDec) from A and S. (For clarity, we rename B’s oracle Q.)

• B(κ) computes g ← AH,P(κ) and outputs g, handling A’s oracle calls to
P(s, w) by computing σ ← Q′(s, w, κ) and returning σ to A, where Q′ is
derived from ProveReveal by replacing all occurrences of ProveDec(s′, w′, κ)
with Q(s′, w′).

We prove the following contradiction: Succ(ZK((ProveDec,ProveDec),B,H,S,
κ)) > 1

2 + negl′(κ), for some negligible function negl′. It suffices to show that
adversary B simulates A’s oracle P to A. It is trivial to see that P is simulated
when β = 0, because P and Q′ are identical in this case. Moreover, P is
simulated when β = 1, because S is indistinguishable from ProveDec.

Lemma 48. Non-interactive proof system (ProveReveal,VerifyReveal) is sound.

Proof sketch. Suppose (ProveReveal,VerifyReveal) is not sound, hence, there ex-
ists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter κ and if A(κ) outputs (s, σ),
then (s, w) 6∈ R(Helios’16,Helios-Reveal) and VerifyReveal(s, σ) = 1, with prob-
ability greater than negl(κ).

By definition of VerifyReveal, we have s parses as (pk ′,nc, bb, v, b, κ) and
pk ′ as (pk ,m, ρ). Moreover, VerKey((κ, pk ,m), ρ, κ) = 1 ∧ v ∈ {1, . . . ,nc} ∧
{1, . . . ,nc} ⊆ m. Bernhard et al. [BPW12a, §4] remark that (ProveKey,VerKey)
satisfies their notion of simulation sound extractability, hence, (ProveKey,
VerKey) satisfies soundness too. Thus, w parses as (sk , r) such that (pk , sk) =
Gen(κ; r) and m is the encryption scheme’s message space. Let sk ′ = (pk , sk)
and let m be the largest integer such that {0, . . . ,m} ⊆ {0} ∪ m. By defini-
tion of Setup, there exists r′ such that (pk , sk ,m,m) = Setup(κ; r′). We have
{1, . . . ,nc} ⊆ m and {0, . . . ,m} ⊆ m, hence, nc ≤ m by definition of m. It
follows that ∃mb,mc, r′ . (pk , sk ,mb,mc) = Setup(κ; r′) ∧ 1 ≤ v ≤ nc ≤ mc.

Since (s, w) 6∈ R(Helios’16,Helios-Reveal), we have b is not an output of
Helios-Reveal(sk ,nc, bb, v, κ). We proceed by contradiction: we show that if any
of the three checks in VerifyReveal hold, then b is an output of Helios-Reveal(sk ,
nc, bb, v, κ). We proceed by case analysis on the three checks.

1. By definition of Helios-Reveal, we have {b1, . . . , b`} = ∅ ∧ b = ∅ implies b
is an output of Helios-Reveal(sk ,nc, bb, v, κ).

Let {b1, . . . , b`} be the largest subset of bb satisfying the tallying conditions of
Helios’16. Hence, b1[v], . . . , b`[v] are ciphertexts on plaintexts in {0, 1}. Suppose
b ⊆ {b1, . . . , b`} and |Q| = `. We consider the two remaining checks.

2. Suppose 1 ≤ v < nc and for all 1 ≤ i ≤ `, if bi ∈ b, then VerifyDec((pk ,
bi[v], 1),Q[i], κ) = 1, otherwise, VerifyDec((pk , bi[v], 0),Q[i], κ) = 1. Bern-
hard et al. [BPW12a, §4] remark that (ProveDec,VerifyDec) satisfies their
notion of simulation sound extractability, hence, (ProveDec,VerifyDec) sat-
isfies soundness too. Thus, for all 1 ≤ i ≤ `, if bi ∈ b, then Dec(sk , bi[v]) =

69

1, otherwise, Dec(sk , bi[v]) = 0, with overwhelming probability. It follows
that b is a subset of {b1, . . . , b`} such that for all b ∈ b we have b[v] de-
crypts to 1, and for all b ∈ b\{b1, . . . , b`} we have b[v] decrypts to 0. Since
the tallying conditions of Helios’16 ensure that b1[v], . . . , b`[v] are cipher-
texts on plaintexts in {0, 1}, we have b is the largest subset of {b1, . . . , b`}
such that for all b ∈ b we have b[v] decrypts to 1. Thus, b is an output of
Helios-Reveal(sk ,nc, bb, v, κ).

3. Suppose v = nc and for all 1 ≤ i ≤ `, if bi ∈ b, then VerifyDec((pk , bi[1]⊗
· · ·⊗bi[nc−1], 0),Q[i], κ) = 1, otherwise, VerifyDec((pk , bi[1]⊗· · ·⊗bi[nc−
1], 1),Q[i], κ) = 1. Bernhard et al. [BPW12a, §4] remark that (ProveDec,
VerifyDec) satisfies their notion of simulation sound extractability, hence,
(ProveDec,VerifyDec) satisfies soundness too. Thus, for all 1 ≤ i ≤ `, if
bi ∈ b, then Dec(sk , bi[1]⊗ · · · ⊗ bi[nc − 1]) = 0, otherwise, Dec(sk , bi[1]⊗
· · · ⊗ bi[nc − 1]) = 1, with overwhelming probability. It follows that b is a
subset of {b1, . . . , b`} such that for all b ∈ b we have b[1]⊗ · · · ⊗ b[nc − 1]
decrypts to 0, and for all b ∈ b \ {b1, . . . , b`} we have b[1]⊗ · · · ⊗ b[nc − 1]
decrypts to 1. Since the tallying conditions of Helios’16 ensure that b[1]⊗
· · ·⊗b[nc−1] is a ciphertext on a plaintext in {0, 1}, we have b is the largest
subset of {b1, . . . , b`} such that for all b ∈ b we have b[1]⊗ · · · ⊗ b[nc − 1]
decrypts to 0. Thus, b is an output of Helios-Reveal(sk ,nc, bb, v, κ).

We have shown that if any of the three checks in VerifyReveal hold, then b is
an output of Helios-Reveal(sk ,nc, bb, v, κ), thereby deriving a contradiction, and
concluding our proof.

Theorem 49. If Helios’16 satisfies ballot secrecy, then auction scheme Λ(
Helios’16,Helios-Reveal, (ProveReveal,VerifyReveal)) satisfies bid secrecy.46

Proof. Smyth, Frink & Clarkson have shown that Helios’16 satisfies universal
verifiability [SFC16, SFC17]. It follows from Lemma 11 that Helios’16 satisfies
tally soundness. Reveal algorithm Helios-Reveal satisfies reveal soundness with
respect to Helios’16 (Lemma 44). And (ProveReveal,VerifyReveal) is a non-
interactive proof system for relation R(Helios’16,Reveal) (Lemma 46) satisfying
zero-knowledge (Lemma 47). Hence, Λ(Helios’16,Helios-Reveal, (ProveReveal,
VerifyReveal)) satisfies bid secrecy (Theorem 10).

Theorem 50. Auction scheme Λ(Helios’16,Helios-Reveal, (ProveReveal,
VerifyReveal)) satisfies individual and universal verifiability.

Proof. Smyth, Frink & Clarkson have shown that Helios’16 satisfies individ-
ual and universal verifiability [SFC16, SFC17]. Hence, we have Λ(Helios’16,
Helios-Reveal, δ(Helios’16)) satisfies individual verifiability (Theorem 13). We
have (ProveReveal,VerifyReveal) is a non-interactive proof system for relation
R(Helios’16,Reveal) (Lemma 46) satisfying soundness (Lemma 48). And R(

46Formally, Λ(Helios’16,Helios-Reveal, (ProveReveal,VerifyReveal)) is an auction scheme by
Lemmata 4, 43, & 46.

70

Helios’16,Helios-Reveal) is Λ-suitable (Lemmata 45). Hence, we have Λ(
Helios’16,Helios-Reveal, (ProveReveal,VerifyReveal)) satisfies universal verifiabil-
ity (Theorem 14).

H Helios with tallying by mixnet

We formalise Helios with tallying by mixnet (§7.2) as the class of election
schemes HeliosM’16 (Definition 49).47 We define that class using construction
HeliosM (Definition 48), which is instantiated on the choice of a homomorphic
encryption scheme and sigma protocols for the relations introduced in the fol-
lowing definition.

Definition 47 ([SFC16]). Let (Gen,Enc,Dec) be a homomorphic asymmetric
encryption scheme and Σ be a sigma protocol for a binary relation R. Suppose
that (pk , sk) = Gen(κ; s), for some security parameter κ and coins s, and m is
the encryption scheme’s plaintext space.

• Σ proves plaintext knowledge if ((pk , c), (m, r)) ∈ R⇔ c = Enc(pk ,m; r) ∧
m ∈ m.

• Σ proves mixing if ((pk , c, c′), (r, χ)) ∈ R ⇔
∧

1≤i≤|c| c
′[χ(i)] = c[i] ⊗

Enc(pk , e; r[i]) ∧ |c| = |c′| = |r|, where c and c′ are both vectors of ci-
phertexts encrypted under pk, r is a vector of coins, χ is a permutation
on {1, . . . , |c|}, and e is an identity element of the encryption scheme’s
message space with respect to �.

Definition 48 (Generalised Helios with tallying by mixnet). Suppose Π =
(Gen,Enc,Dec) is a multiplicative homomorphic asymmetric encryption scheme,
e is an identity element of Π’s message space with respect to �, Σ1 proves cor-
rect key construction, Σ2 proves plaintext knowledge, Σ3 proves correct decryp-
tion, Σ4 proves mixing, and H is a hash function. Let FS(Σ1,H) = (ProveKey,
VerKey), FS(Σ2,H) = (ProveCiph,VerifyCiph), FS(Σ3,H) = (ProveDec,
VerifyDec), FS(Σ4,H) = (ProveMix,VerMix), and p be some polynomial func-
tion. We define election scheme generalised Helios with tallying by mixnet,
denoted HeliosM(Π,Σ1,Σ2,Σ3,Σ4,H) = (Setup,Vote,Tally,Verify), as follows.

Setup(κ). Select coins s uniformly at random, compute (pk , sk) ← Gen(κ; s);
ρ ← ProveKey((κ, pk ,m), (sk , s), κ); pk ′ ← (pk ,m, ρ); sk ′ ← (pk , sk), let mc be
the largest integer such that {0, . . . ,mc} ⊆ {0} ∪ m, and output (pk ′, sk ′, p(κ),
mc), where m is the encryption scheme’s plaintext space.

Vote(pk ′,nc, v, κ). Parse pk ′ as a vector (pk ,m, ρ), output ⊥ if parsing fails or
VerKey((κ, pk ,m), ρ, κ) 6= 1 ∨ v 6∈ {1, . . . ,nc} ∨ {1, . . . ,nc} 6⊆ m. Select coins r
uniformly at random, compute c ← Enc(pk , v; r);σ ← ProveCiph((pk , c), (v, r),
κ), and output ballot (c, σ).

47Some aspects of Definition 49 first appeared in [Smy18b].

71

Tally(sk ′,nc, bb, κ). Initialise v as a zero-filled vector of length nc. Parse sk ′

as a vector (pk , sk), output (v,⊥) if parsing fails. Proceed as follows.

1. Remove invalid ballots. Let {b1, . . . , b`} be the largest subset of bb such that
for all 1 ≤ i ≤ ` we have bi is a pair and VerifyCiph((pk , bi[1]), bi[2], κ) = 1.
If {b1, . . . , b`} = ∅, then output (v,⊥).

2. Mix. Select a permutation χ on {1, . . . , `} uniformly at random, initialise
bb and r as vectors of length `, fill r with coins chosen uniformly at
random, and compute

for 1 ≤ i ≤ ` do
bb[χ(i)]← bi[1]⊗ Enc(pk , e; r[i]);

pf 1 ← ProveMix((pk , (b1[1], . . . , b`[1]),bb), (r, χ), κ);

3. Decrypt. Initialise W and pf 2 as vectors of length ` and compute:

for 1 ≤ i ≤ ` do
W[i]← Dec(sk ,bb[i]);
pf 2[i]← ProveDec((pk ,bb[i],W[i]), sk , κ);
if 1 ≤W[i] ≤ nc then

v[W[i]]← v[W[i]] + 1;

Output (v, (bb, pf 1,W, pf 2)).

Verify(pk ′,nc, bb,v, pf , κ). Let mc be the largest integer such that {0, . . . ,mc} ⊆
{0} ∪m. Parse pk ′ as a vector (pk ,m, ρ) and v parses as a vector of length nc,
output 0 if parsing fails, VerKey((κ, pk ,m), ρ, κ) 6= 1, |bb| 6≤ p(κ), or nc 6≤ mc.
Proceed as follows.

1. Remove invalid ballots. Compute {b1, . . . , b`} as per Step (1) of the tally-
ing algorithm. If {b1, . . . , b`} = ∅ and v is a zero-filled vector, then output
1. Otherwise, perform the following checks.

2. Check mixing. Parse pf as a vector (bb, pf 1,W, pf 2), output 0 if parsing
fails. Check VerMix((pk , (b1[1], . . . , b`[1]),bb), pf 1, κ) = 1.

3. Check decryption. Check W and pf 2 are vectors of length `,
∧`
i=1 VerifyDec(

pk ,bb[i],W[i], pf 2[i]) = 1, and
∧nc
v=1 ∃=v[v]i ∈ {1, . . . , `} : v = W[i].

If the above checks hold, then output 1, otherwise, output 0.

Lemmata 51, 53 & 55 demonstrate that HeliosM is a construction for election
schemes, proofs of those lemmata appear in [Smy18b]. And Lemmata 52 & 54
provide conditions under which HeliosM produces election schemes satisfying
perfect correctness and perfect completeness.

Lemma 51. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the preconditions of
Definition 43. We have HeliosM(Π,Σ1,Σ2,Σ3,Σ4,H) satisfies correctness.

72

Lemma 52. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the preconditions of
Definition 48. Further suppose Π satisfies perfect correctness and is perfectly
homomorphic. Moreover, suppose Σ1, Σ2 and Σ4 satisfy perfect completeness.
We have Γ = HeliosM(Π,Σ1,Σ2,Σ3,Σ4,H) satisfies perfect correctness.

Proof sketch. Lemma 51 shows that HeliosM(Π,Σ1,Σ2,Σ3,Σ4,H) satisfies cor-
rectness. And that proof can be adapted to show perfect correctness. In par-
ticular, perfect completeness of Σ1 ensures that algorithm Vote does not output
⊥ and perfect completeness of Σ2 ensures that algorithm Tally considers bb as
the largest subset of bb satisfying the necessary conditions. Since Π is perfectly
homomorphic, the mix outputs ciphertexts. And, since Π is perfectly correct,
the outcome represents the votes.

Lemma 53. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the preconditions of
Definition 43. Further suppose Σ2 satisfies special soundness and special honest
verifier zero-knowledge, and H is a random oracle. We have HeliosM(Π,Σ1,Σ2,
Σ3,Σ4,H) satisfies completeness.

Lemma 54. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the preconditions of
Definition 48. Further suppose Σ1, Σ2, Σ3 and Σ4 satisfy perfect completeness,
moreover, Σ2 perfectly satisfies special soundness and special honest verifier
zero-knowledge, and H is a random oracle. We have HeliosM(Π,Σ1,Σ2,Σ3,Σ4,
H) satisfies perfect completeness.

Proof sketch. Lemma 53 shows that HeliosM(Π,Σ1,Σ2,Σ3,Σ4,H) satisfies com-
pleteness. And that proof can be adapted to show perfect completeness (as-
suming the proof of Theorem 22 can be adapted to show FS(Σ2,H) satisfies
perfect simulation sound extractability), when Σ1, Σ3 and Σ4 are perfectly
complete.

Lemma 55. Suppose Π, Σ1, Σ2, Σ3, Σ4 and H satisfy the preconditions of
Definition 43. Further suppose Π is perfectly correct. We have HeliosM(Γ,Σ1,
Σ2,Σ3,Σ4,H) satisfies Injectivity.

Proof. Let Π = (Gen,Enc,Dec) and HeliosM(Π,Σ1,Σ2,Σ3,Σ4,H) = (Setup,
Vote,Tally,Verify). Suppose κ is a security parameter, nc is an integer, and
v and v′ are votes such that v 6= v′. Further suppose (pk ′, sk ′,mb,mc) is an
output of Setup(κ), b is an output of Vote(pk ′,nc, v, κ) and b′ is an output
of Vote(pk ′,nc, v′, κ) such that b 6= ⊥ and b′ 6= ⊥. By definition of Setup,
we have pk ′ is a vector (pk ,m, ρ) such that (pk , sk) is an output of Gen(κ)
and {1, . . . ,mc} ⊆ {0} ∪ m, where m is the encryption scheme’s plaintext
space. By definition of Vote, we have v, v′ ∈ {1, . . . ,nc} ∧ nc ≤ |m|, hence,
v, v′ ∈ m. Moreover, there exist coins r and r′ such that b[1] = Enc(pk , v; r)
and b′[1] = Enc(pk , v′; r). Since Π is perfectly correct, we have Dec(sk , b[1]) =
v 6= v′ = Dec(sk , b′[1]). It follows that b[1] 6= b′[1], hence, b 6= b′, concluding our
proof.

73

Definition 49. HeliosM’16 is the class of election schemes that includes every
scheme Γ = HeliosM(Π,Σ1,Σ2,Σ3,Σ4,H) such that: Π, Σ1, Σ2, Σ3 Σ4 satisfy
the preconditions of Definition 48; Π is perfectly correct; Σ1, Σ2, Σ3 and Σ4 sat-
isfy perfect completeness, moreover, Σ2, Σ3 and Σ4 satisfy special soundness and
special honest verifier zero-knowledge; H is a random oracle; Γ ensures honest
key generation and satisfies Smy-Ballot-Secrecy, Exp-IV-Ext, and Exp-UV-Ext.

Smyth has shown that there exists an election scheme in HeliosM’16 that satisfies
Smy-Ballot-Secrecy [Smy16] and Exp-IV-Ext & Exp-UV-Ext [Smy18b]. Hence, set
HeliosM’16 is not empty.

I Auction schemes from Helios with tallying by
mixnet

In this appendix, we suppose Γ = (Setup,Vote,Tally,Verify) is in the class of
election schemes HeliosM’16. Moreover, we suppose Π = (Gen,Enc,Dec) is the
asymmetric encryption scheme underlying Γ. Furthermore, we suppose PET is
a plaintext equality test that inputs a key pair and two ciphertexts, and outputs
1 if the ciphertexts contain the same plaintext.

Lemma 56. Given an election scheme Γ produced by HeliosM(Π,Σ1,Σ2,Σ3,Σ4,
H), there exists a tallying proof system for Γ that satisfies zero-knowledge.

Proof sketch. Let FS(Σ3,H) = (ProveDec,VerifyDec) and FS(Σ4,H) =
(ProveMix,VerMix). Suppose κ is a security parameter, nc is an integer, bb is a
bulletin board, (pk , sk ,mb,mc) is an output of Setup(κ), and (v, pf) is an output
of Tally(sk ,nc, bb,nc, κ). If pf =⊥, then there trivially exists a tallying proof
system for Γ that satisfies zero-knowledge, otherwise, we proceed as follows. By
inspection of Tally, we have pf is a vector (bb, pf 1,W, pf 2) such that bb is a
vector of mixed ciphertexts, pf 1 is a proof produced by (ProveMix,VerMix), W
is a vector of plaintexts, and pf 1 is a proof produced by (ProveDec,VerifyDec).
By Theorem 22, we have (ProveMix,VerMix) and (ProveDec,VerifyDec) satisfy
zero-knowledge, hence, it suffices to show that bb and W can be constructed
by a simulator. (Formally, a single simulator is needed, but it is straightforward
to see how simulators can be combined, so we omit these details for brevity.)

Let {b1, . . . , b`} be the largest subset of bb such that for all 1 ≤ i ≤ ` we
have bi is a pair and VerifyCiph((pk , bi[1]), bi[2], κ) = 1. We can simulate the
construction of bb as follows: select a permutation χ on {1, . . . , `} uniformly
at random, initialise bb as a vector of length ` and compute for 1 ≤ i ≤ ` do
bb[χ(i)]← bi[1]⊗Enc(pk , e). Moreover, we can simulate the construction of W
too. Let ExtProve be the extractor for FS(Σ2,H). Initialise H as a transcript
of the random oracle’s input and output, and P as a transcript of simulated
proofs. Compute:

Q← (((pk , b1[1]), b1[2]), . . . , ((pk , b`[1]), b`[2]));
W← ExtProve(H,P,Q);
for 1 ≤ i ≤ ` do W[i]←W[i][1];

74

Since ExtProve is an extractor, we have ExtProve(H,P,Q) outputs a vector of
witnesses associated with statements (pk , b1[1]), . . . , (pk , b`[1]), i.e., a vector of
pairs such that the first element is the plaintext corresponding to the ciphertext
in the associated statement. Thus, the simulation is valid.

Lemma 57. Given an election scheme Γ produced by HeliosM(Π,Σ1,Σ2,Σ3,Σ4,
H), we have Γ satisfies simulation sound private key extractibility.

A proof of Lemma 57 is similar to our proof of Lemma 42; we omit a formal
proof.

I.1 Reveal algorithm

Definition 50. We define reveal algorithm HeliosM-Reveal as follows.

HeliosM-Reveal(sk ′,nc, bb, v, κ) parses sk ′ as a vector (pk , sk), initialises {b1,
. . . , b`} as the largest subset of bb such that each element is a pair and∧

1≤i≤` VerifyCiph((pk , bi[1]), bi[2], κ) = 1, computes b← ∅; c← Enc(pk , v);
b← {bi | PET(pk , sk , bi[1], c) = 1 ∧ 1 ≤ i ≤ `}, and outputs b.

Lemma 58. Reveal algorithm HeliosM-Reveal is correct with respect to Γ.

Proof sketch. Suppose κ is a security parameter, nb and nc are integers, and
v, v1, . . . , vnb ∈ {1, . . . ,nc} are votes. Further suppose (pk ′, sk ′,mb,mc) is an
output of Setup(κ) such that nb ≤ mb ∧ nc ≤ mc. Moreover, suppose for each
1 ≤ i ≤ nb that bi is an output of Vote(pk ′,nc, vi, κ). Let bb = {b1, . . . , bnb}.
Suppose b is an output of HeliosM-Reveal(sk ′,nc, bb, v, κ). By definition of
HeliosM, the largest subset of bb satisfying the conditions given by algorithm
Tally is bb, hence, HeliosM-Reveal operates on bb, rather than a strict subset of
bb. By definition of Vote, we have for all 1 ≤ i ≤ nb that bi[1] is a ciphertext
on plaintext vi. Suppose c is an output of Enc(pk , v), where sk ′ = (pk , sk).
Hence, by correctness of PET, we have b = {bi | vi = v ∧ 1 ≤ i ≤ nb}, with
overwhelming probability, thereby concluding our proof.

Lemma 59. Reveal algorithm HeliosM-Reveal satisfies reveal soundness with
respect to Γ, assuming Π is perfectly correct and PET is perfectly correct.

Proof sketch. Suppose κ is a security parameter, (pk ′, sk ′,mb,mc) is an output
of Setup(κ), and (nc, bb, v) is an output of A(pk ′, κ), such that 1 ≤ v ≤ nc ≤ mc
and |bb| ≤ mb. By definition of algorithm Setup, we have pk ′ is a triple
(pk ,m, ρ), such that (pk , sk) is an output of Gen, m is the plaintext space,
and ρ is a proof of correct key construction. Further suppose that b is an
output of HeliosM-Reveal. To prove that HeliosM-Reveal satisfies reveal sound-
ness with respect to Γ, it suffices to show b = {b | (b,v) ∈ W ∧ v[v] = 1}
with overwhelming probability, where W is computed as follows: W ← ∅;
for b ∈ bb do (v, pf) ← Tally(sk ′,nc, {b}, κ); W ← W ∪ {(b,v)}. We
have for all (b,v) ∈ W that b ∈ bb and, by definition of algorithm Tally, either
∅ or {b} is the largest subset of {b} such that b is a pair and VerifyCiph((pk ,

75

b[1]), b[2], κ) = 1. In the former case, we have v is a zero-filled vector of length
nc. In the latter case, we have b[1] is a ciphertext, with overwhelming proba-
bility. And, if Dec(sk , b[1] ⊗ Enc(pk , e; r)) 6∈ {1, . . . ,nc}, then v is a zero-filled
vector of length nc, otherwise, v is a zero-filled vector of length nc, except for in-
dex Dec(sk , b[1]⊗Enc(pk , e; r)) which contains 1, where r is chosen uniformly at
random by algorithm Tally. Since Γ is homomorphic, we have b[1]⊗Enc(pk , e; r)
is a ciphertext with overwhelming probability. And, by perfect correctness, we
have Dec(sk , b[1] ⊗ Enc(pk , e; r)) = Dec(sk , b[1]) �pk Dec(sk ,Enc(pk , e; r)) and
Dec(sk , b[1])�pk Dec(sk ,Enc(pk , e; r)) = Dec(sk , b[1])�pk e, with overwhelming
probability. And, since e is an identity element, we have Dec(sk , b[1]) �pk e =
Dec(sk , b[1]), with overwhelming probability. It follows that

{b | (b,v) ∈W ∧ v[v] = 1} = {b | b ∈ {b1, . . . , b`} ∧ Dec(sk , b[1]) = v}

where {b1, . . . , b`} is the largest subset of bb satisfying the tallying conditions.
Suppose c is an output of Enc(pk , v). By perfect correctness of PET, we have
for all b ∈ {b1, . . . , b`} that Dec(sk , b[1]) = v iff PET(pk , sk , b[1], c) = 1, with
overwhelming probability. Thus, we conclude our proof by definition of HeliosM-
Reveal.

Lemma 60. Relation R(Γ,HeliosM-Reveal) is Λ-suitable.

Proof. Suppose ((pk ′,nc, bb, v, b, κ), sk ′) ∈ R(Γ,HeliosM-Reveal). By definition
of R(Γ,HeliosM-Reveal), there exist mb,mc, r, r′ such that (pk ′, sk ′,mb,mc) =
Setup(κ; r′), b = HeliosM-Reveal(sk ′,nc, bb, v, κ; r), 1 ≤ v ≤ nc ≤ mc, and
|bb| ≤ mb. Let b′ = bb ∩ {b | b = Vote(pk ′,nc, v, κ; r′′)}. To prove relation
R(Γ,HeliosM-Reveal) is Λ-suitable, we need to show that predicate correct-bids
holds, i.e., b = b′. It suffices to prove b ∈ b iff b ∈ b′.

Case I: b ∈ b. By definition of HeliosM-Reveal, private key sk ′ parses as a
vector (pk , sk) and b ∈ bb, hence, it remains to prove b is an output of algorithm
Vote for vote v. By definition of HeliosM-Reveal, we have that b is a pair such
that VerifyCiph((pk , b[1]), b[2], κ) = 1. By Theorem 22, we have (ProveCiph,
VerifyCiph) satisfies simulation sound extractability, hence, there exists coins r, r′

and a plaintext m from the message space such that b[2] = ProveCiph((pk , b[1],
{0, 1}), (m, r), κ; r′) and b[1] = Enc(pk ,m; r) with overwhelming probability. It
follows that b is an output of Vote. Moreover, by perfect correctness of PET, we
have m = v, with overwhelming probability. Hence, we conclude Case I.

Case II: b ∈ b′. By definition of b′, we have b ∈ bb and b is an output of
Vote(pk ′,nc, v, κ). Since Γ satisfies perfect correctness (Lemma 52), we have
Tally(sk ′,nc, {b}, κ) outputs (v, pf) such that v[v] = 1, thus, b must satisfy the
conditions given by algorithm Tally (otherwise, algorithm Tally would output
a zero-filled vector). Suppose c is an output of Enc(pk , v). By definition of
Vote, we have b[1] is a ciphertext on plaintext v. And, by perfect correctness of
PET, we have PET(pk , sk , b[1], c) = 1, thus b ∈ b, concluding Case II, and our
proof.

76

I.2 Proof of Theorem 21

Election scheme Γ is perfectly correct (Lemma 52) and perfectly complete
(Lemma 54). And there exists a tallying proof system for Γ that satisfies zero-
knowledge (Lemma 56). Moreover, Γ satisfies simulation sound private key ex-
tractibility(Lemma 57). Since Γ satisfies Smy-Ballot-Secrecy [Smy16], we have Γ
satisfies Ballot-Secrecy (Proposition 18). Furthermore, reveal algorithm HeliosM-
Reveal(sk ′,nc, bb, v, κ) satisfies correctness (Lemma 58) and reveal soundness
(Lemma 59) with respect to Γ. And relation R(Γ,HeliosM-Reveal) is Λ-suitable
(Lemma 60).

We have Γ satisfies Smy-Ballot-Secrecy [Smy16] and Exp-IV-Ext & Exp-UV-Ext
[Smy18b]. It follows that δ(Γ) is a non-interactive proof system for relation
R(Γ,Reveal) (Lemma 15) satisfying soundness (Lemma 16) and zero-knowledge
(Lemma 17). Hence, we have bid secrecy by Theorem 10, individual verifiability
by Theorem 13, and universal verifiability by Theorem 14.

References

[Adi06] Ben Adida. Advances in Cryptographic Voting Systems. PhD the-
sis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2006.

[Adi08] Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX
Security’08: 17th USENIX Security Symposium, pages 335–348.
USENIX Association, 2008.

[AH10] R. Michael Alvarez and Thad E. Hall. Electronic Elections: The
Perils and Promises of Digital Democracy. Princeton University
Press, 2010.

[AMPQ09] Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jacques
Quisquater. Electing a University President Using Open-Audit Vot-
ing: Analysis of Real-World Use of Helios. In EVT/WOTE’09:
Electronic Voting Technology Workshop/Workshop on Trustworthy
Elections. USENIX Association, 2009.

[AS02a] Masayuki Abe and Koutarou Suzuki. M+1-st price auction using
homomorphic encryption. In PKC’02: 5th International Workshop
on Practice and Theory in Public Key Cryptography, volume 2274
of LNCS, pages 115–124. Springer, 2002.

[AS02b] Masayuki Abe and Koutarou Suzuki. Receipt-free sealed-bid auc-
tion. In Information Security, volume 2433 of LNCS, pages 191–199.
Springer, 2002.

[BCG+15] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira,
and Bogdan Warinschi. SoK: A comprehensive analysis of game-

77

based ballot privacy definitions. In S&P’15: 36th Security and Pri-
vacy Symposium. IEEE Computer Society, 2015.

[BCP+11] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth,
and Bogdan Warinschi. Adapting Helios for provable ballot pri-
vacy. In ESORICS’11: 16th European Symposium on Research in
Computer Security, volume 6879 of LNCS, pages 335–354. Springer,
2011.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway.
A Concrete Security Treatment of Symmetric Encryption. In
FOCS’97: 38th Annual Symposium on Foundations of Computer
Science, pages 394–403. IEEE Computer Society, 1997.

[Ben96] Josh Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, De-
partment of Computer Science, Yale University, 1996.

[BGP11] Philippe Bulens, Damien Giry, and Olivier Pereira. Running
Mixnet-Based Elections with Helios. In EVT/WOTE’11: Electronic
Voting Technology Workshop/Workshop on Trustworthy Elections.
USENIX Association, 2011.

[BPW12a] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not
to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Appli-
cations to Helios. In ASIACRYPT’12: 18th International Confer-
ence on the Theory and Application of Cryptology and Information
Security, volume 7658 of LNCS, pages 626–643. Springer, 2012.

[BPW12b] David Bernhard, Olivier Pereira, and Bogdan Warinschi. On
Necessary and Sufficient Conditions for Private Ballot Submis-
sion. Cryptology ePrint Archive, Report 2012/236 (version
20120430:154117b), 2012.

[BR05] Mihir Bellare and Phillip Rogaway. Symmetric Encryption. In
Introduction to Modern Cryptography, chapter 4. 2005. http:

//cseweb.ucsd.edu/~mihir/cse207/classnotes.html.

[Bra10] Felix Brandt. Auctions. In Burton Rosenberg, editor, Handbook
of Financial Cryptography and Security, pages 49–58. CRC Press,
2010.

[BS99] Mihir Bellare and Amit Sahai. Non-malleable Encryption: Equiv-
alence between Two Notions, and an Indistinguishability-Based
Characterization. In CRYPTO’99: 19th International Cryptology
Conference, volume 1666 of LNCS, pages 519–536. Springer, 1999.

[BS15] David Bernhard and Ben Smyth. Ballot secrecy with malicious bul-
letin boards. Cryptology ePrint Archive, Report 2014/822 (version
20150413:170300), 2015.

78

[BT94a] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elec-
tions (extended abstract). In STOC ’94: Twenty-sixth Annual ACM
Symposium on Theory of Computing, pages 544–553, New York,
NY, USA, 1994. ACM Press.

[BT94b] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-
ballot elections. In STOC’94: 26th Theory of computing Sympo-
sium, pages 544–553. ACM Press, 1994.

[BVQ10] Josh Benaloh, Serge Vaudenay, and Jean-Jacques Quisquater.
Final Report of IACR Electronic Voting Committee. International
Association for Cryptologic Research. http://www.iacr.org/

elections/eVoting/finalReportHelios_2010-09-27.html,
Sept 2010.

[BY86] Josh Benaloh and Moti Yung. Distributing the Power of a Govern-
ment to Enhance the Privacy of Voters. In PODC’86: 5th Princi-
ples of Distributed Computing Symposium, pages 52–62. ACM Press,
1986.

[CCC+08] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex,
Stefan Popoveniuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily
Shen, and Alan T. Sherman. Scantegrity II: End-to-end verifia-
bility for optical scan election systems using invisible ink confirma-
tion codes. In EVT’08: Electronic Voting Technology Workshop.
USENIX Association, 2008.

[CE16] Nicholas Chang-Fong and Aleksander Essex. The Cloudier Side of
Cryptographic End-to-end Verifiable Voting: A Security Analysis
of Helios. In ACSAC’16: 32nd Annual Conference on Computer
Security Applications, pages 324–335. ACM Press, 2016.

[CEGP87] David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and René
Peralta. Demonstrating Possession of a Discrete Logarithm With-
out Revealing It. In CRYPTO’86: 6th International Cryptology
Conference, volume 263 of LNCS, pages 200–212. Springer, 1987.

[CF85] Josh Daniel Cohen and Michael J. Fischer. A Robust and Verifi-
able Cryptographically Secure Election Scheme. In FOCS’85: 26th
Symposium on Foundations of Computer Science, pages 372–382.
IEEE Computer Society, 1985.

[CFSY96] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and
Moti Yung. Multi-Autority Secret-Ballot Elections with Linear
Work. In EUROCRYPT’96: 15th International Conference on the
Theory and Applications of Cryptographic Techniques, volume 1070
of LNCS, pages 72–83. Springer, 1996.

79

[CGGI13a] Veronique Cortier, David Galindo, Stephane Glondu, and Malika
Izabachene. A generic construction for voting correctness at mini-
mum cost - Application to Helios. Cryptology ePrint Archive, Re-
port 2013/177 (version 20130521:145727), 2013.

[CGGI13b] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika
Izabachene. Distributed elgamal à la pedersen: Application to he-
lios. In WPES’13: Workshop on Privacy in the Electronic Society,
pages 131–142. ACM Press, 2013.

[CGGI14] Véronique Cortier, David Galindo, Stephane Glondu, and Malika
Izabachène. Election Verifiability for Helios under Weaker Trust
Assumptions. In ESORICS’14: 19th European Symposium on Re-
search in Computer Security, volume 8713 of LNCS, pages 327–344.
Springer, 2014.

[CGK+16] Veronique Cortier, David Galindo, Ralf Küsters, Johannes Mueller,
and Tomasz Truderung. Verifiability Notions for E-Voting Pro-
tocols. Cryptology ePrint Archive, Report 2016/287 (version
20160317:161048), 2016.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A
Secure and Optimally Efficient Multi-Authority Election Scheme.
In EUROCRYPT’97: 16th International Conference on the The-
ory and Applications of Cryptographic Techniques, volume 1233 of
LNCS, pages 103–118. Springer, 1997.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM, 24:84–90,
1981.

[CP93] David Chaum and Torben P. Pedersen. Wallet Databases with Ob-
servers. In CRYPTO’92: 12th International Cryptology Conference,
volume 740 of LNCS, pages 89–105. Springer, 1993.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A Practi-
cal Voter-Verifiable Election Scheme. In ESORICS’05: 10th Euro-
pean Symposium On Research In Computer Security, volume 3679
of LNCS, pages 118–139. Springer, 2005.

[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing Helios:
An analysis of ballot secrecy. In CSF’11: 24th Computer Security
Foundations Symposium, pages 297–311. IEEE Computer Society,
2011.

[CS13] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An
analysis of ballot secrecy. Journal of Computer Security, 21(1):89–
148, 2013.

80

[Dag07] Participants of the Dagstuhl Conference on Frontiers of E-Voting.
Dagstuhl Accord, 2007. http://www.dagstuhlaccord.org/.

[DJL13] Jannik Dreier, Hugo Jonker, and Pascal Lafourcade. Defining ver-
ifiability in e-auction protocols. In ASIACCS’13: 8th ACM Sym-
posium on Information, Computer and Communications Security,
pages 547–552. ACM Press, 2013.

[DLL13] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. Formal
Verification of e-Auction Protocols. In POST’13: 2nd International
Conference on Principles of Security and Trust, volume 7796 of
LNCS, pages 247–266. Springer, 2013.

[FR96] M.K. Franklin and M.K. Reiter. The design and implementation of a
secure auction service. IEEE Transactions on Software Engineering,
22(5):302–312, 1996.

[FS87] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solu-
tions to Identification and Signature Problems. In CRYPTO’86: 6th
International Cryptology Conference, volume 263 of LNCS, pages
186–194. Springer, 1987.

[Gro04] Jens Groth. Efficient maximal privacy in boardroom voting and
anonymous broadcast. In FC’04: 8th International Conference
on Financial Cryptography, volume 3110 of LNCS, pages 90–104.
Springer, 2004.

[Gro06] Jens Groth. Simulation-Sound NIZK Proofs for a Practical Lan-
guage and Constant Size Group Signatures. In ASIACRYPT’02:
12th International Conference on the Theory and Application of
Cryptology and Information Security, volume 4284 of LNCS, pages
444–459. Springer, 2006.

[Gum05] Andrew Gumbel. Steal This Vote: Dirty Elections and the Rotten
History of Democracy in America. Nation Books, 2005.

[HBH10] Stuart Haber, Josh Benaloh, and Shai Halevi. The Helios e-Voting
Demo for the IACR. International Association for Cryptologic Re-
search. http://www.iacr.org/elections/eVoting/heliosDemo.

pdf, May 2010.

[HIS05] Yong-Sork Her, Kenji Imamoto, and Kouichi Sakurai. Analysis and
comparison of cryptographic techniques in e-voting and e-auction.
Technical Report 10(2), Information Science and Electrical Engi-
neering, Kyushu University, September 2005.

[HRZ10] Fao Hao, Peter Y. A. Ryan, and Piotr Zieliński. Anonymous voting
by two-round public discussion. Journal of Information Security,
4(2):62 – 67, 2010.

81

[HTK98] Michael Harkavy, J. Doug Tygar, and Hiroaki Kikuchi. Electronic
auctions with private bids. In Proceedings of the 3rd USENIX Work-
shop on Electronic Commerce, 1998.

[JCJ02] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
Resistant Electronic Elections. Cryptology ePrint Archive, Report
2002/165, 2002.

[JCJ10] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
Resistant Electronic Elections. In David Chaum, Markus Jakob-
sson, Ronald L. Rivest, and Peter Y. A. Ryan, editors, Towards
Trustworthy Elections: New Directions in Electronic Voting, vol-
ume 6000 of LNCS, pages 37–63. Springer, 2010.

[JJ00] Markus Jakobsson and Ari Juels. Mix and match: Secure function
evaluation via ciphertexts. In ASIACRYPT’00: 6th International
Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 162–177. Springer, 2000.

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryp-
tography. Chapman & Hall/CRC, 2007.

[Kri00] Vijay Krishna. Auction Theory. Academic Press, second edition,
2000.

[KRS10] Steve Kremer, Mark D. Ryan, and Ben Smyth. Election verifiability
in electronic voting protocols. In ESORICS’10: 15th European Sym-
posium on Research in Computer Security, volume 6345 of LNCS,
pages 389–404. Springer, 2010.

[KSRH12] Dalia Khader, Ben Smyth, Peter Y. A. Ryan, and Feng Hao. A Fair
and Robust Voting System by Broadcast. In EVOTE’12: 5th In-
ternational Conference on Electronic Voting, volume 205 of Lecture
Notes in Informatics, pages 285–299. Gesellschaft für Informatik,
2012.

[KTV10] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Account-
ability: Definition and relationship to verifiability. In CCS’10:
17th ACM Conference on Computer and Communications Security,
pages 526–535. ACM Press, 2010.

[KTV11] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Verifiability,
Privacy, and Coercion-Resistance: New Insights from a Case Study.
In S&P’11: 32nd IEEE Symposium on Security and Privacy, pages
538–553. IEEE Computer Society, 2011.

[KTV12] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Clash At-
tacks on the Verifiability of E-Voting Systems. In S&P’12: 33rd
IEEE Symposium on Security and Privacy, pages 395–409. IEEE
Computer Society, 2012.

82

[KTV15] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountabil-
ity: Definition and relationship to verifiability. Cryptology ePrint
Archive, Report 2010/236 (version 20150202:163211), 2015.

[KY02] Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect
ballot secrecy. In PKC’01: 3rd International Workshop on Practice
and Theory in Public Key Cryptography, volume 2274 of LNCS,
pages 141–158. Springer, 2002.

[KZZ15] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-
end verifiable elections in the standard model. In EUROCRYPT’15:
34th International Conference on the Theory and Applications of
Cryptographic Techniques, volume 9057 of LNCS, pages 468–498.
Springer, 2015.

[LAN02] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey
Auctions without Threshold Trust. In FC’02: 6th International
Conference on Financial Cryptography and Data Security, volume
2357 of LNCS, pages 87–101. Springer, 2002.

[LG84] Arend Lijphart and Bernard Grofman. Choosing an electoral sys-
tem: Issues and Alternatives. Praeger, 1984.

[MAC02] Emmanouil Magkos, Nikos Alexandris, and Vassilis Chrissikopou-
los. A Common Security Model for Conducting e-Auctions
and e-Elections. CSCC’02: 6th WSEAS International Multi-
conference on Circuits, Systems, Communications and Comput-
ers http://www.wseas.us/e-library/conferences/crete2002/

papers/444-766.pdf, 2002.

[MM87] R. Preston McAfee and John McMillan. Auctions and bidding.
Journal of Economic Literature, 25(2):699–738, 1987.

[MS17] Maxime Meyer and Ben Smyth. An attack against the Helios elec-
tion system that exploits re-voting. arXiv, Report 1612.04099, 2017.

[MSQ14] Adam McCarthy, Ben Smyth, and Elizabeth A. Quaglia. Hawk and
Aucitas: e-auction schemes from the Helios and Civitas e-voting
schemes. In FC’14: 18th International Conference on Financial
Cryptography and Data Security, volume 8437 of LNCS, pages 51–
63. Springer, 2014.

[NIS12] NIST. Secure Hash Standard (SHS). FIPS PUB 180-4, Informa-
tion Technology Laboratory, National Institute of Standards and
Technology, March 2012.

[OAS69] Organization of American States. American Convention on Human
Rights, “Pact of San Jose, Costa Rica”, 1969.

83

[Oka96] Tatsuaki Okamoto. An electronic voting scheme. In Advanced IT
Tools: IFIP World Conference on IT Tools, IFIP Advances in In-
formation and Communication Technology, pages 21–30, 1996.

[OSC90] Organization for Security and Co-operation in Europe. Document
of the Copenhagen Meeting of the Conference on the Human Di-
mension of the CSCE, 1990.

[PBDV04] Kun Peng, Colin Boyd, Ed Dawson, and Kapalee Viswanathan. Ef-
ficient implementation of relative bid privacy in sealed-bid auction.
In Information Security Applications, volume 2908 of LNCS, pages
244–256. Springer, 2004.

[Per16] Olivier Pereira. Internet Voting with Helios. In Real-World Elec-
tronic Voting: Design, Analysis and Deployment, volume 8604,
chapter 11. CRC Press, 2016.

[QS17] Elizabeth A. Quaglia and Ben Smyth. A short introduction to se-
crecy and verifiability for elections. arXiv, Report 1702.03168, 2017.

[Saa95] Thomas Saalfeld. On Dogs and Whips: Recorded Votes. In Herbert
Döring, editor, Parliaments and Majority Rule in Western Europe,
chapter 16. St. Martin’s Press, 1995.

[SB13] Ben Smyth and David Bernhard. Ballot secrecy and ballot inde-
pendence coincide. In ESORICS’13: 18th European Symposium on
Research in Computer Security, volume 8134 of LNCS, pages 463–
480. Springer, 2013.

[SB14] Ben Smyth and David Bernhard. Ballot secrecy and ballot indepen-
dence: definitions and relations. Cryptology ePrint Archive, Report
2013/235 (version 20141010:082554), 2014.

[SC11] Ben Smyth and Véronique Cortier. A note on replay attacks
that violate privacy in electronic voting schemes. Technical Re-
port RR-7643, INRIA, June 2011. http://hal.inria.fr/inria-

00599182/.

[Sch99] Berry Schoenmakers. A simple publicly verifiable secret sharing
scheme and its application to electronic voting. In CRYPTO’99:
19th International Cryptology Conference, volume 1666 of LNCS,
pages 148–164. Springer, 1999.

[Sch05] Nicole Schweikardt. Arithmetic, first-order logic, and counting
quantifiers. Search Results ACM Transactions on Computational
Logic, 6(3):634–671, July 2005.

[SFC16] Ben Smyth, Steven Frink, and Michael R. Clarkson. Election Verifi-
ability: Definitions and an Analysis of Helios and JCJ. Cryptology
ePrint Archive, Report 2015/233 (version 20161018:111117), 2016.

84

[SFC17] Ben Smyth, Steven Frink, and Michael R. Clarkson. Election Verifi-
ability: Cryptographic Definitions and an Analysis of Helios, Helios-
C, and JCJ. Cryptology ePrint Archive, Report 2015/233 (version
20170111:122701), 2017.

[SHM15] Ben Smyth, Yoshikazu Hanatani, and Hirofumi Muratani. NM-CPA
secure encryption with proofs of plaintext knowledge. In IWSEC’15:
10th International Workshop on Security, volume 9241 of LNCS.
Springer, 2015.

[SK95] Kazue Sako and Joe Kilian. Receipt-Free Mix-Type Voting Scheme
- A Practical Solution to the Implementation of a Voting Booth.
In EUROCRYPT’95: 12th International Conference on the Theory
and Applications of Cryptographic Techniques, volume 921 of LNCS,
pages 393–403. Springer, 1995.

[Smy12] Ben Smyth. Replay attacks that violate ballot secrecy in helios.
Cryptology ePrint Archive, Report 2012/185, 2012.

[Smy14] Ben Smyth. Ballot secrecy with malicious bulletin boards. Cryp-
tology ePrint Archive, Report 2014/822 (version 20141012:004943),
2014.

[Smy16] Ben Smyth. Secrecy and independence for election schemes. Cryp-
tology ePrint Archive, Report 2015/942 (version 20161228:181001),
2016.

[Smy17] Ben Smyth. First-past-the-post suffices for ranked voting.
https://bensmyth.com/publications/2017-FPTP-suffices-

for-ranked-voting/, 2017.

[Smy18a] Ben Smyth. A foundation for secret, verifiable elections. Cryptology
ePrint Archive, Report 2018/225, 2018.

[Smy18b] Ben Smyth. Verifiability of Helios Mixnet. In Voting’18: 3rd Work-
shop on Advances in Secure Electronic Voting, LNCS. Springer,
2018.

[SP13] Ben Smyth and Alfredo Pironti. Truncating TLS Connections to
Violate Beliefs in Web Applications. In WOOT’13: 7th USENIX
Workshop on Offensive Technologies. USENIX Association, 2013.
(First appeared at Black Hat USA 2013.).

[SP15] Ben Smyth and Alfredo Pironti. Truncating TLS Connections to
Violate Beliefs in Web Applications. Technical Report hal-01102013,
INRIA, 2015.

[Sta14] CACM Staff. ACM’s 2014 General Election: Please Take This Op-
portunity to Vote. Communications of the ACM, 57(5):9–17, May
2014.

85

[UN48] United Nations. Universal Declaration of Human Rights, 1948.

[US90] U.S. Congress. Sherman Antitrust Act, 1890.

[ZCC+13] Filip Zagórski, Richard T. Carback, David Chaum, Jeremy Clark,
Aleksander Essex, and Poorvi L. Vora. Remotegrity: Design
and Use of an End-to-End Verifiable Remote Voting System. In
ACNS’13: 11th International Conference on Applied Cryptogra-
phy and Network Security, volume 7954 of LNCS, pages 441–457.
Springer, 2013.

86

