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Abstract. In this work we show how to use Graphics Processing Units (GPUs) with Compute Unified
Device Architecture (CUDA) to accelerate a lattice based signature scheme, namely, the NTRU mod-
ular lattice signature (NTRU-MLS) scheme. Lattice based schemes require operations on large vectors
that are perfect candidates for GPU implementations. In addition, similar to most lattice based sig-
nature schemes, NTRU-MLS provides transcript security with a rejection sampling technique. With a
GPU implementation, we are able to generate many candidates simultaneously, and hence mitigate the
performance slowdown from rejection sampling. Our implementation results show that for the original
NTRU-MLS parameter sets, we obtain a 2× improvement in the signing speed; for the revised param-
eter sets, where acceptance rate of rejection sampling is down to around 1%, our implementation can
be as much as 47× faster than a CPU implementation.
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1 Introduction

Lattice based signature schemes have received a growing interest due to the threat of quantum computers
[1]. Organizations and research groups are looking for candidate algorithms to replace RSA and ECC based
schemes [2, 3]. However, lattice based signature schemes naturally have large signature sizes compared to RSA
and ECC based solutions. Among existing candidates, schemes that are instantiated over NTRU lattices [4],
such as BLISS [5] and NTRU-MLS [6], are the most practical. This is due to the special structure of NTRU
lattices.

Lattice based signature schemes have a history of almost 20 years. Early lattice based signature schemes,
such as GGHSign [7] and NTRUSign [8], leak private key information in a transcript of message/signature
pairs. An attacker can produce a signing key from a long enough transcript using methods for “learning a
parallelepiped” [9, 10].

In [11], Lyubashevsky proposed a rejection sampling method to thwart transcript leakage attacks. Using
his technique, signatures are produced according to a fixed public distribution (typically either a Gaussian
or a uniform distribution). A transcript reveals only this public distribution, and contains no information
about the particular signing key that is used to generate the signatures.

This technique has become the de facto method for avoiding transcript leakage in lattice based signature
schemes, such as [5, 6, 12]. However, to ensure that the output signature follows a given distribution, a large
number of random candidate signatures may need to be generated for a single document before one is
accepted. This slows down the total signing procedure significantly, but this slowdown can be mitigated by
parallel computing.

Graphics Processing Units (GPUs) are a widely used source of computational power for highly paral-
lelizable tasks. Commodity GPUs provide high performance for low cost, and are an attractive platform for
cryptographic accelerators. Research such as [13, 14] have demonstrated that GPUs can provide significant
throughput improvements for cryptographic operations.

Our contribution: In this paper, we investigate the impact of parallel computing on NTRU-MLS
signature generation time on Compute Unified Device Architecture (CUDA) supported GPUs. The NTRU
Modular Lattice Signature (NTRU-MLS) scheme was proposed at PQCrypto 2014 [6], and has several
attractive features. First, the use of NTRU lattices enables fast and parallel signing operations. Second,
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NTRU-MLS only requires samples from the uniform distribution. The discrete Gaussian sampling required
by other schemes involves the use of look-up tables or other computation that can be difficult to implement
efficiently on a GPU.

Since the debut of NTRU-MLS, there has been a major revision of the recommended parameter sets [15].
The new parameter sets offer higher security, smaller keys and smaller signatures, but require much more
aggressive rejection sampling. As we can generate multiple candidate signatures in parallel with a GPU, our
implementation performs surprisingly well with the revised parameter sets. With the original parameter sets,
we see a two-fold speedup compared to a CPU implementation; while with the revised parameter sets, our
implementation is 18-47 times faster than a CPU implementation.

2 Preliminaries

2.1 Notation

NTRU-MLS makes extensive use of operations in the ring R = Z [x] /
(
xN − 1

)
. For a polynomial f =∑N−1

i=0 aix
i, its vector form is 〈a0, a1, . . . , aN−1〉. We abuse the notation f to denote either the vector or the

polynomial where there is no ambiguity. We use ‖f‖ to denote the max-norm of f , i.e., ‖f‖ = max0≤i<N |ai|.
Modulo operations are centered at 0. A vector/polynomial modulo q is carried out as coefficients modulo q
and lifted to [−q/2, q/2). For simplicity, we use R(k) to denote the set {f ∈ R : ‖f‖ ≤ k}.

We work on dimension n = 2N integral lattices L ⊂ Zn. An NTRU lattice Lh is determined by an integer
modulus q and an element h ∈ R. Points in the lattice are in one-to-one correspondence with elements of
the set

{
(s, t) ∈ R2 : t ≡ h ∗ s (mod q)

}
by equating R2 and Zn in the natural way. For NTRU-MLS one

takes h ≡ f−1 ∗ g (mod q) where f and g are short polynomials.

2.2 Review of NTRU-MLS

Let L be a dimension n lattice. Let p be a small integer, and let mp ∈ Zn
p represent the message to be signed.

The goal of the signer in the modular lattice signature scheme is to find a vector s, such that

1. s ∈ L;
2. ‖s‖ is small; and
3. s ≡mp mod p.

Any lattice point s satisfying s ≡mp (mod p) is a potential signature. With a short basis, it is easy to
find such a vector s that satisfies all requirements. Anyone can use a public basis to verify the correctness
of the signature. However, if one does not know a short basis, then it is hard to find a vector that satisfies
all of the criteria simultaneously.

To enable transcript security, it is required that the signatures are distributed over a public region that
is sufficiently large. A candidate will be rejected if it falls out of this region.

The NTRU-MLS scheme is an efficient instantiation of this idea using NTRU lattices. The scheme takes
these parameters:

N the degree of the polynomial ring
p a small prime
q an integer larger than and relatively prime to p

Bs, Bt norm constraints of a signature (s, t).

The scheme follows these algorithms:

– Key generation:
1. Pick two polynomials F , g ∈ ZN

p that are both invertible modulo p and q; set f = pF .
2. Compute h ≡ f−1 ∗ g (mod q).
3. Publish h as the public key; keep (f , g) as the secret key.
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– Sign a document µ ∈ {0, 1}∗ with the secret key (f , g):
1. (sp, tp)← Hash (h, µ).

2. r ← R
(⌊

q
2p + 1

2

⌋)
.

3. s0 ← sp + pr; t0 = s0 ∗ h (mod q).
4. a← (tp − t0) ∗ g−1 (mod p).
5. (s, t)← (s0, t0) + a ∗ (f , g)
6. If ‖s‖ > q

2 −Bs or ‖t‖ > q
2 −Bt, goto Step 2.

7. Output s as a signature of µ.
– Verify a signature s on document µ with respect to the public key h:

1. Compute t ≡ s ∗ h (mod q)
2. (sp, tp)← Hash (h, µ).
3. If (s, t) 6≡ (sp, tp) (mod p), return false.
4. If ‖s‖ > q

2 −Bs or ‖t‖ > q
2 −Bt, return false.

5. Return true.

Product Form Polynomials To enable fast ring convolutions, NTRU-MLS makes use of product form
polynomials. The secret polynomial F is constructed as F = F1 ∗ F2 + F3 + 1, where Fi is a very sparse
ternary polynomial with exactly di coefficients equal to +1 and di coefficients equal to −1, for i = 1, 2, 3
respectively. The same construction method applies to g. See section 3.2 for more details.

Rejection sampling Rejection sampling is a technique to obtain a desired distribution χ2 from an input
distribution χ1. In NTRU-MLS, the transcript security requires that a signature (s, t) is indistinguishable
from a sample from a uniform distribution. However, as (s, t) = (s0, t0)+a∗(f , g), where (s0, t0) is uniformly
distributed3 over R(q/2)×R(q/2), the raw output (s, t) does not follow a uniform distribution. Indeed, the
distribution χ1 of (s, t) is slightly thicker towards the edge of R(q/2) ×R(q/2) due to the a ∗ (f , g) term.
By rejecting the candidate signature that lies outside of R(q/2 − Bs) × R(q/2 − Bt) we obtain a uniform
distribution χ2 over R(q/2−Bs)×R(q/2−Bt).

As mentioned earlier, rejection sampling incurs a cost. Depending on the rejection rate, one need to regen-
erate candidate signatures (Steps 2-6) for many time. We use parallel computing to mitigate the slowdown
due to rejection sampling.

2.3 CUDA GPU Computing

CUDA is a parallel computing platform and application programming interface (API) model that allows
the use of a CUDA-enabled GPU for general purpose processing. A GPU provides immense computational
power, but has a highly specialized architecture. The programming model and memory hierarchy are much
different from a CPU. Here we present a succinct review.

Programming Model A CUDA-enabled GPU consists of thousands of CUDA cores partitioned into an
array of independent streaming multiprocessors (MPs). Each MP is built with function units, private memory,
data cache and instruction buffer. The CUDA programming model abstracts GPUs’ hardware architecture
for developers.

CUDA GPU computing involves two parties: CPUs and system memory are called “host”; GPUs and
GPU memory are called “device”. In a GPU-accelerated application, intensive computation are offloaded
to the device, while the rest of the application remains on the host, with a parallel function invocation (a
kernel). A kernel is supposed to be invoked by the host and executed by the device with an array of sequential

3 To achieve so, the random vector r needs to be uniformly sampled from R
(⌊

q
2p

+ 1
2

⌋)
. If the random number

generator is biased, one loses the transcript security. In our implementation, we use Salsa20 [16] which has been
standardized by IETF [17], and has been adopted in several popular libraries, such as OpenSSH and IPsec.
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threads. A MP is able to concurrently execute groups of 32 threads (warps) in a single instruction multiple
data (SIMD) style. All threads, each having an thread index provide its own control flow, run the same code.

By the concept of CUDA, threads are further grouped into blocks. Every kernel is launched with grid
configurations (the number of blocks and the number of threads per block). Each block is then assigned to
one of the MPs. Only threads within a block can cooperate or synchronize. The dimension of a grid and
that of each block determine how computing resource is assigned to program, i.e. the mapping of threads to
CUDA cores and of blocks to MPs, which is mainly arranged by hardware controller components.

A basic model of computation offloading includes 3 steps: copy input data from the host to the device;
launch a kernel (or kernels) with grid configurations; copy results from the device to the host when neces-
sary. The computation complexity of a kernel and the amount of data transferred between host and device
depend on the details of an implementation. A few criteria need to be considered to design an efficient GPU
implementation, such as maximizing the use of processors and MPs (see 4.1), minimizing the latency caused
by data accesses (see 2.3), etc..

Memory Management Memory management influences the performance of a GPU-accelerated program
significantly. Several types of memory or cache are built within a GPU and each has an optimal access
pattern. The GPU memory architecture is represented in Table 1 where memory types are listed from top
to bottom by access speed from fast to slow.

Table 1. GPU memory organization

Memory Cached Access Scope Lifetime

Register N/A R/W One thread Thread
Constant Yes R All thread + host Application
Texture Yes R All thread + host Application
Shared N/A R/W All threads in a block Block
Local No R/W One thread Thread
Global No R/W All thread + host Application

An efficient kernel design should take advantage of these device memory properties:

– Global memory is off-chip, uncached, expensive to access. It is not a good option for data accessed
repeatedly. However, it is adequate in size (e.g. 12 GB on a NVIDA GeForce Titan X graphic card), and
it is the only memory type that can be modified by a kernel and be copied to the host. Therefore, it is
used for data input and output. Global memory favors a coalesced access pattern: each thread in a warp
accesses memory contiguously from the same 128 Bytes chunk. A non-coalesced (strided) access pattern
could take hundreds of times more cycles.

– Constant memory is cached and has high speed with a limited size (usually 64 KB). It suits repeatedly
requested data and outspeeds any other memory types if adjacent threads tend to access the same data.

– Texture memory is cached and read-only. It is bounded to global memory by the host. It works for this
pattern: nearby thread are likely to read from data that have close addresses (non-coalesced). Texture
memory is preferred for data that are read often, updated rarely, especially for data whose access pattern
exhibits a spatial locality.

– Shared memory resides in each MP. It is allocated for and can be read or written by all threads in a
block. It offers better performance than local or global memory, thus is often utilized as a buffer to
hold intermediate data, or to re-order strided global memory accesses to a coalesced pattern. However,
shared memory comes with a limited size per block (e.g. 96 KB on a NVIDA GeForce Titan X graphic
card). Shared memory is divided into banks that each bank serves only one address per cycle. Multiple
simultaneous accesses to a bank create a bank conflict. Shared memory can become as fast as registers,
if all threads of a half-warp access a different bank (no bank conflict).
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The data transfer between the host and the device, invoked to feed constant memory or global memory
and to output results, may cause unwanted delay as well. They can be optimized in following methods:
overlap data transfer and computation with CUDA streams; minimize the amount of data transferred and
pack small transfers into one larger transfer when possible; use page-locked (or pinned) memory to achieve
a higher bandwidth.

3 Our GPU Implementation

The idea is to offload the steps 2-7 of the signing algorithm in Section 2.2 to a GPU. Those steps (we
may call them an “attempt”) repeat until a valid signature is generated. Hence, the amount of computation
grows when the probability of generating a valid signature, namely Prob[valid], decreases. For example, when
choosing the parameter set

[
N = 401, q = 215, p = 3, Bs = 138, Bt = 46

]
, Prob[valid] is as low as 1.11%. On

average it would take approximately 90 attempts to generate a valid signature. Since every attempt is
independent, we may compute a number of them in parallel, which leads to the idea of exploiting a GPU.

When designing a GPU kernel that computes attempts, we considered several factors to achieve a higher
performance, such as data types, device memory types, grid dimensions, etc.. We started with implementing
polynomial operations and a random number generator based on the Salsa20 stream cipher. With the help of
a profiling tool: the NVIDIA Visual Profiler, we improved kernels’ performance, optimized the communication
between the host and the device, and set optimal grid dimensions according to the device architecture and
parameter selection.

3.1 The CPU-GPU Workflow

We designed a single CUDA kernel GenSig to compute Steps 2-7. As opposed to a design with several kernels,
temporary results may utilize shared memory that has a faster accessing speed rather than global memory.
We also have every CUDA block perform an independent attempt, due to the fact that shared memory is
only accessible by threads within the same block. Let say that the host launches a kernel GenSig that creates
β attempts with β blocks (the grid dimension/size) and τ threads (the block dimension/size) per block.
The probability that a block generates a valid signature depends on the parameter set and is denoted by
ρ = Prob[valid].

The Host At the start, the host copies necessary input data to the device: the public key h, the secret key
(f , g) in product form and the precomputed g−1, the hash (sp, tp) computed by the host, a 256-bit key, a
64-bit nonce and a 64-bit stream position required by the Salsa20 stream cipher.

The host also allocates memory space on both the device and the host to hold and to transfer output.
Since GenSig generates β attempts, an array Sig large enough to hold β signatures and a β-bit flag Pos

are allocated. A block that generates a valid signature marks the corresponding bit in Pos with atomic
operations. After every kernel launch, the host copies Pos from the device. If the host then sees the k-th bit
of Pos is marked, it copies the k-th signature in Sig from the device and finishes the signature generation.

When input is ready on the device, the host launches kernel GenSig. We may obtain a valid signature
after (ρβ)

−1
kernel launches on average. The program needs to stop computing extra attempts as soon

as a valid signature is generated. Such a termination instruction is issued by the host. The block(s) that
generates a valid signature cannot terminate or inform the other blocks efficiently. Although an inter-block
synchronization could be instantiated with repeated atomic accesses to global memory to perform a broadcast
among blocks, it would introduce a significant overhead.

The Device The kernel GenSig assigns several CUDA blocks that each attempts to generate a signature.
We set a flag IsValid with shared memory in each block to mark whether the signature generated by this
block is valid or not. In our design, the validity of a signature can be diagnosed before the attempt finishes.
In Fig. 1 we can see that three criteria have to be checked: the random number generation flag must not be
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Fig. 1. Flowchart of The Signing Algorithm on GPU

set (see 3.3), the norm of s must be less than or equal to q/2−Bs, and the norm of t must be less than or
equal to q/2−Bt (Step 6 of the signing procedure).

A thread that has observed a failure among these criteria marks IsValid as false with an atomic operation
and terminates itself right away. Each thread checks IsValid before consuming. However, a thread might
mark IsValid as false under a criterion, while another thread have checked the same criterion and have
started to compute the following steps. We use a final synchronization of all threads to ensure that a
signature is stored to Sig and is marked in Pos only if it is valid. Such a strategy avoids unnecessary accesses
to global memory. To be clear, one kernel could have generated more than one valid signatures and stored
them separately. The host only retrieves one of them. The routines of each thread in GenSig are summarized
in Fig. 1.

Summary The signing procedure works in the following way:

– Generate a hash of the document to be signed: (sp, tp).
– Copy

(
sp, tp,h, g

−1,F1,F2,F3,G1,G2,G3

)
to device memory.

– Repeatedly invoke the GenSig kernel until at least one valid signature is generated.
– Copy one valid signature to the host from the device.

Data type choices, device memory management, random number generation, polynomial operations and
the selection of (β, τ) will be discussed later in this section.

3.2 Ring Operations

Here we explain how the algebraic operations are implemented. Steps 3, 4, and 5 in the signing algorithm
require polynomial multiplication. Steps 3 and 4 require multiplication of arbitrary elements of R whereas
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the multiplications in Step 5 involve product-form polynomials. In Section 3.2 we discuss our generic multi-
plication routine, and in Section 3.2 we discuss how we handle product-form polynomials. We also discuss
how these routines determine the optimal grid dimensions (the number of blocks launched and the number
of threads per block) for the CUDA kernel.

Data Types We carefully select these data types to avoid overflow and to reduce memory consumption as
well:

– A polynomial in R (q/2), such as h, is stored in an array of 32-bit signed integers;
– A polynomial in R (p/2), such as sp, tp, g

−1, is stored in an array of 8-bit signed integers;
– Ternary polynomials Fi and Gi are stored in arrays of length 2di. The entries of these arrays are 16-bit

unsigned integers that represent the indices of +1 and −1 coefficients.

Generic Polynomial Multiplication Given two polynomials a =
∑N−1

i=0 aix
i and b =

∑N−1
i=0 bix

i, and

their product c =
∑N−1

i=0 cix
i, where a, b, c ∈ R, we have

c = a ∗ b
(
mod xN − 1

)
=

N−1∑
i=0

N−1∑
j=0

aibjx
(i+j mod N)

=

N−1∑
i=0

N−1∑
j=0

ajb(i−j mod N)

xi. (1)

We will hereafter drop the (mod N) from superscripts and subscripts and will perform index arithmetic in
ZN . The computation of c involves a total of N2 integer multiplications and N2 additions. As we want the
computation to be evenly distributed among the threads, we use N threads and have each thread compute
one coefficient of c.

The computation is performed either modulo q (step 3) or modulo p (step 4). According to our parameter
selections (see Table 4), q being a power of 2 provides fast modulo q operations. We also choose p = 3 which
makes a polynomial in R (p/2) a ternary polynomial.

Product Form Polynomial Multiplication In step 5, f and g are computed from ternary polynomials
Fi and Gi:

f = p (F1 ∗ F2 + F3 + 1)
g = G1 ∗G2 + G3 + 1.

Fi and Gi have exactly di coefficients that are +1 and exactly di coefficients that are −1. In other words,
Fi,Gi ∈ T (di) (i = 1, 2, 3), where T (di) ⊂ R (1) is defined as

T (di) =

{
b ⊂ R (1) :

|{j : bj = +1}| = di,
|{j : bj = −1}| = di,

}
.

To represent elements of T (·) we only have to record the positions of non-zero coefficients. We store a
polynomial b ∈ T (d) as (B+,B−, d), where B+ = {j ∈ ZN : bj = +1}, B− = {j ∈ ZN : bj = −1} and |B+| =
|B−| = d.

Now we can express Step 5 of the signing routine as several multiplications involving polynomials in
T (d). Given the polynomial a from Step 4, we compute

a ∗ f = p (a ∗ F1 ∗ F2 + a ∗ F3)
a ∗ g = a ∗G1 ∗G2 + a ∗G3.
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Algorithm 1 Product Form Polynomial Multiplication with N Threads in A Block

Input: a, bi =
(
B+

i ,B
−
i , di

)
, i = 1, 2, 3

Input: tid ∈ ZN . thread ID that marks the current thread
Input: t . temporary result shared by all threads
1: parfor all threads do
2: procedure t = a ∗ b1
3: ttid = 0
4: for j ← 0 to d1 − 1 do
5: ttid + = a(tid−B+

1 [j] mod N)
6: ttid − = a(tid−B−

1 [j] mod N)
7: end for
8: end procedure
9: syncthreads() . Wait until t is ready

10: procedure c = t ∗ b2
11: ctid = 0
12: for j ← 0 to d2 − 1 do
13: ctid + = t(tid−B+

2 [j] mod N)
14: ctid − = t(tid−B−

2 [j] mod N)
15: end for
16: end procedure
17: procedure c+ = a ∗ b3
18: for j ← 0 to d3 − 1 do
19: ctid + = a(tid−B+

3 [j] mod N)
20: ctid − = a(tid−B−

3 [j] mod N)
21: end for
22: end procedure
23: end parfor
Output: c = a ∗ b1 ∗ b2 + a ∗ b3

To simplify, the problem is to compute a ∗ F1, (a ∗ F1) ∗ F2, a ∗ F3, and likewise for g. Each of these
multiplications is between one dense and one sparse polynomial in T (d) for some d. Given a dense polynomial
a and a sparse polynomial b ∈ T (d) represented as (B+,B−, d), their product c = a ∗ b can be computed as

c = a ∗ b
(
mod xN − 1

)
=

N−1∑
i=0

N−1∑
j=0

aibjx
i+j

=

N−1∑
i=0

∑
j∈B+

aix
i+j −

∑
j∈B−

aix
i+j


=

N−1∑
i=0

∑
j∈B+

ai−jx
i −

∑
j∈B−

ai−jx
i


=

N−1∑
i=0

∑
j∈B+

ai−j −
∑
j∈B−

ai−j

xi. (2)

Now when implemented, (2) requires only a total of Nd integer additions and subtractions which offers a
much better performance than (1), since di is selected much smaller than N . Furthermore, (2) is completely
parallelizable. As we want the computation to be evenly distributed among threads, we use N threads, one
for each coefficient of c.

8



Algorithm 2 Random Polynomial Generation with N Threads in A Block

Input: ctr, rng, cap
Input: tid ∈ ZN . thread ID that marks the current thread
Input: t . a buffer to hold dN/16e integers (32-bit)
1: parfor dN/16e threads do
2: procedure the Salsa20 block cipher
3: Write output to t16tid ∼ t16tid+15

4: end procedure
5: end parfor
6: parfor N threads do
7: procedure Scale ttid to rtid
8: if ttid < cap then
9: rtid = (ttid mod rng)− ctr

10: else
11: Mark this signature as invalid
12: end if
13: end procedure
14: end parfor

Output: r ∈ R
(⌊

q
2p

+ 1
2

⌋)

Remark: We considered (2) as an alternative method to perform generic polynomial multiplications.
However, when implemented in CUDA program, (2) introduces a large number of conditional branches that
make it slower than (1).

Algorithm 1 explains how product form multiplication is implemented in parallel. All threads execute the
same code; tid marks the thread ID and indexes the coefficient of the result that the thread computes. We
create a buffer t shared by all threads to hold a temporary polynomial result. In the procedure c = t ∗ b2, a
thread reads from a location in t that is previously modified by another thread. To avoid a write-after-read
hazard that would lead to an incorrect result, we call a barrier function ( syncthreads() ) that synchronizes
all threads after the writes to t.

We need to determine the types of device memory to use and block dimensions. In terms of performance,
t requires fast read and write by all threads, and therefore utilizes shared memory. For B+i and B−i , constant
memory is obviously the right type to use, since all threads read the same locations of B+i and B−i at the same
time. All threads should belong to the same thread block to synchronize. Hence, it takes at least N threads
on each block to handle a polynomial multiplication. a has a random access pattern by the algorithm, hence
adopts shared memory.

Summary Polynomial multiplications requires at least N threads to execute. And all these threads belong
to the same block. The usage of device memory types are listed in Table 2.

3.3 Random Number Generator

Step 2 of the signing algorithm requires a fast random number generator on the device. We adopted the
Salsa20 stream cipher [16] which expands a 256-bit key, a 64-bit nonce that increases by every attempt,
and a 64-bit stream position to a 512-bit output. The random polynomial r is uniformly sampled from

R
(⌊

q
2p + 1

2

⌋)
, i.e. the coefficients of r are uniformly random over the interval

[
−
⌊
q + p− 1

2p

⌋
+ 1,

⌊
q + p− 1

2p

⌋
− 1

]
. (3)
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Let

ctr =
⌊
q+p−1

2p

⌋
− 1

rng = 2 ∗ ctr + 1
cap = 232 − 1−

(
232 − 1 mod rng

)
.

To achieve an uniform distribution, we generate uniform integers in Zcap and map them into interval (3) via:

r 7→ (r mod rng)− ctr.

Taking 32 bits of the output of Salsa20 yields a random integer r ∈ Z232 . However, applying the above
map to elements of Z232 does not yield the uniform distribution on the interval (3). To fix this, we mark
the signature invalid if it ever happens that rtid ≥ cap. This reduces the probability of generating a valid

signature by a factor of
(

1−
(
1− cap

232

)N)
. Since rng << 232, the loss in acceptance rate is tolerable.

Details are provided in Algorithm 2. Every group of 16 threads generates a 512-bit random seed and each
thread generates a single 32-bit element of interval (3) from a unique portion seed. The Salsa20 rounds cannot
be easily parallelized on 16 threads. However, the performance of the whole kernel is not much affected if we
compute all the rounds on each thread with registers.

3.4 Memory Management

Table 2 lists all the inputs and buffers needed by the CUDA kernel. As explained in algorithm 1, all threads
access to the same location in Fi and Gi at the same time, where constant memory is chosen. However,
the other inputs, although are read only, have different access patterns that are more efficient with shared
memory. To minimize the latency cause by memory accesses, we first copy those data from the host to device
texture memory, and then load them into shared memory. Together with other buffers that require read and
write accesses, the total amount of shared memory is (10N + 68) bytes, which is less than the limit of our
GPU (96 KB per block).

Table 2. Elements That Use GPU Memory

Input / Buffer Memory Type Integer Type Size in Bytes

Fi, Gi constant 16-bit unsigned 4(d1 + d2 + d3)
sp, tp, g−1 shared, texture 8-bit signed N
h shared, texture 32-bit signed 4N
Salsa20 shared, texture 32-bit unsigned 64
a, (tp − t0) shared 8-bit signed N
s0, t0 shared 32-bit signed 4N
IsValid shared 32-bit unsigned 4

The kernel avoids access to global memory as much as possible, since it is expensive. When at least one
valid signature is generated, the kernel will write the signature to a global memory location from which it
will eventually be read into system memory. Each valid signature (4N bytes) is written to a specified position
in the result buffer. If more than one valid signature is generated, more global memory accesses are required.
Although these global memory accesses are unnecessary, the only way to avoid them is with global memory
reads to check whether a valid signature has been generated. In practice, this solution yields no performance
improvement.

4 Implementation Results

In this section we discuss performance influential factors such as CUDA grid dimensions, the GPU archi-
tecture and the parameter selection. We then present implementation results showcasing the performance of
our NTRU-MLS on GPU, and compare them against the previous C instantiation proposed by Hoffstein et
al. in [6].
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4.1 Tuning CUDA Implementation

Parameter sets No. 1-4 in Table 4 were described in in [6]. We have listed them with their reduced bit security
estimates due to the attack described in [18]. The revised parameter sets No.5-9 provide a higher level of
security and a reduced signature (and key) size. The improvements come at a cost of a more aggressive
rejection rate (i.e. a lower Prob[valid]) which implies a huge increase of signing time. It is clearly observed
when we compare signing speeds in Table 4 of revised parameters to those of original parameters.

As in 3.1, let ρ = Prob[valid], and let β be the grid size launched by the kernel GenSig. In average, after

(ρβ)
−1

kernel launches, a valid signature is generated. Unfortunately, those kernels are launched sequentially
because of the validity check on the host after every launch. The choice of β affects performance greatly.

The NVIDIA GTX Titan X graphics card based on the GM200 GPU (see Table 3) has 24 multiprocessors
(MPs) that are capable of computing multiple blocks. If we select β ≤ 24, at least one MP is idle during
computation. That is to say, choosing β = 24 does not increase the latency of the kernel GenSig much,
comparing to choosing a smaller grid size. Although for parameters No.1-4, No.6 and No.7 whose acceptance
rates are higher than 1/24, setting b = 24 might generate more than one valid signatures, which is unnecessary
and introduces extra accesses to device global memory when writing back signatures. However, the affect is
negligible, as is observed in tests.

Table 3. NVIDIA GeForce Titan X (GM200) Technical Specifications

Item Spec Item Spec

CUDA Cores 3, 072 Multiprocessors (MPs) 24
Device Memory 12 GB CUDA Cores Per MP 128
GPU Clock 1.2 GHz Blocks Per MP ≤ 16
Memory Clock 3.5 GHz Warps Per MP ≤ 64
Warp Size 32 Threads Per MP ≤ 2, 048
Threads Per Block ≤ 1, 024 Registers Per MP 65, 536
Wraps Per Block ≤ 32 Shared Memory Per MP ≤ 96 KB
Registers Per Thread ≤ 63 Computing Capability 5.2

For other parameters with high rejection rates, we set a larger grid size, usually β = 48. The NVIDIA
Visual Profiler shows that setting β = 48 achieves a full utilization of MPs (all MPs running similar amounts
of computation task), based on the amount of registers, the size of shared memory and the block dimension.
In average, a valid signature is generated every two kernels, which makes β = 48 an optimal choice.

The grid size choice is highly determined by the GPU architectures, of which the number of MPs and
profiler results can be different.

4.2 Performance

The benchmarking results of our implementation are shown in the column “This Work” of Table 4. These
results are obtained by running the implementations on a machine with an NVIDIA GTX Titan X graphics
card (see 3) and a 3.5GHz Intel Core i7-3770K processor in single-thread mode. We reproduce the results
of the C implementation by Hoffstein et al. [6] on the same machine. The results are shown in the column
“[6]” and the speedup of CUDA implementation over C implementation is provided in the last column. For
compilation we used gcc v4.8.4 for the C implementation and the NVIDIA CUDA Compiler v7.5.17 for the
CUDA implementation.

The results shown are given by an average of 10, 000 signature generations with different keys and
messages. To ease the comparison, we reuse the same routines for Salsa20 and message hash function in
signing algorithm, and also reuse the same implementation in Hoffstein et al.’s software for everything other
than signing.
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Table 4. Benchmarking results (in terms of µs) of our CUDA C implementation of a valid signature generation, with
an NVIDIA GTX Titan X graphics card and a 3.5GHz Intel Core i7-3770K CPU in single-thread mode, are provided
in the column “This Work”. Results are compared with Hoffstein et al.’s C implementation with the same CPU. The
speedup achieved is given in the last column.

No. N p q Bs Bt d1,d2,d3 Prob[valid]
Security Signature Signing Time (µs) Grid

Speedup
(bits) Size (bytes) [6] This Work Size

1 401 3 218 240 80 8, 8, 6 37.57% 65 1, 706 475 238 24 ×2.00

2 439 3 219 264 88 9, 8, 5 55.46% 70 1, 976 367 250 24 ×1.47

3 593 3 219 300 100 10, 10, 8 40.46% 110 2, 670 870 311 24 ×2.80

4 743 3 220 336 112 11, 11, 15 53.00% 146 3, 530 852 379 24 ×2.25

5 401 3 215 138 46 8, 8, 6 1.11% 82 1, 404 25, 147 533 48 ×47

6 443 3 216 138 46 9, 8, 5 8.31% 88 1, 662 4, 975 272 24 ×18

7 563 3 216 174 58 10, 9, 8 1.86% 126 2, 112 20, 097 639 48 ×31

8 743 3 217 186 62 11, 11, 6 6.01% 179 2, 972 13, 894 447 24 ×31

9 907 3 217 225 75 13, 12, 7 1.57% 269 3, 628 72, 719 1,617 48 ×45

The results in Table 4 only show a slight speedup (1.47-2.80 times) with parameters No.1-4. One reason
is that [6] makes use of product-form polynomial as well and performs other polynomial multiplications
with the Karatsuba multiplication. That is to say, Hoffstein et al.’s software is highly optimized in terms of
efficiency, with lower complexity than the CUDA implementation. Another reason is that the Prob[valid] is
fairly high. The CUDA implementation actually by probability generates 9-13 valid signatures of which only
one is retrieved and counted.

Results with parameters No.5-9 show an improvement of performance of up to 47 times. Therefore, the
NTRU-MLS scheme can adopt new parameters with improved security and reduced signature size, and yet
keeps similar latencies. A more compact signature size, although the benefit of which is not observable in
our experiments, should save noticeable network delay.
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