
Proceedings on Privacy Enhancing Technologies 2016; 2016 (2):1–20

Nethanel Gelernter, Amir Herzberg, and Hemi Leibowitz

Two Cents for Strong Anonymity:
The Anonymous Post-office Protocol
Abstract: We introduce the Anonymous Post-office Pro-
tocol (AnonPoP), a practical strongly-anonymous mes-
saging system. AnonPoP design combines effectively
known techniques such as (synchronous) mix-cascade
and constant sending rate, with several new tech-
niques including request-pool, bad-server isolation and
per-epoch mailboxes. AnonPoP offers strong anonymity
against strong, globally eavesdropping adversaries, that
may also control multiple AnonPoP’s servers, even all-
but-one servers in a mix-cascade. Significantly, Anon-
PoP’s anonymity holds even when clients may occa-
sionally disconnect; this is essential to support mobile
clients.
AnonPoP is affordable, with monthly costs of 2¢ per
client, and efficient with respect to latency, communi-
cation, and energy, making it suitable for mobile clients.
We developed an API that allows other applications
to use AnonPoP for adding strong anonymity. We vali-
dated AnonPoP’s functionality, reliability, efficiency and
usability by experiments using web-based and mobile
applications used in ‘double-blinded’ usability study,
cloud-based deployment and simulations.

Keywords: Anonymity, Mixnets, Privacy, Annonymous
communication, Tor

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

1 Introduction
There have been many efforts to develop, analyze, de-
ploy and use anonymous communication protocols and
systems. In particular, the Tor anonymous network [23]
is widely used. However, Tor focuses on minimizing la-

Nethanel Gelernter: Dept. of Computer Science,
College of Management Academic Studies, E-mail:
nethanel.gelernter@gmail.com
Amir Herzberg: Dept. of Computer Science, Bar Ilan Uni-
versity, E-mail: amir.herzberg@gmail.com
Hemi Leibowitz: Dept. of Computer Science, Bar Ilan Uni-
versity, E-mail: leibo.hemi@gmail.com

tency; to achieve this, Tor design prefers reducing la-
tency to improving anonymity, and is vulnerable to glob-
ally eavesdropping adversaries. Several works show that
Tor is vulnerable even to weaker attackers, e.g., off-path
attackers [28] and malicious servers/clients [3] [10].

The popularity of Tor indicates that it provides
valuable service to many users and scenarios, despite its
limited guarantees for anonymity (and its non-negligible
overhead). However, there are also many scenarios and
users that require stronger anonymity properties, even
at the cost of somewhat higher latency and overhead.

Several works proposed protocols for stronger
anonymity guarantees, as compared to Tor. However,
existing research on strong anonymity is mostly imprac-
tical. Indeed, many seem to believe that it is infeasible
to ensure strong anonymity properties in a practical sys-
tem for many users, with acceptable overhead and effi-
ciency. We show that it is feasible to have practical, ef-
ficient system providing strong anonymity at low costs,
supporting large number of users.

Another limitation of Tor is that it provides a com-
munication channel, but not a complete messaging sys-
tem. A complete messaging system should also provide
‘mailbox’ facilities to keep messages until users pick
them up; this is also required to prevent detection of
a pair of users which frequently communicate with each
other and may get disconnected. A naive mailbox solu-
tion, where Tor is used to communicate with a mailbox
server, would allow the server to de-anonymize users by
exploiting Tor’s weaknesses, e.g., eavesdropping on par-
ticular (suspect) user, and correlating between messages
sent/received by this user, and messages received to this
mailbox or sent from this mailbox.

In summary, there is large interest in anonymity,
and Tor offers some level of anonymous communication;
however, neither Tor nor any other practical (existing
or proposed) system allows strongly-anonymous messag-
ing. This is disappointing; strong anonymity messag-
ing is both necessary and feasible. Messaging is used
more and more for business and personal communica-
tion, and anonymity is often required - for reasons rang-
ing from whistle-blowing to consulting on sexual harass-
ment. And, as we show, strongly-anonymous messaging
is feasible, since the volume of (text) messages is not



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 2

very large, and reasonable delays are acceptable. Hence,
it is frustrating that such system is not yet operative.

In this paper, we present the Anonymous Post-office
Protocol (AnonPoP), a practical anonymous messag-
ing system, designed to ensure strong anonymity, even
against strong attackers. We present the design, its ra-
tionale and its anonymity properties, and discuss prac-
tical deployment aspects, including:
1. Implementation and evaluation in real world envi-

ronment.
2. Operating costs in cloud environment.
3. Adjustment to mobile devices, with an emphasis on

user experience and energy consumption.

Anonymity loves company [22]: hence, the goal of Anon-
PoP is to provide strong anonymity with superb func-
tionality, usability, reliability, efficiency and low-cost, as
necessary to attract many users, and with the scala-
bility required to support millions of users. In partic-
ular, AnonPoP uses efficient cryptographic primitives
and has acceptable energy consumption, making it ap-
propriate for use on mobile devices. Furthermore, Anon-
PoP is the only proposed anonymous messaging proto-
col to support client disconnections, a feature which is
essential to support mobile clients.
To measure and confirm AnonPoP’s low operating costs,
we implemented and installed AnonPoP’s servers in
the cloud, and tested it on hundreds of thousands of
clients, communicating anonymously with each other
using AnonPoP. We found that the cost of supporting
such a large amount of clients is less than a quarter per
user, per year, or two cents per month.

We provide an API for messaging applications to
easily add an option for strong anonymity using Anon-
PoP. With this API, clients of different applications can
form one large anonymity set. For example, we used the
API to rapidly develop an anonymous Eliza [49] client,
demonstrating the use of anonymous messaging for sen-
sitive consulting services.

Readers are encouraged to try out AnonPoP using
a mobile application, web-interface and the API [1], to
experience the efficiency, acceptable overhead and us-
ability.

Contributions
Our main contribution is the design, development and
evaluation of strongly-anonymous messaging protocol,
secure against strong adversaries, and showing that
it is practical even for mobile clients. We show that
AnonPoP ensures better anonymity properties than ev-

ery other proposed protocols for anonymous messaging,
with acceptable overhead and extremely low yearly cost
(< 0.25$ per client). Furthermore, AnonPoP is the first
protocol that was designed and shown to be suitable
also for mobile devices.

Beyond that, this paper makes the following contri-
butions:
- The request-pool technique, allowing ‘masking’ of pe-
riods when a client is disconnected.
- Per-epoch mailboxes, limiting the exposure due to
client disconnections and due to active tagging attacks.
- The bad-server isolation mechanism, allowing isolation
of corrupt server (mix or PO), involved in aggressive
(non-stealthy) tagging attacks. Other techniques, times-
tamps and de-duplication, are used to prevent and/or
detect tagging attacks.
- We fine-tune AnonPoP to allow its use in mobile de-
vices, including energy-savings considerations. We con-
ducted double-blinded user-sensitivity experiment to
validate acceptable energy use.
- An open-source prototype of AnonPoP, including API
for applications, and an Android messaging application
that uses this API.

Paper Layout and Organization
In section 2, we start with an overview of AnonPoP
architecture and main building blocks. We then define
and explain the adversary model and all anonymity no-
tions and properties achieved by AnonPoP in section
3. Sections 4-6 will explain how AnonPoP design and
mechanisms handle attacks against wide range of at-
tackers with different resources and capabilities. Section
7 will detail a ‘double-blinded’ usability study, show-
ing that AnonPoP is suitable for mobile devices. Sec-
tion 8 will present a cloud based evaluations conducted
under‘real-world’ conditions, demonstrating the feasibil-
ity of AnonPoP and discussing operating costs, and the
AnonPoP API. We conclude by surveying related work
in comparison to AnonPoP in section 9.

2 Architecture and Concepts
The goal of AnonPoP is to support anonymous exchange
of messages between clients; messages are packed at the
clients into fixed-size envelopes, and sent via AnonPoP’s
servers. AnonPoP uses two types of servers: Post-Office
(PO) servers and timed mixes (see Figure 1). The PO



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 3

Fig. 1. System architecture of AnonPoP (Anonymous Post-office
Protocol). The Post-Office (PO) maintains anonymous mailboxes;
clients push and pull envelopes to/from the mailbox anonymously
via mix-cascades. All communication channels (represented by
arrows) use fixed rates.

and mix servers are expected to operate continuously;
clients may disconnect from time to time.

AnonPoP supports multiple Post-Office (PO)
servers, where each client selects arbitrarily a PO server
for its use. As we later describe, AnonPoP allows detec-
tion of tagging attacks by corrupt PO, and we expect
clients to move, in this case, to a different PO; however
we do not discuss the process of migrating to a new PO,
and, for simplicity, our discussion and figures are for a
single PO. Similarly, AnonPoP supports an arbitrary
number of mix servers, among which the client selects
mix-cascades; AnonPoP detects tagging attacks by cor-
rupt mix servers, and clients avoid suspect servers when
selecting the mix-cascade, as discussed toward the end
of this section.

Envelopes are onion-encrypted as they are for-
warded and mixed by the mixes. Envelopes can contain
either a push request, ‘pushing’ an envelope to a partic-
ular mailbox in the PO, or a pull request, ‘pulling’ an
envelope from a particular mailbox.

More specifically, mixes operate in synchronized
slots of τ seconds. Each mix collects all envelopes re-
ceived in a slot, mixes their order, decrypts requests
and encrypts responses, and forwards them so they are
all received in the following slot. Clients send envelopes
with push and pull requests every round of λ slots. If a
client does not have a real message to push, she sends a
dummy[43] envelope, which is recognized and discarded
by the PO. However, the PO responds to dummy re-
quests as it does for real requests. This ensures unob-
servability against eavesdroppers and even mixes, i.e,
an attacker controlling mixes and eavesdropping on the
communication, but not controlling the PO, cannot even
distinguish between the case that no messages are sent
and the case that many messages are sent between dif-
ferent users. Such attacker also cannot identify source
or destination, or even link between incoming and for-
warded envelopes.

The PO maintains anonymous mailboxes containing
envelopes sent to different clients. Envelopes received
by the PO are still encrypted; hence, a corrupt, eaves-
dropping PO cannot identify the recipients, senders
or contents, provided that the mixes are honest, and
users are always connected. (AnonPoP has defenses for
anonymity when users may disconnect, as we describe
in next section.)

AnonPoP mailboxes are used only for a limited pe-
riod, called an epoch. At the end of every epoch, senders
and recipients switch to a new (pseudo)random mail-
box, further limiting the potential for a corrupt PO to
correlate users of the same mailbox.

AnonPoP has several additional defenses against
corrupt, eavesdropping PO. Such defenses are only
needed when clients may disconnect, or mixes may ac-
tively collude with the PO (e.g., in ‘tagging’ attacks):
Request-Pool: a set of pre-made requests, allowing

preservation of anonymity even when a client dis-
connects. This is especially appropriate for pull-
requests, allowing the pattern of collecting en-
velopes from a mailbox to be independent of pos-
sible disconnections of the destination.

Tag-Prevention: mechanisms such as de-duplication
and fixed forwarding times of requests and re-
sponses, which prevent active tagging attacks,
where some of the mixes collude with the PO to
identify sender or recipient. However, these mecha-
nisms do not prevent all the active attacks when the
attacker controls both the first mix and the PO.

Bad-Server Isolation: this mechanism detects a cor-
rupt (mix or PO) server, or a pair of two ‘consec-
utive’ servers s.t. (at least) on of the pair is ma-
licious (and deviates from the protocol). In such
cases, clients avoid the corrupt mix or the use of
the suspect pair of mixes (i.e., the ‘suspect edge’).
The bad-server isolation mechanism ensures a strict,
low limit on the amount of de-anonymizing queries
available to the adversary, in spite of its control over
a significant number f of corrupt (mix and/or PO)
servers.

AnonPoP has a modular two-layer design. In this
work we mostly focus on the lower, Anonymous-
communication (Anon-Comm) layer, which ensures a
strongly-anonymous communication channel between
clients and the PO. The upper Anonymous Post-Office
Box (Anon-POB) layer of AnonPoP handles mailboxes
for recipients. In this paper, we present only the simple
per-epoch mailbox design. We believe that further im-
provements in security, anonymity and efficiency, may



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 4

be possible, by more elaborate Anon-POB layer mech-
anisms, which are beyond the scope of this paper.

Mix selection. For simplicity, in this paper, we as-
sume that AnonPoP clients and servers use a trusted,
reliable server directory service for path selection; this
is merely a simplification, as it is straightforward to im-
plement such a directory service in a distributed man-
ner (avoiding a single point of failure). The directory
maintains list of all AnonPoP mix and PO servers, with
their public keys and addresses. Furthermore, the di-
rectory lists pairs of connected servers; a pair of servers
(x, y) is connected if the directory did not receive report
from x claiming misbehavior of y. These misbehavior
reports are facilitated AnonPoP’s bad server isolation
mechanism. As long as clients choose paths uniformly
(among all valid paths), the probability of choosing a
path containing only bad mixes remains very small.

We assume a known upper bound f to the num-
ber of malicious (faulty) mix servers; once the directory
contains more than f reports for a specific mix or PO
server, this server must be indeed corrupt, and is dis-
connected from all other servers. Clients pick a cascade
mix uniformly among all paths consisting of pairs of
connected mixes, ending in the desired PO.

Mailbox setup. AnonPoP automatically assigns
clients to random mailboxes and generates proper keys.
In this paper, we assume that clients have a secure com-
munication channel to perform the initial key exchange.
Anonymous key-exchange, e.g. in [25], is a further chal-
lenge, which is beyond the scope of this paper.

3 Anonymity Properties
This section presents the anonymity properties en-
sured by AnonPoP. Section 3.1 introduces the adversary
model. Section 3.2 discusses the challenge of defining
anonymity properties, arguing that the existing rigor-
ous, formal definitions are too simplified to cover the
goals of AnonPoP; in this paper we focus on presenting
the AnonPoP design, therefore, extending the formal
definitions is left for future work. Instead, in Section 3.3
we present ‘informal notions’, which we use in this work.
Section 3.4 describes the anonymity properties achieved
by AnonPoP, using the (informal) notions.

3.1 Adversary Model

As in previous works, we focus on probabilistic polyno-
mial time attackers; this is essential, since our design
uses cryptographic mechanisms, which are only secure

assuming probabilistic polynomial time attackers, e.g.,
encryption schemes [6].

AnonPoP design assumes that the attacker has
global eavesdropping abilities, i.e., can (instantly) ob-
serve all communication sent between any of the parties
in the system. We also consider additional attacker ca-
pabilities, mainly, control of the PO and/or some of the
mixes, allowing complex, powerful attacks. Although we
allow an attacker to controls several colluding servers si-
multaneously, we make the reasonable assumption that
the number adversarial servers is limited.

We also consider the communication to be between
trusting peers (sender and recipient). In fact, we already
work on an advanced POB layer for AnonPoP that will
defend against malicious peers, however, this is beyond
the scope of this paper.

3.2 Challenges of Defining Anonymity

Intuitively, anonymous communication means the in-
ability of identifying specific (communicating) enti-
ties among the set of potentially-communicating enti-
ties. Multiple variants were considered by researchers
and practitioners, e.g., unobservability and sender
(and/or recipient) anonymity. One widely-used inter-
pretation [42] is that sender (recipient) anonymity refers
to the inability of an attacker to identify the sender (re-
cipient) of a message among a set of potential senders
(recipients), and unobservability refers to inability of an
attacker to know whether there was any communication
at all. These are useful, intuitive notions; however, they
are not sufficiently formal to allow rigorous proofs of
security.

Transforming such informal, intuitive notions into
precise, well-defined, formal definitions, is a non-trivial
challenge. There have been multiple attempts to present
appropriate formal definitions, including [2, 9, 26, 27,
30, 32–34, 41, 45, 47]. These definitions differ in multi-
ple aspects, and in particular, in the capabilities of the
adversary, and in what constitutes a successful attack.

Unfortunately, when trying to apply these defini-
tions to analyze AnonPoP, we realized that each of
them, fail to satisfy all of the following three important
aspects of AnonPoP’s design and goals:
1. AnonPoP’s goal is to ensure strong anonymity prop-

erties - against active, adaptive adversaries, who
eavesdrop the entire network and control a major-
ity of AnonPoP’s servers. Existing definitions are
for passive, static adversaries.



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 5

Honest server Anonymity property Attack: Defense (claim)
Without disconnections With disconnections

Only first Passive: Prevent (2)
push mix Sender Active: Prevent (3) Heuristic defense, see

Only non-first anonymity Passive: Prevent (2) Section 6.2 and Appendix A
push mix Active: Detect (4)
Only first Passive: Prevent (2)
pull mix Recipient Active: Prevent (3) Passive: Prevent (5)

Only non-first anonymity Passive: Prevent (2) Active: Detect (6)
pull mix Active: Detect (4)
Only PO Unobservability Passive and Active: Prevent (1)

Table 1. Anonymity properties achieved by AnonPoP against a globally-eavesdropping attacker, who controls all servers along the
path, except as indicated in the ‘honest server’ column. In parentheses: number of relevant claim.

2. AnonPoP supports (limited-duration) client discon-
nections, an aspect which is not addressed by exist-
ing definitions, yet is crucial for a practical system,
supporting mobile devices.

3. AnonPoP is provides different levels of anonymity
against attackers with different capabilities; this is
not compatible with current formal definitions. In
particular, against some (strong) attack models,
AnonPoP can ‘only’ ensure that attackers become
increasingly isolated, hence deterring such attacks
and reducing likelihood of successful attack; this is
not captured by any of the existing formal defini-
tions.

Since our focus in this work is on system design, we de-
cided to only follow ‘the spirit’ of the existing definitions
of anonymity, and use intuitive notions of anonymity
(as we present in subsection 3.3) instead of formal def-
initions; future work should extend existing definitions
to provide a well-defined notion of practical anonymity.

3.3 Informal Anonymity Notions

Our notions follow [27], which addressed the challenge
of defining anonymity properties in the presence of ac-
tive, adaptive adversaries who might control some of the
protocol participants. We believe that the model of [27],
which extends [33], may be a good basis for a complete
formal model and analysis of AnonPoP - in future works.

We begin by presenting the notion of unobservabil-
ity.

Notion 1. (Unobservability) A protocol achieves unob-
servability against a globally eavesdropping attacker that
controls a set S of the servers, if the adversary cannot
(with significant advantage and in efficient time) distin-
guish between any pair of scenarios.

To present the (slightly weaker) notions of sender and
recipient anonymity, we first present sender/recipient
permuted pairs. Consider two scenarios σ0, σ1, where all
the recipients receive the same messages in σ0 and in
σ1, but the senders in σ0 are a constant permutation
(chosen by the attacker) of the senders in σ1. Namely,
given a permutation π chosen by the attacker, when a
honest client i needs to send a message to recipient r in
σ0, the honest client π(i) needs to do the same in σ1.
We say that σ1 and σ0 are sender permuted pair.

Similarly, the term recipient permuted pair refers to
two scenarios where the recipients in one scenario are
a permutation of the recipients in the second scenario,
and the senders are identical.

Notion 2. (Anonymity) A protocol achieves sender (re-
cipient) anonymity against a globally eavesdropping at-
tacker that controls a set S of AnonPoP’s servers, if the
adversary cannot (with significant advantage and in ef-
ficient time) distinguish between any sender (recipient)
permuted pair of scenarios.

These notions pose great challenges because they also
consider extreme scenarios that might not occur in re-
ality. For example, for unobservability, the adversary
must not be able to distinguish between any two sce-
narios, even a scenario where all parties send messages
vs. a scenario where nobody sends any message. These
are strong anonymity requirements. In particular, surely
they do not hold for any low-latency solution such as
Tor, since adversary can easily distinguish between the
scenarios. Furthermore, we allow also corruption of dif-
ferent subsets including most of the servers, as follows.

Detection/Isolation. Existing formal definitions
of anonymity, e.g., in [27, 33], require complete pre-
vention of attacks. However, sometimes prevention is
infeasible or hard/expensive, and a detection/isolation



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 6

approach is sufficient to deter attackers and hence to
ensure anonymity. In particular, in AnonPoP - and pos-
sibly in other efficient strong-anonymity solutions - the
PO may ‘signal’ the use of a particular mailbox, by in-
tentionally dropping responses (or, equivalently, ignor-
ing requests); such ‘signal’ seems almost unavoidable for
the model where the PO keeps mailboxes, yet, we show
that every such abuse is detected and isolated to a spe-
cific rogue entity (e.g., the PO).

Intuitively, our goal is to ensure that every ‘bit’ of
information collected by the adversary has a ‘high price’.
We present an intuitive notion, which is somewhat tai-
lored to the AnonPoP model.

Notion 3. Let X(f), Y (f) be two functions (in the
number of corrupt servers f), and let xc be the num-
ber of bits that the adversary can learn on (honest) user
c (communicating only with honest peers), and yc =
max{0, xc−X(f)}. A protocol achieves (X,Y )-attacker-
isolation if, with high probability,

∑
c yc ≤ Y (f).

Intuitively, the attacker can learn up to X(f) bits ‘per
client’, plus up to Y (f) bits additional (for all clients);
in AnonPoP, X(f) = f and Y (f) = f(f + 1), as we
show below.

3.4 AnonPoP’s Anonymity Properties

We first consider the anonymity properties of Anon-
PoP, as a function of the malicious servers along the
paths between the senders and recipients, as summa-
rized in Table 1. As indicated in the bottom row, it suf-
fices for only the PO to be honest for AnonPoPto ensure
complete unobservability. Similarly, it requires only one
mix in the push (pull) channel, to provide protection
for sender (resp., recipient) anonymity, if clients never
disconnect. Recipient anonymity is protected even when
clients may disconnect (for reasonably-long periods), by
using the request-pool mechanism of Section 6.1. In par-
ticular, AnonPoP resists intersection and correlation at-
tacks [7, 8, 37, 52] between senders and recipients.

When clients may disconnect, AnonPoP cannot
fully ensure sender anonymity, as an eavesdropping PO
can launches intersection and correlation attacks to cor-
relate between senders and mailboxes. Instead, Anon-
PoP includes a heuristic-mitigation mechanism, per-
epoch mailboxes (PEM), to improve sender anonymity.
For discussion of the protection provided by PEM, see
Section 6.2 and experimental evaluation in Appendix A.

As shown in the table, when the first push (pull) mix
is honest, and without disconnections, AnonPoP com-

pletely prevents even active attacks on sender (resp., re-
cipient) anonymity. However, if the first mix is malicious
then AnonPoP can only detect active attacks on sender
(resp., recipient) anonymity, and only when some other
(non-first) push (pull) mix is honest. AnonPoP can sim-
ilarly only detect, not prevent, sender anonymity, even
when the first mix is honest, if disconnections are pos-
sible; recipient-anonymity is fully protected (thanks to
the request-pool mechanism).

However, AnonPoP detection are very effective; in
each detection, the client detects that the first mix is
malicious, and/or at least one edge connecting a mali-
cious server and another (malicious or honest) server is
removed from the graph of AnonPoP servers maintained
by the directory. Hence the amount of ‘deanonymization
queries’ is very limited (specifically, O(f2)).

4 AnonPoP Basic Defenses
AnonPoP uses onion encryption [14, 29], for both push
and pull channels, as illustrated in Figure 2. Namely,
requests are onion-encrypted, i.e., encrypted using the
public key of the PO, and then, consecutively, by the
public keys of the mixes. Onion-routing trivially pro-
tects the confidentiality of requests, since requests must
be decrypted by all mixes, and finally by the PO.

To further prevent linkage between a request enter-
ing a mix, and the corresponding (decrypted) request
output by the mix, each mix buffers all messages re-
ceived during a slot, randomly permutes them and sends
them in the following slot.

To similarly prevent linkage between incoming and
outgoing responses, each mix encrypts the responses.
We use authenticated-encryption [5], allowing the client
to also validate that the response was sent by the PO,
over the specified sequence of mixes; the PO sent the
response upon receiving the corresponding request from
the client. To facilitate the authenticated-encryption of
responses, clients include the authenticated-encryption
key to be applied to the response in each onion-
encryption layer (denoted key1, key2, key3 in Figure 2).

AnonPoP uses two additional layers of encryption,
on top of the onion encryption. First, messages pushed
to a mailbox, are encrypted for the destination; namely,
when the PO decrypts the final onion layer, it finds only
a mailbox identifier and an encrypted message. Second,
all the communication between every pair of adjacent
entities (adjacent mixes, last mix and PO, or client and
first mix) is authenticated and encrypted.



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 7

Fig. 2. Onion-encryption with cascades of mixes, as used by both
push and pull channels. The circles above the straight lines mark
the route of the request from the client to the PO. The response
route is illustrated by squares below dashed curves. The senders
encodes in each onion layer a key (keyi) which Mixi uses to au-
thenticate and encrypt the response, and timestamps T req

i , T res
i

specifying when the request and the response are expected to ar-
rive (see Section 5). The sender and mixes select each a random
identifier ID (for sender) or IDi (for ith mix), and store relevant
parameters (keyi, T res

i and received ID) in table Map indexed
by chosen ID.

To prevent traffic analysis attacks, AnonPoP uses
padding. First, all requests and responses use fixed-
sized envelopes (padding and fragmenting as needed).
Furthermore, AnonPoP maintains fixed rate of trans-
mission of envelopes, independent of the pattern of re-
quests from the users. Namely, AnonPoP clients queue
outgoing messages if their rate exceed the fixed rate,
and pushes dummy (empty) envelopes, if no outgoing
messages are queued. Dummy envelopes are treated ex-
actly like ‘real’ messages; even mixes forwarding onion-
encrypted messages cannot distinguish between real and
dummy envelopes. Dummy envelopes are sent to a re-
served mailbox identifier, allowing the PO to drops them
(after decrypting the last onion layer); the PO responds
with a dummy response, which is indistinguishable from
a ‘real’ response, until decrypted and discarded by the
client.

As a result of these padding mechanisms, Anon-
PoP’s traffic is fixed, independently of the actual pat-
tern of messages sent by clients. Together with the
onion-encryption, this ensures unobservability as long
as the PO is not corrupted, i.e., against a globally-
eavesdropping attacker, which controls mixes and users.
This is simply because only the clients and the PO can
distinguish between dummy and real messages.

Claim 1. AnonPoP ensures unobservability against a
global-eavesdropping adversary which further controls
any subset of mixes and users, and has the ability to
disconnect users, as long as the PO is not corrupted.

Argument: This follows by reduction to the indistin-
guishability property of (1) the public key encryption
scheme EPK, used to encrypt requests to the PO, and
of (2) the shared-key encryption scheme ESK, used by
the PO to encrypt responses. Namely, assume some (ef-
ficient) adversary A is able to distinguish between some
two scenarios of message sending S0, S1. We first check
if A also distinguishes between scenarios S′0, S′1, which
are the same as the corresponding S0, S1 except that re-
sponses from the PO are all (encryptions of) some fixed
message m. If A succeeds, we use it as oracle to distin-
guish EPK; otherwise, we use A to create oracle to distin-
guish ESK (utilizing the fact that A fails to distinguish
between S′0 and S′1, yet succeeds to distinguish between
S0 and S1). Notice that the reduction works since the
pattern of transmissions is fixed, independently of input
messages.
The padding and onion-encryption mechanisms also suf-
fice to ensure sender and recipient anonymity, against
a passive (‘honest-but-curious’) attacker, as long as at
least one of the mixes in the corresponding channel is
not corrupted. However, this holds only when clients are
always connected, since a (passive) corrupted PO may
be able to identify a mailbox used by a client which is
disconnected (e.g., using intersection attacks). We later
present additional mechanisms of AnonPoP that pro-
vide anonymity also when clients may disconnect.

Claim 2. When clients are always connected and some
push (pull) mix is non-corrupted, AnonPoP ensures
sender (recipient) anonymity against passive attackers.

Argument: We present the argument only for sender
anonymity; the argument for recipient anonymity fol-
lows similarly. The argument is by reduction to the in-
distinguishability of the public key encryption scheme
EPK, used to encrypt requests to the mixes, and in par-
ticular, to the non-corrupt mix. Namely, assume some
(efficient) adversary A is able to distinguish between
some two scenarios of message sending S0, S1, where
the number and length of messages sent to each mail-
box (recipient) are identical (sender anonymity). Due to
AnonPoP’s padding mechanisms, the pattern of trans-
missions is fixed, independently of input messages; and
due to the operation of the (non-corrupt) mix, the or-
der of requests arriving at the PO is random. Hence, A



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 8

provides an oracle allowing (efficient) distinguisher for
EPK.
It may seem, at first sight, that the padding and onion-
routing mechanisms also suffice to ensure anonymity
against active attacks, if the first mix in the correspond-
ing channel is non-corrupt, since a non-corrupt first mix
suffices to randomize the order of requests (responses)
reaching the other mixes and the PO. However, this re-
lying would be vulnerable to PO tagging attacks, where
the number or timing of responses are tampered to al-
low deanonymization. In the following section, we dis-
cuss tagging attacks and the defenses against them in
AnonPoP.

Forward and proactive security. Finally, we note
that it is quite simple for AnonPoP to also ensure for-
ward secrecy and proactive security. Forward secrecy
refers to protecting past communication from future
server compromise, and have been discussed in circuit
related system such Tor [39]. To ensure forward se-
crecy, AnonPoP simply uses forward-secure encryption
scheme, e.g., [12]. Proactive security refers to recovering
security (and secrecy) following a temporary compro-
mise of a server; to ensure this, use the method of [11]
to recover security for the keys used by each server.

5 Anti-Tagging Defenses
The onion-encryption and padding mechanisms de-
scribed in Section 4, cannot fully protect anonymity
against a rogue PO. There are few ways in which a rogue
PO, possibly colluding with some mixes, can ‘tag’ a re-
quest and/or the corresponding response, allowing it to
link between the client sending the request (and receiv-
ing the response) and the mailbox to which the request
was sent. In this section, we present AnonPoP’s defenses
against such tagging attacks.

In the first subsection, we present AnonPoP’s times-
tamping and anti-duplication mechanisms, which pre-
vent tagging attacks when the first-mix is honest, and
always detect tagging attacks. In the second subsection,
we present the bad server isolation mechanism, ensuring
that whenever a tagging attack occurs at a particular
round, not only is it detected, but at least one edge
connected to a malicious server is removed from Anon-
PoP’s graph of available links. The next section extends
the mechanisms presented here, to also handle discon-
nections of clients.

5.1 Timestamps and Anti-Duplication

The basic anti-tagging mechanism in AnonPoP, is to
include timestamps in every layer of the onion; the re-
quest (respectively, response) timestamp for the ith mix
is denoted T req

i (T res
i ).

Non-corrupt mixes always return an encrypted re-
sponse exactly on the time specified in the timestamp
field; if the expected response is not received on time,
then the mix returns an appropriate error report. A re-
sponse received too late (or too early) is dropped. Note
that error reports sent when a response is not received
on time, are indistinguishable compared to the ‘real’
responses. The adversary cannot learn whether an en-
crypted response hides either ‘real’ response or ‘error
report’.

Figure 3(a) depicts a tagging attack by delaying the
response; in this attack, the PO delays the response for
a single request and can detect which client gets her
response one slot later. Figure 3(b) depicts the effect
of fixed response time; honest mixes return response in
time and discard late responses, hence the attacker sees
no anomaly in the communication pattern of the client.

To further detect duplicate requests and responses,
received at the same (correct) time slot, each AnonPoP
mix uses the key it receives keyi, as a unique identifier.
If a mix receives multiple requests with the same key
(at the same slot), then it discards all but one of them,
sending back an error-report containing the plaintext
and randomness, allowing previous mix to validate the
collision of keys. Similarly, a mix discards all but one
response for each forwarded request. (Random collisions
occur with negligible probability.)

Figures 3(c,d) depict duplicate-request attack, when
only a single (non-first) mix is honest, and the effect of
the anti-duplication mechanism. Figure 3(e,f) depicts
similar duplicate-response attack and its prevention;
this attack (and defense) also applies for the case where
(only) the first mix is honest.

Claim 3. AnonPoP ensures sender (recipient)
anonymity against active attackers, provided that the
first push (pull) mix is honest and that clients are always
connected.

Argument: Due to the padding mechanism, requests
are sent exactly once a round, with fixed size. The (hon-
est) first mix shuffles these requests, hence, the following
mixes, and the PO, cannot link between the client and
a specific request from the first mix. The traffic from
the first mix back to the client is also fixed, since the
mix returns response exactly on the time specified in



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 9

(a) Delaying the response
arrival. Only the first pull
mix is honest.

(b) Defense by returning an
error report indistinguishable
from a real response on the
expected response time.

(c) Sending a duplicated re-
quest in a following slot. Only
one non-first pull mix is hon-
est.

(d) Defense by dropping the
duplicated request that ar-
rived on wrong slot.

(e) Sending a duplicated re-
sponse in the same slot. Only
one non-first pull mix is hon-
est.

(f) Defense by dropping the
second response received.

Fig. 3. Attacks to correlate recipient and her mailbox (on the left
side) and their defenses (on the right).

the time-stamp field; due to the anti-duplication mech-
anisms, only a single such response is sent (and only on
that slot).
The encryption applied to messages ensures that eaves-
droppers and other mixes cannot link between the
sender and the (encrypted) requests. Additionally, in ev-
ery two scenarios that are different only in the senders
(recipients), the same number of messages is pushed
(pulled) to (from) mailboxes that differ only by their
pseudonym, so the PO cannot distinguish between the
two scenarios. Notice, that in this case, delaying or
blocking of an encrypted message can be done only when
all the messages are already shuffled by the honest first
mix, and hence, such active attacks are not helpful and
Notion 2 holds.

5.2 Bad Server Isolation

An attacker who controls both the first mix and the PO
can drop, delay or corrupt requests and/or responses to
correlate between clients and mailboxes. The first push
(pull) mix knows the originators of every push (pull) re-
quest, and the PO knows how many messages reach each
mailbox. Even when clients do not disconnect, the PO
and the first mix may try to match clients to mailboxes,
by dropping or delaying requests and/or responses; this
may allow an intersection attack; see Appendix A.1.

The bad-server isolation mechanism, allows Anon-
PoP to efficiently deter active attacks involving a rogue
first mix and the PO. Previous works, e.g. [24] discussed
the complexity of achieving such goal. The mechanism
extends the fixed-response time mechanism. Suppose
mix M detects that it did not receive the expected re-
sponse in its specified time from the ‘next server’ (mix
or PO), say denoted X. Then M encrypts and sends
back a signed and time-stamped problem report, stat-
ing the relevant identities (M,X); the (signed) problem
report is also deposited at the AnonPoP directory.

As a result, all clients and servers, quickly learn to
avoid using the pair (M,X) as part of AnonPoP routes.
Namely, a rogue, active server, ‘loses’ one of its edges
to other servers, per each slot in which it uses such ‘ag-
gressive, detectable’ tagging attack.

As the path is chosen uniformly among all the re-
liable paths, dropping connections with up to f honest
mixes prevents the choice of many paths where at least
one mix is honest, and by that, increases the probability
of choosing a path where all the mixes are malicious.
Yet, while the fraction of malicious mixes is low, the
advantage gained by the attacker is not significant; see
Appendix B.

Claim 4. When clients are always connected, Anon-
PoP achieves ((f, f · (f + 1))-attacker isolation.

Argument: A server reported by f + 1 servers, where
f is bound on number of malicious servers, is definitely
malicious and not used in any channel. Note that the
attacker cannot frame an honest server. Note also, that
since we assume that at least one mix along the path is
honest, it follows that the PO and first mix can only sig-
nal to each other via the absence of a request/response,
i.e., one bit per round; they cannot, for example, use
content-based signaling. For each such learned bit, a
disconnection occurs between one malicious mix and an-
other mix, either due to false report by the attacker or
due to a real report by the honest mix. Beyond that,
each of the mixes can operate as a first mix for each



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 10

of the clients and to drop the message to tag the user
without blaming the next mix. In such case, the first
mix will not be disconnected from another mix, but the
client knows for sure that the first mix is malicious and
hence disconnects from it. Theoretically, this allows each
of the f mixes to tag each of the users once. The num-
ber of bits can be learned according to each of the cases
satisfies Notion 3.

6 Handling Disconnections
Clients using mobile devices may often disconnect from
the network. Such disconnections may be observable -
sometimes even controlled - by the attacker, allowing
an attacking PO to correlate between clients and the
mailboxes they pull from, using intersection and corre-
lation attacks [7, 8, 37, 52]. In particular, if a pull request
reaches some mailbox, an eavesdropping PO can learn
that all the clients who were offline when the request
arrived are not the owner of the mailbox. By repeating
this procedure over time, the adversary may correlate a
single recipient with the mailbox.

Section 6.1 describes the request-pool mechanism
that ensures recipient anonymity, provided that clients
do not disconnect for excessive time periods. In Sec-
tion 6.2 we discuss the challenge of ensuring sender
anonymity when client might disconnect, explaining
why using request-pool also for push requests may
be problematic. We then introduce a simple mecha-
nism, per-epoch mailboxes (PEM), which heuristically
improves the sender anonymity, although not satisfying
our notion for sender anonymity (Notion 2). We believe
that further research on mailbox mechanisms may fur-
ther improve AnonPoP’s anonymity defenses.

6.1 Request-Pool

We now explain request-pool, a simple yet effective
technique allowing AnonPoP to extend its recipient-
anonymity defenses to the case of (reasonably-limited)
client disconnections, and in particular, to foil intersec-
tion and correlation attacks. We focus on pull-requests,
where the defense works better, utilizing the fact that
pull requests do not contain content that depends on
the mailbox status. Specifically, each client prepares and
sends to the first pull-mix a ‘pool’ of pull requests to be
used in future rounds, even in rounds where the client
is disconnected.

When a client is connected, the first pull-mix has
this ‘pool’ containing µ pull requests, prepared in ad-
vance, for the µ next rounds. As long as the client re-
mains connected, in every round, one pull request is used
to retrieve a message, and the client provides a new pull
request, maintaining µ requests in the ‘pool’.

This ‘pool’ allows the first pull-mix to send a pull
request for the client, even in rounds in which the client
is disconnected (up to µ consecutive rounds). The mix
also holds all the encrypted responses received from the
PO; the mix does not know whether the responses are
real or dummy.

When a client reconnects after being disconnected
for x ≤ µ rounds, it contacts the first pull-mix to re-
trieve messages kept by the mix from the previous x
rounds. The client also sends to the mix x+ 1 new pull
requests, to be used in future rounds, replenishing the
‘pool’ of µ requests. In every other round, the client
sends the pull request that will be used µ rounds after
the current round.

Claim 5. AnonPoP ensures recipient anonymity
against passive attackers when some pull mix is honest,
even when clients may disconnect, if clients do not go
offline for more than µ consecutive rounds.

Argument: Since the adversary is passive, the traffic
from/to the first pull mix to/from the PO is fixed (as
though there were no disconnections). There might be
a peak in the traffic between the first pull mix and the
client immediately after the client reconnects, i.e., the
rate of traffic between the client and first mix is not com-
pletely fixed. However, the traffic is still independent of
the actual number of messages sent and received, and
depends only on the connectivity of the clients. Since
the connectivity is known to the eavesdropping attacker,
then this mechanism exposes no additional information.
Hence, there is no information leakage.
Since clients not offline for more than µ rounds, recipient
anonymity is achieved against passive attackers accord-
ing to Notion 2, provided that (at least) one pull mix
is honest. This is because all the pull requests and the
responses for the requests arrive to a honest mix that
forwards them shuffled, and the adversary cannot cor-
relate between incoming messages and outgoing mixed
messages.

Claim 6. AnonPoP achieves ((f, f · (f + 1))-attacker
isolation, even when clients may disconnect, provided
f << n and clients do not go offline for more than µ

consecutive rounds.



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 11

Argument: As stated by Claim 5, while clients do not
disconnect for more than µ consecutive rounds, and
the traffic reaches the servers intact on time, recipient
anonymity is ensured. As stated by Claim 4, the mecha-
nism described in Section 5.2 allows detection of active
attacks; under the same conditions, while the rate of pull
requests remains fix, Notion 3 is satisfied with regarding
to recipient anonymity against active adversaries.

6.2 Anonymity of Disconnecting Senders

Unlike pull requests that are sent by each client to her
own mailbox in a fixed rate and can be prepared in ad-
vanced, push requests are sent - to specific mailboxes
- according to the current needs of the user. There-
fore, AnonPoP cannot precisely predict push requests
in advance. Hence, we do not use request-pool for push
requests, and when clients may disconnect, the mecha-
nisms described so far do not protect sender-anonymity
against intersection and correlation attacks [7, 8, 37, 52].

Notice that in practice, when there are many clients,
it might take considerable time to learn information
about the sender; however, this is still feasible, hence
AnonPoP does not ensure sender anonymity. For exam-
ple, the adversary can choose two sender-permuted sce-
narios in which only a single client receives; in the first
scenario, only client a sends the messages, and in the
second scenario, only client b sends. Obviously, if one of
the scenarios is simulated, and the adversary observes
that only a or only b are online, she can detect the iden-
tity of the sender. This is by simply checking whether
any message reached some mailbox or not (the adver-
sary controls the PO). In this extreme case of a single
sender, the adversary can simply correlate the incoming
messages with the single sender because she knows that
no other messages were sent by other clients. In reality,
when there are always many clients online, and when
messages are sent by many of them, it is significantly
harder to detect the sender.

To defend - heuristically - sender-anonymity even in
case of disconnections, AnonPoP implements per-epoch
mailboxes (PEM). Namely, clients change their mail-
boxes every fixed number δ of rounds, called epoch. PEM
does not completely ensure sender-anonymity, but it de-
creases the amount of data learned by the PO. Further-
more, it ensures the anonymity guarantees of AnonPoP
in an epoch, among all the clients that stay online in it.

PEM improves the resistance to sender-mailbox in-
tersection attacks. In Appendix A, we describe a set of
simulations we did to evaluate the resistance of Anon-

PoP to a classical intersection attack with and without
PEM. The results showed that even for epochs of sev-
eral hours, the use of PEM seems to provide significant
resistance to the evaluated intersection attack.

7 Energy Consumption
Support for mobile clients is critical for success of anony-
mous messaging, however, also challenging. In particu-
lar, users of mobile devices are reluctant to use energy-
hungry applications, hence, AnonPoP is optimized to
save energy. We briefly describe one of our energy-
optimizations, and our experimental evaluation of en-
ergy requirements.

7.1 Saving Energy with Lazy Pulling

In a naive implementation, clients maintain an open
TCP connection to the first mix from sending request
till receiving response , allowing the server to immedi-
ately respond to client requests, with the response reach-
ing the client from the first mix, using that open connec-
tion. However, the open connection would prevents the
mobile device from moving to the energy-saving ‘sleep’
mode. To reduce energy consumption, AnonPoP uses
lazy pulling, where clients use only short connections.
In lazy pulling, the first mix in every channel acts as a
proxy for the responses from the PO, such that every
round, the client sends requests to the first mixes in each
of the channels, and on the same connection, retrieves
the responses for the requests of the previous round; see
Fig. 4.

Although it may not be obvious, lazy pulling, as
described above, results in the same average latency as
with immediate pulling. See [1] for detailed analysis.

Fig. 4. Lazy pulling procedure in AnonPoP scheme with one mix
in each channel; i.e., C = 1, and 5-slots rounds (λ = 5).



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 12

Fig. 5. Network topology in the experiment

7.2 Evaluating Energy Consumption

We implemented a prototype of the AnonPoP client ap-
plication for the Android operating system, and mea-
sured its performance by simulating the communication
channels. We used the prototype to perform several ex-
periments to fine-tune AnonPoP’s energy consumption,
and to validate that they are unlikely to cause noticeable
increase in the energy consumption of mobile devices.

We briefly describe a user study we conducted to
test the impact on the user experience of Android phone
users, as result of using the AnonPoP application. De-
tails of this and other experiments appear in [1]. The
topology of the network in the experiment included
three mixes in each channel and one PO. Figure 5 de-
picts the experiment topology.

The user study was conducted with the participa-
tion of 20 smartphone users. We wanted to test how the
different implementations (using asymmetric or sym-
metric cryptography) affect the user experience. We cre-
ated an application that runs one of three states: (1) us-
ing Asymmetric cryptography (‘real’ AnonPoP), (2) us-
ing Symmetric cryptography, and (3) cryptography dis-
abled. During (every) installation, the application ran-
domly chose one of the three states.

The experiment participants reinstalled the appli-
cation every week (to change state randomly) for eight
weeks. At the end of every week the participants were
asked to rate their user experience with a focus on the
battery life, compared to the previous week. The ex-
periment was conducted double-blindly; both our team
and the participants did not know which states were
assigned to each of them during the course of the ex-
periment. In the end of the experiment, we compared
the real changes in the states and the feedback by the
users. The experimental results serve to strengthen our
hypothesis: AnonPoP overhead does not create a signifi-
cant degradation in the usability for smart-phone users.

8 Implementation & Evaluations
In this section, we first describe our implementation, fo-
cusing on AnonPoP servers and the cryptographic prim-
itives we used. We then show that the AnonPoP imple-
mentation is practical, by evaluating it under real-world
conditions, including cost analysis of the system using
commercial cloud services. We conclude this section by
outlining the simplicity of creating applications on top
of AnonPoP using our API, including a short overview
of our demo messaging application.

8.1 Implementation

AnonPoP servers implementation. We imple-
mented AnonPoP in Java, because of its portability
to different platforms. During the development process,
we used several techniques to support as many clients
as possible. The most significant optimization we used
to support many clients, was done by dealing with the
OS kernel. In order to fully utilize the server’s ability,
all sorts of configurations have to be made to the ker-
nel. Tuning of TCP and other settings, significantly im-
proved performance.

Cryptographic primitives. Our implementation
for the push and pull channels uses a simple four-
layer onion for each request, using a hybrid encryption
scheme. See Section 4 and Figure 2.

For shared-key encryption, we use a simple au-
thenticated encryption scheme with AES/CBC/PKCS5
padding. The key size is 48 bytes, consisting of 128-bit
AES key and 256-bit HMAC-SHA key. For the public
key encryption scheme we used RSA with 1024-bit key.
For the push and pull request onions, the cryptographic
overhead is slightly more than 1KB. The overhead for
the push and the pull response onions is 256 bytes. As
unique identifiers of messages and mailboxes we used
128-bit tokens.

We expect further improvements in performance by
moving to elliptic-curves cryptography, by using the ef-
ficient and compact Sphinx [19] design.

8.2 Evaluation in the cloud

We used Amazon’s cloud services c4.8xlarge Linux ma-
chines with 36 virtual CPUs and 60GB of memory. Our
evaluation was done on the simple topology of three
mixes in each channel and a single PO (see Figure 5),
with extra machines that simulated the clients. We con-



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 13

figured the instances such that every pair of commu-
nicating machines will be located on different conti-
nents, so that we can emulate worst-case scenarios. The
PO, the second mixes, and the machines that simulated
many clients were placed in Europe. The first and third
mixes in each channel were located in the US.

Throughout our experiments, we used slots of τ =
30 seconds, rounds of λ = 10 slots, and epochs of three
hours.

We began to run the protocol against 100, 000 con-
current clients. We repeated the experiment, gradually
increasing the number of clients until the failures rate
was higher than 0.001%. Our implementation was able
to support up to 500, 000 concurrent users with only
sporadic failures due to failures of clients to open a con-
nection with the first mix.

Our AnonPoP implementation uses a 1KB message
size and round length of 5 minutes. The 1KB size is suit-
able for most textual messaging services, especially in
the realm of mobile communication. The length of the
rounds was also selected to trade-off latency with en-
ergy consumption, which is critical for mobile devices.
Short rounds would prevent the device from sleeping,
and hence, may significantly increase energy consump-
tion as well as bandwidth. Figure 7 demonstrates the
effect of payload size and round length in terms of costs,
which shows that our choices are sensible.

8.3 Costs Evaluation

Running AnonPoP servers in the cloud is not expensive.
Each of Amazon’s instances costs are depended on sev-
eral variables: location, type of payment and bandwidth
usage. Significant discounts are received for reserving in-
stances for long periods. Reserving c4.8xlarge instances
for the first and third mixes in the US and for the sec-
ond mixes and the PO in Europe has a yearly cost of
60K$.

In addition to the machine costs, there is a payment
for the traffic generated by the machines. There is no
need to pay for traffic coming from the Internet, but
there is a changing cost for outgoing traffic. The cost
begins from 0.09$ per 1GB and decreases as the amount
of outgoing traffic increases.

When a client sends push and pull requests to the
first mixes, there is no cost for the system. However,
each of these messages travels through the mixes and
PO, generating outbound traffic of around 14.7KB per
client per round. The maximal communication volume
in the system for a client is 1.47GB.

Fig. 6. Yearly cost ($) per client as a function of the number of
clients using AnonPoP.

In the calculation of the yearly cost of the system,
there are two factors: (1) the yearly cost of the instances,
and (2) the yearly cost for the traffic for all the clients
together. While the first factor does not directly de-
pend on the number of clients and can be referred as a
constant, the second factor depends on the number of
clients because the cost per GB decreases as the total
amount of traffic increases. Both of the components re-
flect the yearly cost of running AnonPoP’s servers. We
divide the yearly cost for the machines and the traffic by
the number of clients to get the yearly cost per client.

Using the instances we chose, the yearly cost be-
gins from 1.4$ per client for 50K clients, and decreases
rapidly to less than a quarter for 500K clients. Figure
6 depicts the yearly cost per client as a function of the
number of clients. Notice, that the calculation was based
on using strong and relatively expensive instances even
for low number of clients. In practice, for fewer clients,
weaker and cheaper machines can be used to further
decrease the cost.

8.4 Applications and API

In order to decouple any dependency in the lay-
ers of the protocol, we developed an API that re-
lieves any direct interaction with AnonPoP layers. The
API autonomously maintains the connectivity, sends
dummy messages when needed, handles the encryp-
tion/decryption and generally, acts as a friendly inter-
mediator between the application and the infrastructure
of AnonPoP. The bottom line is that any application or
service can use AnonPoP as a “carrier” to deliver the
data anonymously, and the application only needs to
encode the information on one end, in a way that it
can decode it easily on the other end. Everything else
is taken care of by the API. See [1] for the API, as well
as the application and documentation.

AnonPoP has several envelope types, such as
push/pull requests and push/pull response, etc. These
envelopes are padded according to the padding mech-



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 14

Fig. 7. Yearly cost ($) per client as a function of the payload
size and round length, using c4.8xlarge machines with 100,000
concurrent users.

anism mentioned earlier, in order to prevent attackers
from tracking messages end-to-end. All envelopes of the
same type are of the same size1 Short envelopes to the
fixed size (e.g., 1KB), and, when necessary, AnonPoP
sends ‘dummy envelopes’ to maintain fixed-rate send-
ing.

We address these issues as follows:
1. Small messages can (sometimes) be merged into

joint envelopes. If a user has sent a few messages to
the same recipient, and these messages hasn’t left
the sender’s device yet (because their designated
slot hasn’t arrived yet) they can be merged (with
the 1KB limitation in affect). When the messages
will arrive to the recipient’s device, it will unpack
the messages to their original form.

2. We use compression algorithm to enable sending ac-
tually more than 1KB of data, depend on the pos-
sible compression rate of the payload. Furthermore,
oversized messages are automatically broken down
to multiple envelopes and merged back at the des-
tination.

We implemented a basic demo messaging application
that communicates via AnonPoP servers to achieve un-
observable messages communication. Using the API, the
application is implemented both as a mobile Android
application and as a standard Windows application. We
also implemented an Eliza [49] AnonPoP client, allowing
users to use the service anonymously.

When two people wish to interact with each other
for the first time, they need to perform a basic key ex-
change. Instead of exchanging long identities, which can
be cumbersome, the application includes an identity ex-

1 To further increase the anonymity set, at small price of extra
bandwidth, pad all types to be same size.

change protocol over AnonPoP servers, so the users are
only required to share a shorter 128-bit symmetric key.
This key can be generated and shared either via the
user-interface, or using a secure key-setup mechanism,
e.g., [25].

9 Related Work
We now briefly compare AnonPoP to other works deal-
ing with anonymous communication. We focus on works
whose goal, like AnonPoP, is to provide anonymity
against adversaries with eavesdropping capabilities; like
AnonPoP, such works mostly focus on applications
which can suffer significant latency, such as messaging.
Note that this excludes the many works on Tor [23] and
other low-latency systems, which, unlike AnonPoP, are
vulnerable to eavesdropping adversaries.

Specifically, AnonPoP continues the line of mix-
based mechanisms whose goal is to provide strong
anonymity for messaging or email, with relatively high
latency, such as Mixminion [18] and previous proposals,
e.g., Babel [31], Mix-Master and Reliable [21]. Mixmin-
ion introduced new ideas like Single-Use Reply Blocks
(SURBs) to allow anonymity also for the recipients,
and techniques to deal with tagging and replay attacks;
some of these techniques are used by AnonPoP. How-
ever, Mixminion is still vulnerable to long-term inter-
section attack, does not provide unobservability, and its
latency can be excessive for messaging applications.

Vuvuzela [46] is a recent proposed mix-based anony-
mous messaging design which is most similar to Anon-
PoP in design and goals, including support for large
number of users. Vuvuzela design is based on using a
mix-net from sender to recipient; this implies vulner-
ability to intersection and active attacks (see Section
4). The design also has high communication overhead,
because messages always flow between a pair of clients
(no support for multiple senders/recipients, as in Anon-
PoP). Most significantly, Vuvuzela is not designed for
mobile users; recipients must also be online at time of
sending (no offline mailbox), and the design would con-
sume excessive energy for use in mobile devices. There
are other significant differences between the systems; see
details in Appendix 9.

Other proposals for strong anonymous messaging
were not really designed for practical deployment, ef-
ficient and appropriate for many users. In particular,
the Busses protocol [4] ensures strong anonymity - even
unobservability - by having each message sent through



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 15

all possible destinations. The Drunk Motorcyclist (DM)
design achieves similar properties, e.g., , strong recipient
anonymity, by sending each message randomly through
the network, making it highly likely to reach the desti-
nation. Both Busses and DM are elegant designs that
ensure strong anonymity - but result in excessive over-
head, making them inappropriate for more than toy ap-
plications.

Verdict [17] and Dissent [50] follow the DC-net [13]
design, to ensure sender anonymity. As such, the com-
putational overhead for both the clients and the servers
is relatively high, although was shown to be practical
for up to thousands of users.

Riposte [16] is a recent DC-net proposal, which
achieves sender anonymity against globally eavesdrop-
ping adversary for large anonymity sets, although, only
minority of the users send messages. In Riposte, many
clients write into a shared database, maintained by a
small set of servers. To reduce the bandwidth overhead
for n clients from O(n) to O(

√
n), Riposte uses private

information retrieval (PIR) [15]. However, PIR schemes,
even optimized (e.g., [20]), have significant latency and
bandwidth overheads, which increase as a function of
the number of clients using the system, making them
impractical for large-scale messaging.

Pynchon Gate [44] is another design using PIR, in
this case, to retrieve pseudonymous mail. Again, due to
the use of PIR, it suffers from high communication and
computation overhead, making it impractical for use in
mobile devices and for systems with many users.

Nipane et al. presented Mix-In-Place [38], an ar-
chitecture based on Secure Function Evaluation (SFE),
that supports messaging communication with a single
proxy. However, SFE is even more computationally-
intensive than PIR, and hence the system is not prac-
tical, certainly not when considering many users and
mobile devices.

Aqua [36] is another related system; although it has
higher overhead (cf. to AnonPoP), it is much more effi-
cient than the systems discussed above. However, Aqua
has a different goal: file-sharing applications such as Bit-
Torrent. Aqua ensures k-anonymity [48], using onion
routing [29] with dummy traffic via multiple paths to
resist traffic analysis. Aqua does not provide anonymity
against corrupt servers, and does not support discon-
necting clients.

Resisting Intersection attacks. Buddies [51] of-
fers mechanism to keep the publisher of a message
on a shared board, anonymous within a set of k par-
ticipants [48] for long time, to avoid intersection at-
tacks [7, 8, 37, 52] by a global eavesdropper. However,

Buddies does not mask the communication; instead, it
prevents its clients from publishing messages when this
might cause an exposure of their identity. Furthermore,
by requiring many cooperating clients (‘buddies’) online
to create a large anonymity set, Buddies requires signif-
icant overhead and latency. Hence, Buddies is not able
to efficiently achieve long-term resistance to intersection
attacks (see Section 5.6 in [51]).

10 Conclusions
AnonPoP demonstrates feasibility of practical anony-
mous messaging services against powerful attackers,
with global eavesdropping capabilities and ability to
control some of the servers. AnonPoP achieves this with
remarkably low overhead and operational costs - about
two cents a month - and is scalable, allowing support
of millions of users. AnonPoP supports mobile clients,
with low energy requirements and with secure support
for temporary disconnections. And AnonPoP protects
against both passive and active attacks, allowing for an
attacker that controls multiple servers. To properly eval-
uate AnonPoP, we implemented it (in both mobile and
desktop versions), and performed experiments; the pro-
totype of AnonPoP-based messaging application for the
Android OS is available from [1]. To measure the costs of
operations and efficiency, we also deployed a prototype
of AnonPoP’s servers in commercial clouds, and tested
them in runs with hundreds of thousands of clients.

We hope that the publication of AnonPoP will
bring many messaging applications to support an op-
tion for strong anonymous messaging via the AnonPoP’s
API. Such a step will allow clients of different applica-
tions to form one large anonymity set and enjoy strong
anonymity, not currently available.

References
[1] Anonymous. AnonPoP messaging application - demo and

download site, 2016. Online at http://anonpop.weebly.com/.
[2] Michael Backes, Ian Goldberg, Aniket Kate, and Esfandiar

Mohammadi. Provably secure and practical onion routing.
In Computer Security Foundations Symposium (CSF), 2012
IEEE 25th, pages 369–385. IEEE, 2012.

[3] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and
D. Sicker. Low-resource routing attacks against tor. In Pro-
ceedings of the 2007 ACM workshop on Privacy in electronic
society, pages 11–20. ACM, 2007.

[4] A. Beimel and S. Dolev. Buses for anonymous message
delivery. Journal of Cryptology, 16(1):25–39, 2003.

[5] Mihir Bellare and Chanathip Namprempre. Authenticated
encryption: Relations among notions and analysis of the

http://anonpop.weebly.com/


Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 16

generic composition paradigm. In Advances in Cryptol-
ogy—ASIACRYPT 2000, pages 531–545. Springer, 2000.

[6] Mihir Bellare and Phillip Rogaway. Asymmetric Encryption.
http://cseweb.ucsd.edu/~mihir/cse207/w-asym.pdf.

[7] Oliver Berthold, Hannes Federrath, and Marit Köhntopp.
Project "anonymity and unobservability in the internet". In
Proceedings of the tenth conference on Computers, free-
dom and privacy: challenging the assumptions, pages 57–65.
ACM, 2000.

[8] Oliver Berthold and Heinrich Langos. Dummy traffic against
long term intersection attacks. In Privacy Enhancing Tech-
nologies, pages 110–128. Springer, 2003.

[9] J.M. Bohli and A. Pashalidis. Relations among privacy
notions. ACM Transactions on Information and System
Security (TISSEC), 14(1):4, 2011.

[10] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa
Tabriz. Denial of service or denial of security? In Pro-
ceedings of the 14th ACM conference on Computer and
communications security, pages 92–102. ACM, 2007.

[11] Ran Canetti, Shai Halevi, and Amir Herzberg. Maintaining
authenticated communication in the presence of break-ins.
J. Cryptology, 13(1):61–105, 2000.

[12] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-
secure public-key encryption scheme. In Advances in Cryp-
tology—Eurocrypt 2003, pages 255–271. Springer, 2003.

[13] D. Chaum. The dining cryptographers problem: Uncondi-
tional sender and recipient untraceability. Journal of cryptol-
ogy, 1(1):65–75, 1988.

[14] D.L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM,
24(2):84–90, 1981.

[15] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu
Sudan. Private information retrieval. Journal of the ACM
(JACM), 45(6):965–981, 1998.

[16] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières.
Riposte: An anonymous messaging system handling millions
of users. In IEEE Symposium on Security and Privacy, pages
321–338. IEEE Computer Society, 2015.

[17] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan
Ford. Proactively accountable anonymous messaging in
Verdict. In Proceedings of the 22nd USENIX conference on
Security, pages 147–162. USENIX Association, 2013.

[18] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion:
Design of a type iii anonymous remailer protocol. In Security
and Privacy, 2003. Proceedings. 2003 Symposium on, pages
2–15. IEEE, 2003.

[19] George Danezis and Ian Goldberg. Sphinx: A compact and
provably secure mix format. In Security and Privacy, 2009
30th IEEE Symposium on, pages 269–282. IEEE, 2009.

[20] Daniel Demmler, Amir Herzberg, and Thomas Schneider.
Raid-pir: Practical multi-server pir. In Proceedings of the
6th edition of the ACM Workshop on Cloud Computing
Security, pages 45–56. ACM, 2014.

[21] Claudia Díaz, Len Sassaman, and Evelyne Dewitte. Com-
parison between two practical mix designs. In Pierangela
Samarati, Peter Y. A. Ryan, Dieter Gollmann, and Refik
Molva, editors, ESORICS, volume 3193 of Lecture Notes in
Computer Science, pages 141–159. Springer, 2004.

[22] Roger Dingledine and Nick Mathewson. Anonymity loves
company: Usability and the network effect. In WEIS, 2006.

[23] Roger Dingledine, Nick Mathewson, and Paul F. Syverson.
Tor: The Second-Generation Onion Router. In USENIX
Security Symposium, pages 303–320. USENIX, 2004.

[24] Roger Dingledine and Paul Syverson. Reliable mix cascade
networks through reputation. In Financial Cryptography,
pages 253–268. Springer, 2002.

[25] Michael Farb, Manish Burman, G Chandok, J McCune, and
A Perrig. Safeslinger: An easy-to-use and secure approach
for human trust establishment. Technical report, Technical
Report CMU-CyLab-11-021, Carnegie Mellon University,
2011.

[26] Joan Feigenbaum, Aaron Johnson, and Paul Syverson. Prob-
abilistic analysis of onion routing in a black-box model.
ACM Trans. Inf. Syst. Secur., 15(3):14:1–14:28, November
2012.

[27] Nethanel Gelernter and Amir Herzberg. On the limits of
provable anonymity. In Proceedings of the 12th annual ACM
workshop on Privacy in the electronic society, WPES ’13,
2013.

[28] Yossi Gilad and Amir Herzberg. Spying in the Dark: TCP
and Tor Traffic Analysis. In Simone Fischer-Hübner and
Matthew Wright, editors, Privacy Enhancing Technologies
Symposium, volume 7384 of Lecture Notes in Computer
Science, pages 100–119. Springer, 2012.

[29] D. Goldschlag, M. Reed, and P. Syverson. Onion routing.
Communications of the ACM, 42(2):39–41, 1999.

[30] I Goriac. An epistemic logic based framework for reasoning
about information hiding. In Availability, Reliability and
Security (ARES), 2011 Sixth International Conference on,
pages 286–293. IEEE, 2011.

[31] Ceki Gülcü and Gene Tsudik. Mixing email with babel. In
James T. Ellis, B. Clifford Neuman, and David M. Balenson,
editors, NDSS, pages 2–16. IEEE Computer Society, 1996.

[32] J.Y. Halpern and K.R. O’Neill. Anonymity and information
hiding in multiagent systems. Journal of Computer Security,
13(3):483–514, 2005.

[33] A. Hevia and D. Micciancio. An indistinguishability-based
characterization of anonymous channels. In Privacy Enhanc-
ing Technologies, pages 24–43. Springer, 2008.

[34] Dominic Hughes and Vitaly Shmatikov. Information hiding,
anonymity and privacy: a modular approach. Journal of
Computer Security, 12(1):3–36, 2004.

[35] Dogan Kedogan, Dakshi Agrawal, and Stefan Penz. Limits
of anonymity in open environments. In Information Hiding,
pages 53–69. Springer, 2003.

[36] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter
Druschel, Hitesh Ballani, and Paul Francis. Towards efficient
traffic-analysis resistant anonymity networks. In Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM,
pages 303–314. ACM, 2013.

[37] Nick Mathewson and Roger Dingledine. Practical traffic
analysis: Extending and resisting statistical disclosure. In
Privacy Enhancing Technologies, pages 17–34. Springer,
2005.

[38] Nilesh Nipane, Italo Dacosta, and Patrick Traynor. "mix-in-
place" anonymous networking using secure function evalua-
tion. In Robert H’obbes’ Zakon, John P. McDermott, and
Michael E. Locasto, editors, ACSAC, pages 63–72. ACM,
2011.

http://cseweb.ucsd.edu/~mihir/cse207/w-asym.pdf


Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 17

[39] Lasse Øverlier and Paul Syverson. Improving efficiency and
simplicity of tor circuit establishment and hidden services. In
Privacy Enhancing Technologies, pages 134–152. Springer,
2007.

[40] Simon Oya, Carmela Troncoso, and Fernando Pérez-
González. Meet the family of statistical disclosure attacks.
In Global Conference on Signal and Information Processing
(GlobalSIP), 2013 IEEE, pages 233–236. IEEE, 2013.

[41] A. Pashalidis. Measuring the effectiveness and the fairness
of relation hiding systems. In Asia-Pacific Services Comput-
ing Conference, 2008. APSCC’08. IEEE, pages 1387–1394.
IEEE, 2008.

[42] A. Pfitzmann and M. Hansen. A terminology for talking
about privacy by data minimization: Anonymity, unlinka-
bility, undetectability, unobservability, pseudonymity, and
identity management. URL: http://dud. inf. tu-dresden.
de/literatur/Anon_Terminology_v0, 34, 2010.

[43] A. Pfitzmann, B. Pfitzmann, and M. Waidner. Isdn-mixes:
Untraceable communication with very small bandwidth over-
head. In GI/ITG Conference on Communication in Dis-
tributed Systems, volume 267, pages 451–463, 1991.

[44] Len Sassaman, Bram Cohen, and Nick Mathewson. The
pynchon gate: A secure method of pseudonymous mail re-
trieval. In Proceedings of the 2005 ACM workshop on Pri-
vacy in the electronic society, pages 1–9. ACM, 2005.

[45] Y. Tsukada, K. Mano, H. Sakurada, and Y. Kawabe.
Anonymity, privacy, onymity, and identity: A modal logic
approach. In Computational Science and Engineering, 2009.
CSE’09. International Conference on, volume 3, pages 42–
51. IEEE, 2009.

[46] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nicko-
lai Zeldovich. Vuvuzela: Scalable private messaging resistant
to traffic analysis. In SOSP, pages 137–152. ACM, 2015.

[47] M. Veeningen, B. De Weger, and N. Zannone. Modeling
identity-related properties and their privacy strength. Formal
Aspects of Security and Trust, pages 126–140, 2011.

[48] Luis von Ahn, Andrew Bortz, and Nicholas J Hopper. K-
anonymous message transmission. In Proceedings of the
10th ACM conference on Computer and Communications
Security, pages 122–130. ACM, 2003.

[49] Joseph Weizenbaum. Eliza—a computer program for the
study of natural language communication between man and
machine. Communications of the ACM, 9(1):36–45, 1966.

[50] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford,
and Aaron Johnson. Dissent in numbers: Making strong
anonymity scale. 10th OSDI, 2012.

[51] David Isaac Wolinsky, Ewa Syta, and Bryan Ford. Hang with
your buddies to resist intersection attacks. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & com-
munications security, CCS ’13, pages 1153–1166, New York,
NY, USA, 2013. ACM.

[52] Matthew K Wright, Micah Adler, Brian Neil Levine, and
Clay Shields. Passive-logging attacks against anonymous
communications systems. ACM Transactions on Information
and System Security (TISSEC), 11(2):3, 2008.

A Per-Epoch Mailboxes (PEM)
for Sender Anonymity

This appendix discusses the improvement that Per-
Epoch Mailboxes (PEM) offer to the resistance to in-
tersection/correlation attacks on sender anonymity. As
summarized in Table 1, AnonPoP’s Anon-Comm layer
suffices for unobservability and anonymity if the PO
is honest, or if clients are always connected. Recipi-
ent anonymity is protected, even when clients may dis-
connect for significant (yet not excessively long) peri-
ods, using the ‘pool of pull requests’ mechanism (Sec-
tion 6.1). In particular, these AnonPoP anonymity prop-
erties are secure against intersection and correlation at-
tacks [7, 8, 37, 40, 52].

However, when a globally eavesdropping PO is ma-
licious and clients may disconnect, then the PO may be
able to correlate between the connectivity of the clients
and the rate of incoming push-requests to each mail-
box to compromise sender-anonymity. In this section,
we empirically argue that the use of Per-Epoch Mail-
boxes (PEM), as described in Section 6.2, strengthens
the resistance to such attacks.

Additional theory is required to precisely measure
the anonymity guarantees against such a strong at-
tacker, and in particular, to measure resistance to in-
tersection and correlation attacks. We take an empir-
ical approach to compare and evaluate AnonPoP’s re-
sistance to intersection attack, with and without PEM.
Our evaluation is intentionally conservative; we give the
attacker additional ‘hints’. This follows the practice of
conservative evaluation of cryptographic security mech-
anisms, which weakens the mechanism and/or gives ad-
ditional capabilities to the attacker. Protection will be
even better in a more realistic case, where clients send
to many mailboxes and may also pick up messages from
several mailboxes.

We briefly describe the attack on AnonPoP with
and without PEM, and then present the results of the
empirical evaluation.

Our results indicate that even a relatively small user
population may suffice to allow AnonPoP with PEM to
provide sender-anonymity against these strong attacks;
and as the number of users grow, protection improves.



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 18

A.1 Intersection attack to break sender
anonymity

The attacker cannot correlate senders and recipients,
due to the recipient anonymity achieved by the pool of
pull requests (Section 6.1). We concentrate on the fol-
lowing version of an intersection attack, which attempts
to detect correlation between a sending-client and a spe-
cific PO mailbox (POB) to which this client pushes mes-
sages. Given a mailbox identifier, represented by token
t, the attacker wants to find a client that pushes mes-
sages with token t. We are interested in finding out how
quickly the attacker succeeds in completing this attack
so we can evaluate PEM’s ability to improve resistance.

AnonPoP with fixes mailboxes. Even in this
case, correlating a push token t and a client who sent
push requests with t is challenging, since there are usu-
ally multiple senders that use the same push token t, and
since the same sender may send, at different rounds, to
different mailboxes, including to ‘dummy’ mailbox (in
rounds where it has no message to send). In such a case,
intersection between sets, such that each set represents
potential senders of some message that was pushed to a
mailbox, might result in an empty set. Generally, given
all the sets of potential senders, extracting a real sender
was shown to be an NP-complete problem [35].

To avoid exponential calculations and as a part of
the conservative evaluation, we ‘assist’ the attacker with
some ‘hints’. Briefly, for every new set of potential clients
that the attacker learns, we give the attacker an indica-
tion whether the intersection of the new set with all the
previous sets will result in a set that does not contain a
client that pushes messages to the mailbox.

AnonPoP with PEM. In AnonPoP with per-
epoch mailboxes, the clients send messages according
to tokens that are replaced every epoch. Therefore, the
attacker needs to complete the attack within a single
epoch. Note that even if the attacker succeeded to cor-
relate a token to a pushing client during one epoch, she
would need to relaunch the attack for the tokens of the
following epochs.

A.2 Simulation results

We created a simulation to run AnonPoP with one mix
in each channel, one PO, and a changing number of
clients. We used rounds of λ = 5 slots and present the
results for slots of τ = 60 seconds.

To model the connectivity of clients, we modeled
each client as a two-state machine; a client starts in

the On state, and at each slot might move to the Off
state with probability 1

300 . The probability of changing
state in the opposite direction is 1

60 . The choice of these
values is based on the mobile device’s connectivity of
participants in the experiment described in Section 7.2.

We divided the clients into pairs of correspondents
and then randomly chose additional pairs as the num-
ber of clients in the simulation. When a client is online,
she strikes up 3 conversations per hour with her corre-
spondents, according to Poisson distribution. When the
client receives a message, she creates a response message
with a probability 1

2 . Namely, on average, each online
client begins 3 conversations per hour, such that the
number of messages in each conversation is sampled by
geometric distribution with a mean 2.

We simulated the intersection attack on AnonPoP
with and without PEM. For each line in the graph we
simulated 100,000 attacks. We concentrated on two as-
pects: (1) the time required to successfully correlate be-
tween a mailbox and a sender, and (2) the size of the
anonymity set, which is the number of potential senders
for each mailbox from the attacker’s perspective.

AnonPoP with fixes mailboxes. We found that
the described intersection attack can quite effective
deanonymize senders, if AnonPoP is used without PEM
(in scenario where clients often disconnect, as in our
evaluation). We simulated each of the attacks 100,000
times and counted the number of slots required to com-
plete each of the attacks. Figure 8 shows that for even
with 25,000 clients, the adversary succeeded to complete
the attack for significant fraction of senders, in signifi-
cant but not prohibitive time. For example, with 25,000
users, most senders are identified after 7200 minutes
(120 hours). Moreover, the graph shows that increasing
the number of clients yielded improvement - but rather
modest, e.g., with 500 users, most senders are identified
after about 3600 minutes (60 hours).

We simulated the distribution of the anonymity set
for different numbers of clients. We noticed that the re-
ceived distributions were very similar, if the anonymity
set is presented as percentage of the number of clients,
rather than the number itself. Figure 9 depicts the dis-
tribution of the anonymity set after 250, 500, 1000, and
1500 slots. It is possible to see that the size of the
anonymity set decreases quickly, and after 1000 slots,
the size of the anonymity set is about a tenth of the
number of clients.

AnonPoP with PEM. We simulated AnonPoP
with PEM for different epoch values: λ = 180, 360, 720.
We found that with all these epoch values, the adversary
could not complete the attack in a single epoch, and



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 19

Fig. 8. Percentage of the attacks that were completed over time
(x axis) for different numbers of AnonPoP clients.

Fig. 9. The anonymity set distribution after different slots for
AnonPoP without PEM. The anonymity set is presented as a
fraction of the number of AnonPoP clients.

hence, failed to do it over time. To evaluate the effect of
the different epoch values, we examined the anonymity
set.

The goal of the adversary is to correlate a mailbox
with a client. Hence, we measured over time what was
the minimal anonymity set achieved for each client’s
mailbox. Namely, over several epochs, a client used
several mailbox numbers; in each of them there was
some anonymity set for potential senders. In each slot,
for every client, we calculated the size of the minimal
anonymity set that the adversary succeeded to create
until this slot.

In addition to the inability to complete the attack in
reasonable time (a year, 525,600 slots), we found that by
using epochs of several hours, it is possible to keep the
size of the anonymity set as a high percentage of the
number of clients. Unlike the anonymity set of Anon-
PoP without PEM, as depicted in Figure 9, there is no
significant difference in the anonymity set as time goes
by. The anonymity set after 10,000 slots was not that
different, from the anonymity set after 100,000 slots.

Figure 10 depicts the anonymity set as a percentage
of the number of clients. As in Figure 9, we found that
the anonymity set as a percentage of the number of
clients is similar for different numbers of clients.

Fig. 10. The anonymity set distribution after 10,000 and 100,000
slots for AnonPoP with PEM for different epoch (δ) values. The
anonymity set is presented as a fraction of the number of Anon-
PoP clients.

Note that these results were obtained under our
‘conservative’ evaluation where we provided ‘hints’ to
the attacker, as described in the beginning of this sec-
tion. The actual protection should be even better.

A.3 Sender anonymity & PEM

In spite of the results that show strong resistance to long
term intersection attacks, AnonPoP with PEM fails to
satisfy Notion 2. Notion 2, and surely the formal models
of [27, 33], all require indistinguishability even between
extreme cases, that PEM cannot prevent, e.g., only two
senders. Additionally, as the model deals with proba-
bilistic polynomial time attackers that need to get only
minimal (but not negligible) advantage, even a little re-
duction of the anonymity set within long time (e.g., two
years) is enough for the attacker.

We consider the development of definitions, tools
and methods allowing rigorous analysis of AnonPoP
and similar practical protocols for strong anonymity,
as a significant research challenge. We believe and hope
that our methodology of empirically analyzing an attack
while conservatively giving the adversary additional
power, gives a useful, meaningful indication showing
that AnonPoP with PEM guarantees sender-anonymity,
also when clients might disconnect.

B Probability of compromised
channel

When the PO is corrupt, AnonPoP’s sender (recipient)
anonymity may fail, if all mixes in the push (resp., pull)
channel are malicious (1). We now show that, under the



Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 20

reasonable assumption that f << n, the probability of
such ‘all bad’ channel is small.

To increase the probability of ‘all bad’ channel, the
attacker may decrease the number of possible channels
where at least one mix is honest, by disconnecting up to
f honest servers from each malicious mix, abusing the
‘bad server isolation’ mechanism. However, as we show,
this abuse does not significantly improve the probabil-
ity of ‘all bad’ channel. Assume, for simplicity, that the
attacker can cancel every connection between malicious
and honest mixes; for simplicity, assume three mixes in
a channel. Hence, there are 3!·

(
f
3
)
‘all bad’ channels, and

3! ·
(

n−f
3
)
‘all honest’ channels. The probability of choos-

ing an ‘all bad’ channel is therefore only: (f
3)

(f
3)+(n−f

3 ) .

C AnonPoP vs. Vuvuzela
AnonPoP and Vuvuzela [46] were designed concurrently
and independently, with similar goals, and share several
design decisions. However, the systems differ consider-
ably, as we outline below. In fact, since the goals are
similar, these differences are not by chance; we have
considered many alternative designs via analysis and
extensive experimentation, and have rejected many of
the Vuvuzela’s design decisions due to exactly the is-
sues described below.

Support for multiple peers (conversations).
Vuvuzela requires users to maintain constant commu-
nication rate per peer, and specifically in their evalu-
ation they support a single conversation (peer) at any
instant (e.g., see in [46, Section 3.2], under ‘network
traffic’). This is since user must check every round the
‘dead drop’ agreed with the peer. This is problematic
for usage, especially considering the significant latency
for setting-up a conversation (even if peer is available).
Also, it allows a common friend to detect correlations
between times when her peers are not available, break-
ing privacy. In AnonPoP, users have flexibility in their
use of mailboxes and a user can efficiently correspond
with multiple peers. Of course, Vuvuzela users may sim-
ply run multiple conversation all the time, but that
would make the costs – especially with regarding to en-
ergy – even worse than currently.

Mobile users: energy and bandwidth. Vu-
vuzela was not evaluated for its operation on mobile de-
vices and with mobile users. In fact, based on our experi-
ments in designing and fine-tuning AnonPoP, we expect
that Vuvuzela’s overhead may make it inappropriate

for mobile users. For example, every ‘dial round’, cur-
rently set at 10 minutes, every Vuvuzela user downloads
and decrypts all ‘invitations’ sent to her invitation dead
drop, shared with many other users and determined
as hash of the user’s public key. This overhead alone
may already be unacceptable (energy-wise, and possibly
also with regarding to bandwidth and processing-time).
Even with only three servers, this is 7MB per (10-min)
dialing round. Adding the energy costs of sending and
receiving packet every few seconds, this would be un-
acceptable drainage for mobile battery, which users will
not tolerate. Considering ‘anonymity loves company’,
we consider this a no-go.

Support and security for offline (disconnect-
ing) users. A major challenge with mobile users is that
they sometimes disconnect. Vuvuzela allows only com-
munication between connected (online) users. This re-
striction is problematic for usability. It also implies pri-
vacy exposures. In particular, consider the fixed invi-
tation dead drop server of Alice. That server can cor-
relate between times in which Alice is connected (and
reads the invitation box) and times when Alice is discon-
nected. In contrast, AnonPoP’s request-pool mechanism
(Section 6.1) prevents the PO from performing such at-
tacks.

Tagging attacks. Vuvuzela does not include a
comparable mechanisms to AnonPoP’s anti-tagging de-
fenses such as bad server isolation (Section 5). Hence, it
is vulnerable to tagging attacks.

Security evaluation. The analysis and discussion
in the Vuvuzela paper focus on the relationships be-
tween users and their dead-drops, claiming that the
mixnet ‘unlinks users from requests’, see [46, Section
4.1]. But this is a gross simplification, ignoring many
challenges addressed in AnonPoP. Particular relevant
aspects include tagging and duplication attacks, see Sec-
tion 5, and intersection/correlations attacks exploiting
client disconnections, see Section 6 and Appendix A.

Performance and costs evaluation. Vuvuzela
was only evaluated in lab, rather than in real world con-
ditions as we did. From our experiments, lab results can
be misleading. In particular, in their experiments, all the
machines run in the same data center, and they multi-
plexed several Vuvuzela clients onto a single TCP con-
nection. Real implementation may have significantly dif-
ferent results, including reliability issues (not reported
at all in their paper). It is also not clear if the costs
claimed took into account the costs of inter-server com-
munication – the main cost in a real deployment.


	Two Cents for Strong Anonymity:  The Anonymous Post-office Protocol
	1 Introduction
	2 Architecture and Concepts
	3 Anonymity Properties
	3.1 Adversary Model
	3.2 Challenges of Defining Anonymity
	3.3 Informal Anonymity Notions
	3.4 AnonPoP's Anonymity Properties

	4 AnonPoP Basic Defenses
	5 Anti-Tagging Defenses
	5.1 Timestamps and Anti-Duplication
	5.2 Bad Server Isolation

	6 Handling Disconnections
	6.1 Request-Pool
	6.2 Anonymity of Disconnecting Senders

	7 Energy Consumption
	7.1 Saving Energy with Lazy Pulling
	7.2 Evaluating Energy Consumption

	8 Implementation & Evaluations
	8.1 Implementation
	8.2 Evaluation in the cloud
	8.3 Costs Evaluation
	8.4 Applications and API

	9 Related Work
	10 Conclusions
	A Per-Epoch Mailboxes (PEM) for Sender Anonymity
	A.1 Intersection attack to break sender anonymity
	A.2 Simulation results
	A.3 Sender anonymity & PEM

	B Probability of compromised channel
	C AnonPoP vs. Vuvuzela


