
Programmable Hash Functions from Lattices:
Short Signatures and IBEs with Small Key Sizes

Jiang Zhang1, Yu Chen2, and Zhenfeng Zhang3

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, China
3 Trusted Computing and Information Assurance Laboratory,

Institute of Software, Chinese Academy of Sciences, China
jiangzhang09@gmail.com, yuchen.prc@gmail.com, zfzhang@tca.iscas.ac.cn

Abstract. Driven by the open problem raised by Hofheinz and Kiltz
(Journal of Cryptology, 2012), we study the formalization of lattice-based
programmable hash function (PHF), and give two types of constructions
by using several techniques such as a novel combination of cover-free
sets and lattice trapdoors. Under the Inhomogeneous Small Integer So-
lution (ISIS) assumption, we show that any (non-trivial) lattice-based
PHF is collision-resistant, which gives a direct application of this new
primitive. We further demonstrate the power of lattice-based PHF by
giving generic constructions of signature and identity-based encryption
(IBE) in the standard model, which not only provide a way to unify
several previous lattice-based schemes using the partitioning proof tech-
niques, but also allow us to obtain a new short signature scheme and
a new adaptively secure IBE scheme with logarithmic key sizes from
lattices. In particular, our methods depart from the confined guessing
technique of Böhl et al. (Eurocrypt’13) that was used to construct stan-
dard model short signature schemes with short verification keys by Ducas
and Micciancio (Crypto’14) and by Alperin-Sheriff (PKC’15), and allow
us to achieve existential unforgeability against chosen message attacks
(EUF-CMA) without resorting to chameleon hash functions. By care-
fully combining two concrete PHFs, we also construct an improved short
signature scheme with short verification keys from weaker assumptions.

1 Introduction

As a primitive catpuring the partinitioning proof techniques, programmable hash
function introduced by Hofheinz and Kiltz [34] is a powerful tool to construct
provably secure cryptographic schemes in the standard model. Informally, a PHF
H = {HK} is a keyed group hash function over some finite group G, which can
work in two (statistically) indistinguishable modes depending on how the key is
generated: if the key K is generated in the normal mode, then the hash function
behaves normally and maps an input X into a group element HK(X) ∈ G; while
if the key K ′ is generated in the trapdoor mode, then with the help of some
trapdoor information td it can additionally output a secret pair (aX , bX) such

2

that HK′(X) = gaXhbX holds for some prior fixed group generators g, h ∈ G.
More formally, let u, v ∈ Z be some positive integers, H is said to be (u, v)-
programmable if given any inputs X1, . . . , Xu and Y1, . . . , Yv satisfying Xi 6= Yj
for any i and j, the probability Pr[aX1 = · · · = aXu = 0 ∧ aY1 , . . . , aYv 6= 0] ≥
1/poly(κ) for some polynomial poly(κ) in the security parameter κ, where the
probability is over the random coins used in generating K ′ and td. This feature
gives a partition of all inputs in terms of whether aX = 0, and becomes very
useful in security proofs when the discrete logarithm (DL) is hard in G [34].

Since its introduction, PHFs have attracted much attention from the research
community [53,32,35,27,16], and had been used to construct many cryptographic
schemes (such as short signature schemes [33]) in the standard model. However,
both the definition and the constructions of traditional PHFs seem specific to
hash functions defined over groups where the “DL problem” is hard. This might
be the reason why almost all known PHFs were constructed from “DL groups”.
Actually, it was left as an open problem [35] to find instantiations of PHF from
different assumptions, e.g., lattices.

Facing the rapid development of quantum computers, the past decade has
witnessed remarkable advancement in lattice-based cryptography. Nevertheless,
the silhouette of lattice-based PHFs is still not very clear. At Crypto 2013, Freire
et al. [27] extended the notion of PHF to the multilinear maps setting. However,
recent study shows that there is a long way to go before obtaining a practical and
secure multilinear maps from lattices [28,20,17,19,36]. An intriguing question of
great interest is to construct lattice-based PHFs or something similar based on
standard hard lattice problems.

Lattice-based Short Signatures. It is well-known that digital signature
schemes [37] can be constructed from general assumptions, such as one-way
functions. Nevertheless, these generic signature schemes suffer from either large
signatures or large verification keys, thus a main open problem is to reduce the
signature size as well as the verification key size. The first direct constructions
of lattice-based signature schemes were given in [41,30]. Later, many works (e.g.,
[40,23,7]) significantly improved the efficiency of lattice-based signature schemes
in the random oracle model. In comparison, the progress in constructing efficient
lattice-based signature schemes in the standard model was relatively slow. At
Crypto 2010, Cash et al. [15] proposed a signature scheme with a linear number
of vectors in the signatures. The first standard model short signature scheme
with signatures consisting of a single lattice vector was due to Boyen [13], which
was later improved by Micciancio and Peikert [44]. However, the verification keys
of both schemes in [13,44] consist of a linear number of matrices.

In 2013, Böhl et al. [9] constructed a lattice-based signature scheme with
constant verification keys by introducing the confined guessing proof technique.
Later, Ducas and Micciancio [25] adapted the confined guessing proof technique
to ideal lattices, and proposed a short signature scheme with logarithmic ver-
ification keys. Recently, Alperin-Sheriff [6] constructed a short signature with
constant verification keys based on a stronger hardness assumption by using the
idea of homomorphic trapdoor functions [31]. Due to the use of the confined

3

guessing technique, the three signature schemes [9,25,6] shared two undesired
byproducts. First, the security can only be directly proven to be existentially
unforgeable against non-adaptive chosen message attacks (EUF-naCMA). Even
if an EUF-naCMA secure scheme can be transformed into an EUF-CMA secure
one by using known techniques such as chameleon hash functions [38], in the
lattice setting [25] this usually introduces an additional tag to each signature
and roughly increases the signature size by twice. Second, a reduction loss about
(Q2/ε)c for some parameter c > 1 seems unavoidable, where Q is the number of
signing queries of the forger F , and ε is the success probability of F . Therefore,
it is desirable to directly construct an EUF-CMA secure scheme that has short
signatures, short verification keys, as well as a relatively tight security proof.

Identity-based Encryption from Lattices. Shamir [49] introduced identity-
based encryption (IBE) in 1984, but the first realizations were due to Boneh
and Franklin from pairings [11] and Cocks from quadratic residues [18]. In the
lattice setting, Gentry et al. [30] proposed the first IBE scheme based on the
learning with errors (LWE) assumption in the random oracle model. Later, sev-
eral works [2,15,54,24] were dedicated to the study of lattice-based (hierarchical)
IBE schemes also in the random oracle model. There were a few works focusing
on designing standard model lattice-based IBE schemes [1,2,15]. Concretely, the
scheme in [2] was only proven to be selective-identity secure in the standard
model. By using standard complexity leverage technique [10], one can generally
transform a selective-identity secure IBE scheme into a full secure one. But the
resulting scheme has to suffer from a reduction loss proportional to L, where L
is the number of distinct identities for the IBE system and is independent from
the number q of the adversary’s private key queries in the security proof. Since
L is usually super-polynomial and much larger than q, the above generic trans-
formation is a very unsatisfying approach [29]. In [1,15], the authors showed how
to achieve full security against adaptive chosen-plaintext and chosen-identity at-
tacks, but both standard model fully secure IBE schemes in [1,15] had large
master public keys consisting of a linear number of matrices. In fact, Agrawal,
Boneh and Boyen left it as an open problem to find fully secure lattice-based
IBE schemes with short master public keys in the standard model [1].

1.1 Our Contributions

Because of the (big) differences in the algebraic structures between lattices and
DL groups, the traditional definition of PHFs does not seem to work on lattices.
This makes it highly non-trivial to find instantiations of traditional PHFs on
lattices. In this paper, we introduce the notion of lattice-based programmable
hash function (PHF). Although our lattice-based PHF has gone beyond the
realm of group hash functions, we prefer to still name it as PHF because it
inherits the concept of traditional PHFs and aims at capturing the partitioning
proof trick on lattices. By carefully exploiting the algebraic properties of lattices,
we give several different constructions of lattice-based PHFs.

4

Under the Inhomogeneous Small Integer Solution (ISIS) assumption, we show
that any (non-trivial) lattice-based PHF is collision-resistant. This gives a direct
application of lattice-based PHFs. We further demonstrate the power of lattice-
based PHFs by showing a generic way to construct short signature schemes. Un-
der the ISIS assumption, our generic signature scheme is EUF-CMA secure in
the standard model. We also give a generic IBE scheme from lattice-based PHFs
with a property called high min-entropy. Under the LWE assumption, our generic
IBE scheme is secure against adaptive chosen-plaintext and chosen-identity at-
tacks in the standard model. Moreover, our IBE scheme can be extended to
support hierarchical identities, and achieve chosen ciphertext security.

We find that lattice-based PHFs are implicitly used as the backbones in the
signature schemes [13,44] and the IBE schemes [1]. Therefore, our results provide
a way to unify and clarify those lattice-based cryptographic schemes using the
partitioning proof strategy. Furthermore, by instantiating the generic schemes
with our new PHF constructions, we obtain a new short signature scheme and a
new IBE scheme. Compared to previous schemes, our instantiated schemes have
several appealing advantages. Notably, we construct an improved short signature
scheme with short verification keys by carefully combining two concrete PHFs,
which further removes a factor of Q2 (resp. Q) from the ISIS parameter (resp.
the reduction loss) of our generic signature scheme. Comparisons between our
schemes and previous ones will be given in Section 1.3 and Section 1.4.

1.2 Techniques

As observed by Hofheinz and Kiltz [35], there exist lattice-based schemes that
used conceptually close partitioning trick in the security proof (e.g., [1,15]). Thus,
we decide to move beyond the realm of group hash functions, and mainly focus
on the programmability that is crucially needed in the security reduction.

We introduce the notion of lattice-based PHFs by carefully exploiting the
specific algebraic structure of lattices. As the traditional PHFs, our lattice-based
PHF H = {HK} can work in two modes. Given a key K generated in either
the normal mode or the trapdoor mode, the hash function HK maps its input
X ∈ X into a matrix HK(X) ∈ Zn×mq for some positive n,m, q ∈ Z. In the
trapdoor mode, there additionally exists a secret trapdoor td allowing to compute
matrices RX ∈ Zm̄×mq and SX ∈ Zn×nq for some integer m̄ ∈ Z, such that
HK(X) = ARX+SXB ∈ Zn×mq holds with respect to user-specified “generators”
A ∈ Zn×m̄q and B ∈ Zn×mq . For non-triviality, we require that the keys generated
in the two modes are statistically indistinguishable (even conditioned on the
matrix A that was used to generate the trapdoor mode key), and that the two
“generators” A ∈ Zn×m̄q and B ∈ Zn×mq have essential differences for embedding
hard lattice problems. More precisely, in our definition A ∈ Zn×m̄q is required
to be uniformly distributed (and thus can be used to embed the ISIS problem),
while B ∈ Zn×mq is a trapdoor matrix that allows to efficiently sample short
vector e ∈ Zm satisfying Be = v for any vector v ∈ Znq .

In order to explore the differences between A ∈ Zn×m̄q and B ∈ Zn×mq in
the security reduction, we require that the largest singular value of RX defined

5

by s1(RX) = maxu ‖RXu‖ is small where the maximum is taken over all unit
vectors u ∈ Rm, and that SX ∈ In∪{0} where In is the set of invertible matrices
in Zn×nq . More concretely, for any positive integer u, v ∈ Z and real β ∈ R, a
(u, v, β)-PHFH should satisfy the following two conditions: 1) s1(RX) ≤ β holds
for any input X; and 2) given any inputs X1, . . . , Xu and Y1, . . . , Yv satisfying
Xi 6= Yj for any i and j, the probability Pr[SX1

= · · · = SXu = 0∧SY1
, . . . ,SYv ∈

In] is at least 1/poly(n), where the probability is taken over the random coins in
producing td and K ′. Besides, if the second condition only holds for some prior
fixed X1, . . . , Xu (chosen before generating the trapdoor mode key K ′), we say
that the hash function H is a weak (u, v, β)-PHF.

Looking ahead, if the trapdoor mode key K ′ is generated by using A ∈ Zn×m̄q

and trapdoor matrix B ∈ Zn×mq , then for any input X the matrix AX :=

(A‖HK′(X)) = (A‖ARX +SXB) ∈ Zn×(m̄+m)
q has a trapdoor RX with respect

to tag SX . The programmability comes from the fact that such a trapdoor
enables us to sample short vector e satisfying AXe = v for any vector v ∈ Znq
when SX is invertible, and loses this ability when SX = 0. This gives us the
possibility to adaptively embed the ISIS problem depending on each particular
input X. Since this feature is only useful when the key K ′ is used together with
the “generator” A ∈ Zn×m̄q , we require the keys in both modes to be statistically
indistinguishable even conditioned on the information of A.

Our Type-I PHF construction is a high-level abstraction of the functions that
were (implicitly) used in both signature schemes (e.g, [13,9,44]) and encryption
schemes (e.g., [1,44]). Formally, let E be an encoding function from some domain
X to (Zn×nq)`, where ` is an integer. Then, for any input X ∈ X , the Type-I
PHF construction H = {HK} from X to Zn×mq is defined as HK(X) = A0 +∑`
i=1 CiAi, where K = (A0,A1, . . . ,A`) and E(X) = (C1, . . . ,C`). For appro-

priate choices of parameters and encoding function E, the literatures (implic-
itly) showed that the Type-I construction satisfies our definition of lattice-based
PHFs. Concretely, if one sets X = {0, 1}`, and E(X) = ((−1)X1 ·In, . . . , (−1)X` ·
In) for any input X = (X1, . . . , X`), where In is the n×n identity matrix. Then,
the instantiated PHF is exactly the hash functions that were used to construct
the signature scheme in [13] and the IBE scheme in [1]. Since the Type-I PHF
construction is independent from the particular choice of B ∈ Zn×mq , it allows us
to use any trapdoor matrix B when generating the trapdoor mode key. On the
downside, such a construction has a large key size, i.e., the number of matrices
in the key is linear in the input length `.

Our Type-II PHF construction has keys only consisting of O(log `) matrices,
which substantially reduces the key size by using a novel combination of the
cover-free sets and the publicly known trapdoor matrix B = G in [44], where
G = In ⊗ gt ∈ Zn×nkq , k = dlog2 qe and g = (1, 2, . . . , 2k−1)t ∈ Zkq . Concretely,
for any positive L ∈ Z, by [L] we denote the set {0, 1, . . . , L − 1}. Recall that
if CF = {CFX}X∈[L] is a family of v-cover-free sets over domain [N] for some
integers v, L,N ∈ Z, then for any subset S ⊆ [L] of size at most v and any
Y /∈ S, there is at least one element z∗ ∈ CFY ⊆ [N] that is not included in the
union set ∪X∈SCFX . The property of cover-free sets naturally gives a partition

6

of [L], and was first used in constructing traditional PHFs in [33]. However, a
direct application of the cover-free sets in constructing (lattice-based) PHFs will
result in a very large key size (which is even worse than that of the Type-I PHF).
Actually, for an input size L = 2`, the key of the PHF in [33] should contain an
associated element for each element in [N], where N is as large as poly(`). We
solve this problem by using the nice property of G and the binary representation
of the cover-free sets. Formally, let G−1(C) be the binary decomposition of some
matrix C. By the definition of G, we have G ·G−1(C) = C. Now, we set the
key K of the Type-II PHF as K = (A, {Ai}i∈{0,...,µ−1}), where µ = dlog2Ne =
O(log `). For any input X ∈ [L], we first map X into the corresponding set
CFX ∈ CF . Then, for each z ∈ CFX ⊆ [N], we “recover” an associated matrix
Az = Func(K, z, 0) from K and the binary decomposition (b0, . . . , bµ−1) of z,
where Func is recursively defined as

Func(K, z, i) =

{
Aµ−1 − bµ−1G, if i = µ− 1
(Ai − biG) ·G−1(Func(K, z, i+ 1)), otherwise

Finally, we output the hash value HK(X) = A +
∑
z∈CFX Az.

In the trapdoor mode, we randomly choose a “target” element z∗ ∈ [N], and

set A = ÂR− (−1)c ·G and Ai = ÂRi + (1− b∗i) ·G for all i ∈ {0, . . . , µ− 1},
where (b∗0, . . . , b

∗
µ−1) is the binary decomposition of z∗ and c is the number of

1’s in the vector (b∗0, . . . , b
∗
µ−1). By doing this, we have that Az = ÂR̂z + ŜzG

holds for some matrices R̂z and Ŝz =
∏µ−1
i=0 (1− b∗i − bi) ·In, where (b0, . . . , bµ−1)

is the binary decomposition of z. This means that Ŝz = 0 for any z 6= z∗, and
Ŝz∗ = (−1)c · In. By the definition of HK(X) = A +

∑
z∈CFX Az, we have that

HK(X) = ÂR̂X + ŜXG holds for some matrices R̂X = R +
∑
z∈CFX R̂z and

ŜX = −(−1)c · In +
∑
z∈CFX Ŝz. Obviously, we have that ŜX = 0 if and only if

z∗ ∈ CFX , otherwise ŜX = −(−1)c · In. By the property of the cover-free sets,
there is at least one element in CFY ⊆ [N] that is not included in the union set
∪X∈SCFX for any S = {X1, . . . , Xv} and Y /∈ S. Thus, if z∗ is randomly chosen
and is statistically hidden in the key K = (A, {Ai}i∈{0,...,µ−1}), we have the

probability that HK(Xi) = ÂR̂Xi−(−1)c ·G for all Xi ∈ S and HK(Y) = ÂR̂Y ,
is at least 1/N = 1/poly(`).

1.3 Short Signatures

We now outline the idea on how to construct a generic signature scheme SIG
from lattice-based PHFs in the standard model. Let n, m̄,m′, `, q be some posi-
tive integers, and let m = m̄+m′. Given a lattice-based PHF H = {HK} from
{0, 1}` to Zn×m′q , let B ∈ Zn×m′q be a trapdoor matrix that is compatible with
H. Then, the verification key of the generic signature scheme SIG consists of a
uniformly distributed (trapdoor) matrix A ∈ Zn×m̄q , a uniformly random vector
u ∈ Znq , and a random key K for H, i.e., vk = (A,u,K). The signing key is a
trapdoor R of A that allows to sample short vector e satisfying Ae = v for any

7

vector v ∈ Znq . Given a message M ∈ {0, 1}`, the signing algorithm first com-
putes AM = (A‖HK(M)) ∈ Zn×mq , and then uses the trapdoor R to sample a
short vector e ∈ Zm satisfying AMe = u by employing the sampling algorithms
in [30,15,44]. Finally, it returns σ = e as the signature on the message M . The
verifier accepts σ = e as a valid signature on M if and only if e is short and
AMe = u. The correctness of the generic scheme SIG is guaranteed by the nice
properties of the sampling algorithms in [30,44].

In addition, if H = {HK} is a (1, v, β)-PHF for some integer v and real β,
we can show that under the ISIS assumption, SIG is existentially unforgeable
against adaptive chosen message attacks (EUF-CMA) in the standard model as
long as the forger F makes at most Q ≤ v signing queries. Intuitively, given
an ISIS challenge instance (Â, û) in the security reduction, the challenger first

generates a trapdoor mode key K ′ for H by using (Â,B). Then, it defines vk =

(Â, û,K ′) and keeps the trapdoor td of K ′ private. For message Mi in the i-th

signing query, we have AMi
= (Â‖HK′(Mi)) = (Â‖ÂRMi

+ SMi
B) ∈ Zn×mq .

By the programmability of H, with a certain probability we have that SMi is
invertible for all the Q signing messages {Mi}i∈{1,...,Q}, but SM∗ = 0 for the
forged message M∗. In this case, the challenger can use RMi

to perfectly answer
the signing queries, and use the forged message-signature pair (M∗, σ∗) to solve

the ISIS problem by the equation u = AM∗σ
∗ = Â(Im̄‖RM∗)σ

∗.
Each signature in the generic scheme SIG only has a single vector, which

is as short as that in [13,44]. In fact, our generic scheme SIG encompasses the
two signature schemes from [13,44] in the sense that both schemes can be seen
as the instantiations of SIG using the Type-I PHF construction. Due to the
inefficiency of the concrete PHFs, both schemes [13,44] had large verification
keys consisting of a linear number of matrices. By instantiating SIG with our
efficient Type-II PHF construction, we obtain a concrete scheme SIG1 with
logarithmic verification keys. Unlike the prior schemes in [9,25,6], our methods
do not use the confined guessing proof technique [9], and enable us to directly
achieve EUF-CMA security without using chameleon hash functions. This also
allows us to get a security proof of SIG1 with a reduction loss only about nv2,
which is independent from the forger’s success probability ε. We remark that this
improvement does not come for free: the underlying ISIS assumption should hold
for parameter β̄ = v2 ·Õ(n5.5), where v ≥ Q is required.4 By carefully combining
our Type-II (1, v, β)-PHF with a simple weak Type-I PHF and introducing a very
short tag to each signature, we further remove the condition v ≥ Q such that a
much smaller v = ω(log n) can be used to obtain a short signature scheme SIG2

under the ISIS assumption with parameter β̄ = Õ(n5.5) in the standard model.
In Table 1, we give a (rough) comparison of lattice-based signature schemes in

the standard model. For simplicity, the message length is set to be n. Let constant
c > 1 and d = O(logc n) be the parameters for the use of the confined guessing
technique in [9,25,6]. We compare the size of verification keys and signatures
in terms of the number of “basic” elements as in [25,6]. On general lattices,
the “basic” element in the verification keys is a matrix over Zq whose size is

4 We write f(n) = Õ(g(n)) if f(n) = O(g(n) · logc(n)) for some constant c.

8

Table 1. Rough comparison of lattice-based signatures in the standard model (Since
all schemes only have a single “basic” element in the signing keys, we also omit the
corresponding comparison in the size of signing keys for succinctness. The reduction
loss is the ratio ε/ε′ between the success probability ε of the forger and the success
probability ε′ of the reduction. Real β̄ is the parameter for the (I)SIS problem, and
“CMH?” denotes the necessity of chameleon hash functions to achieve EUF-CMA
security. Constant c > 1 and d = O(logc n) are the parameters in [9,25,6])

Schemes Verification key Signature Reduction loss (I)SIS param β̄ CMH?

LM08 [41] ∗ 1 logn Q Õ(n2) NO

CHKP10 [15] n logn Q Õ(n1.5) YES

Boyen10 [13] n 1 Q Õ(n3.5) NO

MP12 [44] † n 1 Q Õ(n2.5) YES

BHJ+14 [9] 1 d (Q2/ε)c Õ(n2.5) YES

DM14 [25] ∗ d 1 (Q2/ε)c Õ(n3.5) YES

AS15 [6] 1 1 (Q2/ε)c Õ(d2d · n5.5) YES

Our SIG1 logn 1 n ·Q2 Q2 · Õ(n5.5) NO

Our SIG2 logn 1 Q · Õ(n) Õ(n5.5) NO

mainly determined by the underlying hard lattices, while the “basic” element in
the signatures is a lattice vector. On ideal lattices, the “basic” element in the
verification keys can be represented by a vector. Almost all schemes on general
lattices such as [15,13,44,9,6] and ours can be instantiated from ideal lattices,
and thus roughly saves a factor of n in the verification key size. However, the two
schemes [41,25] (marked with ‘∗’) from ideal lattices have no realizations over
general lattices. We ignore the constant factors in the table to avoid clutter.
Since all schemes only have a single “basic” element in the signing keys, we also
omit the corresponding comparison in the size of signing keys for succinctness.
Finally, we note that the signature scheme in [44] (marked with ‘†’) is essentially
identical to the one in [13] except that an improved security reduction under
a weaker assumption was provided in the EUF–naCMA model. As shown in
Table 1, the scheme in [6] only has a constant number of “basic” elements in
the verification key. However, because a large (I)SIS parameter β̄ = Õ(d2d ·n5.5)
is needed (which requires a super-polynomial modulus q > β̄), the actual bit
size to represent each “basic” element in [6] is at least O(d) = O(log n) times
larger than that in [25] and our schemes. Even if we do not take account of the
reduction loss, the bit size of the verification key in [6] is already as large as that
in [25] and our schemes.

1.4 Identity-based Encryptions

At STOC 2008, Gentry et al. [30] constructed a variant of the LWE-based public-
key encryption (PKE) scheme [48]. Informally, the public key of their scheme [30]

9

contained a matrix A and a vector u, and the secret key was a short vector e
satisfying Ae = u. Recall that in our generic signature scheme SIG, any valid
message-signature pair (M,σ) under the verification key vk = (A,u,K) also
satisfies an equation AMσ = u, where AM = (A‖HK(M)). A natural question
is whether we can construct a generic IBE scheme from lattice-based PHFs
by combining our generic signature scheme SIG with the PKE scheme in [30].
Concretely, let the master public key mpk and the master secret key msk of the
IBE system be the verification key vk and the secret signing key sk of SIG,
respectively, i.e., (mpk,msk) = (vk, sk). Then, for each identity id, we simply
generate a “signature” skid = σ on id under the master public key mpk as the
user private key, i.e., Aidskid = u, where Aid = (A‖HK(id)). Finally, we run
the encryption algorithm of [30] with “public key” (Aid,u) as a sub-routine to
encrypt plaintexts under the identity id. The problem is that we do not know
how to rely the security of the above “IBE” scheme on the LWE assumption.

Fortunately, the work [1] suggested a solution by adding an “artificial” noise
in the ciphertext, which was later used in other advanced lattice-based encryp-
tion schemes such as functional encryptions [3]. To adapt their techniques to the
above IBE construction, the challenge ciphertext C∗ under identity id∗ must con-
tain a term Rt

id∗w for some w ∈ Zm̄q , where HK′(id
∗) = ARid∗ (i.e., Sid∗ = 0)

for some trapdoor mode key K ′. This means that C∗ will leak some informa-
tion of Rid∗ , which is not captured by our definition of lattice-based PHF, and
might compromise the security of H. An intuitive solution is directly resorting
to an enhanced definition of PHF such that all the properties of H still hold
even when the information of Rt

id∗w (for any given w) is leaked. For our partic-
ular generic construction of IBE, we can handle it more skillfully by introducing
two seemingly relaxed conditions: 1) the PHF key K ′ in the trapdoor mode is
still statistically close to the key K in the normal mode even conditioned on
(A and) Rt

id∗w for any given vector w ∈ Zm̄q ; 2) the hidden matrix Rid∗ has
high min-entropy in the sense that Rt

id∗w (conditioned on w) is statistically
close to uniform over Zmq when w ∈ Zm̄q is uniformly random. Formally, we say
that a PHF H has high min-entropy if it additionally satisfies the above two
conditions. Intuitively, the high min-entropy property ensures that when w is
uniformly random, Rt

id∗w statistically leaks no information of Rid∗ and id∗,
and thus will not affect the original PHF property of H. In the security proof,
we will make use of this fact by switching w to a uniformly random one under
the LWE assumption. Interestingly, by choosing appropriate parameters, all our
PHF constructions satisfy the high min-entropy property. In other words, such a
property is obtained almost for free, which finally allows us to construct a generic
IBE scheme IBE from lattice-based PHFs with high min-entropy. Similarly, our
generic scheme IBE subsumes the concrete IBE schemes due to Agrawal et al. [1].
Besides, by instantiating IBE with our efficient Type-II PHF construction, we
obtain the first standard model IBE scheme IBE1 with logarithmic master pub-
lic keys on lattices. We also show how to extend our IBE scheme to a hierarchical
IBE (HIBE) scheme and how to achieve CCA security, by using the trapdoor
delegations [1,15,44] and the CHK transformation [14].

10

Table 2. Rough Comparison of lattice-based IBEs in the standard model (Since all the
schemes only have a single “basic” element in both the master secret key and the user
private key, we omit them in the comparison for succinctness. The reduction loss is the
ratio ε/ε′ between the success probability ε of the attacker and the success probability
ε′ of the reduction. Real α is the parameter for the LWE problem, and “security”
standards for the corresponding security model for security proofs)

Schemes Master public key Ciphertext Reduction loss LWE param 1/α Security

ABB10a [2] n3 n2 1 Õ(n2n) Selective

ABB10b [1] 1, n 1 1, Q Õ(n2) Selective, Full

CHKP10 [15] n n Q2 Õ(n1.5) Full

Our IBE1 logn 1 n ·Q2 Q2 · Õ(n6.5) Full

In Table 2, we give a (rough) comparison of lattice-based IBEs in the standard
model. For simplicity, the identity length is set to be n. (Note that one can use
a collision-resistant hash function with output length n to deal with identities
with arbitrary length.) Similarly, we compare the size of master public keys and
ciphertexts in terms of the number of “basic” elements. On general lattices, the
“basic” element in the master public keys is a matrix, while the “basic” element
in the ciphertexts is a vector. If instantiated from ideal lattices, the “basic”
element in the master public keys can be represented by a vector, and thus
roughly saves a factor of n in the master public key size. We ignore the constant
factor in the table to avoid clutter. Compared to the two fully secure IBEs [1,15]
in the standard model, our concrete scheme IBE1 only has a logarithmic number
of matrices in the master public key. However, such an improvement is not
obtained without a penalty: the instantiated scheme IBE1 has a large security
loss and requires a strong LWE assumption. Since both the improvement and
the downside are inherited from the concrete Type-II PHF construction, this
situation can be immediately changed if one can find a better lattice-based PHF.

1.5 Other Related Work

Hofheinz and Kiltz [34] first introduced the notion of PHF based on group hash
functions, and gave a concrete (2, 1)-PHF instantiation. Then, the work [33]
constructed a (u, 1)-PHF for any u ≥ 1 by using cover-free sets. Later, Yamada
et al. [53] reduced the key size from O(u2`) in [33] to O(u

√
`) by combining the

two-dimensional representation of cover-free sets with the bilinear groups, where
` was the bit size of the inputs. At CRYPTO 2012, Hanaoka et al. [32] showed
that it was impossible to construct algebraic (u, 1)-PHF over prime order groups
in a black-box way such that its key has less than u group elements.5 Later,
Freire et al. [27] got around the impossibility result of [32] and constructed a
(poly, 1)-PHF by adapting PHFs to the multilinear maps setting. Despite its

5 Informally, an algorithm is algebraic if there is way to compute the representation of
a group element output by the algorithm in terms of its input group elements [12].

11

great theoretical interests, the current state of multilinear maps might be a big
obstacle in any attempt to securely and efficiently instantiate the PHFs in [27].
More recently, Catalano et al. [16] introduced a variant of traditional PHF called
asymmetric PHF over bilinear maps, and used it to construct (homomorphic)
signature schemes with short verification keys.

All the above PHF constructions [34,33,53,27,16] seem specific to groups with
nice properties, which might constitute a main barrier to instantiate them from
lattices. Although several lattice-based schemes [1,15] had employed a similar
partitioning proof trick as that was captured by the traditional PHFs, it was still
an open problem to formalize and construct PHFs from lattices [35]. We put for-
ward this study by introducing the lattice-based PHF and demonstrate its power
in constructing lattice-based signatures and IBEs in the standard model. Our
PHFs also provide a modular way to investigate several existing cryptographic
constructions from lattices [1,13,44].

1.6 Roadmap

After some preliminaries in Section 2, we give the definition of lattice-based
PHFs, and two types of constructions in Section 3. We construct signatures and
IBEs from lattice-based PHFs in Section 4 and Section 5, respectively.

2 Preliminaries

2.1 Notation

Let κ be the natural security parameter, and all other quantities are implicitly
dependent on κ. The function logc denotes the logarithm with base c, and we
use log to denote the natural logarithm. The standard notation O,ω are used to
classify the growth of functions. If f(n) = O(g(n) · logc(n)) for some constant c,
we write f(n) = Õ(g(n)). By poly(n) we denote an arbitrary function f(n) =
O(nc) for some constant c. A function f(n) is negligible in n if for every positive
c, we have f(n) < n−c for sufficiently large n. By negl(n) we denote an arbitrary
negligible function. A probability is said to be overwhelming if it is 1− negl(n).
The notation ←r denotes randomly choosing elements from some distribution
(or the uniform distribution over some finite set). If a random variable x follows
some distribution D, we denote it by x v D.

By R (resp. Z) we denote the set of real numbers (resp. integers). For any
positive N ∈ Z, the notation [N] denotes the set {0, 1, . . . , N − 1}. Vectors are
used in the column form and denoted by bold lower-case letters (e.g., x). Matrices
are treated as the sets of column vectors and denoted by bold capital letters (e.g.,
X). The concatenation of the columns of X ∈ Rn×m followed by the columns
of Y ∈ Rn×m′ is denoted as (X‖Y) ∈ Rn×(m+m′). For any element 0 ≤ v ≤ q,
we denote BitDecompq(v) as the k-dimensional bit-decomposition of v, where
k = dlog2 qe. By ‖ · ‖ and ‖ · ‖∞ we denote the l2 and l∞ norm, respectively.
The norm of a matrix X is defined as the norm of its longest column (i.e., ‖X‖

12

= maxi ‖xi‖). The largest singular value of a matrix X is s1(X) = maxu ‖Xu‖,
where the maximum is taken over all unit vectors u.

We say that a hash function H : Znq → Zn×nq is an encoding with full-rank
differences (FRD) if the following two conditions hold: 1) for any u 6= v, the
matrix H(u)−H(v) ∈ Zn×nq is invertible over Zn×nq ; and 2) H is computable in
polynomial time in n log q. As shown in [1,21], FRD encodings supporting the
exponential size domain Znq can be efficiently constructed.

2.2 Lattices and Gaussian Distributions

An m-dimensional full-rank lattice Λ ⊂ Rm is the set of all integral combinations
of m linearly independent vectors B = (b1, . . . ,bm) ∈ Rm×m, i.e., Λ = L(B) =
{
∑m
i=1 xibi : xi ∈ Z}. For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆

Zm centered at c ∈ Rm with parameter s > 0 as ρs,c(x) = exp(−π‖x− c‖2/s2).
Let ρs,c(Λ) =

∑
x∈Λ ρs,c(x), and define the discrete Gaussian distribution over

Λ as DΛ,s,c(y) =
ρs,c(y)
ρs,c(Λ) , where y ∈ Λ. The subscripts s and c are taken to be

1 and 0 (resp.) when omitted. The following result was proved in [45,30,47].

Lemma 1. For any positive integer m ∈ Z, vector y ∈ Zm and large enough
s ≥ ω(

√
logm), we have that

Pr
x←rDZm,s

[‖x‖ > s
√
m] ≤ 2−m and Pr

x←rDZm,s
[x = y] ≤ 21−m.

Following [44,25], we say that a random variable X over R is subgaussian with
parameter s if for all t ∈ R, the (scaled) moment-generating function satisfies
E(exp(2πtX)) ≤ exp(πs2t2). If X is subgaussian, then its tails are dominated by
a Gaussian of parameter s, i.e., Pr[|X| ≥ t] ≤ 2 exp(−πt2/s2) for all t ≥ 0. As a
special case, any B-bounded symmetric random variableX (i.e., |X| ≤ B always)
is subgaussian with parameter B

√
2π. Besides, we say that a random matrix X

is subgaussian with parameter s if all its one-dimensional marginals utXv for
unit vectors u,v are subgaussian with parameter s. In such a definition, the
concatenation of independent subgaussian vectors with parameter s, interpreted
either as a vector or as a matrix, is subgaussian with parameter s. In particular,
the distribution DΛ,s for any lattice Λ ⊂ Rn and s > 0 is subgaussian with
parameter s. For random subgaussian matrix, we have the following result from
the non-asymptotic theory of random matrices [50].

Lemma 2. Let X ∈ Rn×m be a random subgaussian matrix with parameter s.
There exists a universal constant C ≈ 1/

√
2π such that for any t ≥ 0, we have

s1(X) ≤ C · s · (
√
m+

√
n+ t) except with probability at most 2 exp(−πt2).

Let A ∈ Zn×mq be a matrix for some positive n,m, q ∈ Z, consider the fol-

lowing two lattices: Λ⊥q (A) = {e ∈ Zm s.t. Ae = 0 mod q} and Λq(A) = {y ∈
Zm s.t. ∃s ∈ Zn, Ats = y mod q}. By definition, we have Λ⊥q (A) = Λ⊥q (CA)
for any invertible C ∈ Zn×nq . In 1999, Ajtai [5] proposed the first trapdoor gener-
ation algorithm to output an essentially uniform trapdoor matrix A that allows

13

to efficiently sample short vectors in Λ⊥q (A). This trapdoor generation algo-
rithm had been improved in [44]. Let In be the n × n identity matrix. We now
recall the publicly known trapdoor matrix G in [44]. Formally, for any prime
q > 2, integer n ≥ 1 and k = dlog2 qe, define g = (1, 2, . . . , 2k−1)t ∈ Zkq and

G = In ⊗ gt ∈ Zn×nkq , where ‘⊗’ represents the tensor product.6 Then, the

lattice Λ⊥q (G) has a publicly known short basis T = In ⊗ Tk ∈ Znk×nk with

‖T‖ ≤ max{
√

5,
√
k}. Let (q0, q1, . . . , qk−1) = BitDecompq(q) ∈ {0, 1}k, we have

G =

· · ·gt · · ·

· · ·gt · · ·
. . .

· · ·gt · · ·

 Tk =

2 q0

−1 2 q1

−1 q2

. . .
...

2 qk−2

−1 qk−1

For any vector u ∈ Znq , the basis T = In ⊗Tk ∈ Znk×nkq can be used to sample

short vector e ∼ DZnk,s satisfying Ge = u for any s ≥ ω(
√

log n) in quasilinear
time. Besides, it is easy to compute a short vector v = G−1(u) ∈ {0, 1}nk such
that Gv = u. This fact will be frequently used in this paper.

Definition 1 (G-trapdoor [44]). For any integers n, m̄, q ∈ Z, k = dlog2 qe,
and matrix A ∈ Zn×m̄q , the G-trapdoor for A is a matrix R ∈ Z(m̄−nk)×nk

such that A
[

R
Ink

]
= SG for some invertible tag S ∈ Zn×nq . The quality of the

trapdoor is measured by its largest singular value s1(R).

If R is a G-trapdoor for A, one can obtain a G-trapdoor R′ for any extension
(A‖B) by padding R with zero rows. In particular, we have s1(R′) = s1(R).

Besides, the rows of
[

R
Ink

]
in Definition 1 can appear in any order, since this

just induces a permutation of A’s columns [44].

Proposition 1 ([44]). Given any integers n ≥ 1, q > 2, sufficiently large
m̄ = O(n log q) and a tag S ∈ Zn×nq , there is an efficient randomized algo-
rithm TrapGen(1n, 1m̄, q,S) that outputs a matrix A ∈ Zn×m̄q and a G-trapdoor

R ∈ Z(m̄−nk)×nk
q with quality s1(R) ≤

√
m̄ ·ω(

√
log n) such that the distribution

of A is negl(n)-far from uniform and A
[

R
Ink

]
= SG, where k = dlog2 qe.

In addition, given a G-trapdoor R of A ∈ Zn×m̄q for some invertible tag

S ∈ Zn×nq , any U ∈ Zn×n′q for some integer n′ ≥ 1 and real s ≥ s1(R)·ω(
√

log n),
there is an algorithm SampleD(R,A,S,U, s) that samples from a distribution
within negl(n) statistical distance of E ∼ (DZm̄,s)

n′ satisfying AE = U.

We also need the following useful facts from [47,30,44].

6 One can define G by using any base b ≥ 2 and g = (1, b, . . . , bk−1)t for k = dlogb qe.
In this paper, we fix b = 2 for simplicity.

14

Lemma 3. For any positive integer n, prime q > 2, sufficiently large m =
O(n log q) and real s ≥ ω(

√
logm), we have that for a uniformly random matrix

A←r Zn×mq , the following facts hold:

– for variable e ∼ DZm,s, the distribution of u = Ae mod q is statistically
close to uniform over Znq ;

– for any c ∈ Rm and every y ∈ Λ⊥q (A), Prx←rDΛ⊥q (A),s,c
[x = y] ≤ 21−m;

– for any fixed u ∈ Znq and arbitrary v ∈ Rm satisfying Av = u mod q,
the conditional distribution of e ∼ DZm,s given Ae = u mod q is exactly
v +DΛ⊥q (A),s,−v.

2.3 Learning with Errors (LWE) and Small Integer Solutions (SIS)

For any positive integer n, q, real α > 0, and any vector s ∈ Znq , the distri-
bution As,α over Znq × Zq is defined as As,α = {(a,ats + x mod q) : a ←r

Znq , x←r DZ,αq}, where DZ,αq is the discrete Gaussian distribution over Z with
parameter αq. For m independent samples (a1, y1), . . . , (am, ym) from As,α, we
denote it in matrix form (A,y) ∈ Zn×mq × Zmq , where A = (a1, . . . ,am) and
y = (y1, . . . , ym)t. We say that an algorithm solves the LWEq,α problem if, for
uniformly random s ←r Znq , given polynomial samples from As,α it outputs s
with noticeable probability. The decisional variant of LWE is that, for a uni-
formly random s←r Znq , the solving algorithm is asked to distinguish As,α from
the uniform distribution over Znq×Zq (with only polynomial samples). For certain
modulus q, the average-case decisional LWE problem is polynomially equivalent
to its worst-case search version [48].

Proposition 2 ([48]). Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such
that αq > 2

√
n. If there exists an efficient (possibly quantum) algorithm that

solves LWEq,α, then there exists an efficient quantum algorithm for approximat-

ing SIVP in the l2 norm, in the worst case, to within Õ(n/α) factors, where n
is the dimension of the underlying lattices.

The Small Integer Solution (SIS) problem was first introduced by Ajtai [4].
Formally, given positive n,m, q ∈ Z, a real β > 0, and a uniformly random
matrix A ∈ Zn×mq , the SISq,m,β problem asks to find a non-zero vector e ∈ Zm
such that Ae = 0 mod q and ‖e‖ ≤ β. In [30], Gentry et al. introduced the
ISIS problem, which was an inhomogeneous variant of SIS. Specifically, given
an extra random syndrome u ∈ Znq , the ISISq,m,β problem asks to find a vector
e ∈ Zm such that Ae = u mod q and ‖e‖ ≤ β. Both the two problems were
shown to be as hard as certain worst-case lattice problems [30].

Proposition 3 ([30]). For any polynomially bounded m,β = poly(n) and prime
q ≥ β ·ω(

√
n log n), the average-case problems SISq,m,β and ISISq,m,β are as hard

as approximating SIVP in the worst case to within certain γ = β ·Õ(
√
n) factors,

where n is the dimension of the underlying lattice.

15

3 Programmable Hash Functions from Lattices

We now give the definition of lattice-based programmable hash functions (PHF).
Let `, m̄,m, n, q, u, v ∈ Z be some polynomials in the security parameter κ. By In
we denote the set of invertible matrices in Zn×nq . A hash function H : X → Zn×mq

consists of two algorithms (H.Gen,H.Eval). Given the security parameter κ, the
probabilistic polynomial time (PPT) key generation algorithm H.Gen(1κ) out-
puts a key K, i.e., K ← H.Gen(1κ). For any input X ∈ X , the efficiently de-
terministic evaluation algorithm H.Eval(K,X) outputs a hash value Z ∈ Zn×mq ,
i.e., Z = H.Eval(K,X). For simplicity, we write HK(X) = H.Eval(K,X).

Definition 2 (Lattice-based Programmable Hash Functions). A hash
function H : X → Zn×mq is a (u, v, β, γ, δ)-PHF if there exist a PPT trapdoor key
generation algorithm H.TrapGen and an efficiently deterministic trapdoor eval-
uation algorithm H.TrapEval such that given a uniformly random A ∈ Zn×m̄q

and a (public) trapdoor matrix B ∈ Zn×mq ,7 the following properties hold:

Syntax: The PPT algorithm (K ′, td)← H.TrapGen(1κ,A,B) outputs a key K ′

together with a trapdoor td. Moreover, for any input X ∈ X , the determinis-
tic algorithm (RX ,SX) = H.TrapEval(td,K ′, X) returns RX ∈ Zm̄×mq and
SX ∈ Zn×nq such that s1(RX) ≤ β and SX ∈ In∪{0} hold with overwhelming
probability over the trapdoor td that is produced along with K ′.

Correctness: For all possible (K ′, td)← H.TrapGen(1κ,A,B), all X ∈ X and
its corresponding (RX ,SX) = H.TrapEval(td,K ′, X), we have HK′(X) =
H.Eval(K ′, X) = ARX + SXB.

Statistically close trapdoor keys: For all (K ′, td) ← H.TrapGen(1κ,A,B)
and K ← H.Gen(1κ), the statistical distance between (A,K ′) and (A,K) is
at most γ.

Well-distributed hidden matrices: For all (K ′, td)← H.TrapGen(1κ,A,B),
any inputs X1, . . . , Xu, Y1, . . . , Yv ∈ X such that Xi 6= Yj for any i, j, let
(RXi ,SXi) = H.TrapEval(td,K ′, Xi) and (RYi ,SYi) = H.TrapEval(td,K ′,
Yi). Then, we have that

Pr[SX1
= · · · = SXu = 0 ∧ SY1

, . . . ,SYv ∈ In] ≥ δ,

where the probability is over the trapdoor td produced along with K ′.

If γ is negligible and δ > 0 is noticeable, we simply say that H is a (u, v, β)-PHF.
Furthermore, if u (resp. v) is an arbitrary polynomial in κ, we say that H is a
(poly, v, β)-PHF (resp. (u,poly, β)-PHF).

A weak programmable hash function is a relaxed version of PHF, where
theH.TrapGen algorithm additionally takes a list X1, . . . , Xu ∈ X as inputs such
that the well-distributed hidden matrices property holds in the following sense:
For all (K ′, td) ← H.TrapGen(1κ,A,B, {X1, . . . , Xu}), any inputs Y1, . . . , Yv ∈
7 A general trapdoor matrix B is used for utmost generality, but the publicly known

trapdoor matrix B = G in [44] is recommended for both efficiency and simplicity.

16

X such that Yj /∈ {X1, . . . , Xu} for all j, let (RXi ,SXi) = H.TrapEval(td,K ′, Xi)
and (RYi ,SYi) = H.TrapEval(td,K ′, Yi), we have that Pr[SX1

= · · · = SXu =
0 ∧ SY1 , . . . ,SYv ∈ In] ≥ δ, where the probability is over the trapdoor td pro-
duced along with K ′.

Besides, a hash function H : X → Zn×mq can be a (weak) (u, v, β)-PHF for
different parameters u and v, since there might exist different pairs of trapdoor
key generation and trapdoor evaluation algorithms for H. If this is the case, one
can easily show that the keys output by these trapdoor key generation algorithms
are statistically indistinguishable by definition.

3.1 Type-I Construction

We describe the Type-I construction of lattice-based PHFs in the following.

Definition 3. Let `, n,m, q ∈ Z be some polynomials in the security parameter
κ. Let E be a deterministic encoding from X to (Zn×nq)`, the hash function H =

(H.Gen,H.Eval) with key space K ⊆ (Zn×mq)`+1 is defined as follows:

– H.Gen(1κ): Randomly choose (A0, . . . ,A`)←r K, return K = {Ai}i∈{0,...,`}.
– H.Eval(K,X): Let E(X) = (C1, . . . ,C`), return Z = A0 +

∑`
i=1 CiAi.

We note that the above hash function has actually been (implicitly) used to
construct both signatures (e.g, [13,9,46]) and encryptions (e.g., [1,44]). Let In
be the n × n identity matrix. In the following theorems, we summarize several
known results which were implicitly proved in [13,1,44].

Theorem 1. Let K = (Zn×mq)`+1 and X = {0, 1}`. In addition, given an input

X = (X1, . . . , X`) ∈ X , the encoding function E(X) returns Ci = (−1)Xi · In
for i = {1, . . . , `}. Then, for large enough integer m̄ = O(n log q) and any fixed
polynomial v = v(κ) ∈ Z, the instantiated hash function H of Definition 3 is a
(1, v, β, γ, δ)-PHF with β ≤

√
`m̄ · ω(

√
log n), γ = negl(κ) and δ = 1

qt (1 −
v
qt),

where t is the smallest integer satisfying qt > 2v.

Theorem 2. For large enough m̄ = O(n log q), the hash function H given in
Definition 3 is a weak (1,poly, β, γ, δ)-PHF with β ≤

√
`m̄ · ω(

√
log n), γ =

negl(κ), and δ = 1 when instantiated as follows:

– Let K = (Zn×mq)2 (i.e., ` = 1) and X = Znq . Given an input X ∈ X , the
encoding E(X) returns H(X) where H : Znq → Zn×nq is an FRD encoding.

– Let K = (Zn×mq)`+1 and X = {0, 1}`. Given an input X = (X1, . . . , X`) ∈ X ,
the encoding E(X) returns Ci = Xi · In for all i ∈ {1, . . . , `}.

Unlike the traditional PHFs [34,33,16] where a bigger u is usually better in
constructing short signature schemes, our lattice-based PHFs seem more useful
when the parameter v is bigger (e.g., a polynomial in κ). There is a simple
explanation: although both notions aim at capturing some kind of partitioning
proof trick, i.e., each programmed hash value contains a hidden element behaving

17

as a trigger of some prior embedded trapdoors, for traditional PHFs the trapdoor
is triggered usually when the hidden element is zero, while in the lattice setting it
is common that the trapdoor is triggered when the hidden element is a non-zero
invertible one. This also explains why previous known constructions on lattices
(e.g., the instantiations in Theorem 1 and Theorem 2) are (weak) (1, v, β)-PHFs
for some polynomial v ∈ Z and real β ∈ R.

3.2 Type-II Construction

Let integers `, m̄, n, q, u, v, L,N be some polynomials in the security parameter
κ, and let k = dlog2 qe. We now exploit the nice property of the publicly known
trapdoor matrix B = G ∈ Zn×nkq to construct more efficient PHF from lattices
for any v = poly(κ). We begin by first recalling the notion of cover-free sets.
Formally, we say that set S does not cover set T if there exists at least one
element t ∈ T such that t /∈ S. Let CF = {CFX}X∈[L] be a family of subsets
of [N]. The family CF is said to be v-cover-free over [N] if for any subset
S ⊆ [L] of size at most v, then the union ∪X∈SCFX does not cover CFY for
all Y /∈ S. Besides, we say that CF is η-uniform if every subset CFX in the
family CF = {CFX}X∈[L] have size η ∈ Z. Furthermore, there exists an efficient
algorithm to generate cover-free sets [26,39]. Formally,

Lemma 4. There is a deterministic polynomial time algorithm that on inputs
integers L = 2` and v ∈ Z, returns an η-uniform, v-cover-free sets CF =
{CFX}X∈[L] over [N], where N ≤ 16v2` and η = N/4v.

In the following, we use the binary representation of [N] to construct lattice-
based PHFs with short keys.

Definition 4. Let n, q ∈ Z be some polynomials in the security parameter κ.
For any `, v ∈ Z and L = 2`, let N ≤ 16v2`, η ≤ 4v` and CF = {CFX}X∈[L]

be defined as in Lemma 4. Let µ = dlog2Ne and k = dlog2 qe. Then, the hash
function H = (H.Gen,H.Eval) from [L] to Zn×nkq is defined as follows:

– H.Gen(1κ): Randomly choose Â,Ai ←r Zn×nkq for i ∈ {0, . . . , µ−1}, return

the key K = (Â, {Ai}i∈{0,...,µ−1}).

– H.Eval(K,X): Given K = (Â, {Ai}i∈{0,...,µ−1}) and integer X ∈ [L], the
algorithm performs the Procedure I in Fig. 1 to compute Z = HK(X).

We now show that for any prior fixed v = poly(κ), the hash function H given
in Definition 4 is a (1, v, β)-PHF for some polynomially bounded β ∈ R.

Theorem 3. For any `, v ∈ Z and L = 2`, let N ≤ 16v2`, η ≤ 4v` and CF =
{CFX}X∈[L] be defined as in Lemma 4. Then, for large enough m̄ = O(n log q),
the hash function H in Definition 4 is a (1, v, β, γ, δ)-PHF with β ≤ µv`m̄1.5 ·
ω(
√

log m̄), γ = negl(κ) and δ = 1/N , where µ = dlog2Ne.
In particular, if we set ` = n and v = ω(log n), then β = Õ(n2.5), and the

key of H only consists of µ = O(log n) matrices.

18

Procedure I

Z := Â

For all z ∈ CFX
(b0, . . . , bµ−1) := BitDecompN (z)

Bz := Aµ−1 − bµ−1 ·G

For i = µ− 2, . . . , 0

Bz := (Ai − bi ·G) ·G−1(Bz)

Z := Z + Bz

Return Z

Procedure II

RX := R̂,SX := −(−1)c · In
For all z ∈ CFX

(b0, . . . , bµ−1) := BitDecompN (z)

Bz := Aµ−1 − bµ−1 ·G
Rz := Rµ−1

Sz := (1− b∗µ−1 − bµ−1) · In
For i = µ− 2, . . . , 0

Bz := (Ai − bi ·G) ·G−1(Bz)

Rz := Ri ·G−1(Bz) + (1− b∗i − bi) ·Rz

Sz := (1− b∗i − bi) · Sz
RX := RX + Rz,SX := SX + Sz

Return (RX ,SX)

Fig. 1. The Procedures Used in Definition 4 and Theorem 3

Proof. We now construct a pair of trapdoor algorithms for H as follows:

– H.TrapGen(1κ,A,G): Given a uniformly random A ∈ Zn×m̄q and matrix

G ∈ Zn×nkq for sufficiently large m̄ = O(n log q), let s ≥ ω(
√

log m̄) ∈ R sat-

isfy the requirement in Lemma 3. Randomly choose R̂,Ri ←r (DZm̄,s)
nk

for i ∈ {0, . . . , µ − 1}, and an integer z∗ ←r [N]. Let (b∗0, . . . , b
∗
µ−1) =

BitDecompN (z∗), and let c be the number of 1’s in the vector (b∗0, . . . , b
∗
µ−1).

Then, compute Â = AR̂ − (−1)c · G and Ai = ARi + (1 − b∗i) · G. Fi-

nally, return the key K ′ = (Â, {Ai}i∈{0,...,µ−1}) and the trapdoor td =

(R̂, {Ri}i∈{0,...,µ−1}, z
∗).

– H.TrapEval(td,K ′, X): Given td and an input X ∈ [L], the algorithm first
computes CFX by Lemma 4. Then, let (b∗0, . . . , b

∗
µ−1) = BitDecompN (z∗),

and perform the Procedure II in Fig. 1 to compute (RX ,SX).

Since s ≥ ω(
√

log m̄) and R̂,Ri ←r (DZm̄,s)
nk, each matrix in the key K ′ =

(Â, {Ai}i∈{0,...,µ−1}) is statistically close to uniform over Zn×nkq by Lemma 3.
Using a standard hybrid argument, it is easy to show that the statistical dis-
tance γ between (A,K ′) and (A,K) is negligible, where K ← H.Gen(1κ). In
particular, this means that z∗ is statistically hidden in K ′.

For correctness, we first show that Bz = ARz+SzG always holds during the
computation. By definition, we have that Bz = Aµ−1 − bµ−1 ·G = ARz + SzG
holds before entering the inner loop. Assume that Bz = ARz + SzG holds
before entering the j-th (i.e., i = j) iteration of the inner loop, we now show
that the equation Bz = ARz + SzG still holds after the j-th iteration. Since
Aj − bj · G = ARj + (1 − b∗j − bj) · G, we have that Bz := (Aj − bj · G) ·
G−1(Bz) = ARj ·G−1(Bz)+(1− b∗j − bj) · (ARz +SzG). This means that if we

set Rz := Rj ·G−1(Bz)+(1−b∗j−bj)·Rz and Sz := (1−b∗j−bj)·Sz, the equation

Bz = ARz+SzG still holds. In particular, we have that Sz =
∏µ−1
i=0 (1−b∗i−bi)·In

holds at the end of the inner loop. It is easy to check that Sz = 0 for any z 6= z∗,

19

and Sz = (−1)c · In for z = z∗, where c is the number of 1’s in the binary vector
(b∗0, . . . , b

∗
µ−1) = BitDecompN (z∗). The correctness of the trapdoor evaluation

algorithm follows from that fact that Z = H.Eval(K ′, X) = Â +
∑
z∈CFX Bz =

AR̂− (−1)c ·G+
∑
z∈CFX (ARz +SzG) = ARX +SXB. In particular, we have

that SX = −(−1)c · In if z∗ /∈ CFX , else SX = 0.

Since s1(G−1(Bz)) ≤ nk by the fact that G−1(Bz) ∈ {0, 1}nk×nk, and

s1(R̂), s1(Ri) ≤ (
√
m̄+

√
nk) · ω(

√
log m̄) by Lemma 2, we have that s1(Rz) ≤

µm̄1.5 ·ω(
√

log m̄) holds except with negligible probability for any z ∈ CFX . Us-
ing |CFX | = η ≤ 4v`, the inequality s1(RX) ≤ µv`m̄1.5 ·ω(

√
log m̄) holds except

with negligible probability for any X ∈ [L]. Besides, for any X1, Y1, . . . , Yv ∈ [L]
such that X1 6= Yj for all j ∈ {1, . . . , v}, there is at least one element in
CFX1

⊆ [N] that does not belong to the union set ∪j∈{1,...,v}CFYj . This is
because the family CF = {CFX}X∈[L] is v-cover-free. Since z∗ is randomly cho-
sen from [N] and is statistically hidden in the key K ′, the probability Pr[z∗ ∈
CFX1

∧ z∗ /∈ ∪j∈{1,...,v}CFYj] is at least 1/N . Thus, we have that Pr[SX1
=

0 ∧ SY1
= · · · = SYv = −(−1)c · In ∈ In] ≥ 1

N . �

3.3 Collision-Resistance and High Min-Entropy

Collision-Resistance. Let H = {HK : X → Y}K∈K be a family of hash
functions with key space K. We say that H is collision-resistant if for any PPT
algorithm C, its advantage

Advcr
H,C(κ) = Pr[K ←r K; (X1, X2)←r C(K, 1κ) : X1 6= X2∧HK(X1) = HK(X2)]

is negligible in the security parameter κ.

Theorem 4. Let n, v, q ∈ Z and β̄, β ∈ R be polynomials in the security param-
eter κ. Let H = (H.Gen, H.Eval) be a (1, v, β, γ, δ)-PHF with γ = negl(κ) and
noticeable δ > 0. Then, for large enough m̄,m ∈ Z and v ≥ 1, if there exists
an algorithm C breaking the collision-resistance of H, there exists an algorithm
B solving the ISISq,m̄,β̄ problem for β̄ = β

√
m · ω(log n) with probability at least

ε′ ≥ (ε− γ)δ.

For space reason, we defer the proof of Theorem 4 to Appendix B.

High Min-Entropy. Let H : X → Zn×mq be a (1, v, β, γ, δ)-PHF with γ =
negl(κ) and noticeable δ > 0. Note that the well-distributed hidden matrices
property of H holds even for an unbounded algorithm A that chooses {Xi} and
{Zj} after seeing K ′. For any noticeable δ > 0, this can only happen when the
decomposition HK′(X) = ARX + SXB is not unique (with respect to K ′) and
the particular pair determined by td, i.e., (RX ,SX) = H.TrapEval(td,K ′, X),
is information-theoretically hidden from A. We now introduce a property called
high min-entropy to formally capture this useful feature.

20

Definition 5 (PHF with High Min-Entropy). Let H : X → Zn×mq be a
(1, v, β, γ, δ)-PHF with γ = negl(κ) and noticeable δ > 0. Let K be the key
space of H, and let H.TrapGen and H.TrapEval be a pair of trapdoor generation
and trapdoor evaluation algorithms for H. We say that H is a PHF with high
min-entropy if for uniformly random A ∈ Zn×m̄q and (publicly known) trapdoor
matrix B ∈ Zn×mq , the following conditions hold

1. For any (K ′, td) ← H.TrapGen(1κ,A,B),K ← H.Gen(1κ), any X ∈ X
and any w ∈ Zm̄q , the algorithm H.TrapEval(td,K,X) is well-defined, and
the statistical distance between (A,K ′, (R′X)tw) and (A,K,Rt

Xw) is neg-
ligible in κ, where (R′X ,S

′
X) = H.TrapEval(td,K ′, X), and (RX ,SX) =

H.TrapEval(td,K,X).
2. For any (K ′, td) ← H.TrapGen(1κ,A,B), any X ∈ X , any uniformly ran-

dom v ∈ Zm̄q , and any uniformly random u ←r Zmq , the statistical dis-
tance between (A,K ′,v, (R′X)tv) and (A,K ′,v,u) is negligible in κ, where
(R′X ,S

′
X) = H.TrapEval(td,K ′, X).

Remark 1. First, since s1(R′X) ≤ β holds with overwhelming probability, we
have that ‖(R′X)tw‖ ≤ β‖w‖. Thus, the first condition implicitly implies that
‖Rt

Xw‖ ≤ β‖w‖ holds with overwhelming probability for any K ← H.Gen(1κ),
X ∈ X , and (RX ,SX) = H.TrapEval (td,K,X). Second, we note that the well-
distributed hidden matrices property of PHF only holds when the information
(except that is already leaked via the key K ′) of the trapdoor td is hidden.
This means that it provides no guarantee when some information of RX for any
X ∈ X (which is usually related to the trapdoor td) is given public. However,
for a PHF with high min-entropy, this property still holds when the information
of Rt

Xv for a uniformly random vector v is leaked.

For appropriate choices of parameters, the work [1] implicitly showed that
the Type-I PHF construction satisfied the high min-entropy property. Now, we
show that our Type-II PHF construction also has the high min-entropy property.

Theorem 5. Let integers n, m̄, q be some polynomials in the security parameter
κ, and let k = dlog2 qe. For any `, v ∈ Z and L = 2`, let N ≤ 16v2`, η ≤ 4v`
and CF = {CFX}X∈[L] be defined as in Lemma 4. Then, for large enough

m̄ = O(n log q), the hash function H : [L] → Zn×nkq given in Definition 4 (and
proved in Theorem 3) is a PHF with high min-entropy.

Proof. For any w ∈ Zm̄q , let fw : Zm̄×nkq → Znkq be the function defined by

fw(X) = Xtw ∈ Znkq . By the definition of H.TrapGen in Theorem 3, for any

(K ′, td) ← H.TrapGen(1κ,A,G), we have td = (R̂, {Ri}i∈{0,...,µ−1}, z
∗). De-

note I = {fw(R̂), {fw(Ri)}i∈{0,...,µ−1})}. First, it is easy to check that the

algorithm H.TrapEval(td,K,X) is well-defined for any K ∈ K = Zn×nkq and

X ∈ X . In addition, given I = {fw(R̂), {fw(Ri)}i∈{0,...,µ−1})} and (K,X, z∗)
as inputs, there exists a public algorithm that computes Rt

Xw by simulating
the Procedure II in Theorem 3, where (RX ,SX) = H.TrapEval(td,K,X). To

21

prove that H satisfies the first condition of high min-entropy, it suffices to show
that K ′ is statistically close to uniform over (Zn×nkq)µ+1 conditioned on I and

z∗ (recall that the real key K of H is uniformly distributed over (Zn×nkq)µ+1 by

Definition 4). Since each matrix in the key K ′ always has a form of AR̃ + bG
for some randomly chosen R̃←r (DZm̄,s)

nk, and a bit b ∈ {0, 1} depending on a
random z∗ ←r [N]. Using a standard hybrid argument, it is enough to show that
conditioned on A and fw(R̃), AR̃ is statistically close to uniform over Zn×nkq .

Let f ′w : Zm̄q → Zq be defined by f ′w(x) = xtw, and let R̃ = (r1, . . . , rnk).

Then, fw(R̃) = (f ′w(r1), . . . , f ′w(rnk))t ∈ Znkq . By Lemma 1, the guessing prob-
ability γ(ri) is at most 21−m̄ for all i ∈ {1, . . . , nk}. By the generalized leftover
hash lemma in Appendix A, conditioned on A and f ′w(ri) ∈ Zq, the statistical

distance between Ari ∈ Znq and uniform over Znq is at most 1
2 ·
√

21−m̄ · qn · q,
which is negligible if we set m̄ = O(n log q) > (n + 1) log q + ω(log n). Using
a standard hybrid argument, we have that conditioned on A and fw(R̃), the
matrix AR̃ = (Ar1‖ . . . ‖Arnk) is statistically close to uniform over Zn×nkq .

Since for any input X and (RX ,SX) = H.TrapEval(td,K ′, X), we always

have that RX = R̂ + R̃ for some R̃ that is independent from R̂. Let Rt
Xv =

R̂tv+R̃tv = û+ũ. Then, in order to prove that H satisfies the second condition
of high min-entropy property, it suffices to show that given K ′ and v, the element
û = R̂tv is uniformly random. Since R̂←r (DZm̄,s)

nk for s ≥ ω(
√

log m̄) is only

used to generate the matrix Â = AR̂− (−1)c ·G in the key K ′, we have that for

large enough m̄ = O(n log q), the pair (AR̂, ût = vtR̂) is statistically close to

uniform over Zn×nkq × Znkq by the fact in Lemma 3.8 Thus, Rt
Xv = R̂tv + R̃tv

is uniformly distributed over Znkq . This completes the proof of Theorem 5. �

3.4 Programmable Hash Function from Ideal Lattices

As many cryptographic schemes over general lattices (e.g., [44]), we do not see
any obstacle preventing us from adapting our definition and constructions of
PHFs to ideal lattices defined over polynomial rings, e.g., R = Z[x]/(xn + 1) or
Rq = Zq[x]/(xn + 1) where n is a power of 2. Generally, we can benefit from the
rich algebraic structures of ideal lattices in many aspects. For example, compared
to their counterparts over general lattices, the constructions over ideal lattices
roughly save a factor of n in the key size (e.g., [42,43]).

At CRYPTO 2014, Ducas and Micciancio [25] proposed a short signature
scheme by combining the confined guessing technique [9] with ideal lattices,
which substantially reduced the verification key size from previous known O(n)
elements to O(log n) elements. We note that their construction implicitly used
a weak (1,poly, β)-PHF for some β = poly(κ) ∈ R (we omit the details for
not involving too many backgrounds on ideal lattices). But as noted by the
authors, their methods used for constructing signatures with short verification
keys (as well as the underlying PHF) seem specific to the ideal lattice setting,

8 This is because one can first construct a new uniformly random matrix A′ by ap-
pending the row vector vt to the rows of A, and then apply the fact in Lemma 3.

22

and thus cannot be instantiated from general lattices. In fact, it was left as an
open problem [25] to construct a standard model short signature scheme with
short verification keys from general lattices.

4 Short Signature Schemes from Lattice-based PHFs

A digital signature scheme SIG = (KeyGen,Sign,Verify) consists of three PPT
algorithms. Taking the security parameter κ as input, the key generation algo-
rithm outputs a verification key vk and a secret signing key sk, i.e., (vk, sk)←
KeyGen(1κ). The signing algorithm takes vk, sk and a message M ∈ {0, 1}∗ as
inputs, outputs a signature σ on M , briefly denoted as σ ← Sign(sk,M). The
verification algorithm takes vk, message M ∈ {0, 1}∗ and a string σ ∈ {0, 1}∗
as inputs, outputs 1 if σ is a valid signature on M , else outputs 0, denoted
as 1/0 ← Verify(vk,M, σ). For correctness, we require that for any (vk, sk) ←
KeyGen(1κ), any message M ∈ {0, 1}∗, and any σ ← Sign(sk,M), the equation
Verify(vk,M, σ) = 1 holds with overwhelming probability, where the probability
is taken over the choices of the random coins used in KeyGen, Sign and Verify.

We defer the security definition of existential unforgeability against chosen
message attacks (EUF-CMA) to Appendix C for space reason.

4.1 A Short Signature Scheme with Short Verification Key

Let integers `, n,m′, v, q ∈ Z, β ∈ R be some polynomials in the security pa-
rameter κ, and let k = dlog2 qe. Let H = (H.Gen,H.Eval) be any (1, v, β)-PHF
from {0, 1}` to Zn×m′q . Let m̄ = O(n log q), m = m̄ + m′, and large enough

s > max(β,
√
m) · ω(

√
log n) ∈ R be the system parameters. Our generic signa-

ture scheme SIG = (KeyGen,Sign,Verify) is defined as follows.

KeyGen(1κ): Given a security parameter κ, compute (A,R)← TrapGen(1n, 1m̄,

q, In) such that A ∈ Zn×m̄q , R = Z(m̄−nk)×nk
q , and randomly choose u ←r

Znq . Then, compute K ← H.Gen(1κ), and return a pair of verification key
and secret signing key (vk, sk) = ((A,u,K),R).

Sign(sk,M ∈ {0, 1}`): Given sk = R and any message M , compute AM =
(A‖HK(M)) ∈ Zn×mq , where HK(M) = H.Eval(K,M) ∈ Zn×m′q . Then,
compute e← SampleD(R,AM , In,u, s), and return the signature σ = e.

Verify(vk,M, σ): Given vk, a message M and a vector σ = e, compute AM =
(A‖HK(M)) ∈ Zn×mq , where HK(M) = H.Eval(K,M) ∈ Zn×m′q . Return 1
if ‖e‖ ≤ s

√
m and AMe = u, else return 0.

The correctness of our scheme SIG can be easily checked. Besides, the
schemes with linear verification keys in [13,44] can be seen instantiations of
SIG with the Type-I PHF construction in Theorem 1.9 Since the size of the

9 Note that the scheme in [13] used a syndrome u = 0, we prefer to use a random
chosen syndrome u←r Znq as that in [44] for simplifying the security analysis.

23

verification key is mainly determined by the key size of H, one can instantiate H
with our efficient Type-II PHF construction in Definition 4 to obtain a signature
scheme with verification keys consisting of a logarithmic number of matrices. As
for the security, we have the following theorem.

Theorem 6. Let `, n, m̄,m′, q ∈ Z and β̄, β, s ∈ R be some polynomials in the
security parameter κ, and let m = m̄ + m′. Let H = (H.Gen, H.Eval) be a
(1, v, β, γ, δ)-PHF from {0, 1}` to Zn×m′q with γ = negl(κ) and noticeable δ > 0.

Then, for large enough m̄ = O(n log q) and s > max(β,
√
m) · ω(

√
log n) ∈ R,

if there exists a PPT forger F breaking the EUF-CMA security of SIG with
non-negligible probability ε > 0 and making at most Q ≤ v signing queries, there
exists an algorithm B solving the ISISq,m̄,β̄ problem for β̄ = βs

√
m · ω(

√
log n)

with probability at least ε′ ≥ εδ − negl(κ).

Since a proof sketch is given in Section 1.3, we omit the details of the proof.
Let SIG1 denote the signature scheme obtained by instantiating SIG with our
Type-II PHF construction in Definition 4. Then, the verification key of SIG1 has
O(log n) matrices and each signature of SIG1 consists of a single lattice vector.

Corollary 1. Let n, q ∈ Z be polynomials in the security parameter κ. Let m̄ =
O(n log q), v = poly(n) and ` = n. If there exists a PPT forger F breaking the
EUF-CMA security of SIG1 with non-negligible probability ε and making at most
Q ≤ v signing queries, then there exists an algorithm B solving the ISISq,m̄,β̄
problem for β̄ = v2 · Õ(n5.5) with probability at least ε′ ≥ ε

16nv2 − negl(κ).

4.2 An Improved Short Signature Scheme from Weaker Assumption

Compared to prior constructions in [9,25,6], our SIG1 only has a reduction
loss about 16nQ2, which does not depend on the forger’s success probability ε.
However, because of v ≥ Q, our improvement requires the ISISq,m̄,β̄ problem to

be hard for β̄ = Q2 · Õ(n5.5), which means that the modulus q should be bigger
than Q2 ·Õ(n5.5). Even though q is still a polynomial of n in an asymptotic sense,
it might be very large in practice. In this section, we further remove the direct
dependency on Q from β̄ by introducing a short tag about O(logQ) bits to each
signature. For example, this only increases about 30 bits to each signature for a
number Q = 230 of the forger’s signing queries.

At a high level, our basic idea is to relax the requirement on a (1, v, β)-PHF
H = {HK} so that a much smaller v = ω(log n) can be used by employing a
simple weak PHF H′ = {H′K′} (recall that v ≥ Q is required in the scheme
SIG). Concretely, for each message M to be signed, instead of using HK(M)
in the signing algorithm of SIG, we choose a short random tag t, and compute
H′K′(t) + HK(M) to generate the signature on M . Thus, if the trapdoor keys of
both PHFs are generated by using the same “generators” A and G, we have that
H′K′(t) + HK(M) = A(R′t + RM) + (S′t + SM)G, where H′K′(t) = AR′t + S′tG
and HK(M) = ARM + SMG. Moreover, if we can ensure that S′t + SM ∈ In
when S′t ∈ In or SM ∈ In, then SM is not required to be invertible for all

24

the Q signing messages. In particular, v = ω(log n) can be used as long as the
probability that S′t + SM ∈ In is invertible for all the Q signing messages, but
S′t∗ + SM∗ = 0 for the forged signature on the pair (t∗,M∗), is noticeable.

Actually, the weak PHF H′ and the (1, v, β)-PHF H = (H.Gen,H.Eval) are,
respectively, the first instantiated Type-I PHF H′ in Theorem 2 and the Type-
II PHF H = (H.Gen,H.Eval) given in Definition 4. Since H′ is very simple,
we directly plug its construction into our signature scheme SIG2. Specifically,
let n, q ∈ Z be some polynomials in the security parameter κ, and let k =
dlog2 qe, m̄ = O(n log q),m = m̄+ nk and s = Õ(n2.5) ∈ R. Let H : Znq → Zn×nq

be the FRD encoding in [1] such that for any vector v = (v, 0 . . . , 0)t,v1,v2 ∈ Znq ,
we have that H(v) = vIn and H(v1) + H(v2) = H(v1 + v2) hold. For any
t ∈ {0, 1}` with ` < n, we naturally treat it as a vector in Znq by appending it

(n − `) zero coordinates. The weak PHF H′ from {0, 1}` to Zn×nkq has a form
of H′K′(t) = A0 + H(t)G, where K ′ = A0. We restrict the domain of H′ to be
{0}×{0, 1}` for ` ≤ n−1 such that S′t+SM is invertible when (S′t,SM) 6= (0,0).
Our signature scheme SIG2 = (KeyGen,Sign,Verify) is defined as follows.

KeyGen(1κ): Given a security parameter κ, compute (A,R)← TrapGen(1n, 1m̄,

q, In) such that A ∈ Zn×m̄q , R = Z(m̄−nk)×nk
q . Randomly choose A0 ←r

Zn×nkq and u←r Znq . Finally, computeK ← H.Gen(1κ), and return (vk, sk) =
((A,A0,u,K),R).

Sign(sk,M ∈ {0, 1}n): Given the secret key sk and a message M , randomly
choose t←r {0, 1}`, and compute AM,t = (A‖(A0 +H(0‖t)G)+HK(M)) ∈
Zn×mq , where HK(M) = H.Eval(K,M) ∈ Zn×nkq . Then, compute e ←
SampleD(R,AM,t, In,u, s), and return the signature σ = (e, t).

Verify(vk,M, σ): Given vk, messageM and σ = (e, t), compute AM,t = (A‖(A0+
H(0‖t)G) + HK(M)) ∈ Zn×mq , where HK(M) = H.Eval(K,M) ∈ Zn×nkq .
Return 1 if ‖e‖ ≤ s

√
m and AM,te = u. Otherwise, return 0.

Since R is a G-trapdoor of A, by padding with zero rows it can be extended
to a G-trapdoor for AM,t with the same quality s1(R) ≤

√
m ·ω(

√
log n). Since

s = Õ(n2.5) > s1(R) · ω(
√

log n), the vector e output by SampleD follows the
distribution DZm,s satisfying AM,te = u. In other words, ‖e‖ ≤ s

√
m holds with

overwhelming probability by Lemma 1. This shows that SIG2 is correct.
Note that if we set v = ω(log n), the key K only has µ = O(log n) number of

matrices and each signature consists of a vector plus a short `-bit tag. We have
the following theorem for security.

Theorem 7. Let `, m̄, n, q, v ∈ Z be polynomials in the security parameter κ.
For appropriate choices of ` = O(log n) and v = ω(log n), if there exists a PPT
forger F breaking the EUF-CMA security of SIG2 with non-negligible probability
ε and making at most Q = poly(n) signing queries, there exists an algorithm B
solving the ISISq,m̄,β̄ problem for β̄ = Õ(n5.5) with probability at least ε′ ≥

ε
16·2`nv2 − negl(κ) = ε

Q·Õ(n)
.

We defer the proof of Theorem 7 to Appendix C due to the limited space.

25

5 Identity-Based Encryptions from Lattice-based PHFs

An identity-based encryption (IBE) scheme consists of four PPT algorithms
IBE = (Setup,Extract,Enc, Dec). Taking the security parameter κ as input, the
randomized key generation algorithm Setup outputs a master public key mpk
and a master secret key msk, denoted as (mpk,msk) ← Setup(1κ). The (ran-
domized) extract algorithm takes mpk,msk and an identity id as inputs, out-
puts a user private key skid for id, briefly denoted as skid ← Extract(msk, id).
The randomized encryption algorithm Enc takes mpk, id and a plaintext M as
inputs, outputs a ciphertext C, denoted as C ← Enc(mpk, id,M). The deter-
ministic algorithm Dec takes skid and C as inputs, outputs a plaintext M , or
a special symbol ⊥, which is denoted as M/⊥ ← Dec(skid, C). In addition, for
all (mpk,msk) ← Setup(1κ), skid ← Extract(msk, id) and any plaintext M , we
require that Dec(skid, C) = M holds for any C ← Enc(mpk, id,M).

5.1 An Identity-Based Encryption with Short Master Public Key

Let integers n,m′, v, β, q be polynomials in the security parameter κ, and let
k = dlog2 qe. Let H = (H.Gen,H.Eval) be any (1, v, β)-PHF with high min-
entropy from {0, 1}n to Zn×m′q . Let H.TrapGen and H.TrapEval be a pair of
trapdoor generation and trapdoor evaluation algorithm of H that satisfies the
conditions in Definition 5. For convenience, we set both the user identity space
and the message space as {0, 1}n. Let integers m̄ = O(n log q),m = m̄ + m′,
α ∈ R, and large enough s > max(β,

√
m) ·ω(

√
log n) be the system parameters.

Our generic IBE scheme IBE = (Setup,Extract,Enc,Dec) is defined as follows.

Setup(1κ): Given a security parameter κ, compute (A,R) ← TrapGen(1n, 1m̄,

q, In) such that A ∈ Zn×m̄q , R = Z(m̄−nk)×nk
q . Randomly choose U←r Zn×nq ,

and compute K ← H.Gen(1κ). Finally, return (mpk,msk) = ((A,K,U),R).
Extract(msk, id ∈ {0, 1}n): Given msk and a user identity id, compute Aid =

(A‖HK(id)) ∈ Zn×mq , where HK(id) = H.Eval(K, id) ∈ Zn×m′q . Then, com-
pute Eid ← SampleD(R,Aid, In,U, s), and return skid = Eid ∈ Zm×n.

Enc(mpk, id ∈ {0, 1}n,M ∈ {0, 1}n): Given mpk, id and plaintext M , compute
Aid = (A‖HK(id)) ∈ Zn×mq , where HK(id) = H.Eval(K, id) ∈ Zn×m′q .
Then, randomly choose s ←r Znq , x0 ←r DZn,αq,x1 ←r DZm̄,αq, and com-

pute (K ′, td)← H.TrapGen(1κ,A,B) for some trapdoor matrix B ∈ Zn×m′q ,
(Rid,Sid) = H.TrapEval(td,K, id). Finally, compute and return the cipher-
text C = (c0, c1), where

c0 = Uts + x0 +
q

2
M, c1 = At

ids +
(x1

Rt
idx1

)
=

(
Ats + x1

HK(id)ts + Rt
idx1

)
.

Dec(skid,C): Given skid = Eid and a ciphertext C = (c0, c1) under identity
id, compute b = c0 − Et

idc1 ∈ Znq . Then, treat each coordinate of b =
(b1, . . . , bn)t as an integer in Z, and setMi = 1 if |bi−b q2c| ≤ b

q
4c, elseMi = 0,

where i ∈ {1, . . . , n}. Finally, return the plaintext M = (M0, . . . ,Mn)t.

26

By Proposition 1, we have that s1(R) ≤ O(
√
m̄)·ω(

√
log n). For large enough

s ≥
√
m · ω(

√
log n), by the correctness of SampleD we know that AidEid = U

and ‖Eid‖ ≤ s
√
m hold with overwhelming probability. In this case, c0−Et

idc1 =

c0−Et
id (At

ids + x̂) = c0−Uts−Et
idx̂ = q

2M +x0−Et
idx̂, where x̂ =

(x1

Rt
idx1

)
.

Now, we estimate the size of ‖x0−Et
idx̂‖∞. Since x0 ←r DZn,αq,x1 ←r DZm̄,αq,

we have that ‖x0‖, ‖x1‖ ≤ αq
√
m holds with overwhelming probability by

Lemma 1. In addition, using the fact that s1(Rt
idx1) ≤ β · ‖x1‖, we have that

‖x̂‖ ≤ αq
√
m(β2 + 1). Thus, we have that ‖Et

idx̂‖∞ ≤ αqms
√
β2 + 1, and

‖x0 − Et
idx̂‖∞ ≤ 2αqms

√
β2 + 1. This means that the decryption algorithm is

correct if we set parameters such that 2αqms
√
β2 + 1 < q

4 holds. For instance,
we can set the parameters as follows: m = 4n1+ψ, s = β · ω(

√
log n), q = β2m2 ·

ω(
√

log n), α = (β2m1.5 · ω(
√

log n))−1, where real ψ ∈ R satisfies log q < nψ.
For security, we will use the notion called indistinguishable from random

(known as INDr-ID-CPA) in [1], which captures both semantic security and
recipient anonymity by requiring the challenge ciphertext to be indistinguishable
from a uniformly random element in the ciphertext space. The formal definition
of INDr-ID-CPA security is given in Appendix D. Under the LWE assumption,
our generic IBE scheme IBE is INDr-ID-CPA secure in the standard model.

Theorem 8. Let n, q,m′ ∈ Z and α, β ∈ R be polynomials in the security pa-
rameter κ. For large enough v = poly(n), let H = (H.Gen,H.Eval) be any
(1, v, β, γ, δ)-PHF with high min-entropy from {0, 1}n to Zn×m′q , where γ =
negl(κ) and δ > 0 is noticeable. Then, if there exists a PPT adversary A breaking
the INDr-ID-CPA security of IBE with non-negligible advantage ε and making
at most Q < v user private key queries, there exists an algorithm B solving the
LWEq,α problem with advantage at least ε′ ≥ εδ/3− negl(κ).

The proof is very similar to that in [1]. We defer it to Appendix D for lack of
space. Actually, by instantiating H in the generic scheme IBE with the Type-I
PHF construction, we recover the fully secure IBE scheme due to Agrawal et
al. [1]. Besides, if H is replaced by a weak (1, v, β)-PHF with high min-entropy,
we can further show that the resulting scheme is INDr-sID-CPA secure, and
subsumes the selectively secure IBE scheme in [1]. Formally,

Corollary 2. Let n,m′, q ∈ Z and α, β ∈ R be polynomials in the security
parameter κ. For large enough v = poly(n), let H = (H.Gen,H.Eval) be any
weak (1, v, β, γ, δ)-PHF with high min-entropy from {0, 1}n to Zn×m′q , where γ =
negl(κ) and δ > 0 is noticeable. Then, under the LWEq,α assumption, the generic
IBE scheme IBE is INDr-sID-CPA secure.

By instantiating the generic IBE scheme IBE with our efficient Type-II PHF
in Definition 4, we can obtain a fully secure IBE scheme with master public key
containing O(log n) number of matrices. Let IBE1 be the instantiated scheme.

Corollary 3. If there exists a PPT adversary A breaking the INDr-ID-CPA se-
curity of IBE1 with non-negligible advantage ε and making at most Q = poly(κ)
user private key queries, then there exists an algorithm B solving the LWEq,α
problem with advantage at least ε′ ≥ ε

48nQ2 − negl(κ).

27

Remark 2. Since our Type-II (1, v, β)-PHF depends on the parameter v in sev-
eral aspects, the instantiated IBE scheme IBE1 relies on the particular number
Q of user private key queries (because of Q ≤ v) in terms of the master public
key size and the reduction loss. On the first hand, the size of the master pub-
lic key only depends on Q in a (somewhat) weak sense: for any polynomial Q
it only affects the constant factor hidden in the number O(log n) of matrices
in the master public key. When implementing the IBE scheme, one can either
prior determine the target security level (or the maximum number Q of allowed
user private key queries) before the setup phase, or set a super polynomial v
to generate the master public keys. For example, for v = nlog(logn), the master
public key only contains O(log(log n) log n) matrices, which is still much smaller
than the linear function O(n) as that in [1,15]. On the other hand, the reduction
loss of IBE1 also depends on Q (due to our proof of Theorem 3). Unlike the
signature scheme SIG2, it is unclear if one can reduce the reduction loss with
some modifications/improvements. Besides, it is also interesting to investigate
the possibility of giving a proof of Theorem 3 with an improved δ > 0.

5.2 Extensions

Hierarchical IBE. Using the trapdoor delegation techniques in [1,15,44], one can
extend our generic IBE scheme into a generic hierarchical IBE (HIBE) scheme.
We now give a sketch of the construction. For identity depth d ≥ 1, we include d
different PHF keys {Ki}i∈{1,...,d} in the master public key, and the “public key”
Aid for any identity id = (id1, . . . , idd′) with depth d′ ≤ d is defined as Aid =
(A‖HK1

(id1)‖ · · · ‖HKd′ (idd′)). Then, one can use Aid to encrypt plaintexts the
same as in our generic IBE scheme. In order to enable the delegation of user
private keys, the user private key should be replaced by a new trapdoor extended
by the trapdoor of A using the algorithms in [1,15,44]. We note that as previous
schemes using similar partitioning techniques [1,15], such a construction seems
to inherently suffer from a reduction loss depending on the identity depth d
in the exponent. It is still unclear whether one can adapt the dual system of
Waters [52] to construct lattice-based (H)IBEs with tight security proofs.

Chosen Ciphertexts Security. Obviously, one can use the CHK technique in [14]
to transform a CPA secure HIBE for identity depth d to a CCA secure HIBE
for identity depth d − 1, by appending each identity in the encryption with
the verification key of a one-time strongly EUF-CMA signature scheme. In our
case, one can obtain an IND-ID-CCA secure IBE scheme by using a two-level
INDr-ID-CPA HIBE scheme. Since the CHK technique only requires “selective-
security” to deal with the one-time signature’s verification key, we can construct
a more efficient CCA secure IBE scheme by directly combining a normal PHF
with a weak one. Since a weak PHF is usually simpler and more efficient, the
resulting IBE could be more efficient than the one obtained by directly applying
the CHK technique to a two-level fully secure HIBE scheme. We now give the
sketch of the improved construction. In addition to a normal PHF key K in the
master public key of our generic IBE scheme IBE , we also include it a weak

28

PHF key K1. When generating user private key for identity id, we compute
a new trapdoor of Aid = (A‖HK(id)) as the user private key, by using the
trapdoor delegation algorithms in [1,15,44]. In the encryption algorithm, we
generate a one-time signature verification key vk (for simplicity we assume the
length of vk is compatible with the weak PHF), and uses the matrix Aid,vk =
(Aid‖HK1

(vk)) = (A‖HK(id)‖HK1
(vk)) to encrypt the plaintext as IBE .Enc.

The decryption algorithm is the same as IBE .Dec except that it first computes
the “user private key” for Aid,vk from the user private key of Aid.

6 Conclusions and Open Problems

We introduced the notion of lattice-based PHFs and mainly gave two types of
concrete constructions. We showed that under the ISIS assumption, any non-
trivial lattice-based PHFs imply a collision-resistant hash function. We provided
a generic signature scheme from lattice-based PHFs, which encompassed the
lattice-based signature schemes in [13,44]. By instantiating the generic scheme
with our efficient lattice-based PHF constructions, we immediately obtained a
lattice-based short signature scheme with short verification keys. Furthermore,
we showed how to combine two concrete lattice-based PHFs to construct a short
signature scheme from weaker assumptions. We also constructed a generic con-
struction of IBE scheme from lattice-based PHFs with an enhanced property
called high min-entropy. Our generic scheme subsumed the IBE schemes in [1].
By instantiating the generic IBE scheme with our efficient lattice-based PHF
constructions, we obtained a fully secure IBE scheme with short master public
key in the standard model. We also showed how to extend our (generic) IBE
scheme into a (generic) HIBE scheme and how to achieve CCA security.

One interesting problem is to give a simpler formalization of PHFs that
captures both the DL setting and the lattice setting. Another interesting problem
is to find more (efficient) constructions/applications of lattice-based PHFs.

Acknowledgments. We would like to thank Eike Kiltz, Xusheng Zhang, Shuai
Han and Shengli Liu for their helpful discussions and suggestions. We also
thanks the anonymous reviewers of Crypto 2016 for their insightful advices.
Jiang Zhang and Zhenfeng Zhang are supported by the National Grand Funda-
mental Research (973) Program of China under Grant No. 2013CB338003 and
the National Natural Science Foundation of China under Grant No. U1536205.
Yu Chen is supported by the National Natural Science Foundation of China
under Grant Nos. 61303257 and 61379141, and by the State Key Laboratory of
Cryptologys Open Project under Grant No. MMKFKT201511.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp. 553–572. Springer
(2010)

29

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010, LNCS, vol.
6223, pp. 98–115. Springer (2010)

3. Agrawal, S., Freeman, D., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D., Wang, X. (eds.) ASI-
ACRYPT 2011, LNCS, vol. 7073, pp. 21–40. Springer (2011)

4. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC ’96. pp. 99–108. ACM (1996)

5. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) Automata, Languages and Programming,
LNCS, vol. 1644, pp. 706–706. Springer (1999)

6. Alperin-Sheriff, J.: Short signatures with short public keys from homomorphic
trapdoor functions. In: Katz, J. (ed.) PKC 2015, LNCS, vol. 9020, pp. 236–255.
Springer (2015)

7. Bai, S., Galbraith, S.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014, LNCS, vol. 8366, pp.
28–47. Springer International Publishing (2014)

8. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified proof
and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009, LNCS, vol. 5479, pp. 407–424. Springer (2009)

9. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J., Striecks, C.: Practical signatures
from standard assumptions. In: Johansson, T., Nguyen, P. (eds.) EUROCRYPT
2013, LNCS, vol. 7881, pp. 461–485. Springer (2013)

10. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology
– EUROCRYPT 2004, LNCS, vol. 3027, pp. 223–238. Springer (2004)

11. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001, LNCS, vol. 2139, pp. 213–229. Springer (2001)

12. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In:
Nyberg, K. (ed.) EUROCRYPT ’98, LNCS, vol. 1403, pp. 59–71. Springer (1998)

13. Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In: Nguyen, P., Pointcheval, D. (eds.) PKC 2010, LNCS,
vol. 6056, pp. 499–517. Springer (2010)

14. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004, LNCS, vol.
3027, pp. 207–222. Springer (2004)

15. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp.
523–552. Springer (2010)

16. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private:
Constructions and applications to (homomorphic) signatures with shorter public
keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, LNCS, vol. 9216, pp.
254–274. Springer (2015)

17. Cheon, J., Han, K., Lee, C., Ryu, H., Stehl, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
LNCS, vol. 9056, pp. 3–12. Springer (2015)

18. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding, LNCS, vol. 2260, pp. 360–363. Springer
(2001)

30

19. Coron, J.S., Gentry, C., Halevi, S., Lepoint, T., Maji, H., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, LNCS,
vol. 9215, pp. 247–266. Springer (2015)

20. Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers.
In: Canetti, R., Garay, J. (eds.) CRYPTO 2013, LNCS, vol. 8042, pp. 476–493.
Springer (2013)

21. Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009, LNCS, vol. 5677, pp. 177–191. Springer
(2009)

22. Dodis, Y., Rafail, O., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM Journal on Computing
38, 97–139 (2008)

23. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J. (eds.) CRYPTO 2013, LNCS, vol.
8042, pp. 40–56. Springer (2013)

24. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, LNCS, vol.
8874, pp. 22–41. Springer (2014)

25. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J., Gennaro, R. (eds.) CRYPTO 2014, LNCS, vol. 8616, pp. 335–352.
Springer (2014)

26. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel Journal of Mathematics 51(1-2), 79–89 (1985)

27. Freire, E., Hofheinz, D., Paterson, K., Striecks, C.: Programmable hash functions
in the multilinear setting. In: Canetti, R., Garay, J. (eds.) CRYPTO 2013, LNCS,
vol. 8042, pp. 513–530. Springer (2013)

28. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In:
Johansson, T., Nguyen, P. (eds.) EUROCRYPT 2013, LNCS, vol. 7881, pp. 1–17.
Springer (2013)

29. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) Advances in Cryptology – EUROCRYPT 2006, LNCS, vol. 4004,
pp. 445–464. Springer (2006)

30. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008. pp. 197–206. ACM (2008)

31. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: STOC 2015. pp. 469–477. ACM (2015)

32. Hanaoka, G., Matsuda, T., Schuldt, J.: On the impossibility of constructing efficient
key encapsulation and programmable hash functions in prime order groups. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012, LNCS, vol. 7417, pp. 812–831.
Springer (2012)

33. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions.
In: Lee, D., Wang, X. (eds.) ASIACRYPT 2011, LNCS, vol. 7073, pp. 647–666.
Springer (2011)

34. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008, LNCS, vol. 5157, pp. 21–38. Springer (2008)

35. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. Jour-
nal of Cryptology 25(3), 484–527 (2012)

36. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.S. (eds.)
EUROCRYPT 2016, LNCS, vol. 9665, pp. 537–565. Springer (2016)

31

37. Katz, J.: Digital Signatures. Springer (2010)
38. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000.
39. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting prob-

lems without computational assumptions. In: CRYPTO ’99. pp. 609–623. Springer
(1999)

40. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012, LNCS, vol. 7237, pp. 738–755. Springer
(2012)

41. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) Theory of Cryptography, LNCS, vol. 4948, pp. 37–54.
Springer (2008)

42. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp. 1–23.
Springer (2010)

43. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P. (eds.) EUROCRYPT 2013, LNCS, vol. 7881, pp.
35–54. Springer (2013)

44. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012, LNCS, vol. 7237,
pp. 700–718. Springer (2012)

45. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37, 267–302 (April 2007)

46. Nguyen, P., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015, LNCS, vol. 9020, pp. 401–426. Springer (2015)

47. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) Theory of Cryptography,
LNCS, vol. 3876, pp. 145–166. Springer (2006)

48. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005. pp. 84–93. ACM (2005)

49. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.,
Chaum, D. (eds.) CRYPTO ’84, LNCS, vol. 196, pp. 47–53. Springer (1984)

50. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices.
arXiv preprint arXiv:1011.3027 (2010)

51. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005, LNCS, vol. 3494, pp. 114–127. Springer (2005)

52. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009, LNCS, vol. 5677, pp. 619–
636. Springer (2009)

53. Yamada, S., Hanaoka, G., Kunihiro, N.: Two-dimensional representation of cover
free families and its applications: Short signatures and more. In: Dunkelman, O.
(ed.) CT-RSA 2012, LNCS, vol. 7178, pp. 260–277. Springer (2012)

54. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012, LNCS, vol. 7417,
pp. 643–662. Springer (2012)

A Generalized Leftover Hash Lemma

In this section, we recall the definition of universal hash function and the gen-
eralized leftover hash lemma [22]. Formally, a family of hash functions H =

32

{HK : X → Y}K∈K with key space K is universal if for all X1 6= X2, we have
PrK←rK[HK(X1) = HK(X2)] = 1/|Y|. Let n,m be any positive integer, and
q be a prime. It is well known that H = {HA : Zmq → Znq }A∈Zn×mq

defined

by HA(x) = Ax is a family of universal hash functions. Besides, for any ran-
dom variable X taking values in X , the guessing probability of X is defined as
γ(X) = maxX̂∈X Pr[X = X̂].

Lemma 5 (Generalized Leftover Hash Lemma [22]). If H = {HK : X →
Y}K∈K is a family of universal hash functions. Let f : X → Z be a function.
Then, for any random variables X over X , the statistical difference between
(H,H(X), f(X)) and (H,U, f(X)) is at most 1

2 ·
√
γ(X) · |Y| · |Z|, where H and

U are uniformly distributed over H and Y, respectively.

B Proof of Theorem 4

For convenience, we first restate Theorem 4 as follows.

Theorem 4. Let n, v, q ∈ Z and β̄, β ∈ R be polynomials in the security param-
eter κ. Let H = (H.Gen, H.Eval) be a (1, v, β, γ, δ)-PHF with γ = negl(κ) and
noticeable δ > 0. Then, for large enough m̄,m ∈ Z and v ≥ 1, if there exists
an algorithm C breaking the collision-resistance of H, there exists an algorithm
B solving the ISISq,m̄,β̄ problem for β̄ = β

√
m · ω(log n) with probability at least

ε′ ≥ (ε− γ)δ.

Proof. If there exists an algorithm C breaking the collision-resistance of H with
advantage ε, we now construct an algorithm B that solves the ISISq,m̄,β̄ problem.
Let B ∈ Zn×mq be any trapdoor matrix that allows to efficiently sample short
vector v ∈ Zm such that ‖v‖ ≤

√
m ·ω(log n) and Bv = u′ for any u′ ∈ Znq (e.g.,

B is generated by using the trapdoor generation algorithm in Proposition 1).
Formally, given an ISISq,m̄,β̄ challenge instance (A,u) ∈ Zn×m̄q × Znq . The algo-
rithm B computes (K ′, td)←r H.TrapGen(1κ,A,B), and sends K ′ as the hash
key to C. Since the statistical distance between K ′ and the real hash key K is at
most γ = negl(κ), the probability that given the key K ′ the algorithm C(K ′, 1κ)
outputs two elements X1 6= X2 satisfying HK′(X1) = HK′(X2), is at least ε− γ.
By the correctness of H, we know that there exist two tuples (RX1

,SX1
) and

(RX2
,SX2

) such that HK′(X1) = ARX1
+ SX1

B = ARX2
+ SX2

B = HK′(X2).
In addition, by the well-distributed hidden matrices property of H, the prob-
ability Pr[SX1 = 0 ∧ SX2 ∈ In] is at least δ. In other words, the equation
ARX1 = ARX2 + SX2B holds with probability at least (ε − γ)δ. If this is the
case, B outputs x = (RX1

−RX2
)v, where v ∈ Zmq is sampled by using the trap-

door of B such that ‖v‖ ≤
√
m·ω(log n) and Bv = S−1

X2
u. By Ax = SX2

Bv = u,
we have that x is a solution of Ax = u. In addition, since s1(RX1

), s1(RX2
) ≤ β

by assumption, we have ‖x‖ ≤ β
√
m · ω(log n). This completes the proof. �

33

C Proof of Theorem 7

We first recall the formal security model for signature schemes. The standard se-
curity notion for digital signature scheme is the existential unforgeability against
chosen message attacks (EUF-CMA), which (informally) says that any PPT
forger, after seeing valid signatures on a polynomial number of adaptively chosen
messages, cannot create a valid signature on a new message. Formally, consider
the following game between a challenger C and a forger F :

KeyGen. The challenger C first runs (vk, sk) ← KeyGen(1κ) with the security
parameter κ. Then, it gives the verification key vk to the forger F , and keeps
the signing secret key sk to itself.

Signing. The forger F is allowed to ask the signature on any fresh message M .
The challenger C computes and sends σ ← Sign(sk,M) to the forger F . The
forger can repeat this any polynomial times.

Forge. F outputs a message-signature pair (M∗, σ∗). LetQ be the set of all mes-
sages queried by F in the signing phase. If M∗ /∈ Q and Verify(vk,M∗, σ∗) =
1, the challenger C outputs 1, else outputs 0.

We say that F wins the game if the challenger C outputs 1. The advantage
of F in the above security game is defined as Adveuf-cma

SIG,F (1κ) = Pr[C outputs 1].

Definition 6 (EUF-CMA Security). Let κ be the security parameter. A sig-
nature scheme SIG is said to be existentially unforgeable against chosen message
attacks (EUF-CMA) if the advantage Adveuf-cma

SIG,F (1κ) is negligible in κ for any
PPT forger F .

In a modified security game of existential unforgeability against non-adaptive
chosen message attacks, F is asked to output all the messages {M1, . . . ,MQ}
for signing queries before seeing the verification key vk, and is given vk and
the signatures {σ1, . . . , σQ} on all the queried messages at the same time (i.e.,
there is no adaptive signing query phase). The resulting security notion defined
using the modified game as in Definition 6 is denoted as EUF-naCMA. One can
transform an EUF-naCMA secure signature scheme into an EUF-CMA secure
one [9,25] by using chameleon hash functions [38].

Now, we are ready to give the proof of Theorem 7. We first restate Theorem 7
in the following for convenience.

Theorem 7. Let `, m̄, n, q, v ∈ Z be polynomials in the security parameter κ.
For appropriate choices of ` = O(log n) and v = ω(log n), if there exists a PPT
forger F breaking the EUF-CMA security of SIG2 with non-negligible probability
ε and making at most Q = poly(n) signing queries, there exists an algorithm B
solving the ISISq,m̄,β̄ problem for β̄ = Õ(n5.5) with probability at least ε′ ≥

ε
16·2`nv2 − negl(κ) = ε

Q·Õ(n)
.

34

Proof. We now give the construction of algorithm B, which simulates the attack
environment for F , and solves the ISISq,m̄,β̄ problem with probability at least
ε

Õ(n2)
. Formally, B first randomly chooses a vector t′ ←r {0, 1}` and hopes that

F will output a forged signature with tag t∗ = t′. Then, B simulates the EUF-
CMA game as follows:

KeyGen. Given an ISISq,m̄,β̄ challenge instance (A,u) ∈ Zn×m̄q × Znq , the al-

gorithm B first randomly chooses R0 ←r (DZm̄,ω(
√

logn))
nk, and computes

A0 = AR0 − H(0‖t′)G. Then, compute (K ′, td) ← H.TrapGen(1κ,A,G)
as in Theorem 3. Finally, set vk = (A,A0,u,K

′) and keep (R0, td) private.
Signing. Given a message M , the algorithm B first randomly chooses a tag t←r

{0, 1}`. If t has been used in answering the signatures for more than v mes-
sages, B aborts. Otherwise, B computes (RM ,SM) = H.TrapEval(td,K ′,M)
as in Theorem 3. Then, we have AM,t = (A‖(A0 +H(0‖t)G) + HK′(M)) =
(A‖A(R0+RM)+(H(0‖t)−H(0‖t′)+SM)G). Since SM = bIn = H(b‖0) for

some b ∈ {−1, 0, 1}, we have that Ŝ = H(0‖t)−H(0‖t′)+SM = H(b‖(t−t′))
holds by the homomorphic property of the FRD encoding H in [1]. B dis-
tinguishes the following two cases:

– t 6= t′ or (t = t′ ∧ b 6= 0): In both cases, we have that Ŝ is invert-

ible. In other words, R̂ = R0 + RM is a G-trapdoor for AM,t. Since

s1(R0) ≤
√
m · ω(

√
log n) by Lemma 2 and s1(RM) ≤ Õ(n2.5), we have

s1(R̂) ≤ Õ(n2.5). Then, compute e ← SampleD(R̂,AM,t, Ŝ,u, s), and

return the signature σ = (e, t). If we set an appropriate s = Õ(n2.5) ≥
s1(R̂) · ω(

√
log n), then B can generate a valid signature on M with

overwhelming probability by Proposition 1.
– t = t′ ∧ b = 0: B aborts.

Forge. After making at most Q signing queries, F outputs a forged signa-
ture σ∗ = (e∗, t∗) on message M∗ ∈ {0, 1}n such that ‖e∗‖ ≤ s

√
m and

AM∗,t∗e
∗ = u, where AM∗,t∗ = (A‖(A0 +H(0‖t∗)G) + HK(M∗)) ∈ Zn×mq .

The algorithm B computes (RM∗ ,SM∗) = H.TrapEval(td,K ′,M∗), and
aborts the simulation if t∗ 6= t′ or SM∗ 6= 0. Else, we have AM∗,t∗ =

(A‖A(R0 + RM∗)) = (A‖AR̂), where R̂ = R0 + RM∗ . Finally, B outputs

ê = (Im̄‖R̂)e∗ as its own solution.

By the definition of the ISISq,m̄,β̄ problem, (A,u) is uniformly distributed

over Zn×m̄q × Znq . Since R0 ←r (DZm̄,ω(
√

logn))
nk, we have that A0 ∈ Zn×nkq is

statistically close to uniform over Zn×nkq by Lemma 3. In addition, by Theorem 3
the simulated keyK ′ is statistically close to the real keyK. Thus, the distribution
of the simulated verification key vk is statistically close to that of the real one.

Let M1, . . . ,Mu be all the messages in answering the signing queries that B
happens to use the same tag t = t′, and let (RMi ,SMi) = H.TrapEval(td,K ′,Mi)
for i ∈ {1, . . . , u}. Then, the algorithm B will abort in the simulation if and only
if either of the following two conditions hold:

– Some tag t is used in answering the signatures for more than v messages,

35

– SMi
is not invertible for some i ∈ {1, . . . , u}, or SM∗ 6= 0, or t∗ 6= t′.

Since the forger F will make at most Q = poly(n) signing queries, we can
choose ` = O(log n) such that Q

2`
≤ 1

2 . Note that B always randomly chooses a

tag t ←r {0, 1}` for each signing message, the probability that B uses any tag
t in answering the signatures for more than v messages is less than Q2 · (Q

2`
)v

by a similar analysis in [34], which is negligible by our setting of v = ω(log n).
In particular, the probability that B will use the same tag t = t′ in answering
the signatures for u ≥ v messages is also negligible. Conditioned on u ≤ v, the
probability that SMi

is invertible for all i ∈ {1, . . . , u} and SM∗ = 0 (using the
fact that M∗ /∈ {M1, . . . ,Mu}) is at least δ = 1

16nv2−negl(κ) by Theorem 3. Note
that t′ is randomly chosen and is statistically hidden from F , the probability
Pr[t∗ = t′] is at least 1

2`
− negl(κ). Thus, if the forger F can attack the EUF-

CMA security of SIG2 with probability ε in the real game, then it will also
output a valid forgery (M∗, e∗) in the simulated game with probability at least
(ε − Q2(Q

2`
)v) · δ · (1

2`
− negl(κ)) = ε

2`·16nv2 − negl(κ) = ε
Q·Õ(n)

(note that F ’s

success probability ε might be correlated with the first abort condition).

Now, we show that ê = (Im̄‖R̂)e∗ is a valid solution to the ISISq,m̄,β̄ instance
(A,u). By the conditions in the verification algorithm, we have that AM∗,t∗e

∗ =
u and ‖e∗‖ ≤ s

√
m. Since s1(R0) ≤

√
m·ω(

√
log n) by Lemma 2 and s1(RM∗) ≤

β = Õ(n2.5) by Theorem 3, we have that ‖ê‖ ≤ Õ(n2.5) · s
√
m = Õ(n5.5) = β̄.

This finally completes the proof. �

D Proof of Theorem 8

We begin by recalling the security notion of IBE. The standard semantic secu-
rity of IBE was first introduced in [11]. In this paper, we use the notion called
indistinguishable from random in [1], which captures both semantic security and
recipient anonymity by requiring the challenge ciphertext to be indistinguishable
from a uniformly random element in the ciphertext space. Formally, consider the
following game played by an adversary A.

Setup. The challenger C first runs Setup(1κ) with the security parameter κ.
Then, it gives the adversary A the master public key mpk, and keeps the
master secret key msk to itself.

Phase 1. The adversary is allowed to query the user private key for any iden-
tity id. The challenger C runs skid ← Extract(msk, id) and sends skid to
the adversary A. The adversary can repeat the user private key query any
polynomial times for different identities.

Challenge. The adversary A outputs a challenge plaintext M∗ and a challenge
identity id∗ with a restriction that id∗ is not used in the user private key
query in phase 1. The challenger C chooses a uniformly random ciphertext C0

from the ciphertext space. Then, it computes C1 ← Enc(mpk, id∗,M∗). Fi-
nally, it randomly chooses a bit b∗ ←r {0, 1}, and sends Cb∗ as the challenge
ciphertext to A.

36

Phase 2. The adversary can adaptively make more user private key queries
with any identity id 6= id∗. The challenger C responds as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs
1, else outputs 0.

The advantage ofA in the above security game is defined as Advindr-id-cpa
IBE,A (κ) =

|Pr[b = b∗]− 1
2 |.

Definition 7 (INDr-ID-CPA Security). We say an IBE scheme IBE is

INDr-ID-CPA secure if for any PPT adversary A, its advantage Advindr-id-cpa
IBE,A (κ)

is negligible in κ.

In the security game against chosen ciphertext attacks (i.e., INDr-ID-CCA),
the adversary is also allowed to make decryption queries in both Phase 1 and
Phase 2 such that it can obtain the decrypted results from any identity-ciphertext
pair (id, C) 6= (id∗, Cb∗). Besides, the paper [14] also introduced a weaker security
notion, known as selective-identity security, by using a modified security game,
where the adversary is asked to output the challenge identity id∗ before seeing
the master public key in the setup phase, and is restricted to make user private
key query for id 6= id∗ in both Phase 1 and Phase 2. The resulting security notion
defined using the modified game as in Definition 7 is denoted as INDr-sID-CPA.

Now, we are ready to give the proof of Theorem 8. We first restate Theorem 8
in the following for convenience.

Theorem 8. Let n, q,m′ ∈ Z and α, β ∈ R be polynomials in the security pa-
rameter κ. For large enough v = poly(n), let H = (H.Gen,H.Eval) be any
(1, v, β, γ, δ)-PHF with high min-entropy from {0, 1}n to Zn×m′q , where γ =
negl(κ) and δ > 0 is noticeable. Then, if there exists a PPT adversary A breaking
the INDr-ID-CPA security of IBE with non-negligible advantage ε and making
at most Q < v user private key queries, there exists an algorithm B solving the
LWEq,α problem with advantage at least ε′ ≥ εδ/3− negl(κ).

Proof. In the following, we use a sequence of games from Game 0 to Game 5,
where Game 0 is exactly the real security game as in Definition 7 where the chal-
lenger honestly encrypts the challenge plaintext, while Game 5 is a random game
where the challenge ciphertext is independent from the challenge plaintext. The
security is established by showing that if A can succeed in Game 0 with non-
negligible advantage ε, then it can also succeed in Game 5 with non-negligible
advantage, which is contradictory to the fact that Game 5 is a random game.
Let H.TrapGen and H.TrapEval be a pair of trapdoor generation and trapdoor
evaluation algorithm of H that satisfies the conditions in Definition 5. For sim-
plicity, we fix the trapdoor matrix B = G ∈ Zn×nkq throughout the proof. One
can extend the proof to any other general trapdoor matrix B that allows to
efficiently sample short vector v satisfying Bv = u for any u ∈ Znq , by using the
trapdoor delegation techniques in [1].

37

Game 0. The challenger C honestly simulates the INDr-ID-CPA security game
for A as follows:

Setup. First compute (A,R) ← TrapGen(1n, 1m̄, q, In) such that A ∈ Zn×m̄q ,

R = Z(m̄−nk)×nk
q . Then, randomly choose U ←r Zn×nq , and compute K ←

H.Gen(1κ). Finally, send the master public key mpk = (A,K,U) to the
adversary A, and keep the master secret key R private.

Phase 1. Upon receiving the user private key query with identity id ∈ {0, 1}n,
compute the hash value Aid = (A‖HK(id)) ∈ Zn×mq , where HK(id) =

H.Eval(K, id) ∈ Zn×nkq . Then, compute Eid ← SampleD(R,Aid, In,U, s),
and send the user private key skid = Eid ∈ Zm×n to the adversary A.

Challenge. At some time, the adversary A outputs a challenge identity id∗ and
a plaintext M∗ ∈ {0, 1}n with the restriction that it never obtains the user
private key of id∗ in Phase 1. The challenger C first randomly chooses C0 ←r

Znq × Zmq , s ←r Znq , x0 ←r DZn,αq, and x1 ←r DZm̄,αq. Then, it computes
(K ′, td) ← H.TrapGen(1κ,A,G), (Rid∗ ,Sid∗) = H.TrapEval(td,K, id∗) and
sets C1 = (c∗0, c

∗
1), where

c∗0 = Uts+x0+
q

2
Mb∗ , c∗1 = At

id∗s+
(x1

Rt
id∗x1

)
=

(
Ats + x1

HK(id∗)ts + Rt
id∗x1

)
,

where Aid∗ = (A‖HK(id∗)) ∈ Zn×mq and HK(id∗) = H.Eval(K, id∗) ∈
Zn×nkq . Finally, it randomly chooses a bit b∗ ←r {0, 1}, and sends the chal-
lenge ciphertext Cb∗ to the adversary A.

Phase 2. A can adaptively make more user private key queries with any identity
id 6= id∗. The challenger C responds as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs
1, else outputs 0.

Denote Fi be the event that C outputs 1 in Game i for i ∈ {0, 1, . . . , 5}.

Lemma 6. |Pr[F0]− 1
2 | = ε.

Proof. This lemma immediately follows from the fact that C honestly simulates
the attack environment for A, and outputs 1 if and only if b = b∗. �

Game 1. This game is identical to Game 0 except that the challenger C changes
the setup and the challenge phases as follows.

Setup. First compute (A,R) ← TrapGen(1n, 1m̄, q, In) such that A ∈ Zn×m̄q ,

R = Z(m̄−nk)×nk
q . Then, randomly choose U←r Zn×nq , and compute (K ′, td)

← H.TrapGen(1κ,A,G). Finally, send mpk = (A,K ′,U) to the adversary
A, and keep the master secret key R and the trapdoor td private.

Challenge. This phase is the same as in Game 2 except that the challenger C
directly uses the pair (K ′, td) produced in the setup phase to generate the
ciphertext C1 = (c∗0, c

∗
1).

38

Lemma 7. If H is a PHF with high min-entropy, then |Pr[F1] − Pr[F0]| ≤
negl(κ).

Proof. By the first condition of high min-entropy in Definition 5, for any K ←r

H.Gen(1κ), (K ′, td) ← H.TrapGen(1κ,A,G), any id∗ ∈ {0, 1}n and any x1 ∈
Zm̄q , we have that the statistical distance between (A,K ′, (R′id∗)

tx1) and (A,K,
Rt
id∗x1) is negligible, where (R′id∗ ,S

′
id∗) = H.TrapEval(td,K ′, id∗) and (Rid∗ ,

Sid∗) = H.TrapEval(td,K, id∗). This means that the master public key mpk and
the ciphertext C1 = (c∗0, c

∗
1) in Game 1 are statistically close to that in Game

0. Thus, we have |Pr[F1]− Pr[F0]| ≤ negl(κ). �

Game 2. This game is identical to Game 1 except that C changes the guess
phase as follows.

Guess. Finally, the adversary A outputs a guess b ∈ {0, 1}. Let id1, . . . , idQ
be all the identities in the user private queries, and let id∗ be the challenge
identity. Denote I∗ = {id1, . . . , idQ, id

∗}, the challenger C first defines the
following function

τ(t̂d, K̂, I∗) =

{
0, if Ŝid∗ = 0, and Ŝidi is invertible for all i ∈ {1, . . . , Q}
1, otherwise,

where (R̂id∗ , Ŝid∗) = H.TrapEval(t̂d, K̂, id∗) and (R̂idi , Ŝidi) = H.TrapEval

(t̂d, K̂, idi). Then, C proceeds the following steps:

1. Abort check: Let (td,K ′) be produced in the setup phase when generat-
ing the master public key mpk = (A,K ′,U), the challenger C computes
the value of τ(td,K ′, I∗). If τ(td,K ′, I∗) = 1, the challenger C aborts the
game, and outputs a uniformly random bit.

2. Artificial abort: Fixing I∗ = {id1, . . . , idQ, id
∗}, let p be the probabil-

ity p = Pr[τ(t̂d, K̂, I∗) = 0] over the random choice of (t̂d, K̂). Then, the
challenger C samples O(ε2 log(ε−1)δ−1 log(δ−1)) times the probability p

by independently running (t̂d, K̂)← H.TrapGen(1κ,A,G) and evaluat-

ing τ(t̂d, K̂, I∗) to compute an estimate p′.10 Let δ be the parameter for
the well-distributed hidden matrices property of H, if p′ > δ, the chal-

lenger C aborts with probability p′−δ
p′ , and outputs a uniformly random

bit.

Finally, if b = b∗, the challenger C outputs 1, else outputs 0.

Remark 3. As in [51,8,1,15,27], this seemingly meaningless artificial abort stage
is necessary for our later refinements. Looking ahead, in the following games the

10 In general, the sampling procedure generally makes the running time of C dependent
on the success advantage ε of A, but for concrete PHFs (e.g., the construction in
Theorem 3), it is possible to directly calculate the probability p.

39

challenger C can continue the simulation only when the identities id1, . . . , idQ, id
∗

will not cause an abort (in the abort check stage). Since the success probability
of the adversary A might be correlated with the probability that C aborts, it
becomes complicate when we try to rely the success probability of C (in solving
the underlying LWE problems) on the success probability of the adversary A
(in attacking the IBE scheme). In [51], Waters introduced the artificial abort to
force the probability that C aborts to be independent of A’s particular queries. In
certain cases, Bellare and Ristenpart [8] showed that the artificial abort can be
avoided. Because our construction uses general lattice-based PHFs as a “black-
box”, we opt for the Waters approach and introduce an artificial abort. Besides,
we clarify that there is no artificial abort involved in our generic signature scheme
because any valid forgery can be publicly checked by the challenger C. Similar
argument can be found in [51].

For i ∈ {2, 3, 4, 5}, let p̃i be the probability that C does not abort in the
abort check stage in Game i, and let pi be the probability in the artificial abort
stage of Game i defined by pi = Pr[τ(t̂d, K̂, I∗) = 0]. Since the adversary might
obtain some information of td from the challenge ciphertext Cb∗ , the probability
p̃i might not be equal to the probability p. However, we will show later that the
two probabilities can be very close under the LWE assumption. Formally, let Γi
be the absolute difference between p̃i and pi (i.e., Γi = |p̃i − pi|), we have the
following lemma.

Lemma 8. If H is a (1, v, β, γ, δ)-PHF and Q ≤ v, then |Pr[F2]− 1
2 | ≥

1
2ε(δ −

Γ2).

So as not to interrupt the game sequences, we defer the proof of Lemma 8 to
the end of the Game 5.

Game 3. This game is identical to Game 2 except that the challenger C changes
the way of generating the user private keys and the challenge ciphertext as
follows.

Phase 1. Upon receiving the user private key query with identity id ∈ {0, 1}n,
first compute Aid = (A‖HK′(id)) ∈ Zn×mq , where HK′(id) = H.Eval(K ′, id)

∈ Zn×nkq . Then, compute (Rid,Sid) = H.TrapEval(td,K ′, id). If Sid is not
invertible, the challenger C outputs a uniformly random bit and aborts the
game. Otherwise, compute Eid ← SampleD(Rid,Aid,Sid,U, s), and send
skid = Eid ∈ Zm×n to A.

Challenge. This phase is the same as in Game 2 except that the challenger
directly aborts and outputs a uniformly random bit if Sid∗ 6= 0, where
(Rid∗ ,Sid∗) = H.TrapEval(td,K ′, id∗). Note that if Sid∗ = 0, we have

HK′(id
∗) = ARid∗ and c∗1 =

(
b1

Rt
id∗b1

)
for some vector b1 = Ats + x1 ∈

Zm̄q .
Phase 2. A can adaptively make more user private key queries with any iden-

tity id 6= id∗. The challenger C responds as in Phase 1.

40

Lemma 9. If H is a (1, v, β, γ, δ)-PHF and Q ≤ v, then Pr[F3] = Pr[F2] and
Γ3 = Γ2.

Proof. Note that both stages of the abort check and the artificial abort in Game
3 and Game 2 are identical. By the fact that the same abort conditions as in the
abort check stage are examined when generating the user private keys and the
ciphertext C1 = (c∗0, c

∗
1), the challenger C in Game 3 will abort with the same

probability as that in Game 2. Besides, if C does not abort in Game 3, we have
that Sid∗ = 0 and Sid is invertible for any id in the user private key queries.
In this case, C can use the SampleD algorithm to successfully generate the user
private keys by the fact that s1(Rid) ≤ β and s > max(β,

√
m)·ω(

√
log n). Thus,

if C does not abort during the game, then Game 3 is identical to Game 2 in the
adversary A’s view. In all, we have that Pr[F4] = Pr[F3] and Γ3 = Γ2 hold. �

Game 4. This game is identical to Game 3 except that the challenger C changes
the setup and the challenge phases as follows.

Setup. First randomly choose A←r Zn×m̄q , U←r Zn×nq , and compute (K ′, td)
← H.TrapGen(1κ,A,G). Then, send mpk = (A,K ′,U) to the adversary A,
and keep the trapdoor td private.

Challenge. This phase is the same as in Game 3 except that the challenger
generates the ciphertext C1 = (c∗0, c

∗
1) as follows: randomly choose vector

b0 ←r Znq ,b1 ←r Zm̄q , and compute

c∗0 = b0 +
q

2
Mb∗ , c∗1 =

(
b1

Rt
id∗b1

)
,

where (Rid∗ ,Sid∗) = H.TrapEval(td,K ′, id∗).

Lemma 10. If the advantage of any PPT algorithm B in solving the LWEq,α
problem is at most ε′, then we have that |Pr[F4]−Pr[F3]| ≤ ε′ and |Γ4−Γ3| ≤ ε′
hold.

Proof. We construct an algorithm B for the LWEq,α as follows. Given the LWEq,α
challenge instance (Û, b̂0) ∈ Zn×nq ×Znq and (Â, b̂1) ∈ Zn×m̄q ×Zm̄q . B simulates
the security game for the adversary A the same as in Game 3 except that it
replaces (A,U) in the setup phase and (b0,b1) in the challenge phase with

(Â, Û) and (b̂0, b̂1), respectively.

It is easy to check that if (Û, b̂0) ∈ Zn×nq ×Znq and (Â, b̂1) ∈ Zn×m̄q ×Zm̄q are
valid LWE tuples, then A is in Game 3, otherwise A is in Game 4. This means
that B is a valid LWE distinguisher, which implies that both |Pr[F4]−Pr[F3]| ≤ ε′
and |Γ4 − Γ3| ≤ ε′ hold by our assumption. �

Game 5. This game is identical to Game 4 except that the challenger C makes
the following changes.

41

Setup. First compute (A,R) ← TrapGen(1n, 1m̄, q, In) such that A ∈ Zn×m̄q ,

R = Z(m̄−nk)×nk
q . Then, the challenger C randomly chooses matrix U ←r

Zn×nq , computes K ←r H.Gen(1κ) and (K ′, td) ←r H.TrapGen(1κ,A,G).
Finally, send the master public key mpk = (A,K,U) to the adversary A,
and keep (R,K ′, td) private.

Phase 1. Upon receiving the user private key query with identity id ∈ {0, 1}n,
the challenger computes Aid = (A‖HK(id)) ∈ Zn×mq , where HK(id) =

H.Eval(K, id) ∈ Zn×nkq . Then, compute Eid ← SampleD(R,Aid, In,U, s),
and send skid = Eid ∈ Zm×n to A.

Challenge. This phase is the same as in Game 4 except that the challenger
generates the ciphertext C1 = (c∗0, c

∗
1) by randomly choosing c∗0 ←r Znq and

c∗1 ←r Zmq .
Phase 2. A can adaptively make more user private key queries with any iden-

tity id 6= id∗. The challenger C responds as in Phase 1.

Lemma 11. If H is a (1, v, β,negl(κ), δ)-PHF with min-entropy, then we have
|Pr[F5]− Pr[F4]| ≤ negl(κ) and |Γ5 − Γ4| ≤ negl(κ).

Proof. Since H is a (1, v, β,negl(κ), δ)-PHF, the statistical distance between the
master public key mpk in Game 4 and that in Game 5 is negligible by the prop-
erty of TrapGen. By the property of SampleD, the distribution of user private
keys in Game 5 is almost identical to that in Game 4. Since both b0,b1 in Game
4 are uniformly random over Znq and Zm̄q , the challenge ciphertext in Game 4
is statistically close to that in Game 5 by the second condition of high min-
entropy in Definition 5. Finally, using the fact that both Game 4 and Game 5
implement the same abort strategy in the guess phase, we have that Game 4 is
negligibly close to Game 5 in the adversary A’s view. Thus, we have that both
|Pr[F5]− Pr[F4]| ≤ negl(κ) and |Γ5 − Γ4| ≤ negl(κ) hold. �

Lemma 12. Pr[F5] = 1
2 and Γ5 = 0.

Proof. The first claim follows from the fact that C1 is uniformly random. Since
both the master pubic key mpk and the challenge ciphertext are independent
from the random choice of td in Game 5, the challenger C can actually compute
(K ′, td)← H.TrapGen(1κ,A,G) in the guess phase, and use (K ′, td) in the abort
check stage. By the definition of Γ5, we have Γ5 = 0. This completes the proof. �

By Lemma 8 and Lemma 9, we have |Pr[F3]− 1
2 | ≥

1
2ε(δ−Γ3). By Lemma 11

and Lemma 12, we have Pr[F4] ≤ 1
2 + negl(κ) and Γ4 ≤ negl(κ). By the fact

that and |Pr[F4] − Pr[F3]| ≤ ε′ and |Γ4 − Γ3| ≤ ε′ in Lemma 10, we have
1
2ε(δ−ε

′)−negl(κ) ≤ |Pr[F3]− 1
2 | ≤ ε

′−negl(κ). This shows that ε′ ≥ εδ
3 −negl(κ)

holds, which completes the proof of Theorem 8. �

42

Proof of Lemma 8. Let QID = ({0, 1}n)Q+1 be the set of all Q+ 1 tuples of
identities. Let Q(I) be the event that the adversary A uses the first Q identities
in I = {id1, . . . , idQ, id

∗} ∈ QID for user private key queries, and the last one
for the challenge identity. Let Fi(I) ⊆ Q(I) be the event that the challenger C
outputs 1 in Game i when Q(I) happens, where i ∈ {1, 2}. Let E be the event
that C aborts in Game 2. Then, by the definition we have the following facts:∑

I∈QID Pr[Q(I)] = 1

Pr[Fi] =
∑
I∈QID Pr[Fi(I)]

Pr[Fi] = Pr[Fi ∧ E] + Pr[Fi ∧ ¬E]

Pr[Q(I)] = Pr[Q(I) ∧ E] + Pr[Q(I) ∧ ¬E]

Besides, by the description of Game 2, we have that Pr[F2(I)∧E] = 1
2 Pr[Q(I)∧E]

and Pr[F2(I)∧¬E] = Pr[F1(I)∧¬E] = Pr[F1(I)] Pr[¬E|Q(I)] hold. By a simple
calculation, we have

|Pr[F2]− 1
2 | = |

∑
I∈QID(Pr[F2(I) ∧ E] + Pr[F2(I) ∧ ¬E])− 1

2 |
= |

∑
I∈QID(Pr[F2(I) ∧ ¬E]− 1

2 Pr[Q(I) ∧ ¬E])|
= |

∑
I∈QID(Pr[F1(I)]− 1

2 Pr[Q(I)]) Pr[¬E|Q(I)]|.

Since Pr[Fi(I)] ≤ Pr[Q(I)], we have that |Pr[F1(I) − 1
2 Pr[Q(I)]| ≤ 1

2 Pr[Q(I)]
holds. Note that the term Pr[F1(I)− 1

2 Pr[Q(I)] can be either positive or negative.

Let QID+ (resp. QID−) be the set of identities such that Pr[F1(I)− 1
2 Pr[Q(I)]

is positive (resp. negative), and let η(I) = Pr[¬E|Q(I)]. In addition, let ηmax =
maxI∈QID η(I) and ηmin = minI∈QID η(I). Then, we have

|Pr[F2]− 1
2 | = |

∑
I∈QID+(Pr[F1(I)]− 1

2 Pr[Q(I)])η(I)

+
∑
I∈QID−(Pr[F1(I)]− 1

2 Pr[Q(I)])η(I)|
≥ ηmin|

∑
I∈QID(Pr[F1(I)]− 1

2 Pr[Q(I)])| − 1
2 (ηmax − ηmin)

= ηmin|Pr[F1]− 1
2 | −

1
2 (ηmax − ηmin).

By the definition of p̃2 and p2 in Game 2, we have η(I) = Pr[¬E|Q(I)] =
p̃2

δ
p′ , where p′ is an estimate of p2. Since the challenger C always samples

O(ε2 log(ε−1)δ−1 log(δ−1)) times the probability p2 to compute p′, we have that
Pr[p′ > p2(1 + ε

8)] < δ ε8 and Pr[p′ < p2(1 − ε
8)] < δ ε8 hold by the Chernoff

bounds. Then, we have

ηmax ≤ (1− δ ε8)p̃2
δ

p2(1− ε8)

ηmin ≥ (1− δ ε8)p̃2
δ

p2(1+ ε
8) ≥

7δp̃2

9p2

ηmax − ηmin ≤ (1− δ ε8) εδp̃2

4(1− ε264)p2

≤ 16εδp̃2

63p2

By Lemma 6 and Lemma 7, |Pr[F1]− 1
2 | ≥ ε− negl(κ) holds. Then, we have

43

|Pr[F2]− 1
2 | ≥ ηmin|Pr[F1]− 1

2 | −
1
2 (ηmax − ηmin)

≥ 7δp̃2

9p2
(ε− negl(κ))− 8εδp̃2

63p2

≥ εδ(p2−Γ2)
2p2

≥ 1
2ε(δ − Γ2),

where the last two inequalities are due to the fact that Γ2 = |p̃2−p2| and p2 ≥ δ.
This completes the proof of Lemma 8. �

	Programmable Hash Functions from Lattices: Short Signatures and IBEs with Small Key Sizes
	Introduction
	Our Contributions
	Techniques
	Short Signatures
	Identity-based Encryptions
	Other Related Work
	Roadmap

	Preliminaries
	Notation
	Lattices and Gaussian Distributions
	Learning with Errors (LWE) and Small Integer Solutions (SIS)

	Programmable Hash Functions from Lattices
	Type-I Construction
	Type-II Construction
	Collision-Resistance and High Min-Entropy
	Programmable Hash Function from Ideal Lattices

	Short Signature Schemes from Lattice-based PHFs
	A Short Signature Scheme with Short Verification Key
	An Improved Short Signature Scheme from Weaker Assumption

	Identity-Based Encryptions from Lattice-based PHFs
	An Identity-Based Encryption with Short Master Public Key
	Extensions

	Conclusions and Open Problems
	Generalized Leftover Hash Lemma
	Proof of Theorem 4
	Proof of Theorem 7
	Proof of Theorem 8

