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Abstract

A central problem in differential privacy is to accurately answer a large family Q of
statistical queries over a data universe X. A statistical query on a dataset D ∈ Xn asks “what
fraction of the elements of D satisfy a given predicate p on X?” Ignoring computational
constraints, it is possible to accurately answer exponentially many queries on an exponential
size universe while satisfying differential privacy (Blum et al., STOC’08). Dwork et al.
(STOC’09) and Boneh and Zhandry (CRYPTO’14) showed that if both Q and X are of
polynomial size, then there is an efficient differentially private algorithm that accurately
answers all the queries. They also proved that if Q and X are both exponentially large, then
under a plausible assumption, no efficient algorithm exists.

We show that, under the same assumption, if either the number of queries or the data
universe is of exponential size, then there is no differentially private algorithm that answers
all the queries. Specifically, we prove that if one-way functions and indistinguishability
obfuscation exist, then:

1. For every n, there is a family Q of Õ(n7) queries on a data universe X of size 2d such
that no poly(n,d) time differentially private algorithm takes a dataset D ∈ Xn and
outputs accurate answers to every query in Q.

2. For every n, there is a family Q of 2d queries on a data universe X of size Õ(n7) such
that no poly(n,d) time differentially private algorithm takes a dataset D ∈ Xn and
outputs accurate answers to every query in Q.

In both cases, the result is nearly quantitatively tight, since there is an efficient differen-
tially private algorithm that answers Ω̃(n2) queries on an exponential size data universe,
and one that answers exponentially many queries on a data universe of size Ω̃(n2).

Our proofs build on the connection between hardness results in differential privacy and
traitor-tracing schemes (Dwork et al., STOC’09; Ullman, STOC’13). We prove our hardness
result for a polynomial size query set (resp., data universe) by showing that they follow from
the existence of a special type of traitor-tracing scheme with very short ciphertexts (resp.,
secret keys), but very weak security guarantees, and then constructing such a scheme.
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1 Introduction

The goal of privacy-preserving data analysis is to release rich statistical information about a
sensitive dataset while respecting the privacy of the individuals represented in that dataset.
The past decade has seen tremendous progress towards understanding when and how these
two competing goals can be reconciled, including surprisingly powerful differentially private
algorithms as well as computational and information-theoretic limitations. In this work, we
further this agenda by showing a strong new computational bottleneck in differential privacy.

Consider a dataset D ∈ Xn where each of the n elements is one individual’s data, and each
individual’s data comes from some data universe X. We would like to be able to answer sets of
statistical queries on D, which are queries of the form “What fraction of the individuals in D
satisfy some property p?” However, differential privacy [DMNS06] requires that we do so in such
a way that no individual’s data has significant influence on the answers.

If we are content answering a relatively small set of queries Q, then it suffices to perturb the
answer to each query with independent noise from an appropriate distribution. This algorithm
is simple, very efficient, differentially private, and ensures good accuracy—say, within ±.01 of
the true answer—as long as |Q|. n2 queries [DN03, DN04, BDMN05, DMNS06].

Remarkably, the work of Blum, Ligett, and Roth [BLR13] showed that it is possible to
output a summary that allows accurate answers to an exponential number of queries—nearly
2n—while ensuring differential privacy. However, neither their algorithm nor the subsequent
improvements [DNR+09, DRV10, RR10, HR10, GRU12, NTZ13, Ull15] are computationally
efficient. Specifically, they all require time at least poly(n, |X |, |Q|) to privately and accurately
answer a family of statistical queries Q on a dataset D ∈ Xn. Note that the size of the input is
n log |X | bits, so a computationally efficient algorithm runs in time poly(n, log |X |).1 For example,
in the common setting where each individual’s data consists of d binary attributes, so X = {0,1}d ,
the size of the input is nd but |X | = 2d . As a result, all known private algorithms for answering
arbitrary sets of statistical queries are inefficient if either the number of queries or the size of
the data universe is superpolynomial.

This accuracy vs. computation tradeoff has been the subject of extensive study. Dwork
et al. [DNR+09] showed that the existence of cryptographic traitor-tracing schemes [CFN94]
yields a family of statistical queries that cannot be answered accurately and efficiently with
differential privacy. Applying recent traitor-tracing schemes [BZ14], we conclude that, under
plausible cryptographic assumptions (discussed below), if both the number of queries and the
data universe can be superpolynomial, then there is no efficient differentially private algorithm.
[Ull13] used variants of traitor-tracing schemes to show that in the interactive setting, where
the queries are not fixed but are instead given as input to the algorithm, assuming one-way
functions exist, there is no private and efficient algorithm that accurately answers more than
Õ(n2) statistical queries. All of the algorithms mentioned above work in this interactive setting,
but for many applications we only need to answer a fixed family of statistical queries.

Despite the substantial progress, there is still a basic gap in our understanding. The hardness
results for Dwork et al. apply if both the number of queries and the universe are large. But the
known algorithms require exponential time if either of these sets is large. Is this necessary? Are
there algorithms that run in time poly(n, log |X |, |Q|) or poly(n, |X |, log |Q|)?

1It may require exponential time just to describe and evaluate an arbitrary counting query, which would rule out
efficiency for reasons that have nothing to do with privacy. In this work, we restrict attention to queries that are
efficiently computable in time poly(n, log |X |), so they are not the bottleneck in the computation.
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Our main result shows that under the same plausible cryptographic assumptions, the answer
is no—if either the data universe or the set of queries can be superpolynomially large, then
there is some family of statistical queries that cannot be accurately and efficiently answered
while ensuring differential privacy.

1.1 Our Results

Our first result shows that if the data universe can be of superpolynomial size then there is
some fixed family of polynomially many queries that cannot be efficiently answered under
differential privacy. This result shows that the efficient algorithm for answering an arbitrary
family of |Q|. n2 queries by adding independent noise is optimal up to the specific constant in
the exponent.

Theorem 1.1 (Hardness for small query sets). Assume the existence of indistinguishability obfus-
cation and one-way functions. Let λ ∈ N be a computation parameter. For any polynomial n = n(λ),
there is a sequence of pairs {(Xλ,Qλ)} with |Xλ| = 2λ and |Qλ| = Õ(n7) such that there is no polynomial
time differentially private algorithm that takes a dataset D ∈ Xnλ and outputs an accurate answer to
every query in Qλ up to an additive error of ±1/3.

Our second result shows that, even if the data universe is required to be of polynomial size,
there is a fixed set of superpolynomially many queries that cannot be answered efficiently under
differential privacy. When we say that an algorithm efficiently answers a set of superpolynomi-
ally many queries, we mean that it efficiently outputs a summary such that there is an efficient
algorithm for obtaining an accurate answer to any query in the set. For comparison, if |X |. n2,
then there is a simple poly(n, |X |) time differentially private algorithm that accurately answers
superpolynomially many queries.2 Our result shows that this efficient algorithm is optimal up
to the specific constant in the exponent.

Theorem 1.2 (Hardness for small query sets). Assume the existence of indistinguishability obfus-
cation and one-way functions. Let λ ∈ N be a computation parameter. For any polynomial n = n(λ),
there is a sequence of pairs {(Xλ,Qλ)} with |Xλ| = Õ(n7) and |Qλ| = 2λ such that there is no polynomial
time differentially private algorithm that takes a dataset D ∈ Xnλ and outputs an accurate answer to
every query in Qλ up to an additive error of ±1/3.

Before we proceed to describe our techniques, we make a few remarks about these results.
In both of these results, the constant 1/3 in our result is arbitrary, and can be replaced with
any constant smaller than 1/2. We also remark that, when we informally say that an algorithm
is differentially private, we mean that it satisfies (ε,δ)-differential privacy for some ε = O(1)
and δ =O(1/n). These are effectively the largest parameters for which differential privacy is a
meaningful notion of privacy. That our hardness results apply to these parameters only makes
our results stronger.

2The algorithm, sometimes called the noisy histogram algorithm, works as follows. First, convert the dataset D to
a vector (Dx)x∈X where Dx is the fraction of D’s elements that are equal to x. Then, output a vector D̃ = (D̃x)x∈X
where D̃x is equal to Dx plus independent noise from an appropriately scaled Gaussian distribution. To answer a
statistical query defined by a predicate p, construct the vector p̃ = (p(x))x∈X and compute the answer 〈D̃, p̃〉. One can
show that this algorithm is differentially private and for any fixed set of statistical queries Q, with high probability,
the maximum error is Õ(

√
|X | log |Q|/n). The running time is poly(n, |X |) to construct D̃ and to evaluate each query.
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On Indistinguishability Obfuscation. Indistinguishability obfuscation (iO) has recently be-
come a central cryptographic primitive. The first candidate construction, proposed just a couple
years ago [GGH+13], was followed by a flurry of results demonstrating the extreme power and
wide applicability of iO (cf., [GGH+13, SW14, BZ14, HSW14, BPW16]). However, the assump-
tion that iO exists is currently poorly understood, and the debate over the plausibility of iO is far
from settled. While some specific proposed iO schemes have been attacked [CGH+15, MSZ16],
other schemes seem to resist all currently known attacks [BMSZ16, GMS16]. We also do not
know how to base iO on a solid, simple, natural computational assumption (some attempts
based on multilinear maps have been made [GLSW15], but they were broken with respect to all
current multilinear map constructions).

Nevertheless, our results are meaningful whether or not iO exists. If iO exists, our results
show that certain tasks in differential privacy are intractable. Interestingly, unlike many
previous results relying on iO, these conclusions were not previously known to follow from
even the much stronger (and in fact, false) assumption of virtual black-box obfuscation. If, on
the other hand, iO does not exist, then our results still demonstrate a barrier to progress in
differential privacy—such progress would need to prove that iO does not exist. Alternatively,
our results highlight a possible path toward proving that iO does not exist. We note that other
“incompatibility” results are known for iO; for example, iO and certain types of hash functions
cannot simultaneously exist [BFM14, BST16].

1.2 Techniques

We prove our results by building on the connection between differentially private algorithms for
answering statistical queries and traitor-tracing schemes discovered by Dwork et al. [DNR+09].
Traitor-tracing schemes were introduced by Chor, Fiat, and Naor [CFN94] for the purpose of
identifying pirates who violate copyright restrictions. Roughly speaking, a (fully collusion-
resilient) traitor-tracing scheme allows a sender to generate keys for n users so that 1) the
sender can broadcast encrypted messages that can be decrypted by any user, and 2) any efficient
pirate decoder capable of decrypting messages can be traced to at least one of the users who
contributed a key to it, even if an arbitrary coalition of the users combined their keys in an
arbitrary efficient manner to construct the decoder.

Dwork et al. show that the existence of traitor-tracing schemes implies hardness results for
differential privacy. Very informally, they argue as follows. Suppose a coalition of users takes
their keys and builds a dataset D ∈ Xn where each element of the dataset contains one of their
user keys. The family Q will contain a query qc for each possible ciphertext c. The query qc asks
“What fraction of the elements (user keys) in D would decrypt the ciphertext c to the message
1?” Every user can decrypt, so if the sender encrypts a message b ∈ {0,1} as a ciphertext c, then
every user will decrypt c to b. Thus, the answer to the statistical query qc will be b.

Suppose there were an efficient algorithm that outputs an accurate answer to each query
qc in Q. Then the coalition could use it to efficiently produce a summary of the dataset D that
enables one to efficiently compute an approximate answer to every query qc, which would also
allow one to efficiently decrypt the ciphertext. Such a summary can be viewed as an efficient
pirate decoder, and thus the tracing algorithm can use the summary to trace one of the users
in the coalition. However, if there is a way to identify one of the users in the dataset from the
summary, then the summary is not differentially private.

To instantiate this result, they need a traitor-tracing scheme. Observe that the data universe
contains one element for every possible user key, and the set of queries contains one query
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for every ciphertext, and we want to minimize the size of these sets. Boneh and Zhandry
constructed a traitor-tracing scheme where both the keys and the ciphertexts have length equal
to the security parameter λ, which yields hardness for a data universe and query set each of
size 2λ. The main contribution of this work is to show that we can reduce either the number of
possible ciphertexts or the number of possible keys to poly(n) while the other remains of size 2λ.

Suppose we want to reduce the number of possible ciphertexts to poly(n). How can we
possibly have a secure traitor-tracing scheme with only polynomially many ciphertexts, when
even a semantically secure private key encryption scheme requires superpolynomially many
ciphertexts? The answer lies in an observation from [Ull13] that in order to show hardness for
differential privacy, it suffices to have a traitor-tracing scheme with extremely weak security.
First, in the reduction from differential privacy to breaking traitor-tracing the adversary has to
produce the pirate decoder using only the coalition’s user keys and does not have access to an
encryption oracle. Second, the probability that tracing fails only needs to be o(1/n), rather than
negligible. Both of these relaxations of the standard definition of traitor-tracing are crucial to
making the ciphertext size poly(n), and as we show, these two relaxations are in fact sufficient.
Alternatively, we can use these relaxations also allow us to reduce the key size to poly(n). We
defer the reader to the constructions of Sections 6 and 7 for more details about how we achieve
this goal.

1.3 Related Work

Theorem 1.1 should be contrasted with the line of work on answering width-w marginal queries
under differential privacy [GHRU13, HRS12, TUV12, CTUW14, DNT14]. A width-w marginal
query is defined on the data universe {0,1}λ. It is specified by a set of positions S ⊆ {1, . . . ,λ}
of size w, and a pattern t ∈ {0,1}w and asks “What fraction of elements of the dataset have
each coordinate j ∈ S set to tj?” Specifically, Thaler, Ullman, and Vadhan [TUV12], building
on the work of Hardt, Rothblum, and Servedio [HRS12] gave an efficient differentially private
algorithm for answering nΩ(

√
w)� n7 width-w marginal queries up to an additive error of ±.01.

There are also computationally efficient algorithms that answer exponentially many queries
from even simpler families like point queries and threshold queries [BNS13, BNSV15].

There have been several other attempts to explain the accuracy vs. computation tradeoff in
differential privacy by considering restricted classes of algorithms. For example, Ullman and
Vadhan [UV11] (building on Dwork et al. [DNR+09]) show that, assuming one-way functions, no
differentially private and computationally efficient algorithm that outputs a synthetic dataset can
accurately answer even the very simple family of 2-way marginals. This result is incomparable
to ours, since it applies to a very small and simple family of statistical queries, but necessarily
only applies to algorithms that output synthetic data.

Gupta et al. [GHRU13] showed that no algorithm can obtain accurate answers to all marginal
queries just by asking a polynomial number of statistical queries on the dataset. Thus, any algo-
rithm that can be implemented using only statistical queries, even one that is not differentially
private, can run in polynomial time.

Bun and Zhandry considered the incomparable problem of differentially private PAC learn-
ing [BZ16] and showed that there is a concept class that is efficiently PAC learnable and inef-
ficiently PAC learnable under differential privacy, but is not efficiently PAC learnable under
differential privacy, settling an open question of Kasvisiwanathan et al. [KLN+11], who intro-
duced the model of differentially private PAC learning.

There is also a line of work using fingerprinting codes to prove information-theoretic lower
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bounds on differentially private mechanisms [BUV14, SU15a, DSS+15]. Namely, that if the data
universe is of size exp(n2), then there is no differentially private algorithm, even a computation-
ally unbounded one, that can answer more than n2 statistical queries. Fingerprinting codes are
essentially the information-theoretic analogue of traitor-tracing schemes, and thus these results
are technically related, although the models are incomparable.

Finally, we remark that techniques for proving hardness results in differential privacy have
also found applications to the problem of interactive data analysis [HU14, SU15b]. The technical
core of these results is to show that if an adversary is allowed to ask an online sequence of
adaptively chosen statistical queries, then he can not only recover one element of the dataset,
but can actually recover every element of the dataset. Doing so rules out any reasonable notion
of privacy, and makes many non-private learning tasks impossible. The results are proven using
variants of the sorts of traitor-tracing schemes that we study in this work.

2 Differential Privacy Preliminaries

2.1 Differentially Private Algorithms

A dataset D ∈ Xn is an ordered set of n rows, where each row corresponds to an individual, and
each row is an element of some the data universe X. We write D = (D1, . . . ,Dn) where Di is the
i-th row of D. We will refer to n as the size of the dataset. We say that two datasets D,D ′ ∈ X∗
are adjacent if D ′ can be obtained from D by the addition, removal, or substitution of a single
row, and we denote this relation by D ∼D ′. In particular, if we remove the i-th row of D then
we obtain a new dataset D−i ∼ D. Informally, an algorithm A is differentially private if it is
randomized and for any two adjacent datasets D ∼D ′, the distributions of A(D) and A(D ′) are
similar.

Definition 2.1 (Differential Privacy [DMNS06]). Let A : Xn → S be a randomized algorithm.
We say that A is (ε,δ)-differentially private if for every two adjacent datasets D ∼ D ′ and every
subset T ⊆ S,

P [A(D) ∈ T ] ≤ eε ·P
[
A(D ′) ∈ T

]
+ δ.

In this definition, ε,δ may be a function of n.

2.2 Algorithms for Answering Statistical Queries

In this work we study algorithms that answer statistical queries (which are also sometimes called
counting queries, predicate queries, or linear queries in the literature). For a data universe X, a
statistical query on X is defined by a predicate q : X→ {0,1}. Abusing notation, we define the
evaluation of a query q on a dataset D = (D1, . . . ,Dn) ∈ Xn to be

1
n

n∑
i=1

q(Di).

A single statistical query does not provide much useful information about the dataset.
However, a sufficiently large and rich set of statistical queries is sufficient to implement many
natural machine learning and data mining algorithms [Kea98], thus we are interesting in
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differentially private algorithms to answer such sets. To this end, let Q = {q : X→ {0,1}} be a set
of statistical queries on a data universe X.

Informally, we say that a mechanism is accurate for a set Q of statistical queries if it answers
every query in the family to within error ±α for some suitable choice of α > 0. Note that
0 ≤ q(D) ≤ 1, so this definition of accuracy is meaningful when α < 1/2.

Before we define accuracy, we note that the mechanism may represent its answer in any
form. That is, the mechanism outputs may output a summary S ∈ S that somehow represents
the answers to every query in Q. We then require that there is an evaluator Eval : S ×Q→ [0,1]
that takes the summary and a query and outputs an approximate answer to that query. That
is, we think of Eval(S,q) as the mechanism’s answer to the query q. We will abuse notation and
simply write q(S) to mean Eval(S,q).3

Definition 2.2 (Accuracy). For a family Q of statistical queries on X, a dataset D ∈ Xn and a
summary s ∈ S, we say that s is α-accurate for Q on D if

∀q ∈Q |q(D)− q(s)| ≤ α.

For a family of statistical queries Q on X, we say that an algorithm A : Xn→ S is (α,β)-accurate
for Q given a dataset of size n if for every D ∈ Xn,

P [A(D) is α-accurate for Q on X] ≥ 1− β.

In this work we are typically interested in mechanisms that satisfy the very weak notion of
(1/3,O(1/n))-accuracy, where the constant 1/3 could be replaced with any constant < 1/2. Most
differentially private mechanisms satisfy quantitatively much stronger accuracy guarantees.
Since we are proving hardness results, this choice of parameters makes our results stronger.

2.3 Computational Efficiency

Since we are interested in asymptotic efficiency, we introduce a computation parameter λ ∈ N.
We then consider a sequence of pairs {(Xλ,Qλ)}λ∈N where Qλ is a set of statistical queries on Xλ.
We consider databases of size n where n = n(λ) is a polynomial. We then consider algorithms
A that take as input a dataset Xnλ and output a summary in Sλ where {Sλ}λ∈N is a sequence of
output ranges. There is an associated evaluator Eval that takes a query q ∈Qλ and a summary
s ∈ Sλ and outputs a real-valued answer. The definitions of differential privacy and accuracy
extend straightforwardly to such sequences.

We say that such an algorithm is computationally efficient if the running time of the algorithm
and the associated evaluator run in time polynomial in the computation parameter λ. 4 We
remark that in principle, it could require at many as |X | bits even to specify a statistical query, in
which case we cannot hope to answer the query efficiently, even ignoring privacy constraints. In
this work we restrict attention exclusively to statistical queries that are specified by a circuit of

3If we do not restrict the running time of the algorithm, then it is without loss of generality for the algorithm to
simply output a list of real-valued answers to each queries by computing Eval(S,q) for every q ∈Q. However, this
transformation makes the running time of the algorithm at least |Q|. The additional generality of this framework
allows the algorithm to run in time sublinear in |Q|. Using this framework is crucial, since some of our results
concern settings where the number of queries is exponential in the size of the dataset.

4The constraint that the evaluator run in polynomial time sounds academic, but is surprisingly crucial. For any
Q on X, there is an extremely simple differentially private algorithm that runs in time poly(n, |Q|) and outputs a
summary that is accurate for Q, yet the summary takes time poly(|X |, |Q|) to evaluate [NTZ13].
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size poly(log |X |), and thus can be evaluated in time poly(log |X |), and so are not the bottleneck in
computation. To remind the reader of this fact, we will often say that Q is a family of efficiently
computable statistical queries.

2.4 Notational Conventions

Given a boolean predicate p, we will write I{p} to denote the value 1 if p is true and 0 if p is
false. Also, given a vector ~v = (v1, . . . , vn) ∈ Xn and an index i ∈ [n], we will use v−i to denote the
vector ~v−i = (v1, . . . , vi−1,⊥,vi+1, . . . , vn) ∈ Xn in which the i-th element of ~v is replaced by some
unspecified fixed element of X denoted ⊥. We also say that a function f is negligible, and write
f (n) = negl(n), if f (n) =O(1/nc) for every constant c > 0.

3 Weakly Secure Traitor-Tracing Schemes

In this section we describe a very relaxed notion of traitor-tracing schemes whose existence will
imply the hardness of differentially private data release.

3.1 Syntax and Correctness

For a function n : N→ N and a sequence {Kλ,Cλ}λ∈N, an (n, {Kλ,Cλ})-traitor-tracing scheme is a
tuple of efficient algorithms Π = (Setup,Enc,Dec) with the following syntax.

• Setup takes as input a security parameter λ, runs in time poly(λ), and outputs n = n(λ)
secret user keys sk1, . . . ,skn ∈ Kλ and a secret master key mk. We will write~k = (sk1, . . . ,skn,mk)
to denote the set of keys.

• Enc takes as input a master key mk and an index i ∈ {0,1, . . . ,n}, and outputs a ciphertext
c ∈ Cλ. If c←R Enc(j,mk) then we say that c is encrypted to index j.

• Dec takes as input a ciphertext c and a user key ski and outputs a single bit b ∈ {0,1}. We
assume for simplicity that Dec is deterministic.

Correctness of the scheme asserts that if ~k are generated by Setup, then for any pair i, j,
Dec(ski ,Enc(mk, j)) = I{i ≤ j}. For simplicity, we require that this property holds with probability
1 over the coins of Setup and Enc, although it would not affect our results substantively if we
required only correctness with high probability.

Definition 3.1 (Perfect Correctness). An (n, {Kλ,Cλ})-traitor-tracing scheme is perfectly correct if
for every λ ∈ N, and every i, j ∈ {0,1, . . . ,n}

P
~k=Setup(λ), c=Enc(mk,j)

[Dec(ski , c) = I{i ≤ j}] = 1.

3.2 Index-Hiding Security

Intuitively, the security property we want is that any computationally efficient adversary who is
missing one of the user keys ski∗ cannot distinguish ciphertexts encrypted with index i∗ from
index i∗ − 1, even if that adversary holds all n− 1 other keys sk−i∗ . In other words, an efficient
adversary cannot infer anything about the encrypted index beyond what is implied by the
correctness of decryption and the set of keys he holds.
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More precisely, consider the following two-phase experiment. First the adversary is given
every key except for ski∗ , and outputs a decryption program S. Then, a challenge ciphertext is
encrypted to either i∗ or to i∗ − 1. We say that the traitor-tracing scheme is secure if for every
polynomial time adversary, with high probability over the setup and the decryption program
chosen by the adversary, the decryption program has small advantage in distinguishing the two
possible indices.

Definition 3.2 (Index Hiding). A traitor-tracing scheme Π satisfies (weak) index-hiding security
if for every sufficiently large λ ∈ N, every i∗ ∈ [n(λ)], and every adversary A with running time
poly(λ),

P
~k=Setup(λ),S=A(sk−i∗ )

[
P [S(Enc(mk, i∗)) = 1]−P [S(Enc(mk, i∗ − 1)) = 1] >

1
2en

]
≤ 1

4en
(1)

In the above, the inner probabilities are taken over the coins of Enc and S.

Note that in the above definition we have fixed the success probability of the adversary for
simplicity. Moreover, we have fixed these probabilities to relatively large ones. Requiring only a
polynomially small advantage is crucial to achieving the key and ciphertext lengths we need to
obtain our results, while still being sufficient to establish the hardness of differential privacy.

3.2.1 The Index-Hiding and Two-Index-Hiding Games

While Definition 3.2 is the most natural, in this section we consider some related ways of
defining security that will be easier to work with when we construct and analyze our schemes.
Consider the following IndexHiding game.

The challenger generates keys ~k = (sk1, . . . ,skn,mk)←R Setup(λ).
The adversary A is given keys sk−i∗ and outputs a decryption program S.
The challenger chooses a bit b←R {0,1}
The challenger generates an encryption to index i∗ − b, c←R Enc(mk, i∗ − b)
The adversary makes a guess b′ = S(c)

Figure 1: IndexHiding[i∗]

Let IndexHiding[i∗,~k,S] be the game IndexHiding[i∗] where we fix the choices of ~k and S.
Also, define

Adv[i∗,~k,S] = P
IndexHiding[i∗,~k,S]

[
b′ = b

]
− 1

2
.

so that
P

IndexHiding[i∗]

[
b′ = b

]
− 1

2
= E

~k=Setup(λ)
S=A(sk−i∗ )

[
Adv[i∗,~k,S]

]
Then the following is equivalent to (1) in Definition 3.2 as

P
~k=Setup(λ),S=A(sk−i∗ )

[
Adv[i∗,~k,S] >

1
4en

]
≤ 1

4en
(2)
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In order to prove that our schemes satisfy weak index-hiding security, we will go through
an intermediate notion that we call two-index-hiding security. To see why this is useful, In our
constructions it will be fairly easy to prove that Adv[i∗] is small, but because Adv[i∗,~k,S] can be
positive or negative, that alone is not enough to establish (2). Thus, in order to establish (2) we
will analyze the following variant of the index-hiding game.

The challenger generates keys ~k = (sk1, . . . ,skn,mk)←R Setup.
The adversary A is given keys sk−i∗ and outputs a decryption program S.
Choose b0←R {0,1} and b1←R {0,1} independently.
Let c0←R Enc(i∗ − b0;mk) and c1←R Enc(i∗ − b1;mk).
Let b′ = S(c0, c1).

Figure 2: TwoIndexHiding[i∗]

Analogous to what we did with IndexHiding, we can define TwoIndexHiding[i∗,~k,S] to be
the game TwoIndexHiding[i∗] where we fix the choices of ~k and S, and define

TwoAdv[i∗] = P
TwoIndexHiding[i∗]

[
b′ = b0 ⊕ b1

]
− 1

2

TwoAdv[i∗,~k,S] = P
TwoIndexHiding[i∗,~k,S]

[
b′ = b0 ⊕ b1

]
− 1

2

so that
P

TwoIndexHiding[i∗]

[
b′ = b0 ⊕ b1

]
− 1

2
= E
~k=Setup(λ),S=A(sk−i∗ )

[
TwoAdv[i∗,~k,S]

]
The crucial feature is that if we can bound the expectation of TwoAdv then we get a bound on
the expectation of Adv2. Since Adv2 is always positive, we can apply Markov’s inequality to
establish (2). Formally, we have the following claim.

Claim 3.3. Suppose that for every efficient adversary A, λ ∈ N, and index i∗ ∈ [n(λ)],

TwoAdv[i∗] ≤ ε.

Then for every efficient adversary A, λ ∈ N, and index i∗ ∈ [n(λ)],

E
~k=Setup(λ),
S←A(sk−i∗ )

[
Adv[i∗,~k,S]2

]
≤ ε

2
. (3)

Proof. Given any adversary A in the IndexHiding game, consider the following adversary A2 in
the TwoIndexHiding game, which, when given a set of keys, runs A with the same keys to get
program SA, then creates and outputs the program SA2

, which on input c0, c1, runs S on c0 to
get output b′0, runs S on c1 to get output b′1, then outputs b′ = b′0 ⊕ b

′
1. Then, for this A2,

9



TwoAdv[i∗] = E
~k=Setup(λ),

SA2←A2(sk−i∗ )

[
TwoAdv[i∗,~k,SA2

]
]

= E
~k=Setup(λ),

SA2←A2(sk−i∗ )

 Pr
bi←R{0,1},

ci←Enc(i∗−bi )

[b′ = b0 ⊕ b1 : b′ = SA2
(c0, c1)]− 1

2


= E

~k=Setup(λ),
SA←A(sk−i∗ )

 Pr
bi←R{0,1},

ci←Enc(i∗−bi )

[b′0 ⊕ b
′
1 = b0 ⊕ b1 : b′i = SA(ci)]−

1
2


= E

~k=Setup(λ),
SA←A(sk−i∗ )

 Pr
bi←R{0,1},

ci←Enc(i∗−bi ),
b′i=SA(ci )

[(b′0 = b0)∧ (b′1 = b1)] + Pr
bi←R{0,1},

ci←Enc(i∗−bi ),
b′i=SA(ci )

[(b′0 , b0)∧ (b′1 , b1)]− 1
2


= E

~k=Setup(λ),
SA←A(sk−i∗ )

[
(
1
2

+ Adv[i∗,~k,SA])2 + (
1
2
−Adv[i∗,~k,SA])2 − 1

2

]
=2 · E

~k=Setup(λ),
SA←A(sk−i∗ )

[
Adv[i∗,~k,SA]2

]
So if every efficient adversary A′, λ ∈ N, and index i∗ ∈ [n(λ)] satisfies:

TwoAdv[i∗] ≤ ε.

then this holds for this A2’s TwoAdv[i∗] = 2 · E
~k=Setup(λ),
SA←A(sk−i∗ )

[
Adv[i∗,~k,SA]2

]
, which means that

E
~k=Setup(λ),
SA←A(sk−i∗ )

[
Adv[i∗,~k,SA]2

]
≤ ε

2

Using this claim we can prove the following lemma.

Lemma 3.4. Let Π be a traitor-tracing scheme such that for every efficient adversary A, λ ∈ N, and
index i∗ ∈ [n(λ)],

TwoAdv[i∗] ≤ 1
300n3 .

Then Π satisfies weak index-hiding security.

Proof. By applying Claim 3.3 to the assumption of the lemma, we have that for every efficient
adversary A,

E
~k=Setup(λ),S=A(sk−i∗ )

[
Adv[i∗,~k,S]2

]
≤ 1

600n3
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Now we have

E
~k=Setup(λ),S=A(sk−i∗ )

[
Adv[i∗,~k,S]2

]
≤ 1

600n3

=⇒ P
~k=Setup(λ),S=A(sk−i∗ )

[
Adv[i∗,~k,S]2 >

1
(4en)2

]
≤ (4en)2

600n3 ≤
1

4en
(Markov’s Inequality)

=⇒ P
~k=Setup(λ),S=A(sk−i∗ )

[
Adv[i∗,~k,S] >

1
4en

]
≤ 1

4en

To complete the proof, observe that this final condition is equivalent to the definition of weak
index-hiding security (Definition 3.2).

In light of this lemma, we will focus on proving that the schemes we construct in the
following sections satisfying the condition

TwoAdv[i∗] ≤ 1
300n3 ,

which will be easier than directly establishing Definition 3.2.

4 Hardness of Differential Privacy from Traitor Tracing

In this section we prove that traitor-tracing scheme satisfying perfect correctness and index-
hiding security yields a family of statistical queries that cannot be answered accurately by an
efficient differentially private algorithm. The proof is a fairly straightforward adaptation of
the proofs in Dwork et al. [DNR+09] and Ullman [Ull13] that various sorts of traitor-tracing
schemes imply hardness results for differential privacy. We include the result for completeness,
and to verify that our very weak definition of traitor-tracing is sufficient to prove hardness of
differential privacy.

Theorem 4.1. Suppose there is an (n, {Kλ,Cλ})-traitor-tracing scheme that satisfies perfect correctness
(Definition 3.1) and index-hiding security (Definition 3.2). Then there is a sequence of of pairs
{Xλ,Qλ}λ∈N where Qλ is a set of statistical queries on Xλ, |Qλ| = |Cλ|, and |Xλ| = |Kλ| such that there
is no algorithm A that is simultaneously,

1. (1,1/4n)-differentially private,

2. (1/3,1/2n)-accurate for Qλ on datasets D ∈ Xn(λ)
λ , and

3. computationally efficient.

Theorem 1.1 and 1.2 in the introduction follow by combining Theorem 4.1 above with the
constructions of traitor-tracing schemes in Sections 6 and 7. The proof of Theorem 4.1 closely
follows the proofs in Dwork et al. [DNR+09] and Ullman [Ull13]. We give the proof both for
completeness and to verify that our definition of traitor-tracing suffices to establish the hardness
of differential privacy.

Proof. Let Π = (Setup,Enc,Dec) be the promised (n, {Kλ,Cλ}) traitor-tracing scheme. For every

λ ∈ N, we can define a distribution on datasets D ∈ Xn(λ)
λ as follows. Run Setup(λ) to obtain

11



n = n(λ) secret user keys sk1, . . . ,skn ∈ Kλ and a master secret key mk. Let the dataset be
D = (sk1, . . . ,skn) ∈ Xnλ where we define the data universe Xλ = Kλ. Abusing notation, we’ll write
(D,mk)←R Setup(λ).

Now we define the family of queries Qλ on Xλ as follows. For every ciphertext c ∈ Cλ, we
define the predicate qc ∈Qλ to take as input a user key ski ∈ Kλ and output Dec(ski , c). That is,

Qλ = {qc(sk) = Dec(sk, c) | c ∈ Cλ} .

Recall that, by the definition of a statistical query, for a dataset D = (sk1, . . . ,skn), we have

qc(D) = (1/n)
n∑
i=1

Dec(ski , c).

Suppose there is an algorithm A that is computationally efficient and is (1/3,1/2n)-accurate
for Qλ given a dataset D ∈ Xnλ. We will show that A cannot satisfy (1,1/4n)-differential privacy.
By accuracy, for every λ ∈ N and every fixed dataset D ∈ Xnλ, with probability at least 1− 1/2n,
A(D) outputs a summary S ∈ Sλ that is 1/3-accurate for Qλ on D. That is, for every D ∈ Xnλ, with
probability at least 1− 1/2n,

∀qc ∈Qλ |qc(D)− qc(S)| ≤ 1/3. (4)

Suppose that S is indeed 1/3-accurate. By perfect correctness of the traitor-tracing scheme
(Definition 3.1), and the definition of Q, we have that since (D,mk) = Setup(λ),

(c = Enc(mk,0)) =⇒ (qc(D) = 0) (c = Enc(mk,n)) =⇒ (qc(D) = 1). (5)

Combining Equations (4) and (5), we have that if (D,mk) = Setup(λ), S ←R A(D), and S is
1/3-accurate, then we have both

P
c←REnc(mk,0)

[qc(S) ≤ 1/3] = 1 P
c←REnc(mk,n)

[qc(S) ≤ 1/3] = 0

Thus, for every (D,mk) and S that is 1/3-accurate, there exists an index i ∈ {1, . . . ,n} such that∣∣∣∣∣∣ P
c←REnc(mk,i)

[qc(S) ≤ 1/3]− P
c←REnc(mk,i−1)

[qc(S) ≤ 1/3]

∣∣∣∣∣∣ > 1
n

(6)

By averaging, using the fact that S is 1/3-accurate with probability at least 1− 1/2n, there must
exist an index i∗ ∈ {1, . . . ,n} such that

P
(D,mk)=Setup(λ),

S←RA(D)

[∣∣∣∣∣∣ P
c←REnc(mk,i∗)

[qc(S) ≤ 1/3]− P
c←REnc(mk,i∗−1)

[qc(S) ≤ 1/3]

∣∣∣∣∣∣ > 1
n

]
≥ 1
n
· (1− 1

2n
) ≥ 1

2n
(7)

Assume, for the sake of contradiction that A is (1,1/4n)-differentially private. For a given
i,mk,D, let Si,mk,D ⊆ Sλ be the set of summaries such that (6) holds. Then, by (7), we have

P
(D,mk)←RSetup(λ)

[
A(D) ∈ Si∗,mk,D

]
≥ 1

2n
.

By differential privacy of A, we have

P
(D,mk)←RSetup

[
A(D−i∗) ∈ Si∗,mk,D

]
≥ 1
e

( 1
2n
− 1

4n

)
=

1
4en
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Thus, by our definition of Si∗,mk, and by averaging over (D,mk)←R Setup(λ), we have

P
(D,mk)=Setup,S←RA(D−i∗ )

[∣∣∣∣∣∣ P
c←REnc(mk,i∗)

[qc(S) ≤ 1/3]− P
c←REnc(mk,i∗−1)

[qc(S) ≤ 1/3]

∣∣∣∣∣∣ > 1
n

]
≥ 1

4en
(8)

But this violates the index hiding property of the traitor tracing scheme. Specifically, if we
consider an adversary for the traitor tracing scheme that runs A on the keys sk−i∗ to obtain a
summary S, then decrypts a ciphertext c by computing qc(S) and rounding the answer to {0,1},
then by (8) this adversary violates index-hiding security (Definition 3.2).

Thus we have obtained a contradiction showing that A is not (1,1/4n)-differentially private.
This completes the proof.

5 Cryptographic Primitives

5.1 Standard Tools

We will make use of a few standard cryptographic and information-theoretic primitives. We
will define these primitives for completeness and to set notation and terminology.

Almost Pairwise Independent Hash Families. A hash family is a family of functions Hs =
{h : [s]→ {0,1}}. To avoid notational clutter, we will use the notation h ←R H to denote the
operation of choosing a random function from H and will not explicitly write the seed for the
function. We will use |h| to denote the seed length for the function and require that h can be
evaluated in time poly(|h|).

Definition 5.1. A family of functions Hs = {h : [T ]→ [K]} is δ-almost pairwise independent if for
every two distinct points x0,x1 ∈ [T ], and every y0, y1 ∈ [K],

P
h←RH

[h(x0) = y0 ∧ h(x1) = y1] =
1
K2 + δ.

For every s, there exists a pairwise independent hash family Hs = {h : [s]→ {0,1}} such that
|h| =O(log(s)) for every h ∈ H.

Pseudorandom Generators. A pseudorandom generator PRG : {0,1}λ/2→ {0,1}λ is a function
such that PRG(Uλ/2) ≈negl(λ) Uλ. In this definition, Ub denotes the uniform distribution on {0,1}b.
Pseudorandom generators exist under the minimal assumption that one-way functions exist.

Pseudorandom Function Families. A pseudorandom function family is a family of functions
Fλ = {PRF : [m(λ)]→ [n(λ)]}. To avoid notational clutter, we will use the notation PRF←R Fλ to
denote the operation of choosing a random function from Fλ and not explicitly write the seed
for the function. We will use |PRF| to denote the description length for the function. We require
that |PRF| = poly(λ) and that PRF can be evaluated in time poly(|PRF|).

Security requires that oracle access to PRF←R Fλ is indistinguishable from oracle access to a
random function. Specifically, for all probabilistic polynomial-time algorithms D,∣∣∣∣∣∣ Pr

PRF←RFλ
[DPRF()(1λ) = 1]− Pr

f←R{f :[m]→[n]}
[Df ()(1λ) = 1]

∣∣∣∣∣∣ < ε(λ)
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for some negligible function ε.
Under the minimal assumption that one-way functions exist, for every pair of functions

m,n that are at most exponential, for every λ ∈ N, there is a family of pseudorandom functions
Fλ = {PRF : [m(λ)]→ [n(λ)]} such that |PRF| = poly(λ).

A pseudorandom function family is δ-almost pairwise independent for δ = negl(λ).

5.2 Puncturable Pseudorandom Functions

A pseudorandom function family Fλ = {PRF : [m]→ [n]} is puncturable if there is a deterministic
procedure Puncture that takes as input PRF ∈ Fλ and x∗ ∈ [m] and outputs a new function
PRF{x

∗} : [m]→ [n] such that

PRF{x
∗}(x) =

PRF(x) if x , x∗

⊥ if x = x∗

The definition of security for a punctured pseudorandom function states that for any x∗, given
the punctured function PRF{x

∗}, the missing value PRF(x∗) is computationally unpredictable.
Specifically, we define the following game Puncture to capture the desired security property.

The challenger chooses PRF←R Fλ
The challenger chooses uniform random bit b ∈ {0,1}, and samples

y0←R PRF(x∗), y1←R [n].

The challenger punctures PRF at x∗, obtaining PRF{x
∗}.

The adversary is given (yb,PRF
{x∗}) and outputs a bit b′.

Figure 3: Puncture[x∗]

Definition 5.2 (Puncturing Secure PRF). A pseudorandom function family Fλ = {PRF : [m]→ [n]}
is ε-puncturing secure if for every x∗ ∈ [m],

P
Puncture[x∗]

[
b′ = b

]
≤ 1

2
+ ε.

5.3 Twice Puncturable PRFs

A twice puncturable PRF is a pair of algorithms (PRFSetup,Puncture).

• PRFSetup is a randomized algorithm that takes a security parameter λ and outputs a
function PRF : [m]→ [n] where m =m(λ) and n = n(λ) are parameters of the construction.
Technically, the function is parameterized by a seed of length λ, however for notational
simplicity we will ignore the seed and simply use PRF to denote this function. Formally
PRF←R PRFSetup(λ).
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• Puncture is a deterministic algorithm that takes a PRF and a pair of inputs x0,x1 ∈ [m] and
outputs a new function PRF{x0,x1} : [m]→ [n] such that

PRF{x0,x1} =

PRF(x) if x < {x0,x1}
⊥ if x ∈ {x0,x1}

Formally, PRF{x0,x1} = Puncture(PRF,x0,x1).

In what follows we will always assume thatm and n are polynomial in the security parameter
and that m =ω(n log(n)).

In addition to requiring that this family of functions satisfies the standard notion of crypto-
graphic pseudorandomness, we will now define a new security property for twice puncturable
PRFs, called input matching indistinguishability. For any two distinct outputs y0, y1 ∈ [n], y0 , y1,
consider the following game.

The challenger chooses PRF such that ∀y ∈ [n], PRF−1(y) , ∅.
The challenger chooses independent random bits b0,b1 ∈ {0,1}, and samples

x0←R PRF
−1(yb0

), x1←R PRF
−1(yb1

).

The challenger punctures PRF at x0,x1, obtaining PRF{x0,x1}.
The adversary is given (x0,x1,PRF

{x0,x1}) and outputs a bit b′.

Figure 4: InputMatching[y0, y1]

Notice that in this game, we have assured that every y ∈ [n] has a preimage under PRF.
We need this condition to make the next step of sampling random preimages well defined.
Technically, it would suffice to have a preimage only for yb0

and yb1
, but for simplicity we will

assume that every possible output has a preimage. When f : [m]→ [n] is a random function, the
probability that some output has no preimage is at most n · exp(−Ω(m/n)) which is negligible
when m =ω(n log(n)). Since m,n are assumed to be a polynomial in the security parameter, we
can efficiently check if every output has a preimage, thus if PRF is pseudorandom it must also
be the case that every output has a preimage with high probability. Since we can efficiently
check whether or not every output has a preimage under PRF, and this event occurs with all but
negligible probability, we can efficiently sample the pseudorandom function in the first step of
InputMatching[y0, y1].

Definition 5.3 (Input-Matching Secure PRF). A function family {PRF : [m]→ [n]} is ε-input-
matching secure if the function family is a secure pseudorandom function and additionally for
every y0, y1 ∈ [n] with y0 , y1,

P
InputMatching[y0,y1]

[
b′ = b0 ⊕ b1

]
≤ 1

2
+ ε.

In Appendix A we will show that input-matching secure twice puncturable pseudorandom
functions exist with suitable parameters.

Theorem 5.4. Assuming the existence of one-way functions, if m,n are polynomials such that m =
ω(n log(n)), then there exists a pseudorandom function family Fλ = {PRF : [m(λ)]→ [n(λ)]} that is
twice puncturable and is Õ(

√
n/m)-input-matching secure.
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5.4 Indistinguishability Obfuscation

We use the following formulation of Garg et al. [GGH+13] for indistinguishability obfuscation:

Definition 5.5 (Indistinguishability Obfuscation). A indistinguishability obfuscator O for a cir-
cuit class {Cλ} is a probabilistic polynomial-time uniform algorithm satisfying the following
conditions:

1. O(λ,C) preserves the functionality of C. That is, for any C ∈ Cλ, if we compute C′ = O(λ,C),
then C′(x) = C(x) for all inputs x.

2. For any λ and any two circuits C0,C1 with the same functionality, the circuits O(λ,C0) and
O(λ,C1) are indistinguishable. More precisely, for all pairs of probabilistic polynomial-
time adversaries (Samp,D), if

Pr
(C0,C1,σ )←Samp(λ)

[(∀x), C0(x) = C1(x)] > 1−negl(λ)

then
|Pr[D(σ,O(λ,C0)) = 1]−Pr[D(σ,O(λ,C1)) = 1]| < negl(λ)

The circuit classes we are interested in are polynomial-size circuits - that is, when Cλ is the
collection of all circuits of size at most λ.

When clear from context, we will often drop λ as an input to O and as a subscript for C.

6 A Weak Traitor-Tracing Scheme with Very Short Ciphertexts

In this section we construct a traitor-tracing scheme for n users where the key length is polyno-
mial in the security parameter λ and the ciphertext length is only O(log(n)). This scheme will
be used to establish our hardness result for differential privacy when the data universe can be
exponentially large but the family of queries has only polynomial size.

6.1 Construction

Let n = poly(λ) denote the number of users for the scheme. Let m = Õ(n7) be a parameter. Our
construction will rely on the following primitives:

• A pseudorandom generator PRG : {0,1}λ/2→ {0,1}λ.

• A puncturable pseudorandom function family Fλ,sk =
{
PRFsk : [n]→ {0,1}λ

}
.

• A twice-puncturable pseudorandom function family Fλ,Enc = {PRFEnc : [m]→ [n]}.

• An iO scheme Obfuscate.

Theorem 6.1. Assuming the existence of one-way functions and indistinguishability obfuscation. For
every polynomial n, the scheme Πshort−ctext is an (n,d,`)-traitor-tracing scheme for d = poly(λ) and
2` = Õ(n7) and satisfies:

TwoAdv[i∗] ≤ 1
300n3 .

Combining this theorem with Lemma 3.4 and Theorem 4.1 establishes Theorem 1.1 in the
introduction.
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Setup(λ) :
Choose PRFsk←R Fλ,sk
Choose PRFEnc←R Fλ,Enc such that for every i ∈ [n], PRF−1

Enc(i) , ∅
For i = 1, . . . ,n, let si = PRFsk(i).
Let O←R Obfuscate(PPRFsk,PRFEnc

).
Let each user’s secret key be ski = (i, si ,O)
Let the master key be mk = PRFEnc.

Enc(j,mk = PRFEnc) :
Let c be chosen uniformly from PRF−1

Enc(j).
Output c.

Dec(ski = (i, si ,O), c):
Output O(c, i, si).

PPRFsk,PRFEnc
(c, i, s) :

If PRG(s) , PRG(PRFsk(i)), halt and output ⊥.
Output I{i ≤ PRFEnc(c)}.

Figure 5: Our scheme Πshort−ctext.

Parameters

First we verify that Πshort−ctext is an (n,d,`)-traitor-tracing scheme for the desired parameters.
Observe that the length of the secret keys is log(n)+λ+|O|. By the efficiency of the pseudorandom
functions and the specification of P, the running time of P is poly(λ + log(n)). Thus, by the
efficiency of Obfuscate, |O| = poly(λ+ log(n)). Therefore the total key length is poly(λ+ log(n)).
Since n is assumed to be a polynomial in λ, we have that the secret keys have length d = poly(λ)
as desired. By construction, the ciphertext is an element of [m]. Thus, since m = Õ(n7) the
ciphertexts length ` satisfies 2` = Õ(n7) as desired.

6.2 Proof of Weak Index-Hiding Security

In light of Lemma 3.4, in order to prove that the scheme satisfies weak index-hiding security, it
suffices to show that for every sufficiently large λ ∈ N, and every i∗ ∈ [n(λ)],

P
TwoIndexHiding[i∗]

[
b′ = b0 ⊕ b1

]
− 1

2
= o(1/n3).

We will demonstrate this using a series of hybrids to reduce security of the scheme in the
TwoIndexHiding game to input-matching security of the pseudorandom function family
PRFλ,Enc.

Before we proceed with the argument, we remark a bit on how we will present the hybrids.
Note that the view of the adversary consists of the keys sk−i∗ . Each of these keys is of the form
(i, si ,O) where O is an obfuscation of the same program P. Thus, for brevity, we will discuss only
how we modify the construction of the program P and it will be understood that each user’s key
will consist of an obfuscation of this modified program. We will also rely crucially on the fact
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that, because the challenge ciphertexts depend only on the master key mk, we can generate the
challenge ciphertexts c0 and c1 can be generated before the users’ secret keys sk1, . . . ,skn. Thus,
we will be justified when we modify P in a manner that depends on the challenge ciphertexts
and include an obfuscation of this program in the users’ secret keys. We also remark that we
highlight the changes in the hybrids in green.

Breaking the decryption program for challenge index

We use a series of hybrids to ensure that the obfuscated program reveals no information about
the secret si∗ for the specified user i∗. First, we modify the program by hardcoding the secret
si∗ into the program. The obfuscated versions of P and P1 are indistinguishable because the

P1
PRF

{i∗}
sk ,PRFEnc,i∗,x∗

(c, i, s) :

If i = i∗ and PRG(s) , x∗, halt and output ⊥.
If i , i∗ and PRG(s) , PRG(PRF{i

∗}
sk (i)), halt and output ⊥.

Output I{i ≤ PRFEnc(c)}.

Figure 6: Modified program P1. i∗ and x∗ = PRG(PRFsk(i∗)) are hardcoded values.

input-output behavior of the programs are identical, thus the indistinguishability obfuscation
guarantees that the obfuscations of these programs are computationally indistinguishable.

Next we modify the setup procedure to give a uniformly random value for si∗ . The new setup
procedure is indistinguishable from the original setup procedure by the pseudorandomness of
si∗ = PRFsk(i∗). Finally, we modify the decryption program to use a truly random value x∗ instead
of x∗ = PRG(PRFsk(i∗)). The new decryption program is indistinguishable from the original by
pseudorandomness of PRG and PRFsk.

After making these modifications, with probability at least 1− 2−λ/2, the random value x∗ is
not in the image of PRG. Thus, with probability at least 1− 2−λ/2, the condition PRG(sk) = x∗

will be unsatisfiable. Therefore, we can simply remove this test without changing the program
on any inputs. Thus, the obfuscation of P1 will be indistinguishable from the obfuscation of the
following program P2.

P2
PRF

{i∗}
sk ,PRFEnc,i∗

(c, i, s) :

If i = i∗ , halt and output ⊥.
If i , i∗ and PRG(s) , PRG(PRF{i

∗}
sk (i)), halt and output ⊥.

Output I{i ≤ PRFEnc(c)}.

Figure 7: Modified program P2.

Breaking the decryption program for the challenge ciphertexts

First we modify the program so that the behavior on the challenge ciphertexts is hardcoded and
PRFEnc is punctured on the challenge ciphertexts. The new decryption program is as follows.
Note that the final line of the program is never reached when the input satisfies c = c0 or c = c1,
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P3
PRF

{i∗}
sk ,PRF

{c0 ,c1}
Enc ,i∗,c0,b0,c1,b1

(c, i, s) :

If i = i∗ , halt and output ⊥.
If i , i∗ and PRG(s) , PRG(PRF{i

∗}
sk (i)), halt and output ⊥.

If c = c0, output I{i ≤ i∗ − b0}
If c = c1, output I{i ≤ i∗ − b1}
Output I{i ≤ PRF

{c0,c1}
Enc (c)}.

Figure 8: Modified program P3. c0,b0, c1,b1 are hardcoded values.

so puncturing PRFEnc at these points does not affect the output of the program on any input.
Thus, P3 is indisintinguishable from P2 by the security of indistinguishability obfuscation.

Next, since, b0,b1 ∈ {0,1}, and the decryption program halts immediately if i = i∗, the values
of b0,b1 do not affect the output of the program. Thus, we can simply drop them from the
description of the program without changing the program on any input. So, by security of the
indistinguishability obfuscation, P3 is indistinguishable from the following program P4.

P4
PRF

{i∗}
sk ,PRF

{c0 ,c1}
Enc ,i∗,c0,c1

(c, i, s) :

If i = i∗ , halt and output ⊥.
If i , i∗ and PRG(s) , PRG(PRF{i

∗}
sk (i)), halt and output ⊥.

If c = c0, output I{i ≤ i∗}
If c = c1, output I{i ≤ i∗}
Output I{i ≤ PRF

{c0,c1}
Enc (c)}.

Figure 9: Modified program P4. c0, c1 are hardcoded values.

Reducing to Input-Matching Security

Finally, we claim that if the adversary is able to win at TwoIndexHiding then he can also win
the game InputMatching[i∗ − 1, i∗], which violates input-matching security of Fλ,Enc.

Recall that the challenge in the game InputMatching[i∗−1, i∗] consists of a tuple (c0, c1,PRF
{c0,c1})

where PRFEnc is sampled subject to 1) PRFEnc(c0) = i∗−b0 for a random b0 ∈ {0,1}, 2) PRFEnc(c1) =
i∗−b1 for a random b1 ∈ {0,1}, and 3) PRF−1

Enc(i) , ∅ for every i ∈ [n]. Given this input, we can pre-
cisely simulate the view of the adversary in TwoIndexHiding[i∗]. To do so, we can choose PRFsk
and give the keys sk−i∗ and obfuscations of P4

PRF
{i∗}
sk ,PRF

{c0 ,c1}
Enc ,i∗,c0,c1

to the adversary. Then we can

user c0, c1 as the challenge ciphertexts and obtain a bit b′ from the adversary. By input-matching
security, we have that

P
[
b′ = b0 ⊕ b1

]
− 1

2
= o(1/n3).

Since, as we argued above, the view of the adversary in this game is indistinguishable from the
view of the adversary in TwoIndexHiding[i∗], we conclude that

P
TwoIndexHiding[i∗]

[
b′ = b0 ⊕ b1

]
− 1

2
= o(1/n3),
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as desired. This completes the proof.

7 A Weak Traitor-Tracing Scheme with Very Short Keys

In this section we construct a different traitor-tracing scheme for n users where the parameters
are essentially reversed—the length of the secret user keys is O(log(n)) and the length of the
ciphertexts is poly(λ). This scheme will be used to establish our hardness result for differential
privacy when the number of queries is exponentially large but the data universe has only
polynomial size.

7.1 Construction

Let n = poly(λ) denote the number of users for the scheme. Let m = Õ(n6) be a parameter. Our
construction will rely on the following primitives:

• A puncturable pseudorandom function family Fλ,sk = {PRFsk : [n]→ [m]}.

• A puncturable pseudorandom function family Fλ,Enc = {PRFEnc : [n]× [m]→ {0,1}}.

• An iO scheme Obfuscate.

Setup(λ) :
Choose a pseudorandom function PRFsk←R Fλ,sk.
For i = 1, . . . ,n, let si = PRFsk(i), and let each user’s secret key be ski = (i, si) ∈ [n]× [m].
Let the master key be mk = PRFsk.

Enc(j,mk = PRFsk) :
Choose a pseudorandom function PRFEnc←R Fλ,Enc.
Let O = Obfuscate(Pj,PRFsk,PRFEnc

)
Output c = O.

Dec(ski = (i, si), c = O):
Output O(i,ski).

Pj,PRFsk,PRFEnc
(i, s):

If s , PRFsk(i), output PRFEnc(i, s).
Else, output I{i ≤ j}.

Figure 10: Our scheme Πshort−key

Theorem 7.1. Assuming the existence of one-way functions and indistinguishability obfuscation, for
every polynomial n, the scheme Πshort−key is an (n,d,`)-traitor-tracing scheme for 2d = Õ(n7) and
` = poly(λ), and is weakly index-hiding secure.

Combining this theorem with Lemma 3.4 and Theorem 4.1 establishes Theorem 1.2 in the
introduction.
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Parameters

First we verify that Πshort−key is an (n,d,`)-traitor-tracing scheme for the desired parameters.
Observe that the length of the secret keys is d such that 2d = nm. By construction, since
m = Õ(n6), 2d = Õ(n7). The length of the ciphertext is |O|, which is poly(|P|) by the efficiency of
the obfuscation scheme. By the efficiency of the pseudorandom function family and the pairwise
independent hash family, the running time of P is at most poly(λ+ log(n)). Since n is assumed
to be a polynomial in λ, the ciphertexts have length poly(λ).

7.2 Proof of Weak Index-Hiding Security

Just as in Section 6, we will rely on Lemma 3.4 so that we only need to show that for every λ ∈ N,
and every i∗ ∈ [n(λ)],

P
TwoIndexHiding[i∗]

[
b′ = b0 ⊕ b1

]
− 1

2
= o(1/n3).

We will demonstrate this using a series of hybrids to reduce security of the scheme in the
TwoIndexHiding game to the security of the pseudorandom function families.

In our argument, recall that the adversary’s view consists of the keys sk−i∗ and the challenge
ciphertexts c0, c1. In our proof, we will not modify how the keys are generated, so we will
present the hybrids only by how the challenge ciphertexts are generated. Also, for simplicity,
we will focus only on how c0 is generated as a function of i∗,b0 and mk. The ciphertext c1 will
be generated in exactly the same way but as a function of i∗,b1 and mk. We also remark that we
highlight the changes in the hybrids in green.

Hiding the missing user key

First we modify the encryption procedure to one where PRFsk is punctured on i∗ and the value
s∗ = PRFsk(i∗) is hardcoded into the program.

We claim that, by the security of the iO scheme, the distribution of c0, c1 under Enc1 is
computationally indistinguishable from the distribution of c0, c1 under Enc. The reason is that
the obfuscation P and P1 compute the same function. Consider two cases, depending on whether
i = i∗ or i , i∗. If i , i∗, since b0 ∈ {0,1}, and i , i∗, replacing I{i ≤ i∗−b0} with I{i ≤ i∗−1} does not
change the output. Moreover, since we only reach the branch involving PRF

{i∗}
sk when i , i∗, the

puncturing does not affect the output of the program. If i = i∗, then the program either outputs
PRFEnc(i∗, s) as it did before when s , s∗ or it outputs 1− b0: equivalent to I{i ≤ i∗ − b0}. Thus, by
iO, the obfuscated programs are indistinguishable.

Next, we argue that, since PRF
{i∗}
sk is sampled from a puncturable pseudorandom function

family, and the adversary’s view consists of s−i∗ = {PRFsk(i)}i,i∗ but not PRFsk(i∗), the value of
PRFsk(i∗) is computationally indistinguishable to the adversary from a random value. Thus, we
can move to another hybrid (Enc2,P2) where the value s∗ is replaced with a uniformly random
value s̃.

Hiding the challenge index Now we want to remove any explicit use of b0 from P2. The natu-
ral way to try to do this is to remove the line where the program outputs 1−b0 when the input is
(i∗, s̃), and instead have the program output PRFEnc(i∗, s̃). However, this would involve changing
the program’s output on one input, and indistinguishability obfuscation does not guarantee any
security in this case. We get around this problem in two steps. First, we note that the value of
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Enc1(i∗,b0,mk = PRFsk) :
Choose a pseudorandom function PRFEnc←R Fλ,Enc.
Let s∗ = PRFsk(i∗), PRF{i

∗}
sk = Puncture(PRFsk, i

∗).

Let O = Obfuscate
(
P1
i∗,b0,s∗,PRF

{i∗}
sk ,PRFEnc

)
.

Output c0 = O.

P1
i∗,b0,s∗,PRF

{i∗}
sk ,PRFEnc

(i, s):

If i = i∗

If s , s∗, output PRFEnc(i∗, s)
If s = s∗, output 1− b0

Else If i , i∗

If s , PRF{i
∗}

sk (i), halt and output PRFEnc(i, s).
Output I{i ≤ i∗ − 1}.

Figure 11: Hybrid (Enc1,P1).

Enc2(i∗,b0,mk = PRFsk) :
Choose a pseudorandom function PRFEnc←R Fλ,Enc.
PRF

{i∗}
sk = Puncture(PRFsk, i

∗), Let s̃←R [m].

Let O = Obfuscate
(
P2
i∗,b0,s̃,PRF

{i∗}
sk ,PRFEnc

)
.

Output c0 = O.

P2
i∗,b0,s̃,PRF

{i∗}
sk ,PRFEnc

(i, s):

If i = i∗

If s , s̃, output PRFEnc(i∗, s)
If s = s̃, output 1− b0

Else If i , i∗

If s , PRF{i
∗}

sk (i), halt and output PRFEnc(i, s).
Output I{i ≤ i∗ − 1}.

Figure 12: Hybrid (Enc2,P2).

PRFEnc on the point (i∗, s̃) is never needed in P2, so we can move to a new procedure P3 where
we puncture at that point without changing the program functionality. Indistinguishability
obfuscation guarantees that P2 and P3 are computationally indistinguishable.

Next, we define another hybrid P4 where change how we sample PRFEnc and sample it so

that PRFEnc(i∗, s̃) = 1 − b0. Observe that the hybrid only depends on PRF
{(i∗,s̃)}
Enc . We claim the

distributions of PRF{(i
∗,s̃)}

Enc when PRFEnc is sampled correctly versus sampled conditioned on
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Enc3(i∗,b0,mk = PRFsk) :
Let s̃←R [m].
Choose a pseudorandom function PRFEnc←R Fλ,Enc
PRF

{(i∗,s̃)}
Enc = PuncturePRFEnc, (i∗, s̃).

PRF
{i∗}
sk = Puncture(PRFsk, i

∗).

Let O = Obfuscate

(
P3
i∗,b0,s̃,PRF

{i∗}
sk ,PRF

{(i∗ ,s̃)}
Enc

)
.

Output c0 = O.

P3
i∗,b0,s̃,PRF

{i∗}
sk ,PRF

{(i∗ ,s̃)}
Enc

(i, s):

If i = i∗

If s , s̃, output PRF{(i
∗,s̃)}

Enc (i∗, s)
If s = s̃, output 1− b0

Else If i , i∗

If s , PRF{i
∗}

sk (i), halt and output PRF{(i
∗,s̃)}

Enc (i, s).
Output I{i ≤ i∗ − 1}.

Figure 13: Hybrid (Enc3,P3).

PRFEnc(i∗, s̃) = 1−b0 are computationally indistinguishable. This follows readily from punctured
PRF security. Suppose to the contrary that the two distributions were distinguishable with
non-negligible advantage δ by adversary A. Then consider a punctured PRF adversary B that

is given PRF
{(i∗,s̃)}
Enc ,b where b is chosen at random, or b = PRFEnc(i∗, s̃). B distinguishes the two

cases as follows. If b , 1− b0, then B outputs a random bit and stops. Otherwise, it runs A on

PRF
{(i∗,s̃)}
Enc , and outputs whatever A outputs. If b is truly random and independent of PRFEnc,

then conditioned on b = 1− b0, PRFEnc is sampled randomly. However, if b = PRFEnc(i∗, s̃), then
conditioned on b = 1− b0, PRFEnc is sampled such that PRFEnc(i∗, s̃) = 1− b0. These are exactly
the two cases that A distinguishes. Hence, conditioned on b = 1− b0, B guesses correctly with
probability 1

2 +δ. Moreover, by PRF security, b = 1−b0 with probability ≥ 1
2−ε for some negligible

quantity ε, and in the case b , 1 − b0, B guess correctly with probability 1
2 . Hence, overall B

guesses correctly with probability ≥ 1
2 (1

2 +ε)+(1
2 +δ)(1

2−ε) = 1
2 + δ

2−εδ. Hence, B has non-negligible
advantage δ

2 − εδ. Thus, changing how PRFEnc is sampled is computationally undetectable, and
P is otherwise unchanged. Therefore P3 and P4 are computationally indistinguishable.

Next, since PRFEnc(i∗, s̃) = 1 − b0, we can move to another hybrid P5 where we delete the
line “If s = s̃, output 1− b0” without changing the functionality. Thus, by indistinguishability
obfuscation, P4 and P5 are computationally indistinguishable.

Now notice that P5 is independent of b0. However, Enc5 still depends on b0. We now move
to the final hybrid P6 where we remove the condition that PRFEnc(i∗, s̃) = 1 − b0, which will
completely remove the dependence on b0.

To prove that Enc6 is indistinguishable from Enc5, notice that they are independent of s̃,
except through the sampling of PRFEnc. Using this, and the following lemma, we argue that we
can remove the condition that PRFEnc(i∗, s̃) = 1− b0.
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Enc4(i∗,b0,mk = PRFsk) :
Let s̃←R [m].
Choose a pseudorandom function PRFEnc←R Fλ,Enc conditioned on PRFEnc(i∗, s̃) = 1−b0.

PRF
{(i∗,s̃)}
Enc = PuncturePRFEnc, (i∗, s̃).

PRF
{i∗}
sk = Puncture(PRFsk, i

∗).

Let O = Obfuscate

(
P4
i∗,b0,s̃,PRF

{i∗}
sk ,PRF

{(i∗ ,s̃)}
Enc

)
.

Output c0 = O.

P4
i∗,b0,s̃,PRF

{i∗}
sk ,PRF

{(i∗ ,s̃)}
Enc

(i, s):

If i = i∗

If s , s̃, output PRF{(i
∗,s̃)}

Enc (i∗, s)
If s = s̃, output 1− b0

Else If i , i∗

If s , PRF{i
∗}

sk (i), halt and output PRF{(i
∗,s̃)}

Enc (i, s).
Output I{i ≤ i∗ − 1}.

Figure 14: Hybrid (Enc4,P4).

Enc5(i∗,b0,mk = PRFsk) :
Let s̃←R [m].
Choose a pseudorandom function PRFEnc←R Fλ,Enc such that PRFEnc(i∗, s̃) = 1− b0

PRF
{i∗}
sk = Puncture(PRFsk, i

∗).

Let O = Obfuscate
(
P5
i∗,PRF{i

∗}
sk ,PRFEnc

)
.

Output c0 = O.

P5
i∗,PRF{i

∗}
sk ,PRFEnc

(i, s):

If i = i∗

Output PRFEnc(i∗, s)
Else If i , i∗

If s , PRF{i
∗}

sk (i), halt and output PRFEnc(i, s).
Output I{i ≤ i∗ − 1}.

Figure 15: Hybrid (Enc5,P5).

Lemma 7.2. Let H = {h : [T ]→ [K]} be a δ-almost pairwise independent hash family. Let y ∈ [K]
and M ⊆ [T ] of size m be arbitrary. Define the following two distributions.

• D1: Choose h←R H.
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Enc6(i∗,mk = PRFsk) :
Choose a pseudorandom function PRFEnc←R Fλ,Enc
PRF

{i∗}
sk = Puncture(PRFsk, i

∗).

Let O = Obfuscate
(
P6
i∗,PRF{i

∗}
sk ,PRFEnc

)
.

Output c0 = O.

P6
i∗,PRF{i

∗}
sk ,PRFEnc

(i, s):

If i = i∗

Output PRFEnc(i∗, s)
Else If i , i∗

If s , PRF{i
∗}

sk (i), halt and output PRFEnc(i, s).
Output I{i ≤ i∗ − 1}.

Figure 16: Hybrid (Enc6,P6).

• D2: Choose a random x ∈M, and then choose h←R (H | h(x) = y).

Then D1 and D2 are (1
2

√
K/m+ 7K2δ)-close in statistical distance.

We defer the proof to Section 7.3. The natural way to try to show that (Enc6,P6) is o(1/n3)
statistically close to (Enc5,P5) is to apply this lemma to the hash family H = Fλ,Enc. Recall that
a pseudorandom function family is also negl(λ)-pairwise independent. Here, the parameters
would be [T ] = [n]× [m], M = {(i∗, s) | s ∈ [m]} and b = 1− b0, and the random choice x ∈M is the
pair (i∗, s̃).

However, recall that the adversary not only sees c0 = Enc5(i∗,b0,mk), but also sees c1 =
Enc5(i∗,b1,mk), and these share the same s̃. Hence, we cannot directly invoke Lemma 7.2 on
the PRFEnc,0 sampled in c0, since s̃ is also used to sample PRFEnc,1 when sampling c1, and is
therefore not guaranteed to be random given c1.

Instead, we actually consider the function family H = F 2
λ,Enc, where we define

h(i, s) = (PRFEnc,0,PRFEnc,1)(i, s) = (PRFEnc,0(i, s),PRFEnc,1(i, s)).

In Enc5, h is drawn at random conditioned on h(i∗, s̃) = (1−b0,1−b1), whereas in Enc6, it is drawn
at random.
H is still a pseudorandom function family, so it must be negl(λ)-almost pairwise independent

with δ negligible. In particular, δ = o(1/m). Hence, the conditions of Lemma 7.2 are satisfied
with K = 4. Since the description of P5,P6 is the tuple (i∗, s̃,PRF{i

∗}
sk ,PRFEnc,0,PRFEnc,1), and by

Lemma 7.2 the distribution on these tuples differs by at most O(
√

1/m) in statistical distance,
we also have that the distribution on obfuscations of P5,P6 differs by at most O(

√
1/m). Finally,

we can choose a value of m = Õ(n6) so that O(
√

1/m) = o(1/n3).
Observe that when we generate user keys sk−i∗ and the challenge ciphertexts according to

(Enc6,P6), the distribution of the adversary’s view is completely independent of the random
values b0,b1. Thus no adversary can output b′ = b0 ⊕ b1 with probability greater than 1/2. Since
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the distribution of these challenge ciphertexts is o(1/n3)-computationally indistinguishable
from the original distribution on challenge ciphertexts, we have that for every computationally
efficient adversary,

P
TwoIndexHiding[i∗]

[
b′ = b0 ⊕ b1

]
− 1

2
= o(1/n3),

as desired. This completes the proof.

7.3 Proof of Lemma 7.2

We will fix y = 1 for simplicity. The cases of y = 2, . . . ,K follow symmetrically.
We will first bound the Rényi divergence between D1 and D2, which is defined as

RD(D1,D2) =
∑
h

P [H = h :H ←R D2]2

P [H = h :H ←R D1]

Here, h ranges over the support of D2 (since the support of D2 is a subset of H , we can equiva-
lently view the sum as one over all h in H). Once we do this, we will obtain an upper bound on
the statistical distance between D1 and D2 using the inequality

SD(D1,D2) ≤
√

RD(D1,D2)− 1
2

. (9)

To bound the Rényi divergence, we can start by writing

P [H = h :H ←D2]2 =

 1
m

∑
x∈M

P [H = h :H(x) = 1]

2

=
1
m2

∑
x,x′∈M

P [H = h :H(x) = 1]P
[
H = h :H(x′) = 1

]
Where in all the (conditional) probabilities on the right, h is drawn from D1, conditioned on
some event. This allows us to write

RD(D1,D2) =
1
m2

∑
x,x′∈M

∑
h

P [H = h :H(x) = 1]P [H = h :H(x′) = 1]
P [H = h]

We now divide the sum into two cases.

• x = x′. In this case, the summand becomes P [H = h :H(x) = 1]2 /P [H = h]. Notice that

P [H = h :H(x) = 1] =

0 if h(x) , 1
P[H=h]

P[H(x)=1] if h(x) = 1

Therefore, the summand is

P [H = h :H(x) = 1]2

P [H = h]
=

0 if h(x) , 1
P[H=h]

P[H(x)=1]2 if h(x) = 1

Now, notice that
∑
h:h(x)=1P [H = h] = P [H(x) = 1]. Thus, if we carry out the sum over h,

the summand becomes 1/P [H(x) = 1].
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• x , x′. Then

P [H = h :H(x) = 1] = P
[
H = h :H(x) = 1,H(x′) , 1

]
P
[
H(x′) , 1 :H(x) = 1

]
+

P
[
H = h :H(x) = 1,H(x′) = 1

]
P
[
H(x′) = 1 :H(x) = 1

]
P
[
H = h :H(x′) = 1

]
= P

[
H = h :H(x′) = 1,H(x) , 1

]
P
[
H(x) , 1 :H(x′) = 1

]
+

P
[
H = h :H(x′) = 1,H(x) = 1

]
P
[
H(x) = 1 :H(x′) = 1

]
When we take the product of the two expressions and expand, we obtain four products,
only one of which is nonzero (when h(x) = h(x′) = 1):

P
[
H = h :H(x) = 1,H(x′) = 1

]2 ·P
[
H(x′) = 1 :H(x) = 1

]
·P

[
H(x) = 1 :H(x′) = 1

]
Therefore, the summand is

P [H = h :H(x) = 1]P [H = h :H(x′) = 1]
P [H = h]

=
P [H(x′) = 1 :H(x) = 1]P [H(x) = 1 :H(x′) = 1]

P [H = h]
·P

[
H = h :H(x) = 1,H(x′) = 1

]2

=
P [H = h]

P [H(x) = 1]P [H(x′) = 1]
· I{h(x) = h(x′) = 1}

When we sum over all h, we get∑
h

P [H = h :H(x) = 1]P [H = h :H(x′) = 1]
P [H = h]

=
P [H(x) = 1∧H(x′) = 1]
P [H(x) = 1]P [H(x′) = 1]

Therefore, the Rényi divergence is

RD(D1,D2) =
1
m2


∑
x∈M

1
P [H(x) = 1]

+

 ∑
x,x′∈M

P [H(x) = 1∧H(x′) = 1]
P [H(x) = 1]P [H(x′) = 1]




We now invoke δ-almost pairwise independence to claim that

• For every x ∈M, P [H(x) = 1] ≥ 1/K − δ.

• For every x , x′ ∈M, P [H(x) = 1∧H(x′) = 1] ≤ 1/K2 + δ.

Therefore, for δ ≤ 1/2K , it is easy to show that 1/P [H(x) = 1] ≤ 2 + 2K2δ and

P [H(x) = 1∧H(x′) = 1]
P [H(x) = 1]P [H(x′) = 1]

≤ 1 + 7K2δ.

So we have that

RD(D1,D2) ≤ 1
m2

(
(K + 2K2δ)m+ (m2 −m)(1 + 7K2δ)

)
≤ 1 +

K − 1
m

+ 7K2δ.

Using the relationship between statistical distance and Rényi divergence above (Equation (9)),
we obtain SD(D1,D2) ≤ 1

2

√
(K − 1)/m+ 7K2δ, as long as δ < 1/2k. Notice that for δ ≥ 1/2K ,

7K2δ ≥ 7, and so our bound is larger than 1 anyway. Hence, the bound holds for all δ.
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A Twice Puncturable Pseudorandom Functions

A.1 An Input-Matching Secure PRF

Like pseudorandom functions satisfying the existing notions of puncturing, our construction is
simply the GGM PRF family. We detail this constraint for notational purposes. For simplicity,
we assume that m and n are powers of 2. We now claim that the GGM construction satisfies

PRF :
Parameters: a seed s ∈ {0,1}λ, a pseudorandom generator P RG : {0,1}λ→ {0,1}2λ

and domain and range sizes n = poly(λ),m = Õ(n7)
Input: x ∈ [m] = {0,1}µ where µ = log2(m)
Let z = P RGxµ(P RGxµ−1

(. . . (P RGx2
(P RGx1

(s))) . . . ))
Let y be the first log2(n) bits of z and output y

Setup(1λ):
Draw s : {0,1}λ at random conditioned on every y ∈ [n] having a preimage under the
PRF defined by s.
Note that this is efficiently computable sincem =ω(n lgn) by the reasoning in section 5.3.

Puncture(PRF,x0,x1):
Note that the pseudorandom function PRF defines a tree of seed values

(one for each node of the tree - the root is s, the left child is P RG(s)0, etc)
Output PRF{x0,x1} = the set of all seed values of each node which is not an ancestor of
x0 or x1 but its parent is. (note there are O(lgm) such seeds)

PRF{x0,x1}

Input: x ∈ [m] = {0,1}µ where µ = log2(m)
Let sj be the seed of the first node which is an ancestor of x and not an ancestor of
x0,x1 but it parent is. Let j be its height in the binary tree.
Let z = P RGxµ(P RGxµ−1

(. . . (P RGxj+1
(P RGxj (sj ))) . . . ))

Let y be the first log2(n) bits of z and output y

Figure 17: The GGM pseudorandom function family {PRF : [m]→ [n]}

Theorem 5.4.

Theorem A.1. If m,n are polynomial in the security parameter and m =ω(n log(n)), then the GGM
pseudorandom function is ε-input-matching secure for ε = Õ(

√
n/m).

We start by modifying the InputMatching game to one that will make it easier to prove
security. Consider the following pair of games.

• Game0: The InputMatching[y0, y1] game above.

• Game1: We modify the InputMatching[y0, y1] game in the following way. Instead of choosing
PRF conditioned on ∀y ∈ [n], PRF−1(y) , ∅, we first choose x0,x1←R [m] and then choose
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PRF conditioned on PRF(x0) = yb0
and PRF(x1) = yb1

. We will prove that the challenges
(x0,x1,PRF

{x0,x1}) in Game 0 and Game1 are statistically indistinguishable with suitable
parameters.

Claim A.2. For every polynomials m,n, Game0 and Game1 are ε-computationally indistinguishable
for ε = Õ(

√
n/m).

The proof is an uninsightful computation, so we will defer it to Section A.1.1. Now we want
to prove that the b0⊕b1 = 0 and b0⊕b1 = 1 cases of Game1 are computationally indistinguishable.

Claim A.3.
P

Game1

[
b′ = b0 ⊕ b1

]
≤ 1

2
+O

( 1
m

)
.

To show this, we need the following lemma:

Lemma A.4. Let PRG : {0,1}λ → {0,1}2λ be a PRG, and let p : {0,1}2λ → {0,1} be an efficiently
computable predicate on {0,1}2λ. Suppose that, for a random z ∈ {0,1}2λ, Pr[p(z) = 1] is non-negligible.
Then the following distributions are ε-computationally indistinguishable for ε = negl(λ).

• z for z = PRG(s),where s is chosen at random from {0,1}λ conditioned on p(PRG(s)) = 1.

• z where z is chosen at random from {0,1}2λ conditioned on p(z) = 1.

Proof sketch. Given an efficient distinguisher D for the two distributions above, we construct
the following efficient PRG distinguisher D ′. D ′, on input z, computes p(z). Since p and D are
computationally efficient, so is D ′. If the output is 0, then D ′ outputs a random bit. Otherwise,
D ′ runs D on z and outputs the result. In the case where p(z) = 0, D ′ has no advantage, and in
the case where p(z) = 1, D ′ has non-negligible advantage (namely the advantage of D). Since
p(z) = 1 with non-negligible probability, D ′ has overall non-negligible advantage.

Proof sketch of Claim A.3. Consider the GGM tree, and the punctured function PRF{x0,x1} con-
sisting of the values at all nodes in the tree that are not an ancestor of x0 or x1, but whose parent
is an ancestor. We now consider the following procedure

1. Pick a node whose value s is random (perhaps conditioned on some predicate p on PRG(s)),
and not derived from another node’s value. For example, at the beginning this is the root
node, which is random, conditioned on the leaves at x0 and x1 having values yb0

, yb1
.

2. If that node is part of the punctured key PRF{x0,x1} or is one of the leaves at x0,x1, don’t do
anything to this node.

3. Otherwise, delete that node, and replace the values of the children with random, condi-
tioned on the predicate p being 1. This predicate is applied to the concatenation of the
children’s values. Notice that, given the form of our initial predicate each of the children’s
new values s0, s1 will be independently random, perhaps conditioned on some predicates
p0,p1 on PRG(s0),PRG(s1) respectively.

We iterate the procedure until we no longer make any changes to the tree. By applying
Lemma A.4 to the change made in step 3, we can see that the distributions on the punctured PRF
before and after we apply the procedure are ε-computationally indistinguishable for ε = negl(λ).
In the end, we will have changed all of the punctured key values to uniformly random. Note
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that, since these nodes are not ancestors of x0,x1, the predicate on them is trivially satisfied, so
they are uniformly random even conditioned on the values of the function at x0,x1. Thus, these
values are also independent of the output of the function at the points x0,x1. Thus, as long as
x0 , x1 we can swap these values to any combination of yb0

and yb1
. Since the probability that

x0 = x1 is at most 1/m, the probability that the adversary can guess b0 ⊕ b1 is at most 1/2 + 1/m.
Since this distribution is ε-computationally indistinguishable from the real distribution on the
punctured PRF, a computationally efficient adversary can guess b0 ⊕ b1 with probability at most
1/2 + 1/m+ negl(λ) = 1/2 +O(1/m).

A.1.1 Proof of Claim A.2

Consider two ways of sampling a tuple (y0, y1,b0,b1,x0,x1,PRF). Here y0, y1 ∈ [n] are fixed,
b0,b1 ∈ {0,1} are uniformly random and independent. In Game0, PRF is sampled conditioned on
every y ∈ [n] having non-empty preimage, and x0 and x1 are random preimages of yb0

and yb1
,

respectively. In Game1, x0,x1 ∈ [m] are uniformly random and independent and PRF is sampled
conditioned on PRF(x0) = yb0

and PRF(x1) = yb1
. Observe that these tuples contain strictly more

information than the challenges given to the adversary in Game0 and Game1, respectively. That
is, the challenges can be generated by applying a function to these tuples, which cannot increase
the statistical distance between the two distributions. Thus, to prove Claim A.2 it suffices to
prove that these two distributions are statistically close.

First, we switch to an intermediate game Game0A in which the function PRF is not required
to have a preimage for every y ∈ [n]. To make the sampling procedure well defined, if yb0

or yb1

does not have a preimage under PRF, we simply choose x0 and x1 at random from [m].

Lemma A.5. If PRF is pseudorandom and m,n are polynomials, then Game0 and Game0A are
ε-statistically indistinguishable for ε = n · exp(−Ω(m/n)) + negl(λ).

Proof. Suppose that f : [m]→ [n] is a uniformly random function. Then a simple calculation
shows that the probability that there exists y ∈ [n] such that PRF−1(y) = ∅ is at most

n · (1− 1/n)m = n · exp(−Ω(m/n)).

Since m,n are polynomial in the security parameter λ, there is a polynomial time algorithm that
checks whether a function PRF : [m]→ [n] has at least one preimage for every y ∈ [n]. Thus, if
PRF is sampled from a pseudorandom function family, it must also be true that the probability
that there exists y ∈ [n] such that PRF−1(y) = ∅ is at most n ·exp(−Ω(m/n)) +negl(λ), or else there
would be an efficient algorithm that distinguishes a random function PRF from a truly random
function f .

Since conditioning on an event that occurs with probability at least 1 − p can only affect
the distribution by at most p in statistical distance, we conclude that the two distributions are
statistically indistinguishable to within n · exp(−Ω(m/n)) + negl(λ).

Now, we introduce a second intermediate game Game0B in which we first choose a random
value x0 ∈ [m], then sample PRF such that PRF(x0) = yb0

, and finally we choose x1 to be a random
preimage of yb1

. If yb1
has no preimage under PRF, we choose x1 at random from [m].

Lemma A.6. If PRF is pseudorandom and m,n are polynomials, then Game0A and Game0B are
ε-statistically indistinguishable for ε = Õ(

√
n/m).
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Before proving the lemma, we will state and prove a useful combinatorial lemma about
conditioning a pseudorandom function on a single input-output pair. Consider the following
two ways of sampling a pseudorandom function.

Choose a pseudorandom function PRF : [m]→ [n]
Let s = |PRF−1(y)|.
If s = 0, choose x at random from [m], else choose a random x from PRF−1(y).
Output (x,PRF).

Figure 18: ExpA[y]

Choose a random x ∈ [m]
Choose a pseudorandom function PRF : [m]→ [n] so that PRF(x) = y.
Let s = |PRF−1(y)|.
Output (x,PRF)

Figure 19: ExpB[y]

Lemma A.7. If PRF is pseudorandom, and m,n are polynomials, then for every y ∈ [n], ExpA[y] and
ExpB[y] are Õ(

√
n/m) + negl(λ) computationally indistinguishable.

Proof of Lemma A.7. First, we will replace PRF : [m] → [n] with a truly random function f :
[m]→ [n]. We will argue later why using a pseudorandom function cannot increase the statistical
distance between the two distributions by more than negl(λ).

Now, observe that in both experiments, the marginal distribution on x is uniform on [m].
Also, observe that for every fixed choice of x and s, the conditional distribution f |x,s in each
experiment is the same. Finally, note that the distribution on s is independent of x in each
experiment. Thus, in order to bound the statistical distance between the two experiments, it
suffices to bound the statistical distance between the marginal distributions of s in the two
experiments.

In ExpA, the probability that |f −1(y)| = s is precisely the probability that y has exactly s
preimages in a random function f : [m]→ [n]

P
f :[m]→[n]

[
|f −1(y)| = s

]
=

(
m
s

)(1
n

)s (
1− 1

n

)m−s
In ExpB, the probability that |f −1(y)| = s is precisely the probability that y has exactly s − 1

preimages in a random function f : [m − 1]→ [n], since we fix the fact that f (x) = y and the
remainder of the function is chosen randomly.

P
f :[m−1]→[n]

[
|f −1(y)| = s − 1

]
=

(
m− 1
s − 1

)(1
n

)s−1 (
1− 1

n

)m−s
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Thus, the statistical distance between the two distributions is

m∑
s=1

∣∣∣∣∣∣
(
m
s

)(1
n

)s (
1− 1

n

)m−s
−
(
m− 1
s − 1

)(1
n

)s−1 (
1− 1

n

)m−s∣∣∣∣∣∣
=

m∑
s=1

(1
n

)s−1 (
1− 1

n

)m−s ∣∣∣∣∣∣
(
m
s

)(1
n

)
−
(
m− 1
s − 1

)∣∣∣∣∣∣
=

m∑
s=1

(
m− 1
s − 1

)(1
n

)s−1 (
1− 1

n

)m−s ∣∣∣∣msn − 1
∣∣∣∣

To tackle the final sum, we consider two cases roughly corresponding to whether m/sn− 1 is
close to 0 or far from 0. Typically, when we choose a random function from either distribution
we will have a preimage size of s ≈ m/n, in which case |m/sn − 1| ≈ 0. Since, by the binomial
theorem,

m∑
s=1

(
m− 1
s − 1

)
(1/n)s−1(1− 1/n)m−s =

m−1∑
s=0

(
m− 1
s

)
(1/n)s(1− 1/n)m−1−s = 1,

we will have that this portion of the sum is close to 0. In the atypical case, we will have that
s is far from m/n, in this case we will use the fact that the probability of choosing a random
function f with preimage size far from m/n is much smaller than n/m, and |m/sn− 1| ≤m/n, to
conclude that this portion of the sum is also close to 0.

Specifically, fix some threshold τ and break the sum into two regions based on whether or
not s ∈ (1± τ)m/n.

m∑
s=1

(
m− 1
s − 1

)(1
n

)s−1 (
1− 1

n

)m−s ∣∣∣∣msn − 1
∣∣∣∣

=
∑

s∈(1±τ)m/n

(
m− 1
s − 1

)(1
n

)s−1 (
1− 1

n

)m−s ∣∣∣∣msn − 1
∣∣∣∣+

∑
s<(1±τ)m/n

(
m− 1
s − 1

)(1
n

)s−1 (
1− 1

n

)m−s ∣∣∣∣msn − 1
∣∣∣∣

≤ 2τ ·
∑

s∈(1±τ)m/n

(
m− 1
s − 1

)(1
n

)s−1 (
1− 1

n

)m−s
+
m
n
·

∑
s<(1±τ)m/n

(
m− 1
s − 1

)(1
n

)s−1 (
1− 1

n

)m−s
≤ 2τ +

m
n
· P
f :[m−1]→[n]

[
|f −1(y)| < (1± τ)m/n

]
(Definition of Binomial Distribution)

≤ 2τ +
m
n
· e−Ω(τ2m/n). (Chernoff bound)

In this calculation, we make use of a form of the Chernoff bound that states if X1, . . . ,XT are
independent random variables taking values in {0,1}, and X =

∑T
t=1Xt, then for every τ <= 1,

P
[
X < (1± τ)E [X]

]
≤ e−Ω(τ2E[X])

.

From this calculation, it is clear that there is a setting of τ = Õ(
√
n/m) such that the final

expression is bounded by O(τ) = Õ(
√
n/m). Putting it together, the statistical distance between

the two distributions in question is Õ(
√
n/m) + e−Ω(m/n) = Õ(

√
n/m). This completes the proof.

Finally, we have to argue that the two distributions remain close if we use a pseudorandom
function in place of a truly random function. Since m,n are polynomial, an efficient adversary
can enumerate all of the input-output pairs of the function PRF. Thus, in order for PRF to be
pseudorandom, the truth table of a random PRF must be computationally indistinguishable
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from the truth table of a random function. By the above analysis, the distribution of the truth
table of f depends only on x and s. Thus, for every fixed value of x,s, it must be that the
distribution of PRF | x,s and the distribution of f | x,s are εx,s computationally indistinguishable
for εx,s = negl(λ)/P [x,s]. Moreover, given (x,PRF), s is efficiently computable because m,n are

polynomial. Thus, the two distributions are ε-computationally indistinguishable for some
ε ≤

∑
x,sP [x,s] (negl(λ)/P [x,s]) =mn ·negl(λ) = negl(λ).

Putting it together, we have that ExpA and ExpB are ε-computationally indistinguishable for
ε = Õ(

√
n/m) + negl(λ), as desired.

Now we return to proving Lemma A.6

Proof of Lemma A.6. First, fix any choice of (y0, y1,b0,b1). We want to show that the distribu-
tions on (x0,x1,PRF) in Game0A and Game0B are close. First consider just the distribution on
(x0,PRF) | (y0, y1,b0,b1). In Game0A, this distribution is exactly ExpA[yb0

]. In Game0B, this distri-
bution is exactly ExpB[yb0

]. Thus, by Lemma A.7, the two distributions are ε-computationally
indistinguishable for ε = Õ(

√
n/m) + negl(λ).

Now, we consider the case where b1 = b0. In this case, in both Game0A and Game0B, x1 is a
random preimage of yb1

= yb0
. Unless x1 = x0, x1 is a uniformly random value in [m]. Since the

collision probability is determined only by the number of preimages of yb0
, Lemma A.7 also

shows that the distribution on x1 | (y0, y1,b0,b1,x0,PRF) is ε-computationally indistinguishable
for ε = Õ(

√
n/m+ negl(λ)).

Now, we consider the case where b1 , b0. In this case the two values never collide, and
once again the distribution of x1 | (y0, y1,b0,b1,x0,PRF) is determined only by the number of
preimages of yb1

. Thus, we can again apply Lemma A.7 to argue that these two distributions are
ε-computationally indistinguishable. This completes the proof of the Lemma.

We can now state and prove the final step of the hybrid argument.

Lemma A.8. If PRF is pseudorandom and m,n are polynomials, then Game0B and Game1 are
ε-computationally indistinguishable for ε = Õ(

√
n/m).

Proof. In either game, x1 is uniformly random in [m] if we condition on the event that x0 , x1.
First consider the case where b0 = b1, then in Game0B then the probability of a collision is
determined by the number of preimages of yb1

= yb0
, and by Lemma A.7 the collision probability

is at most ε = Õ(
√
n/m) + negl(λ). However, in Game1 the probability of collision is exactly 1/m.

Now, in the case where b0 , b1, in Game0B the probability of collision is 0, whereas in Game1 the
probability of collision is exactly 1/m. Putting it together completes the proof of the Lemma.

Combining the hybrids in Lemmata A.5, A.6,and A.8 completes the proof of Claim A.2.
We remark that since m and n are polynomials in λ, the negl(λ) term is of a lower order than
Õ(
√
n/m) so we are justified in dropping it from the asymptotic expression for the distinguishing

probability.
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