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ABSTRACT
This paper proposes MSKT-ORAM, an efficient multiple server
ORAM construction, to protect a client’s access pattern to out-
sourced data. MSKT-ORAM organizes each of the server storage
as a k-ary tree and adopts XOR based PIR and a novel delayed
eviction technique to optimize both the data query and data eviction
process. MSKT-ORAM is proved to protect the data access pattern
privacy at a failure probability of 2−80 when k ≥ 128. Meanwhile,
given constant local storage, when N (i.e., the total number of out-
sourced data blocks) ranges from 216 to 234 and data block size
B ≥ 20 KB, the communication cost of MSKT-ORAM is only
22 to 46 data blocks. Asymptotical analysis and detailed imple-
mentation comparisons are conducted to show that MSKT-ORAM
achieves better communication, storage and access delay in practi-
cal scenario over the compared state-of-the-art ORAM schemes.

1. INTRODUCTION
1.1 Motivations
With attractive cost-effectiveness, cloud storage services such as
Amazon S3 and Dropbox have been popularly utilized by business
and individual clients to host their data. Before exporting sensitive
data to the cloud storage, clients can encrypt it if they do not trust
the storage server. However, data encryption itself is not sufficient
for data security, because the secrecy of data can still be exposed if
a client’s access pattern to the data is revealed [16].

The private information retrieval (PIR) [1–4,8,9,15,18,19,31] and
the oblivious RAM (ORAM) [7, 10–14, 17, 25–30, 32–35] are two
well-known security-provable approaches to protect a client’s ac-
cess pattern to the data stored in remote storage. While some stud-
ies indicate that the PIR schemes may be infeasible for large-scale
data sets as they need to process the whole data set in order to hide
just one data request [33], the ORAM approaches still appear to be
promising as more and more resource-efficient constructions have
been proposed. Particularly, communication cost is the most impor-
tant metric to evaluate the feasibility of an ORAM construction. In
the literature, the most communication-efficient ORAM construc-
tions are C-ORAM [24] and CNE-ORAM [23] proposed by Moataz

et al. both consuming O(B) bandwidth for each data query, when
the total number of exported data blocks is N and each data block
is of size B ≥ N ϵ bits for some constant 0 < ϵ < 1.

Though C-ORAM and CNE-ORAM have achieved better commu-
nication efficiency than prior works, further reducing the require-
ment of data block size and the query delay is still desirable to
make the ORAM construction more feasible to implement in cloud
storage systems.

1.2 Assumption Ambiguity of Existing ORAMs
In state-of-the-art ORAMs using tree data structure on server side,
there is always an assumption ambiguity on the size of data blocks
in the scheme. In tree based ORAM schemes, data block size is
usually assumed to be O(logα N) bits, where α ≥ 2. However,
these ORAM further assume the size of a data block is O(N ϵ)
where 0 < ϵ < 1, since the number of recursions on the index of
the data blocks need to be constant such that the communication
cost of these scheme can save a O(logN) factor.

Let’s take one step further on these two assumptions of data block
size. In a practical scenario, where 216 ≤ N ≤ 234, given α = 3
and ϵ = 0.4, N ϵ < logα N always holds. This means the data
block size required to make the recursion depth to be O(1) is dom-
inated by the requirement of a normal data block size in these
schemes. Theoretically, if the size of the data block is set to be
O(logα N), the recursion depth is O(logN/ log logN). There-
fore, the above two assumptions are not consistent with each other.
In this paper, we assume that B = O(N ϵ) without causing the
above ambiguity on data block size.

1.3 Our Results
In this paper, we propose a new ORAM construction, named MSKT-
ORAM, to accomplish the following performance goals in practical
scenario:

• Communication efficiency - Under a practical scenario, the
communication cost per data query is about 22 blocks to 46
blocks when 216 ≤ N ≤ 234 and the block size B ≥ N ϵ

bits for some constant 0 < ϵ < 1. In practice, this is lower or
comparable to constant communication ORAM construction
C-ORAM and CNE-ORAM. In MSKT-ORAM, there is no
server-server communication cost.

• Low access delay - Compared to both C-ORAM and CNE-
ORAM schemes with constant client-server communication
cost, MSKT-ORAM has a low access latency.



• Small data block size requirement - Compared to C-ORAM
and CNE-ORAM, MSKT-ORAM only requires each data
block size B ≥ 20 KB.

• Constant storage at the client - MSKT-ORAM only requires
the client storage to store a constant number of data blocks
while each server needs to store O(N ·B) data blocks.

• Low failure probability guarantee - MSKT-ORAM is proved
to achieve 2−80 failure probability given k ≥ 128.

1.4 Our Methodology
Similar to P-PIR [22], MSKT-ORAM organizes the cloud storage
as a tree with each node acting as fully-functional PIR, where the
PIR-read and PIR-write primitives are implemented based on ad-
ditive homomorphic (AH) operations (i.e., AH encryption, decryp-
tion, addition and multiplication). By applying PIR primitives, the
communication cost, which is affected by both the height of tree
and the size of each tree node in Tree ORAM [26], becomes de-
termined only by the height of tree, because only one data block is
transferred from/to each accessed tree node. Meanwhile, the PIR
primitives can be performed efficiently because they process only
a small fraction of the data set stored on the tree.

Different from P-PIR, MSKT-ORAM uses a k-ary tree instead of
a binary tree, in order to reduce the height of tree by a factor of
O(log k) and thus reduce the communication cost also by O(log k)
times. Note that, Gentry et al. [7] also have used k-ary tree in their
designed ORAM construction which we call G-ORAM hereafter.
However, MSKT-ORAM and G-ORAM use different eviction al-
gorithms to evict actual data blocks within the tree. This difference
has contributed to the different levels of communication efficiency
that they can accomplish: when the number of branches k is set to
logN , G-ORAM requires to transfer O( log2 N

log logN
) data blocks per

query with O(log2 N) · ω(1) data blocks in local storage, while
MSKT-ORAM only requires to transfer O(1) blocks with constant
data blocks in local storage.

MSKT-ORAM adopts an eviction algorithm different from the one
used in G-ORAM based on the following observations: The AH
operation-based PIR primitives can help to reduce communication
cost if, in an eviction process, only a small number of the data
blocks need to be obliviously moved out/in from/to a tree node.
For example, in P-PIR, at most one out of O(logN) data blocks
is moved out/in from/to each node selected for eviction; the PIR
primitives are employed to obliviously download/upload one block
from/to each selected node, without transferring all blocks from/to
these nodes. However, if the G-ORAM eviction algorithm is ap-
plied, the number of blocks moved out/in from/to a node could be
as large as O(logN), which is the total number of blocks in a node;
hence, to obliviously perform these movements, all the blocks in
the node may have to be downloaded and re-uploaded, even if the
PIR primitives are used.

In comparison, we design a novel eviction algorithm in MSKT-
ORAM that moves only one data block out/in from/to each selected
tree node during an eviction process. Specifically, the algorithm
treats the physical k-ary tree as a logical binary tree, where each
k-ary tree node is mapped to a logical binary subtree. Over the
logical tree, a binary tree-based eviction algorithm, similar to the
one used in Tree ORAM [26] and P-PIR [22], is logically simulated
but not directly executed. Instead, an idea of delayed eviction is
employed to defer and aggregate as many as possible the logical

eviction operations to ensure that: (i) for each eviction process,
only O(1) k-ary tree nodes need to be accessed; (ii) within each
of the accessed k-ary tree node, only one data block needs to be
downloaded/uploaded.

1.5 Organization of the Paper
In the rest of the paper, Section 2 presents the problem definition.
Section 3 and 4 presents our proposed scheme. Section 5 and 6
reports the security and cost analysis. Section 7 makes a detailed
comparison between our proposed scheme with existing ORAMs
and Section 8 briefly reviews the related work. Finally, Section 9
concludes the paper.

2. PROBLEM DEFINITION
We consider a system as follows. A client exports N equal-size
data blocks to two remote storage servers, where the two servers
do not collude with each other. Note that, such an architecture is
feasible in practice, since the client can select two servers in a way
that they will not know the existence of each other. For example,
a client can simply select Amazon S3 and Google Drive as two in-
dependent storage servers. Each of the two servers has an identical
copy of the data storage. The client accesses the exported data ev-
ery now and then, and wishes to hide the pattern of the accesses
from the server.

Each data request from the client, which should be kept private, is
one of the following two types: (i) read a data block D of unique
ID i from the storage, denoted as a 3-tuple D = (read, i); or (ii)
write/modify a data block D of unique ID i to the storage, denoted
as a 3-tuple (write, i,D). To simplify the presentation in the secu-
rity definition, we denote these two types of requests as (op, i,D)
where op is read or write.

To accomplish a private data request, the client needs to access the
remote storage multiple times. Each access to the remote storage,
which is observable by the server, can be one of the following types:
(i) retrieve (i.e., read) a data block D from a location l at the remote
storage, denoted as a 3-tuple D = (read, l); or (ii) upload (i.e.,
write) a data block D to a location l at the remote storage, denoted
as a 3-tuple (write, l,D). Similarly, we denote these two access
types as (op, l,D) where op is read or write.

We assume the client is trusted but the remote server is honest but
curious; that is, it stores data and serves the client’s requests ac-
cording to the protocol that we deploy, but it may attempt to figure
out the client’s access pattern. The network connection between
the client and the server is assumed to be secure; in practice, this
can be achieved using well-known techniques such as SSL [6].

Following the security definition of ORAMs [10,29,30], we define
the security of our proposed ORAM as follows.

Definition Let x⃗ = ⟨ (op1, i1, D1), (op2, i2, D2), · · · ⟩ denote a
private sequence of the client’s intended data requests, where each
op is either a read or write operation. Let A(x⃗) = ⟨ (op′1, l1, D′

1),
(op′2, l2, D

′
2), · · · ⟩ denote the sequence of the client’s accesses to

the remote storage (observed by the server), in order to accomplish
the client’s private data requests. An ORAM system is said to be
secure if (i) for any two equal-length private sequences x⃗ and y⃗
of intended data requests, their corresponding observable access
sequences A(x⃗) and A(y⃗) are computationally indistinguishable;



and (ii) the probability that the ORAM system fails to operate is
bounded by 2−λ where λ is a security parameter.

3. FIRST CONSTRUCTION: MSBT-ORAM
Before we present our proposed scheme, we first present a prelim-
inary scheme: MSBT-ORAM (Multi-server Binary Tree ORAM).
MSBT-ORAM follows the framework of tree-based ORAMs, es-
pecially, P-PIR [22] and aims to improve the access delay of P-
PIR [22]. According to the observation that the access delay in
P-PIR is mainly caused by the expensive homomorphic operations,
MSBT-ORAM replaces the homomorphic encryptions with XOR
operations on the server, thus will leverage servers from heavy
computation tasks.

The design of MSBT-ORAM includes storage organization, data
query, and data eviction. The basic work flow of the MSBT-ORAM
is shown in Figure 1.

ClientClientClientClient ServerServerServerServer

Q2: Send EIಬs

XOR selected data

Q1: Send target path

Q3: Send QV and re-encrypted EIಬs

Q4: Send target data

Q5: Upload re-encrypted target data

Data Query

E2: Send EIಬs

XOR selected data

E1: Select nodes for eviction

E3: Send QV and re-encrypted EIಬs

E4: Send selected data

E5: Upload re-encrypted data

Data EvictionIterations for 
different layers

Figure 1: The working flow of MSBT-ORAM. This figure
shows how MSBT-ORAM works between the client and the
servers.

3.1 Storage Organization
In the design, we require two servers denoted as S1 and S2. Since
the two servers are almost identical to each other, we only describe
how storage is organized in S1 and call S1 the “server”. Later, we
will show the differences between S1 and S2.

Assuming N data blocks are exported by the client to the server.
The server storage is organized as a binary tree with L = logN+1
layers, the same as in T-ORAM [26] and P-PIR [22]. Each node
can store 3c logN blocks, where c is a system parameter related to
the security parameter λ. As the capacity of the storage is larger
than the N real data blocks, dummy blocks are added to fill up the
rest of the storage. A real data block is encrypted with symmetric
encryption such as AES [5] before it is stored to a node in the binary
tree; that is, each data block di is stored as Di = E(di) in a node.
Each node also contains a symmetrically encrypted index block that
records the ID of the data block stored at each position of the node;
as the block is encrypted, the index information is not known to the
server.

Figure 2 shows an example, where N = 32 data blocks are ex-
ported and stored in a binary tree-based storage with 6 layers. Start-
ing from the top layer, i.e., layer 0, each node is denoted as vl,i,
where l is the layer index and i is the node index on the layer.
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Figure 2: MSBT-ORAM’s server-side storage structure. Cir-
cled nodes represent the ones accessed by the client during a
query process when the target data block is mapped to leaf
node v5,10.

MSBT-ORAM requires the client to maintain an index table with
N entries, where each entry i (i ∈ {0, · · · , N − 1}) records the
ID of a leaf node on the tree such that data block Di is stored at
some node on the path from the root to this leaf node. As in T-
ORAM [26] and P-PIR [22], the index table can be exported to
the server as well; hence, the client-side storage is of constant size
and only needs to store at most two data blocks and some secret
information such as encryption keys.

3.2 Data Query Process
To query a certain data block Dt, the client acts as follows:

• The client checks the index table to find out the leaf node
vL−1,f that Dt is mapped to. Hence, a path from the root to
vL−1,f is identified. To facilitate presentation, we denote the
selected path as follows:

−→v = (v0, · · · , vL−1). (1)

• For each node vl (0 ≤ l ≤ L − 1) on the selected path −→v ,
the client first retrieves the encrypted index block from it, and
checks if Dt is in the node. Then, two query bit vectors

−→
Q l

1

and
−→
Q l

2 are generated by the client, where |−→Q l
1| = |−→Q l

2| =
c logN . Suppose Dt is at a certain position m of the node,
the two bit vectors are set as follows:

−→
Q l

1 = (r1, r2, · · · , rm, · · · , rc logN ),
−→
Q l

2 = (r1, r2, · · · , rm, · · · , rc logN ),
(2)

where rm means the negation of rm and each ri denotes a
random bit selected by the client from {0, 1}. (Note that if
Dt is not in this node, the two vectors will be the same.)
After that,

−→
Q l

1 is sent to S1 and
−→
Q l

2 is sent to S2.



Server Sj j ∈ {0, 1} computes:

D̂j =
⊕

0≤l≤L−1

(⊕
Dl

i

)
, ∀Dl

i :
−→
Ql

j [i] = 1. (3)

After the server Sj executes the computation, the calculated data
block is returned to the client. The client computes D̂0

⊕
D̂1 to

get the query target data block. After the target block has been
accessed, it will be re-encrypted by the client and uploaded to the
root node of each server.

An example is given in Figure 2, where the query target Dt is
mapped to leaf node v5,10. Hence, each node on the path v0,0 →
v1,0 → v2,1 → v3,2 → v4,5 → v5,10 is involved in data query.
Finally, data block Dt is found at node v5,10. After being accessed,
it is re-encrypted and added to root node v0,0.

3.3 Data Eviction Process
To prevent any node on the tree from overflowing, the following
data eviction process is conducted by the client in each server after
each query.

The basic idea of data eviction is as follows: For each non-bottom
layer l, two nodes vl,x and vl,y are randomly selected and the simi-
lar operations are executed on each node. In the following, we will
elaborate the eviction operation using vl,x as an example. Note
that, vl+1,2x and vl+1,2x+1 are the children nodes of vl,x.

The obliviousness of the data eviction process in the MSBT-ORAM
involves the following two aspects:

• For each evicting node (e.g. vl,x), the position where the
evicted data block reside should be hidden from any server.

• For each receiving node (e.g. vl+1,2x), each position that can
be used to receive the evicted data block should be selected
with an equal probability. In other words, each position of the
receiving node has an equal probability to be written during
data eviction.

Therefore, to perform the eviction operation, the client first oblivi-
ously retrieves an evicting data block D from node vl,x. If there is
at least one real data block in this node, D is a randomly selected
real data block, otherwise, D is a dummy data block. After D has
been retrieved by the client, the client re-encrypts D and upload it
to the server. The uploading process has the following two cases:

• D is a real data block. Without loss of generality, suppose D
needs to be evicted to vl+1,2x, a dummy block D′ needs to be
evicted to vl+1,2x+1 to achieve data eviction obliviousness.
To reduce the communication cost, D acts as the dummy data
block D′ when evicting to vl+1,2x+1.

• D is a dummy data block. Then, D will be evicted to both
vl+1,2x and vl+1,2x+1 as a dummy data block.

Next, we explain how data blocks are evicted from parent node
to its children. First, the node storage structure is introduced as
follows: For each node, the node storage is logically partitioned
into 3 equal-size parts, i.e., P1, P2 and P3. Each part can store
c logN data blocks:

• P1: this part is a storage space that is used to receive the
latest evicted data blocks from its parent.

• P2: this part is used to store real data blocks that still remains
in this node after more than c logN evictions on this node
have occurred since these real data blocks were evicted to
this node. Note that, as the number of real data blocks stored
in any node is at most c logN , this part may contain dummy
blocks.

• P3: the remaining storage space in the node. This part only
contains dummy data blocks that could be used to perform
real data block receiving from the eviction procedure of its
parent or dummy data eviction to its children nodes.

Note that, the servers can only distinguish P1 and the rest of the
storage of any node; P2 and P3 are known only to the client. Also,
P1, P2 and P3 are only logical partitions and any position of this
node will belong to different partitions from time to time. For ex-
ample, when one position in P2 or P3 is used to accept a data block
evicted from the parent node to this node, this position is trans-
ferred from P2 or P3 to P1; meanwhile, the oldest position in P1 is
automatically transferred from P1 to P2 or P3.

Based on the above logical partitioning, the client applies the fol-
lowing rules to evict D to vl+1,2x (the eviction of D to vl+1,2x+1

follows the same rule):

• If D is a real data block, there are two sub-cases:

– D is intended to be evicted to vl+1,2x. Thus, the data
block that will be evicted to vl+1,2x+1 is a dummy
block. In this case, each position w ∈ P3 will have
equal probability to be selected such that D will be
evicted to w.

– D is not intended to be evicted to vl+1,2x. Hence, the
data block that will be evicted to vl+1,2x+1 is the real
data block. In this case, one position w ∈ P2 will be
uniformly randomly selected and D will be evicted to
w.

• If D is a dummy data block, each position w ∈ P2 ∪ P3

will have equal probability to be selected such that D will be
written to.

After the above operations, w is transferred to P1. Meanwhile, the
oldest position w′ ∈ P1 becomes a member of P2 or P3 depending
on if it contains a real block or a dummy block.

We prove in Section 5 that, each position in P2 ∪ P3 has the same
probability to be selected to access during an eviction process; thus,
the eviction process is oblivious and does not reveal the access pat-
tern.

Figure 3 shows an example of the eviction process, where circled
nodes are selected to evict data blocks to their child nodes. Let us
consider how node v2,2 evicts its data block. The index block in
the node is first retrieved to check if the node contains any real data
block. If there is a real block De in v2,2 and De is mapped to leaf
node v5,20, De will be obliviously evicted to v3,5, which is v2,2’s
child and is on path from v2,2 to v5,20, while a dummy eviction
is performed to another child node v3,4. Otherwise, two dummy
evictions will be performed to nodes v3,4 and v3,5.
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Figure 3: An example of the eviction process in MSBT-ORAM.

4. FINAL CONSTRUCTION: MSKT-ORAM
Our proposed MSKT-ORAM aims to improve the communication
efficiency and further reduce the access delay. The idea of MSKT-
ORAM is to replace the binary tree in MSBT-ORAM with k-ary
tree to reduce the height of the tree. As the tree height is decreased,
the communication cost for each query will be reduced therefore
the access delay. However, directly replacing the binary tree to k-
ary tree requires the data eviction process to change accordingly to
ensure the obliviousness (i.e., the overflow probability of each node
should be bounded by 2−λ). Hence, we propose new data eviction
algorithm.

This section presents the details of the proposed MSKT-ORAM
design in terms of storage organization, system initialization, data
query process, and data eviction process.

4.1 Storage Organization
At each server, the data storage is physically organized as a k-ary
tree of height Hk = ⌈ logN+1

log k
⌉. For simplicity, we set the system

parameter k to be a power of two. Each k-node is mapped to a
binary subtree with k− 1 binary nodes (called b-nodes). As shown
in Figure 4, each k-node ul,i has the following components:

• Data Array (DA): a data container that stores 3c(k − 1) data
blocks, where c = 4 is a system parameter.

• Encrypted Index Table (EI): a table of 3c(k − 1) entries
recording the information for each block stored in the DA.
Specifically, each entry is a tuple of format (ID, lID, bnID),
which records the following information of each block:

– ID - ID of the block;
– lID - ID of the leaf k-node that the block is mapped to;
– bnID - ID of the b-node (within ul,i) that the block

logically belongs to.

In addition, the EI has a ts field which stores a timestamp
indicating when this k-node was accessed last time.

For example, k-node u0,0 in Figure 4(a) is mapped to the binary
subtree with v0,0 as root, and v1,0 and v1,1 as leaves in Figure 4(b).

This way, the physical k-ary tree can be treated as a logical binary
tree. Note that, all the b-nodes within the same k-node share the
storage space (i.e., DA).

4.2 Client-side Storage
At the client side, the following storage structures are maintained:

• A client-side index table I: a table of N entries, where each
entry i records the ID of the leaf k-node that data block Di is
mapped to (i.e., block Di is stored at some node on the path
from the root to this k-node). In practical implementation of
MSKT-ORAM, the table can be exported to the server, just
as in T-ORAM [26] and P-PIR [22]; to simplify presenta-
tion of the design in this section, however, we assume the
table is maintained locally at the client side. Note that, simi-
lar to Path ORAM [30] and SCORAM [32], outsourcing the
index table of O(N logN) bits with a uniform block size
of B = N ϵ bits can ensure the metadata recursion to be of
O(1) depth (0 < ϵ < 1).

• A constant-size temporary buffer: a buffer used to temporar-
ily store a constant number of blocks downloaded from the
server-side storage.

• A small permanent storage for secrets: a permanent storage
to store the client’s secrets such as the keys used for the en-
cryption and decryption of data and index tables.

• C: a counter counting the number of queries that the client
has issued to the server.

4.3 System Initialization
To initialize the system, the client acts as follows. It first encrypts
each real data block di to Di, and then randomly assigns it to a leaf
k-node on the k-ary tree maintained at each server. The rest of the
DA spaces on the tree shall all be filled with dummy blocks.

For each k-node, its EI entries are initialized to record the informa-
tion of blocks stored in the node. Specifically, the entry for a real
data block shall record the block ID to the ID field, the ID of the
assigned leaf k-node to the lID field, and the ID of an arbitrary
leaf b-node within the k-node to the bnID field. In an entry for a
dummy data block, the block ID is marked as “−1” while lID and
bnID fields are filled with arbitrary values. The ts field of the EI
shall be initialized to 0.

For the client-side storage, the index table I is initialized to record
the mapping from real data blocks to leaf k-nodes, and the keys for
data and index table encryption are also recorded to a permanent
storage space. Finally, the client initializes its counter C to 0.

4.4 Data Query
To query a data block Dt with ID t, the client increments the
counter C, searches the index table I to find out the leaf k-node that
Dt is mapped to, and then, for each k-node u on the path from the
root k-node to this leaf node, the XOR operations similar to those in
MSBT-ORAM are performed to retrieve Dt. The only difference is
that the query bit vector size of MSKT-ORAM is 3c(k−1) bits per
vector. As shown in Figure 4(a), to query a data block Dt stored at
k-node u3,21, the EIs at u0,0, u1,1, u2,5, and u3,21 are accessed, as
these k-nodes are on the path from the root to the leaf node that Dt

is mapped to. A dummy data block is retrieved obliviously from
u0,0, u1,1, and u2,5, respectively, while Dt is retrieved obliviously
from u3,21 and inserted obliviously into u0,0.
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Figure 4: An example MSKT-ORAM scheme with a quaternary-tree storage structure. Bold boxes represent the k-nodes accessed
when a client queries a target data block stored at k-node u3,21.

4.5 Data Eviction
In each of the servers, to prevent a k-node from overflowing its
DA, real data blocks should be gradually evicted from the root k-
node towards leaf k-nodes. Similar to T-ORAM and P-PIR, a data
eviction process is launched in MSKT-ORAM immediately after
each query.

4.5.1 Overview
Data eviction in MSKT-ORAM is conducted over its logical binary
tree. In a nutshell, two nodes from each layer of the logical binary
tree are randomly selected. In each of the selected b-nodes, if there
is a real data block, the block will be evicted to one of its child b-
nodes according to the block’s path (i.e., the path from the root to
the leaf k-node whose ID is stored at lID field of the EI entry cor-
responding to this block); otherwise, the client performs a dummy
eviction. Note that, immediate execution of all of these binary-
tree evictions would require the client to access O(logN) blocks,
which incurs the same eviction cost as P-PIR. To reduce the cost,
we delay and aggregate certain evictions, and execute them later in
a more efficient manner. The idea is developed based on the obser-
vation that there are two types of evictions between b-nodes: intra
k-node evictions and inter k-node evictions.

Intra k-node Evictions vs. Inter k-node Evictions An eviction is
called an intra k-node eviction if the data block is evicted between
b-nodes that belong to the same k-node; else it is called an inter k-
node eviction. For example in Figure 5, the eviction from v2,2 to its
child nodes is an intra k-node eviction, as v2,2 and its child nodes
belong to the same k-node u1,2. On the other hand, the eviction
from v3,2 to its child nodes is an inter k-node eviction, as v3,2 and
its two child nodes belong to different k-nodes.

As b-nodes within the same k-node share the same DA space for
storing data blocks, an intra k-node eviction only requires an up-
date of the EI to reflect the change of bnID field for the evicted
block. Therefore, such an eviction does not incur any communi-
cation overhead and thus could be performed more efficiently than
inter k-node evictions.

Opportunities to Delay Intra k-node Evictions During a data
eviction process, a k-node may not be involved in any inter k-node
evictions, i.e., its root b-node is not a child of any evicting b-node
meanwhile its own leaf b-nodes do not evict any data blocks. In
Figure 5, u2,3 and u2,11 are two examples of such a k-node. If intra
k-node evictions should occur in such a k-node, they can be delayed
to perform (i.e., to update the EI) later when the k-node is next
accessed during a query process or an inter k-node eviction. This
is possible because the EI of the k-node is not accessed until the k-
node is next accessed. Moreover, since the client has to download
the EI of the k-node anyway during a query process or an inter k-
node eviction, updating of the EI to complete delayed intra k-node
evictions does not cause any additional communication overhead,
thus reducing the eviction cost. For example, as shown in Figure 5,
evictions from b-nodes v4,3 and v4,11 can be delayed. Later on,
when u2,3 and u2,11 are accessed, the delayed evictions shall be
executed before any other updates.

More specifically, the eviction process is composed of the follow-
ing three phases.

4.5.2 Phase I: Selecting k-nodes for Eviction
At the beginning of an eviction process, the client uniform ran-
domly selects two b-nodes from each binary-tree layer l (l ∈ {log k−
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Figure 5: An example data eviction process in MSKT-ORAM with a quaternary-tree storage structure. The b-nodes selected to evict
data blocks are circled. The k-nodes scheduled with delayed evictions (i.e., u2,3 and u2,11) are highlighted with bold boundaries.

1, 2 log k − 1, · · · , (⌈ logN+1
log k

⌉ − 1) · log k − 1}). These layers
are the bottom binary subtree layers inside non-bottom k-nodes.
Therefore, evicting data blocks from the b-nodes on these layers to
their child b-nodes are inter k-node evictions and shall be executed
immediately. The k-nodes that contain these selected b-nodes or
their child b-nodes shall be processed as specified in Phases II and
III. For example, in Figure 5, b-nodes v3,0 and v3,2, which are on
the bottom-layer of k-nodes u1,0 and u1,1 respectively, are selected
for binary tree eviction; hence, k-nodes u1,0, u1,1, u2,0, u2,1, u2,4

and u2,5, which contain either the selected b-nodes or their child
b-nodes, shall be processed in the follow-up phases.

Note that, we delay the selection of evicting b-nodes on other lay-
ers, as their evictions are intra k-node evictions and can be delayed.

4.5.3 Phase II: Execution of Delayed Intra k-node
Evictions

For each b-node selected in Phase I, the three k-nodes that contain
this selected b-node or its child b-nodes shall execute their delayed
intra k-node evictions in this phase. Also, each k-node downloaded
during the query process, as elaborated in Section 4.4, shall also
execute its delayed intra k-node evictions as follows.

Specifically, for each of these k-nodes, say, ul,i, the following op-
erations shall be conducted. First, the client retrieves and decrypts
the EI of this k-node to obtain the ts stored there. The difference
between the client’s current counter C and the value of the ts, i.e.,
C − ts, is the number of eviction rounds for which this k-node has
delayed its intra k-node evictions.

Then, for each of these delayed eviction rounds, two b-nodes are
uniform randomly picked from each layer l′ (l′ ∈ {l · log k, l ·
log k + 1, · · · , (l + 1) · log k − 2}) of the whole logical binary
tree that the k-ary tree is mapped to. For each selected b-node vl′,i′
belonging to the binary subtree that k-node ul,i is mapped to, evic-

tion from this b-node to its child nodes is executed. Specifically, a
real data block d is randomly selected from vl′,i′ if the b-node has
a real data block; then, according to the lID of block d, the block
is logically evicted to one of its child b-nodes, say, vl′+1,j′ , which
is done by changing the bnID of block d to the ID of vi′+1,j′ .

After all the delayed intra k-node evictions have been executed, the
ts of k-node ul,i is updated to C.

4.5.4 Phase III: Execution of Inter k-node Evictions
For each b-node selected in Phase I, after the k-nodes containing
this b-node or its child b-nodes have executed their delayed intra
k-node evictions in Phase II, the inter k-node eviction from this
b-node to its child b-nodes shall be executed in this phase.

To facilitate data eviction, each k-node partitions its DA space into
three logical parts, denoted as P1, P2 and P3, each of which can
store c · (k − 1) data blocks.

• P1 stores the c · (k− 1) data blocks that have been evicted to
this k-node most recently.

• The rest space is evenly divided into two logical parts, P2 and
P3, and all the real data blocks belong to P2. As we prove in
Section 5, when system parameters are properly configured,
each k-node stores at most c · (k − 1) real blocks with the
probability of 1−2−λ; hence, the division fails (and thus the
eviction scheme fails) with only a probability of 2−λ.

Note that, the server knows P1, but does not know the scopes of P2

and P3.

Let vl,x denote the selected evicting b-node inside k-node ul′,x′ ,
and vl+1,y and vl+1,z denote the two child b-nodes of vl,x. Also,



let ul′+1,y′ and ul′+1,z′ denote the two k-nodes where b-nodes
vl+1,y and vl+1,z reside. The procedure for data eviction from vl,x
to vl+1,y and vl+1,z is elaborated as follows.

First, the client needs to obliviously retrieve an evicting data block,
denoted as D, from vl,x. To accomplish this, the client retrieves the
EI of k-node ul′,x′ which contains vl,x, and checks if vl,x contains
a real data block. Suppose one real data block D of vl,x is stored at
position m of the DA of ul′,x′ , the client constructs two 3c(k−1)-
bit query vectors, denoted as

−→
Q1 and

−→
Q2. The client sets the two

bit vectors as follows:
−→
Q1 = (r0, r1, · · · , rm, · · · , r3c(k−1)−1),
−→
Q2 = (r0, r1, · · · , 1− rm, · · · , r3c(k−1)−1),

(4)

where each ri is a bit randomly selected from {0, 1}. Then, the
client sends

−→
Q1 to S1 and

−→
Q2 to S2. Each server Sj , where j ∈

{0, 1}, computes D̂j as ⊕
∀D′∈{D′ on pos i of u

l′,x′ |0≤i≤3c(k−1)−1,Qj [i]=1}

D
′
, (5)

and sends D̂j back to the client, who computes D̂0

⊕
D̂1 to get

D.

Second, the client applies the following rules to evict a data block
D from vl,x to vl+1,2x (the eviction of D to vl+1,2x+1 follows the
same rule):

• If D is a real data block, there are two sub-cases:

– D is intended to be evicted to vl+1,2x. Thus, the data
block that will be evicted to vl+1,2x+1 is a dummy
block. In this case, each position w ∈ P3 will have
equal probability to be selected such that D will be
evicted to w.

– D is not intended to be evicted to vl+1,2x. Hence, the
data block that will be evicted to vl+1,2x+1 is the real
data block. In this case, one position w ∈ P2 will be
uniformly randomly selected and D will be evicted to
w.

• If D is a dummy data block, each position w ∈ P2 ∪ P3

will have equal probability to be selected such that D will be
written to.

After the above operations, w is transferred to P1. Meanwhile, the
oldest position w′ ∈ P1 becomes a member of P2 or P3 depending
on if it contains a real block or a dummy block.

We prove in Section 5 that, each position in P2 ∪ P3 has the same
probability to be selected to access during an eviction process; thus,
the eviction process is oblivious and does not reveal the access pat-
tern.

5. SECURITY ANALYSIS
In this section, we first show that with proper setting of param-
eters, MSKT-ORAM construction fails with a probability of 2−λ

(λ ≥ logN + 10) through proving the DA of each k-node over-
flows with a probability of 2−λ. Then, we show that both query
and eviction processes access k-nodes independently of the client’s
private data request. Based on the above steps, we finally present
the main theorem.

LEMMA 1. In MSKT-ORAM, if each DA stores 3c(k − 1) data
blocks, where k ≥ 1.36λ + 6.44 and c = 4, the probability for
the DA of any k-node in the k-ary tree to overflow is 2−λ, where
λ > logN + 10.

PROOF. The proof considers non-leaf and leaf k-nodes sepa-
rately.

Non-leaf k-nodes. The proof for non-leaf k-node proceeds in
the following two steps.

In the first step, we consider the binary tree that a k-ary tree in
MSKT-ORAM is logically mapped to, and study the number of real
data blocks (denoted as a random variable Xv) logically belonging
to an arbitrary b-node v on an arbitrary level l of the binary tree.

As the eviction process of MSKT-ORAM completely simulates the
eviction process of T-ORAM and P-PIR over the logical binary tree,
their results [26] of theoretical study on the number of real data
blocks in a binary tree node can still apply. Specifically, Xv can be
modeled as a Markov Chain denoted as Q(αl, βl). In the Chain, the
initial one is Xv = 0, The transition from Xv = i to Xv = i + 1
occurs with probability αl, and the transition from Xv = i + 1 to
Xv = i occurs with probability βl, for every non-negative integer
i. Here, αl = 1/2l and βl = 2/2l for any level l. Also, for any
l ≥ 2, an unique stationary distribution exists for the Chain; that is,

πl(i) = ρil(1− ρl), (6)

where

ρl =
αl(1− βl)

βl(1− αl)
=

2l − 2

2(2l − 1)
∈
[
1

3
,
1

2

)
. (7)

In the second step, we consider an arbitrary k-node u on the k-ary
tree and study the number of real data blocks stored at the DA of u,
which is denoted as a random variable Yu.

The binary subtree that u is logically mapped to contains k − 1
b-nodes, which are denoted as v1, · · · , vk−1 for simplicity. Then
Yu =

∑k−1
i=1 Xvi . Also, as k should be greater than 2 to make

MSKT-ORAM nontrivial, any of the b-nodes v1, · · · , vk−1 should
be on a level greater than or equal to 2 on the logical binary tree
(Those b-nodes on level 0 and 1 never overflow).

Now, we compute the probability

Pr [Yu = t] = Pr [Xv1 + · · ·+Xvk−1 = t]. (8)

Note that, there are

(
t+ k − 2

k − 2

)
different combinations of Xi =

ti (i = 1, · · · , k − 1) such that t1 + · · · + tk−1 = t. Hence, we
have:

Pr [Yu = t] ≤

(
t+ k − 2

k − 2

)
k−1∏
i=1

[(
1

2

)ti
(
2

3

)]
(9)

≤
(
(t+ k − 2) · e

k − 2

)k−2 (
1

2

)t (
2

3

)k−1

(10)

<

(
(t+ k − 2) · e

k − 2

)k−1 (
1

2

)t (
2

3

)k−1

≤
(
2(t+ k − 2) · e

3(k − 2)

)k−1(
1

2

)t

.



Here, Equation (9) is due to πl(i) = ρil(1 − ρl) ≤ ρil · 2
3

<(
1
2

)i · 2
3

, which is due to Equation (6). Inequality (10) is due to(
n
k

)
≤
(
n·e
k

)k for all 1 ≤ k ≤ n. Hence, we have:

Pr[Yu = t] ≤ [
2

3
· e · (c+ 1 +

c

k − 2
) · (1

2
)c]k−1 (11)

< (
3

5
)k−1 = (

3

5
)t/4. (12)

Here, Inequality (11) is due to t = c(k−1) in the scheme, Inequal-
ity (12) is due to k = 1.36λ+ 6.44 > logN and c = 4.

Then, the following inequalities follows:

Pr [Yu ≥ t] =

∞∑
i=0

Pr [Yu = t+ i] <

∞∑
i=0

[(
3

5
)1/4]t+i

=
( 3
5
)t/4

1− ( 3
5
)1/4

< 9 · 2−0.74(k−1) < 2−λ.

(13)

Leaf k-nodes. At any time, all the leaf k-nodes contain at most
N real blocks and each of the blocks is randomly placed into one
of the leaf k-nodes. Thus, we can apply standard balls and bins
model to analyze the overflow probability. In this model, N balls
(real blocks) are thrown into 2N/k bins (i.e., leaf k-nodes) in a
uniformly random manner.

We study one arbitrary bin and let X1, · · · , XN be N random vari-
ables such that

Xi =

{
1 the ith ball is thrown into this bin,
0 otherwise. (14)

Note that, X1, · · · , XN are independent of each other, and hence
for each Xi, Pr [Xi = 1] = 1

N/k
= k

2N
. Let X =

∑N
i=1 Xi. The

expectation of X is

E[X] = E

[
N∑
i=1

Xi

]
=

N∑
i=1

E[Xi] = N · k

2N
=

k

2
. (15)

According to the Chernoff bound, when δ = 2j/k − 1 ≥ 2e − 1,
it holds that

Pr [at least j balls in this bin]

= Pr [X ≥ j] <

(
eδ

(1 + δ)(1+δ)

)k/2

<

(
eδ

(2e)δ

)k/2

= 2−kδ/2.

(16)

Hence, letting j = 4(k − 1), we have

Pr [at least 4(k − 1) balls in this bin] < 2−1.5k. (17)

Finally, we have the following equation:

Pr [∃ a bin with at least 4(k − 1) balls]

<
2N

k
· 2−1.5k =

2N

k
· 2−1.5(1.36λ+6.44)

=
2N

k
· 2−2.04λ+9.66 < 2−λ.

(18)

The first inequality is due to the union bound. The second inequal-
ity is due to the fact that λ ≥ logN + 10.

According to the above two parts, we have proved that the overflow
probability is 2−λ.

LEMMA 2. Any query process in MSKT-ORAM accesses k-nodes
from each layer of the k-ary tree, uniformly at random.

LEMMA 3. Any eviction process in MSKT-ORAM accesses a
sequence of k-nodes independently of the client’s private data re-
quest.

Please refer to Appendices for proofs of the lemmas.

LEMMA 4. For any k-node ni with k-node np as its parent,
each position in P2

∪
P3 of ni has the equal probability of 1

2c logN
to be selected to access.

PROOF. During an eviction process, np may evict a real or dummy
block to one of its child nodes (i.e., ni or n1−i). In the following,
we consider these two cases respectively.

Case I: np evicts a real block to a child node. There are two sub-
cases as follows.

Case I-1: the real block is evicted to ni; this subcase occurs with
the probability of 0.5. In this subcase, according to the afore-
described eviction policy, a position is randomly selected from P3

to accept the evicted block.

Case I-2: the real block is evicted to n1−i, i.e., a dummy block
is evicted to ni; this occurs with the probability of 0.5. In this
subcase, according to the eviction policy, a position is randomly
selected from P2 to access.

Case II: np does not evict any real block to its child nodes. That is,
both ni and n1−i are evicted to with dummy blocks. In this case,
according to the eviction policy, a position is randomly selected
from P2

∪
P3 to access.

Also because P2 and P3 have the same size, each position in P2

∪
P3

has the equal probability to be selected to access.

THEOREM 1. MSKT-ORAM is secure under Definition 2, if k ≥
1.36λ+ 6.44 and c = 4.

PROOF. Given any two equal-length sequence x⃗ and y⃗ of the
client’s private data requests, their corresponding observable access
sequences A(x⃗) and A(y⃗) are computationally indistinguishable,
because both of the observable sequences are independent of the
client’s private data request sequences. This is due to the following
reasons:

• According to the query and eviction algorithms, sequences
A(x⃗) and A(y⃗) should have the same format; that is, they
contain the same number of observable accesses, and each
pair of corresponding accesses have the same access type.

• According to Lemma 2, the sequence of locations (i.e., k-
nodes) accessed by each query process are uniformly random
and thus independent of the client’s private data request.



• According to Lemma 3, the sequence of locations (i.e., k-
nodes) accessed by each eviction process after a query pro-
cess is also independent of the client’s private data request.

Moreover, according to Lemma 1, the MSKT-ORAM construction
fails with a probability of 2−λ, when k ≥ 1.36λ + 6.44 and c =
4.

6. COST ANALYSIS
We analyze the performance of MSKT-ORAM in terms of commu-
nication, server-side and client-side storage costs. To facilitate the
analysis, the following notations and assumptions are applied:

• N : the total number of data blocks. In MSKT-ORAM, we
assume 216 ≤ N ≤ 234. In practice, suppose the data block
size is 1 MB, when N = 234, the total amount of all out-
sourced data blocks will be 16 PB.

• k: the out-degree of each k-node in MSKT-ORAM. Follow-
ing the requirement that k ≥ 1.36λ + 6.44, k can be set to
O(N ϵ′) where 0 < ϵ′ < ϵ < 1. Figure 6 shows the lower
bound of k under different security parameter λ. Through out
the rest of the paper, we set k = 128 such that the overflow
probability of MSKT-ORAM is no more than 2−80.

• Hk and Hb: heights of the k-ary and binary trees, respec-
tively. According to the scheme, Hb = ⌈logN + 1⌉ and
Hk = ⌈ logN+1

log k
⌉. Therefore, Hk is a constant in practice.

For example, given k = 128, the height of the tree is Hk ≤ 5
when 216 ≤ N ≤ 234.

• SEI : size of the EI of a k-node. According to the scheme,
SEI = 3c ·(k−1) · {logN+log(N/k)+log[3c · (k−1)]}.
Given 216 ≤ N ≤ 234 and ϵ′ = 1/3, 6.7 KB ≤ SEI ≤
13.4 KB.

• B: the size of each data block. In MSKT-ORAM, we assume
Ω(N ϵ) bits (0 < ϵ < 1), such that the number of recursions
is O(1). For example, given 216 ≤ N ≤ 234 and ϵ = 1/2,
B is only required to be no smaller than 16 KB. Consider the
requirement of SEI . In order to absorb the EI in our scheme,
each data block size is only required to be greater than or
equal to 20 KB.

• SQV : size of the query vector of a k-node. According to the
scheme, SQV = 3c · (k − 1) < 24 bytes.

In order to reduce the communication cost, we suppose only one
server maintains the EI for each k-node regardless of how many
servers are.

6.1 Communication Cost Per Query
Suppose there are two servers in MSKT-ORAM. During a query
process, Hk k-nodes are accessed from the k-ary tree. The client
needs to (i) download the EIs of these k-nodes (which is Hk · SEI

bits); (ii) send query vectors to two servers(i.e., 2Hk · SQV bits);
(iii) upload the re-encrypted EIs (i.e., Hk · SEI bits). Then, the
client will download two data blocks from the server, one data
block from each server, which is 2B bits. To wrap up a query
process, the target data block is uploaded to the root k-node of each
server through multicasting, which incurs B bits communication
overhead.
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Figure 6: k v.s. failure probability. The shadow area in the
figure shows feasible k’s for a given security level, i.e., failure
probability of MSKT-ORAM, where 216 ≤ N ≤ 234.

Therefore, the communication cost for each query process is:

CommQuery = 3B + 2Hk · (SEI + SQV ) bits. (19)

During an eviction process, 2(Hk − 1)− 1 k-nodes are selected to
evict one data block to their children k-node.

For each selected k-node, the client first downloads the evicted
block. Therefore, the client needs to do the following: (i) download
its EI and its children’s EI (3SEI bits); (ii) send query vectors to
two servers (2SQV bits); (iii) XOR-download one data block from
parent k-node from each server (2B bits) and download one data
block from each selected children k-node (2B bits); (iv) upload
these EI (3SEI bits) back. Then, two data blocks are uploaded to
the two children k-node for all servers through multicasting, which
incurs 2B bits communication overhead.

Therefore, the communication cost for each eviction process is

CommEvict = [2(Hk−1)−1]·(6SEI+2SQV +6B) bits. (20)

Overall, the communication cost per query is:

Comm = 6(Hk − 1)(3SEI + SQV ) + [12(Hk − 1)− 3]B bits.
(21)

Figure 7 shows the actual communication cost for different k given
N and B. From the figure, it is obvious that:

• When N is fixed, the increase of k may lead to a sharp com-
munication cost decrease. The reason is because the decrease
of Hk, i.e., the height of the tree decreases by 1.

• When N is fixed and the tree height Hk is not changed, the
increase of k will lead to the increase of communication cost
since the size of EI is increased as there are more b-nodes for
any single k-node.

• When data block size B increases, the EI part and query vec-
tor part will be absorbed by data block size. Therefore, the
communication cost is [12(Hk − 1) − 3]B bits. For ex-
ample, in the last figure, when data block size is 1 MB and
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Figure 7: Communication cost. This figure shows the optimal communication cost for given a given N and B combination. Data
block size B ranges from 16 KB to 1 MB and the total number of data blocks N ranges from 216 to 224. The optimal k is marked
above each bar.

the height of the tree is 2, no more than 10 data blocks will
be transferred per data query between the client and the two
servers.

6.2 Storage Costs
According to the MSKT-ORAM design, the client-side storage cost
is the size of a constant number of data blocks, i.e., O(B). The
storage at the server side needs to store 3c(k − 1) data blocks per
k-node, which is 3c data blocks per b-node. Since there are 2N−1
b-nodes, the server side storage overhead is O(N · B), which is
3c · (2N − 1)B < 24NB bits per server.

6.3 Computational Costs per Query
The computational cost on the client mainly consists of the follow-
ing three sources: (1) Data IO cost on the server, i.e., data will be
read into memory to perform XOR operations. Note that, the num-
ber of data IO operations equals the number of XOR operations. (2)
Data block XOR cost, denoted as CompXOR/IO; (3) Data block
and EI encryption/decryption cost denoted as CompEnc;

During data query, the client (i) decrypts the downloaded EIs of Hk

k-nodes (Hk ·CompEnc); (ii) XORs and decrypts the downloaded
data blocks CompXOR/IO + CompEnc; and (iii) re-encrypts EIs
(Hk · CompEnc) and data blocks CompEnc. Therefore, the total
computational cost for data query on client side is

CompQuery = (2Hk + 2)CompEnc + CompXOR/IO. (22)

For each data eviction process, the client first XOR-downloads the
evicted data blocks. Thus, the client needs to (i) download and de-
crypt EIs of the k-node and two of its children (3CompXOR/IO +
3CompEnc); (ii) XOR the downloaded blocks (CompXOR/IO);
(iii) decrypt two data blocks from its children (2CompEnc); (iv)
re-encrypt the three EIs and three downloaded data blocks from
the servers (6CompEnc). Hence, the computational cost for data
eviction is:

CompEvict = [2(Hk−1)−1]·(11CompEnc+3CompXOR/IO).
(23)

The total computational cost on the client side is:

CompClient = (24Hk−31)CompEnc+(6Hk−7)CompXOR/IO.
(24)

The computational cost at each server is contributed by the XOR

operation in MSKT-ORAM. For each data query, XOR operations
are performed on Hk · 3c(k − 1) data blocks. Since about half of
the data blocks will be XORed, the computational cost per server
is:

Comp′Query =
Hk · 3c(k − 1)

2
· CompXOR/IO. (25)

For each data eviction process, there are 2(Hk − 1) − 1 k-nodes
to perform XOR operations on. Thus, the computational cost per
server is:

Comp′Evict =
[2(Hk − 1)− 1] · 3c(k − 1)

2
· CompXOR/IO.

(26)
Thus, the total computational cost is:

CompServer = Comp′Query + Comp′Evict

=
9(Hk − 1)c(k − 1)

2
· CompXOR/IO

= 18(Hk − 1)(k − 1) · CompXOR/IO.

(27)

7. COMPARISONS
In this section, we present detailed comparisons between MSKT-
ORAM and several state-of-the-art ORAMs including T-ORAM [26],
Path ORAM [30], P-PIR [22], C-ORAM [24], MSS-ORAM [27],
and CNE-ORAM [23].

7.1 Asymptotical Comparisons
Table 1 shows the asymptotical comparison between MSKT-ORAM
and some existing ORAM schemes. First, we make a compari-
son to single server ORAMs, which are T-ORAM, Path ORAM,
P-PIR and C-ORAM. For T-ORAM, Path ORAM and P-PIR, the
communication costs of these three schemes are not constant. For
both C-ORAM and P-PIR, they require homomorphic encryptions
in the schemes which incur a huge amount of computations on
the server side. Compared to multi-server ORAMs, i.e., ObliviS-
tore and CNE-ORAM, MSKT-ORAM only requires at least 2 non-
colluding servers and no communication is required between the
servers. In addition, MSKT-ORAM only requires the client to store
a constant number of data blocks.

7.2 Practical Comparisons
In the state-of-the-art ORAM schemes with homomorphic encryp-
tion (such as P-PIR and C-ORAM), the computational cost and the



Table 1: Asymptotical comparisons in terms of client-server communication cost, server-server communication cost, client storage
cost, server storage cost and the minimum number of non-colluding servers. N is the total number of data blocks and B is the size
of each block in the unit of bits. B = O(N ϵ) for some 0 < ϵ < 1. For MSKT-ORAM, k = O(N ϵ′) where 0 < ϵ′ < ϵ < 1 and c = 4.
For all tree structure ORAMs, suppose the index table is outsourced to the server side with O(1) recursion depth. The star symbol
denotes the scheme requires homomorphic encryption.

ORAM C-S Comm. Cost S-S Comm. Cost Client Stor. Cost Server Stor. Cost Number of Servers
T-ORAM [26] O(log2 N ·B) N.A. O(B) O(N logN ·B) 1

Path ORAM [30]
SCORAM [32] O(logN ·B) N.A. O(logN ·B) · ω(1) O(N ·B) 1

∗P-PIR [22] O(logN ·B) N.A. O(B) O(N logN ·B) 1
∗C-ORAM [24] O(B) N.A. O(B) O(N ·B) 1

MS-ORAM [21] O(logN ·B) O(log3 N ·B) O(B) O(N logN ·B) 2

MSS-ORAM [27] O(B) O(logN ·B) O(
√
N ·B) O(N ·B) 2

CNE-ORAM [23] O(B) N.A. O(B) O(N ·B) 4

MSKT-ORAM O(B) N.A. O(B) O(N ·B) 2

access delay are prohibitively high. As illustrated in C-ORAM [24],
each data access will incur a delay of about 7 minutes. When the
client frequently accesses the storage, access delay becomes an ob-
stacle for these schemes. However, in MSKT-ORAM, data XOR
and bit-shift operations (AES) are used to replace expensive homo-
morphic encryption. Thus, the major advantage of MSKT-ORAM
is to reduce the computational costs on the server side and therefore
the delay.

Among all the ORAMs that are considered in asymptotical com-
parison section, the most comparable scheme is CNE-ORAM [23].
Thus, we make a detailed comparison between CNE-ORAM and
our proposed scheme. The comparisons are conducted in terms of
communication cost, storage cost and access delay. The access de-
lay comparison includes all non-implementation factors that result
in the access delay. In the comparison, we consider the following
parameter settings: (1) N ranges from 216 to 234; (2) B is set to
1 MB for both schemes; (3) The security parameter λ ranges from
20 to 80 for CNE-ORAM and λ = 80 for MSKT-ORAM; (4) As
described before, k is set to 128 in MSKT-ORAM.

Table 2: Practical Comparisons (216 ≤ N ≤ 234, B = 1 MB).
The communication cost in the table is the client-server com-
munication cost per query. The computational cost is the num-
ber of XOR operations needed on the server side. The IO cost is
the number of data block that need to be read into the memory
for processing.

CNE-ORAM MSKT-ORAM
Comm. Cost > 40 ·B 22 ·B ∼ 46 ·B
Comp. Cost > 10(λ− 10) · logN 18(Hk − 1)(k − 1)

IO Cost > 10(λ− 10) · logN 18(Hk − 1)(k − 1)
Security Param. 20 ≤ λ ≤ 80 λ = 80

7.2.1 Communication Cost Comparison
As explained in CNE-ORAM, the communication cost is deter-
mined by the security parameter, node size and the eviction fre-
quency. In the evaluation section, the authors of CNE-ORAM sug-
gest a communication cost of more than 40 · B per query. For
MSKT-ORAM, a lower or comparable communication cost can be
achieved under the setting of k = 128. As shown in Equation 21,
when 216 ≤ N ≤ 220, the communication cost of MSKT-ORAM
is about 22 · B per query; when 221 ≤ N ≤ 227, the com-
munication cost of MSKT-ORAM is < 34 · B per query; when

228 ≤ N ≤ 234, the communication cost of MSKT-ORAM is
< 46 ·B per query.

7.2.2 Access Delay Comparison
The access delay for both CNE-ORAM and our proposed scheme
is mainly contributed by three factors: (1) Communication De-
lay: Delay incurred by communication between the client and the
server; (2) Computational Delay: Delay incurred by server side
computation; (3) IO Delay: Delay incurred by server side IO oper-
ations.

Communication Delay. Suppose the client and the server band-
width is BW . As aforementioned, the total communication cost for
CNE-ORAM is greater than 40 ·B. Therefore, the communication
delay of CNE-ORAM is

40 ·B
BW

. (28)

While for MSKT-ORAM, as shown in Table 2, the communication
delay is

22 ·B
BW

∼ 46 ·B
BW

. (29)

In order to illustrate the actual communication delay. Suppose the
network bandwidth between the client and the servers is 10 MB/s
and data block size is B = 1 MB. CNE-ORAM needs about 4
seconds to transfer these data blocks while MSKT-ORAM needs
about 2.2 ∼ 4.6 seconds to transfer.

Computational Delay. The computational delay is mainly con-
tributed by server-side computation operations, i.e., the number of
data to be XORed by the server from physical storage to server
memory.

As described in Equation 27, the server side computational delay
of MSKT-ORAM is 18(Hk − 1)(k − 1). Note that, since 216 ≤
N ≤ 234 and k = 128, 3 ≤ Hk ≤ 5. Therefore, the total number
of XOR operations ranges from 4572 to 9144.

In CNE-ORAM, the XOR operations are determined by the binary
tree height Hb = logN and the node size θ. Since the node size θ
of CNE-ORAM is related to its security parameter, from its regres-
sion evaluation, θ = 20(λ − 10). Thus, the total number of XOR



operations will be performed on half of these data blocks. Note
that, data eviction XOR cost is not counted here

0.5θ ·Hb = 10(λ− 10) · logN. (30)

For comparison fairness, we set the security parameter λ in CNE-
ORAM to 80. Then, the total number of operations ranges from
11200 to 23800.

For illustration purpose, we choose N = 220 and let the security
parameter λ varies between 20 to 80. The total number of opera-
tions for each server for each scheme is shown in Figure 8. In order

 5000

 10000

 15000

 20000

 25000

 30000

 35000

20 30 40 50 60 70 80N
um

be
r 

of
 X

O
R

/I
O

 o
pe

ra
tio

ns
 o

n 
ea

ch
 s

er
ve

r

Security Parameter (N=220)

CNE-ORAM
MSKT-ORAM

Figure 8: Comparisons of number of XOR/IO operations on
the server per query. N = 220 and for MSKT-ORAM, k = 128.

to better understand the computational delay for both scheme, we
suppose one XOR operation can be done with 1 millisecond for
two 1 MB data blocks (Note that, as shown in [23], a 2012 Mac-
book Pro with 2.4 Ghz Intel i7 processor can achieve this speed).
Thus, the computational delay for MSKT-ORAM is about 4.5 sec-
onds to 9 seconds, while the computational delay for CNE-ORAM
ranges from 11.2 seconds to 23.8 seconds.

IO Delay. The total number of IO operations on the server side
is the same as the number of XOR operations. For each of the
IO operations to read 1 MB data block to memory, it takes about
2 milliseconds on a 2012 Macbook Pro (500 MB/s read/write speed
for SSD). Therefore, the MSKT-ORAM incurs a total IO delay for
about 9 seconds to 18 seconds while CNE-ORAM incurs 22.4 sec-
onds to 47.6 seconds.

Overall Delay. Putting all delay factors together, given security
parameter λ = 80, CNE-ORAM takes about 37.6 ∼ 75.4 seconds
to complete a query while MSKT-ORAM only needs 18.1 ∼ 31.7
seconds to complete the query.

7.2.3 Storage Cost
The storage cost of CNE-ORAM depends on the size of each node
on the binary tree, θ and the number of tree nodes, which can be
computed as follows:

NumNode = 1 + 21 + 22 + ·+ 2L, (31)

where N ≤ χ · 2L−1 and χ = θ
10

. Thus, the number of tree nodes
is greater than or equal to 4N

χ
− 1. Therefore, the storage cost per

server in CNE-ORAM is:

NumNode · θ ≥ 40N ·B. (32)

Since there are four servers in CNE-ORAM, the storage cost in
total is 160N ·B. For MSKT-ORAM, the storage cost is 24N ·B
per server as shown in section 6.2. Therefore, the total storage cost
is 48N ·B.

8. RELATED WORK
8.1 Oblivious RAM
Based on the data lookup technique adopted, existing ORAMs can
be classified into two categories, namely, hash-based ORAMs and
index-based ORAMs. Hash-based ORAMs [10–14, 17, 25, 33–35]
require some data structures such as buckets or stashes to deal with
hash collisions. Among them, the Balanced ORAM (B-ORAM) [17]
proposed by Kushilevitz et al. achieves the lowest asymptotical
communication cost, which is O(B · log2 N

log logN
), where B is the size

of a data block. Index-based ORAMs [7, 26–30] use index struc-
ture for data lookup. They require the client to either store the
index, or outsource the index to the server recursively in a way
similar to storing data, at the expense of increased communica-
tion cost. The state-of-the-art index-based ORAMs are binary tree
ORAM (T-ORAM) [26], Path ORAM [30], and SCORAM [32].
When B = N ϵ (constant 0 < ϵ < 1) is assumed, the commu-
nication cost for T-ORAM is O(B · log2 N) with failure proba-
bility O(N−c) (c > 1), while Path ORAM and SCORAM incur
O(B · logN) · ω(1) communication cost with O(N−ω(1)) failure
probability and O(B · logN) · ω(1) client-side storage.

8.2 Private Information Retrieval (PIR)
PIR protocols were proposed mainly to protect the pattern in ac-
cessing read-only data at remote storage. There are two variations
of PIR: information-theoretic PIR (iPIR) [1,4,8,9], assuming mul-
tiple non-colluding servers each holding one replica of the shared
data; computational PIR (cPIR) [2, 3, 18, 19], which usually as-
sumes single server in the system. cPIR is more related to our work,
and thus is briefly reviewed in the following. The first cPIR scheme
was proposed by Kushilevitz and Ostrovsky in [18]. Designed
based on the hardness of quadratic residuosity decision problem,
the scheme has O(nc) (0 < c < 1) communication cost, where n is
the total number of outsourced data in bits. Since then, several other
single-server cPIRs [2, 19] have been proposed based on differ-
ent intractability assumptions. Even though cPIRs are impractical
when database size is large, they are acceptable for small databases.
Recently, several partial homomorphic encryption-based cPIRs [15,
31] have been proposed to achieve satisfactory performance in prac-
tice, when database size is small. Due to the property of partial ho-
momorphic encryption, [20, 22] show that these cPIR schemes can
also be adapted for data updating.

8.3 Hybrid ORAM-PIR Designs
Designs based on a hybrid of ORAM and PIR techniques have
emerged recently. Among them, C-ORAM [24] has the best-known
performance. However, as the complexity of PIR primitives, one
data query would require the server to take about 7 minutes to pro-
cess. In addition, data block size in C-ORAM is O(log4 N) bits,
where N is the total number of outsourced data blocks. Thus, this
imposes another strict requirement on C-ORAM.

8.4 Multi-Server ORAMs
There are several multi-server ORAM schemes in literature. Among
them, the first one is MS-ORAM [21]. MS-ORAM extends the idea



of the hierarchical ORAM [10] and the two non-colluding servers
are used to obliviously shuffle data. Following the hierarchical
ORAM, the client-server communication cost is O(logN · B),
while the server-server communication cost is O(log3 N · B) due
to its complicated shuffling process. Even though it only requires
a constant local storage, the communication cost is expensive in
practice.

The second scheme is MSS-ORAM [27], which follows the basic
design of Partition-ORAM [29]. In their scheme, data shuffling is
done between different cloud servers. The client-server communi-
cation cost is reduced to a constant number, but the server-server
communication cost is O(logN · B). In addition, it requires the
client to store O(

√
N) data blocks in the local storage.

Recently, another multi-server ORAM called CNE-ORAM is pro-
posed which incurs O(B) client-server communication cost using
at least 4 non-colluding servers. In CNE-ORAM, each data block
is split into two parts using secret sharing techniques. Each part of
one data block is further copied into two copies and each copy is
stored onto 2 out of the 4 servers. The remaining part is also copied
and stored onto the other 2 servers. At the server side, the storage
is organized as a binary tree with of height H = O(logN) and
each tree node can store θ data blocks. For each data query, the
target data block is retrieved using XOR-based private information
retrieval. Then client then writes ϕ data blocks to root node of each
server. After χ queries, data eviction process is executed to prevent
root node from overflowing. During data eviction, the client guides
the servers to merge nodes on the evicting path. In post eviction
process, client retrieves a block for the leaf node of the evicting
path and replaces it with an empty block if it is a noise block. The
computation cost is mainly contributed by data XOR operations,
where for each data query, more than 0.5θ · L blocks are XORed
and the communication cost is mainly contributed by uploading ϕ
data blocks to root per query, where L = O(logN) is the height of
the tree.

9. CONCLUSION
This paper proposes MSKT-ORAM, which organizes the server
storage as a k-ary tree with each node acting as a fully-functional
PIR storage. It also adopts a novel delayed eviction technique to
optimize the eviction process. MSKT-ORAM is proved to protect
the data access pattern privacy at a failure probability of 2−80 (N
is the number of exported data blocks), when k ≥ 128. the com-
munication cost of MSKT-ORAM is only 22 to 46 data blocks,
when N (i.e., the total number of outsourced data blocks) ranges
from 216 to 234 and data block size B ≥ 20 KB. Detailed asymp-
totical and numerical analysis, as well as complete simulation and
implementation comparisons are conducted to show that MSKT-
ORAM achieves better communication, storage and computational
efficiency in practical scenario over these compared state-of-the-art
ORAM schemes.
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Appendix II: Proof of Lemma 2.
(sketch) In MSKT-ORAM, each real data block is initially mapped
to a leaf k-node uniformly at random; and after a real data block is
queried, it is re-mapped to a leaf k-node also uniformly at random.
When a real data block is queried, all k-nodes on the path from
the root to the leaf k-node the real data block currently mapped to
are accessed. Due to the uniform randomness of the mapping from
real data blocks to leaf k-nodes, the set of k-nodes accessed during
a query process is also uniformly at random.

Appendix III: Proof of Lemma 3.
(sketch) During an eviction process, the accessed sequence of k-
nodes is independent to the client’s private data request due to: (i)
the selection of b-nodes for eviction (i.e. Phase I of the eviction
process) is uniformly random on the fixed set of layers of the log-
ical binary tree and thus is independent of the client’s private data
request; and (ii) the rules determining which evictions should be
executed immediately (and hence the involved k-nodes should be
accessed) and which can be delayed are also independent of the
client’s private data requests.


