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Abstract

Ishai, Kushilevitz, Ostrovsky and Sahai (STOC 2007, SIAM JoC 2009) introduced the powerful
“MPC-in-the-head” technique that provided a general transformation of information-theoretic MPC pro-
tocols secure against passive adversaries to a ZK proof in a “black-box” way. In this work, we extend this
technique and provide a generic transformation of any semi-honest secure two-party computation (2PC)
protocol (with mild adaptive security guarantees) in the so called oblivious-transfer hybrid model to an
adaptive ZK proof for any NP language, in a “black-box” way assuming only one-way functions. Our
basic construction based on Goldreich-Micali-Wigderson’s 2PC protocol yields an adaptive ZK proof
with communication complexity proportional to quadratic in the size of the circuit implementing the NP
relation. Previously such proofs relied on an expensive Karp reduction of the NP language to Graph
Hamiltonicity (Lindell and Zarosim (TCC 2009, Journal of Cryptology 2011)).

As an application of our techniques, we show how to obtain a ZK proof with an “input-delayed”
property for any NP language without relying on expensive Karp reductions that is black-box in the
underlying one-way function. Namely, the input delayed property allows the honest prover’s algorithm
to receive the actual statement to be proved only in the final round. We further generalize this to obtain
a “commit and prove” protocol with the same property where the prover commits to a witness w in
the second message and proves a statement x regarding the witness w in zero-knowledge where the
statement is determined only in the last round. This improves a previous construction of Lapidot and
Shamir (Crypto 1990) that was designed specifically for the Graph Hamiltonicity problem and relied on
the underlying primitives in a non-black-box way.

Additionally, we provide a general transformation to construct a randomized encoding of a function f
from any 2PC protocol that securely computes a related functionality (in a black-box way) from one-way
functions. We show that if the 2PC protocol has mild adaptive security guarantees (which are satisfied by
both the Yao’s and GMW’s protocol) then the resulting randomized encoding (RE) can be decomposed
to an offline/online encoding.
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1 Introduction

In this work we establish new general connections between three fundamental tasks in cryptography: secure
two-party computation, zero-knowledge proofs and randomized encoding. We begin with some relevant
background regarding each of these tasks.

Secure multiparty computation. The problem of secure multiparty computation (MPC) [Yao86, CCD87,
GMW87, BGW88] considers a set of parties with private inputs that wish to jointly compute some function
of their inputs while preserving certain security properties. Two of these properties are privacy, meaning
that the output is learned but nothing else, and correctness, meaning that no corrupted party or parties can
cause the output to deviate from the specified function. Security is formalized using the simulation paradigm
where for every adversary A attacking a real protocol, we require the existence of a simulator S that can
cause the same damage in an ideal world, where an incorruptible trusted third party computes the function
for the parties and provides them their output.

Honest vs. dishonest majority. Generally speaking, there are two distinct categories for MPC protocols:
(1) one for which security is guaranteed only when a majority of the parties are honest, and (2) one for which
security is guaranteed against an arbitrary number of corrupted parties. In the former category it is possible
to construct “information-theoretic” secure protocols where security holds unconditionally,1 whereas in the
latter only computational security can be achieved while relying on cryptographic assumptions.2 The former
setting necessarily requires 3 or more parties while the latter can be constructed with just two parties. In this
work, we will focus on the latter setting, considering secure two-party computation.

Semi-honest vs. malicious adversary. The adversary may be semi-honest, meaning that it follows the
protocol specification but tries to learn more than allowed from the view, or malicious, namely, arbitrarily
deviating from the protocol specification in order to compromise the security of the other players in the
protocol. Constructing semi-honestly secure protocols is a much easier task than achieving security against
an arbitrary malicious adversary.

Static vs. adaptive corruption. The initial model considered for secure computation was one of a
static adversary where the adversary controls a subset of the parties (who are called corrupted) before the
protocol begins, and this subset cannot change. A stronger corruption model allows the adversary to choose
which parties to corrupt throughout the protocol execution, and as a function of its view; such an adversary
is called adaptive. Adaptive corruptions model “hacking” attacks where an external attacker breaks into
parties’ machines in the midst of a protocol execution and are much harder to protect against. In particular,
protocols that achieve adaptivity are more complex and the computational hardness assumptions needed
seem stronger; see [CLOS02] [KO04, CDD+04, IPS08]. Achieving efficiency seems also to be much harder.

Zero-knowledge. Zero-knowledge (ZK) interactive protocols [GMR89] are paradoxical constructs that
allow one party (denoted the prover) to convince another party (denoted the verifier) of the validity of a
mathematical statement x ∈ L, while providing zero additional knowledge to the verifier. Beyond being
fascinating in their own right, ZK proofs have numerous cryptographic applications and are one of the most
fundamental cryptographic building blocks. The zero-knowledge property is formalized using the simulation
paradigm. That is, for every malicious verifier V∗, we require the existence of a simulator S that reproduces
a view of V∗ that is indistinguishable from a view when interacting with the honest prover, given only the

1Namely, against computationally unbounded adversaries.
2If one is willing to provide ideal access to an oblivious-transfer functionality then one can achieve information-theoretic security

even in the honest minority setting [GMW87, CvdGT95, IPS08].
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input x. Zero-knowledge protocols can be viewed as an instance of secure two-party computation where the
function computed by the third-party simply verifies the validity of a witness held by the prover.

Static vs. adaptive. Just as with secure computation, the adversary in a zero-knowledge protocol can be
either static or adaptive. Security in the presence of a statically corrupted prover implies that the protocol
is sound, namely, a corrupted prover cannot convince a verifier of a false statement. Whereas security in
the presence of a statically corrupted verifier implies that the protocol preserves zero-knowledge. Adaptive
security on the other hand requires a simulator that can simulate the corruptions of both parties.

Much progress has been made in constructing highly efficient ZK proofs in the static setting. In a recent
breakthrough result, Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS09] provided general constructions of
ZK proofs for any NP relation R(x, ω) which make a “black-box” use of an MPC protocol for a related
multiparty functionality f , where by black-box we mean that f can be programmed to make only black-box
(oracle) access to the relationR. Leveraging the highly efficient MPC protocols in the literature [DI06] they
obtained the first “constant-rate” ZK proof. More precisely, assuming one-way functions, they showed how
to design a ZK proof for an arbitrary circuit C of size s and bounded fan-in, with communication complex-
ity O(s) + poly(κ, log s) where κ is the security parameter. Besides this, the work of [IKOS07, IKOS09]
introduced the very powerful “MPC-in-the-head” technique that has found numerous applications in ob-
taining “black-box” approaches, such as unconditional two-party computation [IPS08], secure computa-
tion of arithmetic circuits [IPS09], non-malleable commitments [GLOV12], zero-knowledge PCPs [IW14],
resettably-sound ZK [OSV15] to name a few, as well as efficient protocols, such as oblivious-transfer based
cryptography [HIKN08, IPS08, IPS09] and homomorphic UC commitments [CDD+15]. More recently,
highly efficient zero-knowledge arguments with practical implementations using the MPC-in-the-head have
been demonstrated [GMO16, CDG+17, AHIV17].

In contrast, in the adaptive setting, constructing adaptive zero-knowledge proofs is significantly harder
and considerably less efficient. Beaver [Bea96] showed that unless the polynomial hierarchy collapses the
ZK proof of [GMR89] is not secure in the presence of adaptive adversaries. Quite remarkably, Lindell and
Zarosim showed in [LZ11] that adaptive zero-knowledge proofs for any NP language can be constructed
assuming only one-way functions. However, it is based on reducing the statement that needs to be proved to
an NP complete problem, and is rather inefficient. In fact, the communication complexity of the resulting
zero knowledge is O(s4) where s is the size of the circuit. A first motivation for our work is the goal of find-
ing alternative approaches of constructing (efficient) adaptive ZK proofs without relying on the expensive
Karp-reduction step.

Randomized encoding (RE). The third fundamental primitive considered in this work is randomized en-
coding (RE). Formalized in the works of [IK00, IK02, AIK06], randomized encoding explores to what
extent the task of securely computing a function can be simplified by settling for computing an “encoding”
of the output. Loosely speaking, a function f̂(x, r) is said to be a randomized encoding of a function f if
the output distribution depends only on f(x). More formally, the two properties required of a randomized
encoding are: (1) given the output of f̂ on (x, r), one can efficiently compute (decode) f(x), and (2) given
the value f(x) one can efficiently sample from the distribution induced by f̂(x, r) where r is uniformly sam-
pled. One of the earliest constructions of a randomized encoding is that of “garbled circuits” and originates
in the work of Yao [Yao86]. Additional variants have been considered in the literature in the early works of
[Kil88, FKN94]. Since its introduction, randomized encoding has found numerous applications, especially
in parallel cryptography where encodings with small parallel complexity yields highly efficient secure com-
putation [IK00, IK02, AIK06]. (See also [GKR08, GGP10, AIK10, GIS+10, BHHI10, BHR12, App14] for
other applications).
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Statistical vs. computational. Randomized encodings can be statistical or computational depending on
how close the sampled distribution is to the real distribution of f̂ . While statistical randomized encodings
exist for functions computable by NC1 circuits, only computational REs are known for general polynomial-
time computable function. We refer the reader to [AIKP15] for a more detailed investigation on the class of
languages that have statistical REs.

Online/offline complexity. In an online/offline setting [AIKW13], one considers an encoding f̂(x, r)
which can be split as an offline part f̂OFF(r) which only depends on the function f , and an online part
f̂ON(x, r) that additionally depends on input x. This notion is useful in a scenario where a weak device
is required to perform some costly operation f on sensitive information x: In an offline phase f̂OFF(r) is
published or transmitted to a cloud, and later in an online phase, the weak device upon observing the sample
x, transmits the encoding f̂ON(x, r). The cloud then uses the offline and online parts to decode the value
f(x) and nothing else. The goal in such a setting is to minimize the online complexity, namely the number
of bits in f̂ON(x, r). In the classic garbled circuit construction, the online complexity is proportional to
|x| · poly(κ) where κ is the security parameter. More recently, Applebaum, Ishai, Kushilevitz and Waters
showed in [AIKW13] how to achieve constant online rate of (1 + o(1))|x| based on concrete number-
theoretic assumptions.

A notoriously hard question here is to construct an adaptively secure RE where privacy is maintained
even if the online input x is adaptively chosen based on the offline part. In fact, the standard constructions of
garbled circuits (with short keys) do not satisfy this stronger property unless some form of “exponentially-
hard” assumption is made [GKR08] or analyzed in the presence of the so-called programmable random-
oracle model [AIKW13]. In fact, it was shown in [AIKW13] that any adaptively secure randomized encod-
ing must have an online complexity proportional to the output length of the function. Recently, the work
of Hemenway et al. [HJO+16] provided the first construction of adaptively-secure RE based on the mini-
mal assumption of one-way functions where the on-line complexity is only proportional to the width of the
circuit. Other works made progress towards solving this problem [JW16, JSW17], yet it is still open.

While the connection between RE and secure computation has been explored only in one direction,
where efficient RE yield efficient secure computation, we are not aware of any implication in the reverse
direction. A second motivation of our work is to understand this direction while better understanding the
complexity of constructing secure protocols by relying on the lower bounds already established for the
simpler RE primitive.

1.1 Our Contribution

In this work we present the following transformations:

1. A general construction of a static zero-knowledge proof system ΠR for any NP relation R(x, ω)
that makes black-box use of a two-party protocol ΠOT

f ,3 carried out between parties P1 and P2 for a
related functionality f in the oblivious-transfer (OT) hybrid model,4 and a commitment scheme.5 We
will require ΠOT

f to achieve perfect (UC) security in the presence of static semi-honest corruptions.
For example, the classic protocol by Goldreich, Micali and Wigderson (GMW) [GMW87] satisfies

3The functionality f can be efficiently defined by making only a black-box (oracle) access to the NP relationR. This notion is
formalized as an “oracle call” to a protocol in [IKP+16].

4Where all parties have access to an idealized primitive that implements the OT functionality, namely, the functionality upon
receiving input (s0, s1) from the sender and a bit b from the receiver, returns sb to the receiver and nothing the sender.

5To obtain a proof, we will be able to instantiate our commitment schemes using a statistically-binding commitment scheme
[Nao91] for commitments made by the prover in the ZK protocol, and by a statistically-hiding commitment scheme for commit-
ments made by the verifier. Both these schemes can be instantiated from one-way functions [Nao91, HR07].
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these requirements. We further demonstrate a variant of this transformation that yields the first zero-
knowledge proof that additionally has an “input-delayed” property [LS90, CPS+16a, CPS+16c] and
continues to rely on the underlying protocol in a black-box way. The underlying two-party protocol
for this transformation will however require slightly stronger guarantees.

2. A general construction of an adaptively secure zero-knowledge proof system ΠR for any NP relation
R(x, ω) that makes black-box use of a two-party protocol ΠOT

f carried out between parties P1 and
P2,6 for a related functionality f in the oblivious-transfer (OT) hybrid model, along with a (statically
secure) bit commitment protocol that can be realized assuming only one-way functions. The require-
ments on our protocol ΠOT

f are: (1) Perfect (UC) security against semi-honest parties admitting a
static corruption of P1 and an adaptive corruption of P2,7 and (2) P1 is the sender in all OT invo-
cations. We remark that the semi-honest version of the GMW protocol satisfies these requirements.
In fact, we will only require milder properties than perfect privacy (namely, robustness and oblivious
sampleability; see Sections 3.5 and 3.6 for more details) which will be satisfied by the standard Yao’s
protocol [Yao86] based on garbled circuits.

3. A general construction of a randomized encoding for any function f that makes black-box use (a la
[IKOS09]) of a two-party computation protocol ΠOT

f , carried out between parties P1 and P2, for a
related functionality g in the OT-hybrid assuming only one-way functions. If we start with the same
requirements as our first transformation (namely, only security against static adversaries) then we
obtain a standard randomized encoding. However, if we start with a protocol as required in our second
transformation with the additional requirement that it admits adaptive corruption of P2, we obtain an
online/offline RE. Moreover, our construction makes black-box use of a randomized encoding for
the functionality f . Finally, we also show how to obtain an adaptive ZK proof for an NP relation R
using a slightly stronger version of RE (that our second instantiation above will satisfy). An important
corollary we obtain here is that starting from an RE that is additionally secure against adaptive chosen
inputs we obtain the—so called—input-delayed ZK proof in the static setting.

A few remarks are in order.

Remark 1.1. In transformations 2 and 3 we require the underlying 2PC protocol to only be semi-adaptive
with fixed roles (where the sender is statically corrupted, whereas the receiver is adaptively corrupted). This
security notion is a weak requirement and almost all known protocols that are secure in the static setting are
also semi-adaptive secure. Namely, the 2PC protocols based on [Yao86] and [GMW87] are semi-adaptive
secure in this sense; we discuss theses details in Sections 5.1 and 5.2.

Remark 1.2. Our online/offline RE based on (semi-adaptive) 2PC protocols is efficient only for certain pro-
tocols. Looking ahead, the offline complexity of the resulting RE is proportional to the honest algorithm of
party P1 and the online complexity is proportional to the semi-adaptive simulation of party P2. In the case of
[Yao86]’s protocol, applying our transformation yields the standard RE based on garbled circuits. We note
that while we do not obtain any new constructions of RE, our transformation demonstrates the relationship
between the semi-adaptive simulation complexity of a protocol and the efficiency of a corresponding RE.

6By “black-box” use of a protocol, we mean that the next-message function of the resulting protocol uses the next-message
function of the underlying protocol as an oracle. However, it could be the case that the underlying protocol might depend on the
implemented functionality in a non-black-box manner. This notion is formalized and explored in [IKP+16].

7The security notion in which one party is statically corrupted whereas the second party is adaptively corrupted is known by
semi-adaptive security [GWZ09].
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Comparison with [IKOS09]. We remark that the approach of [IKOS09] that transforms general MPC
protocols cannot be used “directly” to yield our first result concerning static ZK. This is because all con-
structions presented in their work require to instantiate the MPC protocol with at least three parties. In
subsequent work, Ishai et. al [IKP+16] show how to extend the [IKOS09] transformation to obtain a re-
sult analogous to our first result. In comparison to ours, their transformation yields a more communication
efficient zero-knowledge proof. Nevertheless, the approaches of [IKOS09] and [IKP+16] cannot yield the
stronger “input-delayed” property as all their protocols start with an MPC protocol where the views of all
parties are committed to by the prover in the first round and there is no mechanism to equivocate the views,
which is required in order to obtain the input-delayed property.

1.2 Applications

We list a few of the applications of our techniques and leave it as future work to explore the other ramifica-
tions of our transformations.

COMMIT-AND-PROVE INPUT-DELAYED ZK PROOFS. In [LS90], Lapidot and Shamir provided a three-
round witness-indistinguishable (WI) proof for Graph Hamiltonicity with a special “input-delayed” prop-
erty: namely, the prover uses the statement to be proved only in the last round. Recently, in [CPS+16b] it
was shown how to obtain efficient input-delayed variants of the related “Sigma protocols” when used in a
restricted setting of an OR-composition. We show that starting from a robust RE that is additionally secure
against adaptive inputs, we can obtain general constructions of input-delayed zero-knowledge proofs that
yield an efficient version of the protocol of [LS90] for arbitrary NP-relations. We remark that our work
is stronger than [CPS+16b] in that it achieves the stronger adaptive soundness property (which is satisfied
by [LS90, FLS99]).The communication complexity in our protocol depends only linearly on the size of the
circuit implementing the NP relation. As in our other transformation, this transformation will only depend
on the relation in a black-box way. Finally, we show how to realize robust RE secure against adaptive inputs
based on recent work of Hemenway et al. [HJO+16].

The “commit-and-prove” paradigm considers a prover that first commits to a witness w and then, in a
second phase upon receiving a statement x asserts whether a particular relation R(x,w) = 1 without reveal-
ing the committed value. This paradigm, which is implicit in the work of [GMW87] and later formalized in
[CLOS02], is a powerful mechanism to strengthen semi-honest secure protocols to maliciously secure ones.
The MPC-in-the-head approach of [IKOS09] shows how to obtain a commit-and-prove protocol based on
one-way functions that relies on the underlying primitives in a black-box way. This technique has been used
extensively in several works to close the gap between black-box and non-black-box constructions relying on
one-way functions (see [GLOV12, GOSV14, OSV15] for a few examples).

We show that our input-delayed ZK proof further supports the commit-and-prove paradigm which is
additionally black-box in the underlying one-way functions. More precisely, we obtain a black-box con-
struction of a 6-round commit-and-prove protocol with the input-delayed property.

INSTANCE-DEPENDENT TRAPDOOR COMMITMENT SCHEMES. As a side result, we show that our
constructions imply instance-dependent trapdoor commitment schemes, for which the witness ω serves as
a trapdoor that allows to equivocate the commitment into any value. Specifically, this notion implies the
same hiding/binding properties as any instance-dependent commitment scheme with the additional property
that the witness allows to decommit a commitment into any message. To the best of our knowledge, our
construction is the first trapdoor commitment for all NP which makes black-box access to the NP relation.
Prior constructions were known only for Σ-protocols [Dam10] and for Blum’s Graph-Hamiltonicity [FS89].
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1.3 Perspective

Our work is similar in spirit to the work of [IKOS09, IPS08] that demonstrated the power of information-
theoretic MPC protocols in constructing statically-secure protocols. Here, we show the power of (adaptively-
secure) 2PC protocols in the OT-hybrid in constructing adaptively-secure protocols and randomized encod-
ings. Instantiating our 2PC with the standard protocols of [Yao86] and [GMW87] yields simple construc-
tions of adaptive ZK proofs and randomized encodings. While ZK can be viewed as a special instance of a
two-party computation protocol, the resulting instantiation requires stronger assumptions (such as enhanced
trapdoor permutations). On the other hand, our transformation requires only one-way functions.

A second contribution of our construction shows a useful class of applications for which 2PC protocols
can be used to reduce the round complexity of black-box constructions. The well known and powerful
“MPC-in-the-head” technique has found extensive applications in obtaining only black-box usage of the
underlying primitives (and in the case of zero-knowledge even black-box in the underlying NP-relation). In
many cases their approach was used to close the gap between black-box and non-black-box constructions. In
particular, their approach provided the first mechanism to obtain a commit-and-prove protocol that depended
on the underlying commitment in a black-box way. We believe that our technique yields an analogous “2PC-
in-the-head” technique which, in addition to admitting similar commit-and-prove protocols, can improve
the round complexity as demonstrated for various cryptographic primitives. This is because the additionally
input-delayed property allows the commit-and-prove protocol to run in parallel with an external protocol.

In addition, we believe it will be useful in applications that rely on certain special properties of the
Blum’s Graph-Hamiltonicity ZK proof (BH). Concretely, we improve the [LZ11] adaptive ZK proof and the
input-delayed protocol from [LS90] both of which relied on BH ZK proof. More precisely, by relying on our
ZK proof based on our instance-dependent commitment schemes that, in turn, depends on the NP relation
in a black-box way, we save the cost of the expensive Karp reduction to Graph Hamiltonicity. We leave it as
future work to determine if other applications that rely on the BH ZK proof can be improved (e.g., NIZK).

1.4 Concurrent and Subsequent Work

In concurrent work, Ishai et al. extend the transformation of [IKOS07] to construct zero-knowledge proofs
starting from semi-honest two-party computation [IKP+16]. Their transformation yields better asymptotic
communication complexity and can incorporate protocols in OT and oblivious linear evaluation (OLE) hy-
brid models. However, their constructions do not extend to adaptive corruptions. In subsequent work,
Canetti, Poburinnaya and Venkitasubramaniam introduce functionally equivocal encryption scheme to de-
sign round optimal secure multiparty computation against adaptive corruptions [CPV17]. They realize this
primitive based on one-way functions and were inspired by the adaptive instance-dependent commitment
scheme developed in this work. Finally, Ganesh et al. design (private-coin) adaptive zero-knowledge argu-
ments based on oblivious transfer where the communication is linear in the size of the statement [GKPS18].

2 Overview of Techniques

Static ZK via (semi-honest) 2PC or “2PC-in-the-head”. We begin with a perfectly-correct 2PC protocol
Πf between parties P1 and P2 that securely implements the following functionality f : f(x, ω1, ω2) outputs
1 if and only if (x, ω1 ⊕ ω2) ∈ R where ω1 and ω2 are the private inputs of P1 and P2 in the two-party
protocol Πf . We require that the 2PC protocol admits semi-honest UC security against static corruption of
P1 and P2. Our first step in constructing a ZK proof involves the prover P simulating an honest execution
between P1 and P2 by first sampling ω1 and ω2 at random such that ω1⊕ω2 = ω, where ω is the witness to
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the statement x and then submitting the transcript of the interaction to the verifier V . The verifier responds
with a bit b chosen at random. The prover then reveals the view of P1 if b = 0 and the view of P2 if
b = 1, namely it just provides the input and randomness of the respective parties. Soundness follows from
the perfect correctness of the protocol. Zero-knowledge, on the other hand, is achieved by invoking the
simulation of parties P1 and P2 depending on the guess that the simulator makes for the verifier’s bit b.

This general construction, however, will inherit the hardness assumptions required for the 2PC, which in
the case of [Yao86] and [GMW87] protocols will require the existence of an oblivious-transfer protocol. We
modify the construction to rely only on one-way functions in two steps. First, we construct a randomized en-
coding with certain special properties. Then we use the randomized encoding to construct a zero-knowledge
protocol. The key insight that allows us to incorporate calls to the OT transfer is the following:

• For every OT call where P1’s input is (s0, s1) and P2’s input is t, the prover will commit to s0 and s1
using a statistically binding commitment scheme com (which can be based on one-way functions), in
the first round.8 Then opening P1’s view requires decommitting both the commitments, and opening
P2’s view will be accomplished by only decommitting sb where b is receiver’s input for that OT call.

We remark that our ZK proof does not provide efficiency gains compared to [IKOS09, IPS08] (using
OT-preprocessing) as we require a commitment for every oblivious-transfer and in the case of compiling
[GMW87] results in O(s) commitments where s is the size of the circuit. Nevertheless, we believe that this
compilation illustrates the simplicity of obtaining a ZK proof starting from any 2PC protocol.

Adaptive ZK via “2PC-in-the-head”. First, we recall the work of Lindell and Zarosim [LZ11] that
showed that constructing adaptively secure ZK proofs can be reduced to constructing adaptive instance-
dependent commitment schemes [BMO90, IOS97, OV08, LZ11]. In fact, by simply instantiating the com-
mitments from the prover in the (static) ZK proofs of [IKOS09] with instance-dependent commitments, we
can obtain an adaptive ZK proof. Briefly, instance-dependent commitment schemes are defined with respect
to a language L ∈ NP such that for any statement x the following holds. If x ∈ L then the commitment
associated with x is computationally hiding, whereas if x /∈ L then the commitment associated with x is
perfectly binding. An adaptively secure instance-dependent commitment scheme additionally requires that
there be a “fake” commitment algorithm which can be produced using only the statement x, but later, given
a witness ω such that (x, ω) ∈ R, be opened to both 0 and 1.

First, we describe an instance-dependent commitment scheme using a (perfectly-correct) 2PC protocol
Πf engaged between parties P1 and P2 that securely implements the following functionality f : f(x, ω1, ω2)
outputs 1 if and only if (x, ω1 ⊕ ω2) ∈ R where ω1 and ω2 are the private inputs of P1 and P2 in the two-
party protocol Πf . We will require that only P2 receives an output and that Πf is (UC) secure against the
following adversaries: (1) A semi-honest adversary A1 that statically corrupts P1, and (2) A semi-honest
adversary A2 that statically corrupts P2.

Given such a 2PC Πf a commitment to the message 0 is obtained by committing to the view of party P1

in an interaction using Πf , using the simulator S1 for adversary A1 as follows. The commitment algorithm
runs S1 on input a random string ω1 that serves as the input of P1. The output of the commitment on input 0
is τ where τ is the transcript of the interaction between P1 and P2 obtained from the view of P1 generated by
S1. A commitment to 1 is obtained by running the simulator S2 corresponding toA2 where the input of P2 is
set to a random string ω2. The output of the commitment is transcript τ obtained from the view of P2 output
by S2. Decommitting to 0 simply requires producing input and output (ω1, r1) for P1 such that the actions

8Note that, in Naor’s statistically binding commitment scheme [Nao91] the decommitment information is the inverse under a
pseudorandom generator that is uniformly sampled, and hence can be placed in the random tape.

8



of P1 on input ω1 and random tape r1 are consistent with the transcript τ . Decommitting to 1 requires
producing input and randomness (ω2, r2) for P2 consistent with τ and P2 outputs 1 as the output of the
computation. The hiding property of the commitment scheme follows from the fact that the transcript does
not reveal any information regarding the computation (i.e. transcript can be simulated indistinguishably).
The binding property for statements x ̸∈ L, on the other hand, relies on the perfect correctness of the
protocol. More precisely, if a commitment phase τ is decommitted to both 0 and 1, then we can extract
inputs and randomness for P1 and P2 such that the resulting interaction with honest behavior yields τ as
the transcript of messages exchanged and P2 outputting 1. Note that this is impossible since the protocol is
perfectly correct and 1 is not in the image of f for x ̸∈ L.

Next, to obtain an adaptively secure instance-dependent commitment scheme we will additionally re-
quire that Πf be secure against a semi-honest adversary A3 that first statically corrupts P1 and then adap-
tively corrupts P2 at the end of the execution. This adversary is referred to as a semi-adaptive adversary in
the terminology of [GWZ09]. The fake commitment algorithm follows the same strategy as committing to 0
with the exception that it relies on the simulator S3 ofA3. S3 is a simulator that first produces a view for P1

and then post execution produces a view for P2. More formally, the fake commitment algorithm sets P1’s
input to a random string ω1 and produces P1’s view using S3 and outputs τ where, τ is the transcript of the
interaction. Decommitting to 0 follows using the same strategy as the honest decommitment. Decommitting
to 1, on the other hand, requires producing input and randomness for P2. This can be achieved by continuing
the simulation by S3 post execution. However, to run S3 it needs to produce an input for party P2 such that
it outputs 1. This is possible as the decommitting algorithm additionally receives the real witness ω for x,
using which it sets P2’s input as ω2 = ω ⊕ ω1.

In fact, we will only require security against adversaries A2 and A3, as the honest commitment to 0
can rely on S3. Indistinguishability of the simulation will then follow by comparing the simulations by S2
and S3 with a real-world experiment with adversariesA2,A3 where the parties inputs are chosen at random
subject to the condition that they add up to ω and using the fact that the adversaries are semi-honest.

We will follow an approach that is similar to our previous transformation in order to address calls to the
OT functionality. We will additionally require that P1 plays the sender’s role in all OT invocations. We note
that our encoding accommodates an adaptive corruption of P2, as it enables us to equivocate the random
tape of P2 depending on its input t.

To instantiate our scheme, we can rely on [Yao86] or [GMW87] to obtain an adaptive instance-dependent
commitment scheme. Both commitments results in a communication complexity of O(s · poly(κ)) where
s is the size of the circuit implementing the relation R and κ is the security parameter. Achieving adaptive
zero-knowledge is then carried out by plugging in our commitment scheme into the prover’s commitments
in the [IKOS09] zero-knowledge (ZK) construction, where it commits to the views of the underlying MPC
protocol. The resulting protocol will have a complexity of O(s2 · poly(κ)) and a negligible soundness error.
We remark that this construction already improves the previous construction of Lindell and Zarosim that
requires the expensive Karp reduction to Graph Hamiltonicity.

RE from (semi-honest) 2PC. To construct a RE for a function f , we consider an arbitrary 2PC protocol
that securely realizes the related function g that is specified as follows: g(a1, a2) = f(a1⊕a2) where a1 and
a2 are the private inputs of P1 and P2 in the two-party protocol Πg. We will make the same requirements on
our 2PC as in the previous case, namely, security with respect to adversaries A1, A2 and A3 as defined for
the previous construction. The offline part of our encoding function f̂OFF(r) is defined using the simulator
S3 for adversary A3 that proceeds as follows. Upon corrupting P1, S3 is provided with a random input
string a1, where the simulation is carried out till the end of the execution and temporarily stalled. The
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output of f̂OFF(r) is defined to be the simulated transcript of the interaction between parties P1 and P2.
Next, upon receiving the input x, the online part f̂ON(x, r) continues the simulation by S3 which corrupts
P2 post execution (at the end of the protocol execution), where P2’s input is set as a2 = x ⊕ a1 and its
output is set as f(x). Finally, the output of f̂ON(x, r) is defined by the input and random tape of P2. In
essence, f̂(x, r) = (f̂OFF(r), f̂ON(x, r)) constitutes the complete view of P2 in an execution using Πg. The
decoder simply follows P2’s computation in the view and outputs P2’s output, which should be f(x) by
the correctness of the protocol. The simulation for our randomized encoding S relies on the simulator for
the adversary A2, denoted by S2. Namely, upon receiving f(x), S simply executes S2. Recalling that S2
statically corrupts P2, S simply provides a random string a2 as its input and f(x) as the output. Finally, the
offline and online parts are simply extracted from P2’s view accordingly. Privacy will follow analogously as
in our previous case.

Note that the offline complexity of our construction is equal to the communication complexity of the
underlying 2PC protocol Πg, whereas the online complexity amounts to the input plus the randomness com-
plexity of P2. The efficiency of our randomized encoding ties the offline part with the static simulation
of party P1 and the online part with the semi-adative simulation of P2. Moreover, this protocol can be
instantiated by the [Yao86] and [GMW87] protocols, where the OT sub-protocols are implemented using
one-way functions as specified before. The [Yao86] based protocol will result in an offline complexity of
O(s · poly(κ)) and an online complexity of O(n · poly(κ)) where s is the size of the circuit implementing f
and n is the input length.9 Whereas the [GMW87] protocol will result in an offline and online complexities
of O(s · poly(κ)). While this might not be useful in the “delegation of computation” application of ran-
domized encoding as the online encoding is not efficient, it can be used to construct an instance-dependent
commitment scheme where we are interested only in the total complexity of the encoding. Finally, we re-
mark that if we are not interested in an offline/online setting and just require a standard randomized encoding
we will requite Πf to be secure only against a static corruption of P2 by A2 and the honest encoding can be
carried out by emulating the real world experiment (as opposed to relying on the simulation by S3).

Next, we provide a construction of instance-dependent commitments based on online/offline RE. Stan-
dard RE will not be sufficient for this and we introduce a stronger notion of robustness for RE and show that
the preceding construction already satisfies this. Then, based on a robust RE we show how to get an instant-
dependent commitment scheme. In fact, we can get an adaptive instance-dependent commitment scheme if
the underlying RE has a corresponding “oblivious sampling” property. Namely, the ability to explain real
randomized encoding as a simulated one.10 Since adaptive instance-dependent commitment schemes are
sufficient to realize adaptive ZK, this provides a transformation from RE to adaptive ZK.

3 Preliminaries

Basic notations. We denote the security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the
abbreviation PPT to denote probabilistic polynomial-time. For an NP relation R, we denote by Rx the
set of witnesses of x and by LR its associated language. That is, Rx = {ω | (x, ω) ∈ R} and LR =
{x | ∃ ω s.t. (x, ω) ∈ R}.

We specify next the definitions of computationally indistinguishable and statistical distance.
9We note that the online complexity can be improved by relying on the work of [AIKW13].

10This notion has been considered in the past in the context of oblivious public-key encryption schemes requiring the ability to
sample a public-key without knowing the secret-key or sampling a ciphertext without the knowledge of the plaintext [DN00], and
to switch from a real to an oblivious object.
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Definition 3.1. Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c
≈ Y , if for every PPT

machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large κ’s,∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]
∣∣ < 1

p(κ)
.

Definition 3.2. Let Xκ and Yκ be random variables accepting values taken from a finite domain Ω ⊆
{0, 1}κ. The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) =
1

2

∑
ω∈Ω

∣∣Pr[Xκ = ω]− Pr[Yκ = ω]
∣∣.

We say that Xκ and Yκ are ε-close if their statistical distance is at most SD(Xκ, Yκ) ≤ ε(κ). We say that
Xκ and Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

3.1 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender S, to commit itself to a value while
keeping it secret from the receiver R (this property is called hiding). Furthermore, in a later stage when the
commitment is opened, it is guaranteed that the “opening” can yield only a single value determined in the
committing phase (this property is called binding). In this work, we consider commitment schemes that are
statistically binding, namely while the hiding property only holds against computationally bounded (non-
uniform) adversaries, the binding property is required to hold against unbounded adversaries. Formally,

Definition 3.3 (Commitment schemes). A PPT machine Com = ⟨S,R⟩ is said to be a non-interactive
commitment scheme if the following two properties hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that the following ensembles are
computationally indistinguishable.

• {ViewR∗
Com(m1, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

• {ViewR∗
Com(m2, z)}κ∈N,m1,m2∈{0,1}κ,z∈{0,1}∗

where ViewR∗
Com(m, z) denotes the random variable describing the output of R∗ after receiving a

commitment to m using Com.

Statistical binding: For any (computationally unbounded) malicious sender S∗ and auxiliary input z, it
holds that the probability that there exist valid decommitments to two different values for a view v,
generated with an honest receiver while interacting with S∗(z) using Com, is negligible.

We refer the reader to [Gol01] for more details. We recall that non-interactive perfectly binding commit-
ment schemes can be constructed based on one-way permutations, whereas two-round statistically binding
commitment schemes can be constructed based on one-way functions [Nao91]. We further consider pseudo-
random commitments for which the honest sender’s messages in the commitment phase are pseudorandom,
i.e. indistinguishable from a uniform string of the same length. We note that such commitment schemes with
statistical binding can be constructed based on one-way functions due to [Nao91] and with perfect binding
based on one-way permutations.
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Functionality FCOM

Functionality FCOM communicates with sender S and receiver R, and adversary S.

1. Upon receiving input (commit, sid,m) from S where m ∈ {0, 1}t, internally record (sid,m) and
send message (sid,S,R) to the adversary. Upon receiving approve from the adversary send sid, to
R. Ignore subsequent (commit, ., ., .) messages.

2. Upon receiving (reveal, sid) from S, where a tuple (sid,m) is recorded, send message m to adver-
sary S and R. Otherwise, ignore.

Figure 1: The string commitment functionality.

3.2 The Commitment Functionality

The formal description of functionality FCOM is depicted in Figure 1.

3.3 Adaptive Instance-Dependent Commitment Schemes [LZ11]

We extend the instance-dependent commitment scheme definition of [LZ11], originally introduced for the
binary message space, to an arbitrary message spaceM.

Syntax. Let R be an NP relation and L be the language associated with R. A (non-interactive) adap-
tive instance dependent commitment scheme (AIDCS) for L is a tuple of probabilistic polynomial-time
algorithms (Com,Com′,Adapt), where:

• Com is the commitment algorithm: For a message m ∈ Mn, an instance x ∈ {0, 1}∗, |x| = n and
a random string r ∈ {0, 1}p(|x|) (where p(·) is a polynomial), Com(x,m; r) returns a commitment
value c.

• Com′ is a “fake” commitment algorithm: For an instance x ∈ {0, 1}∗ and a random string r ∈
{0, 1}p(|x|), Com′(x; r) returns a commitment value c.

• Adapt is an adaptive opening algorithm: Let x ∈ L and ω ∈ Rx. For all c and r ∈ {0, 1}p(|x|)
such that Com′(x; r) = c, and for all m ∈ Mn, Adapt(x, ω, c,m, r) returns a pair (m, r′) such that
c = Com(x,m; r′). (In other words, Adapt receives a “fake” commitment c and a message m, and
provides an explanation for c as a commitment to the message m.)

A decommitment to a commitment c is a pair (m, r) such that c = Com(x,m; r). Note the difference
between Com and Com′: Com is an ordinary committing algorithm (creating a commitment value for a
given value), while for x ∈ L algorithm Com′ creates commitment values that are not associated to any
specific value. However, given a witness attesting to the fact that x ∈ L, these commitments can later be
claimed to be commitments to a specific m by using algorithm Adapt. We stress that without such a witness,
a commitment generated by Com′ cannot necessarily be decommitted to any value.

Security. We now define the notion of security for our commitment scheme.

Definition 3.4 (AIDCS). Let R be an NP relation and L = LR. We say that (Com,Com′,Adapt) is a
secure AIDCS for L if the following holds:
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1. Computational hiding: The ensembles {Com(x,m)}x∈L,m{0,1}|x| and {Com′(x)}x∈L are computa-
tionally indistinguishable.

2. Adaptivity: The distributions {Com(x,m;Up(|x|)),m, Up(|x|)}x∈L,ω∈RL,m∈{0,1}|x| and

{Com′(x;Up(|x|)),m,Adapt(x, ω,Com′(x;Up(|x|)),m)}x∈L,ω∈RL,m∈{0,1}|x| are computationally in-
distinguishable (that is, the random coins that are generated by Adapt are indistinguishable from real
random coins used by the committing algorithm Com).

3. Statistical binding: For all x /∈ L, m,m′ ∈M|x|, and a commitment c, the probability that there exist
r, r′ for which c = Com(x,m; r) and c = Com(x,m′; r′) is negligible in κ.

In an instance-dependent commitment scheme, there is no Com′ algorithm and the adaptivity property
is not required to hold.

Definition 3.5 (Instance-dependent trapdoor commitment schemes). Trapdoor commitment schemes were
introduced in [BCC88] and have been extensively used in the design of zero-knowledge proofs, non-malleable
commitments, signatures, etc. In this work, we consider instance-dependent trapdoor commitment schemes,
introduced by [CPS+16a], that are weaker than adaptive instance-dependent commitment schemes. Let
Com = (S,R) be a statistically binding instance-dependent commitment scheme,R, an NP relation and L,
the language associated with R. We say that Com is an instance-dependent trapdoor commitment scheme,
if there exists an expected PPT oracle machine S = (S1,S2) such that for any PPT R∗, (x,w) ∈ R,
m ∈ {0, 1}κ, the output (τ, decom) of the following experiments is computationally indistinguishable:

- an honest sender S interacts with R∗ on instance x to commit to m, and then opens the commitment: τ is
the view of R∗ in the commit phase, and decom is the message S sends in the open phase.

- the simulator S generates a simulated view τ for the commit phase, and then opens the commitment to m
in the open phase: formally (τ, state)← SR∗

1 (1κ, x), decom← S2(state, w,m).

3.4 Zero-Knowledge Proofs

Definition 3.6 (Interactive proof system). A pair of PPT interactive machines (P,V) is called an interactive
proof system for a language L if there exists a negligible function negl such that the following two conditions
hold:

1. COMPLETENESS: For every x ∈ L,

Pr[⟨P,V⟩(x) = 1] ≥ 1− negl(|x|).

2. SOUNDNESS: For every x /∈ L and every interactive PPT machine B,

Pr[⟨B,V⟩(x) = 1] ≤ negl(|x|).

Definition 3.7 (Zero-knowledge). Let (P,V) be an interactive proof system for some language L. We say
that (P,V) is computational zero-knowledge if for every PPT interactive machine V∗ there exists a PPT
algorithm S such that

{⟨P,V∗⟩(x)}x∈L
c
≈ {⟨S⟩(x)}x∈L

where the left term denote the output of V∗ after it interacts with P on common input x whereas, the right
term denote the output of S on x.
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Definition 3.8 (Σ-protocol). A protocol π is a Σ-protocol for relation R if it is a 3-round public-coin
protocol and the following requirements hold:

• COMPLETENESS: If P and V follow the protocol on input x and private input ω to P where (x, ω) ∈
R, then V always accepts.

• SPECIAL SOUNDNESS: There exists a polynomial-time algorithm A that given any x and any pair of
accepting transcripts (a, e, z), (a, e′, z′) on input x, where e ̸= e′, outputs ω such that (x, ω) ∈ R.

• SPECIAL HONEST-VERIFIER ZERO KNOWLEDGE: There exists a PPT algorithm S such that

{⟨P(x, ω),V(x, e)⟩}x∈L
c
≈ {S(x, e)}x∈L

where S(x, e) denotes the output of S upon input x and e, and ⟨P(x, ω),V(x, e)⟩ denotes the output
transcript of an execution between P and V , where P has input (x, ω), V has input x, and V’s random
tape (determining its query) equals e.

Adaptive zero-knowledge. This notion considers the case for which the prover is adaptively corrupted.
Loosely speaking, the simulator obtains a statement x ∈ L. Moreover, at any point of the execution, the
adaptive adversary is allowed to corrupt the prover. It is then required that zero-knowledge holds even in the
presence of an adaptive adversary. We provide a formal definition of this primitive in Section 3.7.

3.5 Garbled Circuits

A core building block in our instance-dependent commitment schemes is garbled circuits [Yao86]. Here, a
sender can encode a boolean circuit that computes some PPT function f , in a way that (computationally)
hides from the receiver any information about the function but its output. Garbled circuits is an extremely
useful tool for securely realizing any PPT function such that the input is distributed amongst an arbitrary
number of players [BMR90], and security holds in the presence of a static adversary. Towards introducing
our definition of a garbled scheme we denote vectors by bold lower-case letters and use the parameter n to
denote the input and the parameter m to denote the output length for the boolean circuit C.

Definition 3.9 (garbling scheme). A garbling scheme Garb = (Grb,Enc,Eval,Dec) consists of four polynomial-
time algorithms that work as follows:

- (C̃, ek, dk) ← Grb(1κ,C; rGrb): is a probabilistic algorithm that takes as input a circuit C with
n input wires and m output wires and returns a garbled circuit C̃, an encoding function ek and a
decoding function dk.

- x̃ := Enc(ek,x) is a deterministic algorithm that takes an input a decoding function ek and an input
x and returns an encoded input x̃. In this work we consider decomposable garbled schemes. Namely,
the algorithm takes multiple input bits x = (x1, . . . , xn), runs Enc(ek, ·) on each xi and returns the
garbled inputs x̃1 through x̃n, denoted by input labels.11

- ỹ := Eval(C̃, x̃): is a deterministic algorithm that takes as input a garbled circuit C̃ and encoded
input x̃ and returns encoded outputs ỹ.

11Note that the notion of decomposability is similar to the notion of projective garbled schemes specified in [BHR12].
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- y := Dec(dk, ỹ): is a deterministic algorithm that takes as input a decoding function dk and encoded
output ỹ and returns a final output y.

The security of garbled schemes follows by correctness and privacy stated below. In this work we sug-
gest to enhance the traditional view of this object with two additional algorithms that allow to capture the
security properties we need for our commitment protocols. To be concrete, our notion of garbled circuits
includes an additional algorithm for an oblivious generation of a garbled circuit. Namely, given the ran-
domness used to produce a garbled circuit C̃ of some circuit C, this algorithm generates new randomness
that explains C̃ as the outcome of the simulated algorithm. We stress that the ability to switch from a stan-
dard garbled circuit to a simulated one will be exploited in our constructions below in order to equivocate a
commitment to 0 into a commitment to 1. We further require that giving the encoding function ek and the
garbled circuit C̃ it is possible to verify that C̃ was honestly generated by Grb. More formally,

1. Perfect correctness. For all circuits C : {0, 1}n 7→ {0, 1}m and for all x ∈ {0, 1}n it holds that,

Pr[(C̃, ek, dk)← Grb(1κ,C); x̃← Enc(ek,x); ỹ← Eval(C̃, x̃);y := Dec(dk, ỹ) : C(x) = y] = 1.

2. Privacy. There exists a PPT algorithm SimGC such that for any polynomial-size circuit C : {0, 1}n 7→
{0, 1}m and for all x ∈ {0, 1}n it holds that,

(C̃, x̃)
c
≈ SimGC (1κ,C,y)

where y = C(x), (C̃, ek, dk)← Grb(1κ,C) and x̃ := Enc(ek,x).

3. Oblivious sampling. There exists a PPT algorithm OGrb such that for any polynomial-time circuit
C : {0, 1}n 7→ {0, 1}m and for all input/output pairs (x,y) such that C(x) = y it holds that,

{r′Grb, SimGC
(
1κ,C,y; r′Grb

)
}r′Grb←{0,1}∗

c
≈ {r̂Grb, C̃, x̃}(r̂Grb,x̃)←OGrb(1κ,C,x,rGrb)

where (C̃, ek, dk)← Grb(1κ,C; rGrb).

4. Verifiability. There exists a PPT algorithm Ver that takes an input garbled a circuit C̃ an encod-
ing function ek and returns a bit b such that b = 1 only if there exists randomness rGrb such that
(C̃, ek, ·)← Grb(1κ,C; rGrb).

We now prove the all these properties are met by Yao’s construction [Yao86, LP09].

Theorem 3.10. Assume the existence of one-way functions. Then the notion of garbled circuits as introduced
in [Yao86, LP09] meets the above four requirements.

Proof: We briefly demonstrate that every property is met.

1. Perfect correctness. This property is achieved by employing the point-and-permute optimization
[PSSW09] embedded within the garbling construction, as the evaluator of an honestly generated cir-
cuit always decrypts a single ciphertext for each gate which leads to the correct output.

2. Privacy. To support the next property of oblivious sampling, we slightly modify the simulation
from [LP09] and require that the underlying symmetric key encryption has an additional property
of oblivious ciphertext generation (where a ciphertext can be sampled without the knowledge of the
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plaintext). Then our simulated garbling of a gate produces a garbled table using three obliviously gen-
erated ciphertexts and one ciphertext that encrypts the output label. Adapting the indistinguishability
proof from [PSSW09] for our simulation is straightforward. We lastly note that our simulation can
be realized based on one-way functions. Specifically, the classic symmetric-key encryption scheme
based on pseudorandom functions (PRFs) allows oblivious sampling of ciphertexts.12

3. Oblivious sampling. Our simulation from above easily supports oblivious sampling of garbled cir-
cuits. Namely, switching from a real garbled circuit to a simulated one can be shown by explaining
the three inactive ciphertexts for each gate (namely, the ciphertext that remain non-decrypted during
the evaluation phase) as obliviously sampled.

4. Verifiability. Finally, this property holds with respect to existing garbling schemes, as the encoding
information includes the pairs of secret keys that are associated with the input wires of the circuit and
allows to recompute the entire garbling and verifying the correctness of each gate.

3.6 Randomized Encoding

We review the definition of randomized encoding from [IK00, AIK04]. The following definition is produced
almost verbatim from [AIK04].

Definition 3.11 (Randomized Encoding). Let f : {0, 1}n → {0, 1}ℓ be a function. Then a function f̂ :
{0, 1}n × {0, 1}m → {0, 1}s is said to be a randomized encoding of f , if:

Correctness: There exists a decoder algorithm B such that for any input x ∈ {0, 1}n, except with neg-
ligible probability over the randomness of the encoding and the random coins of B, it holds that
B(f̂(x,Um)) = f(x).

Computational (statistical) privacy: There exists a PPT simulator S, such that for any input x ∈ {0, 1}n
the following distributions are computationally (statistically) indistinguishable over n ∈ N:

• {f̂(x,Um)}n∈N,x∈{0,1}n ,

• {S(f(x))}n∈N,x∈{0,1}n .

In [AIKW13], Applebaum et al. introduced the measures of offline and online complexities of an en-
coding, where the offline complexity refers to the number of bits in the output of f̂(x, r) that solely depend
on r and the online complexity refers to the number of bits that depend on both x and r. The motivation
in their work was to construct online efficient randomized encoding, where the online complexity is close
to the input size of the function. This is formalized by requiring two functions f̂OFF and f̂ON where f̂OFF

on input r outputs the offline encoding and f̂ON on input x and the same randomness r outputs the online
encoding. Online efficiency here means that the complexity of f̂ON is smaller than the circuit size. For
example, the standard garbling scheme meets this requirement. Specifically, the offline phase can be viewed
as the garbled circuit, whereas the online phase, given an input x, are the keys corresponding the bits of x.
Furthermore, the online complexity is proportional to the input size of the function alone.

12More formally, let F : {0, 1}κ × {0, 1}κ 7→ {0, 1}κ denote a PRF function. Then encrypting a message m ∈ {0, 1}κ is
carried out by sampling a random r ← {0, 1}κ and returning (Fk(r) ⊕m, r). Furthermore, obliviously sampling a ciphertext is
achieved by sampling two κ-bits strings. By the pseudorandomness of F, an obliviously generated ciphertext is indistinguishable
from a real one.
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In our construction, we are not concerned specifically with the online complexity, but require that the
online encoding satisfy a “decomposable” property. Loosely speaking, decomposable randomized encoding
requires that the online encoding can be split into encoding functions, one function corresponding to each
input bit [FKN94, AIK06]. The online encoding is then the concatenation of the output of each of the encod-
ings. The only thing shared between the encoding functions is the randomness. We will require a slightly
different decomposable property. Namely, we need that the online encoding is a projection on the random-
ness. In other words, f̂ON(x, r) is defined by a family of linear mappings P = {Px(r)}x∈{0,1}n,r∈{0,1}m
where Px(r) is a subset of [m] that is defined by the string x, for |r| = m. Note that the standard notion
of garbled circuits satisfies this property where the randomness r corresponds to a list of pairs of random
strings ((r01, r

1
1), . . . , (r

0
n, r

1
n)) and Px(r) is defined by the matrix that maps r into the vector (rx1

1 , . . . , rx1
n ).

We also require the randomized encoding to be perfectly correct. We formalize these properties below:

1. Perfect correctness: We say that f̂ = (f̂OFF, f̂ON) is a perfectly correct randomized encoding of a
function f , if for every x and r, it holds that:

B(f̂OFF(r), f̂ON(x, r)) = f(x).

2. Oblivious sampling: We require an additional oblivious property, as for the definition of garbling
schemes, (that, looking ahead, will enable equivocation in our instance-dependence commitment
schemes where a randomized encoding of function f can be explained as a simulated encoding).
We denote this algorithm by ORE and define this new security property as follows.

For any function f as above and for all input/output pairs (x, y) such that f(x) = y it holds that,

{r,SOFF (y, r) ,SON (st, r)}r←{0,1}∗
c
≈ {ORE(x, r), f̂OFF(r), f̂ON(x, r)}r←{0,1}∗

where st is a state output by SOFF. Note that we consider the most general form of a simulator that is
comprised from two distinct sub-algorithms SOFF and SON.

3. Affine-projective form and robustness: We say that f̂ = (f̂OFF, f̂ON) is in affine projective form
if there exists a family of affine projections P : {0, 1}m 7→ {0, 1}m such that f̂ON(x, r) = (vr ⊕
x, Px(r)) where vector vr only depends on r and Px(r) is an affine projection function picked from a
family P .

A randomized encoding f̂ = (f̂OFF, f̂ON) in affine projective form is a robust encoding of f if it holds
that for every string r∗ there exists no projection P ∗x ∈ P such that

B(f̂OFF(r
∗), (vr∗ ⊕ x, P ∗x (r

∗))) ̸∈ {f(x),⊥}.

We conclude with the following theorem, proving in Section 5.

Theorem 3.12. Assuming the existence of one-way functions. Then, for any polynomial time computable
boolean function f : {0, 1}n → {0, 1}, there exists a robust randomized encoding scheme (f̂OFF, f̂ON,SOFF,SON)
with affine-projective property such that the offline complexity is O(s · poly(κ)) and the online complexity
is O(n · poly(κ)) where s is the size of the circuit computing f , n is the size of the input to f and κ is the
security parameter.

In Section 5, we show how to realize such a randomized encoding based on any two-party secure com-
putation protocol (that meets certain requirements), which in particular, is satisfied by the [Yao86] and
[GMW87] protocols. While this construction does not achieve any “non-trivial” online complexity, it will
be sufficient for our application, as the total complexity will be O(sκ).
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3.7 Secure Two-Party Computation

In the following, we present the notion of two-party adaptive security [Can00].

Execution in the real model. Each party Pi begins with an input xi ∈ {0, 1}∗, a random tape ri and
the security parameter κ. An adaptive real-life adversary A is a probabilistic polynomial-time interactive
Turing machine that starts with a random tape rA and security parameter κ. The environment Z is another
probabilistic polynomial-time interactive Turing machine that starts with an input z, a random tape rZ and
the security parameter κ.

At the outset of the protocol, A receives some initial information from Z . Next the computation con-
tinues in rounds. Before each round, if there exists an uncorrupted party, the adversary A might choose to
corrupt one of the parties or both. Next, A activates the party that is supposed to be active in this round
according to the protocol. At each round, A sees all messages sent by the parties (that is, the conversation
between the parties is visible to the adversary).

Upon corrupting a party, the adversary learns its input and its random tape. In addition, Z learns the
identity of the corrupted party and hands some auxiliary information toA. If the adversary is malicious, once
a party is corrupted, it follows the adversary’s instructions from this point. If the adversary is semi-honest,
the corrupted party continues following the protocol. At the end of the computation, the parties locally
generate their outputs. Uncorrupted parties output their output as specified by the protocol and corrupted
parties output a special symbol⊥. In addition the adversary outputs an arbitrary function of its internal state.
(Without loss of generality, this output consists of all the information seen in the execution: the random tape
rA, the information received from the environment and the corrupted parties’ views of the execution.

Next, a postexecution corruption process begins. Z learns the outputs. Next, Z and A interact in at
most two rounds, where in each round Z can generate a “corrupt P1” or “corrupt P2” message and hand it
to A. Upon receipt of this message, A hands Z the internal state of the party. At the end of this process, Z
outputs its entire view of the interaction with the parties and A.

Let REALΠ,A,Z(κ, x0, x1, z, r) the output of Z on input z, random tape rZ and a security parameter
κ upon interacting with A and parties P0, P1 that engage in protocol Π on inputs rA and (x0, r0), (x1, r1),
respectively, where r = (rZ , rA, r0, r1). Let REALΠ,A,Z(κ, x0, x1, z) denote a random variable describing
REALΠ,A,Z(κ, x0, x1, z, r) where the random tapes are chosen uniformly. Let REALΠ,A,Z denote the
distribution ensemble:

{REALΠ,A,Z(κ, x0, x1, z)}x0,x1,z∈{0,1}∗,κ∈N.

Execution in the ideal model. Each party Pi has input xi and no random tape is needed. An adaptive
ideal-process adversary S is a probabilistic polynomial-time interactive Turing machine that starts with a
random tape rS and the security parameter κ. The environment Z is another probabilistic polynomial-time
interactive Turing machine that starts with an input z, a random tape rZ and the security parameter κ. In
addition, there is an incorruptible trusted party T . The ideal process proceeds as follows:

First corruption phase: S receives some auxiliary information from Z . Next, S proceeds in at most two
iterations, where in each iteration S may decide to corrupt one of the parties. Once a party is corrupted,
its input becomes known to S. In addition,Z learns the identity of the corrupted party and hands some
auxiliary information to S .

Computation phase: In the semi-honest setting, uncorrupted parties forward their input to the trusted party.
In the malicious setting, corrupted parties hand T the values chosen by S . Let y0, y1 be the values
handed to T . T computes f(y0, y1) and hands P1 the value f(y0, y1)1 and P2 the value f(y0, y1)2.
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Second corruption phase: S continues to another corruption phase, where it might choose to corrupt one
of the parties based on its random tape and the information it gathered so far. Once a party is corrupted,
S learns its input, Z learns the identity of the corrupted party and hands S some auxiliary information.

Output: Each uncorrupted party Pi outputs f(y0, y1)i. Corrupted parties output a special symbol ⊥. The
adversary S outputs an arbitrary function of its internal state. Z learns all outputs.

Post-execution corruption phase: After the outputs are generated, S proceeds in at most two rounds with
Z , where in each round,Z can generate a “corrupt Pi” message and hand it to S. For any such request,
S generates some arbitrary answer and it might choose to corrupt any of the parties. The interaction
continues until Z halts with an output.

We denote by IDEALf,S,Z(κ, x0, x1, z, r) the output of Z on input z, random tape rZ and security param-
eter κ upon interacting with S and parties P0, P1, running an ideal process with inputs rS and x0, x1, re-
spectively, where r = (rZ , rS). Let IDEALf,S,Z(κ, x0, x1, z) denote a random variable describing IDEAL
f,S,Z(κ, x0, x1, z, r) when the random tapes rZ and rS are chosen uniformly. Let IDEALf,S,Z denote the
distribution ensemble:

{IDEALf,S,Z(κ, x0, x1, z)}x0,x1,z∈{0,1}∗,κ∈N

Then we define security as follows.

Definition 3.13. Let Π be a protocol computing a functionality f . We say that Π securely computes the
functionality f in the presence of adaptive semi-honest/malicious adversaries if for every probabilistic
polynomial-time adaptive semi-honest/malicious real-life adversary A and for every environment Z , there
exists a probabilistic polynomial-time semi-honest/malicious ideal adversary S, such that:

REALΠ,A,Z
c
≈ IDEALf,S,Z .

Adaptive zero-knowledge. As explained in [LZ11], when considering zero-knowledge as a special case
of secure computation, it is most natural to define an adaptive zero knowledge proof of knowledge func-
tionality of the form FR ((x, ω), λ) 7→ (−, (x, b)) where b = 1 if R(x, ω) = 1 and b = 0 if R(x, ω) = 0.
However, since the goal here is to design adaptive zero-knowledge Lindell and Zarosim considered a sim-
plified definition that is more in line with the standard setting of zero-knowledge proof systems (that are not
necessarily proofs of knowledge).

Recall that in the standard setting of zero-knowledge, indistinguishability of the real world from the
ideal world is only required for instances x ∈ L. For these instances the trusted party always returns 1,
and therefore the trusted party can be omitted from the ideal world. In this case the real-life model is as
defined above where the input of the verifier is an instance x ∈ {0, 1}κ (where κ is the security parameter)
and the input of the prover is a pair (x, ω) ∈ {0, 1}κ × {0, 1}p(κ) for a polynomial p(·). The output of
the uncorrupted prover is an empty string and the output of the uncorrupted verifier is a bit specified by the
protocol. In the ideal process, the ideal process adversary S receives the instance x that is guaranteed to be
in the language as input and interacts with the environment and corrupted parties. Thus, only 3 stages are
needed: first corruption stage, output stage and postexecution corruption stage (since there is no computation
stage, there is also no need for a second corruption stage).

The distribution REALΠ,A,Z denotes the distribution ensemble

{REALΠ,A,Z(κ, x, ω, z)}x∈L,ω∈Rxz∈{0,1}∗,κ∈N
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and IDEALf,S,Z denote the distribution ensemble:

{IDEALZK
f,S,Z(κ, x, ω, z)}x∈L,ω∈Rxz∈{0,1}∗,κ∈N.

Definition 3.14. Let L be a language. We say that ⟨P,V⟩ is an adaptive zero-knowledge proof system
(AZK) for L if ⟨P,V⟩ is an interactive proof system for L and for any PPTreal-life adversary A and any
PPT environment Z , there exists a probabilistic PPT adaptive ideal-process adversary S, such that

REALΠ,A,Z
c
≈ IDEALZK

f,S,Z .

4 Warmup: Static Zero-Knowledge Proofs from 2PC

As a starting point, we demonstrate that our technique implies static ZK proofs from any two-party proto-
col that provides perfect correctness. Intuitively speaking, consider a two-party protocol that is secure in
the presence of static adversaries with perfect correctness. Then, the prover generates the transcript of an
execution where the parties’ inputs are secret shares of the witness ω. That is, the parties’ inputs are ω1 and
ω2, respectively, such that ω = ω1 ⊕ ω2. Upon receiving a challenge bit from the verifier, the prover sends
either the input and randomness of P1 or P2, for which the verifier checks for consistency with respect to the
transcript, and that P2 outputs 1. From the correctness of the underlying two-party protocol it holds that a
malicious prover will not be able to answer both challenges, as that requires generating a complete accepting
view. On the other hand, zero-knowledge is implied by the privacy of the two-party protocol. We remark
that this protocol can be made negligibly sound by standard sequential repetition [GMR89] or by relying on
parallel repetition along with statistically hiding commitments [DPP93, HM96]. While this does give a sim-
ple zero-knowledge proof (that could be implemented with off-the-shelf garbled circuits implementations),
the asymptotic complexity is worse than [IKOS07]. The strength of our construction will be explored in
Section 6.1, where we extend this basic protocol to additionally obtain the input-delayed property.

More formally, let f : {0, 1}n → {0, 1} be an arbitrary polynomial-time computable function. We
define g(a1, a2) = f(a1 ⊕ a2) and view g as a two-party functionality. Then let ρOT

g be any two-party
protocol in the OT-hybrid model that realizes g with static semi-honest security. We will consider a slight
variant of this protocol, denoted by ΠOT

g , where for every OT call we make the following modification: Let
(Gen,Enc,Dec) be an IND-CPA symmetric-key encryption scheme based on pseudorandom functions.

• For every OT call where P1’s input is (s0, s1) and P2’s input is b, we require P1 to send (c0 =
Enck0(s0), c1 = Enck1(s1)) to P2 and use random keys (k0, k1) as its input to the OT. Upon receiving
kb from OT functionality, P2 will obtain sb by decrypting cb with kb.

We now proceed with the formal description of our zero-knowledge proof. Let x denote a statement
in an NP language L, associated with relation R, let C be a circuit that outputs 1 on input (x, ω) only
if (x, ω) ∈ R, and let ΠOT

g = ⟨π1, π2⟩ denote a two-party protocol that privately realizes C with perfect
correctness. Our protocol is specified in Figure 2.

Theorem 4.1. Assume the existence of one-way functions. Then, the protocol presented in Figure 2 is a
static honest verifier zero-knowledge proof for any language in NP.

As this protocol only serves as a warmup towards presenting our main (and more involved) results, we
only provide a proof sketch here and postpone the proof details to the next sections.
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Static Zero-Knowledge Proof for any Language L ∈ NP

Inputs: A circuit C that computes the function f(x, ω) = R(x, ω) and a public statement x ∈ L for
both. A witness ω for the validity of x for the prover P .

The protocol:

1. P → V : P invokes ΠOT
g and emulates the roles of P1 and P2 on random shares ω1, ω2 of ω, and

randomness r1, r2. Let τ be the transcript of messages exchanged between these parties. P sends τ
to the verifier.

2. V → P : The verifier sends a random challenge bit b← {0, 1}.

3. P → V : Upon receiving the bit b the prover continues as follows,

• If b = 0 then the prover sends (r1, ω1).

• Else, if b = 1 then the prover sends (r2, ω2).

4. The verifier checks that the randomness and input are consistent with τ by emulating the corre-
sponding party. In case of emulating P2, the verifier checks that it further outputs 1.

Figure 2: Static zero-knowledge proof for any language L ∈ NP

Proof Sketch: Completeness follows easily from the fact that the honest prover knows the witness ω, thus
it can answer both challenges of the verifier. On the other hand, from the perfect correctness of ΠOT

g , a
malicious prover cannot provide randomness and input for both parties that are consistent with τ since that
would imply that ΠOT

g computes an incorrect output for a false statement x that is not in L and violates the
perfect correctness of ΠOT

g . Finally, a simulator can be defined by guessing the random challenge b and
invoking the simulator for ΠOT

g for the case that P1+b is corrupted. Indistinguishability of the real and sim-
ulated proofs follows from the privacy of ΠOT

g where a simulated and real transcripts are indistinguishable
in the presence of a single static corruption.

Finally, we note that our protocol implies the first black-box transformation from [Yao86] and (the two-
party variant of) [GMW87] to static zero-knowledge proof.

5 Randomized Encoding from 2PC

In this section, we show how to construct a randomized encoding for any function f , given a two-party
computation in the oblivious transfer (OT)-hybrid. This is in contrast to prior works that have established the
usefulness of randomized encoding in constructing efficient multiparty computation [IK00, AIK04, DI06].

Recalling the definition of protocol ΠOT
g from the prior section, we require that it satisfies the following

guarantees:

1. It guarantees UC security against semi-honest adversaries in the OT-hybrid that can statically corrupt
either P1 or P2 and adaptively corrupt P2. Looking ahead, we consider two different adversaries:
(1) adversary A1 that corrupts P1 at the beginning of the execution and adaptively corrupts P2 post-
execution (further denoted as a semi-adaptive adversary [GWZ09]) and (2) adversaryA2 that corrupts
P2 at the beginning of the execution. We denote the corresponding simulators by S1 and S2.
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2. Furthermore, we require that P1 is the (designated) sender for all OT instances and that the output of
the computation is obtained only by P2.

Both the classic Yao’s garbled circuit construction [Yao86] and the [GMW87] protocol satisfy these condi-
tions in the OT-hybrid setting. In Sections 5.1 and 5.2 we discuss these two realizations in more details.

Our randomized encoding. We now proceed with the description of our robust randomized encoding
of f with affine-projective property as formalized in Section 3.6 by specifying the functions f̂OFF, f̂ON

and the simulator S. Towards describing our algorithms, we consider a real world experiment carried out
between parties P1 and P2 that engage in an execution of Π with environment Z . Let REALOT

Π,A,Z(κ, x, r)
denote the output of Z on input x, random tape rZ and a security parameter κ upon interacting with A
with random tape rA and parties P1, P2 with random tapes r1, r2, respectively, that engage in protocol
Π in the OT-hybrid where the inputs are determined by Z and r = (rZ , rA, r1, r2). Let REALOT

Π,A,Z(κ, x)
denote a random variable describing REALOT

Π,A,Z(κ, x, r) where the random tapes are chosen uniformly. We
denote by IDEALg,S,Z(κ, x, r) the output of Z on input x, random tape rZ and security parameter κ upon
interacting with S and parties P1, P2, running an ideal process with random tape rS , where r = (rZ , rS).
Let IDEALg,S,Z(κ, x) denote a random variable describing IDEALg,S,Z(κ, x, r) when the random tapes
rZ and rS are chosen uniformly.

Encoding: Consider a (semi-honest) adversary A1 that corrupts P1 at the beginning of the execution. At
the end of the execution, A1 first sends τ to Z where τ is the transcript of messages exchanged
between P1 and P2. Next, it (adaptively) corrupts P2 and sends (a2, r2) to Z where a2 and r2 are
the respective input and randomness used by party P2. From the guarantees of the protocol ΠOT

g , we
know there exists a simulator corresponding to adversary A1. Let this simulator be S1.

1. f̂OFF(r): Let r = (rS1). The offline encoding is obtained by S1 with randomness rS1 until it
sends the first message to the environment. Recall that A1 first statically corrupts P1 and after
completing the execution using Π sends the transcript of the messages to the environment. We
define the output of f̂OFF(r) to be the output of S1 where the input a1 provided for party P1

is sampled uniformly at random. We remark here that the particular environment Z that we
will rely on in the security proof will sample inputs a1 and a2 uniformly at random subject to
a1 ⊕ a2 = x. The offline encoding will however not depend on x as it only requires a1 to be
distributed correctly (which is uniform).

2. f̂ON(x, r): To obtain the online part, we continue the execution of S1 in the execution corre-
sponding to the transcript τ generated by f̂OFF(r). Recall that after sending τ , A1 adaptively
corrupts P2 and sends the input and random tape of P2 to the environment. f̂ON(x, r) contin-
ues the emulation of S1, where upon corrupting party P2 it feeds S1 with the input of P2 as
a2 = x⊕ a1 and f(x) as the output. The simulation returns the view of P2 and f̂ON(x, r) is set
to this view. The view contains (a2, r2,m2) where r2 is the random tape of P2 output by S1 and
m2 is the communication received from the OT functionality.

Decoder: The decoder B on input (zOFF, zON) recomputes the view of P2 from the messages sent by P1 to
P2 in zOFF and the input and randomness of P2 in zON. It checks if the messages sent from P2 to P1

are consistent with what is in zOFF and finally outputs what P2 outputs in the execution.

Simulation: Consider the (semi-honest) adversary A2 that statically corrupts P2. At the end of the ex-
ecution A2 sends (τ, (a2, r2,m2)) to Z where τ is the transcript of messages exchanged between
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P1 and P2 and a2 and r2 are the respective input and randomness used by party P2 and m2 is the
communication received from the OT functionality. Let S2 be the corresponding simulator. Then
the simulation algorithm of the randomized encoding S = (SOFF,SON) is defined as follows. Upon
receiving y = f(x), SOFF invokes S2 where P2’s input is set to a uniformly chosen random string a2
and its output is set to y. Recall that S2 outputs (τ, (a2, r2,m2)) at the end of the execution. Then the
output of SOFF is τ and the output of SON is (a2, r2,m2).

Theorem 5.1. Assume the existence of one-way functions and let (f̂(x, r),S, B) be as above. Then f̂(x, r)
is a randomized encoding of f with computational privacy. We obtain an encoding with offline complexity
CΠκ and online complexity |x| + rΠ + ρΠ where CΠ is the communication complexity of ΠOT

g in the OT-
hybrid, ρΠ is the number of bits received by P2 from the OT functionality, rΠ is the randomness complexity
of P2 in ΠOT

g .

Proof: We continue with the arguments of the two properties required for our randomized encoding: cor-
rectness and privacy. As the correctness argument relies on an argument made in the proof for claiming
privacy, we start with the privacy proof. Towards this, we will consider a specific environment Z∗ that
assigns inputs to the parties as follows. Z∗ gives P1 and P2 inputs a1 and a2 where a1 is chosen at random
and a2 = a1 ⊕ x. At the end of the execution Z∗ outputs all messages received from A as its output.

Privacy. We prove the indistinguishability of a real and a simulated encoding. At first glance, it may
seem that the real encoding and the simulated encoding are quite different as they rely on the simulation
of different adversaries. We begin with observation that the joint distribution of (f̂OFF(r), f̂ON(x, r)) can
be rewritten as IDEALg,S1,Z∗(κ, x). This is because the distribution of inputs and outputs provided for
P1 and P2 by the encoding algorithm is identical to the distribution of inputs and outputs assigned by Z∗.
Analogously, it follows that the distribution of the simulated encoding generated by S is the random variable
IDEALg,S2,Z(κ, x). More precisely,

(f̂OFF(r), f̂ON(x, r)) ≡ IDEALg,S1,Z∗(κ, x), whereas (1)

S(f(x)) ≡ IDEALg,S2,Z∗(κ, x). (2)

We prove indistinguishability via a standard hybrid argument. First, it follows from the indistinguishability
of the simulations generated by S1 and S2 that:

IDEALg,S1,Z∗(κ, x)
c
≈ REALOT

Π,A1,Z∗(κ, x), and (3)

IDEALg,S2,Z∗(κ, x)
c
≈ REALOT

Π,A2,Z∗(κ, x). (4)

Recall that both adversaries A1 and A2 send (τ, (a2, r2)) where τ is the transcript of messages exchanged
between the parties and a2 and r2 are the respective input and randomness of P2. Furthermore, from the
description of our environmentZ∗, we know thatZ∗ simply outputs whatever it receives from the adversary.
Now, as the adversaries are semi-honest and send identical information to Z∗, we have that

REALΠ,A1,Z∗(κ, x) ≡ REALΠ,A2,Z∗(κ, x).

and the proof of indistinguishability of our simulation by S for the randomized encoding follows using a
standard hybrid argument.
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(Perfect) Correctness. We need to show that for every x, B(f̂OFF(r), f̂ON(x, r)) outputs f(x) except
with negligible probability, where the probability is over the choices of r and the random coins of B. From
Equations 1 and 3, we have that (f̂OFF(r), f̂ON(x, r))

c
≈ REAL

Π̃,A1,Z∗(κ, x). Since P2 outputs f(x) except

with negligible probability in the real world experiment, it follows that B(f̂OFF(r), f̂ON(x, r)) = f(x)
except with negligible probability. If ΠOT

g is perfectly correct and the simulation by S1 is perfect, then our
randomized encoding will be perfectly correct.

Complexity. Finally, we measure the complexity of our encoding. The offline computational complexity
is the computational complexity of P1 and the online computational complexity is proportional to the com-
putational complexity of P2. The length of the offline encoding is the communication complexity of ΠOT

g ,
denoted by CΠ. The length of the online encoding is equal to the sum of P2’s input length |a2|, its random-
ness |r2| and the communication between the OT and P2 which is denoted by ρΠ. That equals |x|+rΠ+ρΠ.

Next, we instantiate our randomized encoding using the Yao’s garbling scheme based 2PC and the
GMW protocol. We will additionally show that each of these instantiations are projective, perfectly correct
and admits oblivious sampling.

5.1 Robust RE from Garbled Circuits

We next demonstrate that our construction can be realized based on Yao’s garbling circuit based 2PC. This
is shown by proving that Yao’s protocol from [LP09] achieves all the security requirements.

We do this in two parts. First, we show that the 2PC protocol satisfies semi-adaptivity and oblivious sam-
pleability. Then we show that the resulting randomized encoding achieves the required properties of perfect
correctness, projective and oblivious sampleability. We will make a few modifications to the standard gar-
bled circuit construction. We will require that the underlying encryption scheme satisfy two properties: (1)
zero decryption error, and (2) pseudorandom ciphertexts. The standard IND-CPA encryption scheme based
on pseudorandom functions satisfy these two properties, where the former is achieved when the garbling
scheme is embedded with the point-and-permute optimization [PSSW09]. We will also modify the standard
Lindell Pinkas simulation of the garbled circuit [LP09]; formally described under oblivious sampling below.

Semi-adaptivity: Recall that semi-adaptivity requires that the protocol is secure in the presence of static
corruption of P1 followed by an adaptive (post-execution) corruption of P2 by a semi-honest adver-
sary. In the OT-hybrid we can generate P1’s communication honestly using its input. Recall that in
the standard Yao’s protocol the communication contains the garbled circuit and the garbler’s keys.
Moreover, in our randomized encoding the P1’s input to the OT as the sender is not directly incorpo-
rated in the transcript.13 The evaluator’s (P2’s) keys are delivered using OT and are not present in the
communication channel. At the end of the execution when P2 is corrupted and its input is received,
the simulator needs to generate (a2, r2,m2) where a2 is provided to the simulator. For the garbled
circuit construction r2 is the all 0’s string and m2 is the keys corresponding to the bits in a2. As P1 is
honestly simulated, the keys to both values are known and hence m2 can be obtained. Furthermore,
the simulation is perfect.

Oblivious sampling: We recall that oblivious sampling requires that the view of P2, output by S1, can be
explained as an output of S2. In other words, it must be shown that the adaptive simulation of (post

13However, with our modification, indirectly the encrypted values of the sender’s real inputs are in the transcript.
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execution corrupted) P2 can be explained as if P2 was statically corrupted. To prove the later we must
modify the way Lindell and Pinkas designed their static simulation when P2 is corrupted. We recall
that when P2 is statically corrupted, the simulator in their proof constructs a fake garbled circuit that
always outputs the correct output of P2. This fake garbling involves a sequence of four ciphertexts per
gate that encrypt the same input label four times (the so called “active” key). On the other hand, in case
P2 is adaptively corrupted, upon statically corrupting P1, the garbled circuit is honestly generated by
the semi-honest corrupted P1. Now, since it is not possible to explain an honestly generated garbled
circuit as a fake one (at least not with the set of tools used for garbling), we slightly modify the original
simulation of Lindell and Pinkas as follows. Instead of having four ciphertexts that encrypt the same
plaintext, the simulator generates only one valid ciphertext and three pseudorandom ciphertexts. Note
that now it is possible to explain an adaptive simulation of P2’s view as a static one by relying on
the pseudorandomness property of the underlying encryption scheme. Specifically, the simulator for
the case that P2 is adaptively corrupted will generate the garbled circuit honestly. Next, whenever
needed to explain P2’s view as being statically corrupted, the garbled circuit can be explained as
being obliviously sampled. That is, a single ciphertext within each gate will correspond to the ‘valid’
ciphertext. Whereas the remaining three ciphertexts will be considered as being obliviously sampled.

Perfect correctness: For the randomized encoding to be perfectly correct, we need the two-party protocol
to be perfectly correct and the simulation of adversary A1 perfect. We argued above under semi-
adaptivity that the simulation is perfect. If the underlying encryption scheme has zero decryption
error then the garbled circuit construction will be perfectly correct against semi-honest corruptions.

Affine-projective form and robustness: The online encoding comprises of the input a2 to party P2 and
m2 which is the communication between the OT functionality and P2. a2 is obtained by XORing
x with a1 where a1 only depends on the randomness r used in the offline encoding and therefore
satisfies the affine part. If ((k01, k

1
1), . . . , (k

0
n, k

1
n)) are the keys (which are randomly sampled) used

to encode the OT, then m2 is a projection on these bits, namely (k
a12
1 , . . . , k

an2
n ) where a2 = a12 · · · an2 .

The family of projections P that has efficiently checkable range can be described as any projection
that chooses one of each of the two strings (k0i , k

1
i ).

The robustness of this scheme will follow from the fact that given an offline encoding with randomness
r∗, there is no online encoding where the projection is restricted to the above family P , that can result
in an incorrect answer. This is because once the input keys are fixed and there is a zero decryption
error, the evaluation by B is the evaluation of the garbled circuit which is deterministic. Namely, there
is only one ‘active’ path that leads to a correct output.

Realizing robust randomized encoding secure against adaptive choice of inputs based on [HJO+16].
The work of [HJO+16] modifies the garbled circuit based construction to achieve security against adaptive
chosen inputs using the following approach: The offline encoding of [HJO+16] is an encryption of the
garbled circuit under a special kind of encryption scheme where the key is revealed in the online phase.
The special encryption scheme allows the encryptor to equivocate the ciphertext to M different possible
plaintexts (with certain restrictions) where M is a parameter chosen for the security proof.14 We remark that
the honest encoding and the simulated encoding will not use this equivocation property, and reveal only one
specific key in the onling phase. However, the proof of security involves a sequence of hybrid steps that will
make use of the different keys.

14M will be chosen to be proportional to the width of the circuit implementing the function f .
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We employ this construction in the scheme described above with a slight modification to obtain a robust
randomized encoding that is secure against adaptive choice of inputs. We modify the two-party protocol
that is used in the transformations. The garbler transmits the encrypted garbled circuit and transmits the
key under which it is encrypted using a 1-out-of-M oblivious transfer. The honest P1 uses only one key
k and sets all strings in the 1-out-of-M OT to be the key k. P2, on the other hand, acting as the receiver,
selects a random index from 1 to M . The semi-adaptive simulation by S1 of such a protocol will be same
as before, as it will simply follow P1’s strategy honestly and then later when P2 is corrupted, the simulator
selects a random index for P2 when simulating P2’s view. The simulation of a static corruption byA2 works
by having the simulated key set as all the sender’s strings in the 1-out-of-M oblivious transfer. The proof
of correctness of the simulation by S2, however, will rely on the proof of [HJO+16]. The affine-projective
property will follow essentially as before since we modelled the key transfer as an oblivious transfer.

5.2 Robust RE from the GMW Protocol

We begin by recalling the basic protocol from [GMW87]. The parties P1 and P2 first create XOR-shares of
their respective inputs x = x1 ⊕ x2 and y = y1 ⊕ y2, and exchange one share with each other, say x2 from
P1 and y1 from P2. Next, they evaluate the circuit gate by gate where given the shares of the input they try
to obtain shares for the output. The shares that correspond to the output of an addition gate can be simply
obtained by locally adding that shares that correspond to the inputs. Multiplication gates, on the other hand,
require oblivious transfer. For instance, if ai, bi are the input shares held by party Pi (i ∈ {1, 2}) where the
inputs are a1 ⊕ a2 and b1 ⊕ b2, then to compute the product the parties engage in a 1-out-of-4 OT where P2

sets its input as (a2, b2) and P1 sets its inputs as {(a1 ⊕A)(b1 ⊕B) + s}A∈{0,1},B∈{0,1} where s is chosen
at random. In essence, corresponding to the input (a2, b2), P2 learns (a1⊕ a2)(b1⊕ b2)+ s and uses that as
its output share, while P1 uses s. Finally, P1 transmits its shares of the output wires to P2. In this protocol
P1 is the designated sender for all OT invocations and the protocol admits (UC) simulation in the presence
of adaptive adversaries corrupting either P1 or P2 in the OT-hybrid.

Semi-adaptivity: We demonstrate that the GMW protocol is semi-adaptive. In fact, in the OT-hybrid the
protocol is even fully adaptive. Nevertheless, we explicitly provide the semi-adaptive simulator. Upon
statically corrupting A1, the simulator will generate P1’s communication honestly using P1’s input.
Once S1 learns the input a2 of P2, it generates P2’s view (a2, r2,m2) by simply running P2’s code
honestly with the exception that the XOR shares for the input are fixed (as one of the shares appears
in the transcript), and that will determine r2. m2, which is the communication between the OT
functionality and P2, can be determined by running the code of P2 honestly and using the inputs fed
by P1 to the OT functionality. It follows just as in our garbled circuit construction that the simulation
by S1 is perfect.

Oblivious sampling: We need to show that the view of P2 output by S1 can be explained as an output of
S2. First we recall the standard simulation of adversary A2 that statically corrupts P2. The simulator
obtains P2’s input a2. It computes a random XOR share of a2 into two shares and sends one share
to P1. Then it simulates each of the OT calls so that P2 receives a random bit (this is because, the
actual result of each multiplication is masked with an independent random bit s). If y is the share of
the output bit computed by P2, it feeds f(x) ⊕ y as the message received from P1. Recall that we
make a slightly modification in our protocol (see Section 4), where the actual inputs of the sender for
each OT are encrypted under a random key, and the corresponding keys are used as inputs to the OT
functionality. To simulate the encryptions sent, it suffices to encrypt the one value that the receiver
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will decrypt and simulate the rest of the three encryptions by supplying random strings (recall that our
encryption has pseudorandom ciphertexts). Given this simulation description by S2, we can explain
the view of P2 output of S1 as follows: It is easy to see that the input, shares of the input and shares of
the output can be demonstrated as generated by S2 given the input a2 and output f(x). The only non-
trivial part is demonstrating the communication for the OT generated by S1 was actually generated by
S2. This can be done by showing that except for the one out of the four ciphertexts decrypted by P2

in each OT, the remaining three ciphertexts were simply random strings.

Perfect correctness: For the randomized encoding to be perfectly correct, we need the two-party protocol
to be perfectly correct and the simulation of adversary A1 perfect. Recall that the standard GMW
is perfectly correct. It further remains perfectly correct even with our modification to OT calls as
long as there is zero decryption error (see Section 4). We argued above under semi-adaptivity that the
simulation is perfect. Therefore, if the underlying encryption scheme has zero decryption error then
we have perfect correctness against semi-honest corruptions.

Affine-projective form and robustness: The online encoding comprises of the input a2 to party P2 and
m2 which is the communication between the OT functionality and P2. a2 is obtained by XORing x
with a1 where a1 only depends on the randomness r used in the offline encoding. More formally, if
a2 = x⊕ a1 and a1 is a substring of r. Therefore, it satisfies the affine property. For every OT call, if
(k0, k1) are the keys (which are randomly sampled) used as inputs to the oblivious-transfer, then m2

contains kb where b is P2’s input. As k0, k1 are substrings of r and kb is a projection, the randomized
encoding satisfies the projective property. To argue robustness, first we observe that the keys for every
OT call are bound to the randomness, where the actual sender values to the OT by our modification are
in the transcript, encrypted with these keys. Therefore, given r that is valid for the offline encoding
and a corresponding online encoding, we obtain a valid transcript of an execution between P1 and
P2. Robustness then follows from the perfect correctness of the underlying GMW protocol and zero
decryption error of the underlying CPA encryption scheme.

The efficiency of our randomized encoding. As shown above, both garbled schemes [Yao86, LP09] and
the [GMW87] protocol satisfy the required properties to realize our randomized encoding. Thus, if we rely
on the former protocol, the offline complexity is O(s ·poly(κ)) whereas the online complexity is n ·poly(κ),
where s is the size of the circuit computing f , n is the input length of f and κ is the security parameter. In
contrast, if we rely on [GMW87], we get that the online and offline complexities are both O(s · poly(κ)).
Finally, our robust randomized encoding secure against adaptive input based on [HJO+16] has an offline
efficiency of O(s · poly(κ)) and an online efficiency of O((d+ n) · poly(κ)) where d is width of the circuit
implementing the computed function.

6 Input-Delayed Proofs

In this section, we demonstrate the power of the proceeding transformation by proving lower bounds and
providing additional applications.

6.1 Input-Delayed Zero-Knowledge Proofs

In [LS90], Lapidot and Shamir provided a 3-round witness-indistinguishable (WI) proof of knowledge for
Graph Hamiltonicity with a special “input-delayed” property: namely, the prover uses the statement to be

27



proven only in the last round. Recently, in [CPS+16a, CPS+16c] it was shown how to obtain efficient input-
delayed variants of the related “Sigma protocols” when used in a restricted setting of an OR-composition.
In this section we show how to use randomized-encoding that is secure against adaptive chosen inputs, to
realize input-delayed zero-knowledge proofs. Then relying on the recent construction of such a randomized
encoding [HJO+16] we obtain a constant-rate input-delayed zero-knowledge proof, namely whose commu-
nication complexity is O(s) + poly(κ) where s is the size of the circuit realizing the NP-relation and κ is
the security parameter. Roughly speaking, the input-delayed property allows an honest prover to generate
all the messages except the last one without the knowledge of the statement. Consequently, the soundness
and zero-knowledge property have to incorporate the possibility of the statement being adversarially chosen.
Intuitively, soundness is required to hold even if the cheating prover adaptively chooses the statement before
the last round. Zero-knowledge, on the other hand, is required to hold even if the malicious verifier chooses
the statement before the last round. We next formalize this notion:

Definition 6.1 (Input-delayed special-sound zero-knowledge proof.). A k-round protocol (P,V) for an NP
language L with NP-relationR is an input-delayed zero-knowledge proof if it is complete and the following
properties hold:

Adaptive special-soundness: There exists a polynomial-time extractor algorithm X , such that for every
polynomial-time machine P ∗, there exists a negligible function ν(·) such that the following holds for
every auxiliary input z for P ∗. Let τ1, τ2 denote two transcripts between P ∗(1n, z) and V (1n) where
V uses the same randomness for the first k− 2 rounds (i.e. the first k− 2 rounds are identical in both
transcripts). Then, the probability over the randomness used to generate the transcripts that:

1. τ1 and τ2 are accepting transcripts with statements x1 and x2 respectively and different messages
only within the k − 1 round, and

2. X(τ1, τ2) does not output (ω1, ω2) such that ω1 ∈ RL(x1), ω2 ∈ RL(x2),

is smaller than ν(n).

Input-delayed zero-knowledge: For every pair of PPT algorithms V∗1 ,V∗2 , there exists a pair of PPT al-
gorithms (S1, S2), such that following two distributions are indistinguishable.

• {REALV∗
1 ,V∗

2
(1n, z)}n∈N,z∈{0,1}∗ , and

• {IDEALS1,S2

V∗
1 ,V∗

2
(1n, z)}n∈N,z∈{0,1}∗ .

where the real experiment REALV∗
1 ,V∗

2
(1n, z) proceeds as follows: The honest prover P on input 1n

interacts with V∗1 (1n, z) for k−1 rounds. The view of V∗1 is fed as input to V∗2 . V∗2 first generates (x, ω)
and sends it to P in a special input tape and continues to interact with P to receive the kth-round
message. The output of the experiment is the output of V∗2 if ω ∈ RL(x) and ⊥ otherwise.

The ideal experiment IDEALS1,S2

V∗
1 ,V∗

2
(1n, z) proceeds as follows: The simulator S1 on input (1n, z)

outputs a view view and state st. V∗2 on input view outputs (x, ω). The output of the experiment is the
output of S2 on input (1n, st, x) if ω ∈ RL(x) and ⊥ otherwise. .

Lemma 6.1. Assume the existence of robust randomized encoding with the affine projective property that is
secure against an adaptive chosen input, and one-way functions. Then, there exists 4-round input-delayed
special-sound zero-knowledge proof according to Definition 6.1 for any language in NP.
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Proof: Given an NP-relationR and a constant C, define the function f as

f [C](x,D) = (R(x,C ⊕D), x,D).

Let com be the commitment scheme based on one-way functions [Nao91]. Then the protocol proceeds as
follows:

1. V → P : V sends the first message η for the commitment scheme com.

2. P → V : P samples randomness r0, r1 and random strings ω0
0, ω

1
0 . Let (f̂ τ

OFF, f̂
τ
ON, S

τ
OFF, S

τ
ON) be

a robust randomized encoding of the function f [ωτ
0 ](·, ·). P sends (F 0

OFF, σ
0) and (F 1

OFF, σ
1) to V

where F τ
OFF = f̂ τ

OFF(r
τ ), στ = comη(r

τ , ωτ
0 ) for τ ∈ {0, 1} and the commitment is made bit-by-bit.

3. V → P : The verifier sends a random challenge b← {0, 1}.

4. P → V : Upon receiving the input statement x and witness ω, the prover sends:

(a) Decommitment to every bit in σb, and

(b) F 1−b
ON = f̂1−b

ON (inp1−b, r1−b) along with decommitments of specific bits of r1−b from σ1−b deter-
mined by the positions induced by the projection Pinp1−b(r1−b) where inp1−b = (x, ω ⊕ ω1−b

0 ).

The verifier accepts only if:

(a) F b
OFF = f̂ b

OFF(r
b) is a valid offline encoding of the function f [ω∗](·, ·) where σb was decommit-

ted to (rb, ω∗).

(b) (F 1−b
OFF , F

1−b
ON ) decodes to (1, x, ·).

(c) Let F 1−b
ON be of the form (·,∆), then the specific bits decommitted to in σ1−b are exactly ∆.

Completeness follows directly from the correctness of the underlying randomized encoding scheme.
Adaptive special soundness, on the other hand, follows from the robustness of the randomized encoding. If
a prover manages to convince the verifier for two different 2nd messages, namely challenge 0 and challenge
1 with possibly different (adaptively chosen) statements, then we need to demonstrate that witnesses can be
extracted for both the statements. More precisely, let τ1 and τ2 be two transcripts with different challenges
but same two messages. We define an extractor X that on input τ1, τ2 that proceeds as follows: As both
transcripts are convincing, there must be r0, ω0

0, ω
0
1, r

1, ω1
0, ω

1
1 such that

• F 0
OFF = f̂0

OFF(r
0) and (F 0

OFF, F
0
ON) decodes to (1, x0, ω

0
1).

• F 1
OFF = f̂1

OFF(r
1) and (F 1

OFF, F
1
ON) decodes to (1, x1, ω

1
1).

X outputs (ω0
0 ⊕ ω0

1, ω
1
0 ⊕ ω1

1). The correctness of the extractor will follow from the robustness of the
underlying randomized encoding scheme. Recall that the robustness property for our randomized encoding
holds if there is a valid r corresponding to the offline part such that the second part of the online encoding
exactly contains the projection of this r. As the bits of r are committed to in our protocol, the projection
is enforced by requiring that the corresponding bits of r to be decommitted, we have that by the binding
property of the commitment, robustness holds with high probability. Therefore robustness holds and the
probability with which the prover can provide an online part that will decode to a wrong value is negligible.
Since the decoded output is correct with high probability, it follows that the extractor will succeed with the
same probability.
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Finally, we demonstrate the zero-knowledge property. Here, the simulator guesses the challenge of
the verifier in advance and computes the first message according to this challenge following the honest
commitment algorithm. In more detail, given V∗1 and V∗2 , we define a pair of (oracle) algorithms S1, S2. S1

with oracle access to V∗1 proceeds as follows:

1. S1 obtains η from the verifier.

2. S1 makes a guess for the verifier’s challenge b. It next generates a first message to be fed to V∗1 . It
samples randomness rb, rsim and random strings ωb

0 and feeds (F 0
OFF, σ

0) and (F 1
OFF, σ

1) internally
to V∗1 where

• F b
OFF = f̂ b

OFF(r
b) and σb = comη(r

b, ωb
0), and

• F 1−b
OFF = SOFF(rsim) and σ1−b is sampled as a random string.

3. If V∗1 responds with challenge b, then S1 simply outputs rb, rsim, ωb
0 and decommitments of σb as its

state st and the view of V∗1 in the internal emulation as view. Otherwise, it rewinds to step 1 and
makes a new guess for b.

V∗2 takes as input view and outputs (x, ω). S2 takes an input (1n, st, x) and proceeds as follows:

• It samples ω1−b
1 and feeds V∗2 the decommitment of σb and S1−b

ON ((1, x, ω1−b
0 ), rsim) as the third

message and outputs whatever V∗2 outputs.

Indistinguishability of the simulation follows directly from the indistinguishability of the simulation of the
randomized encoding.

The work of Hemenway et al. [HJO+16] shows how to obtain a randomized encoding secure against
adaptively chosen inputs. We show in Section 5.1 how to extend it to achieve the stronger robustness
property. Combining their work with our construction, we have the following corollary.

Corollary 6.2. Assume the existence of one-way functions. Then for any NP-relation R, there exists a 4-
round input-delayed special-sound ZK proof with communication complexity O(s · poly(k)) where s is the
size of the circuit computing the NP relation.

Additionally, our protocol only depends on an underlying randomized encoding that implements a re-
lated functionality in a black-box way.

Remark 6.2. Our protocol can be made 3-round if the underlying assumption is one-way permutation,
removing the need of sending the first message of the verifier.

Remark 6.3. The zero-knowledge protocol described in this section is not an interactive proof in the tra-
ditional sense as it does not satisfy the standard soundness condition. Ideally, one would hope that no
cheating prover can prove a false statement with a probability beyond a probability of 1/2. However, in our
protocol, as the prover can adaptively determine a statement for each challenge of the verifier, such a claim
is meaningless as the prover need not fix the same statement for both the challenges. In the next section, we
will compile this protocol to achieve the standard notion, where no cheating prover can convince a verifier
of any false statement beyond a negligible probability.
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6.2 Commit-and-Prove Zero-Knowledge Proofs

In the “commit-and-prove” paradigm, the prover first commits to its witness and then proves that the state-
ment, along with the decommitment value maintains the underlying NP relation. This paradigm is useful for
constructing maliciously secure protocols [GMW87, CLOS02]. In this section we show how to design such
an input-delayed proof, namely, where the statement is determined only at the last round and the underlying
commitment scheme is used in a black-box way. Specifically, in this input-delaying flavour the witness is
known ahead of time but not the statement, and hence not the NP relation.

As such we can modify the previous protocol to achieve this. Recall that in the first round, the prover
commits to one of the two shares of the witness. We can additionally require the prover to commit to both
shares. However, this does not completely solve the problem as we need to show that the witness used for
both repetitions of the randomized encoding are the same. Namely, ω0

0 ⊕ ω0
1 = ω1

0 ⊕ ω1
1 . Furthermore, the

protocol will, at best, achieves soundness half (see Remark 6.3).
In order to improve the soundness parameter we need to repeat the basic proof sufficiently many times

in parallel. This, however, does not immediately work as the dishonest prover may use shares of different
messages for each proof instance. In order to overcome this problem we use the [IKOS09] approach to
add a mechanism that verifies the consistency of the shares. Namely, suppose we wish to repeat the basic
construction (from the previous section) in parallel N = O(t) times where t = O(κ) and κ is the security
parameter. Unlike the basic protocol from the previous section, we describe our protocol in this section
in a commitment hybrid model where both the prover and the verifier have access to an ideal commitment
functionality FCOM. Specifically, whenever we say com(x) in this protocol, we imply that the party sends x
to the FCOM functionality. In Section 6.3 we discuss how to instantiate FCOM.

• The verifier picks a random t-subset I of [N ] with repetitions. Namely, it chooses i1, . . . , it uniformly
at random from [N ]. It also picks t random challenge bits {chi}i∈I and commits to them.

• The prover then continues as follows:

1. It first generates N independent XOR sharings of the witness ω, say {ωi,0, ωi,1}i∈[N ].

2. Next, it generates the views of 2N parties Pi,0 and Pi,1 for i ∈ [N ] executing a t-robust t-private
MPC protocol, where Pi,j has input ωi,j , that realizes the functionality that checks if ωi,0 ⊕ ωi,1

are equal for all i. Let Vi,j be the view of party Pi,j .

3. Next, it computes N offline encodings of the following set of functions:

f [ωi,0, Vi,0](x, ωi,1, Vi,1) = (b, x, ωi,1, Vi,1) with offline encoding f̂OFF
i

for i ∈ [N ], where b = 1 if and only if R(x, ωi,0 ⊕ ωi,1) holds and the views Vi,0 and Vi,1 are
consistent with each other.

4. Finally, the prover sends:{
f̂OFF
i (ri), com(ri), com(ωi,0), com(ωi,1), com(Vi,0), com(Vi,1)

}
i∈[N ]

.

• The verifier decommits to all its challenges.

• For every index i in the t subset the prover replies as follows:

– If chi = 0 then it decommits to ri, ωi,0 and Vi,0. The verifier then checks if the offline part was
constructed correctly (as in our basic proof).
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– If chi = 1 then it sends f̂ON
i (ri, x, ωi,1, Vi,1) and decommits ωi,1, Vi,1 and specific bits of ri

determined by the projection in f̂ON
i . The verifier checks if the online encoding is consistent with

the bits of ri decommitted and then runs the decoder and checks if it obtains (1, x, ωi,1, Vi,1).

Furthermore, from the decommitted views Vi,chi
for every index i that the prover sends, the verifier

checks if the MPC-in-the-head protocol was executed correctly and that all the views are consistent.

Theorem 6.3. The above protocol is a commit-and-prove input-delayed zero-knowledge proof with negligi-
ble soundness for any language in NP in the FCOM-hybrid.

Proof: We prove soundness of this protocol in two steps. First, we show along the same lines as [IKOS09]
that except with negligible probability all shares reconstruct to the same value. Then it follows that for a
false statement, the probability that an adversary can cheat in all t repetitions determined by the set I is
at most 2−t. The crucial idea is that we implement the MPC protocol from Step 2 using the [IKOS09]
approach of MPC-in-the-head. More formally, we show that if the shares are inconsistent even in one of
the repetitions, the prover will be caught with very high probability. We stress that we cannot rely on the
proof presented in [IKOS09] because in the soundness proof the authors rely on the fact that every possible
t-subset can be opened by the verifier. However, in our case, the verifier can only open restricted subsets
of t views. Namely, for any index i ∈ [N ] ∩ I , it can choose to open either Vi,0 or Vi,1, but not both
simultaneously. We therefore (re-)prove the soundness in our setting. Our proof starts the same way as
[IKOS09], by considering an inconsistency graph G that has nodes (i, 0) and (i, 1) for i ∈ [N ] and an edge
between two nodes (i, bi) and (j, bj) if the corresponding views Vi,bi and Vj,bj (that have been committed to
in the first prover message), are inconsistent. Depending on the graph G, there are two cases:

Case 1: G contains a vertex cover B of size at most t: In this case, from the t-robustness of the MPC, we
can conclude that if the verifier chooses any party outside the set of parties in B, the prover will be
caught as these parties will output a value only in the support of the function and in the case of a false
statement this can only be 0. Therefore, we simply estimate the probability that the verifier in our
protocol opens the view of a party not in B. Since, the size of B is at most t, and only one of each
(i, 0) and (i, 1) can be opened, there will be at most t distinct values i such that (i, bi) is in B for some
value bi ∈ {0, 1}. This means there are at least N − t values for i such that neither Vi,0 or Vi,1 are in
B and if such an i ∈ I , the prover is caught. Hence the probability that the verifier misses all parties
outside B is ( t

N )t which is negligible for N = 4t.

Case 2: G has no vertex cover B of size less than t: This means that there is a matching of size of at least
t
2 . In this case, we use the fact that the prover is caught if both vertices incident on an edge are opened
by the verifier. We consider two sub-cases.

Subcase 1: Suppose the matching contains edges between (ij , 0) and (ij , 1) for t/4 distinct indices
i1, . . . , it/4. Since the function fωi,0,Vi,0 checks the consistency of these pair of views Vi,0 and
Vi,1 it must be the case that for every j ∈ [t/4] such that ij ∈ I , the prover is caught for one
of the two values chij can take. We show that this happens except with negligible probability.
First, we observe that the probability of I containing at most t/12 indices from {i1, . . . , it/4} is(
N−t/4

N

)t−t/12
< (1− 1

16)
11t/12 is negligible. Then, conditioned on having at least t/12 indices

from {i1, . . . , it/4} in I , the probability that none of the chi values for i ∈ I ∩ {i1, . . . , it/4} is
the value that makes the prover caught is at most (12)

t/12. Therefore, by a union bound, except
with negligible probability, the prover is caught in this subcase.
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Subcase 2: Suppose that there are fewer than t/4 such edges in the matching. Then there are at
least t/4 pairs of indices (i, j) such that there is an edge between (i, bi) and (j, bj) such that
i ̸= j, for some value bi, bj . Call this set of edges E. We now select edges using the following
strategy: Pick a random edge from E, say between (i, bi) and (j, bj) and add it to the set E∗.
Now remove edges from E that are incident on vertices with index i or j. Repeat until there are
no more edges. Since every index i can be involved in at most two edges in a matching (namely
one edge with vertex (i, 0) and the other (i, 1)) for every edge added to E∗ we remove at most
two edges from the matching. Since E is of size at least t/4. the size of E∗ is at least t/12. Let’s
denote the vertices incident on the edges in E∗ by {(ij , bij ), (̃ij , bĩj )} where j ∈ {1, . . . , t/12}.
By our selection strategy we have that all indices in {i1, ĩ1, . . . , it∗ , ĩt∗} are distinct.
Next, we show that with high probability the views opened by the verifier correspond to at least
one edge in E∗. For this we view the random process of sampling the indices in I by the verifier
as follows. It first chooses t/2 indices, call this IF (the first half). Then, it chooses the remaining
t/2 indices, denote by IS (the second half).
Next we bound the required probability via the following events,
• The probability that |IF ∩ {i1, . . . , it/6}| ≥ t/1000. Using an union bound this is at most( t
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which is negligible. Therefore, except with negligible probability |IF ∩ {i1, . . . , it/6}| >
t/18. Lets denote the subscripts in {i1, . . . , it/6} that are part of the intersection IF ∩
{i1, . . . , it/6} by Γ.
• Conditioned on |Γ| > t/1000, the probability that |IS ∩ {̃ij}j∈Γ| ≥ t

106
can be bounded

using another union bound and shown to be negligible. 15

This means that, except with negligible probability, there are at least t/106 pairs (ij , ĩj) such
that both of them are in I . The prover is now caught if the chij = bij and chĩj = bĩj which
occurs with probability 1

4 for every pair. The probability that this does not happen for all t/106

pairs is at most
(
3
4

)−t/106 which is negligible.

The completeness and zero-knowledge follows analogously to the previous section.

6.3 Instantiating FCOM

We obtain two corollaries depending on how we instantiate both the commitments of the verifier and the
prover. The first instantiation is based on [GK96] scheme where the commitment made by the verifier in the

15We have not optimized the parameters as our focus is to demonstrate theoretical feasibility of such protocols.
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first message is computed using a statistically-hiding commitment scheme whereas the commitment made
by the prover is computed using a statistically-binding scheme. This yields a 5-round commit-and-prove
zero-knowledge proof. More formally, we obtain the following corollary.

Corollary 6.4. Assume the existence of collision-resistant hash-functions. Then there exists a 5-round input-
delayed commit-and-prove zero-knowledge proof where the underlying primitive and NP-relation are used
in a black-box way.

The second instantiation is only based on one-way functions, where the verifier commits to its challenge
using a perfectly binding commitment and the prover commits to its message using the 3-round parallel
extractable commitment scheme of [PW09]. This yields a 6-round protocol based on one-way functions.
More precisely, we obtain the following corollary.

Corollary 6.5. Assume the existence of one-way functions. Then there exists a 6-round input-delayed
commit-and-prove zero-knowledge argument where the underlying primitive and NP-relation are used in
a black-box way.

7 Adaptive Instance-Dependent Commitments for the Binary Message Space

In the current and next sections we discuss a general paradigm for designing adaptive instance-dependent
commitments schemes for the binary message space, namely for the message space {0, 1}. Our construc-
tions follow from two fundamental cryptographic primitives: garbling schemes (see Section 3.5) and robust
randomized encoding (see Section 3.6), where the former can be viewed as a warmup of the latter.

7.1 Adaptive Instance-Dependent Commitments from Garbled Schemes

As a warmup, we present our first adaptive instance-dependent commitment scheme based on our garbled
circuits notion as formally defined in Section 3.5 which, in turn, implies a construction for the binary mes-
sage space {0, 1} based on one-way functions (see more detailed discussion in Section 3.5). Let x denote
a statement in an NP language L, associated with relation R, and let C be a circuit that outputs 1 on input
(x, ω) only if (x, ω) ∈ R.16 Intuitively speaking, our construction is described as follows.

A commitment to the bit 0 is defined by a garbling of circuit C , i.e., Grb(C) and a commitment to the
encoding information, whereas a commitment to the bit 1 is defined by a simulated garbling of the circuit
C with output set to 1, i.e., the garbled circuit output by SimGC(C, 1), and a commitment to the input
encoding z̃ that is output by SimGC(C, 1). The decommitment to the bit 0 requires revealing the encoding
information (namely, all input labels) with which the receiver checks that Grb(C) is indeed a garbling of
C. On the other hand, the decommitment to the bit 1 requires decommitting to z̃ with which the receiver
checks that the simulated garbled circuit evaluates to 1. Importantly, if the committer knows a witness ω
for the validity of x in L, then it can always honestly commit to a garbling of circuit C and later decommit
to both 0 and 1. For statements x ∈ L, the hiding property of the commitment scheme follows directly
from the indistinguishability of the simulated garbled circuit and the hiding property of the underlying
commitment scheme. Whereas, for x ̸∈ L, the commitment is perfectly binding as even an unbounded
committer cannot provide a honestly generated garbled circuit, and at the same time provide an encoding of
some input that evaluates the garbled circuit to 1 (as there exists no witness ω for x). Finally, considering
garbling constructions from the literature, such as the [LP09] scheme, we note that the communication

16More explicitly, we assume that the common statement x is embedded inside the circuit and only ω is given as its input.
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complexity of our construction for committing a single bit equals O(s · poly(κ)) where s is the circuit’s size
and κ is the security parameter.

We are now ready to formally describe our construction in Figure 3. We prove the following theorem,

Instance-Dependent Commitment from Garbled Schemes

Building block: Let com denote a pseudorandom and statistically binding commitment scheme.

Inputs: Let circuit C be as above and let x denote a statement x ∈ L.

The commitment scheme:

- Com(x, 0): S generates (C̃, ek, dk) ← Grb(1κ,C) and sends C̃, dk and σ = com(ek) to the
receiver.

Decommitment: S decommits σ to the encoding information ek to the receiver, that verifies that C
was garbled correctly and that the decommitment information is correct.

- Com(x, 1): S generates (S̃imC, z̃, dk)← SimGC(1κ,C, 1) and sends S̃imC, dk and σ = com(z̃′)
to the receiver, where z̃′ is a complete set of input labels that involve z̃ and randomly chosen
labels of the appropriate length.

Decommitment: S decommits the encoding z̃ (and only that part within σ) to the receiver R, that
computes ỹ := Eval(S̃imC, z̃) and then verifies whether Dec(dk, ỹ) equals 1.

- Com′(x): S generates a commitment as for the case of Com(x, 0) using randomness rGrb.

- Adapt(x, ω, c, 0, rGrb) : If Com′(x; rGrb) ̸= c, then the algorithm returns ⊥. Otherwise, it outputs
the bit 0 and rGrb.

- Adapt(x, ω, c, 1, rGrb) : If Com′(x; rGrb) ̸= c, then the algorithm returns ⊥. Otherwise, let rGrb =
(rGarbGrb , rcomGrb ) denote the corresponding randomness used to generate the garbled circuit and
σ, respectively. Then, the algorithm computes r̂Grb ← OGrb(1κ,C, (x, ω), rGarbGrb ) and returns
the bit 1, r̂Grb and the randomness for explaining σ as a commitment of the encoding of ω as
implied by ek, denoted by ω̃.

Figure 3: Instance-dependent commitment from garbled schemes

Theorem 7.1. Assume the existence of one-way permutations. Then, the protocol presented in Figure 3 is a
secure adaptive instance-dependent commitment scheme for any language in NP.

Proof: The proof follows by demonstrating the three properties from Definition 3.4.

Computational hiding: Towards proving that, we need to show that the ensembles {Com(x, 0)}x∈L,
{Com(x, 1)}x∈L and {Com′(x)}x∈L are computationally indistinguishable. Note first that algorithm Com′

is defined identically to Com(x, 0), thus it is sufficient to prove that the ensembles {Com(x, 0)}x∈L and
{Com(x, 1)}x∈L are computationally indistinguishable. Loosely speaking, this follows due to the indistin-
guishability of a garbled circuit from a simulated garbled circuit and the hiding property of the commitment
scheme. In more details, recall that a commitment to 0 is a garbling of C and a commitment to ek, whereas
a commitment to 1 is a simulated garbling of C and a commitment to z̃′. Moreover, a garbling of C is

35



computationally indistinguishable from a simulated garbling of the same circuit by the security of garbling
scheme. Whereas the hiding property of the commitment scheme com implies that a commitment to ek is
indistinguishable from a commitment to z̃′. Combining the two arguments, and the fact that the committer
does not need to reveal any information about the encoding of x, we define a hybrid commitment for which
the circuit is garbled honestly (as in the case of committing to 0), yet the commitment to ek is replaced
with a commitment to z̃′ (as in the case of committing to 1). We denote the distribution of this commitment
scheme by {ComHYBRID} and prove that

{C̃, dk,Com(ek)}
c
≈ {ComHYBRID}

and
{ComHYBRID}

c
≈ {[SimGC (1κ,C,y)]1, [SimGC (1κ,C,y)]3, σ}

where y = 1 in our case and [SimGC (1κ,C,y)]i denotes the ith output of algorithm SimGC. The first
indistinguishability proof is reduced to the hiding property of the commitment scheme, where a commitment
to ek is indistinguishable from a commitment to z̃′. Thus, in the reduction an adversary that wishes to break
this property, garbles the circuit C and associates this garbling with an external string (that might be either be
a commitment to ek or a commitment to z̃′). Finally, we claim that the second indistinguishability argument
follows immediately from the security of the garbling scheme.

Adaptivity: Adaptivity follows from the fact that a “fake” commitment of 0, computed using algorithm
Com′, can be explained as a commitment to 1 by exploiting the obliviousness property of the garbling
scheme. Namely, algorithm OGrb implies that it is possible to explain a garbled circuit generated by Grb
as a simulated garbled circuit generated by SimGC. Moreover, com is a pseudorandom commitment. More
formally, security is shown by constructing a simulator SCOM that produces the parties’ views in the commit-
ment phase, and then provides randomness that is consistent with the committer’s message upon corruption.
Specifically, the simulation of an honest committer is carried out by invoking algorithm Com′(x; r). Next,
upon corrupting the committer, simulator SCOM obtains the committer’s message m and ω ∈ Rx. If m = 0
then the simulator outputs r. Else, the simulator invokes algorithm r′ ← OGrb(1κ,C, (x, ω), r), and ex-
plains σ as a commitment to ω̃, outputting randomness r′ and the randomness for σ.

Finally, we need to prove that the following two distributions {Com(x,m;Up(|x|)), 1, Up(|x|)}x∈L,ω∈RL

and {Com′(x;Up(|x|)), 1,Adapt(x, ω,Com
′(x;Up(|x|)))}x∈L,ω∈RL are computationally indistinguishable,

which follows from the oblivious sampling of the garbled circuit and the pseudorandomness of the com-
mitment scheme com. Namely, the first distribution corresponds to a honest commitment of 1 which yields
(S̃imC, dk, r, σ), whereas the second distribution corresponds to an execution by the oblivious sampler
which yields (C̃, dk, r′, σ). By the oblivious sampling property specified in Section 3.5, the first three items
within the two distributions are computationally indistinguishable. Moreover, σ is indistinguishable in both
distributions due to the hiding property of com. A formal statement follows using a hybrid argument as
explained above.

Perfect binding: Finally, for an invalid statement x that is not in LR, binding is ensured by the perfect
correctness property of the garbling scheme and the fact that for a false statement there exists no input for
C for which the circuit is evaluated to 1. Thus, a committer cannot commit to 0 by producing a real garbled
circuit and then decommit to 1, and vice versa. More formally, let (C̃, dk, σ) denote a commitment to 0 as
specified in Figure 3. Then (C̃, dk, σ) cannot be decommitted into 1 as that requires specifying a garbled
input z′ for algorithm Eval for which C̃ is evaluated to 1. Nevertheless, since there exists no such input then
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equivocation to 1 is not possible. Moreover, if the commitment is comprised from (S̃imC, dk, σ), then a
dishonest committer cannot decommit it into 0 as that implies that it has an encoding for some input that
evaluates the real garbled circuit to 1. By the correctness of the garbling, such an encoding does not exist.

We note that our construction can be based on one-way functions if we use the two-round Naor [Nao91]
commitment scheme instead of a non-interactive commitment scheme based on one-way permutations.
Therefore, we obtain the following corollary.

Corollary 7.2. Assume the existence of one-way functions. Then, there exists a two-round adaptive instance-
dependent commitment scheme for any language in NP.

7.2 Adaptive Instance-Dependent Commitments from Robust RE

Our second instance-dependent construction is based on robust randomized encoding that maintains oblivi-
ous sampling, formally defined in Section 3.6. On a high-level our instance-dependent commitment scheme
from randomized encoding will follow the same approach as in Section 7.1. We begin with a randomized
encoding for the following function f : f(x, ω) = R(x, ω). Now, since the randomized encoding is robust,
in the sense of Definition 3.11, we can split the simulation algorithm to an offline and online parts, namely
SOFF and SON, where SOFF on input x and randomness r′ outputs the offline part of the encoding sOFF and
SON on input (1, r′) outputs the online part sON. Our complete construction is described in Figure 4.

We reprove Theorem with the commitment scheme described in Figure 4. As above, the proof follows
by demonstrating the three properties from Definition 3.4 and follows very similarly. Informally, the hiding
property follows due to the privacy of the randomized encoding and the pseudorandomness property of com,
as the differences between a commitment to 0 and 1 are by first either invoking the real encoding algorithm or
the simulator, as well as either committing to a valid randomness r or sampling the commitment at random.
Next, adaptivity follows from the fact that a fake commitment of 0, can be explained as a commitment to
1 by exploiting the oblivious sampling property of the randomized encoding which allows to explain a real
encoding as a simulated one, as well as the ability to explain a commitment for com as obliviously generated.
Finally, binding follows from the prefect robustness property of the randomized encoding, for which given
a valid offline encoding it is not possible to produce an online encoding that makes the decoder output 1.

7.3 Application: On Obtaining Instance-Dependent Trapdoor Commitment Schemes

As a side note, we observe that our construction implies instance-dependent trapdoor commitment scheme
where the secret trapdoor of the construction is the witness. To see that, consider a standard garbling
construction without the additional obliviousness property that we require in Definition 3.9. Moreover,
consider the same commitment/decommitment algorithms for both 0 and 1 as specified in Figure 3. Then, it
is simple to verify that computational hiding and perfect binding hold as above with respect to the validity of
the proven statement x. This is because none of these properties is implied by the additional obliviousness
property. Finally, we note that a committer who holds the witness ω, can first commit to 0 and then later
equivocate its commitment by revealing the encoding of (x, ω) (which amounts to a decommiment to 1 as
such an encoding evaluates the garbled circuit to 1). We stress that the witness should not need to be given to
the committer prior to the commitment phase in order to achieve equivocation. This implies the following,

Theorem 7.3. Assume the existence of one-way functions. Then, there exists a protocol that is a secure
instance-dependent trapdoor commitment scheme for any language in NP.
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Instance-Dependent Commitment Scheme from Robust Randomized Encoding

Building block: Pseudorandom perfectly binding commitment scheme com.

Inputs: Let circuit f be as above and let x denote a statement x ∈ L.

The commitment scheme:

- Com(x, 0): Sample r and output (f̂OFF(r), σ) where σ = com(r).

Decommitment: The decommitment simply contains the decommitment of σ to the value r. The
verifier accepts only if the (offline) encoding was computed correctly with randomness r and
the decommitment information of σ is correct. Otherwise, the verifier rejects.

- Com(x, 1): Compute sOFF ← SOFF(r
′) and output (sOFF, σ), where σ ← {0, 1}t and t =

|com(r)|.
Decommitment: The decommitment contains sON ← SON(1, r

′) and explanation of σ as an obliv-
iously generated commitment, i.e., a random string. The verifier computes B(sOFF, sON) and
accepts only if it evaluates to 1. Otherwise it rejects.

- Com′(x): Is identical to Com(x, 0), i.e., output (f̂OFF(r), σ = com(r)).

- Equiv(x, ω, c, 0, r) : If Com′(r) ̸= c, then the algorithm returns ⊥. Otherwise, it outputs the bit 0
and the randomness for computing σ as a commitment to r.

- Equiv(x, ω, c, 1, r) : If Com′(x; r) ̸= c, then the algorithm returns ⊥. Otherwise, it sends
f̂ON((x, ω), r) and further explains σ as an obliviously generated commitment. Recall that
the receiver now checks if B(f̂OFF(r), f̂ON((x, ω), r)) = 1.

Figure 4: Instance-dependent commitment from robust randomized encoding

Note that our construction improves over prior work for which instance-dependent trapdoor commitment
schemes were only known Σ-protocols [Dam10] and for Blum’s Graph-Hamiltonicity [FS89].

8 Constructing Adaptive Zero-Knowledge Proofs

We describe next how to construct adaptive zero-knowledge proofs for all NP languages based on our
instance-dependent commitment schemes from Section 7. For simplicity we focus on honest verifier zero-
knowledge proofs, which can be transformed to zero-knowledge proofs using standard tools.

8.1 Adaptive Zero-Knowledge Proofs with Soundness Error 1/2

Let x denote a statement to be proven by the prover relative to some language L associated with relation
R. Then the prover generates a garbled circuit C that takes (x, ω) and outputs 1 only if (x, ω) ∈ R, and
commits to this garbling and the secret key ek using the commitment scheme from Figure 3. Next, upon
receiving a challenge bit b from the verifier, the prover continues as follow. If b = 0 then the prover
decommits to the commitment of the secret key and the garbled circuit for which the verifier verifies the
correctness of garbling. Else, if b = 1 then the prover decommits a “path” in the garbled circuit and provides
an encoding for ω that evaluates the path to 1. Namely, we consider the concrete garbling construction
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by [Yao86, LP09] for which each evaluation induces a path of computation, where each gate evaluation
requires the decryption of a single ciphertext out of four ciphertexts, where this ciphertext can be part of the
decommitted information handed to the verifier when b = 1. The verifier then evaluates the garbling on this
path and checks that the outcome is 1. We note that it is not clear how to generalize this property (where
only part of the garbled circuit is decommitted) nor the following reconstructability property, for the general
notion of garbled schemes.

Let Garb = (Grb,Enc,Eval,Dec) denote a garbling scheme as in Section 3.5. Then, we will require one
more property that Garb should satisfy:

Reconstructability: Given any path of computation in the garbled circuit it is possible to reconstruct the
rest of the garbled circuit as being honestly generated by Grb. Formally, we require the garbling
scheme to have a projection function ΠEval and a simulator (SEval,SAdapt), such that for (C̃, ek, dk)←
Grb(1κ,C) and x̃← Enc(ek,x), we have Eval(ΠEval(C̃), x̃) = C(x) and

{(C̃′, x̃, state)← SEval(1κ,C, y) : SAdapt(state,x)}
c
≈ {C̃, ek, dk)← Grb(1κ,C; rGrb); x̃← Enc(ek,x) : (rGrb, x̃)

We note that the garbling scheme described in [LP09] meets this notion. Specifically, it is possible to
initially honestly generate a pair of labels per wire without assigning their meaning, encrypting only one
label per gate (known by the active key). Next, upon receiving the witness ω, the bit values associated with
each label are determined, and the rest of the ciphertexts for each gate can be completed.

The formal description of our protocol can be found in Figure 5.

Theorem 8.1. Assume the existence of one-way functions. Then, the protocol presented in Figure 5 is an
adaptively secure honest verifier zero-knowledge proof for any language in NP with soundness error 1/2.

Using our adaptive instance-dependent commitment scheme from Section 7.1 we note that the commu-
nication complexity of our protocol is O(κs2) where κ is the security parameter and s is the size of C.

Proof: Proving completeness is straightforward, as an honest prover always has a convincing strategy.
Specifically, it can both properly decommit to a valid garbling and secret key as well as the input labels
that evaluates the garbled circuit to 1. Next, proving soundness is based on the binding property of the
underlying commitment schemes. Specifically, in case x /∈ L, then a corrupted prover cannot equivocate the
commitment. Moreover, by the correctness property of the garbling scheme, it holds that the prover cannot
answer both possible challenges. As that implies that it constructed the garbled circuit properly and that it
has an encoding of an input that evaluates the garbling to 1. This argument is similar to the argument made
in the proof of Theorem 7.2.

To prove the zero-knowledge property we need to construct a simulator S that simulates the view of
the (honest) verifier. More formally, simulator S picks a random bit b and continues as follows. In case
b = 0 then S plays the role of the honest prover throughout the entire protocol. On the other hand, in case
b = 1 then the simulator constructs a fake garbled circuit by running SimGC(1κ,C,y) and then commits
to [SimGC(1κ,C, 1)]1 and [SimGC(1κ,C, 1)]3 using the fake commitment algorithm. Finally, it commits
to [SimGC(1κ,C, 1)]′2 using the fake commitment algorithm where [SimGC(1κ,C, 1)]′2 is a complete set of
input labels that involves the second outcome of the simulated garbler and randomly chosen labels of the
appropriate length. Upon receiving the bit 0 from the verifier, the simulator completes the execution as
would the honest prover do, decommitting to the garbled circuit, the decoding information and the secret
key. Upon receiving the bit 1, the simulator decommits to the simulated garbled circuit and the simulated
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Adaptive Zero-Knowledge Proof for Any Language L ∈ NP

Building block: Instance-dependent commitment scheme Com for language L.

Inputs: A circuit C as above and a public statement x ∈ L for both. A witness ω for the validity of x
for the prover P .

The protocol:

1. P → V : P generates (C̃,dk, ek) ← Grb(1κ,C) and sends Com(C̃,dk) and Com(ek) to the
verifier (where the commitments are computed using the real commitment algorithm).

2. V → P : The verifier sends a random challenge bit b← {0, 1}.

3. P → V :

• If b = 0 then the prover decommits to C̃,dk and ek. The verifier accepts if the decommitments
are valid and that the garbling was honestly generated.

• If b = 1 then the prover decommits to dk and further provides the decommitment for the
encoding of ω and the path of computation in the commitment to C̃ that is evaluated during the
computation of Eval(C̃, ω̃). Namely, the prover invokes ω̃ := Enc(ek, ω) and then decommits
to the encoding of ω̃ within the commitment of ek (recall that this is possible due to the
decomposability of the garbled scheme), as well as the path of computation. The verifier then
invokes ỹ := Eval(C̃, ω̃) and accepts if Dec(dk, ỹ) equals 1.

Figure 5: Adaptive zero-knowledge proof for any language L ∈ NP

decoding information (that is embedded within the overall decoding information), which corresponds to the
decoding labels as returned by the simulator. Then, indistinguishability of the real and simulated views
follows from the hiding property of the instance-dependent commitment scheme for x ∈ L and the privacy
of the garbling scheme, where the difference between the executions is in case that b = 1 such that the
simulator computes a simulated circuit and uses the fake commitment algorithm.

Finally, to prove adaptivity we define the randomness presented by the simulator upon corrupting the
prover and receiving the witness ω for x. That is, in case b = 1 the simulator must present randomness
demonstrating that it committed to C̃,dk and ek using the real commitment algorithm rather than commit-
ting to the simulated garbling using the fake algorithm. This can be achieved as follows. The simulator first
reconstructs the garbled scheme, viewing the garbled circuit as honestly generated (this follows efficiently
from the reconstructability property). Next, the simulator invokes the Adapt algorithm in order to gener-
ate randomness that is consistent with the reconstructed garbled circuit. By the security of the commitment
scheme, the verifier’s views in the real and simulated executions are computationally indistinguishable.

References
[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:

Lightweight sublinear arguments without a trusted setup. In CCS, pages 2087–2104, 2017.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In FOCS, pages 166–175,
2004.

40



[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. SIAM J. Comput.,
36(4):845–888, 2006.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verification
via secure computation. In ICALP, pages 152–163, 2010.

[AIKP15] Shweta Agrawal, Yuval Ishai, Dakshita Khurana, and Anat Paskin-Cherniavsky. Statistical randomized
encodings: A complexity theoretic view. In ICALP, pages 1–13, 2015.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding functions with constant
online rate or how to compress garbled circuits keys. In CRYPTO, pages 166–184, 2013.

[App14] Benny Applebaum. Key-dependent message security: Generic amplification and completeness. J. Cryp-
tology, 27(3):429–451, 2014.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. J.
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[CvdGT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious transfer and private multi-
party computation. In CRYPTO, pages 110–123, 1995.
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