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Abstract. A recent line of works – initiated by Gordon, Katz and Vaikun-
tanathan (Asiacrypt 2010) – gave lattice-based constructions allowing
users to authenticate while remaining hidden in a crowd. Despite five
years of efforts, known constructions are still limited to static sets of
users, which cannot be dynamically updated. This work provides new
tools enabling the design of anonymous authentication systems whereby
new users can join the system at any time.

Our first contribution is a signature scheme with efficient protocols,
which allows users to obtain a signature on a committed value and
subsequently prove knowledge of a signature on a committed message.
This construction is well-suited to the design of anonymous credentials
and group signatures. It indeed provides the first lattice-based group
signature supporting dynamically growing populations of users.

As a critical component of our group signature, we provide a simple
joining mechanism of introducing new group members using our signature
scheme. This technique is combined with zero-knowledge arguments
allowing registered group members to prove knowledge of a secret short
vector of which the corresponding public syndrome was certified by
the group manager. These tools provide similar advantages to those of
structure-preserving signatures in the realm of bilinear groups. Namely,
they allow group members to generate their own public key without
having to prove knowledge of the underlying secret key. This results in a
two-message joining protocol supporting concurrent enrollments, which
can be used in other settings such as group encryption.

Our zero-knowledge arguments are presented in a unified framework where:
(i) The involved statements reduce to arguing possession of a {−1, 0, 1}-
vector x with a particular structure and satisfying P · x = v mod q for
some public matrix P and vector v; (ii) The reduced statements can
be handled using permuting techniques for Stern-like protocols. Our
framework can serve as a blueprint for proving many other relations in
lattice-based cryptography.

Keywords. Lattice-based cryptography, anonymity, signatures with effi-
cient protocols, dynamic group signatures, anonymous credentials.



1 Introduction

Lattice-based cryptography is currently emerging as a promising alternative
to traditional public-key techniques. During the last decade, it has received a
permanent interest due to its numerous advantages. Not only does it seemingly
resist quantum attacks, it also provides a better asymptotic efficiency than its
relatives based on conventional number theory. While enabling many advanced
functionalities [42,45,46], lattice-based primitives tend to interact with zero-
knowledge proofs [44] less smoothly than their counterparts in abelian groups
endowed with a bilinear map (see, e.g., [18,32,39,50,2]) or groups of hidden or-
der [6,30,31,27]. Arguably, this partially arises from the fact that lattices have
far less algebraic structure than, e.g., pairing-friendly cyclic groups. It is not
surprising that the most efficient zero-knowledge proofs for lattice-related lan-
guages [15] take advantage of the extra algebraic structure available in the ring
setting [64]. A consequence of the scarcity of truly efficient zero-knowledge proofs
in the lattice setting is that, in the context of anonymity and privacy-preserving
protocols, lattice-based cryptography has undergone significantly slower devel-
opment than in other areas like functional encryption [45,46]. While natural
realizations of ring signatures [70] showed up promptly [53,22] after the seminal
work of Gentry, Peikert and Vaikuntanathan (GPV) [43], viable constructions
of lattice-based group signatures remained lacking until the work of Gordon,
Katz and Vaikuntanathan [47] in 2010. Despite recent advances [58,14,66,62],
privacy-preserving primitives remain substantially less practical and powerful in
terms of functionalities than their siblings based on traditional number theoretic
problems [6,18,39,56] for which solutions even exist outside the random oracle
model [20,21,49,10]. For example, we still have no convenient realization of group
signature supporting dynamic groups [13,56] or anonymous credentials [35,29].

In this paper, we address the latter two problems by first proposing a lattice-
based signature with efficient protocols in the fashion of Camenisch and Lysyan-
skaya [31]. To ease its use in the design of dynamic group signatures, we introduce
a zero-knowledge argument system that allows a user to prove knowledge of a
signature on a public key for which the user knows the underlying secret key.

Related Work. Anonymous credentials were first suggested by Chaum [35]
and efficiently realized by Camenisch and Lysyanskaya [29,31]. They involve
one or more credential issuer(s) and a set of users who have a long-term secret
key which constitutes their digital identity and pseudonyms that can be seen
as commitments to their secret key. Users can dynamically obtain credentials
from an issuer that only knows users’ pseudonyms and obliviously certifies users’
secret keys as well as (optionally) a set of attributes. Later on, users can make
themselves known to verifiers under a different pseudonym and demonstrate
possession of the issuer’s signature on their secret key without revealing neither
the signature nor the key. Anonymous credentials typically consist of a protocol
whereby the user obtains the issuer’s signature on a committed message, another
protocol for proving that two commitments open to the same value (which allows
proving that the same secret underlies two distinct pseudonyms) and a protocol
for proving possession of a secret message-signature pair.
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The first efficient constructions were given by Camenisch and Lysyanskaya
under the Strong RSA assumption [29,31] or using bilinear groups [32]. Other
solutions were subsequently given with additional useful properties such as non-
interactivity [10], delegatability [9] or support for efficient attributes [25] (see [28]
and references therein). Anonymous credentials with attributes are often obtained
by having the issuer obliviously sign a multi-block message (m1, . . . ,mN ), where
one block is the secret key while other blocks contain public or private attributes.
Note that, for the sake of keeping the scheme compatible with zero-knowledge
proofs, the blocks (m1, . . . ,mN ) cannot be simply hashed before getting signed
using a ordinary, single-block signature.

Group signatures are a central anonymity primitive, introduced by Chaum
and van Heyst [36] in 1991, which allows members of a group managed by some
authority to sign messages in the name of the entire group. At the same time,
users remain accountable for the messages they sign since an opening authority
can identify them if they misbehave.

Ateniese, Camenisch, Joye and Tsudik [6] provided the first scalable con-
struction meeting the security requirements that can be intuitively expected
from the primitive, although clean security notions were not available yet at
that time. Bellare, Micciancio and Warinschi [11] filled this gap by providing
suitable security notions for static groups, which were subsequently extended to
the dynamic setting3 by Kiayias and Yung [56] and Bellare, Shi and Zhang [13].
In these models, efficient schemes have been put forth in the random oracle
model [56,39] (the ROM) and in the standard model [49,2,1].

Lattice-based group signatures were put forth for the first time by Gordon,
Katz and Vaikuntanathan [47] whose solution had linear-size signatures in the
number of group members. Camenisch, Neven and Rückert [33] extended [47] so
as to achieve anonymity in the strongest sense. Laguillaumie et al. [57] decreased
the signature length to be logarithmic in the number Ngs of group members.
While asymptotically shorter, their signatures remained space-consuming as,
analogously to the Boyen-Waters group signature [20], their scheme encrypts
each bit of the signer’s identity individually. Simpler and more efficient solutions
with O(logN) signature size were given by Nguyen, Zhang and Zhang [66] and
Ling, Nguyen and Wang [62]. In particular, the latter scheme [62] achieves signif-
icantly smaller signatures by encrypting all bits of the signer’s identity at once.
Benhamouda et al. [14] described a hybrid group signature that simultaneously
relies on lattice assumptions (in the ring setting) and discrete-logarithm-related
assumptions. Recently, Libert, Ling, Nguyen and Wang [60] obtained substantial
efficiency improvements via a construction based on Merkle trees which elim-
inates the need for GPV trapdoors [43]. For the time being, all known group
signatures are designed for static groups and analyzed in the model of Bellare,
Micciancio and Warinschi [11], where no new group member can be introduced
after the setup phase. This is somewhat unfortunate given that, in most appli-

3 By “dynamic setting”, we refer to a scenario where new group members can register
at any time but, analogously to [13,56], we do not consider the orthogonal problem
of user revocation here.
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cations of group signatures (e.g., protecting the privacy of commuters in public
transportation), the dynamicity property is arguably what we need. To date,
it remains an important open problem to design a lattice-based system that
supports dynamically growing population of users in the models of [13,56].

Our Contributions. Our first result is a lattice-based signature with efficient
protocols for multi-block messages. Namely, we provide a way for a user to obtain
a signature on a committed N -block message (m1, . . . ,mN ) as well as a protocol
for proving possession of a valid message-signature pair. The signature and its
companion protocols can serve as a building block for lattice-based anonymous
credentials and can potentially find applications in other privacy-preserving pro-
tocols (e.g., [26]) based on lattice assumptions.

The main application that we consider in this paper is the design of a lattice-
based group signature scheme for dynamic groups. We prove the security of our
system in the random oracle model [12] under the Short Integer Solution (SIS)
and Learning With Errors (LWE) assumptions. For security parameter λ and for

groups of up to Ngs members, the scheme features public key size Õ(λ2) · logNgs,

user’s secret key size Õ(λ), and signature size Õ(λ) · logNgs. As exhibited in
Table 1, our scheme achieves a level of efficiency comparable to recent proposals
based on standard (i.e., non-ideal) lattices [57,66,62,60] in the static setting [11].
In particular, the cost of moving to dynamic groups is quite reasonable: while
using the scheme from [62] as a building block, our construction only lengthens
the signature size by a (small) constant factor.

Scheme LLLS [57] NZZ [66] LNW [62] LLNW [60] Ours

Group PK Õ(λ2) · logNgs Õ(λ2) Õ(λ2) · logNgs Õ(λ2) Õ(λ2) · logNgs

User’s SK Õ(λ2) Õ(λ2) Õ(λ) Õ(λ) · logNgs Õ(λ)

Signature Õ(λ) · logNgs Õ(λ+log2Ngs) Õ(λ) · logNgs Õ(λ) · logNgs Õ(λ) · logNgs

Table 1. Efficiency comparison among recent lattice-based group signatures for static
groups and our dynamic scheme. The evaluation is done with respect to 2 governing
parameters: security parameter λ and the maximum expected group size Ngs. We do
not include the earlier schemes [47,33] that have signature size Õ(λ2) ·Ngs.

As a stepping stone in the design of our dynamic group signature, we also
develop a zero-knowledge argument system allowing a group member to prove
knowledge of a secret key (made of a short Gaussian vector) and a member-
ship certificate issued by the group manager on the corresponding public key.
Analogously to structure-preserving signatures [2], our signature scheme and
zero-knowledge arguments make it possible to sign public keys without hashing
them while remaining oblivious of the underlying secret key. They thus enable
a round-optimal dynamic joining protocol – which allows the group manager
to introduce new group members by issuing a membership certificate on their
public key – which does not require any proof of knowledge on behalf of the
prospective user. As a result, the interaction is minimal: only one message is sent
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in each direction between the prospective user and the group manager.4 Besides
being the first lattice-based group signature for dynamic groups, our scheme
thus remains secure in the setting advocated by Kiayias and Yung [55], where
many users want to join the system at the same time and concurrently interact
with the group manager. We believe that, analogously to structure-preserving
signatures [2,1], the combination of our signature scheme and zero-knowledge
arguments can serve as a building blocks for other primitives, including group
encryption [54] or adaptive oblivious transfer [48].

Our Techniques. Our signature scheme with efficient protocols builds on
the SIS-based signature of Böhl et al. [16], which is itself a variant of Boyen’s
signature [19]. Recall that the latter scheme involves a public key containing
matrices A,A0, . . . ,A` ∈ Zn×mq and signs an `-bit message m ∈ {0, 1}` by

computing a short v ∈ Z2m such that [A | A0 +
∑`
j=1 m[i]Aj ] · v = 0n mod q.

The variant proposed by Böhl et al. [16] only uses a constant number of matrices
A,A0,A1 ∈ Zn×mq . Each signature is associated with a single-use tag tag (which
is only used in one signing query in the proof) and the public key involves an
extra matrix D ∈ Zn×mq and a vector u ∈ Znq . A message Msg is signed by first
applying a chameleon hash function h = CMHash(Msg, s) ∈ {0, 1}m and signing h
by computing a short v ∈ Zm such that [A | A0 + tag ·A1] ·v = u + D ·h mod q.

Our scheme extends [16] – modulo the use of a larger number of matrices
({Aj}`j=0,D, {D}Nk=0) – so that an N -block message (m1, . . . ,mN ) ∈ ({0, 1}L)N ,

for some L ∈ N, is signed by outputting a tag τ ∈ {0, 1}` and a short v ∈ Z2m

such that [A | A0 +
∑`
j=1 τ [j] ·Aj ] · v = u + D · CMHash(m1, . . . ,mN , s), where

the chameleon hash function computes cM = D0 · s +
∑N
k=1 Dk ·mk mod q, for

some short vector s, before re-encoding cM so as to enable multiplication by D.
In order to obtain a signature scheme akin to the one of Camenisch and

Lysyanskaya [31], our idea is to have the tag τ ∈ {0, 1}` play the same role as the
prime exponent in Strong-RSA-based schemes [31]. In the security proof of [16],
we are faced with two situations: either the adversary produces a signature on
a fresh tag τ?, or it recycles a tag τ (i) used by the signing oracle for a new,
un-signed message (m?1, . . . ,m

?
N ). In the former case, the proof can proceed as in

Boyen’s proof [19]. In the latter case, the reduction must guess upfront which

tag τ (i†) the adversary will choose to re-use and find a way to properly answer
the i†-th signing query without using the vanished trapdoor (for other queries,
the Agrawal et al. technique [3] applies to compute a suitable v using a trapdoor
hidden in {Aj}`j=0). Böhl et al. [16] solve this problem by “programming” the
vector u ∈ Znq in a special way and achieve full security using chameleon hashing.

To adapt this idea in the context of signatures with efficient protocols, we
have to overcome several difficulties. The first one is to map cM back in the
domain of the chameleon hash function while preserving the compatibility with
zero-knowledge proofs. To solve this problem, we extend a technique used in [60]

4 Note that each signature still requires the user to prove knowledge of his secret key.
However, this is not a problem in concurrent settings as the argument of knowledge
is made non-interactive via the Fiat-Shamir heuristic.
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in order to build a “zero-knowledge-friendly” chameleon hash function. This
function hashes Msg = (m1, . . . ,mN ) by outputting the coordinate-wise binary

decomposition w of D0 · s +
∑N
k=1 Dk ·mk. If we define the “powers-of-2” matrix

H = I⊗
[
1 | 2 | . . . | 2dlog qe], then we can prove that w = CMHash(m1, . . . ,mN , s)

by demonstrating the knowledge of short vectors (m1, . . . ,mN , s,w) such that

H ·w = D0 · s +
∑N
k=1 Dk ·mk mod q, which boils down to arguing knowledge

of a solution to the ISIS problem [61].
The second problem is to prove knowledge of (τ,v, s) and (m1, . . . ,mN )

satisfying [A | A0 +
∑`
j=1 τ [j] ·Aj ] ·v = u+D ·CMHash(m1, . . . ,mN , s), without

revealing any of the witnesses. To this end, we provide a framework for proving all
the involved statement (and many other relations that naturally arise in lattice-
based cryptography) as special cases. We reduce the statements to asserting that
a short integer vector x satisfies an equation of the form P · x = v mod q, for
some public matrix P and vector v, and belongs to a set VALID of short vectors
with a particular structure. While the small-norm property of x is provable using
standard techniques (e.g., [63]), we argue its membership of VALID by leveraging
the properties of Stern-like protocols [72,53,61]. In particular, we rely on the fact
that their underlying permutations interact well with combinatorial statements
pertaining to x, especially x being a bitstring with a specific pattern. We believe
our framework to be of independent interest as it provides a blueprint for proving
many other intricate relations in a modular manner.

When we extend the scheme with a protocol for signing committed messages,
we need the signer to re-randomize the user’s commitment before signing the
hidden messages. This is indeed necessary to provide the reduction with a backdoor
allowing to correctly answer the i†-th query by “programming” the randomness of
the commitment. Since we work with integers vectors, a straightforward simulation
incurs a non-negligible statistical distance between the simulated distributions of
re-randomization coins and the real one (which both have a discrete Gaussian
distribution). Camenisch and Lysyanskaya [31] address a similar problem by
choosing the signer’s randomness to be exponentially larger than that of the
user’s commitment so as to statistically “drown” the aforementioned discrepancy.
Here, the same idea would require to work with an exponentially large modulus q.
Instead, we adopt a more efficient solution, inspired by Bai et al. [7], which is
to apply an analysis based on the Rényi divergence rather than the statistical
distance. In short, the Rényi divergence’s properties tell us that, if some event E
occurs with noticeable probability in some probability space P , so does it in a
different probability space Q for which the second order divergence R2(P ||Q) is
sufficiently small. In our setting, R2(P ||Q) is precisely polynomially bounded
since the two probability spaces only diverge in one signing query.

Our dynamic group signature scheme avoids these difficulties because the
group manager only signs known messages: instead of signing the user’s secret key
as in anonymous credentials, it creates a membership certificate by signing the
user’s public key. Our zero-knowledge arguments accommodate the requirements
of the scheme in the following way. In the joining protocol that dynamically
introduces new group members, the user i chooses a membership secret consisting
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of a short discrete Gaussian vector zi. This user generates a public syndrome
vi = F · zi mod q, for some public matrix F, which constitutes his public key.
In order to certify vi, the group manager computes the coordinate-wise binary
expansion bin(vi) of vi. The vector bin(vi) is then signed using our signature
scheme. Using the resulting signature (τ,v, s) as a membership certificate, the
group member is able to sign a message by proving that: (i) He holds a valid
signature (τ,v, s) on some secret binary message bin(vi); (ii) The latter vector
bin(vi) is the binary expansion of some syndrome vi of which he knows a GPV
pre-image zi. We remark that condition (ii) can be proved by providing evidence
that we have vi = H · bin(vi) = F · zi mod q, for some short integer vector zi
and some binary bin(vi), where H is the “powers-of-2” matrix. Our abstraction
of Stern-like protocols [72,53,61] allows us to efficiently argue such statements.
The fact that the underlying chameleon hash function smoothly interacts with
Stern-like zero-knowledge arguments is the property that maintains the user’s
capability of efficiently proving knowledge of the underlying secret key.

Organization. In the forthcoming sections, we first provide some background
in Section 2. Our signature with efficient protocols is presented in Section 3,
where we also give protocols for obtaining a signature on a committed message
and proving possession of a message-signature pair. Section 4 uses our signature
scheme in the design of a dynamic group signature. The details of the zero-
knowledge arguments used in Section 3 and Section 4 are deferred to Section 5,
where we present them in a unified framework.

2 Background and Definitions

In the following, all vectors are denoted in bold lower-case letters, whereas bold
upper-case letters will be used for matrices. If b ∈ Rn, its Euclidean norm and
infinity norm will be denoted by ‖b‖ and ‖b‖∞, respectively. The Euclidean norm
of matrix B ∈ Rm×n with columns (bi)i≤n is denoted by ‖B‖ = maxi≤n ‖bi‖.
If B is full column-rank, we let B̃ denote its Gram-Schmidt orthogonalization.

When S is a finite set, we denote by U(S) the uniform distribution over S
and by x←↩ D the action of sampling x according to the distribution D.

2.1 Lattices

A (full-rank) lattice L is defined as the set of all integer linear combinations of
some linearly independent basis vectors (bi)i≤n belonging to some Rn. We work
with q-ary lattices, for some prime q.

Definition 1. Let m ≥ n ≥ 1, a prime q ≥ 2, A ∈ Zn×mq and u ∈ Znq , define

Λq(A) := {e ∈ Zm | ∃s ∈ Znq s.t. AT · s = e mod q} as well as

Λ⊥q (A) := {e ∈ Zm | A · e = 0n mod q}, Λu
q (A) := {e ∈ Zm | A · e = u mod q}

For any t ∈ Λu
q (A), Λu

q (A) = Λ⊥q (A) + t so that Λu
q (A) is a shift of Λ⊥q (A).
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For a lattice L, a vector c ∈ Rn and a real σ > 0, define the function ρσ,c(x) =
exp(−π‖x− c‖2/σ2). The discrete Gaussian distribution of support L, parame-
ter σ and center c is defined as DL,σ,c(y) = ρσ,c(y)/ρσ,c(L) for any y ∈ L. We
denote by DL,σ(y) the distribution centered in c = 0. We will extensively use
the fact that samples from DL,σ are short with overwhelming probability.

Lemma 1 ([8, Le. 1.5]). For any lattice L ⊆ Rn and positive real number σ > 0,
we have Prb←↩DL,σ [‖b‖ ≤

√
nσ] ≥ 1− 2−Ω(n).

As shown by Gentry et al. [43], Gaussian distributions with lattice support can
be sampled efficiently given a sufficiently short basis of the lattice.

Lemma 2 ([23, Le. 2.3]). There exists a PPT (probabilistic polynomial-time)
algorithm GPVSample that takes as inputs a basis B of a lattice L ⊆ Zn and a
rational σ ≥ ‖B̃‖ ·Ω(

√
log n), and outputs vectors b ∈ L with distribution DL,σ.

Lemma 3 ([4, Th. 3.2]). There exists a PPT algorithm TrapGen that takes
as inputs 1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a
matrix A ∈ Zn×mq and a basis TA of Λ⊥q (A) such that A is within statistical

distance 2−Ω(n) to U(Zn×mq ), and ‖T̃A‖ ≤ O(
√
n log q).

Lemma 3 is often combined with the sampler from Lemma 2. Micciancio and
Peikert [65] recently proposed a more efficient approach for this combined task,
which should be preferred in practice but, for the sake of simplicity, we present
our schemes using TrapGen.

We also make use of an algorithm that extends a trapdoor for A ∈ Zn×mq to

a trapdoor of any B ∈ Zn×m′q whose left n×m submatrix is A.

Lemma 4 ([34, Le. 3.2]). There exists a PPT algorithm ExtBasis that takes
as inputs a matrix B ∈ Zn×m′q whose first m columns span Znq , and a basis TA

of Λ⊥q (A) where A is the left n ×m submatrix of B, and outputs a basis TB

of Λ⊥q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

In our security proofs, analogously to [19,16] we also use a technique due to
Agrawal, Boneh and Boyen [3] that implements an all-but-one trapdoor mecha-
nism (akin to the one of Boneh and Boyen [17]) in the lattice setting.

Lemma 5 ([3, Th. 19]). There exists a PPT algorithm SampleRight that takes
as inputs matrices A,C ∈ Zn×mq , a low-norm matrix R ∈ Zm×m, a short basis

TC ∈ Zm×m of Λ⊥q (C), a vector u ∈ Znq and a rational σ such that σ ≥ ‖T̃C‖ ·
Ω(
√

log n), and outputs a short vector b ∈ Z2m such that
[
A A ·R + C

]
·b =

u mod q and with distribution statistically close to DL,σ where L denotes the
shifted lattice Λu

q

([
A A ·R + C

])
.
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2.2 Computational Problems

The security of our schemes provably relies (in the ROM) on the assumption that
both algorithmic problems below are hard, i.e., cannot be solved in polynomial
time with non-negligible probability and non-negligible advantage, respectively.

Definition 2. Let m, q, β be functions of n ∈ N. The Short Integer Solution
problem SISn,m,q,β is, given A←↩ U(Zn×mq ), find x ∈ Λ⊥q (A) with 0 < ‖x‖ ≤ β.

If q ≥
√
nβ and m,β ≤ poly(n), then SISn,m,q,β is at least as hard as standard

worst-case lattice problem SIVPγ with γ = Õ(β
√
n) (see, e.g., [43, Se. 9]).

Definition 3. Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution on Z.
For s ∈ Znq , let As,χ be the distribution obtained by sampling a ←↩ U(Znq ) and

e ←↩ χ, and outputting (a,aT · s + e) ∈ Znq × Zq. The Learning With Errors
problem LWEn,q,χ asks to distinguish m samples chosen according to As,χ (for
s←↩ U(Znq )) and m samples chosen according to U(Znq × Zq).

If q is a prime power, B ≥
√
nω(log n), γ = Õ(nq/B), then there exists an

efficient sampleable B-bounded distribution χ (i.e., χ outputs samples with norm
at most B with overwhelming probability) such that LWEn,q,χ is as least as hard
as SIVPγ (see, e.g., [69,68,23]).

3 A Lattice-Based Signature with Efficient Protocols

Our scheme can be seen as a variant of the Böhl et al. signature [16], where
each signature is a triple (τ,v, s), made of a tag τ ∈ {0, 1}` and integer vec-

tors (v, s) satisfying [A | A0 +
∑`
j=1 τ [j] · Aj ] · v = u + D · h mod q, where

matrices A,A0, . . . ,A`,D ∈ Zn×mq are public random matrices and h ∈ {0, 1}m
is a chameleon hash of the message which is computed using randomness s. A
difference is that, while [16] uses a short single-use tag τ ∈ Zq, we need the tag
to be an `-bit string τ ∈ {0, 1}` which will assume the same role as the prime
exponent of Camenisch-Lysyanskaya signatures [31] in the security proof.

We show that a suitable chameleon hash function makes the scheme compati-
ble with Stern-like zero-knowledge arguments [61,62] for arguing possession of a
valid message-signature pair. Section 5 shows how to translate such a statement
into asserting that a short witness vector x with a particular structure satisfies
a relation of the form P · x = v mod q, for some public matrix P and vector v.
The underlying chameleon hash can be seen as a composition of the chameleon
hash of [34, Section 4.1] with a technique used in [67,60]: on input of a message

(m1, . . . ,mN ), it outputs the binary decomposition of D0 · s +
∑N
k=1 Dk ·mk, for

some discrete Gaussian vector s.

3.1 Description

We assume that messages are vectors of N blocks Msg = (m1, . . . ,mN ), where each
block is a 2m-bit string mk = mk[1] . . .mk[2m] ∈ {0, 1}2m for k ∈ {1, . . . , N}.
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For each vector v ∈ ZLq , we denote by bin(v) ∈ {0, 1}Ldlog qe the vector
obtained by replacing each coordinate of v by its binary representation.

Keygen(1λ, 1N ): Given a security parameter λ > 0 and the number of blocks
N = poly(λ), choose the following parameters: n = O(λ); a prime mod-

ulus q = Õ(N · n4); dimension m = 2ndlog qe; an integer ` = Θ(λ); and
Gaussian parameters σ = Ω(

√
n log q log n), σ0 = 2

√
2(N + 1)σm3/2, and

σ1 =
√
σ2

0 + σ2. Define the message space as ({0, 1}2m)N .

1. Run TrapGen(1n, 1m, q) to get A ∈ Zn×mq and a short basis TA of Λ⊥q (A).

This basis allows computing short vectors in Λ⊥q (A) with a Gaussian
parameter σ. Next, choose `+ 1 random A0,A1, . . . ,A` ←↩ U(Zn×mq ).

2. Choose random matrices D←↩ U(Zn×mq ), D0,D1, . . . ,DN ←↩ U(Z2n×2m
q )

as well as a random vector u←↩ U(Znq ).

The private key consists of SK := TA ∈ Zm×m and the public key is

PK :=
(
A, {Aj}`j=0, {Dk}Nk=0, D, u

)
.

Sign
(
SK,Msg

)
: To sign anN -block message Msg = (m1, . . . ,mN ) ∈

(
{0, 1}2m

)N
,

1. Choose a random string τ ←↩ U({0, 1}`). Then, using SK := TA, compute
with ExtBasis a short delegated basis Tτ ∈ Z2m×2m for the matrix

Aτ = [A | A0 +
∑̀
j=1

τ [j]Aj ] ∈ Zn×2m
q . (1)

2. Sample a vector s←↩ DZ2m,σ1
. Compute cM ∈ Z2n

q as a chameleon hash

of (m1, . . . ,mN ): i.e., compute cM = D0 · s +
∑N
k=1 Dk ·mk ∈ Z2n

q , which
is used to define uM = u + D · bin(cM ) ∈ Znq . Then, using the delegated
basis Tτ ∈ Z2m×2m, sample a short vector v ∈ Z2m in DΛ

uM
q (Aτ ),σ.

Output the signature sig = (τ,v, s) ∈ {0, 1}` × Z2m × Z2m.

Verify
(
PK,Msg, sig

)
: Given PK, a message Msg = (m1, . . . ,mN ) ∈ ({0, 1}2m)N

and a purported signature sig = (τ,v, s) ∈ {0, 1}` × Z2m × Z2m, return 1 if

Aτ · v = u + D · bin(D0 · s +
N∑
k=1

Dk ·mk) mod q. (2)

and ‖v‖ < σ
√

2m, ‖s‖ < σ1

√
2m.

When the scheme is used for obliviously signing committed messages, the security
proof follows Bai et al. [7] in that it applies an argument based on the Rényi
divergence in one signing query. This argument requires to sample s from a
Gaussian distribution whose standard deviation σ1 is polynomially larger than σ.

We note that, instead of being included in the public key, the matrices
{Dk}Nk=0 can be part of common public parameters shared by many signers.
Indeed, only the matrices (A, {Ai}`i=0) should be specific to the user who holds
the secret key SK = TA. In Section 3.3, we use a variant where {Dk}Nk=0 belong
to public parameters.
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3.2 Security Analysis

The security analysis in Theorem 1 requires that q > `.

Theorem 1. The signature scheme is secure under chosen-message attacks
under the SIS assumption.

Proof. To prove the result, we will distinguish three kinds of attacks:

Type I attacks are attacks where, in the adversary’s forgery sig? = (τ?,v?, s?),
τ? did not appear in any output of the signing oracle.

Type II attacks are such that, in the adversary’s forgery sig? = (τ?,v?, s?),
τ? is recycled from an output sig(i?) = (τ (i?),v(i?), s(i?)) of the signing
oracle, for some index i? ∈ {1, . . . , Q}. However, if Msg? = (m?1, . . . ,m

?
N ) and

Msg(i?) = (m
(i?)
1 , . . . ,m

(i?)
N ) denote the forgery message and the i?-th signing

query, respectively, we have D0·s?+
∑N
k=1 Dk·m?k 6= D0·s(i?)+

∑N
k=1 Dk·m(i?)

k .
Type III attacks are those where the adversary’s forgery sig? = (τ?,v?, s?)

recycles τ? from an output sig(i?) = (τ (i?),v(i?), s(i?)) of the signing oracle
(i.e., τ (i?) = τ? for some index i? ∈ {1, . . . , Q}) and we have the collision

D0 · s? +

N∑
k=1

Dk ·m?k = D0 · s(i?) +

N∑
k=1

Dk ·m(i?)
k . (3)

Type III attacks imply a collision for the chameleon hash function of Kawachi et
al. [53]: if (3) holds, a short vector of Λ⊥q ([D0 | D1 | . . . | DN ]) is obtained as

(
s?T − s(i?)T | m?1

T −m
(i?)
1

T
| . . . | m?N

T −m
(i?)
N

T )T
,

so that a collision breaks the SIS assumption.
The security against Type I attacks is proved by Lemma 6 which applies the

same technique as in [19,65]. In particular, the prefix guessing technique of [51]
allows keeping the modulus smaller than the number Q of adversarial queries
as in [65]. In order to deal with Type II attacks, we can leverage the technique
of [16]. In Lemma 7, we prove that Type II attack would also contradict SIS. ut

Lemma 6. The scheme is secure against Type I attacks if the SISn,m,q,β′ assump-
tion holds for β′ = m3/2σ2(`+3)+m1/2σ1. (The proof is given in Appendix B.2.)

Lemma 7. The scheme is secure against Type II attacks if the SISn,m,q,β′′ as-
sumption holds for β′′ =

√
2(` + 2)σ2m3/2 + m1/2. (The proof is detailed in

Appendix B.3.)

3.3 Protocols for Signing a Committed Value and Proving
Possession of a Signature

We first show a two-party protocol whereby a user can interact with the signer
in order to obtain a signature on a committed message.
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In order to prove that the scheme still guarantees unforgeability for obliviously
signed messages, we will assume that each message block mk ∈ {0, 1}2m is
obtained by encoding the actual message Mk = Mk[1] . . .Mk[m] ∈ {0, 1}m as
mk = Encode(Mk) = (M̄k[1],Mk[1], . . . , M̄k[m],Mk[m]). Namely, each 0 (resp.
each 1) is encoded as a pair (1, 0) (resp. (0, 1)). The reason for this encoding is
that the proof of Theorem 2 requires that at least one block m?k of the forgery
message is 1 while the same bit is 0 at some specific signing query. We will show
(see Section 5) that the correctness of this encoding can be efficiently proved
using Stern-like [72] protocols.

To sign committed messages, a first idea is exploit the fact that our signature
of Section 3.1 blends well with the SIS-based commitment scheme suggested
by Kawachi et al. [53]. In the latter scheme, the commitment key consists of
matrices (D0,D1) ∈ Z2n×2m

q × Z2n×2m
q , so that message m ∈ {0, 1}2m can

be committed to by sampling a Gaussian vector s ←↩ DZ2m,σ and computing
C = D0 · s + D1 ·m ∈ Z2n

q . This scheme extends to commit to multiple messages

(m1, . . . ,mN ) at once by computing C = D0 · s +
∑N
k=1 Dk · mk ∈ Z2n

q using

a longer commitment key (D0,D1, . . . ,DN ) ∈ (Z2n×2m
q )N+1. It is easy to see

that the resulting commitment remains statistically hiding and computationally
binding under the SIS assumption.

In order to make our construction usable in the definitional framework of
Camenisch et al. [28], we assume common public parameters (i.e., a common
reference string) and encrypt all witnesses of which knowledge is being proved
under a public key included in the common reference string. The resulting
ciphertexts thus serve as statistically binding commitments to the witnesses. To
enable this, the common public parameters comprise public keys G0 ∈ Zn×`q ,
G1 ∈ Zn×2m

q for multi-bit variants of the dual Regev cryptosystem [43] and
all parties are denied access to the underlying private keys. The flexibility of
Stern-like protocols allows us to prove that the content of a perfectly hiding
commitment cm is consistent with encrypted values.

Global-Setup: Let B =
√
nω(log n) and let χ be a B-bounded distribution.

Let p = σ · ω(
√
m) upper-bound entries of vectors sampled from the dis-

tribution DZ2m,σ. Generate two public keys for the dual Regev encryp-
tion scheme in its multi-bit variant. These keys consists of a public ran-
dom matrix B ←↩ U(Zn×mq ) and random matrices G0 = B · E0 ∈ Zn×`q ,

G1 = B ·E1 ∈ Zn×2m
q , where E0 ∈ Zm×` and E1 ∈ Zm×2m are short Gaus-

sian matrices with columns sampled from DZm,σ. These matrices will be
used to encrypt integer vectors of dimension ` and 2m, respectively. Finally,
generate public parameters CK := {Dk}Nk=0 consisting of uniformly random
matrices Dk ←↩ U(Z2n×2m

q ) for a statistically hiding commitment to vectors

in ({0, 1}2m)N . Return public parameters consisting of

par := { B ∈ Zn×mq , G0 ∈ Zn×`q , G1 ∈ Zn×2m
q , CK}.

Issue ↔ Obtain : The signer S, who holds a key pair PK := {A, {Aj}`j=0, D, u},
SK := TA, interacts with the user U who has a message (m1, . . . ,mN ), in
the following interactive protocol.
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1. U samples s′ ←↩ DZ2m,σ and computes cm = D0 ·s′+
∑N
k=1 Dk ·mk ∈ Z2n

q

which is sent to S as a commitment to (m1, . . . ,mN ). In addition, U
encrypts {mk}Nk=1 and s′ under the dual-Regev public key (B,G1) by
computing for all k ∈ {1, . . . , N}:

ck = (ck,1, ck,2)

=
(
BT · sk + ek,1, GT

1 · sk + ek,2 + mk · bq/2c
)
∈ Zmq × Z2m

q (4)

for randomly chosen sk ←↩ χn, ek,1 ←↩ χm, ek,2 ←↩ χ2m, and

cs′ = (cs′,1, cs′,2)

=
(
BT · s0 + e0,1, GT

1 · s0 + e0,2 + s′ · bq/pc
)
∈ Zmq × Z2m

q (5)

where s0 ←↩ χn, e0,1 ←↩ χm, e0,2 ←↩ χ2m. The ciphertexts {ck}Nk=1 and
cs′ are sent to S along with cm.

Then, U generates an interactive zero-knowledge argument to convince S
that cm is a commitment to (m1, . . . ,mN ) with the randomness s′ such
that {mk}Nk=1 and s′ were honestly encrypted to {ck}Ni=1 and cs′ , as
in (4) and (5). For convenience, this argument system will be described
in Section 5.3, where we demonstrate that, together with other zero-
knowledge protocols used in this work, it can be derived from a Stern-
like [72] protocol constructed in Section 5.1.

2. If the argument of step 1 properly verifies, S samples s′′ ←↩ DZ2m,σ0

and computes a vector um = u + D · bin
(
cm + D0 · s′′

)
∈ Znq . Next, S

randomly picks τ ←↩ {0, 1}` and uses TA to compute a delegated basis
Tτ ∈ Z2m×2m for the matrix Aτ ∈ Zn×2m

q of (1). Using Tτ ∈ Z2m×2m,
S samples a short vector v ∈ Z2m in DuM

Λ⊥(Aτ ),σ
. It returns the vector

(τ,v, s′′) ∈ {0, 1}` × Z2m × Z2m to U .

3. U computes s = s′ + s′′ over Z and verifies that

Aτ · v = u + D · bin
(
D0 · s +

N∑
k=1

Dk ·mk
)

mod q.

If so, it outputs (τ,v, s). Otherwise, it outputs ⊥.

Note that, if both parties faithfully run the protocol, the user obtains a valid
signature (τ,v, s) for which the distribution of s isDZ2m,σ1

, where σ1 =
√
σ2 + σ2

0 .
The following protocol allows proving possession of a message-signature pair.

Prove: On input of a signature (τ,v = (vT1 | vT2 )T , s) ∈ {0, 1}` × Z2m × Z2m on
the message (m1, . . . ,mN ), the user does the following.
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1. Using (B,G0) and (B,G1) generate perfectly binding commitments to
τ ∈ {0, 1}`, {mk}Nk=1, v1,v2 ∈ Zm and s ∈ Z2m. Namely, compute

cτ = (cτ,1, cτ,2)

=
(
BT · sτ + eτ,1, GT

0 · sτ + eτ,2 + τ · bq/2c
)
∈ Zmq × Z`q,

ck = (ck,1, ck,2)

=
(
BT · sk + ek,1, GT

1 · sk + ek,2 + mk · bq/2c
)
∈ Zmq × Z2m

q

∀k ∈ {1, . . . , N}

where sτ , sk ←↩ χn, eτ,1, ek,1 ←↩ χm, eτ,2 ←↩ χ`, ek,2 ←↩ χ2m, as well as

cv = (cv,1, cv,2)

=
(
BT · sv + ev,1, GT

1 · sv + ev,2 + v · bq/pc
)
∈ Zmq × Z2m

q

cs = (cs,1, cs,2)

=
(
BT · s0 + e0,1, GT

1 · s0 + e0,2 + s · bq/pc
)
∈ Zmq × Z2m

q ,

where sv, s0 ←↩ χn, ev,1, e0,1 ←↩ χm, ev,2, e0,2 ←↩ χ2m.
2. Prove in zero-knowledge that cτ , cs, cv, {ck}Nk=1 encrypt a valid message-

signature pair. In Section 5.4, we show that this involved zero-knowledge
protocol can be derived from the statistical zero-knowledge argument
of knowledge for a simpler, but more general relation that we explicitly
present in Section 5.1. The proof system can be made statistically ZK
for a malicious verifier using standard techniques (assuming a common
reference string, we can use [37]). In the random oracle model, it can be
made non-interactive using the Fiat-Shamir heuristic [41].

We require that the adversary be unable to prove possession of a signature
of a message (m1, . . . ,mN ) for which it did not legally obtain a credential by
interacting with the issuer. Note that the messages that are blindly signed by the
issuer are uniquely defined since, at each signing query, the adversary is required
to supply perfectly binding commitments {ck}Nk=1 to (m1, . . . ,mN ).

In instantiations using non-interactive proofs, we assume that these can be
bound to a verifier-chosen nonce to prevent replay attacks, as suggested in [28].

The security proof (in Theorem 2) makes crucial use of the Rényi divergence
using arguments in the spirit of Bai et al. [7]. The reduction has to guess upfront
the index i? ∈ {1, . . . , Q} of the specific signing query for which the adversary
will re-use τ (i?). For this query, the reduction will have to make sure that the
simulation trapdoor of Agrawal et al. [3] (used by the SampleRight algorithm
of Lemma 5) vanishes: otherwise, the adversary’s forgery would not be usable
for solving SIS. This means that, as in the proof of [16], the reduction must
answer exactly one signing query in a different way, without using the trapdoor.
While Böhl et al. solve this problem by exploiting the fact that they only need to
prove security against non-adaptive forgers, we directly use a built-in chameleon
hash function mechanism which is implicitly realized by the matrix D0 and the
vector s. Namely, in the signing query for which the Agrawal et al. trapdoor [3]
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cancels, we assign a special value to the vector s ∈ Z2m, which depends on

the adaptively-chosen signed message (Msg
(i?)
1 , . . . ,Msg

(i?)
N ) and some Gaussian

matrices {Rk}Nk=1 hidden behind {Dk}Nk=1.
One issue is that this results in a different distribution for the vector s ∈ Zm.

However, we can still view s as a vector sampled from a Gaussian distribution
centered away from 02m. Since this specific situation occurs only once during the
simulation, we can apply a result proved in [59] which upper-bounds the Rényi
divergence between two Gaussian distributions with identical standard deviations
but different centers. By choosing the standard deviation σ1 of s ∈ Z2m to be
polynomially larger than that of the columns of matrices {Rk}Nk=1, we can keep
the Rényi divergence between the two distributions of s (i.e., the one of the
simulation and the one of the real game) sufficiently small to apply the probability
preservation property (which still gives a polynomial reduction since the argument
must only be applied on one signing query). Namely, the latter implies that, if the
Rényi divergence R2(sreal||ssim) is polynomial, the probability that the simulated
vector ssim ∈ Z2m passes the verification test will only be polynomially smaller
than in the real game and so will be the adversary’s probability of success.

Another option would have been to keep the statistical distance between sreal

and ssim negligible using the smudging technique of [5]. However, this would
have implied to use an exponentially large modulus q since σ1 should have been
exponentially larger than the standard deviations of the columns of {Rk}Nk=1.

Theorem 2. Under the SISn,2m,q,β̂ assumption, where β̂ = Nσ(2m)3/2+4σ1m
3/2,

the above protocols are secure protocols for obtaining a signature on a committed
message and proving possession of a valid message-signature pair. (The proof is
given in Appendix B.4.)

Theorem 3. The scheme provides anonymity under the LWEn,q,χ assumption.
(The proof is given in Appendix B.5.)

4 A Dynamic Lattice-Based Group Signature

In this section, the signature scheme of Section 3 is used to design a group
signature for dynamic groups using the syntax and the security model of Kiayias
and Yung [56], which is recalled in Appendix A.

In the notations hereunder, for any positive integers n, and q ≥ 2, we define

the “powers-of-2” matrix Hn×ndlog qe ∈ Zn×ndlog qe
q to be:

Hn×ndlog qe = In ⊗ [1 | 2 | 4 | . . . | 2dlog qe−1].

Also, for each vector v ∈ Zn
q , we define bin(v) ∈ {0, 1}ndlog qe to be the vector

obtained by replacing each entry of v by its binary expansion. Hence, we have
v = Hn×ndlog qe · bin(v) for any v ∈ Zn

q .
In our scheme, each group membership certificate is a signature generated by

the group manager on the user’s public key. Since the group manager only needs
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to sign known (rather than committed) messages, we can use a simplified version
of the signature, where the chameleon hash function does not need to choose the
discrete Gaussian vector s with a larger standard deviation than other vectors.

A key component of the scheme is the two-message joining protocol whereby
the group manager admits new group members by signing their public key. The
first message is sent by the new user Ui who samples a membership secret con-
sisting of a short vector zi ←↩ DZ4m,σ (where m = 2ndlog qe), which is used to
compute a syndrome vi = F · zi ∈ Z4n

q for some public matrix F ∈ Z4n×4m
q . This

syndrome vi ∈ Z4n
q must be signed by Ui using his long term secret key usk[i]

(as in [56,13], we assume that each user has a long-term key upk[i] for a digital
signature, which is registered in some PKI) and will uniquely identify Ui. In order
to generate a membership certificate for vi ∈ Z4n

q , the group manager GM signs

its binary expansion bin(vi) ∈ {0, 1}4ndlog qe using the scheme of Section 3.
Equipped with his membership certificate (τ,d, s) ∈ {0, 1}` × Z2m × Z2m,

the new group member Ui can sign a message using a Stern-like protocol for
demonstrating his knowledge of a valid certificate for which he also knows the
secret key associated with the certified public key vi ∈ Z4n

q . This boils down to
providing evidence that the membership certificate is a valid signature on some
binary message bin(vi) ∈ {0, 1}4ndlog qe for which he also knows a short zi ∈ Z4m

such that vi = H4n×2m · bin(vi) = F · zi ∈ Z4n
q .

Interestingly, the process does not require any proof of knowledge of the mem-
bership secret zi during the joining phase, which is round-optimal. Analogously to
the Kiayias-Yung technique [55] and constructions based on structure-preserving
signatures [2], the joining protocol thus remains secure in environments where
many users want to register at the same time in concurrent sessions.

We remark that a similar Stern-like protocol could also be directly used to
prove knowledge of a Boyen signature [19] on a binary expansion of the user’s
syndrome vi ∈ Z4n

q while preserving the user’s ability to prove knowledge of a
short zi ∈ Z4m such that F · zi = vi mod q. However, this would require consid-
erably longer private keys containing 4n · log q matrices {Aj}`j=0 of dimension
n × m each (i.e., we would need ` = Θ(n · log q)). In contrast, by using the
signature scheme of Section 3, we only need the group public key Y to contain
` = logNgs matrices in Zn×mq . Since the number of users Ngs is polynomial, we
have logNgs � n, which results in a much more efficient scheme.

4.1 Description of the Scheme

Setup(1λ, 1Ngs): Given a security parameter λ > 0 and the maximal expected
number of group members Ngs = 2` ∈ poly(λ), choose lattice parameter

n = O(λ); prime modulus q = Õ(`n3); dimension m = 2ndlog qe; Gaussian
parameter σ = Ω(

√
n log q log n); infinity norm bounds β = σω(logm) and

B =
√
nω(log n). Let χ be a B-bounded distribution. Choose a hash function

H : {0, 1}∗ → {1, 2, 3}t for some t = ω(log n), which will be modeled as a
random oracle in the security analysis. Then, do the following.
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1. Generate a key pair for the signature of Section 3.1 for signing single-block
messages. Namely, run TrapGen(1n, 1m, q) to get A ∈ Zn×mq and a short

basis TA of Λ⊥q (A), which allows computing short vectors in Λ⊥q (A)
with Gaussian parameter σ. Next, choose matrices A0,A1, . . . ,A`,D←↩
U(Zn×mq ), D0,D1 ←↩ U(Z2n×2m

q ) and a vector u←↩ U(Znq ).
2. Choose an additional random matrix F←↩ U(Z4n×4m

q ) uniformly. Looking
ahead, this matrix will be used to ensure security against framing attacks.

3. Generate a master key pair for the Gentry-Peikert-Vaikuntanathan IBE
scheme in its multi-bit variant. This key pair consists of a statistically
uniform matrix B ∈ Zn×mq and a short basis TB ∈ Zm×m of Λ⊥q (B).
This basis will allow us to compute GPV private keys with a Gaussian
parameter σGPV ≥ ‖T̃B‖ ·

√
logm.

4. Choose a one-time signature scheme ΠOTS = (G,S,V) and a hash func-
tion H0 : {0, 1}∗ → Zn×2m

q , that will be modeled as random oracles.
The group public key is defined as

Y :=
(
A, {Aj}`j=0, B, D, D0, D1, F, u, ΠOTS, H, H0

)
.

The opening authority’s private key is SOA := TB and the private key of the
group manager consists of SGM := TA. The algorithm outputs

(
Y,SGM,SOA

)
.

Join(GM,Ui): the group manager GM and the prospective user Ui run the following
interactive protocol: [Juser(λ,Y), JGM(λ, St,Y,SGM)]

1. Ui samples a discrete Gaussian vector zi ← DZ4m,σ and computes vi =
F · zi ∈ Z4n

q . He sends the vector vi ∈ Z4n
q , whose binary representation

bin(vi) consists of 4ndlog qe = 2m bits, together with an ordinary digital
signature sigi = Signusk[i](vi) to GM.

2. JGM verifies that vi was not previously used by a registered user and that
sigi is a valid signature on vi w.r.t. upk[i]. It aborts if this is not the
case. Otherwise, GM chooses a fresh `-bit identifier idi = idi[1] . . . idi[`] ∈
{0, 1}` and uses SGM = TA to certify Ui as a new group member. To this
end, GM defines the matrix

Aidi =
[
A A0 +

∑`
j=1 idi[j]Aj

]
∈ Zn×2m

q . (6)

Then, GM runs T′idi ← ExtBasis(Aidi ,TA) to obtain a short delegated

basis T′idi of Λ⊥q (Aidi) ∈ Z2m×2m. Finally, GM samples a short vector
si ←↩ DZ2m,σ and uses the obtained delegated basis T′idi to compute a

short vector di =

[
di,1
di,2

]
∈ Z2m such that

Aidi · di =
[
A A0 +

∑`
j=1 idi[j]Aj

]
· di

= u + D · bin
(
D0 · bin(vi) + D1 · si

)
mod q. (7)

The triple (idi,di, si) is sent to Ui. Then, Juser verifies that the received
(idi,di, si) satisfies (7) and that ‖di‖∞ ≤ β, ‖si‖∞ ≤ β. If these condi-
tions are not satisfied, Juser aborts. Otherwise, Juser defines the membership
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certificate as certi = (idi,di, si). The membership secret seci is defined
to be seci = zi ∈ Z4m. JGM stores transcripti = (vi, certi, i, upk[i], sigi) in
the database Sttrans of joining transcripts.

Sign(Y, certi, seci,M): To sign M ∈ {0, 1}∗ using certi = (idi,di, si), where
di = [dTi,1 | dTi,2]T ∈ Z2m and si ∈ Z2m, as well as the membership secret

seci = zi ∈ Z4m, the group member Ui generates a one-time signature key
pair (VK,SK)← G(n) and conducts the following steps.

1. Compute G0 = H0(VK) ∈ Zn×2m
q and use it as an IBE public key to

encrypt bin(vi) ∈ {0, 1}2m, where vi = F · zi ∈ Z4n
q is the syndrome of

seci = zi ∈ Z4m for the matrix F. Namely, compute cvi ∈ Zmq × Z2m
q as

cvi = (c1, c2) =
(
BT · e0 + x1, GT

0 · e0 + x2 + bin(vi) · bq/2c
)

(8)

for randomly chosen e0 ←↩ χn, x1 ←↩ χm,x2 ←↩ χ2m. Notice that, as in
the construction of [62], the columns of G0 can be interpreted as public
keys for the multi-bit version of the dual Regev encryption scheme.

2. Run the protocol in Section 5.5 to prove the knowledge of idi ∈ {0, 1}`,
vectors si ∈ Z2m,di,1,di,2 ∈ Zm, zi ∈ Z4m with infinity norm bound β;
e0 ∈ Zn, x1 ∈ Zm,x2 ∈ Z2m with infinity norm bound B and bin(vi) ∈
{0, 1}2m,wi ∈ {0, 1}m, that satisfy (8) as well as

A · di,1 + A0 · di,2 +
∑̀
j=1

(idi[j] · di,2) ·Aj −D ·wi = u ∈ Znq (9)

and
{

H2n×m ·wi = D0 · bin(vi) + D1 · si ∈ Z2n
q

F · zi = H4n×2m · bin(vi) ∈ Z4n
q .

(10)

The protocol is repeated t = ω(log n) times in parallel to achieve negligible
soundness error, and then made non-interactive using the Fiat-Shamir
heuristic [41] as a triple πK = ({CommK,j}tj=1,ChallK , {RespK,j}tj=1),
where ChallK = H(M,VK, cvi , {CommK,j}tj=1) ∈ {1, 2, 3}t

3. Compute a one-time signature sig = S(SK, (cvi , πK)).

Output the signature that consists of

Σ =
(
VK, cvi , πK , sig

)
. (11)

Verify(Y,M,Σ): Parse the signature Σ as in (11). Then, return 1 if and only if:
(i) V(VK, (cvi , csi , cid, πK), sig) = 1; (ii) The proof πK properly verifies.

Open(Y,SOA,M,Σ): Parse SOA as TB ∈ Zm×m and Σ as in (11).

1. Compute G0 = H0(VK) ∈ Zn×2m
q . Then, using TB to compute a small-

norm matrix E0,VK ∈ Zm×2m such that B ·E0,VK = G0 mod q.
2. Using E0,VK, decrypt cvi to obtain a string bin(v) ∈ {0, 1}2m (i.e., by

computing b(c2 −ET
0,VK · c1)/(q/2)e).
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3. Determine if the bin(v) ∈ {0, 1}2m obtained at step 2 corresponds to a
vector v = H4n×2m · bin(v) mod q that appears in a record transcripti =
(v, certi, i, upk[i], sigi) of the database Sttrans for some i. If so, output
the corresponding i (and, optionally, upk[i]). Otherwise, output ⊥.

We remark that the scheme readily extends to provide a mechanism whereby
the opening authority can efficiently prove that signatures were correctly opened
at each opening operation. The difference between the dynamic group signature
models suggested by Kiayias and Yung [56] and Bellare et al. [13] is that, in the
latter, the opening authority (OA) must be able to convince a judge that the Open
algorithm was run correctly. Here, such a mechanism can be realized using the
techniques of public-key encryption with non-interactive opening [38]. Namely,
since bin(vi) is encrypted using an IBE scheme for the identity VK, the OA can
simply reveal the decryption matrix E0,VK, that satisfies B ·E0,VK = G0 mod q
(which corresponds to the verification of a GPV signature) and allows the verifier
to perform step 2 of the opening algorithm himself. The resulting construction is
easily seen to satisfy the notion of opening soundness of Sakai et al. [71].

4.2 Efficiency and Correctness

Efficiency. The given dynamic group signature scheme can be implemented
in polynomial time. The group public key has total bit-size O(`nm log q) =

Õ(λ2) · logNgs. The secret signing key of each user consists of a small constant

number of low-norm vectors, and has bit-size Õ(λ).
The size of each group signature is largely dominated by that of the non-

interactive argument πK , which is obtained from the Stern-like protocol of
Section 5.5. Each round of the protocol has communication cost Õ(m · log q) ·
logNgs. Thus, the bit-size of πK is t ·Õ(m · log q) · logNgs = Õ(λ) · logNgs. This is
also the asymptotic bound on the size of the group signature.

Correctness. The correctness of algorithm Verify(Y,M,Σ) follows from the
facts that every certified group member is able to compute valid witness vectors
satisfying equations (8), (9) and (10), and that the underlying argument system
is perfectly complete. Moreover, the scheme parameters are chosen so that the
GPV IBE [43] is correct, which implies that algorithm Open(Y,SOA,M,Σ) is
also correct.

4.3 Security Analysis

Due to the fact that the number of public matrices {Aj}`j=0 is only logarithmic in

Ngs = 2` instead of being linear in the security parameter λ, the proof of security
against misidentification attacks (as defined in Appendix A) cannot rely on the
security of our signature scheme in a modular manner. The reason is that, at
each run of the Join protocol, the group manager maintains a state and, instead
of choosing the `-bit identifier id uniformly in {0, 1}`, it chooses an identifier that
has not been used yet. Since `� λ (given that Ngs = 2` is polynomial in λ), we
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thus have to prove security from scratch. However, the strategy of the reduction
is exactly the same as in the security proof of the signature scheme.

Theorem 4. The scheme is secure against misidentification attacks under the
SISn,2m,q,β′ assumption, for β′=O(`σ2m3/2). (The proof is given in Appendix C.1.)

Theorem 5. The scheme is secure against framing attacks under the SIS4n,4m,q,β′′

assumption, where β′′ = 4σ
√
m. (The proof is detailed in Appendix C.2.)

Theorem 6. In the random oracle model, the scheme provides CCA-anonymity
if the LWEn,q,χ assumption holds and if ΠOTS is a strongly unforgeable one-time
signature. (The proof is explained in Appendix C.3.)

5 Supporting Zero-Knowledge Argument Systems

This section provides a general framework that allows obtaining zero-knowledge
arguments of knowledge (ZKAoK) for many relations appearing in lattice-based
cryptography. Since lattice-based cryptosystems are built upon the hardness of the
SIS and LWE problems, the relations among objects of the schemes are typically
represented by modular linear equations. Thanks to the linearity property, we
can often unify the given equations into one equation of the form:

P · x = v mod q, (12)

where (P, v) are public and x is a secret vector (or matrix) that possesses some
constraints to be proven in zero-knowledge, e.g., its smallness (like a SIS solution
or an LWE noise) or a special arrangement of its entries. Starting from this
high-level observation, we look for a tool that handles these constraints well.

Stern’s protocol [72], originally proposed in the context of code-based cryptog-
raphy, appears to be well-suited for our purpose. Stern’s main idea is simple, yet
elegant: To prove that a binary vector x has the fixed-Hamming-weight constraint,
simply send the verifier a random permutation π(x) which should guarantee that
the constraint is satisfied while leaking no additional information about x. Ling
et al. [61] developed this idea to handle the smallness constraint, via a technique
called Decomposition-Extension. This technique decomposes a vector with small
infinity norm B ≥ 1 into blog2Bc + 1 vectors with infinity norm 1, and then,
extends these vectors into elements of sets that are closed under permutations.
Several subsequent works [58,62,60] employed the techniques of [72,61] in different
contexts, but did not address the applicability and flexibility of the protocol in
an abstract, generalized manner.

In Section 5.1, we abstract Stern’s protocol to capture many relations that
naturally appear in lattice-based cryptography. In particular, the argument
systems used in our signature with efficient protocols (Section 3) and dynamic
group signature (Section 4) can all be derived from this abstract protocol, which
we will demonstrate in Sections 5.3, 5.4 and 5.5, respectively.

We note that several works [52,73,15] addressed the problem of proving
multiplicative and additive relations among committed linear objects (matrices
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and vectors over Zq) in lattice-based cryptography. These results, however, do
not yield a simple solution for the relations involved in our schemes. If we were to
plug proof systems like [52,73,15] in our relations, we would need to commit to
all objects using perfectly binding commitments (which would require very long
commitment keys) and express the relations in terms of many multiplications and
additions gates before running many instances of the proof systems depending
on the circuit. Instead of considering general circuits, our framework aims at a
more direct (but still fairly general) solution for a large class of relations that
naturally appear in SIS and LWE-based cryptography.

5.1 Abstracting Stern’s Protocol

Let D,L, q ≥ 2 be positive integers let VALID be a subset of {−1, 0, 1}L. Suppose
that S is a finite set such that one can associate every π ∈ S with a permutation
Tπ of L elements, satisfying the following conditions:{

x ∈ VALID ⇐⇒ Tπ(x) ∈ VALID,

If x ∈ VALID and π is uniform in S, then Tπ(x) is uniform in VALID.
(13)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{

(P,v),x ∈ ZD×Lq × ZDq × VALID : P · x = v mod q.
}

Note that, Stern’s original protocol corresponds to the special case when
VALID = {x ∈ {0, 1}L : wt(x) = k} (where wt(·) denotes the Hamming weight
and k < L is a given integer), S = SL - hereunder the set of all permutations
of L elements, and Tπ(x) = π(x).

The conditions in (13) play a crucial role in proving in ZK that x ∈ VALID: To
do so, the prover samples π ←↩ U(S) and let the verifier check that Tπ(x) ∈ VALID,
while the latter cannot learn any additional information about x thanks to the
randomness of π. Furthermore, to prove in ZK that the linear equation holds,
the prover samples a masking vector r ←↩ U(ZLq ), sends y = x + r mod q, and
convinces the verifier instead that P · y = P · r + v mod q.

The interactive protocol between the prover and the verifier with common
input (P,v) and prover’s secret input x is described in Figure 1. The protocol
employs a statistically hiding and computationally binding string commitment
scheme COM (e.g., the SIS-based one from [53]).

The properties of the given protocol are summarized in the following lemma.

Lemma 8. The protocol in Figure 1 is a statistical ZKAoK for the relation
Rabstract with perfect completeness, soundness error 2/3, and communication

cost Õ(L log q). In particular:

– There exists an efficient simulator that, on input (P,v), outputs an accepted
transcript which is statistically close to that produced by the real prover.

– There exists an efficient knowledge extractor that, on input a commitment
CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values of
the challenge Ch, outputs x′ ∈ VALID such that P · x′ = v mod q.
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1. Commitment: Prover samples r←↩ U(ZLq ), π ←↩ U(S) and randomness ρ1, ρ2, ρ3
for COM. Then he sends CMT =

(
C1, C2, C3

)
to the verifier, where

C1 = COM(π,P · r; ρ1), C2 = COM(Tπ(r); ρ2), C3 = COM(Tπ(x + r); ρ3).

2. Challenge: The verifier sends a challenge Ch←↩ U({1, 2, 3}) to the prover.
3. Response: Depending on Ch, the prover sends RSP computed as follows:

– Ch = 1: Let tx = Tπ(x), tr = Tπ(r), and RSP = (tx, tr, ρ2, ρ3).
– Ch = 2: Let π2 = π, y = x + r, and RSP = (π2,y, ρ1, ρ3).
– Ch = 3: Let π3 = π, r3 = r, and RSP = (π3, r3, ρ1, ρ2).

Verification: Receiving RSP, the verifier proceeds as follows:

– Ch = 1: Check that tx ∈ VALID and C2 = COM(tr; ρ2), C3 = COM(tx + tr; ρ3).
– Ch = 2: Check that C1 = COM(π2,P · y − v; ρ1), C3 = COM(Tπ2(y); ρ3).
– Ch = 3: Check that C1 = COM(π3,P · r3; ρ1), C2 = COM(Tπ3(r3); ρ2).

In each case, the verifier outputs 1 if and only if all the conditions hold.

Fig. 1: A ZKAoK for the relation Rabstract.

The proof of Lemma 8 employs standard simulation and extraction techniques
for Stern-like protocols [53,61,62]. We defer it to Appendix D.

5.2 Supporting Notations and Techniques

Below we will describe the notations and techniques, adapted from recent works
on Stern-like protocols [61,58,40,60], that we will employ in the next subsections
to handle 3 different constraints of the witness vectors.

Let m be an arbitrary dimension, and B be an arbitrary infinity norm bound.

Case 1: w ∈ {0, 1}m. We denote by B2
m the set of all vectors in {0, 1}2m having

exactly m coordinates equal to 1. We also let Ext2m(w) be the algorithm that
outputs a vector ŵ ∈ B2

m by appending m suitable coordinates to w ∈ {0, 1}m.
Note that, for any permutation ρ ∈ S2m, we have ŵ ∈ B2

m ⇔ ρ(ŵ) ∈ B2
m.

Case 2: w ∈ [−B,B]m. We define δB := blog2Bc+ 1 and denote by B3
mδB

the

set of vectors in {−1, 0, 1}3mδB with exactly mδB coordinates equal to j, for
every j ∈ {−1, 0, 1}. The Decomposition-Extension technique from [61] consists
in transforming w ∈ [−B,B]m to a vector DecExtm,B(w) ∈ B3

mδB
, as follows.

Define the sequence B1, . . . , BδB , where Bj =
⌊
B+2j−1

2j

⌋
for all j ∈ [1, δB].

As noted in [61], it satisfies
∑δB
j=1Bj = B, and for any w ∈ [−B,B], one can

efficiently compute w(1), . . . , w(δB) ∈ {−1, 0, 1} such that
∑δB
j=1Bj · w(j) = w.

Next, define the matrix

Km,B = Im ⊗ [B1 | . . . |BδB ] =

B1 . . . BδB
. . .

B1 . . . BδB

 ∈ Zm×mδB ,
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and its extension K̂m,B =
[
Km,B

∣∣0m×2mδB
]
∈ Zm×3mδB .

If we let w = (w1, . . . , wm)T , then we can compute

w′ =
(
w

(1)
1 , . . . , w

(δB)
1 , . . . , w(1)

m , . . . , w(δB)
m

)T ∈ {−1, 0, 1}mδB

satisfying Km,B ·w′ = w. By appending 2mδB suitable coordinates to w′, we

can obtain ŵ ∈ B3
mδB

satisfying K̂m,B · ŵ = w.

Note that for any φ ∈ S3mδB , we have ŵ ∈ B3
mδB
⇔ φ(ŵ) ∈ B3

mδB
.

Case 3: w ∈ {0, 1}2m is the correct encoding of some t ∈ {0, 1}m.

Recall that the encoding function from Section 3.3, hereunder denoted by
Encodem if the input is a binary vector of length m, extends t = (t1, . . . , tm)T

to Encodem(t) = (t̄1, t1, . . . , t̄m, tm). We define CorEnc(m) = {w = Encodem(t) :
t ∈ {0, 1}m} - the set of all correct encodings of m-bit vectors. To handle the
constraint w ∈ CorEnc(m), we adapt the permuting technique from [58,40,60].

For b = (b1, . . . , bm)T ∈ {0, 1}m, we let Eb be the permutation transforming

vector w = (w0
1, w

1
1, . . . , w

0
m, w

1
m) ∈ Z2m to Eb(w) = (wb11 , w

b̄1
1 , . . . , w

bm
m , wb̄mm ).

Note that, Eb transforms w=Encodem(t) to Eb(w) = Encodem(t⊕b), where ⊕
denotes the bit-wise addition modulo 2. Thus, for any b ∈ {0, 1}m, we have

w ∈ CorEnc(m)⇔ Eb(w) ∈ CorEnc(m).

5.3 Proving the Consistency of Commitments

The argument system used in our protocol for signing a committed value in
Section 3.3 can be summarized as follows.

Common Input: Matrices {Dk ∈ Z2n×2m
q }Nk=0; B ∈ Zn×mq ; G1 ∈ Zn×2m

q ;

vectors cm ∈ Z2n
q ; {ck,1 ∈ Zmq }Nk=1; {ck,2 ∈ Z2m

q }Nk=1; cs′,1 ∈ Zmq ; cs′,2 ∈ Z2m
q .

Prover’s Input: m = (mT1 ‖ . . . ‖mTN )T ∈ CorEnc(mN);

{sk ∈ [−B,B]n, ek,1 ∈ [−B,B]m; ek,2 ∈ [−B,B]2m}Nk=1; s0 ∈ [−B,B]n;

e0,1 ∈ [−B,B]m; e0,2 ∈ [−B,B]2m; s′ ∈ [−(p− 1), (p− 1)]2m

Prover’s Goal: Convince the verifier in ZK that:
cm = D0 · s′ +

∑N
k=1 Dk ·mk mod q;

cs′,1 = BT · s0 + e0,1 mod q; cs′,2 = GT
1 · s0 + e0,2 + bq/pc · s′ mod q;

∀k ∈ [N ] : ck,1 = BT · sk + ek,1; ck,2 = GT
1 · sk + ek,2 + bq/2c ·mk.

(14)

We will show that the above argument system can be obtained from the one in
Section 5.1. We proceed in two steps.

Step 1: Transforming the equations in (14) into a unified one of the form
P · x = v mod q, where ‖x‖∞ = 1 and x ∈ VALID - a “specially-designed” set.
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To do so, we first form the following vectors and matrices:

x1 =
(
sT0 ‖eT0,1‖eT0,2‖sT1 ‖eT1,1‖eT1,2‖ . . . ‖sTN‖eTN,1‖eTN,2

)T∈ [−B,B](n+3m)(N+1);

v =
(
cTm‖cTs′,1‖cTs′,2‖cT1,1‖cT1,2‖ . . . ‖cTN,1‖cTN,2

)T ∈ Z2n+3m(N+1)
q ;

P1 =

(
BT

GT
1

I3m

)
; Q2 =

(
0

b q2cI2m

)
; Qp =

(
0

b qpcI2m

)

M1 =


0

P1

P1

. . .
P1

 ; M2 =


D1| . . . |DN

0

Q2

. . .
Q2

 ; M3 =



D0

Qp

0


.

We then observe that (14) can be rewritten as:

M1 · x1 + M2 ·m + M3 · s′ = v ∈ ZDq , (15)

where D = 2n+ 3m(N + 1). Now we employ the techniques from Section 5.2 to
convert (15) into the form P · x = v mod q. Specifically, if we let:

DecExt(n+3m)(N+1),B(x1)→ x̂1 ∈ B3
(n+3m)(N+1)δB

;

M′
1 = M1 · K̂(n+3m)(N+1),B ∈ ZD×3(n+3m)(N+1)δB

q ;

DecExt2m,p−1(s′)→ ŝ ∈ B3
2mδp−1

; M′
3 = M3 · K̂2m,p−1 ∈ ZD×6mδp−1

q ,

L = 3(n+ 3m)(N + 1)δB + 2mN + 6mδp−1, and P =
[
M′

1|M2|M′
3

]
∈ZD×Lq , and

x =
(
x̂T1 ‖mT ‖ŝT

)T
, then we will obtain the desired equation:

P · x = v mod q.

Having performed the above unification, we now define VALID as the set of all

vectors t∈ {−1, 0, 1}L of the form t =
(
tT1 ‖tT2 ‖tT3

)T
, where t1 ∈ B3

(n+3m)(N+1)δB
,

t2 ∈ CorEnc(mN), and t3 ∈ B3
2mδp−1

. Note that x ∈ VALID.

Step 2: Specifying the set S and permutations of L elements {Tπ : π ∈ S} for
which the conditions in (13) hold.

– Define S := S3(n+3m)(N+1)δB × {0, 1}mN × S6mδp−1
.

– For π = (π1,b, π3) ∈ S, and for vector w =
(
wT

1 ‖wT
2 ‖wT

3

)T ∈ ZLq , where

w1 ∈ Z3(n+3m)(N+1)δB
q , w2 ∈ Z2mN

q , w3 ∈ Z6mδp−1
q , we define:

Tπ =
(
π1(w1)T ‖Eb(w2)T ‖π3(w3)T

)T
.

By inspection, it can be seen that the properties in (13) are satisfied, as desired.
As a result, we can obtain the required argument system by running the protocol
in Section 5.1 with common input (P,v) and prover’s input x.
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5.4 Proving the Possession of a Signature on a Committed Value

We now describe how to derive the protocol for proving the possession of a
signature on a committed value, that is used in Section 3.3.

Common Input: Matrices A, {Aj}`j=0,D ∈ Zn×mq ; {Dk ∈ Z2n×2m
q }Nk=0; B ∈

Zn×mq ; G1 ∈ Zn×2m
q ; G0 ∈ Zn×`q ; vectors {ck,1}Nk=1, cτ,1, cv,1, cs,1 ∈ Zmq ;

{ck,2}Nk=1, cv,2, cs,2 ∈ Z2m
q ; cτ,2 ∈ Z`q; u ∈ Znq .

Prover’s Input: v =

(
v1

v2

)
, where v1,v2 ∈ [−β, β]m and β = σ · ω(logm) -

the infinity norm bound of signatures; τ ∈ {0, 1}`; s ∈ [−(p− 1), (p− 1)]2m;

m = (mT1 ‖ . . . ‖mTN )T ∈ CorEnc(mN); {sk}Nk=1, sv, s0, sτ ∈ [−B,B]n;

{ek,1}Nk=1, ev,1, e0,1, eτ,1 ∈ [−B,B]m; {ek,2}Nk=1, e0,2, ev,2 ∈ [−B,B]2m;

eτ,2 ∈ [−B,B]`.

Prover’s Goal: Convince the verifier in ZK that:

A·v1 + A0 ·v2 +
∑̀
i=1

Ai ·τ [i]v2 −D·bin(D0 ·s +

N∑
k=1

Di ·mk) = u mod q, (16)

and that (modulo q)

∀k ∈ [N ] : ck,1 = BT · sk + ek,1; ck,2 = GT
1 · sk + ek,2 + bq/2c ·mk;

cv,1 = BT · sv + ev,1;

cv,2 = GT
1 ·sv+ev,2+b qpc·v=GT

1 ·sv+ev,2+

(
b qpcIm

0

)
· v1+

(
0

b qpcIm

)
·v2;

cs,1 = BT · s0 + e0,1; cs,2 = GT
1 · s0 + e0,2 + bq/pc · s;

cτ,1 = BT · sτ + eτ,1; cτ,2 = GT
0 · sτ + eτ,2 + bq/2c · τ.

(17)

We proceed in two steps.

Step 1: Transforming the equations in (16) and (17) into a unified one of the
form P · x = c mod q, where ‖x‖∞ = 1 and x ∈ VALID - a “specially-designed”
set.

Note that, if we let y = bin(D0 ·s +
∑N
k=1 Di ·mk) ∈ {0, 1}m, then we have

H2n×m ·y = D0·s +
∑N
k=1 Di·mk mod q, and (16) can be equivalently written as:(

A
0

)
·v1 +

(
A0

0

)
·v2 +

∑̀
i=1

(
Ai

0

)
·τ [i]v2 +

(
0

D0

)
· s +

(
−D

−H2n×m

)
· y

+

(
0

D1| . . . |DN

)
·m =

(
u

02n

)
mod q.

Next, we use linear algebra to combine this equation and (17) into (modulo q):

F·v1+F0 ·v2+
∑̀
i=1

Fi ·τ [i]v2 + M1 ·τ+M2 ·y + M3 ·m+M4 ·s+M5 ·e=c, (18)

where, for dimensions D = `+ 3n+ 7m+ 3mN and L0 = D + nN ,
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– Matrices F,F0,F1, . . . ,F` ∈ ZD×mq , M1 ∈ ZD×`q , M2 ∈ ZD×mq , M3 ∈
ZD×2mN
q , M4 ∈ ZD×2m

q , M5 ∈ ZD×L0
q and vector c ∈ ZDq are built from the

public input.
– Vector e =

(
sT1 ‖ . . . ‖sTN ‖sTv ‖sT0 ‖sTτ ‖eT1,1 ‖ . . . ‖eTN,1‖eTv,1 ‖eT0,1 ‖eTτ,1‖
‖eT1,2 ‖ . . . ‖eTN,2‖eT0,2 ‖eTv,2 ‖eTτ,2

)T ∈ [−B,B]L0 .

Now we further transform (18) using the techniques from Section 5.2. Specifi-
cally, we form the following:

DecExtm,β(v1)→ v̂1 ∈ B3
mδβ

; DecExtm,β(v2)→ v̂2 ∈ B3
mδβ

;

F′ =
[
F · K̂m,β |F0 · K̂m,β |F1 · K̂m,β | . . . |F` · K̂m,β |0D×3mδβ`

]
∈ ZD×3mδβ(2`+2)

q ;

Ext2`(τ)→ τ̂ = (τ [1], . . . , τ [`], . . . , τ [2`])T ∈ B2
` ; M′

1 = [M1|0D×`] ∈ ZD×2`
q ;

Ext2m(y)→ ŷ ∈ B2
m; M′

2 = [M2|0D×m] ∈ ZD×2m
q ;

DecExt2m,p−1(s)→ ŝ ∈ B3
2mδp−1

; M′
4 = M4 · K̂2m,p−1 ∈ ZD×6mδp−1

q ;

DecExtL0,B(e)→ ê ∈ B3
L0δB

; M′
5 = M5 · K̂L0,B ∈ ZD×3L0δB

q .

Now, let L = 3mδβ(2`+ 2) + 2`+ 2m+ 2mN + 6mδp−1 + 3L0δB , and construct
matrix P =

[
F′ |M′

1 |M′
2 |M3 |M′

4 |M′
5

]
∈ ZD×Lq and vector

x =
(
v̂T1 ‖ v̂T2 ‖ τ [1]v̂T2 ‖ . . . ‖ τ [`]v̂T2 ‖ . . . ‖ τ [2`]v̂T2 ‖ τ̂T ‖ ŷT ‖mT ‖ ŝT ‖ êT

)T
,

then we will obtain the equation P · x = c mod q.
Before going on, we define VALID as the set of w ∈ {−1, 0, 1}L of the form:

w =
(
wT

1 ‖wT
2 ‖g1w

T
2 ‖ . . . ‖g2`w

T
2 ‖gT ‖wT

3 ‖wT
4 ‖wT

5 ‖wT
6

)T
for some w1,w2 ∈ B3

mδβ
, g = (g1, . . . , g2`) ∈ B2`, w3 ∈ B2

m, w4 ∈ CorEnc(mN),

w5 ∈ B3
2mδp−1

, and w6 ∈ B3
L0δB

. It can be checked that the constructed vector x
belongs to this tailored set VALID.

Step 2: Specifying the set S and permutations of L elements {Tπ : π ∈ S} for
which the conditions in (13) hold.

– Define S = S3mδβ × S3mδβ × S2` × S2m × {0, 1}mN × S6mδp−1
× S3L0δB .

– For π = (φ, ψ, γ, ρ,b, η, ξ) ∈ S and z =
(
z1

0‖z2
0‖z1‖ . . . ‖z2`‖g‖t1‖t2‖t3‖t4

)
∈

ZLq , where z1
0, z

2
0, z1, . . . , z2` ∈ Z3mδβ

q , g ∈ Z2`
q , t1 ∈ Z2m

q , t2 ∈ Z2mN
q , t3 ∈

Z6mδp−1
q , and t4 ∈ Z3L0δB

q , we define:

Tπ(z) =
(
φ(z1

0)T ‖ψ(z2
0)T ‖ψ(zγ(1))

T ‖ . . . ‖ψ(zγ(2`))
T ‖γ(g)T ‖

‖ρ(t1)T ‖Eb(t2)T ‖η(t3)T ‖ξ(t4)T
)T

as the permutation that transforms z as follows:

1. It rearranges the order of the 2` blocks z1, . . . , z2` according to γ.
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2. It then permutes block z1
0 according to φ, blocks z2

0, {zi}2`i=1 according
to ψ, block g according to γ, block t1 according to ρ, block t2 according
to Eb, block t3 according to η, and block t4 according to ξ.

It can be check that (13) holds. Therefore, we can obtain a statistical ZKAoK for
the given relation by running the protocol in Section 5.1.

5.5 The Underlying ZKAoK for the Group Signature Scheme

The argument system upon which our group signature scheme is built can be
summarized as follows.

Common Input: Matrices A, {Aj}`j=0,B ∈ Zn×mq , D0,D1 ∈ Z2n×2m
q , F ∈

Z4n×4m
q , H2n×m ∈Z2n×m

q , H4n×2m ∈Z4n×2m
q , G0 ∈Zn×2m

q ; vectors u∈Znq ,
c1∈Zmq , c2∈Z2m

q .

Prover’s Input: z ∈ [−β, β]4m, y ∈ {0, 1}2m, w ∈ {0, 1}m, d1,d2 ∈ [−β, β]m,
s ∈ [−β, β]2m, id = (id[1], . . . , id[`])T ∈ {0, 1}`,
e0 ∈ [−B,B]n, e1 ∈ [−B,B]m, e2 ∈ [−B,B]2m.

Prover’s Goal: Convince the verifier in ZK that
F · z = H4n×2m · y mod q; H2n×m ·w = D0 · y + D1 · s mod q;

A · d1 + A0 · d2 +
∑`
j=1 Aj · (id[j] · d2)−D ·w = u mod q;

c1 = BT · e0 + e1 mod q; c2 = GT
0 · e0 + e2 + bq/2c · y mod q.

Using the same strategy as in Sections 5.3 and 5.4, we can derive a statis-
tical ZKAoK for the above relation from the protocol in Section 5.1. As the
transformations are similar to those in Section 5.4, we only sketch main points.

In the first step, we combine the given equations to an equation of the form:

M ·

d1

s
z

+ M0 ·d2 +
∑̀
j=1

Mj(id[j]d2) + M′ ·
(

w
y

)
+ M′′ ·

e0

e1

e2

 = v mod q,

where matrices M,M0, . . . ,M`,M
′,M′′ and vector v are built from the input.

We then apply the techniques of Section 5.2 for x0 = (dT1 ‖sT ‖zT )T ∈
[−β, β]7m, d2 ∈ [−β, β]m; x1 = (wT ‖yT )T ∈ {0, 1}3m; and x2 = (eT0 ‖eT1 ‖eT2 )T ∈
[−B,B]n+3m. This allows us to obtain a unified equation P ·x = v mod q, and to
define the sets VALID, S, and permutations {Tπ : π ∈ S} so that the conditions
in (13) hold, in a similar manner as in Section 5.4.
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hardness of learning with errors. In STOC 2013, pages 575–584. ACM, 2013.

24. E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design validations for
discrete logarithm based signature schemes. In PKC 2000, volume 1751 of LNCS,
pages 276–292. Springer, 2000.

25. J. Camenisch and T. Gross. Efficient attributes for anonymous credentials. In
ACM-CCS 2008, pages 345–356. ACM, 2008.

26. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In EURO-
CRYPT 2005, number 3494 in LNCS, pages 302–321. Springer, 2005.

27. J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized Schnorr
proofs. In EUROCRYPT 2009, number 5479 in LNCS, pages 425–442. Springer,
2009.

28. J. Camenisch, S. Krenn, A. Lehmann, G.-L. Mikkelsen, G. Neven, and M.-. Pedersen.
Formal treatment of privacy-enhancing credential systems. In SAC 2015, LNCS,
pages 3–24. Springer, 2015.

29. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In EUROCRYPT 2001,
number 2045 in LNCS, pages 93–118. Springer, 2001.

30. J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In CRYPTO 2002, volume 2442 of
LNCS, pages 61–76. Springer, 2002.

31. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
SCN 2002, number 2576 in LNCS, pages 268–289. Springer, 2002.

32. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In CRYPTO 2004, number 3152 in LNCS, pages 56–72. Springer,
2004.

33. J. Camenisch, G. Neven, and M. Rückert. Fully anonymous attribute tokens from
lattices. In SCN 2012, volume 7485 of LNCS, pages 57–75. Springer, 2012.

34. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate
a lattice basis. In EUROCRYPT 2010, volume 6110 of LNCS, pages 523–552.
Springer, 2010.

35. D. Chaum. Security without identification: Transactions ssystem to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

36. D. Chaum and E. Van Heyst. Group signatures. In EUROCRYPT 1991, volume
547 of LNCS, pages 257–265. Springer, 1991.

37. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT 2000, volume 1807 of LNCS, pages 418–430. Springer, 2000.

29



38. I. Damg̊ard, D. Hofheinz, E. Kiltz, and R. Thorbek. Public-key encryption with
non-interactive opening. In CT-RSA 2008, volume 4964 of LNCS, pages 239–255.
Springer, 2008.

39. C. Delerablée and D. Pointcheval. Dynamic fully anonymous short group signatures.
In VIETCRYPT 2006, volume 4341 of LNCS, pages 193–210. Springer, 2006.

40. M. F. Ezerman, H. T. Lee, S. Ling, K. Nguyen, and H. Wang. A provably secure
group signature scheme from code-based assumptions. In ASIACRYPT 2015,
volume 9452 of LNCS, pages 260–285. Springer, 2015.

41. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO 1986, volume 263 of LNCS, pages 186–194.
Springer, 1987.

42. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC 2009,
pages 169–178. ACM, 2009.

43. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC 2008, pages 197–206. ACM, 2008.

44. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. In STOC 1985, pages 291–304. ACM, 1985.

45. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for
circuits. In STOC 2013, pages 545–554. ACM, 2013.

46. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits
from LWE. In CRYPTO 2015, number 9216 in LNCS, pages 503–523. Springer,
2015.

47. S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from
lattice assumptions. In ASIACRYPT 2010, volume 2647 of LNCS, pages 395–412.
Springer, 2010.

48. M. Green and S. Hohenberger. Universally composable adaptive oblivious transfer.
In ASIACRYPT 2008, number 5350 in LNCS, pages 179–197. Springer, 2008.

49. J. Groth. Fully anonymous group signatures without random oracles. In ASI-
ACRYPT 2007, volume 4833 of LNCS, pages 164–180. Springer, 2007.

50. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, 2008.

51. S. Hohenberger and B. Waters. Short and stateless signatures from the RSA
assumption. In CRYPTO 2009, volume 5677 of LNCS, pages 654–670. Springer,
2009.

52. A. Jain, S. Krenn, K. Pietrzak, and A. Tentes. Commitments and efficient zero-
knowledge proofs from learning parity with noise. In ASIACRYPT 2012, volume
7658 of LNCS, pages 663–680. Springer, 2012.

53. A. Kawachi, K. Tanaka, and K. Xagawa. Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In ASIACRYPT 2008, volume
5350 of LNCS, pages 372–389. Springer, 2008.

54. A. Kiayias, Y. Tsiounis, and M. Yung. Group encryption. In ASIACRYPT 2007,
number 4833 in LNCS, pages 181–199. Springer, 2007.

55. A. Kiayias and M. Yung. Group signatures with efficient concurrent join. In
EUROCRYPT 2005, number 3494 in LNCS, pages 198–214. Springer, 2005.

56. A. Kiayias and M. Yung. Secure scalable group signature with dynamic joins and
separable authorities. Int. Journal of Security and Networks, 1(1):24–45, 2006.

57. F. Laguillaumie, A. Langlois, B. Libert, and D. Stehlé. Lattice-based group
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A Definitions for Dynamic Group Signatures

This section recalls the syntax and the security definitions of dynamic group
signatures based on the model of Kiayias and Yung [56].

A group signature allows a group member to attest that a message was
provided by a member of a group without being altered during the process and
preserving the anonymity of the users. This primitive was introduced by Bellare,
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Micciancio and Warinschi [11] in 2003 and was extended to dynamic groups by
Bellare, Shi and Zhang (BSZ) in 2005 [13].

In the setting of dynamic groups, the syntax of group signatures includes an
interactive protocol which allows users to register as new members of the group
at any time. The syntax and the security model are those defined by Kiayias and
Yung [56]. Like the very similar BSZ model [13], the Kiayias-Yung (KY) model
assumes an interactive join protocol whereby a prospective user becomes a group
member by interacting with the group manager. This protocol provides the user
with a membership certificate, certi, and a membership secret, seci.

We denote by Ngs ∈ poly(λ) the maximal number of group members.

Definition 4 (Dynamic Group Signature). A dynamic group signature
scheme consists of the following algorithms or protocols.

Setup(1λ, 1Ngs): given a security parameter λ and a maximal number of group
members Ngs ∈ N, this algorithm is run by a trusted party to generate a group
public key Y, the group manager’s private key SGM and the opening authority’s
private key SOA. Each key is given to the appropriate authority while Y is
made public. The algorithm also initializes a public state St comprising a set
data structure Stusers = ∅ and a string data structure Sttrans = ε.
In the following, all algorithms have access to the public parameters Y.

Join: is an interactive protocol between the group manager GM and a user Ui
where the latter becomes a group member. The protocol involves two interactive
Turing machines Juser and JGM that both take Y as input. The execution,
denoted as [Juser(λ,Y), JGM(λ, St,Y,SGM)], ends with user Ui obtaining a
membership secret seci, that no one else knows, and a membership certificate
certi. If the protocol is successful, the group manager updates the public state
St by setting Stusers := Stusers∪{i} as well as Sttrans := Sttrans||〈i, transcripti〉.

Sign(certi, seci,M): given a membership certificate certi, a membership secret
seci and a message M , this probabilistic algorithm outputs a signature σ.

Verify(σ,M): given a signature σ, a message M and a group public key Y, this
deterministic algorithm returns either 0 or 1.

Open(SOA,M, σ): takes as input a message M , a valid signature σ w.r.t. Y ,
the opening authority’s private key SOA and the public state St. It outputs
i ∈ Stusers ∪ {⊥}, which is the identity of a group member or a symbol
indicating an opening failure.

Each membership certificate contains a unique tag that identifies the user.

The correctness requirement basically captures that, if all parties honestly
run the protocols, all algorithms are correct with respect to their specification
described as above.

The Kiayias-Yung model [56] considers three security notions: the security
against misidentification attacks requires that, even if the adversary can introduce
users under its control in the group, it cannot produce a signature that traces
outside the set of dishonest users. The notion of security against framing attacks
implies that honest users can never be accused of having signed messages that
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they did not sign, even if the whole system conspired against them. And finally
the anonymity property is also formalized by granting the adversary access to a
signature opening oracle as in the models of [13].

Correctness for Dynamic Group Signatures. Following the Kiayias-Yung ter-
minology [56], we say that a public state St is valid if it can be reached from
St = (∅, ε) by a Turing machine having oracle access to JGM. Also, a state St′ is
said to extend another state St if it is within reach from St.

Moreover, as in [56], when we write certi �Y seci, it means that there exists
coin tosses $ for JGM and Juser such that, for some valid public state St′, the
execution of the interactive protocol [Juser(λ,Y), JGM(λ, St′,Y,SGM)]($) provides
Juser with 〈i, seci, certi〉.

Definition 5 (Correctness). A dynamic group signature scheme is correct if
the following conditions are all satisfied:

(1) In a valid state St, |Stusers| = |Sttrans| always holds and two distinct entries
of Sttrans always contain certificates with distinct tag.

(2) If [Juser(λ,Y), JGM(λ, St,Y,SGM)] is run by two honest parties following the
protocol and 〈i, certi, seci〉 is obtained by Juser, then we have certi �Y seci.

(3) For each 〈i, certi, seci〉 such that certi �Y seci, satisfying condition 2, we
have Verify

(
Sign(Y, certi, seci,M),M,Y

)
= 1.

(4) For any outcome 〈i, certi, seci〉 of [Juser(., .), JGM(., St, ., .)] for some valid St,
if σ = Sign(Y, certi, seci,M), then Open(M,σ,SOA,Y, St′) = i.

We formalize security properties via experiments where the adversary interacts
with a stateful interface I that maintains the following variables:

– stateI : is a data structure representing the state of the interface as the
adversary invokes the various oracles available in the attack games. It is
initialized as stateI = (St,Y,SGM,SOA) ← Setup(1λ, 1Ngs). It includes the
(initially empty) set Stusers of group members and a dynamically growing
database Sttrans storing the transcripts of previously executed join protocols.

– n = |Stusers| < Ngs denotes the current cardinality of the group.
– Sigs: is a database of signatures created by the signing oracle. Each entry

consists of a triple (i,M, σ) indicating that message M was signed by user i.
– Ua: is the set of users that were introduced by the adversary in the system

in an execution of the join protocol.
– U b: is the set of honest users that the adversary, acting as a dishonest group

manager, introduced in the system. For these users, the adversary obtains
the transcript of the join protocol but not the user’s membership secret.

In attack games, adversaries are granted access to the following oracles:

– Qpub, QkeyGM and QkeyOA: when these oracles are invoked, the interface looks
up stateI and returns the group public key Y , the GM’s private key SGM and
the opening authority’s private key SOA respectively.
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– Qa-join: allows the adversary to introduce users under its control in the
group. On behalf of the GM, the interface runs JGM in interaction with the
Juser-executing adversary who plays the role of the prospective user in the
join protocol. If this protocol successfully ends, the interface increments n,
updates St by inserting the new user n in both sets Stusers and Ua. It also
sets Sttrans := Sttrans||〈n, transcriptn〉.

– Qb-join: allows the adversary, acting as a corrupted group manager, to introduce
new honest group members of its choice. The interface triggers an execution
of [Juser, JGM] and runs Juser in interaction with the adversary who runs JGM.
If the protocol successfully completes, the interface increments n, adds user
n to Stusers and U b and sets Sttrans := Sttrans||〈n, transcriptn〉. It stores the
membership certificate certn and the membership secret secn in a private
part of stateI .

– Qsig: given a message M , an index i, the interface checks whether the private
area of stateI contains a certificate certi and a membership secret seci. If no
such elements (certi, seci) exist or if i 6∈ U b, the interface returns ⊥. Otherwise,
it outputs a signature σ on behalf of user i and also sets Sigs← Sigs||(i,M, σ).

– Qopen: when this oracle is invoked on input of a valid pair (M,σ), the interface
runs algorithm Open using the current state St. When S is a set of pairs
of the form (M,σ), Q¬Sopen denotes a restricted oracle that only applies the
opening algorithm to pairs (M,σ) which are not in S.

– Qread and Qwrite: are used by the adversary to read and write the content
of stateI . At each invocation, Qread outputs the whole stateI but the pub-
lic/private keys and the private part of stateI where membership secrets are
stored after Qb-join-queries. By using Qwrite, the adversary can modify stateI
at will as long as it does not remove or alter elements of Stusers, Sttrans or
invalidate the public state St: for example, the adversary is allowed to create
dummy users as long as it does not re-use already existing certificate tags.

Based on the above syntax, the security properties are formalized as follows.

Security Against Misidentification Attacks. In a misidentification attack, the
adversary can corrupt the opening authority using the QkeyOA oracle and introduce
malicious users in the group via Qa-join-queries. It aims at producing a valid
signature σ? that does not open to any adversarially-controlled user.

Definition 6. A dynamic group signature scheme is secure against misidentifi-
cation attacks if, for any PPT adversary A involved in experiment Exp. 1, we

have: Advmis-id
A (λ) = Pr

[
Expmis-id

A (λ) = 1
]
∈ negl (λ) .

Non-Frameability. Framing attacks consider the situation where the entire sys-
tem is colluding against some honest user. The adversary can corrupt the group
manager as well as the opening authority (via oracles QkeyGM and QkeyOA, respec-
tively). It can also introduce honest group members (via Qb-join-queries), observe
the system while these users sign messages and create dummy users using Qwrite.
The adversary eventually aims at framing an honest group member.
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1 stateI = (St,Y,SGM,SOA)← Setup(1λ, 1Ngs);
2 (M?, σ?)← A(Qpub, Qa-join, Qread, QkeyOA);
3 if Verify(σ?,M?,Y) = 0 then
4 return 0;

5 i = Open(M?, σ?,SOA,Y, St′);
6 if i 6∈ Ua then
7 return 1;

8 return 0;

Exp. 1: Experiment Expmis-id
A (λ)

Definition 7. A dynamic group signature scheme is secure against framing
attacks if, for any PPT adversary A involved in the experiment Expfra

A (λ) below,

it holds that Advfra
A (λ) = Pr

[
Expfra

A (λ) = 1
]
∈ negl (λ).

1 stateI = (St,Y,SGM,SOA)← Setup(1λ, 1Ngs);
2 (M?, σ?) ← A(Qpub, QkeyGM, QkeyOA, Qb-join, Qsig, Qread, Qwrite);
3 if Verify(σ?,M?,Y) = 0 then
4 return 0;

5 if i = Open(M?, σ?,SOA,Y, St′) 6∈ Ub then
6 return 0;

7 if
(∧

j∈Ub s.t. j=i (j,M?, ∗) 6∈ Sigs
)

then

8 return 1;

9 return 0;

Exp. 2: Experiment Expfra
A (λ)

Full Anonymity. The notion of anonymity is formalized by means of a game
involving a two-stage adversary. The first stage is called play stage and allows the
adversary A to modify stateI via Qwrite-queries and open arbitrary signatures by
probing Qopen. When the play stage ends, A chooses a message M? as well as two
pairs (sec?0, cert

?
0) and (sec?1, cert

?
1), consisting of a valid membership certificate and

a corresponding membership secret. Then, the challenger flips a coin d← {0, 1}
and computes a challenge signature σ? using (sec?d, cert

?
d). The adversary is given

σ? with the task of eventually guessing the bit d ∈ {0, 1}. Before doing so, it is
allowed further oracle queries throughout the second stage, called guess stage,
but is restricted not to query Qopen for (M?, σ?).

Definition 8. A dynamic group signature scheme is fully anonymous if, for any
PPT adversary A in the following experiment, the following distance is negligible:

Advanon
A (λ) := |Pr

[
Expanon−1

A (λ) = 1
]
− Pr

[
Expanon−0

A (λ) = 1
]
|.
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1 stateI = (St,Y,SGM,SOA)← Setup(1λ, 1Ngs);
2
(
aux,M?, (sec?0, cert

?
0), (sec?1, cert

?
1)
)
← A(play; Qpub, QkeyGM, Qopen, Qread, Qwrite);

3 if ¬((cert?0 �Y sec?0) ∧ (cert?1 �Y sec?1) ∧ (cert?0 6= cert?1)) then
4 return ⊥;

5 σ? ← Sign(Y, cert?d, sec?d,M?);

6 d′ ← A(guess; σ?, aux,Qpub, QkeyGM, Q
¬{(M?,σ?)}
open , Qread, Qwrite);

7 return d′;

Exp. 3: Experiment Expanon-d
A (λ)

B Deferred Proofs for the Signature with Efficient
Protocols

In the security proof of the signature with efficient protocols, we make use of the
Rényi divergence in a similar way to [7] in the proof of Theorem 2.

B.1 The Rényi Divergence

Instead of the classical statistical distance we sometimes use the Rényi divergence,
which is a measurement of the distance between two distributions. Its use in
security proofs for lattice-based systems was first considered by Bai et al. [7].

Definition 9 (Rényi divergence). For any two discrete distributions P and Q
such that Supp(P ) ⊆ Supp(Q), and a ∈]1,+∞[, we define the Rényi divergence
of order a by:

Ra(P ||Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

We define the Rényi divergences of orders 1 and +∞ by:

R1(P ||Q) = exp

 ∑
x∈Supp(P )

P (x) log
P (x)

Q(x)

 and R∞(P ||Q) = max
x∈Supp(P )

P (x)

Q(x)
.

The divergence R1 is the (exponential) of the Kullback-Leibler divergence.

We will focus on the following properties of the Rényi divergence, the proofs
can be found in [59].

Lemma 9 ([7, Le. 2.7]). Let a ∈ [1,+∞]. Let P and Q denote distributions
with Supp(P ) ⊆ Supp(Q). Then the following properties hold:
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Log. Positivity: Ra(P ||Q) ≥ Ra(P ||P ) = 1

Data Processing Inequality: Ra(P
f ||Qf ) ≤ Ra(P ||Q) for any function f ,

where P f denotes the distribution of f(y) induced by sampling y ←↩ P (resp.
y ←↩ Q)

Multiplicativity: Assume P and Q are two distributions of a pair of random
variables (Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal
distribution of Yi under P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1))
denote the conditional distribution of Y2 given that Y1 = y1. Then we have:

• Ra(P ||Q) = Pa(P1||Q1) ·Ra(P2||Q2) if YB and Y2 are independent;

• Ra(P ||Q) ≤ R∞(P1||Q1) ·maxy1∈XRa
(
P2|1(·|y1)||Q2|1(·|y1)

)
.

Probability Preservation: Let A ⊆ Supp(Q) be an arbitrary event. If a ∈
]1,+∞[, then Q(A) ≥ P (A)

a
a−1 /Ra(P ||Q). Further we have:

Q(A) ≥ P (A)/R∞(P ||Q)

Weak Triangle Inequality: Let P1, P2, P3 be three distributions with Supp(P1) ⊆
Supp(P2) ⊆ Supp(P3). Then we have:

Ra(P1||P3) ≤

{
Ra(P1||P2) ·R∞(P2||P3),

R∞(P1||P2)
a
a−1 ·Ra(P2||P3) if a ∈]1,+∞[.

In our proofs, we mainly use the probability preservation to bound the
probabilities during hybrid games where the two distributions are not close in
terms of statistical distance.

B.2 Security Proof against Type I Attacks (Lemma 6)

Proof. Let A be a PPT adversary that can mount a Type I attack with non-
negligible success probability ε. We construct a PPT algorithm B that uses A
to break the SISn,m,q,β′ assumption. It takes as input Ā ∈ Zn×mq and computes

v ∈ Λ⊥q (Ā) with 0 < ‖v‖ ≤ β′.
Algorithm B first chooses the `-bit strings τ (1), . . . , τ (Q) ←↩ U({0, 1}`) to be

used in signing queries. As in [51], it guesses the shortest prefix such that the
string τ? contained in A’s forgery differs from all prefixes of τ (1), . . . , τ (Q). To
this end, B chooses i† ←↩ U({1, . . . , Q}) and t† ←↩ U({1, . . . , `}) so that, with
probability 1/(Q · `), the longest common prefix between τ? and one of the{
τ (i)
}Q
i=1

is the string τ?[1] . . . τ?[t† − 1] = τ (i†)[1] . . . τ (i†)[t† − 1] ∈ {0, 1}t†−1

comprised of the first (t† − 1)-th bits of τ? ∈ {0, 1}`. We define τ † ∈ {0, 1}t† as
the t†-bit string τ † = τ?[1] . . . τ?[t†]. By construction, with probability 1/(Q · `),
we have τ † 6∈

{
τ

(1)

|t† , . . . , τ
(Q)

|t†

}
, where τ

(i)

|t† denotes the t†-th prefix of τ (i) for each

i ∈ {1, . . . , Q}.
Then, B runs TrapGen(1n, 1m, q) to obtain C ∈ Zn×mq and a basis TC of Λ⊥q (C)

with ‖T̃C‖ ≤ O(
√
n log q). Then, it picks ` + 1 matrices Q0, . . . ,Q` ∈ Zm×m,
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where each matrix Qi has its columns sampled independently from DZm,σ. The
reduction B defines the matrices {Aj}`j=0 as

A0 = Ā ·Q0 + (
∑t†

j=1 τ
?[j]) ·C

Aj = Ā ·Qj + (−1)τ
?[j] ·C, for j ∈ [1, t†]

Aj = Ā ·Qj , for j ∈ [t† + 1, `]

It also sets A = Ā. We note that we have

Aτ(i) =
[
Ā A0 +

∑`
j=1 τ

(i)[j]Aj

]
=
[
Ā Ā · (Q0 +

∑`
j=1 τ

(i)[j]Qj) + (
∑t†

j=1 τ
?[j] + (−1)τ

?[j]τ (i)[j]) ·C
]

=
[
Ā Ā · (Q0 +

∑`
j=1 τ

(i)[j]Qj) + hτ(i) ·C
]

where hτ(i) ∈ [1, t†] ⊂ [1, `] stands for the Hamming distance between τ
(i)

|t† and

τ?|t† . Note that, with probability 1/(Q ·`) and since q > `, we have hτ(i) 6= 0 mod q

whenever τ
(i)

|t† 6= τ?|t† .

Next, B chooses the matrices Dk ←↩ U(Z2n×2m
q ) uniformly at random for

each k ∈ [0, N ]. Then, it picks a random short matrix R ∈ Zm×m which has its
columns independently sampled from DZm,σ and computes

D = Ā ·R.

Finally, B samples a short vector eu ←↩ DZm,σ1 and computes the vector u ∈ Znq
as u = Ā · eu ∈ Znq . The public key

PK :=
(
A, {Aj}`j=0, {Dk}Nk=0, D, u

)
is given to A.

At the i-th signing query Msg(i) = (m
(i)
1 , . . . ,m

(i)
N ) ∈ ({0, 1}2m)N , B can use

the trapdoor TC ∈ Zm×m to generate a signature. To do this, B first samples
s(i) ←↩ DZ2m,σ1

and computes a vector uM ∈ Zmq as

uM = u + D · bin
( N∑
k=1

Dk ·m(i)
k + D0 · s(i)

)
mod q.

Using TC ∈ Zm×m, B can then sample a short vector v(i) ∈ Z2m in DuM
Λ⊥(A

τ(i)
),σ

such that
(
τ (i),v(i), s(i)

)
satisfies the verification equation (2).

When A halts, it outputs a valid signature sig? =
(
τ (i†),v?, s?

)
on a message

Msg? = (m?1, . . . ,m
?
N ) with ‖v?‖ ≤ σ

√
2m and ‖s?‖ ≤ σ1

√
2m. At this point, B

aborts and declares failure if it was unfortunate in its choice of i† ∈ {1, . . . , Q}
and t† ∈ {1, . . . , `}. Otherwise, with probability 1/(Q · `), B correctly guessed
i† ∈ {1, . . . , Q} and t† ∈ {1, . . . , `}, in which case it can solve the given SIS

38



instance as follows.
If we parse v? ∈ Z2m as (v?1

T | v?2
T )T with v?1,v

?
2 ∈ Zm, we have the equality[

Ā Ā · (Q0 +
∑`
j=1 τ

?[j]Qj)
]
·
[
v?1
v?2

]
= u + D · bin

(
D0 · s? +

N∑
k=1

Dk ·m?k
)

mod q

= Ā ·
(
eu + R · bin

(
D0 · s? +

N∑
k=1

Dk ·m?k
))

mod q,

which implies that the vector

w = v?1 + (Q0 +
∑̀
j=1

τ?[j]Qj) · v?2 − eu −R · bin
(
D0 · s? +

N∑
k=1

Dk ·m?k
)
∈ Zm

is in Λ⊥q (Ā). Moreover, with overwhelming probability, this vector is non-zero
since, in A’s view, the distribution of eu ∈ Zm is DΛu

q (Ā),σ1
, which ensures that

eu is statistically hidden by the syndrome u = Ā · eu. Finally, the norm of w is
smaller than β′ = m3/2σ2(`+ 3) +m1/2σ1 which yields a valid solution of the
given SISn,m,q,β′ instance with overwhelming probability. ut

B.3 Security Proof against Type II Attacks (Lemma 7)

Proof. We prove the result using a sequence of games. For each i, we denote by
Wi the event that the adversary wins by outputting a Type II forgery in Game i.

Game 0: This is the real game where, at the i-th signing query Msg(i) =

(m
(i)
1 , . . . ,m

(i)
N ), the adversary obtains a signature sig(i) = (τ (i),v(i), s(i)) for

each i ∈ {1, . . . , Q} from the signing oracle. At the end of the game, the adver-
sary outputs a forgery sig? = (τ?,v?, s?) on a message Msg? = (m?1, . . . ,m

?
N ). By

hypothesis, the adversary’s advantage is ε = Pr[W0]. We assume w.l.o.g. that the
random `-bit strings τ (1), . . . , τ (Q) are chosen at the very beginning of the game.
Since (Msg?, sig?) is a Type II forgery, there exists an index i? ∈ {1, . . . , Q} such
that τ? = τ (i?).

Game 1: This game is identical to Game 0 with the difference that the reduction
aborts the experiment in the unlikely event that, in the adversary’s forgery
sig? = (τ?,v?, s?), τ? coincides with more than one of the random `-bit strings
τ (1), . . . , τ (Q) used by the challenger. If we call F1 the latter event, we have
Pr[F1] < Q2/2` since we are guaranteed to have ¬F1 as long as no two τ (i),
τ (i′) collide. Given that Game 1 is identical to Game 0 until F1 occurs, we have
|Pr[W1]− Pr[W0]| ≤ Pr[F1] < Q2/2`.

Game 2: This game is like Game 1 with the following difference. At the outset
of the game, the challenger B chooses a random index i† ←↩ U({1, . . . , Q}) as
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a guess that A’s forgery will recycle the `-bit string τ (i†) ∈ {0, 1}` of the i†-
th signing query. When A outputs its Type II forgery sig? = (τ?,v?, s?), the

challenger aborts in the event that τ (i†) 6= τ? (i.e., i† 6= i?). Since the choice of i†

in {1, . . . , Q} is independent of A’s view, we have Pr[W2] = Pr[W1]/Q.

Game 3: In this game, we modify the key generation phase and the way to
answer signing queries. First, the challenger B randomly picks h0, h1, . . . , h` ∈ Zq
subject to the constraints

h0 +
∑̀
j=1

τ (i†)[j] · hj = 0 mod q

h0 +
∑̀
j=1

τ (i)[j] · hj 6= 0 mod q i ∈ {1, . . . , Q} \ {i†}

It runs (C,TC) ← TrapGen(1n, 1m, q), (D0,TD0) ← TrapGen(12n, 12m, q) so
as to obtain statistically random matrices C ∈ Zn×mq , D0 ∈ Z2n×2m

q with

trapdoors TC ∈ Zm×m, TD0
∈ Z2m×2m consisting of short bases of Λ⊥q (C)

and Λ⊥q (D0), respectively. Then, B chooses a uniformly random D←↩ U(Zn×mq )
and re-randomizes it using short matrices S,S0,S1, . . . ,S` ←↩ Zm×m, which are
obtained by sampling their columns from the distribution DZm,σ. Namely, from
D ∈ Zn×mq , B defines

A = D · S
A0 = D · S0 + h0 ·C (19)

Aj = D · Sj + hj ·C ∀j ∈ {1, . . . , `}

In addition, B picks random matrices D1, . . . ,DN ←↩ U(Z2n×2m
q ) and a random

vector cM ←↩ U(Z2n
q ). It samples short vectors v1,v2 ←↩ DZm,σ and computes

u ∈ Znq as u = A
τ(i†) ·

[
v1

v2

]
−D · bin(cM ) mod q, where

A
τ(i†) =

[
A A0 +

∑`
j=1 τ

(i†)[j] ·Aj

]
=
[
D · S D · (S0 +

∑`
j=1 τ

(i†)[j] · Sj)
]
.

The adversary’s signing queries are then answered as follows.

- At the i-th signing query (m
(i)
1 , . . . ,m

(i)
N ), whenever i 6= i†, we have

Aτ(i) =
[
A A0 +

∑`
j=1 τ

(i)[j] ·Aj

]
=
[
A D · (S0 +

∑`
j=1 τ

(i)[j] · Sj) + hτ(i) ·C
]
∈ Zn×2m

q ,

with hτ(i) = h0 +
∑`
j=1 τ

(i)[j] · hj 6= 0. This implies that B can use the

trapdoor TC ∈ Zm×m to generate a signature. To this end, B first samples a
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discrete Gaussian vector s(i) ←↩ DZ2m,σ1
and computes uM ∈ Znq as

uM = u + D · bin(

N∑
k=1

Dk ·m(i)
k + D0 · s(i)) mod q.

Then, using TC ∈ Zm×m, it samples a short vector v(i) ∈ Z2m in DuM
Λ⊥(A

τ(i)
),σ

such that (τ (i),v(i), s(i)) satisfies (2).

- At the i†-th signing query (m
(i†)
1 , . . . ,m

(i†)
N ), we have

A
τ(i†) =

[
A A0 +

∑`
j=1 τ

(i†)[j] ·Aj

]
=
[
D · S D · (S0 +

∑`
j=1 τ

(i†)[j] · Sj)
]
∈ Zn×2m

q (20)

due to the constraint h0 +
∑`
j=1 τ

(i†)[j] · hj = 0 mod q. To answer the query,

B uses the trapdoor TD0
∈ Z2m×2m of Λ⊥q (D0) to sample a short vector

s(i†) ∈ D
Λ

c′
M
q (D0),σ1

, where c′M = cM −
∑N
k=1 Dk ·m(i†)

k ∈ Z2n
q . The obtained

vector s(i†) ∈ Z2m thus verifies

D0 · s(i†) = cM −
N∑
k=1

Dk ·m(i†)
k mod q, (21)

and A receives sig(i†) = (τ (i†),v(i†), s(i†)), where v(i†) = (vT1 | vT2 )T . By

construction, the returned signature sig(i†) satisfies

A
τ(i†) ·

[
v1

v2

]
= u + D · bin

(
D0 · s(i†) +

N∑
k=1

Dk ·m(i†)
k

)
mod q,

and the distribution of (τ (i†),v(i†), s(i†)) is statistically the same as in Game 2.

We conclude that Pr[W2] is negligibly far apart from Pr[W3] since, by the Leftover
Hash Lemma (see [3, Lemma 13]), the public key PK in Game 3 is statistically
close to its distribution in Game 2.

In Game 3, we claim that the challenger B can use A to solve the SIS problem
by finding a short vector of Λ⊥q (D) with probability Pr[W3]. Indeed, with proba-

bility Pr[W3], the adversary outputs a valid signature sig? = (τ (i†),v?, s?) on
a message Msg? = (m?1, . . . ,m

?
N ) with ‖v?‖ ≤ σ

√
2m and ‖s?‖ ≤ σ1

√
2m. If we

parse v? ∈ Z2m as (v?1
T | v?2

T )T with v?1,v
?
2 ∈ Zm, we have the equality

A
τ(i†) ·

[
v?1
v?2

]
= u + D · bin(D0 · s? +

N∑
k=1

Dk ·m?k) mod q. (22)
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Due to the way u ∈ Znq was defined at the outset of the game, B also knows

short vectors v(i†) = (vT1 | vT2 )T ∈ Z2m such that

A
τ(i†) ·

[
v1

v2

]
= u + D · bin(cM ) mod q. (23)

Relation (21) implies that cM 6= D0 · s? +
∑N
k=1 Dk · m?k mod q by hypothesis.

It follows that bin(cM ) − bin(D0 · s? +
∑N
k=1 Dk · m?k) is a non-zero vector in

{−1, 0, 1}m. Subtracting (23) from (22), we get

A
τ(i†) ·

[
v?1 − v1

v?2 − v1

]
= D ·

(
bin(cM )− bin(D0 · s? +

N∑
k=1

Dk ·m?k)
)

mod q,

which implies[
D · S D · (S0 +

∑`
j=1 τ

(i†)[j] · Sj)
]
·
[
v?1 − v1

v?2 − v2

]
= D ·

(
bin(cM )− bin(D0 · s? +

N∑
k=1

Dk ·m?k)
)

mod q. (24)

The above implies that the vector

w = S · (v?1 − v1) + (S0 +
∑̀
j=1

τ (i†)[j] · Sj) · (v?2 − v2)

+ bin
(
D0 · s? +

N∑
k=1

Dk ·m?k
)
− bin(cM )

is a short integer vector of Λ⊥q (D). Indeed, its norm can be bounded as ‖w‖ ≤
β′′ =

√
2(`+ 2)σ2m3/2 +m1/2. We argue that it is non-zero with overwhelming

probability. We already observed that bin(D0 · s? +
∑N
k=1 Dk ·m?k)− bin(cM ) is a

non-zero vector of {−1, 0, 1}m, which rules out the event that (v?1,v
?
2) = (v1,v2).

Hence, we can only have w = 0m when the equality

S · (v?1 − v1) + (S0 +
∑̀
j=1

τ (i†)[j] · Sj) · (v?2 − v2)

= bin(cM )− bin
(
D0 · s? +

N∑
k=1

Dk ·m?k
)

(25)

holds over Z. However, as long as either v?1 6= v1 or v?2 6= v2, the left-hand-side
member of (25) is information theoretically unpredictable since the columns
of matrices S and {Sj}`j=0 are statistically hidden in the view of A. Indeed,

conditionally on the public key, each column of S and {Sj}`j=0 has at least n bits
of min-entropy, as shown by, e.g., [65, Lemma 2.7]. ut
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B.4 Proof of Theorem 2

Proof. The proof is very similar to the proof of Theorem 1 and we will only
explain the changes.

Assuming that an adversaryA can prove possession of a signature on a message
(m?1, . . . ,m

?
N ) which has not been blindly signed by the issuer, we outline an

algorithm B that solves a SISn,2m,q,β instance Ā, where Ā = [Ā1 | Ā2] ∈ Zn×2m
q

with Ā1, Ā2 ∈ U(Zn×mq ).
At the outset of the game, B generates the common parameters par by choosing

B ∈R Zn×mq and defining G0 = B · E0 ∈ Zn×`q , G1 = B · E1 ∈ Zn×2m
q . The

short Gaussian matrices E0 ∈ Zm×` and E1 ∈ Zm×2m are retained for later use.
Also, B flips a coin coin ∈ {0, 1, 2} as a guess for the kind of attack that A will
mount. If coin = 0, B expects a Type I forgery, where A’s forgery involves a new
τ? ∈ {0, 1}` that was never used by the signing oracle. If coin = 1, B expects
A to recycle a tag τ? involved in some signing query in its forgery. Namely,
if coin = 1, B expects an attack which is either a Type II forgery or a Type
III forgery. If coin = 2, B rather bets that A will break the soundness of the
interactive argument systems used in the signature issuing protocol or the Prove
protocol. Depending on the value of coin ∈ {0, 1, 2}, B generates the issuer’s
public key PK and simulates A’s view in different ways.

• If coin = 0, B undertakes to find a short non-zero vector of Λ⊥q (Ā1), which in

turn yields a short non-zero vector of Λ⊥q (Ā). To this end, it defines A = Ā1 and

generates PK by computing {Aj}`j=0 as re-randomizations of A ∈ Zn×mq as in
the proof of Lemma 6. This implies that B can always answer signing queries
using the trapdoor TC ∈ Zm×m of the matrix C without even knowing the
messages hidden in the commitments cm and {ck}Nk=1, cs′ . When the adversary
generates a proof of possession of its own at the end of the game, B uses the
matrices E0 ∈ Zm×` and E1 ∈ Zm×2m as an extraction trapdoor to extract a
plain message-signature pair

(
(m?1, . . . ,m

?
N ), (τ?,v?, s?)

)
from the ciphertexts

{c?k}Nk=1 (c?v1
, cv?2 ), c?τ , c?s produced by A as part of its forgery. If the extracted

τ? is not a new tag, then B aborts. Otherwise, it can solve the given SIS instance
exactly as in the proof of Lemma 6.

• If coin = 1, the proof proceeds as in the proof of Lemma 7 with one difference in
Game 3. This difference is that Game 3 is no longer statistically indistinguishable
from Game 2: instead, we rely on an argument based on the Rényi divergence.
In Game 3, B generates PK exactly as in the proof of Lemma 7. This implies
that B takes a guess i† ← U({1, . . . , Q}) with the hope that A will choose to

recycle the tag τ (i†) of the i†-th signing query (i.e., τ? = τ (i†)). As in the proof
of Lemma 7, B defines D = Ā1 ∈ Zn×mq and A = Ā1 ·S for a small-norm matrix

S ∈ Zm×m with Gaussian entries. It also “programs” the matrices {Aj}`j=0 in

such a way that the trapdoor precisely vanishes at the i†-th signing query: in
other words, the sum

A0 +
∑̀
j=1

τ (i)[j]Aj = Ā1 · (S0 +
∑̀
j=1

τ (i)[j] · Sj) + (h0 +
∑̀
j=1

τ (i)[j] · hj) ·C
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does not depend on the matrix C ∈ Zn×mq (of which a trapdoor TC ∈ Zm×m is

known to B) when τ (i) = τ (i†), but it does for all other tags τ (i) 6= τ (i†). In the
setup phase, B also sets up a random matrix D0 ∈ U(Z2n×2m

q ) which it obtains
by choosing A′ ←↩ U(Zn×2m

q ) to define

D0 =

[
Ā
A′

]
∈ Z2n×2m

q . (26)

Then, it computes cM = D0 · s0 ∈ Z2n
q for a short Gaussian vector s0 ←↩ DZ2m,σ0

,

which will be used in the i†-th query. Next, it samples short vectors v1,v2 ←↩
DZm,σ to define

u = A
τ(i†) ·

[
v1

v2

]
−D · bin(cM ) ∈ Znq .

In addition, B picks extra small-norm matrices R1, . . . ,RN ←↩ Z2m×2m whose
columns are sampled from DZm,σ, which are used to define randomizations of
D0 by computing Dk = D0 ·Rk for each k ∈ {1, . . . , N}. The adversary is given
public parameters par := {B,G0,G1, CK}, where CK = {Dk}Nk=0, and the
public key PK :=

(
A, {Aj}`j=0,D,u

)
.

Using TC, B can perfectly emulate the signing oracle at all queries, except

the i†-th query where the vector s′′
(i†)

chosen by B is sampled from a distribution
that departs from DZ2m,σ0

. At the i†-th query, B uses the extraction trapdoor

E1 ∈ Zm×2m to obtain s′
(i†) ∈ Z2m and {mk}Nk=1 – which form a valid opening of

cm unless the soundness of the proof system is broken (note that the latter case

is addressed by the situation coin = 3) – from the ciphertexts c
(i†)
s′ and {ck}Nk=1

sent by A at step 1 of the signing protocol. Then, B computes the vector s′′
(i†)

as

s′′
(i†)

= s0 −
N∑
k=1

Rk ·m(i†)
k − s′

(i†) ∈ Z2m, (27)

which satisfies cM =
∑N
k=1 Dk ·m(i†)

k + D0 · (s′(i
†)

+ s′′
(i†)

) and allows returning

(τ (i†),v(i†), s′′
(i†)

) such that (τ (i†),v(i†), s′
(i†)

+ s′′
(i†)

) satisfies the verification
equation of the signature scheme. Moreover, we argue that, with noticeable

probability, the integer vector s(i†) = s′
(i†)

+ s′′
(i†)

will be accepted by the verifi-
cation algorithm since the Rényi divergence between the simulated distribution

of s′′
(i†)

and its distribution in the real game will be sufficiently small. Indeed,
its distribution is now that of a Gaussian vector DZ2m,σ0,z† centered in

z† = −
N∑
k=1

Rk ·m(i†)
k − s′

(i†) ∈ Z2m,

whose norm is at most ‖z†‖2 ≤ Nσ(2m)3/2 +σ(2m)1/2. By choosing the standard
deviation σ0 to be at least σ0 > Nσ(2m)3/2 + σ(2m)1/2, the Rényi divergence
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between the simulated distribution of s′′
(i†)

(in Game 3) and its real distribution
(which is the one of Game 2) can be kept constant: we have

R2(s′′
(i†),2||s′′(i

†),3
) ≤ exp

(
2π · ‖z

†‖22
σ2

0

)
≤ exp(2π). (28)

This ensures that, with noticeable probability, (τ (i†),v(i†), s(i†)) will pass the verifi-
cation test and leadA to eventually output a valid forgery. So, the success probabil-
ity of A in Game 3 remains noticeable as (28) implies Pr[W3] ≥ Pr[W2]2/ exp(2π).

When W3 occurs in Game 3, B uses the matrices (E0,E1) to extract a plain
message-signature pair

(
(m?1, . . . ,m

?
N ), (τ?,v?, s?)

)
from the extractable commit-

ments {c?k}Nk=1 (c?v1
, c?v2

), c?τ , c?s generated by A. At this point, two cases can be

distinguished. First, if cM 6=
∑N
k=1 Dk · m?k + D0 · s? mod q, then algorithm B

can find a short vector of Λ⊥q (Ā1) = Λ⊥q (D) exactly as in the proof of Lemma 7.

In the event that cM =
∑N
k=1 Dk · m?k + D0 · s?, B can use the fact that the

collision cM =
∑N
k=1 Dk ·m(i†)

k + D0 · s(i†) allows computing

w = s? − s(i†) +

N∑
k=1

Rk ·
(
m?k −m

(i†)
k

)
∈ Z2m,

which belongs to Λ⊥q (D0) and has norm ‖w‖2 ≤ Nσ(2m)3/2+4σ1m
3/2. Moreover,

it is non-zero with overwhelming probability. Indeed, there exists at least one

k ∈ [1, N ] such that m
(i†)
k 6= m?k. Let us assume w.l.o.g. that they differ in their

first two bits where m
(i†)
k contains a 0 and m?k contains a 1 (recall that each bit

b is encoded as (b̄, b) in both messages). This implies that s′′
(i†)

(as computed
in (27)) does not depend on the first column of Rk but w does. Hence, given
that the columns of Rk have at least n bits of min-entropy conditionally on
Dk = D0 ·Rk, the vector w ∈ Z2m is unpredictable to the adversary.

Due to the definition of D0 ∈ Z2n×2m
q in (26), we finally note that w ∈ Z2m

is also a short non-zero vector of Λ⊥q (Ā).

• If coin = 2, B faithfully generates par and PK, but it retains the extraction
trapdoor (E0,E1) associated with the dual Regev public keys (G0,G1). Note
that A can break the soundness of the proof system by either: (i) Generating
ciphertexts {ck}Nk=1 and cs′ that do not encrypt an opening of cm in the signature
issuing protocol; (ii) Generating ciphertexts {ck}Nk=1, cτ , cv1 , cv2 and cs that do
not encrypt a valid signature in the Prove protocol. In either case, the reduction
B is able to detect the event by decrypting dual Regev ciphertext using (E0,E1)
and create a breach in the soundness of the argument system.

It it easy to see that, since coin ∈ {0, 1, 2} is chosen independently of A’s
view, it turns out to be correct with probability 1/3. As a consequence, if A’s
advantage is non-negligible, so is B’s. ut
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B.5 Proof of Anonymity (Theorem 3)

Proof. The proof is rather straightforward and consists of a sequence of three
games.

Game 0: This is the real game. Namely, the adversary is given common public
parameters par and comes up with a public key PK of its own. The adversary can
run oblivious signing protocols with honest users. At each query, the adversary
chooses a user index i and triggers an execution of the signing protocol with the
challenger emulating the honest users. At some point, the adversary chooses some
user index i? for which the execution of the signing protocol ended successfully.
At this point, the challenger B runs the real Prove protocol on behalf of user i.
At the end of the game, the adversary outputs a bit b′ ∈ {0, 1}. We define W0 to
be the event that b′ = 1.

Game 1: This game is like Game 0 with the difference that, at each execution of the
Prove protocol, the challenger runs the zero-knowledge simulator of the interactive
proof system. The latter simulator uses either a trapdoor hidden in the common
reference string (if Damg̊ard’s technique [37] is used) or proceeds by programming
the random oracle which allows implementing the Fiat-Shamir heuristic. In either
case, the statistical zero-knowledge property ensures that the adversary cannot
distinguish Game 1 from Game 0 and |Pr[W1]− Pr[W0]| ∈ negl(λ).

Game 2: This game is like Game 1 except that, at each execution of the Prove
protocol, the ciphertexts {ck}Nk=1, cs, cτ , and cv1 , cv2 encrypt random messages
instead of the actual witnesses. The semantic security of the dual Regev cryp-
tosystem ensures that, under the LWEn,q,χ assumption, the adversary is unable

to see the difference. Hence, we have |Pr[W2]− Pr[W1]| ≤ AdvLWE
B (λ).

In Game 2, we can notice that the adversary is interacting with a simulator that
emulates the user in the Prove protocol without using any message-signature
pair. We thus conclude that, under the LWEn,q,χ assumption, A’s view cannot
distinguish a real proof of signature possession from a simulated proof produced
without any witness. ut

C Security Proofs for the Dynamic Group Signature

C.1 Proof of Traceability (Theorem 4)

Proof. We prove that any adversary A with non-negligible success probability ε
implies an algorithm B solving the SIS problem in the random oracle model.

Let A be such a PPT adversary. We build a PPT algorithm B that uses A to
solve SISn,2m,q,β′ : specifically, B takes as input Ā =

[
Ā1|Ā2

]
∈ Zn×2m

q , where

Ā1, Ā2 ∈ Zn×mq , and finds w ∈ Λ⊥q (Ā) with 0 < ‖w‖ ≤ β′.

Initialization. Algorithm B first chooses a random coin ←↩ U({0, 1, 2}) as a
guess for the kind of misidentification attack that A will mount. Also, B chooses
a random `-bit string id† ←↩ U({0, 1}`). In addition, B samples i? ←↩ U([1, Qa]).

Looking ahead, coin = 0 corresponds to the case where, after repeated
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executions of A, the knowledge extractor of the proof system reveals witnesses
containing a new identifier id? ∈ {0, 1}` that does not belong to any user in
Ua. In this case, B will be able to exploit A’s forgery when id? = id†. The
case coin = 1 corresponds to B’s expectation that the knowledge extractor
will obtain the identifier id? = id† of a group member in Ua (i.e., a group
member that was legitimately introduced at the i?-th Qa-join-query, for some

i? ∈ {1, . . . , Qa}, where the identifier id† is used byQa-join), but bin(v?) ∈ {0, 1}2m
(which is encrypted in in c?vi as part of the forgery Σ?) and the extracted
s? ∈ Z2m are such that bin

(
D0 · bin(v?) + D1 · s?

)
∈ {0, 1}m does not match

the string bin
(
D0 · bin(vi?) + D1 · si?

)
∈ {0, 1}2m for which user i? obtained

a membership certificate at the i?-th Qa-join-query. When coin = 1, the choice
of i? corresponds to a guess that the knowledge extractor will reveal an `-bit
identifier that coincides with the identifier id† assigned to the user introduced
at the i?-th Qa-join-query. The last case coin = 2 corresponds to B’s expectation
that decrypting c?vi (which is part of Σ?) and running the knowledge extractor
on A will uncover vectors bin(v?) ∈ {0, 1}2m, w? ∈ {0, 1}m and s? ∈ Z2m such
that w? = bin(D0 · bin(v?) + D1 · s?) and

bin
(
D0 · bin(v?) + D1 · s?

)
= bin

(
D0 · bin(vi?) + D1 · si?

)
(29)

but (bin(v?), s?) 6= (bin(vi?), si?), where vi? ∈ Z4n
q and si? ∈ Z2m are the vectors

involved in the i?-th Qa-join-query.
Depending on coin ∈ {0, 1, 2}, the group public key Y is generated using

different methods.

• If coin = 0, algorithm B first randomly chooses id† ←↩ U({0, 1}`) as a guess for
the `-bit string that will be revealed by the knowledge extractor of the proof system
after repeated executions of the adversary A. Then, it runs TrapGen(1n, 1m, q) to

obtain C ∈ Zn×mq and a basis TC of Λ⊥q (C) with ‖T̃C‖ ≤ O(
√
n log q). Then, it

chooses `+ 2 matrices Q0, . . . ,Q`,QD ∈ Zm×m, each matrix having its columns
sampled independently from DZm,σ. Then, B defines the matrices {Ai}`i=0 as

A0 = Ā1 ·Q0 + (
∑`
i=1 id†[i]) ·C

Aj = Ā1 ·Qi + (−1)id†[j] ·C, for j ∈ [1, `].
D = Ā1 ·QD

It also defines A = Ā1. Next, it samples a vector eu ←↩ Dm
Z,σ and computes a syn-

drome u = Ā1 ·eu ∈ Znq . It picks D0,D1 ←↩ U(Z2n×2m
q ) at random and also faith-

fully generates the GPV master key pair (B,TB) as in Step 3 of the real setup algo-
rithm. The group public key Y =

(
A, {Aj}`j=0,B,D,D0,D1,F,u,OT S, H,H0

)
is finally given to A.

Note that, for each id 6= id†, we have

Aid =
[
Ā1 A0 +

∑`
i=1 id[i]Ai

]
=
[
Ā1 Ā1 · (Q0 +

∑`
i=1 id[i]Qi) + (

∑`
i=1 id†[i] + (−1)id†[i]id[i]) ·C

]
=
[
Ā1 Ā1 + hid ·C

]
(30)
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where hid ∈ [1, `] denotes the Hamming distance between the identifiers id
and id†. Since q > `, we have hidj 6= 0 mod q whenever idj 6= id†, so that
algorithm B is able to compute (see [3, Se. 4.2], using the basis TC of Λ⊥q (C)

and the refined GPVSample of Lemma 2) a basis Tid of Λ⊥q (Aid) with ‖T̃id‖ ≤
Ω(
√
n log q log n). In contrast, algorithm B lacks a trapdoor for Aid† as the

latter only depends on A and {Qk}`k=0. Observe that, since the columns of the
matrices {Qk}`k=0 are sampled from DZm,σ, the matrices A0, . . . ,A` are within
statistical distance 2−Ω(m) of U(Zn×mq ).

• If coin = 1, algorithm B sets up Y by defining D = Ā. Initially, B chooses
Qa − 1 distinct strings id1, . . . , idi?−1, idi?+1, . . . , idQa ∈ {0, 1}` such that, for
each i ∈ [1, Qa]\{i?}, idi will be embedded in the membership certificate returned
in the i-th Qa-join-query. Let also id† = idi? be the `-bit identifier that will be
used in the i?-th query. The reduction B picks random h0, h1, . . . , h` ∈ Zq under
the constraints

hid† = h0 +
∑̀
j=1

id†[j] · hj = 0 mod q

hidi = h0 +
∑̀
j=1

idi[j] · hj 6= 0 mod q i ∈ {1, . . . , Qa} \ {i†}

Next, B runs (C,TC)← TrapGen(1n, 1m, q), (D1,TD1)← TrapGen(12n, 12m, q)
so as to obtain statistically random matrices C ∈ Zn×mq , D1 ∈ Z2n×2m

q together

with trapdoors TC ∈ Zm×m, TD1
∈ Z2m×2m consisting of short bases of Λ⊥q (C)

and Λ⊥q (D1), respectively. Then, B picks a random D0 ←↩ U(Z2n×2m
q ) and re-

randomizes D = Ā1 ∈ Zn×mq using Gaussian matrices S,S0,S1, . . . ,S` ←↩ Zm×m
whose columns are sampled from the distribution DZm,σ. Namely, from D = Ā1,
B defines

A = Ā1 · S
A0 = Ā1 · S0 + h0 ·C (31)

Aj = Ā1 · Sj + hj ·C ∀j ∈ {1, . . . , `}.

As part of the generation of Y, the vector u ∈ Znq is obtained by picking short
discrete Gaussian vectors di?,1,di?,2 ←↩ DZm,σ and computing

u = [A | A0 +
∑̀
j=1

id†[j]Aj ] ·
[
di?,1
di?,2

]
−D · bin(cM ), (32)

where cM ←↩ U(Z2n
q ) is a randomly chosen vector. Observe that, since A is

statistically uniform over Zn×mq and di?,1 ←↩ DZm,σ, the distribution of u is
statistically close to U(Znq ).
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• If coin = 2, B picks Ā′ ←↩ U(Zn×2m
q ) and a random matrix Q ←↩ Z2m×2m

whose columns are sampled from DZ2m,σ. These are used to define

D0 =

[
Ā
Ā′

]
∈ Z2n×2m

q ,

and D1 = D0 · Q mod q, which is statistically close to U(Z2n×2m
q ). All other

components of Y are obtained by faithfully running the setup algorithm.

For each value of coin ∈ {0, 1, 2}, the group public key

Y =
(
A, {Aj}`j=0,B,D,D0,D1,F,u,OT S, H,H0

)
has a distribution which is statistically close to that of the real scheme and Y is
given to A.

Queries. The reduction B starts interacting with the adversary A and the way it
handles A’s queries to the Qa-join oracle depends on the value of coin ∈ {0, 1, 2}.
• If coin = 0, answers Qa-join-queries as follows. When A triggers an execution
of the joining protocol, it chooses a syndrome vi ∈ Znq . To answer the query, B
chooses a fresh `-bit identifier idi ∈ {0, 1}` such that idi 6= id†. If A also provides a
correct signature sigi such that Verifyupk[i](vi, sigi) = 1, B samples si ←↩ DZ2m,σ

and uses the trapdoor TC to compute a short vector di = [dTi,1 | dTi,2]T ∈ Z2m

such that

Aidi ·
[
di,1
di,2

]
= u + D · bin

(
D0 · bin(vi) + D1 · si

)
, (33)

where Aidi ∈ Zn×2m
q is the matrix in (30). Note that B is able to compute such a

vector using the SampleRight algorithm of [3] (since the Hamming distance hidi

between idi and id? is non-zero). The membership certificate certi = (idi,di, si)
is then returned to A.

• If coin = 1, algorithm B responds each Qa-join-query depending on the index
i ∈ {1, . . . , Qa} of the query. Specifically, we distinguish two cases.

- If i 6= i?, B proceeds as in the previous case. Namely, it recalls the `-bit
identifier idi ∈ {0, 1}` (for which idi 6= id†) that was chosen in the setup
phase and samples a short vector si ←↩ DZ2m,σ. If A also provides a correct
signature sigi such that Verifyupk[i](vi, sigi) = 1, generates a membership
certificate certi for A as in the case coin = 0. Note that

Aidi =
[
Ā · S Ā · (S0 +

∑`
j=1 idi[j]Sj) + hidiC

]
=
[
Ā · S Ā + hidi ·C

]
(34)

Since hidi 6= 0, B can use the trapdoor TC ∈ Zm×m of Λ⊥q (C) to compute a

short vector di = [dTi,1 | dTi,2]T ∈ Z2m such that

Aidi ·
[
di,1
di,2

]
= u + D · bin

(
D0 · (bin(vi) + D1 · si

)
,

where vi ∈ Z4n
q is the syndrome chosen by A at step 1 of the joining protocol.
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- If i = i?, B undertakes to generate a membership certificate certi? for the
`-bit identifier id† ∈ {0, 1}` that was chosen at the outset of the game. To this
end, B has to compute certi? without using the trapdoor TC since the matrix
Aid† does no longer depend on C in (34 ). This can be done by recalling
the vector di?,1,di?,2 ∈ Zm and cM ∈ Z2n

q that were used to define u ∈ Znq
in (32) and using TD1

. If A provides a correct signature sigi? such that
Verifyupk[i?](vi? , sigi?) = 1, B uses the trapdoor TD1

of Λ⊥q (D1) to sample a

short vector si? ∈ Z2m of DΛ
ci?
q (D1),σ, where ci? = cM −D0 · bin(vi?) mod q,

satisfying

D1 · si? = cM −D0 · bin(vi?) mod q,

before returning certi? = (id†,di? = [dTi?,1 | dTi?,2]T , si?) to A. From the defi-

nition of u ∈ Znq (32), it is easy to see that certi? = (id†,di? , si?) forms a valid
membership certificate for any membership secret zi? ∈ Z4m corresponding
to the syndrome vi? = F · zi? mod q.

Regardless of the value of coin, queries to the random oracle H are handled
by returning a uniformly chosen value in {1, 2, 3}t. For each κ ≤ QH , we let rκ
denote the answer to the κ-th H-query. Of course, if the adversary makes a given
query more than once, then B consistently returns the previously defined value.
Queries to the random oracle H0 are answered in the usual way, by returning a
uniformly random value in the appropriate range.

Forgery. When A halts, it outputs a signature Σ? =
(
VK?, c?vi , π

?
K , sig

?
)

on
some message M?. At this point, B uses the trapdoor TB to decrypt c?vi and
obtain an m-bit string bin(v?) ∈ {0, 1}m.

If we parse the proof π?K as ({Comm?
K,j}tj=1,Chall

?
K , {Resp

?
K,j}tj=1), with

high probability, the adversary A must have invoked the random oracle H
on the input (M?,VK?, c?vi , {Comm?

K,j}tj=1). Otherwise, the probability that
Chall?K = H(M?,VK?, c?vi , {Comm?

K,j}tj=1) is negligible (at most 3−t). It comes
that, with probability at least ε′ := ε − 3−t, (M?,VK?, c?vi , {Comm?

K,j}tj=1)
coincides with the κ?-th random oracle query for some κ? ≤ QH .

At this stage, the reduction B runs the adversary A up to 32 ·QH/(ε− 3−t)
times with the same random tape and input as in the initial run. All queries are
answered as previously with one difference in the treatment of random oracle
queries. Namely, the first κ? − 1 random oracle queries – which are identical to
those of the first execution since A is run with the same random tape as before –
receive the same answers Chall1, . . . ,Challκ?−1 as in the first run. This implies that
the κ?-th query will involve exactly the same tuple (M?,VK?, c?vi , {Comm?

K,j}tj=1)
as in the first run. However, from the κ?-th query onwards,A obtains fresh random
oracle values Chall′κ? , . . . ,Chall

′
QH at each new execution. The Improved Forking

Lemma of Brickell et al. [24] guarantees that, with probability at least 1/2, B
can obtain a 3-fork involving the same tuple (M?,VK?, c?vi , {Comm?

K,j}tj=1) with

pairwise distinct answers Chall
(1)
κ? ,Chall

(2)
κ? ,Chall

(3)
κ? ∈ {1, 2, 3}t. With probability

1− (7/9)t it can be shown that there exists an index j ∈ {1, . . . , t} for which the

j-th bits of Chall
(1)
κ? ,Chall

(2)
κ? ,Chall

(3)
κ? are (Chall

(1)
κ?,j ,Chall

(2)
κ?,j ,Chall

(3)
κ?,j) = (1, 2, 3).
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From the corresponding responses (Resp?K,j
(1)
,Resp?K,j

(2)
,Resp?K,j

(3)
), B is able

to extract witnesses (d?1,d
?
2) ∈ Zm × Zm, id? ∈ {0, 1}` and w? ∈ {0, 1}m from

the proof of knowledge π?K such that

Aid? ·
[
d?1
d?2

]
= u + D ·w?

w? = bin
(
D0 · (bin(v?) + D1 · s?

)
,

At this point, B aborts and declares failure in the following situations:

- coin = 0 but id? ∈ {0, 1}` is recycled from some output of the Qa-join oracle.

- coin = 0 and id? 6= id†.
- coin = 1 but id? ∈ {0, 1}` never appeared in a membership certificate

returned by the Qa-join oracle.
- coin = 1 and id? ∈ {0, 1}` belongs to some user in Ua, but this user is not

the one introduced at the i?-th Qa-join-query (i.e., i? 6= i† and id? 6= id†).
- coin = 1 and the knowledge extractor revealed vectors bin(v?) ∈ {0, 1}2m

and s? ∈ Z2m satisfying the collision (29), where bin(vi?) and si? are the
vectors involved in the i?-th Qa-join query.

- coin = 2 and the knowledge extraction yields vectors bin(v?) ∈ {0, 1}2m and
s? ∈ Z2m such that the collision (29) does not occur.

We call fail the event that one of the above situations occurs. Given that the
choices of coin←↩ U({0, 1, 2}) and i? ←↩ U([1, Qa]) are completely independent
of A’s view, the choice of coin is correct with probability 1/3. If coin = 0, B’s
choice of id† ←↩ U({0, 1}`) is correct with probability 1/(Ngs −Qa) ≥ 1/Ngs and,
when coin = 1, B’s correctly guesses i? ∈ [1, Qa] with probability 1/Qa. We find

Pr[¬fail] ≥ 1

3 ·max(Ngs, Qa)
=

1

3 ·Ngs
.

Assuming that fail does not occur, B can solve the problem instance as follows.

• If coin = 0, we have id? = id† and B knows a short vector eu ∈ Zm such that
u = Ā1 · eu mod q. Hence, it can obtain a short integer vector

h = d?1 +
(
Q0 +

∑̀
i=1

id†[i]Qi

)
· d?2 −QD · bin(v?)− eu ∈ Zm

such that Ā1 · h = 0m mod q. Moreover, we have h 6= 0m w.h.p. since the
syndrome u ∈ Znq statistically hides eu ∈ Zm in Λu

q (Ā1). Finally, the norm of h

is at most ‖h‖2 ≤ (`+ 1)σ2m3/2 + σm1/2(m+ 2). This implies that (hT | 0m)T

is a short non-zero vector of Λ⊥q (Ā) and solves the initial SIS instance.

• If coin = 1, the extracted witnesses (d?1,d
?
2, s

?, id?) and the decrypted bin(v?)
satisfy id? = id†,

w? = bin(D0 · bin(v?) + D1 · s?) 6= bin(D0 · bin(vi?) + D1 · si?) = wi?
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(since ¬fail implies that the collision (29) did not occur if coin = 1) and

[
A A0 A1 . . . A` −D

]
·



d?1
d?2

id†[1]d?2
...

id†[`]d?2
w?


= u mod q. (35)

Since B already knew short vectors (di?,1,di?,2,wi?) ∈ Zm ×Zm ×Zm such that

[
A A0 A1 . . . A` −D

]
·



d?i?,1
d?i?,2

id†[1]d?i?,2
...

id†[`]d?i?,2
wi?


= u mod q, (36)

by subtracting (36) from (35), we find that

h = S · (d?1 − di?,1) + (S0 +
∑̀
j=1

id†[j]Sj) · (d?2 − di?,2) + (w? −wi?) (37)

is a small-norm vector h ∈ Zm satisfying Ā1 ·h = 0 mod q. We claim that h 6= 0
with high probability. Indeed, we know that w? 6= wi? if ¬fail occurs. This implies
that the last term of (37) is non-zero, which rules out that (d?1,d

?
2) = (di?,1,di?,2).

Since the columns of S and {Sj}`j=0 have a lot of entropy conditionally on Y , this
implies that we can only have h = 0m with negligible probability. Furthermore,
the norm of h can be bounded by ‖h‖2 ≤ 4σ2m3/2(` + 2) + 2m1/2, so that
(hT | 0m)T solves the original SIS instance.

• If coin = 2, B is done as well since the collision (29) directly provides a vector

h = bin(v?)− bin(v?i ) + Q · (s? − s?i ) ∈ Z2m

of Λ⊥q (D0) (which is also in the lattice Λ⊥q (Ā) by construction) and has norm

‖h‖2 ≤ 2(σ2(2m)3/2 + (2m)1/2). Moreover, h ∈ Z2m is non-zero with overwhelm-
ing probability given that bin(v?) 6= bin(v?i ) and the large amount of entropy
retained by the columns Q ∈ Z2m×2m given D1 = D0 ·Q. ut

C.2 Proof of Security against Framing-Attacks (Theorem 5)

Proof. Let us assume that a PPT adversary A can create a forgery (M?, Σ?)
that opens to some honest user i ∈ U b who did not sign M?. In the random
oracle model, we give a reduction B that uses A to solve an instance of the
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SIS4n,4m,q,β′′ problem: B takes as input Ā ∈ Z4n×4m
q and finds a non-zero short

vector w ∈ Λ⊥q (Ā).
Algorithm B generates the group public key Y by faithfully running the

real setup algorithm with the sole difference that, at step 2 of Setup, B defines
F = Ā ∈ Z4n×4m

q . However, the distribution of Y is as in the real scheme. As
a result of having generated Y itself, B knows SGM = TA and SOA = TB. The
adversary B is run on input of the group public key

Y :=
(
A, {Aj}`j=0, B, D, D0, D1, F = Ā, u, ΠOTS, H, H0)

)
.

If A chooses to corrupt the group manager or the opening authority during the
game, B is able to reveal SGM = TA and SOA = TB. Then, B starts interacting
with A as follows.

- QkeyGM-queries: If A decides to corrupt the group manager, B hands the
secret key SGM = TA to A.

- Qb-join-queries: At any time A can act as a corrupted group manager and
introduce a new honest user i in the group by invoking the Qb-join oracle. At
each Qb-join-query, B faithfully runs Juser on behalf of the honest user in an
execution of Join protocol.

- Qpub-queries: These can be answered as in the real game, by having the
simulator return Y.

- Qsig-queries: When the adversary A requests user i ∈ U b to sign a message
M , B first generates a one-time key pair (VK,SK) ← G(n) to compute
G0 = H0(VK) ∈ Zn×2m

q . Next, B recalls the vector zi ∈ Z4m that was chosen
to define the syndrome vi = F ·zi at step 1 of the Join protocol as well as the
identifier idi ∈ {0, 1}` and the short vectors (di,1,di,2, si) that were supplied
by A in an earlier Qb-join-query. It faithfully computes a signature by IBE-
encrypting bin(vi) ∈ {0, 1}2m and using (di,1,di,2, si, zi, si, idi) to compute a
witness indistinguishable proof πK = ({CommK,j}tj=1,ChallK , {RespK,j}tj=1).
Finally, B computes a one-time signature sig = S(SK, (cvi , πK)) and returns
the signature Σ =

(
VK, cvi , πK , sig

)
to A.

When A halts, it outputs a signature Σ? =
(
VK?, c?v, π

?
K , sig

?
)

for some message
M?, which opens to i? ∈ U b although user i? did not sign the message M? at
any time. Since (M?, Σ?) supposedly frames user i?, the opening of Σ? must
reveal the m-bit string bin(vi?) ∈ {0, 1}m. We note that the reduction B has
recollection of a short vector zi? ∈ Z4m (of norm ‖zi?‖ < 2σ

√
m) such that

vi? = F · zi? mod q which it chose when running Juser on behalf of user i? when
this user was introduced in the group. Hence, B would be able to solve its given
SIS instance if it had another short vector z′ ∈ Z4m satisfying vi? = F · z′ mod q.
To compute such a vector, B proceeds by replaying the adversary A sufficiently
many times and applying the Improved Forking Lemma of Brickell et al. [24].

If we parse π?K as ({Comm?
K,j}tj=1,Chall

?
K , {Resp

?
K,j}tj=1), with high prob-

ability, A must have queried H on the input (M?,VK?, c?v, {Comm?
K,j}tj=1).

Otherwise, we would only have Chall?K = H(M?,VK?, c?v, {Comm?
K,j}tj=1) with
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negligible probability 3−t. It comes that, with probability at least ε′ := ε− 3−t,
the tuple (M?,VK?, c?v, {Comm?

K,j}tj=1) was the input of the κ?-th random oracle
query for some index κ? ≤ QH .

At this point, the reduction B runs the adversary A up to 32 ·QH/(ε− 3−t)
times with the same random tape and input as in the first run. All queries
are answered as previously with one difference in the way to handle H-queries.
Namely, the first κ? − 1 H-queries – which are the same as in the first exe-
cution since A is run with the same random tape – obtain the same answers
Chall1, . . . ,Challκ?−1 as in the original run. This implies that the κ?-th query
will also involve exactly the same tuple (M?,VK?, c?v, {Comm?

K,j}tj=1) as in the
original run. From the κ?-th query forward, however, the adversary A obtains
fresh random oracle outputs Chall′κ? , . . . ,Chall

′
QH at each new execution. The

Improved Forking Lemma of [24] ensures that, with probability > 1/2, B obtains
a 3-fork involving the tuple (M?,VK?, c?v, {Comm?

K,j}tj=1) of the initial run and

with pairwise distinct answers Chall
(1)
κ? ,Chall

(2)
κ? ,Chall

(3)
κ? ∈ {1, 2, 3}t. Since the

forgeries of the 3-fork all correspond to the tuple (M?,VK?, c?v, {Comm?
K,j}tj=1),

they open to the same m-bit string bin(vi?) ∈ {0, 1}m and which is uniquely
determined by c?v. In turn, this implies that the three forgeries all reveal the same
bin(vi?) at the second step of Open. With probability 1− (7/9)t it can be shown

that there exists j ∈ {1, . . . , t} such that the j-th bits of Chall
(1)
κ? ,Chall

(2)
κ? ,Chall

(3)
κ?

are (Chall
(1)
κ?,j ,Chall

(2)
κ?,j ,Chall

(3)
κ?,j) = (1, 2, 3). From the corresponding responses

(Resp?K,j
(1)
,Resp?K,j

(2)
,Resp?K,j

(3)
), B is able to extract a short vector z′ ∈ Z4m

such that vi? = F · z′ mod q.
Due to the statistical witness indistinguishability of the Stern-like proof of

knowledge which is used to generate signature, with overwhelming probability,
we have z′ 6= zi? . Indeed, from the adversary’s view, the distribution of zi? is
DΛ

vi?
q (F),σ, which means that it has at least n bits of min-entropy. Hence, the

difference h = z′ − zi? ∈ Z4m is a suitably short non-zero vector of Λ⊥q (Ā). ut

C.3 Proof of Full Anonymity (Theorem 6)

Proof. We proceed as in [62] and prove the result via a sequence of games
which are computationally indistinguishable. The first game consists of the real
anonymity experiment which is parameterized by a bit d ∈ {0, 1} that determines
the challenger’s choice in the challenge phase. The last game is the same regardless
of whether d = 0 or d = 1. It follows that, under the stated assumptions, no PPT
adversary can distinguish Expanon−0

A from Expanon−1
A with noticeable advantage.

Game(d) 0: This is the real anonymity experiment Expanon−d
A (λ) as described

in Definition 8. More precisely, the challenger starts by running the algorithm
Setup(1λ, 1Ngs) to obtain (Y,SGM = TA ∈ Zm×m,SOA = TB ∈ Zm×m) along
with state information St. The challenger next hands the public parameters Y
and the group manager key SGM to the adversary A. On the following adversary
signature opening queries on signatures Σ = (VK, cvd , πK , sig), the challenger
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uses the opening authority key TA ∈ Zm×m he possesses to decrypt the GPV
encryption of the signer identity cvd ∈ Zmq × Z2m

q . At some point, the adversary
A requests a challenge by outputting a target message M? ∈ {0, 1}∗ and two
user key pairs(

sec?i = z?i ∈ Z4m, cert?i ∈ (id?i ,d
?
i , s

?
i ) ∈ {0, 1}` × Z2m × Z2m

)
i∈{0,1}

which must be valid and distinct (otherwise, the challenger aborts the experiment).
This challenge query is answered by having the challenger return a signature of
the target message under the identity idd: namely, this challenge signature is
computed as Σ? = (VK?, c?vd , π

?
K , sig

?)← Sign(Y, cert?d, sec?d,M?) for the given
parameter d of the Game. Finally, A outputs a bit d′ ∈ {0, 1} which is also the
experiment’s output.

Game(d) 1: In this experiment, we slightly change Game(d) 0 as follows. At the
outset of the game, the challenger generates the one-time signature key pair
(VK?,SK?) that will be used in the challenge phase. During the game, if the
adversary A requests the opening of a valid signature Σ = (VK, cvi , πK , sig)
where VK = VK?, the challenger returns a random bit and aborts. However, this
event F1 would contradict the strong unforgeability of the one-time signature
ΠOTS. Indeed, before the challenge phase VK? is independent of A’s view and the
probability that VK? shows up in A’s queries is negligible. After seeing the chal-
lenge signature Σ?, if A comes up with a valid signature Σ = (VK, cvi , πK , sig)
such that VK = VK?, then sig is a forged one-time signature, which defeats
the strong unforgeability of ΠOTS. Therefore the probability Pr[F1] that the
challenger aborts in this experiment is negligible. From here on, we thus assume
that A’s opening queries for valid signatures do not include VK?.

Game(d) 2: In this game, we program the random oracle H0 in the following
way: at the beginning of the game, we choose a uniformly random matrix
G?

0 ←↩ U(Zn×2m
q ) and set H0(VK?) = G?

0. From the adversary’s view, the
distribution of G?

0 is statistically close to the one in the real attack game, as
in [43]. As for other queries, for each fresh H0-queries on VK, the challenger
samples small-norm matrices E0,VK ←↩ D2m

Zm,σ and programs the oracle such that
H0(VK) = B ·E0,VK mod q. The chosen matrices E0,VK are retained for later use.
Note that the values of H0(VK) are statistically close to the uniform. For any
query involving a previously queried VK, the challenger consistently returns the
previously stored images. The adversary’s view remains the same as in Game(d) 1,
analogously to the security proof of the GPV IBE [43].

Game(d) 3: Here, we will change the behaviour of the opening algorithm. Namely,
at each fresh oracle query, we still store the matrices E0,VK ∈ Zm×2m

q and, at the
beginning of the game, the challenger samples an uniformly random B? ∈ Zn×mq

that is later used in place of B to answer H0-queries. To answer the adversary’s
queries of the opening of a signature Σ = (VK, cvi , πK , sig), the challenger
recalls the small-norm matrices E0,VK which were defined when A first queried
H0(VK). These matrices are used as “decryption matrices” to open Σ for the
corresponding G0 = H0(VK) ∈ Zn×2m

q . For similar reasons as in the security
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proof of [43], the distribution of G0 is statistically close to the uniform, which

implies that Game(d) 2 and Game(d) 3 are statistically indistinguishable.

Game(d) 4: Instead of faithfully generating the NIZKPoK πK of Section 5.5,
the challenger simulates the proof without using the witness (note that this is
possible since the HVZK property of the underlying proof system is preserved
under parallel repetitions). This is done by running the simulator for the un-
derlying interactive protocol for each j ∈ {1, . . . , t}, and then programming the
random oracle H accordingly. The challenge signature Σ? = (VK?, c?vd , π

?
K , sig

?)
is statistically close to the challenge signature of the previous game, because the
proof system is statistically zero-knowledge as stated in Lemma 8. Consequently,
Game(d) 3 and Game(d) 4 are indistinguishable.

Game(d) 5: In this game, we modify the generation of the challenge ciphertext
c?vd . Instead of using the real encryption algorithm of the GPV IBE to compute
c?vd as the encryption of v?d = F · zd ∈ Z4n

q , we return truly random ciphertexts.
In other words, we let

c?vd =

(
r1

r2 + bin(v?d)bq/2c

)
,

where r1 ←↩ U(Zmq ), r2 ←↩ U(Z2m
q ) are uniformly random. The hardness of

the decisional LWEn,q,χ problem implies that c?vd in Game 4 and Game 5 are
computationally indistinguishable. If A can distinguish between these two games,
it can furthermore distinguish(

BT

G?
0
T

)
e0 +

(
x1

x2

)
from

(
r1

r2

)
,

which would break the decisional LWEn,q,χ assumption.

Therefore, Game(d) 4 and Game(d) 5 are computationally indistinguishable.

Game 6: We finally make a conceptual modification on the previous game. Namely
we sample uniformly random r′1 ←↩ U(Zmq ), r′2 ←↩ U(Z2m

q ) and assign

c?vd =

(
r′1
r′2

)
.

Clearly, the distribution of c?vi has not changed since Game(d) 5. Since Game 6
does no longer depend on the challenger’s bit d ∈ {0, 1}, the result follows. ut

D Proof of Lemma 8

We first restate Lemma 8.

Lemma 10. The protocol in Figure 1 is a statistical ZKAoK for the relation
Rabstract with perfect completeness, soundness error 2/3, and communication

cost Õ(L log q). In particular:
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– There exists an efficient simulator that, on input (P,v), outputs an accepted
transcript which is statistically close to that produced by the real prover.

– There exists an efficient knowledge extractor that, on input a commitment
CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values of
the challenge Ch, outputs x′ ∈ VALID such that P · x′ = v mod q.

Proof. Note that, by construction, the protocol is perfectly complete: If an honest
prover follows the protocol, then he always gets accepted by the verifier. It is
also easy to see that the communication cost is bounded by Õ(L · log q).

We now will prove that the protocol is a statistical zero-knowledge argument
of knowledge for the relation Rabstract.

Zero-Knowledge Property. We construct a PPT simulator SIM interacting
with a (possibly dishonest) verifier V̂ , such that, given only the public input, SIM
outputs with probability negligibly close to 2/3 a simulated transcript that is
statistically close to the one produced by the honest prover in the real interaction.

The simulator first chooses a random Ch ∈ {1, 2, 3}. This is a prediction of

the challenge value that V̂ will not choose.

Case Ch = 1: Using basic linear algebra over Zq, SIM computes a vector x′ ∈
ZLq such that P · x′ = v mod q. Next, it samples r ←↩ U(ZLq ), π ←↩ U(S),
and randomness ρ1, ρ2, ρ3 for COM. Then it sends the commitment CMT =(
C ′1, C

′
2, C

′
3

)
to V̂, where

C ′1 = COM(π,P · r; ρ1), C ′2 = COM(Tπ(r); ρ2), C ′3 = COM(Tπ(x′ + r); ρ3).

Receiving a challenge Ch from V̂, the simulator responds as follows:

– If Ch = 1: Output ⊥ and abort.
– If Ch = 2: Send RSP =

(
π,x′ + r, ρ1, ρ3

)
.

– If Ch = 3: Send RSP =
(
π, r, ρ1, ρ2

)
.

Case Ch = 2: SIM samples x′ ←↩ U(VALID), r ←↩ U(ZLq ), π ←↩ U(S), and ran-

domness ρ1, ρ2, ρ3 for COM. Then it sends the commitment CMT =
(
C ′1, C

′
2, C

′
3

)
to V̂, where

C ′1 = COM(π,P · r; ρ1), C ′2 = COM(Tπ(r); ρ2), C ′3 = COM(Tπ(x′ + r); ρ3).

Receiving a challenge Ch from V̂, the simulator responds as follows:

– If Ch = 1: Send RSP =
(
Tπ(x′), Tπ(r), ρ2, ρ3

)
.

– If Ch = 2: Output ⊥ and abort.
– If Ch = 3: Send RSP =

(
π, r, ρ1, ρ2

)
.

Case Ch = 3: SIM samples x′ ←↩ U(VALID), r ←↩ U(ZLq ), π ←↩ U(S), and ran-

domness ρ1, ρ2, ρ3 for COM. Then it sends the commitment CMT =
(
C ′1, C

′
2, C

′
3

)
to V̂, where C ′2 = COM(Tπ(r); ρ2), C ′3 = COM(Tπ(x′ + r); ρ3) as in the previous
two cases, while

C ′1 = COM(π,P · (x′ + r)− v; ρ1),

Receiving a challenge Ch from V̂, it responds as follows:
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– If Ch = 1: Send RSP computed as in the case (Ch = 2, Ch = 1).
– If Ch = 2: Send RSP computed as in the case (Ch = 1, Ch = 2).
– If Ch = 3: Output ⊥ and abort.

We observe that, in all the above cases, since COM is statistically hiding, the
distribution of the commitment CMT and the distribution of the challenge Ch
from V̂ are statistically close to those in the real interaction. Hence, the probability
that the simulator outputs ⊥ is negligibly close to 1/3. Moreover, one can check
that whenever the simulator does not halt, it will provide an accepted transcript,
the distribution of which is statistically close to that of the prover in the real
interaction. In other words, we have designed a simulator that can successfully
emulate the honest prover with probability negligibly far from 2/3.

Argument of Knowledge. Suppose that RSP1 = (tx, tr, ρ
(1)
2 , ρ

(1)
3 ), RSP2 =

(π2,y, ρ
(2)
1 , ρ

(2)
3 ), RSP3 = (π3, r3, ρ

(3)
1 , ρ

(3)
2 ) are 3 valid responses to the same

commitment CMT = (C1, C2, C3), with respect to all 3 possible values of the
challenge. The validity of these responses implies that:

tx ∈ VALID;

C1 = COM(π2,P · y − v; ρ
(2)
1 ) = COM(π3,M · r3; ρ

(3)
1 );

C2 = COM(tr; ρ
(1)
2 ) = COM(Tπ3(r3); ρ

(3)
2 );

C3 = COM(tx + tr; ρ
(1)
3 ) = COM(Tπ2(y); ρ

(2)
3 ).

Since COM is computationally binding, we can deduce that:

tx ∈ VALID;π2 = π3; tr = Tπ3(r3); tx + tr = Tπ2(y); P · y − v = P · r3 mod q.

Let x′ = y − r3, then we have Tπ2(x′) = tx ∈ VALID which implies that
x′ ∈ VALID. Furthermore, we have P · x′ = P · (y − r3) = v mod q.

This concludes the proof. ut

58


	Signature Schemes with Efficient Protocols and Dynamic Group Signatures from Lattice Assumptions
	Introduction
	Background and Definitions
	Lattices
	Computational Problems

	A Lattice-Based Signature with Efficient Protocols
	Description
	Security Analysis
	Protocols for Signing a Committed Value and Proving Possession of a Signature

	A Dynamic Lattice-Based Group Signature
	Description of the Scheme
	Efficiency and Correctness
	Security Analysis

	Supporting Zero-Knowledge Argument Systems
	Abstracting Stern's Protocol
	Supporting Notations and Techniques
	Proving the Consistency of Commitments
	Proving the Possession of a Signature on a Committed Value
	The Underlying ZKAoK for the Group Signature Scheme

	Definitions for Dynamic Group Signatures 
	Deferred Proofs for the Signature with Efficient Protocols
	The Rényi Divergence
	Security Proof against Type I Attacks (Lemma 6)
	Security Proof against Type II Attacks (Lemma 7) 
	Proof of Theorem 2
	Proof of Anonymity (Theorem 3) 

	Security Proofs for the Dynamic Group Signature
	Proof of Traceability (Theorem 4)
	Proof of Security against Framing-Attacks (Theorem 5)
	Proof of Full Anonymity (Theorem 6) 

	Proof of Lemma 8


