
Efficient Covert Two-Party Computation

Stanis law Jarecki

University of California, Irvine
sjarecki@uci.edu

Abstract. Covert computation (of general functions) strengthens the
notion of secure computation so that the computation hides not only
everything about the participants’ inputs, except for what is revealed by
the function output, but it also hides the very fact that the computation
is taking place, by ensuring that protocol participants are indistinguish-
able from random beacons, except when the function output explicitly
reveals the fact that a computation took place. General covert computa-
tion protocols proposed before have non-constant round complexity [19,
4] and their efficiency is orders of magnitude away from non-covert se-
cure computation. Furthermore, [10] showed that constant-round covert
computation of non-trivial functionalities with black-box simulation is
impossible in the plain model.

However, the lower-bound of [10] does not disallow constant-round covert
computation given some relaxation in the computation model. Indeed,
we propose the first constant-round protocol for Covert Two-Party Com-
putation (2PC) of general functions secure against malicious adversaries
in the Common Reference String (CRS) model. Our protocol is a covert
variant of a well-known paradigm in standard, i.e. non-covert, secure
2PC, using cut-and-choose technique over O(security parameter) copies
of Yao’s garbled circuit. Remarkably, the proposed protocol is efficiency-
wise in the same ballpark as existing non-covert constant-round 2PC
protocols secure against malicious players. As an added benefit, the pro-
tocol remains covert under concurrent composition.

An essential tool in the protocol is a concurrently secure covert zero-
knowledge and simulation-sound Conditional KEM (CKEM) for arith-
metic languages in prime-order groups. We show how to realize covert
zero-knowledge and simulation-sound CKEM’s for such languages in the
Random Oracle Model, based on the covert CKEM’s of [13], and in the
CRS model, based on the Implicit Zero-Knowledge arguments of Ben-
hamouda et al. [2]. The ROM-based covert CKEM’s match the cost of
known ROM-based NIZK’s for the same languages, while the CRS-model
CKEM’s are 2-4 times more expensive.

1 Introduction

Covert computation addresses a security concern which is unusual for cryptog-
raphy, namely how to hide the very fact that a (secure) protocol executes. Such
hiding of a protocol instance is possible if the public channels connecting the

communicating parties are steganographic, i.e. if they have some entropy. A pro-
tocol is covert if its messages can be efficiently injected into such channels in a
way that the resulting communication cannot be distinguished from the a priori
behavior of these channels. A standard example is a random channel, a.k.a. a
random beacon, which can be implemented e.g. using protocol nonces, padding
bits, time stamps, and various other communication (and cryptographic!) mech-
anisms which exhibit inherent (pseudo)entropy. Given a random channel, if pro-
tocol messages are indistinguishable from random bitstrings, such messages can
be injected into the channel, and the protocol counterparty can interpret the in-
formation received on the channel as a protocol message. The participants must
agree on the time they use such channels to run a protocol, so they know which
bits to interpret as protocol messages, but this can be public information because
if the protocol is covert then the exchanged messages cannot be distinguished
from the a priori behavior of the random channel.1

Covert computation was formalized for the two-party setting by Von Ahn,
Hopper and Langford in [19], and then generalized to the multi-party setting
(and re-formulated) by Chandran et al. in [4], as a protocol that lets the par-
ticipants securely compute the desired functionality on their joint inputs, with
the additional property that each participant cannot distinguish the others from
“random beacons”, i.e. entities that send out random bitstrings of fixed length
instead of prescribed protocol messages, unless the function output determines
that it should be revealed. In other words, in covert computation the computed
function outputs an additional reveal bit: If this bit is zero then each participant
remains indistinguishable from a random beacon to the others, but if the reveal
bit is one then the participants learn the function output, and in particular, learn
that a computation took place, i.e. that they were interacting not with random
beacons but with counterparties executing the same protocol (whose inputs into
this protocol, moreover, made the reveal bit in the function output equal to 1).

Q & A on Covert Computation. Motivation: Who would care to compute a
function while hiding this very fact from other potential protocol participants?
One example given by Chandran et al. [4] is a company C that observes worri-
some activity on its network: If C could determine that other companies observe
similar activity, this information could help all of them fight against a hacking
attack, but the very fact of engaging in such protocol reveals that company C ob-
serves some worrisome activity, and C might have business reasons to hide this.
In another example, a military or intelligence agent A who detects some sus-
picious information could determine if similar information is detected by other
agents, but no one, not even an active participant interacting with A can detect
that A attempts to execute this protocol unless they have the information that
“matches” A’s knowledge. In general, covert computation can be used for any

1 Works on steganographic communication [11] imply that random messages can be
embedded into any non-uniform random channel with sufficient entropy, hence in
particular once we know how to communicate and/or compute covertly assuming
uniform random channels then we can also carry this communication/computation
over any (non-uniform) steganographic channel with sufficient entropy.

2

form of authentication whose participants want to remain undetectable except to
counter-parties whose inputs (certificates, permissions, passwords, environmen-
tal observations) matches their authentication policy. For example, if two spies
want to authenticate one another in a foreign country, they would like to be able
to do so in a way that prevents anyone from detecting that this authentication
instance is taking place. If the spies authenticated each other using covert com-
putation, the only way their presence can be detected is by an active attacker
who owns authentication tokens that match their authentication policy.

Random Channels and Synchronization: If protocol parties were not com-
municating by default, it would always be possible to detect a protocol party
by just observing that it sends out messages, and observing their number and
size should normally suffice to conclude what protocol this party follows. Indeed,
this is why we assume that protocol participants have default access to channels
with some inherent entropy. A network entity cannot hide the fact that it sends
out messages, but if the normal communication they emit exhibits some entropy
(e.g. in protocol nonces, timing, padding, audio and video signals) then this en-
tropy can be used to create a steganographic channel, i.e. convert any entropic
channel into a random channel, and these random channels can carry covert
MPC protocol messages. But even if agent A in the above example is connected
by a random channel to potential counterparties in a covert MPC protocol, how
would she know when to start the protocol? One answer is that the protocol
start should be a public convention, e.g. the first message after time 12:00 on
each day could contain a protocol instance. A participating party would inter-
pret such messages as protocol messages, and if their sender was not engaging
in the protocol, or it engaged but the reveal bit in the computation output is 0,
this protocol instance would simply fail.

Covert MPC vs. Steganography: Covert MPC does not trivially follow by
using steganography [11] to establish covert communication channels between
potential protocol participants and running standard MPC over them. First,
covert channels require prior key distribution which is not always possible, e.g.
in the general authentication application above. Second, even if potential par-
ticipants did have pre-shared keys, they might still want to hide whether or not
they engage in a given protocol instance.

Covert MPC vs. Secure MPC: Secure computation is considered to be a
blueprint for every security task: Whatever security property we want some net-
work interaction to achieve, we can abstract it as a secure computation of an
idealized functionality, and we can achieve it by MPC for this functionality. How-
ever, secure computation does leak one additional “bit” of information, namely
it is not designed to hide whether or not some entity engages in the protocol,
which in many applications (see examples above) is a very essential informa-
tion. To give an extreme example: If CIA is the only organization whose agents
follow some secure authentication protocol then a man-in-the-middle attacker
will be trivially able to identify (potential) CIA agents. A covert computation
strengthens secure computation to hide this one remaining bit, and allows proto-
col participation to be undetectable even to active protocol participants except

3

(and this “escape clause” seems unavoidable) if the function output itself de-
termines that the outputs, and hence also the fact of protocol participation,
should be revealed to the participants. What we show in this paper is that, in
contrast to the initial batch of works on covert computation [19, 4, 10] we discuss
below, which showed only feasibility results for this notion, this strengthening of
two-party secure computation to covertness can be achieved at costs which are
comparable to those born by known standard, i.e. non-covert, constant-round
secure computation protocols based on Yao’s garbled circuits.2 Moreover, in the
process we show general tools for covert enforcement of honest protocol execu-
tion which can be re-used (and further improved) in efficient covert protocols
for specific functions of interest.

Previous Works on Covert Computation. Von Ahn et al. [19] proposed the
first covert two-party computation (2PC) protocol. Their protocol performed
O(τ) repetitions, for τ a security parameter, of Yao’s garbled circuit evaluation
(with the circuit extended to compute an additional hash function), but this
protocol guaranteed only secrecy against malicious participants, and not output
correctness. The covert multi-party computation protocol of [4] realized a covert
computation functionality against malicious participants (and in particular guar-
anteed output correctness), but it also used O(τ) rounds and its efficiency was
several orders of magnitude away from known non-covert MPC protocols: Each
party was covertly proving that it followed a GMW MPC protocol on committed
input by casting it as an instance of a Hamiltonian Cycle problem, and that proof
internally used Yao’s garbled circuits for checking correctness of committed val-
ues. Moreover, Goyal and Jain subsequently showed that [10] the non-constant
round protocol is necessary for achieving covert computation (with black-box
simulation) against malicious adversaries, at least in the standard MPC model,
i.e., without access to trusted parameters or public keys.

On the plus side, some constant-round covert protocols secure against mali-
cious adversaries are known as well: Jarecki [13] showed a covert Authenticated
Key Exchange (AKE) with O(1) rounds and public key operations, but this
protocol satisfied a game-based AKE definition, and in particular, it was not a
covert secure computation of any function. Assuming a Random Oracle Model
(ROM), Cho et al. [5] exhibited practical constant-round covert computation
protocols, secure against active adversaries, for two non-trivial functionalities,
namely for string equality and set intersection. (Moreover, Cho et al. strengthen
the definition of covert computation of [4] to include concurrent self-composition,
and we adopt this stronger notion of covert computation in this work.) However,
in addition to relying on ROM, their constructions are custom-made for func-
tionalities dealing with equality or set-membership checking, and it is not clear
how they can be extended to computation of general functions.

Our Result: Efficient Covert Concurrent 2PC. This leaves a natural open
question whether general two-party functions can be computed covertly by a

2 In the work concurrent to ours, Couteau [6] shows essentially that the exact same
statement applies also to MPC based on arithmetic circuits.

4

constant-round protocol, or even, better, by a protocol whose assumptions, the
security guarantees, and efficiency, are all comparable to those of the currently
known constant-round standard, i.e. non-covert, secure 2PC protocols. We an-
swer all these questions affirmatively with a construction of a constant-round
protocol for covert 2PC of general functions, secure against malicious adver-
saries. (We note that a corresponding result for GMW-style MPC on arithmetic
circuits was developed concurrently to our work by Couteau [6].) Our proto-
col follows the well-known paradigm for non-covert constant-round secure 2PC,
using the cut-and-choose technique over O(τ) copies of Yao’s garbled circuit
protocol, and its efficiency is in the same ballpark as the non-covert secure 2PC
protocols. Concretely, for a function with nI -bit inputs and nO-bit outputs com-
putable by a Boolean circuit with c gates, the proposed protocol requires 5
rounds, O(nIτ + nOτ

2) exponentiations and O(cτ + nOτ
2) symmetric cipher

operations.3 The protocol works in the Common Reference String (CRS) model,
it maintains covertness under concurrent composition, and it is secure under the
Decisional Diffie-Hellman (DDH) assumption.

Enabling Tool: Covert Counterpart to Zero-Knowledge Proofs. Assum-
ing random channels, covert communication is essentially as easy as secure com-
munication: Since block ciphers are assumed to be pseudorandom functions many
standard encryption (or even authenticated encryption) modes have ciphertexts
which in addition to protecting the plaintext are also indistinguishable from
random bitstrings. Several known public-key encryption schemes, e.g. Cramer-
Shoup encryption [7], also have ciphertexts that are indistinguishable from a
tuple of random group elements (assuming DDH), and random group elements,
e.g. in a prime-order subgroup of modular residues, are easy to encode as ran-
dom bitstrings. Assuming honest-but-curious participants, Von Ahn et al. [19]
showed that general covert computation is also not more difficult than general
secure computation: Given block ciphers whose outputs are indistinguishable
from random strings, Yao’s garbled circuit construction can be adjusted so that
a garbled circuit for c-gates looks like 4c random ciphertexts even to the eval-
uator (except for whatever is revealed by the output, but that can be set to a
random string if the “reveal bit” in the output evaluates to 0), and because El-
Gamal encryption is covert under DDH, an honest-but-curious secure OT based
on ElGamal, like the Naor-Pinkas OT [17], also remains covert.

However, it is difficult to achieve covert 2PC/MPC protocols secure against
malicious adversaries, and this is because of the lack of efficient covert coun-
terparts to standard mechanisms for enforcing honest behavior in protocols.
For example, the two chief tools used to enforce honest behavior in Yao’s gar-
bled circuit protocol are (1) Zero-Knowledge (ZK) proofs, e.g. to show that the
sender entered consistent inputs into the Oblivious Transfer (OT) and into mul-
tiple garbled circuit instances, and (2) opening a commitment to show that the

3 Both expressions can be reduced by factor of τ/κ where κ is the statistical security
parameter, but the result would meet a reduced security goal, namely, with probabil-
ity 2−κ the adversary could make an honest party compute an adversarially chosen
function on the joint inputs.

5

committed value is correctly formed, which is the basis of the general “cut-and-
choose” method for enforcing honest behavior. Either of these tools would violate
covertness because both are publicly verifiable, and in particular, the first party
who sends a ZK proof or an opening of a commitment becomes distinguishable
from random noise by the counterparty.

The enabling tool we use to enforce honest behavior in protocol are efficient
realizations of a covert Conditional Key Encapsulation Mechanism (CKEM) for a
wide class of discrete-log-based languages, including statements that the Cramer-
Shoup encryption [7] ciphertexts or a response in the Oblivious Transfer (OT)
of Aiello et al. [1], are computed correctly, or that an encrypted value is a bit, or
that a commitment decommits to a given plaintext (with the decommitment as
the prover’s witness). A CKEM can be thought of as a language-based envelope, a
KEM-version of Conditional Oblivious Transfer [8], or an interactive counterpart
of Smooth Projective Hash Functions (SPHF): A CKEM for language L is a
protocol which allows a sender S with input x to transmit a random key K to
receiver R with input (x,w) if and only if w is a witness for x in L. A covert CKEM
additionally assures that an interaction with either S or R is indistinguishable
from an interaction with a random beacon. In particular, even knowing the
witness w for x a malicious receiver cannot distinguish S(x) from a random
beacon: It computes a key K which is the same as the key computed by the
sender, but since the key is random, it still does not know if the sender was
a real party or a source of randomness. Covert CKEMs can thus provide a
covert counterpart to zero-knowledge proofs: Instead of asking party A in a
2PC protocol to prove that it creates its messages correctly, which makes A’s
presence publicly verifiable, parties B and A run a covert CKEM for the same
language as resp. S and R, and then use key K to (covertly) encrypt subsequent
protocol messages: If A’s messages were not formed correctly, A will not be able
to derive B’s key K, which in particular will make all subsequent messages of B
indistinguishable from random in A’s view.

A Covert CKEM for language L was introduced as “Zero-Knowledge Send” by
Chandran et al. [4] and achieved for general languages, but their construction
reduced L to an NP-complete problem (Hamiltonian Cycle) and used garbled
circuit evaluation at each step of a ZK proof for this problem. By contrast,
we are looking for covert CKEM’s for a class of languages, which we call Linear
Map Image languages, which are discrete-log-based languages that have practical
(HV)ZK proofs (and efficient SPHF systems), and we want the CKEM costs to
be in a similar ballpark as the cost of these proofs. A natural starting point for a
CKEM for a discrete-log-based language are well-known efficient SPHF schemes
for such languages: If B uses an SPHF system on x and defines key K as the
SPHF hash value then A can derive the same key K using its witness w for x
in L. However, SPHF by itself cannot replace a zero-knowledge proof in a larger
protocol, because it does not offer a way for the simulator playing the role of
A and simulating A’s message x, e.g. with random noise, to recover B’s key K
and continue the simulation on A’s behalf in subsequent protocol rounds. Zero-
knowledge works because the simulator can send x 6∈ L on A’s behalf and then

6

simulate A’s ZK proof as if x was in L. By contrast, if x 6∈ L then an SPHF on
x will hide B’s key K in an information-theoretic sense.

This insufficiency of SPHF’s to replace zero-knowledge proofs in MPC proto-
cols was recognized by Benhamouda et al. [2] who added two essential properties
to SPHF’s for discrete-log-based languages: First, they added (concurrent) zero-
knowledge, i.e. the ability for the simulator in position of the global trapdoor
in the CRS to derive S’s key K even on the wrong statement x 6∈ L. Secondly,
they added simulation-soundness, i.e. the assurance that a cheating receiver can-
not recover S’s key K for a protocol instance executing on a wrong statement
x 6∈ L even if the adversary concurrently engages with the simulator who re-
covers keys corresponding to multiple protocol instances running on any other
wrong statements x′ 6∈ L. These two properties, simulation-soundness and (con-
current) zero-knowledge are needed of zero-knowledge in the standard compiler
from (concurrent) 2PC secure against honest-but-curious adversaries to (con-
current) 2PC secure malicious parties. Benhamouda et al. called this class of
protocols (concurrent) simulation-sound Implicit Zero-Knowledge (IZK) Argu-
ments, and they showed an efficient construction for such IZK’s for a wide class
of discrete-log-based languages (including the those listed above). The notion
of IZK defined by [2] does not ask for the IZK protocol to be covert, because
the goal of the Implicit ZK Arguments of [2] was reduction of round complexity
in the honest-but-curious to malicious-security protocol compilation: The IZK
schemes they show take only 2 rounds in the CRS model under DDH, compared
to 3 rounds for zero-knowledge proofs of comparable efficiency for the same lan-
guage class. Here we extend the IZK notion of [2] to include covertness, and we
call the resulting notion a (concurrent and simulation-sound) Covert CKEM.

We offer two constructions of 2-round covert CKEM’s, for two classes of lan-
guages commonly occurring in cryptographic protocols. First, we characterize
the class of languages which includes all languages used in our covert 2PC pro-
tocol as Linear Map Image (LMI) languages, i.e. languages whose statements
can be represented as pair (C,M) of a vector C and a matrix M of group ele-
ments s.t. C belongs to a range of a linear map fM (x) = M · x defined by M .
To construct covert CKEM’s for such languages, we first show a construction in
ROM for all languages with Σ-protocols, and we observe that all LMI languages
in prime-order group have a Σ-protocol. This construction is a version of a com-
piler shown in [13], which converted a Σ-protocol into a weaker form of covert
CKEM, which in particular did not include existence of a simulator. Here we
show that the ROM-based version of that construction does allow for efficient
simulation, and that it moreover preserves simulation soundness. The result-
ing ROM-based covert CKEM’s are relevant in practice because they add only
a small overhead to the cost of well-known ROM-based NIZK’s for languages
which commonly occur in standard, i.e. non-covert, secure protocols. Secondly,
we show that a simple modification of the CRS-model IZK construction of [2] for
any LMI language, also forms a covert CKEM for LMI languages characterized
by matrix M which is full row rank. This is commonly the case, including all
LMI languages used in our Covert 2PC protocol.

7

Organization. In Section 2 we introduce covertness-related notation. In Sec-
tion 3 we specify our notion of concurrent covert 2PC for arbitrary functions.
In Section 4 we go over several covert counterparts to standard protocol build-
ing blocks, including covert CCA encryption, commitment, Oblivious Transfer,
and (HbC-secure) circuit garbling. In Section 5 we define covert Conditional
KEM (CKEM) as a covert counterpart to concurrent and simulation-sound zero-
knowledge proofs, and we introduce the class of so-called LMI languages for
which we need covert CKEM’s in the next section. In Section 6 we describe our
concurrent covert 2PC protocol for covert computation of arbitrary functions.
Finally, in Section 7 we exhibit constructions of efficient covert CKEM’s for the
LMI languages used in this covert 2PC protocol.

Revision Notes. The previous version of this paper (available on eprint) shows
that the CKEM of [2] without any modifications meet relaxed conditions of
covertness defined in that version. Here instead we show that a simple modi-
fication of this CKEM satisfies a more general covertness notion. The current
version contains also more extensive overview of the design choices in the covert
2PC protocol in Section 6.

2 Preliminaries

Notation. If a, b are bitstrings then |a| is the length of a, a|b is the concatenation
of stings a and b, and a[i] is the i-th bit of a. If n is an integer then [n] =
{1, ..., n}. We write y ← P(x) when y is an output of a (randomized) procedure
P on input x, and y ← S when y is sampled from uniform distribution over
set S. We write y ∈ P(x) if there is randomness r s.t. P(x; r) outputs y. We
say (a, b) ← [A(x), B(y)] if a, b are the local outputs of algorithms resp. A,B
interacting on local inputs resp. x, y. If L is a language in NP then R[L] is a
relation s.t. (x,w) ∈ R[L] if w is an efficiently verifiable witness for x ∈ L. If
ks = {(ki,0, ki,1)}i∈[n],b∈{0,1}, i.e. ks is a sequence of n pairs of bitstrings, and
x ∈ {0, 1}n, then ks[:x] denotes a selection of bitstrings from the n pairs in ks
according to the n bits of x, namely ks[:x] = {ki,x[i]}i∈[n].

We call two-party protocol (A,B) regular if the number of rounds and length
of all messages is a function of the security parameter, and not the parties’
inputs. If P is an interactive algorithm in a regular two-party protocol then
P$(τ) denotes a random beacon corresponding to P, which sends random bit-
strings of the same length as P’s messages in every protocol round. If P is
an interactive algorithm then P&Out(x) is a wrapper which runs P (x) and in-
cludes P ’s final local output in its last message. For any algorithm Setup
and oracles P0, P1 we say that {AP0(x0)(z)} ≈ {AP1(x1)(z)} for (x0, x1, z) ←
Setup(1τ) if for every efficient A quantity |p0

A − p1
A| is negligible where pbA =

Pr[1←A(z)Pb(xb) | (x0, x1, z)←Setup(1τ)], where the probability goes over the
coins of Setup, A, and Pb.

Covert Encodings. In the protocols in this paper all communicated values are
fixed-size bitstrings, or integers from some integer range Zn, or elements of a

8

prime-order group G. In the latter two cases what is sent on the wire are the
values themselves but their covert encodings. A covert encoding of domain D
is a randomized function EC : D → {0, 1}p(τ) defined for some polynomial p,
s.t. a random variable {EC(a; r)}, induced by a random a in D and a random r,
is statistically close to a random bitstring of length p(τ). Moreover, there must
exist a corresponding decoding procedure DC s.t. DC(b) = a for all b output by
EC(a). For example, for an integer range domain D = Zn, encoding EC(a) can
pick r ← ZR for R = d2|n|+τ/ne and output a+n·r (over integers), while DC(v)
outputs v mod n. If the domain D is a subgroup G of order p in a group of
residues modulo q s.t. q = p · t+ 1 for gcd(p, t) = 1, then EC(a) can pick b← Zq,
compute v = (a · (b)p) mod q, and then apply the encoding for integer range Zq
to v. The corresponding decoding first decodes v and then outputs ws mod q for
w = vt mod q and s = t−1 mod p.

3 Concurrent Covert Two-Party Computation

We provide the definition of concurrent covert computation of two-party func-
tions, which is a close variant of the definition which appeared recently in [5].
Intuitively, the differences between the covert computation of a two-party func-
tionality F and the secure computation for F is that (1) F’s inputs and outputs
are extended to include a special sign ⊥ designating non-participation; (2) F is
restricted to output a non-participation symbol ⊥ to each party if the input of
either party is ⊥; and (3) the real-world protocol of either party on the non-
participation input ⊥ is fixed as a “random beacon”, i.e. a protocol which sends
out random bitstrings of fixed length independently of the messages it receives.

The definition of concurrent covert computation of [5], which we recall (and
refine) below, follows the definition of stand-alone (i.e. “single-shot”) covert com-
putation given by Chandran et al. [4], here restricted to the two-party case. The
definition casts this notion in the framework of universal composability (UC) by
Canetti [3], but the composability guarantee it implies is restricted to concurrent
self-composition because it guarantees only self-composability of covert compu-
tation for functions, and not for general reactive functionalities as in the case
of UC definition [3]. The reason for this restriction is two-fold: First, concurrent
covert computation for arbitrary efficiently computable functions already pro-
vides a significant upgrade over the “single-shot” covert computation notion of
[4], and achieving it efficiently presents sufficient technical challenges that jus-
tify focusing on this restricted notion. Secondly, composing functionally distinct
covert protocols poses conceptual challenges: Consider a protocolΠ implemented
by a protocol Π1 which runs Π2 as a subroutine, and note that the outputs of
subroutine Π2 can reveal the participation of an honest party in Π before Π
completes. Here we focus on concurrent composition of covert computation of
two-party function, and leave development of a framework for fully composable
covert computation for future work.

Ideal and Real Models. The definition of the ideal model is the UC analogue
of the ideal model of Chandran et al. [4], except that composability guarantees

9

On input (InputA, sid, B, x) from party A:
Record (InputA, sid, A,B, x) and send (InputA, sid, A,B) to A∗.

On input (InputB, sid, A, y) from party B:
Record (InputB, sid, A,B, y) and send (InputB, sid, A,B) to A∗.

Given records (InputA, sid, A,B, x) and (InputB, sid, A,B, y) compute

(z, v)←
{

(⊥,⊥) if x =⊥ ∨ y =⊥ ∨ g(x, y) = 0
f(x, y) otherwise

and record (Output, sid, A, z) and (Output, sid, B, v).
If A is corrupt, send (Output, sid, z) to A.
If B is corrupt, send (Output, sid, v) to B.

On input (Output, sid, P, release?) from A∗:
Retrieve record (Output, sid, P, w) (ignore if record does not exist).
If release? = T then send (Output, sid, w) to P .
If release? = F then send (Output, sid,⊥) to P .

Fig. 1. Covert 2-Party Function Computation Functionality FC(f,g)

are restricted to self-composition. Covert computation is defined by functionality
FC(f,g) shown in Figure 1, where f, g are functions defined on pairs of bitstrings.
We note that f and g can be randomized functions, in which case functionality
FC(f,g) picks the randomness which is appended to input (x, y) before computing
g and f . The ideal process involves functionality FC(f,g), an ideal process adver-
sary A∗, an environment Z with some auxiliary input z, and a set of dummy
parties, any number of which can be (statically) corrupted. Each party can spec-
ify its input to some instance of FC(f,g), which is either a bitstring or a special
symbol ⊥ indicating that there is no party which will participate in a given
role, e.g. a requester or responder in this protocol instance. The real model is
exactly as in the standard UC security model, except that the protocol of each
real-world uncorrupted party which runs on input ⊥ is a-priori specified as a
random beacon protocol, i.e. such party sends out random bitstrings of lengths
appropriate for a given protocol round.

Let IdealF,A∗,Z(τ, z, r) denote the output of environment Z after interacting
in the ideal world with adversary A∗ and functionality F = FC(f,g), on secu-
rity parameter τ , auxiliary input z, and random input r = (rZ , rA∗ , rF), as de-
scribed above. Let IdealF,A∗,Z (τ, z) be the random variable IdealF,A∗,Z(τ, z; r)
when r is uniformly chosen. We denote the distribution ensemble of variable
IdealF,A∗,Z(τ, z) by {IdealF,A∗,Z(τ, z)}τ∈N;z∈{0,1}∗ . In the corresponding way we
define RealΠ,Adv,Z(τ, z; r) as the output of Z after interacting with a real-world
adversary Adv and parties running protocol Π on security parameter τ , input z,
and random tapes r = (rZ , rAdv, rA, rB). In parallel to the ideal model, we define
the corresponding distribution ensemble {RealΠ,Adv,F(τ, z)}τ∈N;z∈{0,1}∗ .

10

Definition 1. Protocol Π realizes the concurrent two-party covert computation
functionality F = FC(f,g) if for any efficient adversary Adv there exists an effi-
cient ideal-world adversary A∗ such that for any efficient environment Z,

{IdealF,A∗,Z(τ, z)}τ∈N;z∈{0,1}∗
c
≈ {RealΠ,Adv,F(τ, z)}τ∈N;z∈{0,1}∗

Notes on Functionality FC(f,g). Functionality FC(f,g) in Figure 1 is realizable
only assuming secure channels. Without secure channels the adversary could hi-
jack a protocol session an honest player wants to execute with some intended
counterparty. However, the secure channel assumption does not substantially
change the complexity of the protocol problem because the intended counter-
party can itself be corrupted and follow an adversarial protocol. The second
point we want to make is that functionality FC(f,g) always delivers the output
first to a corrupted party, whether it is party A or B, and if this output is not
a non-participation symbol ⊥ then in both cases the corrupted party can decide
if the correct computation output should also be delivered to its (honest) coun-
terparty or the honest counterparty’s output will be modified to ⊥. (Note that
if an output of a corrupt party, say A, is ⊥ then B’s output is also ⊥, hence
it does not matter in this case whether the adversary sends (Output,T, sid) or
(Output,F, sid).) Any constant-round protocol without a trusted party must be
unfair in the sense that the party which speaks last gets its output but can
prevent the delivery of an output to its counterparty. However, functionality
FC(f,g) affords this unfair advantage to both the corrupt requester and the cor-
rupt responder. Indeed, a concrete protocol ΠCOMP presented in Section 6 which
realizes this functionality allows the corrupt party A to learn its output z and
stop B from learning anything about its output v (simply by aborting before
sending its last message to B). However, this protocol also allows the corrupt
party B to prevent party A from being able to decide if its output z (learned
in step A2 in Figure 2) is an output of f(x, y) or a random value induced from
an interaction with a random beacon: Only B’s final message can confirm which
is the case for A, but a corrupt B can send this message incorrectly, in which
case an honest A will dismiss the tentative value z it computed and output ⊥
instead. We leave achieving O(1)-round covert protocols with one-sided fairness,
or two-side fairness, e.g. using an off-line escrow authority, to future work.

4 Covert Protocol Building Blocks

CCA-Covert Public Key Encryption. Covertness of a public key encryption
scheme in a Chosen-Ciphertext Attack, or CCA covertness for short, is a gener-
alization of CCA security: Instead of requiring that ciphertexts of two challenge
messages are indistinguishable from each other, we require that a ciphertext on
any (single) challenge message is indistinguishable from a random bitstring, even
in the presence of a decryption oracle. For technical reasons it suffices if inter-
action with the real PKE scheme is indistinguishable from an interaction with

11

a simulator who not only replaces a challenge ciphertext with a random string
but also might follow an alternative key generation and decryption strategy.

Formally, we call a (labeled) PKE scheme (Kg,E,D) CCA covert if there exist
polynomial n s.t. for any efficient algorithm A, quantity AdvA(τ) = |p0

A(τ) −
p1
A(τ)| is negligible, where pbA(τ) is the probability that b′ = 1 in the following

game: Generate (pk, sk) ← Kg(1τ), and let AD(sk,·,·)(pk) output an encryption
challenge (m∗, `∗). If b = 1 then set ct∗ ← E(pk,m∗, `∗), and if b = 0 then pick ct∗

as a random string of length n(τ). In either case set b′ ← AD(sk,·,·), where oracle
D(sk, ·, ·) returns D(sk, ct, `) on any ciphertext,label pair s.t. (ct, `) 6= (ct∗, `∗).

Notice that by transitivity of indistinguishability if PKE is CCA-covert then
it is also CCA-secure. The other direction does not hold in general, but many
known CCA-secure PKE’s are nevertheless also CCA-covert, including RSA
OAEP and Cramer-Shoup PKE [7]. We will use here the latter scheme because
its arithmetic structure can be utilized for efficient covert OT (see below) and
efficient covert CKEM’s on associated languages (e.g. that a ciphertext encrypts
a given plaintext). In Appendix A we show that the proof of CCA security of
Cramer-Shoup PKE under the DDH assumption [7] can be extended to imply
its CCA covertness. For notational convenience we assume that the key genera-
tion Kg picks the group setting (g,G, p) as a deterministic function of security
parameter τ , and we restrict the message space to group G, since this is how
we use this PKE in our covert 2PC protocol, but it can be extended to general
message space using covert symmetric encryption.

Cramer-Shoup PKE (for message space G) works as follows: Kg(1τ) chooses
generator g of group G of prime order p of appropriate length, sets a collision-
resistant hash function H, picks (x1, x2, y1, y2, z) ← (Z∗p)5, (g1, g2) ← (G\1)2,
sets (c, d, h)← (gx1

1 gx2
2 , gy11 gy22 , gz1), and outputs sk = ((g,G, p,H), x1, x2, y1, y2, z)

and pk = ((g,G, p,H), g1, g2, c, d, h). Encryption Epk(m, `), for m ∈ G, picks
r ← Zp, sets (u1, u2, e) ← (gr1, g

r
2,m · hr), ξ ← H(`, u1, u2, e), v ← (cdξ)r, and

outputs ct = (u1, u2, e, v). Decryption Dsk((u1, u2, e, v), `) re-computes ξ, and

outputs m = e · uz1 if v = ux1+ξ·y1
1 ux2+ξ·y2

2 and ⊥ otherwise.

Covert Non-Malleable Commitments. It is well-known that CCA-secure
PKE implements non-malleable commitment. However, to stress that some-
times no one (including the simulator) needs to decrypt, we define commitment
Compk(m) as a syntactic sugar for Epk(H(m)) where H is a collision-resistant
hash onto G, but we will pass on defining a notion of covert commitment, relying
instead directly on the fact that Compk(m) stands for Epk(H(m)).

Covert Oblivious Transfer. Von Ahn et al. [19] used a covert version of
Naor-Pinkas OT [17] for their covert 2PC secure against honest-but-curious ad-
versaries. Here we will use a covert version of the OT of Aiello et al. [1] in-
stead because it is compatible with CCA-covert Cramer-Shoup encryption and
covert CKEM’s of Section 7. Let E be the Cramer-Shoup encryption and let
pk = ((g,G, p,H), g1, g2, c, d, h). Define a 2-message OT scheme (E,OTrsp,OTfin)
on Rec’s input b, Snd’s input m0,m1 ∈ G, and a public label ` as follows:

(1) Rec’s first message to Snd is ct = (u1, u2, e, v) = Epk(g
b, `; r) for r← Zp.

12

(2) Snd’s response computation, denoted OTrsppk(ct,m0,m1; r′), outputs otr =

{si, ti}i=0,1 for (si, ti) = (gαi1 hβi , uαi1 (e/gi)βimi) and r′ = {αi, βi}i=0,1 ← Z4
p.

(3) Rec’s output computation, denoted OTfinpk(b, r, otr), outputs m = tb · (sb)−r.
The above OT is covert for random payloads in the following sense: First, the

Rec’s message is indistinguishable from random even on access to the decryption
oracle Dsk(·, ·); Secondly, Snd’s message is indistinguishable from random for
payloads (m0,m1) random in G2. (Note that if (m0,m1) were non-random then

the Rec’s output would suffice to distinguish OTrsp and OTrsp$(τ).)

Covert Garbled Circuits. Von Ahn et al. [19] shows a covert version of Yao’s
garbling GCgen(f) for any f : {0, 1}n → {0, 1}m. Procedure GCgen(f) outputs
(1) a vector of input wire keys ks = {kw,b}w∈[n],b∈{0,1} where n is the bitlength
of arguments to f , and (2) a vector gc of 4|C| covert symmetric encryption
ciphertexts, where |C| is the number of gates in a Boolean circuit for f . The
corresponding evaluation procedure Evalf outputs f(x) given gc and ks[:x]) =
{ki,x[i]}i∈[n], for (gc, ks) output by GCgen(f) and x ∈ {0, 1}n. Let m′ = 4|C|τ +
nτ . The notion of a covert garbling defined by [19] and satisfied by their variant
of Yao’s garbling scheme, is that for any function f , any distribution D over
f ’s inputs, and any efficient algorithm A, there is an efficient algorithm A∗ s.t.
|AdvA − AdvA∗ | is negligible, where:

AdvA = |Pr[1←A({gc, ks[:x]})]x←D,(gc,ks)←GCgen(f) − Pr[1←A(r)]r←{0,1}m′ |
AdvA∗ = |Pr[1←A∗(f(x))]x←D − Pr[1←A∗(r)]r←{0,1}m |

In other words, for any function f and distribution D over its inputs, the garbled
circuit for f together with the set of wire keys ks[:x] defined for input x sampled
from D, are (in)distinguishable from a random string to the same degree as func-
tion outputs f(x) for x←D. In particular, if f and D are such that {f(x)}x←D
is indistinguishable from random, then so is {gc, ks[:x]}(gc,ks)←GCgen(f),x←D.

SPHF’s. We define a Smooth Projective Hash Function (SPHF) for language
family L parametrized by π as a tuple (PG,KG,Hash,PHash) s.t. PG(1τ) gen-
erates parameters π and a trapdoor td which allows for efficient testing of
membership in L(π), KG(π, x) generates key hk together with a key projec-
tion hp (here we use the Gennaro-Lindell notion of SPHF’s [18] where the
hash key hk can depend on the statement x, in contrast to the SPHF’s by
Katz-Vaikuntanathan [14]), and Hash(π, x, hk) and PHash(π, x, w, hp) generate
hash values denoted H and projH, respectively. SPHF correctness requires that
Hash(π, x, hk) = PHash(π, x, w, hp) for all τ , all (π, td) output by PG(1τ), all
(x,w) ∈ R[L(π)], and all (hk, hp) output by KG(π, x). Since in the SPHF’s we use
in this paper the hash values are elements of group G which is uniquely defined
for a given security parameter τ by the Cramer-Shoup key generation procedure,
we define SPHF smoothness as the requirement that (hp,Hash(π, x, hk)) is dis-
tributed identically to (hp, r) for r ← G and (hk, hp) ← KG(π, x), for all π and
x 6∈ L(π). However, in our applications of SPHF’s we rely on a stronger notion
of covert smoothness, namely that for some constant c, for all π and x 6∈ L(π),
pair (hp,Hash(π, x, hk)) for (hk, hp)← KG(π, x) is uniform in Gc ×G.

13

5 Covert Simulation-Sound Conditional KEM

A Conditional Key Encapsulation Mechanism (CKEM) was introduced in [13]
as a generalization of SPHF to interactive protocols, and as a KEM version of
Conditional Oblivious Transfer [9]. A CKEM for language L is a protocol between
two parties, a sender S and a receiver R, on S’s input a statement xS and R’s input
a (statement,witness) pair (xR, wR). The outputs of S and R are respectively KS
and KR s.t. KS is a random string of τ bits, and KR = KS if and only if xS = xR
and (xR, wR) ∈ R[L]. A CKEM scheme is an encryption counterpart of a zero-
knowledge proof, where rather than having R use its witness wR to prove to S
that xS ∈ L, here R establishes a session key K with S if and only if wR is a
witness for xS in L. Because of this relation to zero-knowledge proofs we will
use proof-system terminology to define security properties of a CKEM scheme.
In particular, we will refer to the CKEM security property that if x 6∈ L then no
efficient algorithm can compute K output by S(x) as the soundness property.

Benhamouda et al. [2] considered a stronger notion of trapdoor CKEM, which
they called Implicit Zero-Knowledge. Namely, they extended the CKEM notion
by a CRS generation procedure which together with public parameters generates
a trapdoor td that allows an efficient simulator algorithm to compute the session
key KS output by a sender S(x) for any x, including x 6∈ L. The existence of
such simulator makes CKEM into a more versatile protocol building block. For
example, trapdoor CKEM implies a zero-knowledge proof for the same language,
if R simply returns the key KR to S who accepts iff KR = KS . Indeed, following
[2], we refer to the property that the simulator computes the same key as the
honest receiver in the case x ∈ L as the zero-knowledge property of a CKEM.

As in the case of zero-knowledge proofs, if multiple parties perform CKEM
instances then it is useful to strengthen CKEM security properties to simulation-
soundness, which requires that all instances executed by the corrupt players
remain sound even in the presence of a simulator S who uses its trapdoor to
simulate the instances performed on behalf of the honest players. Simulation-
soundness is closely related to non-malleability: If S simulates a CKEM instance
Π on x 6∈ L then an efficient adversary must be unable to use protocol instance Π
executed by S to successfully complete another instance Π ′ of CKEM executed
by a corrupt party for any x′ 6∈ L.

Below we formally define these security properties, by extending the defini-
tions of Benhamouda et al. [2] to assure the following covertness properties:

(I) First, for covert (simulation) soundness we require not only that the sender’s
session key K is indistinguishable from a random string if the protocol pro-
ceeds on x 6∈ L (even in the presence of a multiple simulated protocol in-
stances), but that all messages the sender sends and the session key it out-
puts, are together indistinguishable from a random beacon.

(IIa) Secondly, for covert zero-knowledge we require not only that an interaction
with an honest receiver is indistinguishable from the interaction with a sim-
ulator but also that both are indistinguishable from random beacons.

14

(IIb) Lastly, since in the CKEM applications both protocol parties need to be
covert, we extend the covert zero-knowledge property so that an interac-
tion with the sender is indistinguishable from an interaction with a random
beacon on all statements x, i.e. not just x 6∈ L as above.

Note that in items (IIa) and (IIb) which define covert zero-knowledge, we only
require the covertness (i.e. the indistinguishability from random) for protocol
messages sent by an honest party, and not the key (or rejection) defined by the
honest party’s local output. Otherwise, i.e. if the honest party’s local output was
included in the adversary’s view, then an adversary running the counterparty’s
protocol on the same x (and a corresponding witness w), would always be able
to distinguish such party from a random beacon because it would compute the
same output key. This is in contrast to the notion of covert simulation soundness,
i.e. item (I), which includes honest sender’s local output in adversary’s view, and
can do so because it considers only CKEM executions on x 6∈ L.

To distinguish between different CKEM sessions the CKEM syntax must
also be amended by labels, which play similar role as labels in CCA encryp-
tion. Formally, a CKEM scheme for language family L is a tuple of algorithms
(PG,TPG,Snd,Rec,TRec) s.t. parameter generation PG(1τ) generates CRS pa-
rameter π, trapdoor parameter generation TPG(1τ) generates π together with
the simulation trapdoor td, and sender Snd, receiver Rec, and trapdoor receiver
TRec are interactive algorithms which run on local inputs respectively (π, x, `),
(π, x, `, w), and (π, x, `, td), and each of them outputs a session key K as its local
output. CKEM correctness requires that for all `:

∀(x,w) ∈ R[L], [KS ,KR]← [Snd(π, x, `),Rec(π, x, `, w)]⇒ KS = KR (1)

∀x, [KS ,KR]← [Snd(π, x, `),TRec(π, x, `, td)]⇒ KS = KR (2)

where (1) holds for all π generated by PG(1τ) and (2) holds for all (π, td) gener-
ated by TPG(1τ). Crucially, property (2) holds for all x, and not just for x ∈ L.

Covert Zero-Knowledge. We say that a CKEM for language (family) L is
covert zero-knowledge if the following properties hold:

1. Setup Indistinguishability: Parameters π generated by PG(1τ) and TPG(1τ)
are computationally indistinguishable.

2. Zero Knowledge: For every efficient A = (A1,A2) we have

{ARec&Out(π,x,`,w)
2 (st)} ≈ {ATRec&Out(π,x,`,td)

2 (st)}

for (π, td)← TPG(1τ) and (st, x, w, `)← A1(π, td) s.t. (x,w) ∈ R[L].4

3. Trapdoor-Receiver Covertness: For every efficient A = (A1,A2) we have

{ATRec(π,x,`,td)
2 (st)} ≈ {ATRec$(τ)

2 (st)}

for (π, td)← TPG(1τ) and (st, x, `)← A1(π, td).

4 If A1 outputs (x,w) 6∈ R[L] we override A2’s output by an arbitrary constant.

15

4. Sender Covertness: For every efficient A = (A1,A2) we have

{ASnd(π,x,`)
2 (st)} ≈ {ASnd$(τ)

2 (st)}

for (π, td)← TPG(1τ) and (st, x, `)← A1(π, td).

Note that the Zero-Knowledge and Trapdoor-Receiver Covertness properties above
imply the Receiver Covertness property, which says that for every efficient A =
(A1,A2) we have

{ARec(π,x,`,w)
2 (st)} ≈ {ARec$(τ)

2 (st)}

for (π, td)← TPG(1τ) and (st, x, w, `)← A1(π, td) s.t. (x,w) ∈ R[L]. This holds
because an interaction with Rec(π, x, `, w) for any (x,w) ∈ R[L] is, by Zero-
Knowledge, indistinguishable from an interaction with TRec(π, x, `, td), which
by Trapdoor-Receiver Covertness is indistinguishable from an interaction with
TRec$(τ), which is in turn identical to an interaction with Rec$(τ), because Zero-
Knowledge implies that Rec and TRec output equal-sized messages.

Discussion. CKEM zero-knowledge [2] says that an interaction with Rec on
any x ∈ L followed by Rec’s local output KR, can be simulated by TRec without
knowledge of the witness for x. Receiver and Trapdoor-Receiver covertness mean
that, in addition, the adversary A who interacts with resp. Rec and TRec, but
does not see their local outputs, cannot tell them from random beacons. In the
case of TRec we ask for this to hold for any x and not only for x ∈ L because
a simulator of a higher-level protocol will typically create incorrect statements
and then it will simulate the Receiver algorithm on them. Note that we cannot
include the output KR of either Rec or TRec inA’s view in the (trapdoor) receiver
covertness game because A can compute it by running Snd(x). Sender covertness
means that an interaction with the Snd is indistinguishable from an interaction
with a random beacon for any x. Here too we cannot include Snd’s local output
KS in A’s view because if (x,w) ∈ R[L] then A who holds w can compute it
running Rec(x,w). Note that A’s view includes both the public parameters π
and the simulator’s trapdoor td, which implies that all the properties will hold
in the presence of multiple CKEM instances simulated by TRec using td.

Sender Covertness Relaxation. The standard-model CKEM of Section 7.2
does not assure Sender Covertness against an adversary who holds the simula-
tion trapdoor td. However, it assures sender covertness for adversary who gets
parameters π and has access to the Trapdoor Receiver oracle for any (x′, `′)
which differs from (x, `) that defines the sender covertness challenge. We say
that CKEM for L is Sender Simulation-Covert if it satisfies:

4’. Sender Simulation-Covertness: For every efficient A = (A1,A2) we have

{ASnd(π,x,`),TRecBlock(x,`)(td,·)
2 (st)} ≈ {ASnd$(τ),TRecBlock(x,`)(td,·)

2 (st)}

for (π, td) ← TPG(1τ) and (st, x, `) ← ATRec(td,·)
1 (π) s.t. TRec(td, ·) was not

queried on (x, `).

16

We say that a CKEM is Covert Zero-Knowledge with Sender Simulation-
Covertness if it satisfies all the Covert Zero-Knowledge properties except with
the Sender Covertness property replaced by Sender Simulation-Covertness.

Covert Soundness and Simulation-Soundness. A CKEM is covert sound
if interaction with Snd on x 6∈ L followed by Snd’s local output KS is indistin-
guishable from interaction with a random beacon. Recall that CKEM soundness
[2] requires pseudorandomness of only Snd’s output KS on x 6∈ L, while here we
require it also of the transcript produced by Snd. Covert simulation-soundness
requires that this holds even if the adversary has access to the Trapdoor-Receiver
for any (x′, `′) which differs from the pair (x, `) that defines the soundness chal-
lenge. To that end we use notation PBlock(x) for a wrapper over (interactive)
algorithm P which outputs ⊥ on input x′ = x and runs P (x′) for x′ 6= x:

CKEM is Covert Sound if for every efficient algorithm A = (A1,A2) we have:

{ASnd&Out(π,x,`)
2 (st)} ≈ {ASnd

$(τ)
&Out

2 (st)}

for (π, td)← TPG(1τ) and (st, x, `)← A1(π) s.t. x 6∈ L.

CKEM is Covert Simulation-Sound if for every efficient algorithm A = (A1,A2)
we have:

{ASnd&Out(π,x,`),TRecBlock(x,`)(td,·)
2 (st)} ≈ {ASnd

$(τ)
&Out,TRecBlock(x,`)(td,·)

2 (st)}

for (π, td) ← TPG(1τ) and (st, x, `) ← ATRec(td,·)
1 (π) s.t. x 6∈ L and TRec(td, ·)

was not queried on (x, `).

Note that sender simulation-covertness together with standard, i.e. non-
covert, simulation-soundness, imply covert simulation-soundness of a CKEM:

Lemma 1. If a CKEM scheme is simulation-sound [2] and sender simulation-
covert, then it is also covert simulation-sound.

Proof. Consider the simulation-soundness game where adversary A on input π
for (π, td)← TPG(1τ) interacts with TRec(td, ·), generates (x, `) s.t. x 6∈ L, and
interacts with oracles Snd&Out(π, x, `) and TRecBlock(x,`)(td, ·). The standard (i.e.
non-covert) simulation soundness of this CKEM [2] implies that this game is in-
distinguishable from a modification in which key KS output by Snd&Out(π, x, `)
is chosen at random. Once KS is independently random, sender simulation-
covertness, which holds for all x, implies that this game is indstinguishable from
a modification where the messages sent by Snd are replaced by uniformly ran-
dom strings. Since these two moves together replace oracle Snd&Out(π, x, `) with

Snd
$(τ)
&Out, it follows that the CKEM is covert simulation-sound.

Linear Map Image Languages. The Covert 2PC protocol of Section 6 relies
on covert zero-knowledge and simulation-sound CKEM’s for what we call Linear
Map Image languages. A linear map image language LMIn,m for group G of
prime order p contains pairs (C,M) ∈ Gn × Gn×m s.t. there exists a vector

17

w ∈ Zmp s.t. C = w ·M , where the vector dot product denotes component-wise
exponentiation, i.e. [w1, ..., wm] · [gi1, ..., gim] =

∏m
j=1(gij)

wj , In other words,
(C,M) ∈ LMIn,m if C is in the image of a linear map fM : Zmp → Gn defined as
fM (w) = w ·M . Using an additive notation for operations in group G we can
equivalently say that (C,M) ∈ LMIn,m if C is in the subspace of Gn spanned by
the rows of M , which we denote span(M).

We extend the notion of a Linear Map Image language to a class of languages,
denoted LMI, which includes all languages L for which there exist two efficiently
computable functions φ : Ux → (G × Gn×m) and γ : Uw → Zmp for some n,m,
where Ux, Uw are the implicit universes of respectively statements in L and their
witnesses, s.t. for all (x,w) ∈ Ux×Uw, w is a witness for x ∈ L if and only if γ(w)
is a witness for φ(x) ∈ LMIn,m. We will sometimes abuse notation by treating
set {φ(x)}x∈L, i.e. L mapped onto (some subset of) LMIn,m, replaceably with L
itself. Observe that LMI is closed under conjunction, i.e.

[(C1,M1) ∈ LMIn1,m1
∧ (C2,M2) ∈ LMIn2,m2

]⇔ (C,M) ∈ LMIn1+n2,m1+m2

for C = (C1, C2) and M formed by placing M1 in the upper-left corner, M2 in
the lower-right corner, and all-one matrices in the remaining quadrants.

6 Covert Computation of General 2-Party Functions

We describe a protocol ΠCOMP, in Figure 2, which realizes the concurrent 2-party
covert computation functionality FC(f,g) in the CRS model. Protocol ΠCOMP uses
a covert variant of Yao’s garbled circuit protocol [19] and a variant of the cut-and-
choose approach (see e.g. [16]) to enforce security against malicious players. Note
that a standard way of implementing a cut-and-choose involves protocol tools
which are inherently non-covert: The first tool is that the circuit garbling party,
B, sends commitments to n copies of the garbled circuit and then decommits a
randomly chosen half of them, so that party A can verify that the opened circuits
are formed correctly and that they were committed in B’s first message. Clearly,
if B sends a commitment followed by a decommitment, such decommitment can
be verified publicly, at which point A would distinguish a protocol-participating
party B from a random beacon regardless of the inputs which A or B enter into
the computation. Secondly, a cut-and-choose protocol also use zero-knowledge
proofs, e.g. to prove that the OT’s are performed correctly, or that the keys
opened for different circuit copies correspond to the same inputs, and zero-
knowledge proofs are similarly inherently non-covert. We show that (concurrent
and simulation-sound) covert CKEM’s can be effectively used in both cases.

First, we use CKEM’s in place of all zero-knowledge proofs, i.e. instead of
party P1 proving statement x to party P2, we will have P2 encrypt its future
messages under a key derived by CKEM on statement x. By covert concurrent
zero-knowledge, the simulator can derive the CKEM keys and simulate subse-
quent interaction of each protocol instance even if the statements it makes on
behalf of honest players are incorrect (e.g. because the simulator does not know
these players’ real inputs). And by covert simulation-soundness, the CKEM’s

18

made by corrupted players are still sound, i.e. the CKEM keys created by the
simulator on behalf of honest parties are indistinguishable from random unless
the statement made by a corrupted player is correct. Moreover, CKEM messages
sent by either party are indistinguishable from random strings.

Secondly, we replace a commit/decommit sequence with a covert commit-
ment c, release of the committed plaintext m (which must be pseudorandom),
and a covert CKEM performed on a statement that there exists decommitment
d (the CKEM receiver’s witness) s.t. d decommits c to m. We use a perfectly
binding commitment so that the notion of language membership suffices to define
this problem. Specifically, we implement the commitment scheme using covert
Cramer-Shoup encryption, which plays two additional roles in the protocol con-
struction: First, it assures non-malleability of each commitment/ciphertext. Sec-
ondly, it allows for straight-line extraction of player’s inputs using the decryption
keys as a trapdoor for the CRS which contains a Cramer-Soup encryption public
key, which allows for security across concurrently executed protocol instances.
Finally, the arithmetic structure of Cramer-Shoup encryption enables an efficient
covert OT and efficient CKEM’s on statements on committed/encrypted values.

These are the basic guidelines we follow, but assuring (concurrent) simulata-
bility of each party in a secure two-party computation, doing so efficiently, and
doing so in the covert setting where the protocol view of each party must look
like a random beacon except (if the admission function evaluates to true) when
the functionality reveals computation outputs, requires numerous adjustments
we must make. We will attempt to explain most of these adjustments in the
technical protocol overview below.

Defining the Garbled Circuit. We first explain how we use the covert gar-
bling procedure GCgen of [19], see Section 4, to enable covert computation of
functionality FC(f,g) assuming the simplified case where the party that garbles
the circuit is Honest but Curious. Our basic design follows the standard Yao’s
two-party computation protocol but instantiates it using covert building blocks,
i.e. party B will use covert garbling on a circuit that corresponds to functionality
FC(f,g) (more on this below), it will send the garbled circuit together with the
input wire keys to A, either directly, for wires corresponding to B’s inputs, or
via a covert OT, for wires corresponding to A’s inputs, and A will evalute the
garbled circuit to compute the output. This will work if the circuit garbled by
B is appropriately chosen, as we explain here.

Step 1: Encoding B’s Output. Note that functionality FC(f,g) has two-sided
output, so we must include an encoding of B’s output in the outputs of the
garbled circuit in such a way that (1) this encoding looks random to A, and (2)
A cannot modify this encoding to cause B to output any other value (except
⊥). Let h be the two-sided output function at the heart of functionality FC(f,g),
namely h(x, y) = (z, v) s.t. (z, v) = f(x, y) if g(x, y) = 1 and (z, v) = (⊥,⊥)
if g(x, y) = 0. Let nx, ny, nz, nv define resp. the length of input x of party A,
input y of party B, output z of A, and output v of B. Let fz, fv satisfy f(x, y) =
(fz(x, y), fv(x, y)). We will encode B’s output in the outputs of the garbled
circuit evaluated by A using the standard way for converting the garbled circuit

19

technique into secure computation of a two-sided function: If ts = {t0i , t1i }i∈[nv]

is the set of garbled circuit keys on the wires encoding B’s output v in the
garbled circuit for h, then the garbled circuit evaluator A computes (z, ts[: v])
where (z, v) = f(x, y) (if g(x, y) = 1). Note that ts[: v] is an encoding of v which
satisfies the above two conditions, and if A sends it to B, B can decode it to v
using set ts. Even though this encoding of B’s output is implicit in the garbled
circuit technique, we will add ts to the inputs and ts[: v] to the outputs of the
function f |g we will garble, because this simplifies our notation and lets us use
the covert garbling procedure GCgen of [19] as a black-box. In other words, we
modify h to h′ which on input (x, (y, ts)) outputs (z, ts[: v]) for (z, v) = f(x, y)
if g(x, y) = 1 and (⊥,⊥) if g(x, y) = 0.

Step 2: Making ⊥ Output Random. Next, note that if B garbles the circuit
for h′ then for any x, y s.t. g(x, y) = 0, party A on input x will distinguish
between a random beacon and an honest party B which executes the protocol
on input y. (This would not be a covert computation of FC(f,g) because FC(f,g)

assures that A(x) cannot distinguish B(y) for y s.t. (y 6=⊥ ∧g(x, y) = 0), from
a random beacon B(⊥).) This is because in the 2nd case the garbled circuit
evaluates to h′(x, y, ts) = (⊥,⊥), and in the 1st case A will interpret random
strings as a garbled circuit and the input wire keys, and those will evaluate to
random outputs. To make the circuit evaluate to random outputs in the case
g(x, y) = 0, we add (nz + nvτ)-bit strings c and d to respectively A’s and B’s
input, we define h′′((x, c), (y, d, ts)) as (z, ts[: v]) for (z, v) = f(x, y) if g(x, y) = 1,
and as c⊕ d if g(x, y) = 0, and we specify that both A and B set input random
c and d strings into the computation. Note that if B is honest then setting the
output to d instead of c⊕d in the g(x, y) = 0 case would suffice, but a malicious
B would be then able to set A’s output in the g(x, y) = 0 case, because A treats
the first nz bits of the circuit output as its local output z.

Step 3: Adding Simulation Trapdoor. Finally, we add a “simulator escape”
input bit u to B’s inputs, and the final circuit we garble, function f |g defined
below, is like h′′ but with condition (g(x, y) ∧ u), in place of condition g(x, y),
for deciding between output (z, ts[: v]) for (z, v) = f(x, y) and output c⊕ d:

f |g((x, c), (y, d, ts, u)) =


(fz(x, y) , ts[: v]) if g(x, y) = 1 ∧ u = 1

where v = fv(x, y) and ts[: v] = [t
v[1]
1 , ..., t

v[nv]
nv]

c⊕ d otherwise,

Here is how we will use this “escape bit” in the g(x, y) = 1 clause in the sim-
ulation: An honest real-world party B will set u = 1, in which case circuit f |g
is identical to h′′. However, a simulator A∗ for the case of corrupt party A, will
use the u = 0 escape clause to aid in its simulation as follows: A∗ will send to A
a garbled circuit for f |g as B would, but before it sends the wire input keys cor-
responding to its inputs, it needs to extract inputs (x, c) which A contributes to
the covert OT. (This is why we base the covert OT of Section 4 on CCA(-covert)
PKE of Cramer-Shoup: The receiver’s first message will be a vector of Cramer-
Shoup encryptions of the bits in string x|c, which the simulator will straight-line
extract using the decryption key as a trapdoor.) Having extracted (x, c) from

20

the covert OT, the simulator A∗, playing the role of an ideal-world adversary
FC(f,g)’s instance identified by sid, sends x to FC(f,g) and receives FC(f,g)’s reply
z. Note that if A∗ sets u = 0 then the only part of its input that matters is
d, because f |g will outputs c ⊕ d to A. Simulator A∗ will then prepare d as
follows: If z 6=⊥, i.e. the input y to the ideal-world party B must be such that
g(x, y) = 1, simulator A∗ picks t′ as a random nvτ string and sets d = c⊕ (z|t′).
In this way the garbled circuit will output c ⊕ d = z|t′. Since t′ is a sequence
of nv random bitstrings of length τ , string z|t′ is distributed identically to the
circuit output z|ts[: v] which A would see in an interaction with the real-world
party B(y). Moreover, A∗ can detect if A tries to cheat the real-world party B
by sending a modified encoding of B’s output: If A sends back the same t′ which
A∗ embedded in the circuit output, then A∗ sends (Output, sid, B,T) to FC(f,g),
and if B sends any other value, in which case the real-world B would reject, A∗
sends (Output, sid, B,F) to FC(f,g).

Notation for Garbled Circuit Wires. We will find it useful to fix a notation
for groups of wires in the garbled circuit f |g depending on the part of the input
they encode. Note that f |g takes input ((x, c), (y, d, ts, u)). We will use W to
denote all the input wires, and we will use X,C, Y,D, T, U to denote the sets
of wires encoding the bits of respectively x, c, y, d, ts, u, where |X| = nx, |Y | =
ny, |T | = 2nvτ, |C| = |D| = nz +nvτ, |U | = 1. We denote the set of wires for A’s
inputs as X = X ∪C and the set of wires for B’s inputs as Y = Y ∪D ∪ T ∪U .
If bitstring s is formed as concatenation of any of the circuit inputs x, c, y, d, t, u
and w ∈W then s[w] denotes the bit of s corresponding to input wire w.

Fully Malicious Case. In a simple usage of the cut-and-choose technique for
garbled circuits, party B would use GCgen(f |g) to prepare n = O(τ) garbled cir-
cuit instances (gc1, ks1), ..., (gcn, ksn), would send (gc1, ..., gcn) to A, who would
choose a random subset S ∈ [n] of n/2 elements, send it to B, who would then
open the coins it used in preparing gci’s for i ∈ S, and proceed with the OT’s
and sending its input wire keys for all gci’s for i 6∈ S. Party A would then check
that each gci for i ∈ S is formed correctly, and it would evaluate each gci for
i 6∈ S. If at least n/4 of these returned the same value w, A would interpret this
as the correct output w = (z, ts[: v]) of f |g, output z locally and send ts[: v] to
B, who would decode it to its output v. In order to enforce consistency of the
inputs which both parties provide to circuit instances {gci}i6∈S , we would have
each party to commit to their inputs to f |g, and then use efficient ZK proofs
that the keys B sends and the bits A chooses in the OT’s for the evaluated
gci instances correspond to these committed inputs. Further, B would need to
commit to each key in the wire key sets {ksi}i∈[n], and show in a ZK proof that
the keys it sends and enters into the OT’s for i 6∈ S are the committed keys. Our
protocol uses each of the elements of this sketch, but with several modifications.

Step 1: ZK→CKEM, Com/Decom→CKEM. First, we follow the above method
using covert commitments, covert circuit garbling, and covert OT. Second, we
replace all the ZK proofs with covert simulation-sound CKEM’s. Next, note that
circuits {gci}i∈[n] in themselves are indistinguishable from random by covertness
of the garbling procedure, but if gci’s were sent in the clear then B could not

21

then open the coins used in the preparation of gci’s for i ∈ S, because coin
rgci together with gci s.t. (gci, ksi) = GCgen(f |g; rgci) forms a publicly verifiable
(commitment,decommitment) pair. We deal with it roughly the way we deal
with general (commitment,decommitment) sequence. In this specific case, we
replace gci’s in B’s first message with covert commitments to both the circuits,

cgci ← Compk(gci; rcgci), and to all the input wire keys, ckw,bi ← Epk(k
w,b
i ; rcki,w,b).

When B sends rgci for i ∈ S, A can derive (gci, {k
w,b
i }w,b) ← GCgen(f |g; rgci),

and now A has a (commitment,message) pair (c,m) = (cgci, gci) and (encryp-

tion,message) pairs (c,m) = (ckw,bi , kw,bi), while B has the randomness r s.t.
c = Compk(m; r) or c = Epk(m; r). Since we implement Com(m) as E(H(m)),
both instances can be dealt with a covert CKEM, with sender A and receiver B,
for the statement that (c,m) is in the language of correct (ciphertext,plaintext)
pairs for Cramer-Shoup encryption, i.e. Le`(pk). Finally, to covertly encode the
random n/2-element subset S chosen by A, we have A send to B not the set
S but the coins rSG which A uses in the subset-generation procedure SG which
generates a random n/2-element subset on n-element set.

Let us list the CKEM’s which the above procedure includes so far. A has
to prove that it inputs into the OT’s for all i 6∈ S the same bits which A
(covertly) committed in its first message. Recall that in the covert OT based
on the Cramer-Shoup encryption (see Section 4) the receiver’s first message is
the encryption of its bit. We will have A then commit to its bits by encrypting
them, and so the proof we need is that the corresponding plaintexts are bits,
and for that purpose we will use a CKEM for language Lbit`(pk) (see language
LA below). Party B has more to prove: First, it needs to prove all the Le`(pk)
statements as explained above (these correspond to items #1, #2, and #3 in
the specification of LB below). Second, B proves that its committed inputs on
wires Y \ D are bits, using CKEM for Lbit`(pk), and that for i 6∈ S it reveals
keys consistent with these committed inputs. Both statements will be handled
by CKEM for language Ldis, see below, which subsumes language Lbit`(pk) (see
item #4 in the specification of LB). Third, for reasons we explain below, B will
not prove the consistency of inputs d it enters into n instances of garbled circuit
f |g, hence for i 6∈ S and w ∈ D it needs only to prove that the revealed key

kw,bi is committed either in ckw,0i or ckw,1i , which is done via CKEM for Ldis′

(see below, and item #5 in the specification of LB). Finally, B proves that it
computes the OT responses otrwi correctly, for i 6∈ S and w ∈ X, on A’s first OT
message ctwi using the keys committed in ckw,0i , ckw,1i , which is done via CKEM
for Lotr (see below, and item #6 in the specification of LB).

Step 2: Input Consistency Across Garbled Circuit Copies. We must ensure
that A and B input the same x and y into each instance of the garbled circuit f |g.
However, the decision process in our cut-and-choose approach is that A decides
whether the outputs wi of n/2 garbled circuits i 6∈ S it evaluates correspond to
(z, ts[: v]) for (z, v) = f(x, y) or to random bits, is that it decides on the former
if n/4 of the wi’s are the same. Hence, to prevent B from getting honest A into
that case if g(x, y) = 0 (or u = 0), A chooses each ci at random, so in that
case the (correctly formed) circuits in [n] \ S output wi = ci ⊕ di values which

22

B cannot control. Consequently, B must also choose each di independently at
random, which is why B does not have to commit to the inputs on wires in D.

Step 3: Straight-Line Extraction of Inputs. As we sketched before, we get con-
current security by using CCA-covert encryption as, effectively, a non-malleable
and straight-line extractable covert commitment. Each player commits to its in-
put bits by encrypting them (except B does not encrypt its inputs on D wires),
and the simulator decrypts the bits effectively contributed by a malicious party.
However, for the sake of efficient CKEM’s we need these bit encryptions to use a
“shifted” form, i.e. an encryption of bit b will be Epk(g

b) and not Epk(b). This is
because the Cramer-Shoup encryption E has group G as a message space. Also, if
bit b is encrypted in this way then we can cast the language Lbit (and languages
Ldis and Ldis′) as an LMI language with an efficient covert CKEM.

Step 4: Encoding and Encrypting Wire Keys. To enable efficient covert CKEM’s
for the languages we need we also modify the garbling procedure GCgen of [19] so
it chooses wire keys kw,b corresponding to A’s input wires, i.e. for w ∈ X, as ran-
dom elements inG, but keys kw,b corresponding to B’s input wires, i.e. for w ∈ Y ,
as random elements in Zp. Note that either value can be used to derive a stan-
dard symmetric key, e.g. using a strong extractor with a seed in the CRS. We use
the same encryption E to commit to these wire keys, but we commit them differ-
ently depending on whose wires they correspond to, namely as ckw,b = Epk(k

w,b)

for w ∈ X, because kw,b ∈ G for w ∈ X, and as ckw,b = Epk(g
kw,b) for w ∈ Y ,

because kw,b ∈ Zp for w ∈ Y . The reason we do this is that values ckw,b for
w ∈ X take part in the CKEM for correct OT response language Lotr, and since
in OT the encrypted messages (which are the two wires keys kw,0 and kw,1) will
be in the base group, hence we need the same keys to be in the base group in
commitments ckw,0, ckw,1. By contrast, values ckw,b for w ∈ Y take part in the
CKEM of language Ldis, for proving consistency of key kw opened by B with
B’s commitment ctw to bit b on wire w. Bit b is in the exponent in ctw, and
using homomorphism of exponentiation, this allows us to cast language Ldis as
an LMI language provided that kw is also in the exponent in ckw,0 and ckw,1.

Step 5: Using CKEM Keys to Encrypt and/or Authenticate. We will run two
CKEM’s: After A’s first message, containing A’s input commitments, we run
a covert CKEM for language LA for correctness of A’s messages, with sender
B and receiver A, denoting the keys this CKEM establishes as KB for B and
K′B for A. Subsequently, B will encrypt its messages under key KB , using covert
encryption (SE,SD) implemented as SE0

K(m) = G|m|(F(K, 0))⊕m and SD0
K(ct) =

G|ct|(F(K, 0)) ⊕ ct, where F is a PRF with τ -bit keys, arguments, and outputs,
G` is a PRG with τ -bit inputs and `-bit outputs. Similarly when B responds
as described above given A’s chosen set S ⊂ [n], we run a covert CKEM for
language LB for correctness of B’s messages, with sender A and receiver B,
establishing keys KA for A and K′A for B, and A will encrypt its subsequent
messages using the same covert encryption. In the last two messages we will use
values F(KB , 1), F(KB , 2), and F(KA, 1) derived from the same CKEM keys as,
resp. a one-time authenticator for A’s message m2

A, an encryption key for B’s
final message m3

B , and a one-time authenticator for that same message.

23

Covert CKEM’s for Linear Map Image Languages. Protocol ΠCOMP uses
CKEM’s for two languages: Language LA which contains correctly formed wire-
bit ciphertexts sent by A, and language LB which contains correctly formed
messages sent by B. Both are formed as conjunctions of LMI languages, hence
both are LMI languages as well. Let (Kg,E,D) be the CCA-covert Cramer-Shoup
PKE. All languages below are implicitly parametrized by the public key pk
output by Kg(1τ) and some label `. (Formally, pk, ` is a part of each statement
in the given language.) Recall that the public key pk specifies the prime-order
group setting (g,G, p).

We first list all the component languages we need to define LA and LB. We
defer to Appendix B for the specification of the mapping between the instances
of each language to instance (C,M) of LMIn,m for some n,m.

Language Le of correct (ciphertext,label,plaintext) tuples for plaintext m ∈ G:

Le`(pk) = {(ct,m) s.t. ct ∈ E`pk(m)}

Language Lbit of “shifted” encryptions of a bit:

Lbit`(pk) = {ct s.t. ∃b ∈ {0, 1} (ct, gb) ∈ Le`(pk)}

Language Ldis is used for proving that a key corresponding to some sender’s
wire in Yao’s garbled circuit is consistent with the two key values the sender
committed in ck0, ck1 and with the bit the sender committed in ct. To cast this
language as a (simple) LMI language we use the “shifted” version of Cramer-
Shoup encryption in these statements, i.e. we encrypt gm ∈ G instead of m ∈ Zp.
In other words, Ldis consists of tuples (m, ct, ck0, ck1) s.t. either (ct encrypts g0

and ck0 encrypts gm) or (ct encrypts g1 and ck1 encrypts gm):

Ldis`,i(pk) = {(ct,m, ck0, ck1) s.t. ∃b∈{0, 1} (ct, gb)∈Le`(pk)∧(ckb, g
m)∈Le[`|i|b](pk)}

Language Ldis′ is a simplification of Ldis which omits checking the constraint
imposed by ciphertext ct.

Language Lotr is used for proving correctness of a response in an Oblivious
Transfer of Aiello et al. [1], formed using procedure OTrsp (see Section 4), which
the sender uses in Yao’s protocol to send keys corresponding to receiver’s wires:

Lotr`(pk) = { (otr, ct, ck0, ck1) s.t. ∃k0, k1, r

(ck0, k0) ∈ Le[`|0](pk) ∧ (ck1, k1) ∈ Le[`|1](pk) ∧ otr = OTrsppk(ct, k0, k1; r) }

We use the above component languages to define languages LA and LB as follows:

LA`A(pk) = {
(
{ctw}w∈X , {ctwi }i∈[n],w∈C

)
s.t. ctw ∈ Lbit[`A|w](pk) for all w ∈ X
and ctwi ∈ Lbit[`A|w|i](pk) for all i ∈ [n], w ∈ X }

24

LB`B (pk) = {
(
{(cgci, H(gci))}i∈[n]

{(kw,bi , ckw,bi)}i∈S,w∈X,b∈{0,1}
{(gk

w,b
i , ckw,bi)}i∈S,w∈Y ,b∈{0,1}

{(kwi , ctw, ckw,0i , ckw,1i)}i6∈S,w∈Y \D
{(kwi , ckw,0i , ckw,1i)}i 6∈S,w∈D
{(otrwi , ctwi , ckw,0i , ckw,1i)}i 6∈S,w∈X

)
s.t.

(1) (cgci, H(gci)) ∈ Le[`B |i](pk) for i ∈ [n]

(2) (ckw,bi , kw,bi) ∈ Le[`B |w|i|b](pk) for i ∈ S, w ∈ X, b ∈ {0, 1}

(3) (ckw,bi , gk
w,b
i) ∈ Le[`B |w|i|b](pk) for i ∈ S, w ∈ Y , b ∈ {0, 1}

(4) (ctw, kwi , ckw,0i , ckw,1i) ∈ Ldis[`B |w],i(pk) for i 6∈ S, w ∈ Y \D

(5) (kwi , ckw,0i , ckw,1i) ∈ Ldis′
[`B |w],i

(pk) for i 6∈ S, w ∈ D
(6) (otrwi , ctwi , ckw,0i , ckw,1i) ∈ Lotr[`B |w](pk) for i 6∈ S, w ∈ X }

Notation in Figure 2. Procedures (Kg,E,D), (GCgen,GCev), Com, SG, (OTrsp,
OTfin), CKEM, (F, G,SE,SD) are as explained above. If P is a randomized al-
gorithm we sometimes explicitly denote its randomness as rP, with the implicit
assumption that it is a random string. Expression {xi ← P}i∈R denotes either a
loop “perform xi ← P for each i in R”, or a set of values {xi}i∈R resulting from
executing such a loop. Letter b always stands for a bit, and expressions {...}b
stand for {...}b∈{0,1}.

Cost Discussions. Since the Covert CKEM’s in ROM of Section 7.1 have vir-
tually the same computation and bandwidth costs as standard ZK proofs for the
same languages, protocol ΠCOMP realizes the concurrent covert 2PC function-
ality FC(f,g) with O(1) rounds, O(τ |C|) bandwidth, O(τ |C|) symmetric cipher
operations, and O(τ |W |) exponentiations, where |C| is the number of gates and
|W | is the size of the input in the circuit for function f |g, and τ is the security
parameter. This places covert computation in the same efficiency ballpark as ex-
isting O(1)-round secure (but not covert) “cut-and-choose over garbled circuits”
2PC protocols. Of course there remains plenty of room for further improvements:
Protocol ΠCOMP uses 2.4 · τ garbled circuit copies instead of τ as the 2PC proto-
cols of [12, 15], it does not use an OT extension, and it does not use many other
bandwidth and cost-saving techniques that were developed over the last decade
to increase the efficiency of standard, i.e. non-covert, 2PC protocols. However,
we see no inherent reasons why, using the techniques we employed here, many
of the same cost-saving techniques cannot be adopted to covert computation.

Here we single out two particular sources of an “efficiency gap” between our
covert 2PC and current secure 2PC protocols that perhaps stand out. First,

25

PG(1τ) picks (pk, sk)← Kg(1τ) and sets π ← pk.

B1: on input (InputB, A, y, sid) and `B = (B,A, sid):

set {(gci, {k
w,b
i }w∈W,b)← GCgen(f |g; rgci)}i∈[n] and {cgci ← Com

[`B |i]
pk (gci)}i∈[n];

set {ckw,bi ← E
[`B |w|i|b]
pk (kw,bi)}w∈X,i∈[n],b and {ckw,bi ← E

[`B |w|i|b]
pk (gk

w,b
i)}w∈Y ,i∈[n],b;

send m1
B=({cgci}i∈[n], {ckw,bi }i∈[n],w∈W,b) to A.

A1: on input (InputA, B, x, sid) and `A = (A,B, sid), and message m1
B from B:

sample S ← SG(n; rSG), pick ci ← {0, 1}nz+nvτ for i∈[n];

set xA ← ({ctw ← E
[`A|w]
pk (gx[w]; rctw)}w∈X , {ctwi ← E

[`A|w|i]
pk (gci[w]; rctw,i)}w∈C,i∈[n]);

set wA ← (x, {ci}i∈[n], {rctw}w∈X , {rctw,i}w∈C,i∈[n]), send m1
A = (rSG, xA) to B.

A,B run CKEMLA(`A)(pk) on xA and A’s input wA; let B output KB and A output K′B .

B2: on KB and rSG received in m1
A from A:

re-generate S ← SG(n; rSG), set u = 1, pick t← {0, 1}2nvτ and {di ← {0, 1}nz+nvτ}i∈[n];

set ctB← {ctw←E
[`B |w]
pk (gy[w])}w∈Y \D where y = y|t|u;

set {kwi ←k
w,yi[w]
i }w∈Y ,i 6∈S where yi = y|t|u|di, and {ksBi ←{kwi }w∈Y }i 6∈S ;

set {otrwi ← OTrsppk(ctwi , k
w,0
i , kw,1i)}w∈X,i6∈S , where ctwi = ctw for w∈X;

send m2
B = SE0

KB [ctB, {rgci }i∈S , {gci, ksBi , {otrwi }w∈X}i 6∈S] to A.

A2: on K′B and m2
B :

set (ctB, {rgci }i∈S , {gci, ksBi , {otrwi }w∈X}i6∈S)← SD0
K′B

(m2
B);

set {ksAi ← {kwi ← OTfinpk(xi[w], rctw,i, otrwi)}w∈X}i6∈S , for xi = x|ci and rctw,i = rctw for w∈X;

set (gci, {k
w,b
i }w,b)← GCgen(f |g; rgci) for i∈S and wi ← GCev(gci, (ksAi ∪ ksBi)) for i6∈S.

A,B run CKEMLB(`B)(pk) on xB and B’s input wB for xB = ({ctw, kwi , ckw,0i , ckw,1i }i 6∈S,w∈Y \D,

{kwi , ckw,0i , ckw,1i }i6∈S,w∈D, {gci, cgci}i∈[n], {ckw,bi , k
w,b
i }i∈S,w∈W,b, {otrwi , ctwi , ckw,bi }i 6∈S,w∈X,b),

and wB containing input y and randomness of B. Let A output KA and B output K′A.

A3: If ∃R⊂[n] s.t. |R|=n/4 and ∃w s.t. ∀i∈R wi = w then set (z|t1|...|tnv):=w and m2
A ←

SE0
KA(F(K′B , 1), t1, ..., tnv); Otherwise set z:=⊥ and m2

A ← {0, 1}τ(nv+1). Send m2
A to B.

B3: Set (τ, t1, ..., tnv) ← SD0
K′A

(m2
A). Parse t as [t01|t11|...|t0nv |t

1
nv]. If τ=F(KB , 1) and tj ∈

{t0j , t1j} for all j∈[nv] then set m3
B ← F(KB , 2) ⊕ F(K′A, 1) and ∀j set v[j] := b s.t. tj = tbj ;

Otherwise set v:=⊥ and m3
B ← {0, 1}τ . Send m3

B to A and output (Output, v).

A4: If m3
B 6= F(K′B , 2)⊕ F(KA, 1) then set z:=⊥. Output (Output, z).

Fig. 2. Protocol ΠCOMP for Concurrent 2-Party Covert Function Computation FC(f,g)

26

protocol ΠCOMP exchanges O(τ) garbled circuits instead of O(κ) where κ is the
statistical security parameter. We could do the latter as well, but the result
would realize a weaker functionality than FC(f,g) defined in Section 3. Namely,
with probability 2−κ the functionality would allow the adversary to specify any
function on the joint inputs, and this function would be computed by the honest
party. Secondly, circuit f |g which is garbled in protocol ΠCOMP increases the
number of input wires of the underlying circuit for FC(f,g) by O(nτ) where n
is the bitsize of the output of function f . However, since this extension in the
input wire count was done for conceptual simplicity (see a note on Encoding B’s
Output on page 19), it might be avoidable with a more careful analysis.

Theorem 1. Protocol ΠCOMP in Figure 2 realizes the concurrent 2-party covert
computation functionality FC(f,g) in the CRS model, assuming (Kg,E,D) is a
covert CCA public key encryption, F is a PRF, G is a PRG, (GCgen,GCev) is a
covert garbling scheme, (OTreq,OTrsp,OTfin) is a covert OT, and CKEMLA(pk)

and CKEMLB(pk) are covert zero-knowledge and simulation-sound CKEM’s for
languages resp. LA and LB.

Proof. In Figures 3 and 4 we specify the algorithm of the ideal-model adver-
sary A∗, i.e. the simulator, which interacts with functionality FC(f,g) and the
real-world adversary Adv in such a way that for every efficient Adv and environ-
ment Z, the environment’s view of an interaction with Adv and honest players
participating in protocol ΠCOMP is indistinguishable from Z’s view of an inter-
action with A∗ (who locally interacts with a copy of Adv) and honest dummy
players interacting via functionality FC(f,g). We split A∗’s into two figures for
presentation convenience, but these are two parts of the same algorithm: Figure
3 describes how A∗ handles an interaction with FC(f,g) which pertain to honest
ideal-world party B, while Figure 4 describes how A∗ handles an interaction
with FC(f,g) which pertain to honest ideal-world party A. The A∗ code in these
figures assumes that the CRS is chosen by setting (pk, sk)← Kg(1τ) and π ← pk,
and that value sk is given to A∗ as the simulation trapdoor.

Below we split the security argument, i.e. that Z’s interaction with real-world
honest players and Adv is indistinguishable from an interaction with dummy
ideal-world honest players and A∗, into four parts, distinguishing by two types
of honest parties, A and B, and breaking each of these cases into two subcases
depending on whether their inputs, resp. x and y, are bitstrings in {0, 1}nx
resp. {0, 1}ny , or the non-participation signals ⊥. In each case we show that
the interaction between Adv and an honest party following ΠCOMP’s session with
identifier sid is indistinguishable from the corresponding session executed by
A∗ interacting with FC(f,g) and a dummy (ideal-world) honest party. In the
arguments below we call an interaction of Z (for fixed Adv) with the algorithms
we specify a security game, denoted Gi, and we write Gi ≈ Gj to denote that
Z’s output in Gi is indistinguishable of Z’s output in Gj .

Case 1A, honest B on input y∗ ∈ {0, 1}ny : Let G0 be the interaction of Z
and Adv in the real world where player B gets input (InputB, A, y∗, sid) from Z

27

On behalf of honest B, on trapdoor sk and input (InputB, sid, A,B) from FC(f,g):

(1) compute {cgci, {ckw,bi }w,b}i∈[n] and send to A as B does in step B1;

(2) on m1
A = (rSG, xA) for xA = ({ctw}w∈X , {ctwi }i,w∈C) from A in A1, decrypt all ct’s

using sk to obtain x, c1, ..., cn, overwrite x:= ⊥ if any decryption returns ⊥ or not a
bit, and send (InputA, B, x, sid) to FC(f,g) and receive (Output, z, sid) from FC(f,g);

If x =⊥ then in steps (4,6) below pick m2
B ,m

3
B at random and in step (5) run Rec$(τ).

(3) run Snd(π, (xA, `A)) in CKEMLA(`A)(pk), let KB be Snd’s output;

(4) set y:=0ny , u:=0, t ← {0, 1}2nvτ ; if z =⊥ then ∀i pick di ← {0, 1}nz+nvτ ; o/w
set t′ ← {0, 1}nvτ and di ← ci ⊕ (z|t′) ∀i; compute ctB and {ksBi , {otrwi }w}i 6∈S as in
step B2, and encrypt them under KB to A with {rgci }i∈S and {gci}i 6∈S from step (1);

(5) run Rec(π, (xB , `B),wB) in CKEMLB(`B)(pk) on inputs set as in ΠCOMP, output K′A;

(6) on m2
A from A, decrypt it as τ |t1|...|tnv using K′A; if τ = F(KB , 1) and t1|...|tnv = t′

then send m3
B = F(KB , 2) ⊕ F(K′A, 1) to A and (Output, sid, B,T) to FC(f,g), and

otherwise send random m3
B in {0, 1}τ to A and (Output, sid, B,F) to FC(f,g).

Fig. 3. Part 1 of simulator A∗, for ΠCOMP sessions with honest party B.

for y∗ 6=⊥. Let G1 be a modification of G0, which uses the private key sk corre-
sponding to the key pk in the CRS, to decrypt wire-input ciphertexts {ctw}w∈X ,
{ctwi }i∈[n],w∈C which Adv sends in message m1

A to B on this session, and if any
of these ciphertexts does not decrypt to a bit then G1 sets x:= ⊥, at the end of
CKEMLA(pk) it picks KB as an independent random string, and then it continues
computation as B in protocol ΠCOMP. G1 ≈ G0 by the simulation soundness of
CKEMLA(pk): The reduction uses sk, in particular to test whether xA defined by
m1
A on this session is in LA. If xA 6∈ LA, which is the only case G1 differs from

G0, then if Z distinguishes between G0 and G1 then the reduction distinguishes
between the real and the random key KB = KS output by Snd(π, (xA, `A)).

Let G2 modify G1 s.t. B acts like a random beacon on a session where x =⊥
as above, i.e. it sends random strings as messages m2

B ,m
3
B and runs Rec$(τ) in

CKEMLB(pk). G2 ≈ G1 because, (1) by the PRF property of F, the key used in
encryption SE in m2

B is indistinguishable from value F(KB , 2) which is used as
a one-time pad in m3

B , so we can replace them by independent random strings,
which in particular means that m3

B can be a random string, (2) by the PRG
property of G, m2

B can be replaced by a random string, and (3) since G2 doesn’t
use Rec’s output K′A from CKEMLB(pk), by covert zero-knowledge of this CKEM

we can replace Rec with Rec$(τ). Note that G2 acts like A∗ if x= ⊥.

We will consider a modification which changes values y, {di}, t, v which B
inputs into garbled circuit computation. Let D denotes the distribution of the
circuit inputs (x, y) = ((x, {ci}), (y, {di}, t, v)) in G2 as a function of the random-
ness of Z, Adv and G2: The (Adv, env) together specify x, {ci}, y∗, we assume
that x 6=⊥, and G2 sets y:=y∗, v:=1, and t and all di’s are random strings. Let
D′ be an alternative distribution defined as follows: Given (x, {ci}) decrypted

28

from m1
A and y∗ specified by Z (and assuming x 6=⊥), set y:=0ny , v:=0, pick

t at random in {0, 1}2nvτ , and if g(x, y∗) = 0 then pick each di at random in

{0, 1}nz+nvτ , but if g(x, y∗) = 1 then let (z, v):=f(x, y∗), define t′j :=t
v[j]
j for

each j∈[nv] where t = t01|t11|...|t0nv |t
1
nv (in other words t′j ’s are chosen to encode

the bits of B’s output v given the authenticator values B chose in t), and let
di = ci ⊕ (z|t′1|...|t′nv) for each i.

Consider game G3 which is like G2 except the ciphertexts ctB = {ctw}w∈Y \D
are computed as encryptions of (y, t, v) chosen according to D′ instead of D, but
the keys in ksBi are still chosen according to y chosen as in G2. Since B in G3 will
not have correct witnesses in CKEMLB(pk), it will run TRec using trapdoor sk in
that step. G3 ≈ G2 because, (1) by the simulation soundness of CKEMLB(pk), we
can replace Rec by TRec in game G2, at which point the game does not use the
randomness in ciphertexts in ctB, and (2) by the CCA security of cPKE, we can
change the domain in which the plaintexts (y, t, v) in these ciphertexts are drawn,
from D to D′: The reduction will use the decryption oracle to decrypt ciphertexts
sent by Adv in m1

A, but these have different labels than the ciphertexts in ctB,
and it will also use this decryption oracle to implement TRec, but again on
ciphertexts with different labels. (The reduction will also use sk to implement
the code of A∗ on protocol sessions with other sid’s, but these ciphertexts will
therefore also pertain to different labels.)

Consider G4 in which not only the plaintexts in ctB are chosen according
to D′, but also B picks the key sets ksBi = {kwi }w∈Y using values (y, {di}, t, v)
chosen in D′ instead of in D. G4 ≈ G3 by reduction to B’s security in Yao’s
garbled circuit procedure GCgen, because the distribution of outputs of the n
copies of circuit f |g on inputs defined by x, y (conditioned on x 6=⊥) is the same
for x, y sourced in D and in D′: Let wi = f |g(x, ci, y, di, t, v) for i∈[n]. In the
case case g(x, y∗) = 0 in G3 (i.e. circuit inputs are drown from D) we have
wi = ci⊕di for each i, but in the same case in G4 we have wi = ci⊕di for each i
as well because v is set to 0. (Note that it does not matter if g(x, 0ny) = 0, hence
we can set y:=0ny in G4: This is why we add the “simulation bit” v to circuit
f |g.) In the case g(x, y∗) = 1, in G3 we have wi = (z|t1|...|tnv) for each i where
t1|...|tnv is a random string which encodes B’s output v for (z, v) = f(x, y∗).
But the same happens in G′′ in this case: Since v = 0, we have wi = ci ⊕ di for
each i, but since di = ci⊕ (z|t′1|...|t′nv), we have wi = z|t′1|...|t′nv for each i, where
t′1|...|t′nv are also random strings which encode v for (z, v) = f(x, y∗).

Let G5 be like G4 except it runs Rec instead of TRec in CKEMLB(pk). Note

that G5 has all the witnesses it needs because G5 forms ciphertexts ctB and key
sets ksBi in a consistent way, but using values y chosen from D2 rather than D1.
G5 ≈ G4 because of covert zero-knowledge of CKEMLB(pk).

Consider G6 which modifies G5 by changing how B computes its output in
step B3 as follows: If m2

A decrypts under KA to τ |t′1|...|t′nv for τ = F(KB , 1) then
output v, otherwise output ⊥. G6 ≈ G5 by security of the Yao’s garbled circuit
procedure GCgen and the OT scheme (OTreq,OTrsp,OTfin), because garbled
circuit evaluation hides everything about B’s inputs except the circuit output,
and that contains only values t′1, ..., t

′
nv in t. In particular Adv cannot return any

29

other value in t, except for negligible probability, and thus B’s output is either
v or ⊥ except for negligible probability

Finally, note that G6 proceeds like the simulator A∗ interacting with FC(f,g)

and ideal-world honest B who receives (InputB, A, y∗, sid) from Z: The only dif-
ference is that G5 evaluates g(x, y∗) and f(x, y∗) locally, while in the simulation
A∗ sends x to FC(f,g) and both functions are evaluated by FC(f,g). However, note
that FC(f,g) replies to A∗ with z =⊥ if and only if g(x, y∗) = 0, and that (1)
A∗ follows the same procedure on z =⊥ as G6 does if g(x, y∗) = 0, and (2) A∗
follows the same procedure on z = fz(x, y

∗) 6=⊥ as G6 does using z = fz(x, y
∗)

when g(x, y) = 1. Moreover, in both cases B can output only v = fv(x, y
∗) or

⊥, and the condition which controls which is the case is the same in both in-
teractions, i.e. B outputs v if and only m3

A decrypts to F(KB , 1)|t′1|...|t′nv . Hence
we conclude that Z’s view of an interaction with honest B on input y∗ 6=⊥ is
indistinguishable from its view of an interaction with A∗ and an ideal dummy
player B communicating through FC(f,g).

Case 1B, honest B on input y∗ =⊥: Let G0 be the interaction of Z and Adv in
the real world where player B gets input (InputB, A,⊥, sid) from Z. Note that in
this case B is a random beacon, i.e. its messages m1

B ,m
2
B ,m

3
B are random strings

of the appropriate length, and we will assume for notational convenience that B
follows Snd$(τ) in CKEMLA(pk) and TRec$(τ) in CKEMLB(pk). Also B always sends
⊥ back to Z as its computation “output”.

Let G1 be a modification of G0 in which B forms m1
B as in the case y∗ 6=⊥,

i.e. it forms {gci, {k
w,b
i }w,b}i using GCgen(f |g) and forms commitments {cgci}

and wire-key encryptions {ckw,bi } correctly. G1 ≈ G0 because the rest of G1’s
computation does not involve these values, this follows from the covertness of the
symmetric encryption used in ciphertexts tables by GCgen and by the covertness
of encryption E (commitment Com is an instance of E).

Let G2 be a further modification that runs Snd on statement in m1
A instead

of Snd$(τ) in CKEMLA(pk). G2 ≈ G1 by covert soundness of CKEMLA(pk).

Let G3 be a further modification which in step B2 sets y:=0ny , v:=0, and
picks t and each di as random bitstrings and forms ctB in m2

B as encryptions of
y, t, u instead of as random strings. G3 ≈ G2 by covertness of encryption cPKE.

Let G4 be a modification where m2
B includes the correct sets {rgci }i∈S and

{ksBi , {otrwi }w}i 6∈S . G4 ≈ G3 because rgci ’s and the wire keys in ksBi ’s are random
(given commitments cgci and ciphertexts cki), and because OT is sender-covert,
given that the OTrsp payloads kw,0i , kw1

i for w ∈ X are random in G.

The next modification, G5, computes everything in m2
B correctly, including

the garbled circuits {gci}i6∈S . By covertness of Yao’s garbled circuit generation
GCgen (and sender-security of the OT scheme), each circuit gci and a set of keys
ksBi , ksAi where ksAi is implied by {otrwi }w, adversary’s advantage in distinguish-
ing (gci, ksBi , ksAi) from random is at most negligibly greater than an advantage
in distinguishing the circuit output f |g(x, ci, y, di, t, u) from random. However,
f |g(x, ci, y, di, t, u) = ci⊕di because u = 0, and since each di is chosen at random
by G5, these outputs are random strings, hence it follows that G5 ≈ G4.

30

In the next modification, G6, we replace TRec$(τ) with TRec in CKEMLA(pk),
and G6 ≈ G5 by covert zero-knowledge of CKEMLA(pk).

Next, in G7 we will follow algorithm B in step B3 (note that at this point
we have all the inputs used in this step, including key K′A output by TRec in
CKEMLA(pk)), except that G7 always outputs m3

B chosen at random, i.e. even if
the ti’s decrypted from m2

A satisfy the constraint tj ∈ {t0j , t1j} where t0j , t
1
j are

parts of t which was chosen in step B2 (note that this is the only case where
B would output a non-rejection and form m3

B in a non-random way). We have
that G7 ≈ G6 by security of the Yao’s garbling circuit procedure, because the
outputs of f |g(x, ci, y, di, t, u) in the case u = 0 contain no information about t
(and neither is t used in any other computation of G7), the probability that this
non-rejection constraint is satisfied is negligible.

In modification, G8, we replace TRec in CKEMLB(pk) with Rec running on
witnesses created in steps B1 and B2: Note that at this point B computes all
the values in m1

B ,m
2
B correctly, except that it picks its circuit inputs y, {di}, t, u

as the simulator A∗ does in the case FC(f,g) returns z =⊥. We have G8 ≈ G7

by covert zero-knowledge of CKEMLB(pk), since covert zero-knowledge implies
indistinguishability of an interaction with TRec and Rec and the keys K they
output.

Next, let G9 be a modification of G8 where in step B3 we remove the clause
introduced in game G7 i.e. in game G9 message m3

B is formed as in protocol
ΠCOMP in case ti’s decrypted from m2

A satisfy the constraint tj ∈ {t0j , t1j} where

pairs t0j , t
1
j form string t. However, by the same argument from the security of

Yao’s garbling procedure, we have that t is indistinguishable to Adv, hence the
probability of this clause acting is negligible, and consequently G9 ≈ G8.

Note that G9 proceeds like the simulator A∗ interacting with FC(f,g) and
ideal-world honest B who receives (InputB, A,⊥, sid) from Z: Game G9 simply
assumes that z =⊥, but FC(f,g) sends z =⊥ to A∗ in case the input of the ideal-
world player B is ⊥. Also, in G9 player B always outputs ⊥, but this is also the
output that the ideal-world player B outputs in interaction with FC(f,g) if its
computation input is ⊥.

Case 2A, honest A on input x∗ ∈ {0, 1}nx : Let G0 be the interaction of Z
and Adv in the real world where A gets input (InputA, B, x∗, sid) for x∗ 6=⊥.

Let G1 be a modification of G0, which in step A2 executes as follows: Use sk
corresponding to pk in the CRS to decrypt each wire-input ciphertext ctw in ctB

sent by Adv in m2
B , and to obtain each bit of values y, t, u which Adv effectively

inputs into each garbled circuit computation. Overwrite y:= ⊥ if any decryption
output is not a bit or if u = 0. Also, do not use GCev to compute {wi}i 6∈S , but
instead, pick each wi at random if g(x∗, y) = 0 or u = 0, and otherwise set each
wi to w = z|t1|...|tnv where z = fz(x

∗, y) and t1, ..., tnv are the authenticator
values in t which encode v = fv(x

∗, y). Otherwise G1 performs all other steps as
G0. G1 ≈ G0 by the security of the Yao’s garbling circuit procedure and by the
covert simulation-soundness of CKEMLB(pk): To see this consider first Adv which

implants errors in at least n/4 of the circuits, i.e. in (gci, {k
w,b
i }w,b) committed

in m1
B for all i ∈ S′ for S′ ⊂ [n] s.t. |S′| ≥ n/4. By the simulation soundness

31

On behalf of honest A, on trapdoor sk and input (InputA, sid, A,B) from FC(f,g):

(1) on m1
B = {cgci, {ckw,bi }w,b}i∈[n] from B, set x:=0nx and ci ← {0, 1}nz+nvτ ∀i,

compute xA:=({ctw}w∈X , {ctwi }i,w∈C), wA and message m1
A as A does in step A1;

(2) run Rec(π, (xA,wA, `A)) in CKEMLA(`A)(pk), let K′B be Rec’s output;

(3) on m2
B from B, decrypt it using K′B to get ctB, {rgci }i∈S , {gci, ksBi , {otrwi }w∈X}i 6∈S ;

decrypt each ctw in ctB using sk to obtain each bit of y, t, u, overwrite y:= ⊥ if any
decryption output is not a bit or u = 0; and send (InputB, A, y, sid) to FC(f,g) and
receive (Output, v, sid) back;

(4) compute (gci, {k
w,b
i }) ← GCgen(f |g; rgci) for i∈S to complete statement xB , and

run Snd(π, (xB , `B)) in CKEMLB(`B)(pk) on xB as in ΠCOMP, let KA be Snd’s output;

(5) if v =⊥ then set release?:=F and set m2
A as a random string, otherwise set

release?:=T and m2
A ← SE0

KA
(F(K′B , 1), t1, ..., tnv) where ti’s encode v received from

FC(f,g) given t decrypted from ctB above; send m2
A to B.

(6) given m3
B , if m3

B 6= F(KB , 2) ⊕ F(K′A, 1) then (re)set release?:=F; send
(Output, sid, A, release?)to FC(f,g).

Fig. 4. Part 2 of simulator A∗, for ΠCOMP sessions with honest party A.

of CKEMLB(pk) (note that the reduction testing the soundness of CKEMLB(pk)

must have access to the trapdoor sk corresponding to the public parameters
π = (pk, R)) and by binding of commitment Com, we have that except for
negligible probability key KA output by this CKEM is indistinguishable for Adv,
and therefore in this case G1 ≈ G0 because m2

A is pseudorandom to Adv and
m3
B can satisfy A’s non-abort constraint with at most negligible probability. We

are left with the case that there are errors in fewer than n/4 garbled circuits, in
which case for every S the majority of circuits evaluated in step A2 are correct.
By a similar argument as above we can discount the case that B forms any
ciphertext in ctB incorrectly or cheats in any other part of messages m1

B ,m
2
B ,

because otherwise G1 ≈ G0 because KA would be pseudorandom to Adv. We are
left with the case that keys ksBi and OT response vectors otri encrypted in m2

B

are formed correctly for i 6∈ S, in which case for at least n/4 indexes i 6∈ S we
have that value wi which A computes in G0 is equal to f |g(x∗, ci, y, di, t, u) for
some di and y, t, u encrypted in ctB. Now, note that if g(x∗, y) = 0 or u = 0 then
wi = ci ⊕ di. Since each ci is random and visible to Adv only in ciphertexts in
{ctwi }w∈C , which are non-malleable, hence in particular encryption of y in ctB

cannot be related to ci’s, values wi are indistinguishable from random in this
case. If, on the other hand, g(x∗, y) = 1 and u = 1 then wi = (z|t1|...|tnv) for
ti’s which encode v (given t encrypted in ctB) for (z, v) = f(x∗, y). Finally, note
that G2 forms wi’s exactly the same way in both cases.

Consider a modification G2 of G1 which replaces Rec in CKEMLA(pk) with
TRec, and uses K′A it outputs in the subsequent steps. We have that G2 ≈ G1

by covert zero-knowledge of CKEMLA(pk).

32

Consider a modification G3 of G2 where ciphertexts {ctw}w∈X in m1
A are

formed by encrypting x = 0nx . Since G2 doesn’t use witnesses in this encryption
in CKEMLA(pk), it follows that G3 ≈ G2 by the reduction to CCA security of
encryption cPKE. (Note that this reduction needs to decrypt the ciphertexts
sent by Adv in m2

B , but that these ciphertexts pertain to different labels than
those in m1

A, as well as the ciphertexts pertaining to sessions with other sid’s,
but these ciphertexts will also have different labels.)

Note that gameG3 proceeds like the simulatorA∗ interacting with FC(f,g) and
ideal-world honest A who receives (InputA, B, x∗, sid) from Z for x∗ ∈ {0, 1}nx .
The difference between G3 and A∗ are only syntactic: G3 evaluates g(x∗, y) and
f(x∗, y) locally (setting y to ⊥ if u = 0 beforehand), while in the simulation
A∗ performs the same y := 0 overwrite if u = 0, sends y to FC(f,g), and FC(f,g)

evaluates both functions and sends v = fv(x
∗, y) to A∗, but in the end both

processes set pair z, v on inputs (x∗, {ci},y, {di},t, u) in the same way. Secondly,
G3, case v 6=⊥, sets all wi’s for i 6∈ S as (z|t1|...|tnv) for ti’s which encode v,
but this means that message m2

A in G3 is set to a random string if v =⊥ and
to encryption under KA of max |t1|...|tnv for τ = F(K′B , 1) if v 6=⊥. Note that
A∗ sets m2

A in exactly the same way. Finally, game G3 outputs z determined by
f |g or ⊥ based on the same condition, i.e. whether m3

B = F(K′B , 2) ⊕ F(KA, 1),
which decides whether FC(f,g) outputs z or ⊥ to the dummy ideal-world player
A in interaction with A∗.

Case 2B, honest A on input x∗ =⊥: Let G0 be the interaction of Z and Adv
in the real world where player A gets input (InputA, B,⊥, sid) from Z. Note that
in this case A is a random beacon, i.e. its messages m1

A,m
2
A are random strings

of the appropriate length, and we will assume for notational convenience that A
follows TRec$(τ) in CKEMLA(pk) and Snd$(τ) in CKEMLB(pk). Also A always sends
⊥ back to Z as its computation “output”.

Let G1 be a modification of G0 in which A sets x:=0nx and ci ← {0, 1}nz+nvτ

for all i and then forms ciphertexts {ctw}w∈X and {ctwi }i,w∈C in m1
A by encrypt-

ing the bits of x and ci’s as in step (1) of A∗. We have that G1 ≈ G0 by the
reduction to CCA security of encryption cPKE. (Note that this reduction will
need to decrypt ciphertexts on sessions with other sid’s, but these ciphertexts
will pertain to different labels.)

Let G2 be like G1 but in CKEMLA(pk) it runs TRec (but G2 ignores TRec’s
local output K′B). G2 ≈ G1 by covert zero-knowledge of CKEMLA(pk).

Let G3 be a modification of G2 which in step A2 uses K′B output by TRec in

CKEMLA(pk) to decrypt ctB, {rgci }i∈S , {gci, ksBi , otri}i 6∈S from m2
B , and completes

xB by computing (gci, {k
w,b
i }) ← GCgen()f, g(rgci) for i ∈ S. This creates no

difference in Adv’s view.
Let G4 replace TRec with Rec in TCKEMCorA, and uses K′B it outputs in

step A2. G4 ≈ G3 by covert zero-knowledge of CKEMLA(pk).
Let G5 be like G4 but in CKEMLB(pk) it runs Snd(π, (xB , `B)) on statement

xB computed in step A2. G5 ≈ G4 by covert zero-knowledge of CKEMLB(pk).
Note that G5 proceeds like the simulator A∗ interacting with FC(f,g) and

ideal-world honest A who receives (InputA, B,⊥, sid) from Z: Game G5 is like

33

A∗ simplified by the assumption that FC(f,g) returns (Output, v, sid) to A∗ for
v =⊥, in which case m3

A is set as random. However, this is indeed the case for
A’s session which was started by Z on input x∗ =⊥. Also, note that in G5 player
A always outputs ⊥, but this is also the output of the ideal-world player A in
interaction with FC(f,g) if x∗ =⊥.

7 Covert CKEM’s for Linear Map Image Languages

We show two types of covert CKEM’s for Linear Map Image languages: In Sec-
tion 7.1 we show that covert CKEM proposed proposed in [13] for any language
with a Σ-protocol, i.e. a 3-round public-coin honest-verifier ZK proof systems
satisfying special soundness and zero-knowledge properties, is also covert zero-
knowledge and simulation-sound in the Random Oracle Model (ROM). Since
all Linear Map Image language have such Σ-protocols, this implies a covert
zero-knowledge and simulation-sound CKEM for all such languages in ROM.
Then in Section 7.2 we show that the standard-model (assuming CRS) zero-
knowledge and simulation-sound CKEM proposed by Benhamouda et al. [2] for
any language L in LMI becomes covert zero-knowledge (with sender simulation-
covertness) and simulation-sound after a simple modification, for any LMI lan-
guage defined by matrix M with a full row rank. We note that all languages
used in Section 6 have full row rank matrices, and their matrix specifications
are shown in Appendix B. Note also that if rows of matrix M satisfy a public
linear constraint then the verifier could reduce the matrix by eliminating linearly
dependent rows, but this is the case only if the linear constraint is public.

Efficiency Comparison. Both CKEM systems, the ROM-based one in Section
7.1 and the standard-model one in Section 7.2, are two-round protocols, but the
standard- model CKEM uses at least twice more computation and bandwidth
than the ROM-based one. Specifically, for language LMIn,m, the ROM-based
CKEM takes n multi-exp’s in (up to) m+1 bases for both S and R, and it
sends (a covert encoding of) m elements in Zp and 3 group elements, while the
standard-model CKEM takes 2m+16 and 2n+14 multi-exponentiations with
(up to) 2n+12 and 2m+14 bases respectively for S and R, and it sends (a covert
encoding of) 2n+2m+26 group elements.

7.1 Covert CKEM’s in ROM for Languages with Σ-Protocols

A paper on covert mutual authentication [13] used a compiler which converts
a Σ-protocol (a three-round public-coin HVZK system) with some additional
properties for a given language L into a CKEM for L which satisfied the no-
tion of CKEM covertness defined in [13]. The CKEM covertness of [13] are
incomparable to the ones we define here: On one hand, the covert CKEM no-
tion of [13] does not include covert simulation soundness (or even the existence
of a trapdoor receiver), which we require for composition of CKEM’s within a
concurrent secure computation protocol. On the other hand, the covert CKEM
notion of [13] includes receiver covertness and strong sender covertness, which is

34

a covert counterpart of strong soundness of ZK proofs, i.e. it implies that that
an efficient extractor can extract witness w from a receiver who distinguishes
interacting with the sender (including the resulting key) from interacting with
a random beacon. This stronger covertness property of [2] implies covert sound-
ness of CKEM defined here, but not covert simulation-soundness. However, we
show below that the RO-model variant of the CKEM construction of [13] does
satisfy covert simulation-soundness as well. Note also that every linear map im-
age language in a prime-order group has the Σ-protocols with the additional
properties required in this construction.

In Figure 5 we show the ROM version of the CKEM of [13] for an LMI
language. Assume that functions φ, γ map instance,witness pairs of language L
into instances x = (C,M) ∈ Gn×Gn×m and witnesses w ∈ Zmp of LMIn,m. Recall
a Σ-protocol for LMIn,m: The prover picks random w′ ← Zmp , sends D = w′ ·M
to the verifier, and on verifier’s challenge e chosen uniformly in Zp, it outputs
z = w′ + ew (multiplication by a scalar a vector addition in Zmp). The verifier
accepts if D = z·M−eC. Note that if C = w·M then D = (w′+ew)·M−ew·M =
w′ ·M . Special soundness follows from the fact that two accepting transcipts
(z, e) and (z′, e′) for e′ 6= e imply that D = z ·M − eC = z′ ·M − e′C, which
means that C = w ·M for w = (e− e′)−1 · (z − z′). Special honest-verifier zero-
knowledge simulator picks random z ← Zmp and random e ← Zp and computes
D = z ·M − eC, which perfectly matches the honest verifier’s view of the real
prover.

Consider a simplified covert commitment of Section 4, namely Comg1,g2(m)
picks r ← Zp and outputs cmt = (cmt1, cmt2) = ((g1)r, (g2)r(g1)m). This com-
mitment is perfectly binding for m ∈ Zp, and it is hiding and covert under
the DDH assumption assuming random g1, g2. Note that an SPHF for language
Lc = {(cmt,m) | cmt = Comg1,g2(m)} is a well-known SPHF for the language
of Diffie-Hellman tuples, i.e. KG(g1, g2) picks hk = (hk1, hk2) ← Z2

p and sets

hp = (g1)hk1(g2)hk2 , Hash((cmt,m), hk) outputs (cmt1)hk1(cmt2/(g1)m)hk2 , and
PHash((cmt,m), r, hp) outputs (hp)r. Let H be a hash function (modeled as a
random oracle in the proof) with range Zp. Let Hi(·) stand for H(i, ·).

On inputs (g1, g2) and (C,M) = φ(x), and on R’s input w s.t. C = w ·M :

R: Pick w′ ← Zmp and r ← Zp, set D = w′ · M , cmt ← Comg1,g2(H2(D); r),
e = H1(x, cmt), z = w′ + ew, and send (cmt, z) to S.

S: Set D = z ·M − eC for e = H1(x, cmt), generate (hk, hp) ← KG(g1, g2), send
hp to R and output KS = Hash((cmt,m), hk) for m = H2(D).

R: Output KR = PHash((cmt,m), r, hp) for m = H2(D).

Fig. 5. ROM version of CKEM of [13] adopted to LMI Languages

Generality and Costs. The cost of the above CKEM is the cost of the underly-
ingΣ-protocol plus 2 exponentiations for R and 3 for S. Note that messages cmt, z

35

and hp exchanged in this protocol can be covertly encoded at low additional cost
(see Section 2) because they are random in domains respectively G2, Zmp , and
G. Indeed, the ROM version of the CKEM of [13] is covert zero-knowledge and
simulation-sound when applied to any Σ-protocol, and the efficiency of the re-
sulting CKEM is that of the underlying Σ-protocol (plus 2+3 exponentiations)
as long as the prover’s reply z is random in a domain which is easy to covertly
encode. To the best of our knowledge this is the case in all Σ-protocols for vari-
ous arithmetic relations between group elements, where the prover’s response z
is either uniform or statistically close to uniform in some integer range.

We argue the security of the above CKEM construction specifically in the
case of LMI languages:

Theorem 2. For any LMI language L, the CKEM scheme for L shown in Figure
5 is covert zero-knowledge and simulation-sound in ROM, assuming DDH.

Proof. The algorithm TRec uses control of the random oracle H as its simulation
trapdoor as follows: On input (C,M) = φ(x) it picks z ← Zmp , e ← Zp, and
r ← Zp, computes D = z·M−eC and cmt← Comg1,g2(H2(D); r), sets H1(x, cmt)
to e, aborting if H1(x, cmt) was already set, and sends (cmt, z) to S. When TRec
gets hp from S, it can compute KR = PHash((cmt,H2(D)), r, hp) using receiver’s
algorithm R, because TRec holds the same witness r for the statement that
m = H2(D) is committed in cmt for D = z ·M − eC and e = H1(x, cmt).

Zero Knowledge: The probability that TRec aborts because H1(x, cmt) was
already queried is negligible because for each m commitment Com(m) samples
a random element from the domain of size |G|. Hence, by the argument used
for Fiat-Shamir NIZK, the distribution of tuples (cmt, e, z) produced by the
simulator TRec is statistically close to that produced by the prover Rec.

Trapdoor-Receiver Covertness: Message (cmt, z) sent by TRec is indistin-
guishable from a random string because z is uniform in Zmp and Com is a covert
commitment under the DDH assumption.

Sender Covertness: S’s message hp = (g1)hk1(g2)hk2 is uniform in G.
Covert Simulation-Soundness: The strong (i.e. “proof-of-knowledge”) covert

soundness shown for this CKEM in [13] implies the standard covert soundness
of this CKEM in ROM, i.e. that no efficient adversary interacting with S (and
H) on x 6∈ L can distinguish S’s messages and its output KS from random, i.e.
specifically that (hp,KS) pair is statistically close to uniform in G2. It is easy
to see that this remains true given access to a TRec simulator described above,
which simulates the ((cmt, z),KR) interactions with Rec for any x′ 6= x: The
NIZK challenge is computed using H1(x, ·) on the soundness challenge x and
using H1(x′, ·) on all instances simulated by TRec, and in ROM these are all
independent instances of random functions, hence simulation TRec(x′) on any
x′ 6= x does not affect the view of the interaction with S(x).

7.2 Covert CKEM for a LMI Languages in CRS

Benhamouda et al. [2] showed a simulation-sound and zero-knowledge CKEM for
any LMI language. We argue that a simple modification of their protocol is covert

36

for all the linear map image languages used in the Covert 2PC protocol of Section
6. Specifically, the resulting CKEM is (1) covert zero-knowledge with sender
simulation-covertness, and (2) covert simulation-sound, for any LMI language
defined by matrix M with a full row rank. Note that matrix M must be full
row rank not only on statements in the language but on any statement in the
implicit universe which includes the statements of this language.

Covert SPHF for LMI Languages. Every LMI language has an efficient SPHF.
Let (C,M) ∈ Gn ×Gn×m, let M = [gij](i,j)∈[m]×[n], and let w ∈ Zmp .

KG picks hk← Znp , and sets hp = M · hk, i.e. hpi =
∏n
j=1(gij)

hkj for i ∈ [m];

Hash((C,M), hk) outputs H = C · hk =
∏n
j=1(Cj)

hkj ;

PHash((C,M), w, hp) outputs projH = w · hp =
∏m
i=1(hpi)

wi

Note that if C = w·M then H = C ·hk = (w·M)·hk = w·(M ·hk) = w·hp = projH.
Smoothness of this SPHF follows because if C 6∈ span(M) then H = C · hk is
independent from hp = M · hk. Moreover, if matrix M is full row rank then the
SPHF is covert smoothness because then hp = M · hk is random in Gm.

Modified Zero-Knowledge and Simulation-Sound CKEM of [2]. Ben-
hamouda et al. [2] construct a zero-knowledge and simulation-sound CKEM for
the same language class. We show our modification of the CKEM [2] starting
with a slightly simplified version, where points u′′, e′′ are globally set in π rather
than determined per each (x, `) pair. Let DH be the set of Diffie-Hellman tu-
ples in G and let DH(g′, h′) be the set of (u′, e′) pairs s.t. (g′, h′, u′, e′) ∈ DH.
The (simplified) parameter generation PG(1τ) of [2] for language LMIn,m de-
fines a prime-order group (g,G, p), samples random (g′, h′, u′, e′) in G4, and ran-
dom (u′′, e′′) in DH(g′, h′), and defines π as ((g,G, p), g′, h′, u′, e′, u′′, e′′). The
trapdoor generation TPG(1τ) of [2] samples (g′, h′) in G2 and both (u′, e′) and
(u′′, e′′) in DH(g′, h′), and sets td = DL(g′, u′) = DL(h′, e′). In our modification,
PG and TPG are as above except both extend π by additional n + 6 elements
h1, .., hn, h

′
1, ..., h

′
6 chosen at random in G. We assume that all group elements in

π are different from 1. Given statement (C,M) ∈ Gn×Gn×m and parameters π,
consider an “expansion” of matrix M in Gn×m into matrix M ′ in G(n+6)×(m+7)

and a “doubling” of M ′ into matrix M in G(2n+12)×(2m+14) as shown in equation
(3). This is exactly as in the original CKEM of [2], except matrix M ′ of [2] does
not have the last row e7 and the last column of M ′ in equation (3).

M′ =



1 M 1 1

g′ 1 1

1 g′ h′

g′ u′ e′

1 1 1
1 1 1
g′ 1 1

h′1 h
′
2 h
′
3

C

1 · · · 1
1 · · · 1
1 · · · 1
1 · · · 1
1 · · · 1
h1 · · ·hn

1 1

1 1
1 1

g′ h′

u′′ e′′

g′ 1

h′4 h
′
5

1

1
1

1
1
1

h′6



(r1, ..., rm)

(e1)

(e2)
(e3)

(e4)
(e5)
(e6)

(e7)

M =

[
M′ 1
1 M′

]
(3)

37

The point of this expansion is to modify language L of pairs (C,M) s.t. C ∈
span(M) into language L′ of triples (C,M, π) s.t. either M ∈ span(C) or elements
of π have some trapdoor property. Moreover, language L′ is also an LMI language:
Let C ′ = (g′−1, 1, ..., 1) ∈ Gn+6. Observe that C ′ ∈ span(M ′) if and only if

(c1) C ∈ span(M) or (c2) (u′, e′) ∈ DH(g′, h′) or (c3) (u′′, e′′) 6∈ DH(g′, h′)

Note that row e7 cannot be used in the linear combination λ′ s.t. C ′ = λ′ ·M ′
because h′6 6= 1. Therefore if condition (c1) fails then rows r1, ..., rm, e1 cannot
be used in this linear combination either. Further, if condition (c2) fails then
rows e2, e3 must drop out too. Finally, if condition (c3) fails then rows e4, e5, e6

must drop out as well. Hence, the additional conditions (c2) and (c3) allow PG
to set π which guarantees that C ′ ∈ span(M ′) if and only if C ∈ span(M), by
setting (u′, e′) ∈ DH(g′, h′) and (u′′, e′′) 6∈ DH(g′, h′). However, TPG can set π
differently to inject the trapdoors which allow for arguing zero-knowledge and
simulation-soundness of this CKEM, as we explain below.

Note that if C = w ·M then C ′ = λw ·M ′ for λw = (w,−1, 0, 0, 0, 0, 0, 0)
and if (u′, e′) ∈ DH(g′, h′) and td = DL(g′, u′) then C ′ = λtd · M ′ for λtd =
(0, ..., 0, td,−1, 0, 0, 0, 0). Figure 6 shows the CKEM of [2] which specifies protocol
Rec for R and protocol Snd for S, on respective inputsM , C ′, λw derived as above.
The TRec protocol is exactly like Rec except it uses λtd instead of λw.

On π and (C,M) derived from x, and on R’s input λ = λw derived from w s.t. C = w·M :

R: Pick tk← Z2m+14
p and send tp = (M

T
) · tk to S;

S: Pick hk← Z2n+12
p and ψ ← Zp, set C = (C′, C′ · ψ), hp = M · hk, H = C · hk, and

tprojH = hkT · tp. Send (ψ, hp) to R and output KS = H · tprojH;

R: Set λ̄ = (λ, λ · ψ), projH = λ̄w · hp, and tH = hpT · tk. Output KR = projH · tH.

Fig. 6. CKEM for Linear Map Image Language due to Benhamouda et al. [2]

The CKEM of Figure 6 is correct because it composes two SPHF’s for two LMI
languages: In the first SPHF, S generates (hk, hp) to verify that R holds λ s.t.
C = λ̄ ·M . In the second SPHF, R generates (tk, tp) to verify whether S forms
hp correctly, i.e. if hp = M · hk = hkT ·MT for some hk.

Zero-Knowledge and Simulation-Soundness. We recall the Zero-Knowledge
and Simulation-Soundness arguments for this CKEM given by [2], since they ap-
ply to the matrix M ′ as modified here without any changes, and the covertness
arguments we supply next will rely on them.

Zero-Knowledge: Zero-Knowledge follows from perfect witness-hiding of an in-
teraction with Rec(λ, ·): For any λ̄, λ̄′ s.t. C = λ̄ ·M = λ̄′ ·M it holds that (1) if
hp = M ·hk for some hk then λ̄ ·hp = λ̄′ ·hp = C ·hk; and (2) if hpT 6∈ span(M)T

38

then tH = hpT · tk, and hence also KR, is independent of hp = (M)T · tk in S’s
view. Zero-knowledge follows because if (u′, e′) ∈ DH(g′, h′), as set by TPG, then
Rec and TRec run the same algorithm on two valid witnesses λw and λtd.

Soundness: If C 6∈ span(M) and (u′, e′) 6∈ DH(g′, h′) and (u′′, e′′) ∈ DH(g′, h′)
(as is set by PG) then conditions (c1)-(c3) all fail and C ′ 6∈ span(M ′). The
point of the “matrix doubling” technique is that C ′ = λ · M ′ if and only if
(C,C ′ · ψ) = (λ, λ · ψ) ·M for every ψ 6= 0, and the key lemma of [2] shows
that if C ′ 6∈ span(M ′) then for any tp there exists at most one ψ value s.t.
C = (C ′, C ′ · ψ) ∈ span(M, tpT), where span(M, tpT) is the subspace spanned
by the rows of M and vector tpT . Therefore, if C ′ 6∈ span(M ′) then except
for probability 1/p we have that C 6∈ span(M, tpT), in which case C + tpT (a
component-wise product of C and tpT) is not in span(M), and consequently,
using the additive notation for operations in group G, we have that KS = H +
tprojH = (C · hk) + (tpT · hk) = (C + tpT) · hk is independent from hp = M · hk.

Simulation-Soundness: Note that soundness and zero-knowledge require opposite
property of CRS π: Soundess needs (u′, e′) 6∈ DH(g′, h′) because otherwise C ′ ∈
span(M ′) even if C 6∈ span(M), while zero-knowledge needs (u′, e′) ∈ DH(g′, h′)
to let TRec compute projH even if C 6∈ span(M). This is a problem for simulation-
soundness because the set-up needed for the soundness challenge (x, `) is different
than the set-up for TRec queries (x′, `′). The CKEM of Benhamouda et al. [2]
handles this by defining pair (u′′, e′′) used in matrix M ′ separately per each
(x, `) instance using the Waters [20] function W : {0, 1}2τ → G2 and a collision–
resistant hash H onto {0, 1}2τ . Namely, parameter π output by PG includes 2τ+1
pairs (ui, ei)

2τ
i=0, all random in DH(g′, h′), and pair (u′′, e′′) for instance (x, `)

is defined as W (H(x, `)) where W (m) = (u0, e0) · Π2τ
i=1(ui, ei)

mi . Simulation-
soundness is shown under the DDH assumption by a simulator which picks (u′, e′)
in G2 and samples (ui, ei)’s with knowledge of DL(g′, ui) and DL(h′, ei) s.t. with
high-enough probability two facts hold: (1) If (u′′, e′′) = W (H(x, `)) for the
soundness challenge (x, `) then (u′′, e′′) ∈ DH(g′, h′), which means that if x 6∈ L
then none of the conditions (c1)-(c3) above are met, hence the same soundness
argument as above implies that Snd’s output KS is independent of the adversary’s
view; (2) For each (x′, `′) query to TRec, we have (u′′, e′′) = W (H(x′, `′)) 6∈
DH(g′, h′), and the simulator uses the knowledge of DL(g′, u′′) and DL(h′, e′′)
to compute (α, β) s.t. (g′)α(u′′)β = g′ and (h′)α(e′′)β = 1 and run Rec on
λ′td = (0, ..., 0, α, β,−1, 0) s.t. C ′ = λ′td ·M ′ instead of λtd used by TRec.

Covert Zero-Knowledge and Covert Simulation-Soundness. We argue
that under DDH assumption the above CKEM also satisfies (I) covert zero-
knowledge with sender simulation-covertness and (II) covert simulation-soundness.
Recall the covertness properties of CKEM as defined in Section 5), and note that
given the (standard) zero-knowledge of this CKEM, shown in [2] and recalled
above, in order to argue part (I) we need to argue trapdoor-receiver covertness
and sender simulation-covertness of this CKEM. Moreover, given the (standard)
simulation-soundness of this CKEM, also shown in [2] and recalled above, by
Lemma 1 part (II) will follow from the same sender simulation-soundness prop-

39

erty. Below we argue both properties under the DDH assumption. The first
property is immediate, the second is more involved.

Theorem 3. CKEM of Figure 6 is trapdoor-receiver covert under the DDH
assumption.

Proof. The only message TRec sends is tp = (M)T · tk for tk← Z2m+14
p . By the

fact that M has two copies of M ′ on the diagonal we can split tk into two parts,
tkL, tkR both random in Zm+7

p , and parse tp as (tpL, tpR) where tpL = (M ′)T ·tkL
and tpR = (M ′)T ·tkR. For notational convenience think of tp and tk as horizontal
vectors, i.e. tpL = tkL ·M ′ and tpR = tkR ·M ′. Let M ′r1...e6 be matrix M ′ with
row e7 removed. Let h = (h′1, h

′
2, h
′
3, h1, ..., hm, h

′
4, h
′
5, h
′
6) be row e7 of M ′. Let

tk
[1,...,m+6]
L be the first m+6 elements of tpL and let α be the last element in tkL.

Note that tpL = tkL ·M ′ = A+B for A = tk[1,...,m+6] ·M ′r1...e6 , B = α·h, where +
stands for component-wise group operation in G. Since TPG picks elements in h
at random in G, just like PG does, then the DDH assumption implies that vector
B = (h′1, h

′
2, h
′
3, h1, ..., hm, h

′
4, h
′
5, h
′
6)α is indistinguishable from a random vector

in Gm+6. (Note that TRec trapdoor td does not need the discrete logarithms of
elements in row e7.) It follows that tpL is also indistinguishable from a random
vector in Gm+6, and since the same argument applies to tpR, the theorem follows.

Theorem 4. Let L be a language with implicit universe Ux, and let φ : Ux →
Gn×Gn×m s.t. x ∈ L if and only if φ(x) ∈ LMIn,m. CKEM protocol in Figure 6
is sender simulation-covert under the DDH assumption for L if for each x ∈ Ux
and (C,M) = φ(x) matrix M has full row rank m.

Proof. Our goal is to show that for (π, td) generated by TPG, value hp = M ·
hk sent by Snd is indistinguishable from a random vector in G2(m+7) for all
x (including x 6∈ L) by an adversary who is given π and an access to oracle
TRecBlock(x,`)(td, ·). (Note that value ψ sent by Snd is uniformly random.) Since

M is a diagonal matrix containing two instances of M ′, the SPHF for M consists
of two independent instances of an SPHF for M ′, hence we need only consider
how the SPHF acts on M ′, i.e. consider hp = (hp1, ..., hpm+7) = M ′ · hk for
hk ← Zn+6

p , and we need to argue that it is indistinguishable from random in
Gm+7 given access to oracle TRecBlock(x,`)(td, ·). Let (C,M) = φ(x). First, note
that since the last row of M ′ is independent from the others, element hpm+7 is
random in G and independent from elements hp[1,...,m+6]. Thus we can consider
only the reduced form of matrix M ′, with the last row and column eliminated,
i.e. the original matrix M ′ used by [2]. Since by assumption M has rank m, and
row e1 has g′ 6=1 in the first column, space S1 = span(r1, ..., rm, e1) has dimension
m+1, which implies that hp[1,m+1] is random in Gm+1.

F =


1
g′

1
1
g′

 M∗ =


g′ h′ 1 1
u′ e′ 1 1

1 1 g′ h′

1 1 u′′ e′′

1 1 g′ 1


(e∗2)
(e∗3)

(e∗4)
(e∗5)
(e∗6)

(4)

40

Consider matrix M∗ made of the 2nd, 3rd, (n+ 4)th, and (n+ 5)th column
of rows e2-e6 of M ′, and let F contain the entries in the first column of M ′ in
the same rows, as shown in equation (4). Consider vector hp∗ = M∗ · hk∗ for
hk∗ = (hk2,3, hkn+4,n+5). Observe by inspection of matrix M ′ in equation (3)
that (1) hp[1,m+1] is a function only of elements (hk1, hk[4,..,n+3]) of hk, and (2)
hp[m+2,m+6] = F · hk1 + M∗ · hk∗ = F · hk1 + hp∗. By fact (1) it follows that
hp[1,m+1] is independent of hk∗, because hk∗ is independent of (hk1, hk[4,..,n+3]).
By fact (2) it follows that if we show that hp∗ = M∗ · hk∗ is indistinguishable
from a random tuple in G5 for hk∗ ← G4 (given access to the TRec oracle)
then this will imply that hp[m+2,m+6] is also indistinguishable from random in

G5 because hp∗ acts like a one-time pad in the above equation for hp[m+2,m+6].

Together with the fact that hp[1,m+1] is random in Gm+1, this will complete the
argument for sender simulation covertness.

It remains to argue that for (π, td) ← TPG(1τ) and any (x, `) output by
adversary A given π and access to oracle TRec(td, ·), if M∗ is defined as above by
(u′′, e′′) = W (H(x, `)), then variable {hp∗ = M∗ ·hk∗}hk∗←G4 is indistinguishable
from a random tuple in G5, given A’s access to oracle TRecBlock(x,`)(td, ·). This
argument uses similar game changes as the simulation-soundness argument of
[2] for this CKEM recalled above. First, consider the modified TPG which sets
all (ui, ei) pairs at random instead of sampling them from DH(g′, h′). By DDH
this modified TPG presents an indistinguishable view from the original. Now
consider a TPG which sets (ui, ei) = ((g′)δi , (h′)ζi) for random (δi, ζi)← Z2

p for
each i = 0, ..., 2τ . This modification does not change the adversary’s view. Note
that except for negligible probability it holds that for every TRec query (x′, `′) we
have (u′′, e′′) 6∈ DH(g′, h′) for (u′′, e′′) = W (m) = (u0, e0) ·Π2τ

i=1(ui, ei)
mi where

m = H(x′, `′). Therefore the modified TRec can use (δi, ζi)’s to compute (α, β)
s.t. (g′)α(u′′)β = g′ and (h′)α(e′′)β = 1, in which case λ′td = (0, ..., 0, α, β,−1, 0)
satisfies that C ′ = λ′td ·M ′, and by argument that TRec(td, ·) oracle is witness-
hiding (see the zero-knowledge argument above), we have that this modification
also does not change the adversary’s view. Since this modification of TRec does
not use the original trapdoor td = DL(g′, u′) = DL(h′, e′), by reduction to DDH
we can modify TPG further by sampling (u′, e′) at random from G2 instead of
from DH(g′, h′). After this change rows (e∗1, e

∗
2) of M∗ are independent (except

for negligible probability), hence hp∗1,2, which is a function of only hk∗1,2, can now
be replaced by a random pair in G2.

It remains to argue that hp∗[3−5] is indistinguishable from random in G3 for

random hk∗3,4 ← Z2
p. Denote (r, s) = (hk∗3, hk∗4), and observe that hp∗3,4,5 =

((g′)r(h′)s, (u′′)r(e′′)s, (g′)r). Let us now move back from the above modifications
of TPG,TRec to the original TPG,TRec: First we change back (u′, e′) distribution
from G2 to DH(g′, h′), which is indistinguishable under DDH. Then we replace
the modified TRec with the original, which uses td = DL(g′, u′) = DL(h′, e′)
instead of td = {δi, ζi}i=0,..,2τ for (δi, ζi) = (DL(g′, ui),DL(h′, ei)). This does not
change the view by the witness-hiding property of TRec(td, ·) used above. At this
point we can modify TPG to sample e0 at random from G and pick each ei for
i > 0 as ei = (h′)ζi for ζi ← Zp. Note that for any m = H(x, `) it holds that e′′ =

41

e0(h′)ζ where ζ =
∑2τ
i=1(ζi)

mi , and therefore (e′′)s = ((h′)s)ζ(e0)s. We can use
this relation to replace pair (h′)s, (e0)s used in computing hp∗3,4,5 with a random
pair in G, and by reduction to DDH the resulting view is indistinguishable. Note
that after this change hp∗3,4,5 = ((g′)rg1 , (u′′)r(g1)ζg2 , (g′)r for g1, g2 ← G2 and
r ← Zp, hence it is uniform in G3, which completes the proof.

Corollary 1. Let L be a language with implicit universe Ux, and let φ : Ux →
Gn×Gn×m s.t. x ∈ L if and only if φ(x) ∈ LMIn,m. CKEM protocol in Figure 6 is
covert zero-knowledge with sender simulation-covertness and covert simulation-
sound under the DDH assumption for L if for each x ∈ Ux and (C,M) = φ(x)
matrix M has full row rank m.

Proof. The corollary follows from theorems 3 and 4, lemma 1 of Section 5,
and standard, i.e. non-covert, zero-knowledge and simulation-soundness of this
CKEM shown in [2].

References

1. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital
goods. In Advances in Cryptology - EUROCRYPT 2001, International Conference
on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria,
May 6-10, 2001, Proceeding, pages 119–135, 2001.

2. F. Benhamouda, G. Couteau, D. Pointcheval, and H. Wee. Implicit zero-knowledge
arguments and applications to the malicious setting. In Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II, pages 107–129, 2015.

3. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42Nd IEEE Symposium on Foundations of Com-
puter Science, FOCS ’01, pages 136–, Washington, DC, USA, 2001. IEEE Com-
puter Society.

4. N. Chandran, V. Goyal, R. Ostrovsky, and A. Sahai. Covert multi-party compu-
tation. In FOCS, pages 238–248, 2007.

5. C. Cho, D. Dachman-Soled, and S. Jarecki. Efficient concurrent covert computation
of string equality and set intersection. In Topics in Cryptology - CT-RSA 2016 -
The Cryptographers’ Track at the RSA Conference 2016, San Francisco, CA, USA,
February 29 - March 4, 2016, Proceedings, pages 164–179, 2016.

6. G. Couteau. Revisiting covert multiparty computation. Cryptology ePrint Archive,
Report 2016/951, 2016. http://eprint.iacr.org/2016/951.

7. R. Cramer and V. Shoup. Universal hash proofs and and a paradigm for adaptive
chosen ciphertext secure public-key encryption. Electronic Colloquium on Compu-
tational Complexity (ECCC), 8(072), 2001.

8. G. D. Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious trans-
fer and timed-release encryption. In Advances in Cryptology - EUROCRYPT ’99,
International Conference on the Theory and Application of Cryptographic Tech-
niques, Prague, Czech Republic, May 2-6, 1999, Proceeding, pages 74–89, 1999.

9. G. D. Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer
and timed-release encryption. In EUROCRYPT, pages 74–89, 1999.

42

10. V. Goyal and A. Jain. On the round complexity of covert computation. In Pro-
ceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10,
pages 191–200, New York, NY, USA, 2010. ACM.

11. N. J. Hopper, L. von Ahn, and J. Langford. Provably secure steganography. IEEE
Trans. Computers, 58(5):662–676, 2009.

12. Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using
symmetric cut-and-choose. In Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part II, pages 18–35, 2013.

13. S. Jarecki. Practical covert authentication. In H. Krawczyk, editor, Public-Key
Cryptography PKC 2014, volume 8383 of Lecture Notes in Computer Science,
pages 611–629. Springer Berlin Heidelberg, 2014.

14. J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated
key exchange. In Y. Ishai, editor, Theory of Cryptography, volume 6597 of Lecture
Notes in Computer Science, pages 293–310. Springer Berlin Heidelberg, 2011.

15. Y. Lindell. Fast cut-and-choose-based protocols for malicious and covert adver-
saries. J. Cryptology, 29(2):456–490, 2016.

16. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation
in the presence of malicious adversaries. J. Cryptology, 28(2):312–350, 2015.

17. M. Naor and B. Pinkas. Computationally secure oblivious transfer. J. Cryptology,
18(1):1–35, 2005.

18. M. D. Raimondo and R. Gennaro. Provably secure threshold password-
authenticated key exchange. J. Comput. Syst. Sci., 72(6):978–1001, 2006.

19. L. von Ahn, N. Hopper, and J. Langford. Covert two-party computation. In Pro-
ceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
STOC ’05, pages 513–522, New York, NY, USA, 2005. ACM.

20. B. Waters. Efficient identity-based encryption without random oracles. In Advances
in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-
26, 2005, Proceedings, pages 114–127, 2005.

A Covertness of Cramer-Shoup Encryption

Proof of CCA-Covertness of Cramer-Shoup PKE. Recall the Cramer-
Shoup encryption in Section 4, and recall its proof of CCA security given in
[7]. Consider a (purely syntactic) restriction on an attacker A in the stan-
dard CCA-security game which specifies only one challenge message m∗ and
the encryption challenge pair is formed as m1 ← m∗ and m0 ← G. Recall the
CCA-security proof of [7]: It shows a simulator S which on input a four-tuple
T = (g1, g2, u1, u2) of G elements interacts with attacker A in such a way that
if T ← DH, i.e. if (g1, g2, u1, u2) is a random Diffie-Hellman tuple, then for any
choice of challengers bit b, A’s view of real execution (denoted R(b)) is statisti-
cally indistinguishable from A’s view of an interaction with S (denoted S(b, T)).
Simulator S on input (b, T) for T = (g1, g2, u1, u2), uses a different representa-
tion of the private key by picking sk′ = (x1, x2, y1, y2, z1, z2) ← Z6

p and setting
(c, d, h)← (gx1

1 gx2
2 , gy11 gy22 , gz11 g

z2
2), (note that h is set differently from the real ex-

ecution). Furthermore, S forms the challenge ciphertext ct∗ = (u1, u2, e, v) using

(u1, u2) from its input 4-tuple, and setting e = uz11 u
z2
2 mb and v = ux1+y1ξ

1 ux2+y2ξ
2

43

for ξ = H(`, u1, u2, e). Furthermore, S(b, T) decrypts A’s ciphertext queries
(c̄t, ¯̀) for c̄t = (ū1, ū2, ē, v̄) slightly differently than in R(b): It decrypts only

if v̄ = ūx1+y1ξ̄
1 ūx2+y2ξ̄

2 for ξ̄ = H(¯̀, ū1, ū2, ē), as in Rb, but it forms the decrypted
plaintext as ē·ūz11 ū

z2
2 . The proof in [7] shows that A’s view of S(1, T) and S(0, T)

are statistically close if T ← G4. Moreover DDH implies that A’s view of S(b, T)
for T ← DH is indistinguishable from A’s view of S(b, T) for T ← G4.

In particular it follows that A’s view of R(1), where ct∗ = E(pk,m∗, `∗), is
indistinguishable from A’s view of S(0, T) for T ← G4. Note that if b = 0 then
S can pick e← G and the view does not change because m0 ← G in the original
game. Consider Sim1 which picks g1, u1, u2 ← G3 and w ← Zp, sets g2 ← (g1)w,
and then runs S(g1, g2, u1, u2). Clearly, the view of S1 is identical to the view of
S(b = 0, T) for T ← G4. Consider S2 which proceeds as S1 except the decryption
oracle is modified to decrypt (c̄t, ¯̀) query, for c̄ = (ū1, ū2, ē, v̄), only if (1) ū2 =

(ū1)w and (2) v̄ = ūx1+y1ξ̄
1 ūx2+y2ξ̄

2 for ξ̄ = H(¯̀, ū1, ū2, ē). The CCA-security proof
in [7] uses a crucial technical lemma that, except for a negligible probability, the
simulator S (as well as the real decryptor) rejects a decryption query unless
(g1, g2, ū1, ū2) ∈ DH. It follows that view presented by S2 is statistically close to
that of S1, and hence also indistinguishable from the view of the real interaction
on A’s challenge plaintext m∗.

Note that values (u1, u2, e) in the challenge ciphertext ct∗ in produced by S2

are three random elements of G. To see that the value v in ct∗ is also random in
G, examine the information which an all-powerful observer (who can compute
discrete logs) sees about values (x1, x2, y1, y2) used by S2. Let r1, r2 be such that
that (u1, u2) = (gr11 , g

r2
2). Note that values (g1, g2, u1, u2) determine (w, r1, r2),

values c, d determine x̄ = x1 + wx2 and ȳ = y1 + wy2, value v determines
α = r1(x1 + ξy1) + wr2(x2 + ξy2), and the values which the decryption oracle
uses are w and (since ū2 = (ū2)w) β = (x1 + ξ̄y1) + w(x2 + ξ̄y2). However, note
that β = (x1 +wx2) + ξ̄(y1 +wy2) = x̄+ ξ̄ȳ, which means that β does not reveal
any more information than x̄, ȳ. Note that (x̄, ȳ, α) are computed as follows:

 x̄ȳ
α

 =

 1 w 0 0
0 0 1 w
r1 wr2 r1ξ wr2ξ

 ·

x1

x2

y1

y2


If r1 6= r2 then the rows in the above matrix are linearly independent, and in
that case (x̄, ȳ, α) are uniform in Z3

p for (x1, x2, y1, y2)← Z4
p. It follows that ct∗

produced by S2 is statistically close to uniform in Z4
p (over the choice of r1, r2

determined by u1, u2).
Now we can “move backwards” and modify simulation S2 so that it looks

like the real execution except ct∗ ← Z4
p. Consider S3 which chooses z ← Zp

instead of (z1, z2) sets h = gz1 and decrypts as ē/(ū1)z. By equation (1) in the
decryption test, and since z = z1 +wz2, we can see that S3 presents an identical
view to S2. Finally, consider S4 which picks (g1, g2, u1, u2, e, v) at random in
G6, and therefore does not know w, and uses only condition (2) above in the
decryption test, as in the real Cramer-Shoup decryption. By the same technical

44

lemma above the view produced by S4 is statistically close to that of S3. Since S4

now acts like the CCA challenger except the ciphertext challenge ct∗ is sampled
uniformly in G4, this concludes the proof.

B Linear Map Image Languages for Covert 2PC

We list the LMI languages used in the covert 2PC protocol of Section 6, and
we explain why these languages are in the LMI class by specifying the mapping
between the language instance x and the (C,M) pair which defines the instance
of LMI. Let (Kg,E,D) be the CCA-covert Cramer-Shoup PKE. All languages
below are implicitly parametrized by the public key pk((g,G, p,H), g1, g2, c, d, h)
output by Kg(1τ). Formally, the public key pk and any other parameter like a
label ` will be part of the language statement in each language below.

Encryption Correctness. Language Le contains correct (ciphertext, plaintext)
tuples, i.e.

Le`(pk) = {(ct,m) s.t. ct ∈ E`pk(m)}

Le`(pk) statements can be mapped onto statements in LMI4,1, because ct =
E`pk(m; r) for ct = (u1, u2, e, v) and some r ∈ Zp holds if and only if C = r ·M
for C,M as shown in equation (5), for ξ = H(`, u1, u2, e).

C = [u1, u2, e/m, v] M = [g1, g2, h, cd
ξ] (5)

Encryption of a Bit. Another example is language Lbit`(pk) of (shifted) en-
cryptions of a bit, i.e.

Lbit`(pk) = {(ct, `) s.t. ∃b (ct, gb) ∈ Le`(pk) ∧ b ∈ {0, 1}}

This language can be expressed using only arithmetic constraints, i.e. without
resorting to disjunctions. The above constraints can be restated as (u1, u2, e, v) =
((g1)r, (g2)r, hrgb, (cdξ)r) and b(b − 1) = 0 for some r, b ∈ Zp. However, the
second constraint can be expressed as the constraint that 1 = (u1)b(g1)λ and
1 = (e/g)bhλ for some λ ∈ Zp. This is because if u1 = (g1)r then (u1)b(g1)λ =
grb+λ1 so the first constraint is equivalent to rb + λ = 0, and if e = hrgb then
(e/g)bhλ = hrb+λg(b−1)b, hence the two constraints imply that (b − 1)b = 0.
Therefore Lbit`(pk) statements can be mapped onto statements (C,M) of LMI6,3
as shown in equation (6), for ξ = H(`, u1, u2, e), with witness (r, b) mapped onto
vector w = (r, b,−rb).

C =
[
u1 u2 e v 1 1

]
M =

g1 g2 h (cdξ) 1 1
1 1 g 1 u1 e/g
1 1 1 1 g1 h

 (6)

Encryption Disjunction. Language Ldis contains tuples (ct,m, ck0, ck1) s.t.
either ck0 = E(pk, gm) and b=0 or ck1 = E(pk, gm) and b=1, for ct = E(pk, gb).

Ldis`,`0,`1(pk) = {(ct,m, ck0, ck1) s.t. ∃b∈{0, 1} (ct, gb)∈Le`(pk)∧(ckb, g
m)∈Le`b(pk)}

45

One can define this language using a disjunction but it can also be expressed
directly using a set of linear constraints. First we have the encryption constraints,
i.e. that there exists b,m0,m1, r, r0, r1 s.t.

ct = (u1, u2, e, v) = ((g1)r, (g2)r, hrgb, (cdξ)r)

ck0 = (u0
1, u

0
2, e

0, v0) = ((g1)r0 , (g2)r0 , hr0gm0 , (cdξ0)r0)

ck1 = (u1
1, u

1
2, e

1, v1) = ((g1)r1 , (g2)r1 , hr1gm1 , (cdξ1)r1)

for appropriately computed hash values ξ, ξ0, ξ1. Secondly, we have a constraint
that 0 = b(b − 1), which can be expressed as in Lbit, i.e. with constraints that
1 = (u1)b(g1)λ and 1 = (e/g)bhλ for some λ. Third, we have a constraint that
there exists m′ s.t. m0 = m − b · (m −m′) and m1 = m′ + b · (m −m′), which
guarantees that m = mb. This can be restated as there exist s, δ,m′ s.t. s = b · δ,
δ = m − m′, m0 = m − s, and m1 = m′ + s. The last three constraints can
be expressed as gm = gδgm

′
, gm = gm0gs, and 1 = gm1(g−1)m

′
(g−1)s, while

constraint s = b · δ can be expressed using similar indirection as in the case of
constraint 0 = b(b − 1), namely that 1 = eδhγ(g−1)s and 1 = (u1)δ(g1)γ for
γ = −rδ. Thus we map a statement in Ldis onto statement (C,M) in LMI19,11 as
shown in equation (7), where f = cdξ for ξ = H(`, u1, u2, e) and fb = cdξb for ξb =
H(`b, u

b
1, u

b
2, e

b) for b = 0, 1. The witness (r, b, r0, r1) is mapped onto vector w =
(r, b,−rb, r0,m0, r1,m1,m

′, s, δ,−rδ), where (m′, s, δ) is set to (m1, 0,m0−m1)
if (m=m0) ∧ (b=0), and to (m0,m1−m0,m1−m0) if (m=m1) ∧ (b=1).

M =



1 1 1 1 1 1 1 g1 g2 h f 1 1 1 1 1 1 1 1
1 1 1 1 1 u1 e/g 1 1 g 1 1 1 1 1 1 1 1 1
1 1 1 1 1 g1 h 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 g1 g2 h f0 1 1 1 1
1 1 1 g 1 1 1 1 1 1 1 1 1 g 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 g1 g2 h f1

1 1 g−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 g 1
1 1 g 1 g 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 g−1 g g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
u1 e 1 1 g 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g1 h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


(7)

C =
[

1 1 1 gm gm 1 1 u1 u2 e v u0
1 u

0
2 e

0 v0 u1
1 u

1
2 e

1 v1
]

Correct OT Reponse. Another LMI language used in covert 2PC protocol is
Lotr, which involves verification that the response message OTrsp in the OT of
Aiello et al. [1] (see Section 4) is computed on m0,m1 committed in ck0, ck1, i.e.
that (1) otr = (s0, t0, s1, t1) where (s0, t0) = (gα0

1 hβ0 , uα0
1 eβ0m0), and (s1, t1) =

(gα1
1 hβ1 , uα1

1 (e/g)β1m1), for some (α0, β0, α1, β1) ∈ Z4
p, where the receiver’s OT

message was ct = (u1, u2, e, v); and (2) that m0,m1 in the two equations above
are encrypted respectively in ck0, ck1. In other words:

Lotr`(pk) = { (otr, ct, ck0, ck1) s.t. ∃m0,m1, r

(ck0,m0) ∈ Le[`|0](pk) ∧ (ck1,m1) ∈ Le[`|1](pk) ∧ otr = OTrsppk(ct, k0, k1; r) }

46

If ciphertexts ck0, ck1 are formed using the basic, i.e. not “shifted”, version of
the encryption then the plaintexts mb (for b = 0, 1) are in the base in both
tb and in the eb component of ckb = (u1,b, u2,b, eb, vb), so we can cancel these
plaintexts out by replacing (for b = 0, 1) constraints eb = hrbmb implied by
ckb = E[`|b](pk,mb; rb) with constraints tb/eb = u1

αb(e/gb)βb(h−1)rb . This re-
sults in 10 linear constraints with 6 variables, and statements in Lotr can be
mapped onto statement (C,M) in LMI10,6 as shown in equation (8), where
ξb = H([`|b], u1,b, u2,b, eb). The witness (m0, r0,m1, r1, α0, β0, α1, β1) is mapped
onto vector w = (r0, r1, α0, β0, α1, β1).

M′ =


g1 g2 (cdξ0) 1 1 1 1 h−1 1 1
1 1 1 g1 g2 (cdξ1) 1 1 1 h−1

1 1 1 1 1 1 g1 u1 1 1
1 1 1 1 1 1 h e 1 1
1 1 1 1 1 1 1 1 g1 u1

1 1 1 1 1 1 1 1 h e/g

 (8)

C =
[
u1,0 u2,0 v0 u1,1 u2,1 v1 s0 t0/e0 s1 t1/e1

]

47

