
An Efficient Toolkit for Computing
Private Set Operations

Alex Davidson and Carlos Cid

Royal Holloway, University of London
Egham, TW20 0EX, UK

{alex.davidson.2014,carlos.cid}@rhul.ac.uk

Abstract. Private set operation (PSO) protocols provide a natural way
of securely performing operations on data sets, such that crucial de-
tails of the input sets are not revealed. Such protocols have an ever-
increasing number of practical applications, particularly when imple-
menting privacy-preserving data mining schemes. Protocols for comput-
ing private set operations have been prevalent in multi-party computa-
tion literature over the past decade, and in the case of private set inter-
section (PSI), have become practically feasible to run in real applications.
In contrast, other set operations such as union have received less atten-
tion from the research community, and the few existing designs are often
limited in their feasibility. In this work we aim to fill this gap, and present
a new technique using Bloom filter data structures and additive homo-
morphic encryption to develop the first private set union protocol with
both linear computation and communication complexities. Moreover, we
show how to adapt this protocol to give novel ways of computing PSI
and private set intersection/union cardinality with only minor changes
to the protocol computation. Our work resembles therefore a toolkit for
scalable private set computation with linear complexities, and we pro-
vide a thorough experimental analysis that shows that the online phase
of our designs is practical up to large set sizes.

Keywords: Private set operations, Bloom filters, additively homomor-
phic encryption, secure computation, data mining.

1 Introduction

The emergence of Big Data has resulted in an increasing need for ana-
lytical data mining techniques allowing entities to gain information from
the large data sets that they own. Even more so can be learnt by combin-
ing internal data sets with private data from external entities. However,
in order to safeguard incentives for combining data, participants require
privacy-preserving measures to be put into place to stop secret informa-
tion from being leaked to competitors or untrusted parties. Private set

operation (PSO) protocols provide a natural way of securely performing
operations on these combined data sets, such that only the output of
the set operation is revealed. Numerous works in research in genetic data
computations and information sharing have highlighted the importance
of efficient private set operation computation [15,6].

Previous work. Research into private set intersection (PSI) protocols
has resulted in several designs that are practically feasible for real-world
use. While pioneering work such as [12,20] brought the problem into the
attention of the cryptographic research community, more recent research
(e.g.[23,10,22,19,24]) has shown that certain techniques and data struc-
tures, such as oblivious transfer (OT) and Bloom filters, can be used to
design protocols that scale and perform well even for very large data sets.
These constructions play a crucial role in developing large-scale data min-
ing applications where data privacy and efficient computation are both
important. For example, computations over genetic data, as shown in [15],
may require comparing records from databases with millions of elements.

In spite of recent progress in the design of PSI protocols, research into
performing other set operations with similar security guarantees has not
been as comprehensive. Current designs for computing private set union
(PSU) include [13,4,25], while generic designs for computing multiple set
operations are given in [1,18,14]. With a much smaller base of research,
computational complexities for computing PSU remain super-linear in the
size of the sets involved (e.g. O(n log logn)). Moreover, there has been
relatively little work done in computing set cardinality (PSI/PSU-CA)
operations where only the size of the output set is revealed. Dedicated
techniques for computing these operations are given in [5,11,9] though
designs are also given in the generic constructions of [18,1].

Consequently, implementations of PSOs such as union are unlikely to
scale well as set sizes increase up to the dimensions being required for
current applications. Furthermore, complex data mining can require a
conjugation of several set operations. Without a way for computing scal-
able privacy-preserving protocols for all of the main operations it is not
possible to carry out these procedures in an efficient manner. It is im-
portant that privacy-preserving methods for real-world problems remain
almost as efficient as tools with non-cryptographic guarantees in order
to motivate the uptake of these new solutions. Furthermore, it would be
beneficial to have an efficient ‘toolkit’ for performing multiple PSO pro-
tocols, so that developers would no longer need to implement completely
different designs for each set operation to achieve optimal efficiency.

2

Our contributions. We first address the void in efficient PSU protocols
by developing a new two-party construction, secure against semi-honest
adversaries where only one participant (the client) learns the output.
Our design makes use of similar design structures to previous works such
as [10,13,17,9]: the efficient data structure provided by Bloom filter along-
side partially homomorphic encryption to allow oblivious computation.
However our PSU protocol is the first to demonstrate both linear compu-
tation and communication complexities, and as a result it is immediately
more scalable than previous designs. Table 1 provides an asymptotic com-
parison of our design with the previous PSU work; we detail our protocol
design in Section 3.

Communication Computation Multi-party?

Kissner et al. [18] O(N2n log |E|) O(n2) Y
Brickell et al. [4] O((n+m) log |E|) O((n+m) log |E|) N

Frikken. [13] O(n) O(n log log n) N
Blanton et al. [1] O(N3n log(Nn)) O(N3n log(Nn)) Y

Our work O(n) O(n) N

Table 1. Complexities for previous PSU protocols.

Our protocol for computing PSU is very simple, and we show that
minor changes in the computation done by the server (non-output party)
can be leveraged to convert the protocol into a PSI or PSI/PSU-CA ex-
change. These constructions also have linear complexities putting them in
line with current practical solutions in the wider research area. We give
these adaptations in Section 4. Consequently, our work can be viewed
as a toolkit for performing the main set operations that are required by
conventional applications. The simplicity of the design means that devel-
opers only need to consider implementations for an additively homomor-
phic encryption scheme and a Bloom filter. We focus here on semi-honest
adversaries only, but we could ensure security in the malicious setting
using a trusted third party, based on similar methods to those of [8,17];
full details are provided in the extended version of this paper.

In Section 5, we demonstrate the concrete practicality of our design
by performing a rigorous experimental analysis using an implementation
written in Go. We show that our designs run with comparable communi-
cation overheads and runtimes relative to state-of-the-art PSI protocols.
Observe that our construction provides a much more generic functionality
than dedicated PSI protocols and so we balance out an expensive offline
phase, slightly slower running times and high communication overheads
with the ability to perform much more dynamic computations.

3

The main bottleneck of our design is provided by the encryption
scheme that we use (Paillier’s [21]). Our protocols are however agnos-
tic to the encryption scheme used and so any improvements that can be
made in this phase will directly translate to improvements in our PSO
design. The simplicity of our design is highlighted in the small number
of lines of code that we require for our implementation; we plan to make
our code open-source in the near future.

2 Preliminaries and Notation

2.1 Notation

We will primarily consider two-party protocols with players P1 and P2

who own sets S1 and S2, respectively. We may commonly refer to P1 as
the ‘client’ and P2 as the ‘server’ in the interaction. The client typically
receives output from the computation while the server does not.1

We commonly denote the cardinalities of the sets by n = |S1| and
m = |S2|. We denote the domain of elements by E, the security pa-
rameter by λ and, when discussing multi-party protocols, the number of
players by N , where c < N denotes the number of corrupted players in a
protocol instantiation. When discussing the use of homomorphic opera-
tions over ciphertexts, we use +H when invoking additions on underlying
plaintext data. Section 2.3 fully describes our notation regarding par-
tially homomorphic encryption (PHE) schemes. For a key pair (pk, sk)
for a public-key encryption scheme, we denote generic encryption and
decryption by Epk and Dsk, respectively.

2.2 Bloom filters

Bloom filters were first introduced by Bloom in [2] as a lightweight data
structure that allows for the representation of data sets and checking of
inclusion using only hash function evaluations. A Bloom filter is initially
represented by a string of B bits that are all initialised to 0. There are
k hash functions hl : {0, 1}λ 7→ {1, . . . , B} for l ∈ {1, . . . , k} published
alongside the Bloom filter. We then represent set elements x ∈ X in the
Bloom filter by evaluating h1(x), . . . , hk(x) and changing each index that
these hash functions point to from 0 to 1. If a value has already been
changed to 1, it is left alone. Any party can use the hash functions to
check if an element is stored in the Bloom filter.
1 It is however possible to enforce bilateral output by running the protocol twice and

swapping the roles.

4

Definition 1. (Represented elements) We say that an element, e, is rep-
resented in the Bloom filter, BF, if we have that

BF[hi(e)] = 1, ∀i ∈ {1, . . . , k}

where {h1, . . . , hk} are the hash functions used in conjunction with BF.
We say that the set S is represented by BF if every element e ∈ S is
represented in BF.

Optimal Bloom filter parameters. One constraint on Bloom filters
is that they can lead to false positives when checking membership: an
element y /∈ X may appear to be in X after checking all hash outputs
if all the values have been set to 1. However, as shown in [10], if p =
1 − (1 − 1/B)kn is the probability that any bit in the Bloom filter is set
to 1, then the upper bound of the false-positive probability is given by

ε = pk ×

(
1 +O

(
k

p

√
lnB − k ln p

B

))
,

which is negligible in k, the number of hash functions. In practice one
will select the values of k and B when building a Bloom filter for a set of
size n such that ε is capped at a specific low value (e.g. 2−50). In [10] it
is claimed that performance optimality is achieved when

k =
B

n
ln 2, and B ≥ n log2 e · log2 1/ε, (1)

where e is the base of the natural logarithm. By minimising B we get the
optimal value of k to be

k = log2 1/ε. (2)

We will assume (as in [10]) that these parameters are always chosen in
this way. The proofs that these values are optimal can be found in [3].

Inverting and encrypting Bloom filters. In this work, we use a non-
standard representation of a Bloom filter by inverting each entry prior to
encryption. Also, rather than treating each entry as a bit, we use 0 and
1 elements from the plaintext space of a given encryption scheme.

Definition 2. (Encrypted Bloom filters) Let BFi be the Bloom filter
computed for the set Si (using hash functions h1, . . . , hk), with B en-
tries. The corresponding encrypted Bloom filter is denoted by EBFi and
has B entries where each entry is defined in the following way:

EBFi[b] = Epk(BFi[b])

5

for some public key pk. In the following we define EBFi = {C[1], . . . , C[B]}
and for yj ∈ Si, then EBFi[hu(yj)] = C

(j)
u for u = {1, . . . , k} and where

hu is the uth hash function used in computing the original Bloom filter. In

this case C
(j)
u is the ciphertext obtained by querying the uth hash function

for EBFi on yj.

Definition 3. (Inverted Bloom filters) Let BFi be a Bloom filter. We
define the corresponding inverted Bloom filter to be IBFi where

IBFi[j] =

{
1 if BFi[j] = 0
0 otherwise.

When referring to an encrypted, inverted Bloom filter we will write EIBFi.

2.3 Partially homomorphic encryption

Let (pk, sk) be a key pair for a public-key encryption scheme, and let x̃ =
Epk(x) and ỹ = Epk(y). We say that the encryption scheme is additively
homomorphic if we have the following properties:

– There is a homomorphic addition operation, +H , over x̃ and ỹ such
that Dsk(x̃+H ỹ) = x+ y.

– It is possible to compute x̃ · r, where r is a scalar and Dsk(x̃ · r) = x · r
(scalar multiplication)

Paillier’s encryption scheme [21] is an example of a semantically secure
public key encryption scheme that is additively homomorphic on opera-
tions over the ciphertexts.

We further define a final property of such a scheme, known as ReRand,
which allows a party with knowledge of the public key to re-randomise
ciphertexts. We use this property later in our protocols.

– ReRand(pk, c): an algorithm that takes the public key pk and a cipher-
text c encrypted under pk as input. The algorithm encrypts the value
0 by computing Epk(0) = c0 and then outputs c̃ = c+H c0.

Notice that ReRand does not change the value of the underlying plaintext.

2.4 Security model

Definition 4. (Indistinguishability of distributions) Let X = {Xλ}λ∈S
and Y = {Yλ}λ∈S be probability ensembles indexed by S. We say that
these ensembles are computationally indistinguishable for all probabilistic

6

polynomial time (PPT) algorithms, {Dn}n∈N, if there exists a negligible
function negl : N 7→ [0, 1] where

|Pr[Dn(λ,X) = 1]− Pr[Dn(λ,Y) = 1] | < negl(n) .

In this case we write X ' Y .

Let π be a protocol that represents a polynomial-time functionality f . Let
Si be the input set of a participant Pi for i ∈ {1, 2} and let auxi be a set
of auxiliary information that Pi holds. Define the view of the protocol for
Pi to be viewπi (S1, S2) = (Inpi, ri, Ti, π(S1, S2)i) where Inpi = (Si, auxi) is
the combined input of Pi to π, ri represents internal coin tosses, Ti are
the messages viewed by Pi and π(S1, S2)i is the output for Pi. We use the
following to define security against semi-honest adversaries.

Definition 5. (Semi-honest security) Protocol π securely computes the
functionality f in the presence of static semi-honest adversaries if there
exists polynomial-time simulators Sim1, Sim2 where

{Sim1(Inp1, f(S1, S2))} ' {viewπ1 (S1, S2)},

{Sim2(Inp2, f(S1, S2))} ' {viewπ2 (S1, S2)}.

Intuitively, this states that each party’s view of the protocol can be sim-
ulated using only the input they hold and the output that they receive
from the protocol. Therefore a corrupted party is unable to learn any extra
information that cannot be derived from the input and output explicitly.

3 PSU protocol

In this section, we detail the construction of our PSU protocol using en-
crypted Bloom filters where encryption is performed via an IND-CPA
secure AHE scheme. The homomorphic aspect allows the ‘server’ to eval-
uate functions over the ciphertexts without learning anything. Variations
of this technique have been used previously for oblivious polynomial eval-
uation, for example [13,12].

3.1 Overview

Both parties receive the k hash functions which are chosen to evaluate the
Bloom filter for elements in the corresponding sets. The elements yj ∈ S2
are assumed to be represented by elements in ZN .

7

Additionally, we assume that P1 has a public key pk which is also made
available to P2. P1 also has a secret key sk that they use for decryption.
Both parties also have access to sources of internal randomness that they
can use for computing any tasks that require to sample random values.
The following is a description of how the protocol operates; we provide a
diagrammatic overview of our PSU design in Figure 1.

P1 P2

S1 = {xi}1≤i≤n S2 = {yj}1≤j≤m

BF1

IBF1

EIBF1

EIBF1

for j = 1, . . . ,m :

retrieve {C(j)
1 , . . . , C

(j)
k }

cj = (C
(j)
1 +H . . .+H C

(j)
k)

p̃j = ReRand(cj · yj)
c̃j = ReRand(cj)

(p̃j , c̃j)j∈{1,...,m}

for j = 1, . . . ,m :

Dsk(c̃j) = qj

Dsk(p̃j) = pj

Let V =
{
pj · qj−1 |qj 6= 0

}
Output S1 ∪ V

Fig. 1. An overview of our πEBF
∪ protocol that uses encrypted, inverted Bloom filters

Protocol steps. Inputs - P1: [(pk, sk), S1, |S2|], P2: [pk, S2, |S1|]

1. P1 calculates BF1 representing S1 using the set of hash functions
h1, . . . , hk. They then invert each entry in BF1 to retrieve IBF1.

2. P1 separately encrypts each element IBF1[l] of the inverted Bloom
filter, where 1 ≤ l ≤ B, using pk. P1 now possesses EIBF1, denote
EIBF1[l] = C[l]. They send EIBF1 to P2.

3. P2 evaluates each element yj ∈ S2 using the k hash functions and re-

trieves {C(j)
1 , . . . , C

(j)
k } where C

(j)
d = EIBF1[hd(yj)] for j ∈ {1, . . . ,m}.

4. P2 computes cj = (C
(j)
1 +H . . .+HC

(j)
k) and sends (p̃j , c̃j) = (ReRand(cj ·

yj),ReRand(cj)) to P1 (in some randomly permuted order).
5. First P1 checks the value of c̃j by computing Dsk(c̃j) = qj . If qj = 0

then Dsk(p̃j) = 0 so nothing can be learnt. Else Dsk(p̃j) = qj ·yj = pj .
6. P1 computes qj

−1 for qj 6= 0 and then calculates pj · qj−1 = yj .
7. P1 adds all yj to the set V where qj 6= 0 and outputs the set S1 ∪ V .

8

Remark 1. We adopt the notation cj ·yj for scalar multiplication between
a ciphertext cj and a scalar yj . This preserves the generality of the proto-
col relative to the AHE scheme used. However for Paillier encryption this
multiplication would usually be invoked via an exponentiation, i.e. c

yj
j .

Remark 2. It should be noted that the protocol leaks the size of the in-
tersection cardinality between the players P1 and P2. This is similar to
the previous PSU designs of [13,14,1], and likewise we don’t consider this
as a drawback in our design.

Remark 3. Randomisation of the ciphertexts by P2 prevents yj being in-
ferred directly from the ciphertext value. Engaging additive homomor-
phisms is necessarily deterministic by nature, and thus P1 could use
knowledge of BF1 and h1, . . . , hk to learn values in the intersection.

3.2 Protocol correctness

Since the Bloom filter is inverted before encryption then for any yj ∈
S1 ∩ S2 we have that Dsk(cj) = 0, therefore any message cj · yj that is
received for such a yj also decrypts to 0 and so cannot be learnt. For a
value yj /∈ S1 then we have that Dsk(cj) = 1 < zj < k, then decrypting
cj · yj reveals zj · yj and P1 can add all values yj to V by multiplying by
z−1j . Since V contains all values (yj ∈ S2)∧(yj /∈ S1) then S1∪V = S1∪S2.
Correctness is not perfect due to the possibility of false positives though
we can make this negligible in k as discussed in Section 2.2.

3.3 Protocol security

We show that this protocol is secure with respect to the ideal functionality
of a PSU computation defined by F∪ and the security model defined in
Section 2.4. For two parties P1 and P2 with sets S1, S2 respectively, we
define the functionality for the definition to be:

F∪(S1, S2) = S1 ∪ S2. (3)

As the definition suggests we need to show that it is impossible to de-
rive anything from the execution of the protocol that is not implied by
possession of the input and output of the corrupted player in question.

Theorem 1. Suppose that the protocol, πEBF
∪ , is instantiated with an

IND-CPA secure AHE scheme with re-randomised messages. Then πEBF
∪

securely realises F∪, as in Equation (3), in the presence of static semi-
honest adversaries.

9

Proof. We will show that the PSU protocol is secure when P2 is corrupted
first, due to the simplicity of the proof relative to the P1 corruption case.
Recall that the input for player P1 is Inp1 = (S1, aux1 = |S2| = m) and
for P2 it is Inp2 = (S2, aux2 = |S1|).

Server corrupted. The simulator receives Inp2 = (S2, aux2 = |S1|) and
the messages (T , ∅), where T is the entire message transcript that P2

witnesses and ∅ denotes the empty output received. For P2, T simply
contains an encrypted Bloom filter sent by P1. Therefore, the simulator
is only tasked with constructing an encrypted Bloom filter that is indis-
tinguishable from the one provided in the real execution. From knowledge
of (|S1|, (h1, . . . , hk)) the simulator is able to construct an empty Bloom
filter using the correct parameters and the same hash functions. The
simulator encrypts each entry of the Bloom filter using the IND-CPA en-
cryption scheme. Let T ′ denote the simulated transcript; both T and T ′
just contain IND-CPA encrypted Bloom filters. It is trivial to show that
any adversary who can distinguish between these transcripts can break
the IND-CPA security of the encryption scheme.

Client corrupted. The simulator receives Inp1 = (S1, aux1 = |S2|) and
the messages (T , S1∪S2) where T = {(p̃j , c̃j)}j∈[1,m]. It derives |S1∩S2| =
I from S1 and |S2|, by calculating |(S1 ∪ S2) \ S1| = U and subsequently
|S2|−|(S2\S1)| = I. It constructs I encryptions, cg, of 0 and U encryptions

cj = C
(j)
1 +H . . . +H C

(j)
k computed as in the original protocol using the

elements yj ∈ (S1 ∪ S2) \ S1 constructed via the output and the input
set. Finally, it sends m = I + U messages in total where I messages are
two encryptions of zero and the remaining U messages are represented by
{(p̃j , c̃j)}, let T ′ be the simulated transcript containing these messages.

It is clear that the adversary learns the same union output in the case
of T ′ since messages are constructed identically as in the real-setting.
Notice that in the real-world execution the ciphertexts (p̃j , c̃j) are re-
randomised after performing homomorphic additions and thus are indis-
tinguishable from brand new encryptions. Since T ′ only differs in that
each message is a fresh encryption, we can show that any adversary that
can distinguish T with non-negligible advantage must break the security
of the encryption scheme after re-randomisation. However, if an adver-
sary is able to do this then they must break its IND-CPA security since
re-randomising involves multiplying with a freshly encrypted ciphertext.
As a consequence, the simulated transcript must be indistinguishable in
its encrypted form from T by the IND-CPA security of the encryption
scheme. Since the correctness of the simulation holds this means that no

10

adversary that can distinguish between the two real and simulated cases
must exist. ut

Malicious security. It was shown in previous works [8,17] that it is
possible to prove security against malicious adversaries relating to input
privacy. Broadly speaking, P1 presents their set to a trusted certificate
authority who verifies that it is honestly generated before creating an
encrypted Bloom filter and signing it. When P2 receives the Bloom filter,
they verify the signature before computing the functionality above. This
prevents P1 from creating an adversarially generated Bloom filter that
would potentially reveal the entirety of S2. Since this method requires
a trusted third party, this enhanced protocol can be thought of as an
authenticated PSU design. This argument also applies for the PSI and
PSI/PSU-CA protocol variants. We do not provide the full details here
but a discussion will appear in an extended edition of this paper.

3.4 Asymptotic efficiency

Communication complexity. In the first round of our protocol, P1

sends B ciphertexts to P2. By Equation (1) we have that B = nk log e.
By choosing a constant false-positive probability for ε we also render k as
a constant and so O(n) total ciphertexts are sent.

In the second round, P2 sends 2m ciphertexts to P1 and so clearly we
have communication O(m) here. If we assume, as in previous works, that
n = m then the total communication complexity is given by O(n).2

Computational complexity. P1 computes B encryptions and 2m de-
cryptions (in the worst case). P1 must also compute m inverses of group
elements, though techniques for doing this are very efficient. In practice,
we can also reduce the number of decryptions by not computing Dsk(p̃j)
if Dsk(c̃j) = 0. On average this will lead to savings that are proportional
to the size of the intersection.

P2 will compute m(k+1) homomorphic additions and so, by the choice
of k, the work done by both parties is linear in m. Assuming that n = m
we get that computation comprises O(n) operations. The protocols of
[18,13,4,1,14] all exhibit computational complexities that are super-linear
in n, by comparison.

2 This can be easily done by padding the smaller of the two sets up to the size of the
larger one.

11

4 Adaptations to PSI and PSI/PSU-CA

An attractive feature of our simple protocol construction is the ease that
we can adapt the design to securely compute different set operations.
Here we consider the widely used operations PSI and PSI/PSU-CA and
how we can adapt our technique for securely computing PSU to compute
these functionalities instead. We define the ideal functionalities for PSI
(F∩) and PSI-CA (F|∩|) as:

F∩(S1, S2) = S1 ∩ S2, F|∩|(S1, S2) = |S1 ∩ S2| (4)

(with F|∪| defined analogously). We will prove the security of our designs
with respect to these functionalities.

4.1 PSI protocol

A PSI protocol can be constructed using the same inverted Bloom fil-
ter and AHE scheme that we use for the PSU variant, the only thing
that change are the messages that P2 computes. First, P2 computes

cj = C
(j)
1 +H . . .+H C

(j)
k as before, for each yj ∈ S2 and thus:

cj =

{
Epk(0) if yj ∈ S1
Epk(zj) if yj /∈ S1

where 1 ≤ zj ≤ k is the number of encryptions of 1 corresponding to
yj . P2 then sends the messages (ReRand((rj ·cj)+H Epk(yj)),ReRand(cj))
(for randomly sampled rj) to P1. Recall that P1 should only learn those
yj that satisfy yj ∈ S1 since the operation is a set intersection. In the
case where yj /∈ S1, we have that P1 receives encryptions of the pair
((rj · zj) + yj , zj). Since rj is a random mask, intuitively P1 is unable to
learn the value yj . When yj ∈ S1 they receive encryptions of (yj , 0), where
clearly they can learn yj . Figure 2 gives an overview of this protocol.

Protocol correctness. The correctness of the protocol follows since P1

outputs those yj such that cj is an encryption of 0, since this allows for P1

to decrypt p̃j to retrieve yj . This only occurs when yj ∈ S1 (with respect
tot he false-positive probability). Moreover, when yj /∈ S1 they receive a
randomly masked decryption and so yj cannot be learnt.

12

P1 P2

S1 = {xi}1≤i≤n S2 = {yj}1≤j≤m

BF1

IBF1

EIBF1

EIBF1

for j = 1, . . . ,m :

compute {C(j)
1 , . . . , C

(j)
k }

cj = (C
(j)
1 +H . . .+H C

(j)
k)

rj ←$ZN

p̃j = ReRand((rj · cj) +H Epk(yj))

c̃j = ReRand(cj)

(p̃j , c̃j)j∈{1,...,m}

Let V = {Dsk(p̃j) | Dsk(c̃j) = 0}
Output V = S1 ∩ S2

Fig. 2. A protocol that securely realises F∩ in a similar way to πEBF
∪ .

Protocol security.

Theorem 2. Suppose that the protocol, πEBF
∩ , is instantiated with an

IND-CPA secure, AHE scheme with re-randomised messages. Then πEBF
∩

securely realises F∩ in the presence of static semi-honest adversaries.

Proof. The security argument when P2 is corrupted is identical to the one
shown in Theorem 1 since the encrypted Bloom filter is unchanged. For
the corruption of P1 we note that the security relies now on P1 not being
able to learn elements y′j /∈ S1 ∩ S2 in order to realise F∩ securely. The
simulator receives the input Inp1 = (S1, aux1 = |S2|) and the messages
(T , S1 ∩S2). The transcript contains m pairs of encryptions {(p̃j , c̃j)}j of
the form (rj · cj +H Epk(yj), c̃j).

Let I = |S1 ∩ S2| and J = |S2| − I. The simulator encrypts the I
elements in S1 ∩ S2 along with I encryptions of 0 for the messages that
the adversary should learn. They then sample J random elements r′i and
random 1 ≤ z′i ≤ k for 1 ≤ i ≤ J and compute their encryptions. They
shuffle the order of the entire set of ciphertexts and submit pairs (p̃′j , c̃

′
j)

for j ∈ [1,m] to P1.
By a similar argument to the PSU security proof, the re-randomisation

procedure means that P1 cannot learn anything from the ciphertexts
themselves. Therefore, the only situation where the adversary can dis-
tinguish is if they can learn a different output. Note that there are I
encryptions of (yj , 0) which correspond exactly to those yj ∈ S1 ∩ S2.
Therefore, we only have to show that the adversary cannot distinguish

13

between the decrypted values ((rj · zj) + yj , zj) and (r′j , z
′
j) from the real

and simulated worlds respectively.

Since rj is a random mask, (rj · zj) + yj is also randomly distributed
across the domain. Therefore, this is identically distributed to the de-
crypted value r′j and thus P1 cannot distinguish these two values. Fur-
thermore, as long as z′j is chosen such that it mirrors the probability distri-
bution of values given in BF1 then this should also be indistinguishable.
Finally note that this distribution is entirely public since the simulator
can construct the Bloom filter from knowledge of S1 and h1, . . . , hk. ut

4.2 PSI/PSU-CA protocol

We can make use of the fact that by calculating one of PSI-CA or PSU-CA
then we can calculate the other using the following relation:

|X ∩ Y | = |X|+ |Y | − |X ∪ Y | (5)

and thus we can concentrate on only computing one of the operations. We
can create a secure protocol, πEBF

|∩| , for calculating PSI-CA by adapting

the protocol πEBF
∪ to have P2 to just send the message (c̃j) where cj is

calculated in the same way as the previous protocols and c̃j = ReRand(cj ·
rj). We compute c̃j using the ability to compute scalar multiplications on
cj and where rj is some randomly chosen non-zero integer. We need to
mask cj in this way since only adding an encryption of zero as before
would reveal extra information to P1 on decryption.

The protocol proceeds in the same way except that P1 only decrypts
c̃j . If Dsk(c̃j) = 0 then they increment a counter c. Once all c̃j have been
decrypted then P1 outputs c as the answer. For PSU-CA they compute
the count of c̃j that do not decrypt to 0 and then output |S1|+ c.

Protocol correctness. Correctness is satisfied since Dsk(c̃j) = 0 if and
only if yj ∈ S1 (and thus yj ∈ S1 ∩ S2) with all but the negligible proba-
bility of a false positive occurring.

Protocol security.

Theorem 3. Suppose that the protocol, πEBF
|∩| , is instantiated with an

IND-CPA secure AHE scheme and that ciphertexts are re-randomised.
Then πEBF

|∩| securely realises F|∩| in the presence of static semi-honest
adversaries.

14

Proof. The proof for security here is encompassed by the previous secu-
rity arguments, we provide a sketch proof only due to space constraints.
The case where P2 is corrupted is covered as before. The simulator can
construct the required number of encrypted values based on knowledge
of the output. The adversary cannot distinguish the real and simulated
encrypted formats due to the re-randomisation of ciphertexts. The de-
crypted values reveal nothing apart from the cardinality of the set (which
holds by correctness) since the simulator applies an identical random mask
to each concealed value. ut

4.3 Asymptotic evaluation

It is easily observable that the asymptotic performance of these two adap-
tations is essentially the same as the PSU variant. The cardinality variant
is slightly more efficient since P2 sends half as many ciphertexts and com-
putes less homomorphic operations. Likewise the PSI variant requires that
P2 compute m fresh encryptions, on for each yj . Fortunately this cost is
absorbed into the O(n) computation cost when taking n = m.

In Table 2, we provide a comparison of the asymptotic performance
with the most efficient cardinality protocols. We do not provide the same
analysis for our PSI protocol due to the relative density of results with
similar complexities, though our design is asymptotically competitive with
the most practical designs. We also provide a comparison of our toolkit
with previous designs by Kissner and Song [18]. Our work improves
demonstrably from their designs in both communication and computa-
tion. More recent attempts to provide multiple functionalities [1,14] also
fall short of realising linear computational complexities and so our toolkit
is asymptotically optimal in comparison with these previous works.

Communication Computation

[5] O(n) O(n)
[11] O(B) O(B)

πEBF
|∩| /π

EBF
|∪| O(n) O(n)

Communication Computation

[18]
PSI O(cNn log |E|) O(n2)
PSU O(N2n log |E|) O(n2)

PSI/PSU-CA O(N2n log |E|) O(n2)

πEBF
PSI 2n+B O(n)
PSU 2n+B O(n)

PSI/PSU-CA n+B O(n)

Table 2. Left: Comparison of our PSI/PSU-CA protocols with [5,11]. Right: Com-
parison of our complexities with the protocols of [18].

15

5 Experimental evaluation

Parameter choices. To fully evaluate the practicality of our designs we
present the results of an implementation of the proposed protocols. The
implementations are written in Go and all experiments have been run on
hardware with 256gb RAM with an Intel(R) Xeon(R) CPU E5-2667 v2 @
3.30GHz and utilising a maximum of 8 cores (when parallel computation
is required). We instantiate the protocol with an open-source implemen-
tation of Paillier encryption in Go, known as go-go-gadget-paillier3

with optimisations4 to provide the homomorphic capability over cipher-
texts. We provide our own implementation of the encrypted Bloom filter
functionality. Our PSO implementation requires only 425 lines of code.

For the experiments, we examine running times for sets sizes ranging
from 28 to 218 elements; these sizes are used commonly in prior work.
We choose a false positive probability of ε = 2−30 alongside the choice
of optimal parameters for our Bloom filter as described in Section 2.2
– for example k = 30 and thus B = kn log e by Equation (1) for sets
of size n. For the Paillier encryption scheme we experiment with moduli
N with bit-lengths 1024 and 2048 roughly equivalent to 80 and 116 bit
security. We chose the domain of possible elements to be 5n where n is
the set size and we choose the sets at random from this domain. This
choice was made merely to guarantee that the size of the intersection is
not too low, ensuring a realistic simulation. During our experimentation
we make use of concurrency features in Go to make significant savings via
parallel execution of operations. Times were ∼ 3× quicker using parallel
execution and thus we do not present our single-threaded results.

5.1 Results

In Table 3 we give the full runtimes for our PSO protocols. Table 5 pro-
vides the maximum amount of communication data5 and in Table 4 we
provide the time taken for the initial encryption. For reference, in Ap-
pendix A, we provide comparisons with efficient PSI designs [10,7,16].
The existing works of [23,22,19] provide even faster designs though these
use inherently symmetric primitives which are not comparable with our
work. It should be noted however that our designs represent a much more
generic functionality since we can compute multiple set operations. These

3 github.com/roasbeef/go-go-gadget-paillier
4 github.com/mcornejo/go-go-gadget-paillier
5 We do not provide estimates for the 2048 bit case since they are derivable by doubling

the 1024 bit estimates.

16

previous designs are only suitable for PSI computation. There are no cur-
rent implementations of PSU designs for an experimental comparison.

Clearly, there is a large gap in efficiency between our protocols and
those of state-of-the-art PSI designs. However, observe that the majority
of our running times are spent on encrypting the initial Bloom filter that is
sent to P2. In fact, the homomorphic operations and output computation
each take < 5% of all operating runtime for all set sizes. Subsequently,
we can see that that the actual online phase of our protocol could be
regarded as practical. As a consequence, the main bottleneck of our design
appears to be the encryption phase and thus any optimisation in the
underlying encryption scheme would drastically improve the practicality
of our construction.

Set size Timings PSU PSI CA

28
Hom. ops 0.49 0.5 0.5
Out time 0.56 0.54 0.55
Full time 11.78 11.76 11.75

210
Hom. ops 1.94 1.96 1.95
Out time 2.21 2.2 2.22
Full time 44.73 44.68 44.7

212
Hom. ops 7.82 7.82 7.87
Out time 8.61 8.74 8.86
Full time 175.7 175.79 175.96

214
Hom. ops 31.37 31.32 31.59
Out time 35.78 34.9 35.48
Full time 702.4 702.39 703.24

216
Hom. ops 126.16 127.43 127.01
Out time 141.72 138.82 141.76
Full time 2836.5 2834.68 2837.19

218
Hom. ops 510.19 503.95 508.53
Out time 536.48 556.72 556.05
Full time 11341.2 11327.78 11331.67

Set size Timings PSU PSI CA

28
Hom. ops 3.33 3.36 3.33
Out time 3.66 3.55 3.58
Full time 78.02 77.76 77.76

210
Hom. ops 13.45 13.33 13.44
Out time 14.77 14.26 14.31
Full time 312.44 311.61 311.76

212
Hom. ops 52.97 53.41 53.15
Out time 55.59 57.98 56.44
Full time 1233.59 1235.69 1233.84

214
Hom. ops 212.33 212 212.55
Out time 228.13 223.31 225.11
Full time 4952.94 4947.32 4949.66

216
Hom. ops 856.27 859.67 857.9
Out time 902.81 906.9 907.27
Full time 19881.51 19888.79 19887.17

216
Hom. ops 3411.87 3416.9 3419.2
Out time 3580.25 3595 3575.94
Full time 79272.48 79290.82 79274.15

Table 3. Runtimes (secs) for increasing set sizes, left = 1024-bit moduli, right = 2048-
bit. ‘Hom. ops’ refers to time taken for homomorphic operations; ‘Out time’ refers to
time taken to compute output; ‘Full time’ includes time for encryption from Table 4.

28 210 212 214 216 218

1024 bits 10.7 40.53 159.23 636.17 2568.41 10267.03
2048 bits 70.85 284.02 1124.3 4512 18122 72278.95

Table 4. Encryption times (sec)

Set sizes 28 210 212 214 216 218

Comms (mb) 2.83 11.32 45.28 181.12 724.49 2897.97

Table 5. Maximum communication costs (mb) for our protocols for 1024 bit security.

17

5.2 Amortising Bloom filter encryption

Importantly, we can think of the Bloom filter encryption phase as an
offline cost. By encrypting with an additively homomorphic scheme, we
are able to retain functionality of the Bloom filter even after encryption
has took place. Notice that the encrypting party is only required to store
new elements, and recall that it is impossible to remove elements even
from a standard Bloom filter. After a Bloom filter has been encrypted
elements can still be added to the set by adding ‘1’ to any specified
ciphertext that currently encrypts ‘0’.

Using this homomorphic property allows us to amortise the encryption
operation over the natural life of a Bloom filter (i.e. until the underlying
set has to be recomputed, or the maximum number of elements has been
reached). Consequently, it is reasonable to suggest that the encryption
phase of our protocol can be thought of as a one-time cost. The encrypted
Bloom filter could then be used in multiple PSO instantiations, as long
as re-randomisation of ciphertexts takes place. The ‘online’ phase of our
protocol is very efficient to run and so it is an advantageous feature of our
design that the main cost can be amortised across several instantiations.

6 Conclusion

In this paper we have devised a new method of computing the main pri-
vate set operations with linear complexities. Our PSU protocol is the first
construction that demonstrates both linear computation and communi-
cation. We have also shown that the design is easily adapted to support
other private set functionalities. Finally, our experimental work shows
the practicality of our protocols in the online phase. Our designs provides
therefore an efficient toolkit for generic PSO computations.

Acknowledgements. The authors would like to thank Sumit Debnath,
Mikkel Lambaek and Claudio Orlandi for their help in establishing prob-
lems with previous versions of this work. This work was supported by
the EPSRC and the UK Government as part of the Centre for Doc-
toral Training in Cyber Security at Royal Holloway, University of London
(EP/K035584/1).

References

1. M. Blanton and E. Aguiar. Private and oblivious set and multiset operations. In
H. Y. Youm and Y. Won, editors, ASIACCS 12, pages 40–41. ACM Press, May
2012.

18

2. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, 1970.

3. P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. H. M.
Smid, and Y. Tang. On the false-positive rate of bloom filters. Inf. Process. Lett.,
108(4):210–213, 2008.

4. J. Brickell and V. Shmatikov. Privacy-preserving graph algorithms in the semi-
honest model. In ASIACRYPT, volume 3788 of Lecture Notes in Computer Science,
pages 236–252. Springer, 2005.

5. E. D. Cristofaro, P. Gasti, and G. Tsudik. Fast and private computation of cardi-
nality of set intersection and union. In J. Pieprzyk, A.-R. Sadeghi, and M. Manulis,
editors, CANS 12, volume 7712 of LNCS, pages 218–231. Springer, Heidelberg, Dec.
2012.

6. A. Davidson, G. Fenn, and C. Cid. A model for secure and mutually beneficial
software vulnerability sharing. In Proceedings of the 2016 ACM on Workshop
on Information Sharing and Collaborative Security, WISCS ’16, pages 3–14, New
York, NY, USA, 2016. ACM.

7. E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with
linear complexity. In R. Sion, editor, FC 2010, volume 6052 of LNCS, pages 143–
159. Springer, Heidelberg, Jan. 2010.

8. S. K. Debnath and R. Dutta. Efficient private set intersection cardinality in the
presence of malicious adversaries. In M. H. Au and A. Miyaji, editors, ProvSec
2015, volume 9451 of LNCS, pages 326–339. Springer, Heidelberg, Nov. 2015.

9. S. K. Debnath and R. Dutta. Secure and efficient private set intersection cardinality
using bloom filter. In J. Lopez and C. J. Mitchell, editors, ISC 2015, volume 9290
of LNCS, pages 209–226. Springer, Heidelberg, Sept. 2015.

10. C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data:
an efficient and scalable protocol. In A.-R. Sadeghi, V. D. Gligor, and M. Yung,
editors, ACM CCS 13, pages 789–800. ACM Press, Nov. 2013.

11. R. Egert, M. Fischlin, D. Gens, S. Jacob, M. Senker, and J. Tillmanns. Privately
computing set-union and set-intersection cardinality via bloom filters. In E. Foo
and D. Stebila, editors, ACISP 15, volume 9144 of LNCS, pages 413–430. Springer,
Heidelberg, June / July 2015.

12. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

13. K. B. Frikken. Privacy-preserving set union. In J. Katz and M. Yung, editors,
ACNS 07, volume 4521 of LNCS, pages 237–252. Springer, Heidelberg, June 2007.

14. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious
adversaries. Journal of Cryptology, 25(3):383–433, July 2012.

15. F. Hormozdiari, J. W. J. Joo, A. Wadia, F. Guan, R. Ostrovsky, A. Sahai, and
E. Eskin. Privacy preserving protocol for detecting genetic relatives using rare
variants. Bioinformatics, 30(12):204–211, 2014.

16. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits
better than custom protocols? In NDSS 2012. The Internet Society, Feb. 2012.

17. F. Kerschbaum. Outsourced private set intersection using homomorphic encryp-
tion. In H. Y. Youm and Y. Won, editors, ASIACCS 12, pages 85–86. ACM Press,
May 2012.

18. L. Kissner and D. X. Song. Privacy-preserving set operations. In V. Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer, Heidelberg, Aug.
2005.

19

19. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched oblivi-
ous PRF with applications to private set intersection. In E. R. Weippl, S. Katzen-
beisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 16, pages
818–829. ACM Press, Oct. 2016.

20. C. A. Meadows. A more efficient cryptographic matchmaking protocol for use in
the absence of a continuously available third party. In Proceedings of the 1986
IEEE Symposium on Security and Privacy, Oakland, California, USA, April 7-9,
1986, pages 134–137, 1986.

21. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238.
Springer, Heidelberg, May 1999.

22. B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection
using permutation-based hashing. In USENIX Security Symposium, pages 515–530.
USENIX Association, 2015.

23. B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based
on OT extension. In Proceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, August 20-22, 2014., pages 797–812, 2014.

24. P. Rindal and M. Rosulek. Improved private set intersection against ma-
licious adversaries. Cryptology ePrint Archive, Report 2016/746, 2016.
http://eprint.iacr.org/2016/746.

25. J. H. Seo, J. H. Cheon, and J. Katz. Constant-round multi-party private set
union using reversed laurent series. In M. Fischlin, J. Buchmann, and M. Manulis,
editors, PKC 2012, volume 7293 of LNCS, pages 398–412. Springer, Heidelberg,
May 2012.

A Runtimes and communication from previous work

Security level 80-bit 128-bit

Set sizes 210 212 214 216 218 210 212 214 216 218

De Cristofaro et al. [7] 0.5 2.0 7.9 31.3 124.9 7.7 31.0 124.3 497.2 1982.1

Huang et al.[16]* 1.2 5.1 21.2 100.3 462.7 1.9 7.8 36.5 168.9 762.4

Dong et al.[10]* 0.15 0.5 2.0 8.1 34.3 0.27 1.0 4.1 16.7 67.6

Table 6. Runtimes (seconds) taken from [23]

Security level 80-bit 128-bit

Set sizes 210 212 214 216 218 210 212 214 216 218

De Cristofaro et al. [7] 0.3 1.1 4.3 17.3 69.0 0.8 3.1 12.5 50.0 200.0

Huang et al.[16]* 18.8 90.0 420.0 1920.0 8640.0 30.0 144.0 672.0 3072.0 13824.0

Dong et al.[10]* 1.1 4.5 18.1 72.6 290.4 2.9 11.6 46.2 184.9 739.7
* With optimisations from [23]

Table 7. Communication costs (mb) taken from [23]

20

