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Abstract. We prove that, assuming there exists an injective one-way function f , at least one
of the following statements is true:

– (Infinitely-often) Non-uniform public-key encryption and key agreement exist;
– The Feige-Shamir protocol instantiated with f is distributional concurrent zero knowledge

for a large class of distributions over any OR NP-relations with small distinguishability
gap.

The questions of whether we can achieve these goals are known to be subject to black-box lim-
itations. Our win-win result also establishes an unexpected connection between the complexity
of public-key encryption and the round-complexity of concurrent zero knowledge.

As the main technical contribution, we introduce a dissection procedure for concurrent ad-
versaries, which enables us to transform a magic concurrent adversary that breaks the distribu-
tional concurrent zero knowledge of the Feige-Shamir protocol into non-black-box construc-
tions of (infinitely-often) public-key encryption and key agreement.

This dissection of complex algorithms gives insight into the fundamental gap between the
known universal security reductions/simulations, in which a single reduction algorithm or simu-
lator works for all adversaries, and the natural security definitions (that are sufficient for almost
all cryptographic primitives/protocols), which switch the order of qualifiers and only require
that for every adversary there exists an individual reduction or simulator.

1 Introduction

The seminal work of Impagliazzo and Rudich [IR89] provides a methodology for studying the lim-
itations of black-box reductions. Following this methodology, plenty of black-box barriers, toward-
s building cryptographic systems on simpler primitives/assumptions and achieving more efficient
constructions, have been found in the last three decades. These findings have long challenged us
to develop new reduction methods and get around the limitations of black-box reduction, however,
the progress towards this goal is quite slow, and for most of the known black-box barriers, it is still
unclear whether they even hold for arbitrary reductions.

We revisit two seemingly unrelated fundamental problems, for both of which the black-box
impossibility results are well known.

The first problem is to identify the weakest complexity assumptions required for public-key en-
cryption. Ever since the invention of public key cryptography by Diffie and Hellman [DH76], the
complexity of public-key cryptography, i.e., lowering the underlying complexity assumptions for
cryptographic primitives/protocols, is one of the most basic problems. In the past four decades, for
some primitives, including pseudorandom generators, signatures and statistically-hiding commit-
ments, we witnessed huge success on this line of research and can now base them on the existence
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of one-way functions [Rom90, HILL99, HR07], which is the minimum assumption in the sense that,
as showed by [IL89], almost all cryptographic primitives/protocols imply the existence of one-way
functions.

But for public-key encryption and key agreement– the concepts that were conceived in the o-
riginal paper of Diffie and Hellman, we did not make that successful progress yet. Impagliazzo and
Rudich proved in their seminal work [IR89] that there is no black-box reduction of one-way permu-
tations to key agreement, and since public-key encryption implies key agreement, their result also
separates one-way permutations from public-key encryption with respect to black-box reduction.

In [Imp95] Impagliazzo describes five possible worlds of complexity theory. The top two worlds
among them are Cryptomania, where public-key crypgraphy exists, and Minicrypt where there are
one-way functions but no public-key cryptography. Though the above black-box separation pro-
vides some strong negative evidences, they do not rule out the possibility of constructing public-key
encryption from one-way functions, i.e., do not prove that we live in Minicrypt.

The other fundamental problem we consider is that of the round-complexity of concurrent ze-
ro knowledge. The notion of concurrent zero-knowledge, put forward by Dwork, Naor and Sa-
hai [DNS98], extends the standard-alone zero-knowledge security notion [GMR89] to the case
where multiple concurrent executions of the same protocol take place and an adversarial verifier
may corrupt multiple verifiers and control the scheduling of the messages.

As observed in [DNS98], the traditional black-box simulator does not work for the classic
constant-round protocols (including the Feige-Shamir type protocol [FS89] and the Goldreich-Kahan
type protocol [GK96]) in the concurrent setting. Indeed, Canetti et al. [CKPR01] proved that con-
current zero-knowledge with black-box simulation requires a logarithmic number of rounds for lan-
guages outside BPP. Prabhakaran et al. [PRS02] later refined the analysis of the Kilian and Pe-
trank’s [KP01] recursive simulator and gave an (almost) logarithmic round concurrent zero knowl-
edge protocol for NP.

In his breakthrough work, Barak [Bar01] introduced a non-black-box simulation technique based
on PCP mechanism and constructed a constant-round public-coin bounded-concurrent zero knowl-
edge protocol for NP, which breaks several known lower bounds for black-box zero knowledge.
There has been a vast body of work (see Section 1.4) since then on developing new non-black-box
techniques and reducing the round-complexity of zero knowledge protocol in the concurrent setting.
However, The problem of whether we can achieve constant-round concurrent zero knowledge based
on standard assumptions is still left open.

Note also that the known constructions that beat the lower bound on the black-box round-
complexity are rather complicated and therefore impractical. Given the current state of the art, a
more ambitious question is whether we can prove the concurrent zero knowledge property of the
classic 4-round protocols (such as the Feige-Shamir protocol), although it is known to be impossible
to give such a proof for these simple and elegant constructions via black-box simulations.

1.1 Universal Simulator “∃S∀A” Versus Individual Simulator “∀A∃S”

We observe that almost all known reduction and simulation techniques are universal in the sense
that, in the security proof of a protocol/premitive, the reduction R (or simulator S) works for all
possible efficient adversaries and turn the power of a given adversary A into the power of breaking
the underlying assumptions (i.e., “∃R or S ∀A”). However, for most natural security definitions, it
is only required that for every adversary A there exists an individual reduction R (or a simulator S)
that works for A (i.e., “∀A∃R or S”).

This motivates us to step back and look at the concurrent security of the simplest Feige-Shamir
protocol. We will show that there is an individual simulator for the specific adversarial verifier (and
thus it is not a concrete “attacker”) constructed by Canetti et al. [CKPR01], though it was shown
that for such an adversary the known black-box simulator fails. Sure, showing the existence of a
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simulator for a specific verifier does not mean that the Feige-Shamir protocol is concurrent zero
knowledge, but this example does reveal a gap between the universal simulation “∃S∀A” and the
individual simulation “∀A∃S” .

The Feige-Shamir protocol for proving x ∈ L proceeds as follows. In the first phase, the verifier
picks two random strings α1 and α2, computes two images, β1 = f(α1), β2 = f(α2), of a one-way
function f , and then proves to the prover via a constant-round witness indistinguishability protocol
that he knows either α1 or α2; in the second phase, the prover proves that either x ∈ L or he knows
one of α1, α2. The adversary V ∗ constructed in [CKPR01] adopts a delicate scheduling strategy,
and when computing a verifier message, it applies a hash function h with high independence to the
history hist sofar and generates the randomness r = h(hist) for computing the current message. In
our case, the randomness for the first verifier step of a session includes the two pre-images α1 and
α2.

Canetti et al. showed that it is impossible for an efficient simulator to simulate V ∗’s view when
treating it as a black-box1. However, as mentioned before, the natural concurrent zero knowledge
condition does not require a universal (or black-box) simulator that works for all adversarial verifiers,
but just requires that for every specific V ∗ there exists an individual simulator.

Note that the individual simulator may depends on the specific verifier, and more importantly,
since we are only required to show the mere existence of such a simulator, we can assume that the
individual simulator knows (or equivalently, takes as input) the verifier’s functionality, randomness,
etc.

Indeed, for the adversary V ∗ of [CKPR01], there exists, albeit probably not efficiently con-
structible from a given (possibly obfuscated) code of V ∗, a simple simulator for the above specific
V ∗: Note that there exists an adversary V ′ that acts exactly in the same way as V ∗ except that at
each step V ′ outputs r = h(hist) together with the current message, and thus a trivial simulator
Sim(V ′), incorporating V ′ and using the fake witness (one of α1 and α2

2) output by V ′ at the first
verifier step of each session, can easily generate a transcript that is indistinguishable from the real
interaction between V ∗ and honest provers .

1.2 Our Work

We prove an unexpected connection between the complexity of public-key encryption and the round-
complexity of concurrent zero knowledge. Specifically, we show how to transform an attacker that
can break a weak version of distributional concurrent zero knowledge of the Feige-Shamir protocol
instantiated with injective one-way functions into (infinitely-often) constructions of public-key en-
cryption and key agreement. This means at least one of the two problems (with respect to infinitely-
often version and distributional version respectively) mentioned above has a positive answer.

A formal statement of our result. Let L and RL be an arbitrary NP language and its associated
NP relation respectively. The OR language L∨L3 and the corresponding relation RLOR

are defined
in a natural way.

Given an arbitrary efficiently samplable distribution ensemble D = {Dn}n∈N over RL (each
Dn is over RnL := {(x,w) : (x,w) ∈ RL ∧ |x| = n}), and an arbitrary efficiently samplable
distribution Zn over {0, 1}∗4, we define the joint distribution {(Xn,Wn, Zn)}n∈N over RLOR

×
{0, 1}∗ in the following way: Sample (x1, w1) ← Dn,(x2, w2) ← Dn, z ← Zn, b ← {1, 2}, and
output ((x1, x2), wb).

1 I.e., the simulator is given only oracle access to V ∗, and does not have knowledge about its code, running
time, etc.

2 Note that α1 and α2 are part of the randomness r used in the first verifier message of a session.
3 For simplicity, we consider only the OR composition of the same NP language L, but our result holds with

respect to the OR composition of any two NP languages.
4 The element z from Zn will be given as auxiliary input to the verifier of Feige-Shamir protocol.
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Theorem 1. Assume that there exists an injective one-way function f . Then, at least one of the
following statements is true:

– (Infinitely-often) Non-uniform public-key encryption and key agreement exist;
– For every inverse polynomial ε, the Feige-Shamir protocol instantiated with f is distributional

concurrent zero knowledge on {(Xn,Wn, Zn)}n∈N defined as above with distinguishability
gap bounded by ε.

In an infinitely-often version of a primitive, the correctness and security of a construction are
required to hold only for infinitely many security parameter n. The notion of ε-distributional con-
current zero knowledge (first defined in [CLP15b]) differs from the traditional zero knowledge in
that its zero knowledge property holds on average (i.e., holds for distributions over the statements),
and that the indistinguishability gap for any efficient distinguisher is bounded by an arbitrary inverse
polynomial (instead of a negligibly function).

Very roughly, Theorem 1 says the Feige-Shamir protocol is concurrent secure in the Minicrypt:
In the world where there are injective one-way functions but no public-key encryption, the Feige-
Shamir protocol satisfies certain version of concurrent zero knowledge.

Remark 1. We note that the black-box lower bounds [IR89, CKPR01] also hold for the infinitely-
often version of public-key encryption and the ε-distributional concurrent zero knowledge5. We
stress that our public-key encryption (and the key agreement) is based on the injective one-way
function f and the specific attacker against the Feige-Shamir protocol, and is non-uniform and non-
black-box in nature: The key generation, encryption and decryption algorithms in our public-key
encryption scheme are all non-unform, and make non-black-box usage of the underlying function f
and the attacker.

Dissecting a complex adversary: Revealing the Creation of a Magic Trapdoor. The basic proof
strategy of Theorem 1 is to transform a magic verifier against the Feige-Shamir protocol into con-
structions for (infinitely-often) public-key encryption and key agreement. This proof idea is some-
what similar in spirit to the one appeared in [DNRS03] but still quite unusual in cryptography. In our
setting, formalizing such a proof idea is very complicated and requires substantially new techniques.

To deal with the complex concurrent adversary, we introduce a dissection procedure to pinpoint
where a supposed successful adversary magically endow a set of images of the injective one-way
function f with a trapdoor, which is the key step towards our construction of public-key encryption
via the Goldreich-Levin Theorem. On the very high level, if an adversarial verifier V ∗ that can break
concurrent zero knowledge of the Feige-Shamir protocol, then in the real interaction there must exist
a step i (verifier steps are ordered according to their appearance in the concurrent setting) such that:

– With high probability, V ∗ will output a pair of images β1 and β2, i.e., the first verifier message
of some session j at this step i, and at a later time it will reach its second step of session j, i.e.,
completes its 3-round proof that it knows one pre-image of β1 and β2 under f .

– But for any efficient algorithm T , even taking the code of V ∗ and the history prefix up to its i-th
step, the probability that T inverts any one of these two images β1 and β2 is bounded away from
1.

The intuition behind this observation is as follows. If the above two items does not hold simul-
taneously, then at each verifier step, either V ∗ does not output a pair of images of a session, or it
outputs a pair of images of session j but will never reach its second message of session j, or there is

5 Our result holds with respect to distributions that are not always over YES instances. By applying the lower-
bound proof strategy of [CKPR01], we conclude that the Feige-Shamir protocol cannot be ε-distributional
concurrent black-box zero knowledge for any non-trivial distribution over hard problems, see Appendix A
for more details.
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an efficient algorithm that can find one of the corresponding pre-images. In each case we will have
a simple simulator that can simulate the view of the V ∗, which leads to a contradiction.

Thus, for a given successful adversary V ∗ the above two items must hold simultaneously. This
means V ∗ magically endow the images β1 and β2 output at its step i with a trapdoor (i.e., the
witness w to the common input x): With the trapdoor w, one can play the role of honest prover
until V ∗ completes his 3-round proof, then using standard rewinding technique to obtain one of the
pre-images; while, without the knowledge of w, no efficient algorithm can invert any one of β1 and
β2 with overwhelming probability. This is the key observation that enables us to construct public
key encryption and key agreement from the injective one-way f .

The major challenge in the actual dissection is to show the existence of infinitely many security
parameter n for each of which the above conditions hold (as required by infinitely-often public key
encryption and key agreement). To cope with this difficulty, we develop a set of techniques that
convert concrete security into asymptotic security, which may be of independent interest.

Exploiting the Magic Trapdoor. With a trapdoor, an approach to public-key encryption that comes
to mind is the well-know paradigm via the Goldreich-Levin theorem. In this paradigm, the public-
key is an injective one-way function f , and the secret key is its trapdoor. To encrypt a bit m, one
picks a random string s and computes the cypher-text (f(s), h(s)

⊕
m), where h is the Goldreich-

Levin hardcore for f . The receiver can use the trapdoor of f to decrypt the cypher-text.
A closer look at the trapdoor endowed by the magic adversary suggests that this approach does

not work. Observe that, given a supposed magic adversary V ∗, a witness w to x can serve as the
trapdoor for the possible set of images output by V ∗ at its step i (under the same common input
x), but not the trapdoor of f . Thus, if we follow the above paradigm and let x6 be the public-key,
then, in order to enable decryption, some image of f output by V ∗ must be the first part of the
cypher-text. However, in this scenario, an honest sender without knowing w will be unable to obtain
the corresponding pre-image of that image and therefore cannot compute the second part of the
cypher-text.

To overcome this difficulty, we assume V ∗ breaks the ε-distributional zero knowledge of the
Feige-Shamir protocol on OR NP-statements of the form (x1 ∨ x2), and have an honest sender
generate a statement and its witness (x2, w2) (note that w2 is an witness to (x1 ∨ x2)) on his own
when computing a cypher-text under the public-key x1. See below for details.

An Overview of the Proof. We divide the proof into four steps, which will be presented in sections
3 to 6 respectively. Roughly, the proof proceeds as follows.

STEP I: We introduce a dissection procedure and prove that there must be infinitely many n, for
each of which there exists a step i of V ∗, such that the above two items hold simultaneously.
This illustrates the power of V ∗ that magically endows the images of f output by V ∗ at its step
i with a sort of trapdoor.

STEP II: Note that V ∗ outputs a pair of images of f at its step i. To avoid that the sender and the
receiver (both with a witness to x) may recover different pre-images from V ∗, we construct
a pair of non-interactive algorithms C and E from the code of V ∗ such that for each (n, i)
obtained in the above step:

– C (with knowledge of a witness w to x) outputs a single image β of f with high probability;
– E (with knowledge of a witness w to x) will extract the pre-image of β output by C;
– No efficient algorithm can compute the pre-image of β with probability close to 1.

STEP III: Using standard techniques, we amplify the gap between the success probability of E and
the success probability of any efficient inverting algorithm without knowing a witness to x, and
obtain two algorithms M and Find, where M takes a sequence of (x,w) as input and outputs
a sequence of images β of f , and Find takes the same sequence of (x,w) and outputs all pre-
images corresponding to the sequence of images β, both with probability negligibly close to 1;

6 Here we fix the function f and the adversary V ∗, which can be viewed as part of the public key.
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further, there is no efficient algorithm that can invert all the images output by M simultaneously
with non-negligible probability.

STEP IV: Note that the Feige-Shamir protocol is concurrently witness indistinguishable, and thus
the above holds when M and Find use different witnesses. Starting with a magic adversary
V ∗ that breaks the distributional concurrent zero knowledge of the Feige-Shamir protocol for
distribution over OR NP-statements of the form (x1 ∨ x2), we construct the public-key encryp-
tion scheme (and key-exchange scheme) in a natural way: The receiver generates a sequence
of (x1, w1) as the public/secret key pair; to encrypt a bit, the sender generates a sequence of
(x2, w2) and runs M on input the sequence of OR statements (x1 ∨ x2) and their corresponding
witnesses w2 to generate a set of images of f , computes the hard-core of the corresponding
pre-images and XOR the plaintext bit with the hardcore; to decrypt, the receiver runs Find on
input the ciphertext and the sequence of witnesses w1 to obtain the corresponding pre-images,
and then computes the hardcore and gets the plaintext.

Remark 2. We use the code of V ∗ in our final construction of public-key encryption. However, what
we actually need to construct public-key encryption is the functionality of V ∗, that is, we can replace
the code of V ∗ with any code7 of the same functionality in the intermediate algorithms in each of
above steps along the way.

1.3 A Wide Perspective on Reductions

As mentioned, the mostly common used security proof techniques– black-box techniques (see [RTV04,
BBF13] for refined treatments) and the known non-black-box techniques [Bar01, DGS09, BP15]–
are universal, where a single universal reduction algorithm works for all possible adversaries. Here
in this section we abuse the term reduction and view simulation as a type of reduction. Note that
the description of an adversary that the reduction algorithm has access to probably is an obfuscated
code. This causes a trouble in cases where the functionality of the adversary is crucial for the reduc-
tion to go through (as showed in the above example of simulation for the adversary in [CKPR01],
and see also [DGL+16]), since we cannot expect the efficient reduction algorithm to figure out the
functionality from a given obfuscated code of an arbitrary adversary.

However, in almost all cases, in a security proof the reduction can be arbitrary. This means
the reduction is allowed to depend not only on the code of the adversary, but also on any “nice”
properties of the adversary (if exist), such as functionality, good random tapes, etc. Furthermore,
to show the mere existence of such an arbitrary reduction, we do not need to care about whether
such properties can be efficiently extracted from the code of the adversary, but just assume that
the reduction takes these properties as input. We refer to an arbitrary reduction as individual re-
duction, which is also called non-constructive reduction or non-uniform reduction in some previous
work [BU08, CLMP13]. We stress that it is not always possible to turn an individual reduction into
a universal reduction with a non-uniform advice because, in many cases, even if we can prove all
possible adversaries share a certain property, this property may not have a short description. (This
will be clear in the following example.)

Recall that, to complete a security proof, we have to show for every adversary there is an indi-
vidual reduction. This would be impossible unless we can prove that all possible adversaries have
certain properties in common. Indeed, we observe that a few exceptional individual reductions in
complexity (e.g., [Adl78]) and hardness amplification (e.g., [GNW95, CHS05, HS11]) literature
are based on a property– the existence of “good” random tapes– shared by all possible adversaries.
Let’s take the reduction for BPP ⊆ P/poly [Adl78] as an example. The first step of the proof of
[Adl78] is to show a common property that every machine deciding a language L ∈ BPP must have
at least one good random tape on which this machine will make correct decisions on all instances

7 As long as it is of polynomial size.
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of a given size. Using the mere existence of a good random tape, we can then simply hardwire this
good random tape into the circuit family that decide the language L deterministically. This circuit
family can be thought of as a reduction, which varies depending on the specific BPP machine since
different machines may have different good random taps.

Besides the structure (success/failure) of the random tapes, there seems to be a more important
structure of the adversaries, i.e., the structure of the adversary’s computation, that would empower
the individual reduction greatly. In cryptography, we actually already exploited structures of this
type, such as the knowledge of exponent assumption and extractable one-way functions [Dam91,
BCPR14], but most of them are viewed as just non-standard assumption. Our work seems to raise
some hope that we may be able to prove highly non-trivial structures of the adversary’s computation
in some settings under standard assumptions in the future.

1.4 Related Work

There have been numerous efficient constructions ([RSA78, Rab79, GM82, CS99, Reg09, HKS03],
to name a few) for public-key encryption with various security notions based on specific assumption-
s with various algebraic structures, and some less efficient constructions [NY90, BHSV98, Sah99,
Lin03a] based on more abstract assumptions– enhanced trapdoor permutations or trapdoor functions
with polynomial pre-image size. Since public-key encryption implies key agreement (secure against
eavesdropping adversaries), the same assumptions are sufficient for the latter. On the negative side,
the recent work of [DS16] strengthens the black-box separation of public-key encryption and gener-
al one-way functions in [IR89] by allowing the reduction to take the code of the underlying primitive
as input.

In the line of research on concurrent zero knowledge, Goyal [Goy13] extended Barak’s idea to
achieve fully concurrent zero knowledge in polynomial rounds. In the globe hash model, Canetti
et al. [CLP13a] showed that public-coin concurrent zero knowledge can be obtained with logarith-
mic round-complexity. Recently, Chung et al. [CLP15a] (based on [CLP13b]) presented the first
constant-round concurrent zero knowledge protocol based on indistinguishability obfuscation with
super-polynomial security. Assuming the existence public-coin input-differing obfuscation, Pandey
et al. [PPS15] presented a 4-round concurrent zero knowledge protocol. Over the last two decades,
concurrent zero knowledge protocols have been used as a key building block in the construction
of generally composable cryptographic protocols [CLOS02, PR03, Lin03b, PR05, Pas04, Lin08,
GGJ13, GGJS12, GGS15, GLP+15].

2 Preliminaries

A function negl(n) is called negligible if it vanishes faster than any inverse polynomial.
If D is a distribution (or random variable), we denote by x ← D the process of sampling x

according to D, and by {xi}ki=1 ← D
⊗
k the process of sampling k times x from D indepen-

dently. Similarly, for a function f : {0, 1}n → {0, 1}`(n), f
⊗
k denotes the function that maps

(x1, x2, ..., xk) to (f(x1), f(x2), ..., f(xk)).
We abbreviate probabilistic polynomial-time with PPT. Throughout this paper, all PPT algo-

rithms/Turing machines are allowed to be non-uniform, and we use non-uniform PPT algorithm-
s/Turing machines interchangeably with circuit families of polynomial size. In our default setting,
the circuit families are also probabilistic.

Given a two-party protocol Π = (P1, P2), for i ∈ {1, 2}, we denote by TransPi
(P1(x), P2(y))

the transcript of an execution of Π (including the input to Pi) when P1’s input is x and P2’s input
is y. For a joint distribution (X,Y ) over the two parties’ inputs, TransPi(P1(X), P2(Y )) naturally
defines the distribution over all possible view of Pi.
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We refer readers to [Gol01, KL07] for formal definitions of basic notions and primitives such
as computational indistinguishability, one-way functions, pseudorandom generator and commitment
scheme.

Throughout the paper, we let n be the security parameter. We write {Xn}n∈N
c
≈ {Yn}n∈N to

indicate that the two distribution ensembles {Xn}n∈N and {Yn}n∈N are computationally distin-
guishable.

Public-Key Encryption and Key Agreement. In this paper we consider only the most basic security
notions for public-key encryption and key agreement, i.e., semantic security under chosen-plaintext-
attack (for public-key encryption) and security against eavesdropping (for key agreement). Formal
descriptions of these notions can be found on the textbook [KL07] and we omit them here.

Arguments, WI and Distributional CZK. Fix an NP language L and its associated relation RL.
An interactive argument system (P, V ) for L is a pair of interactive Turing machines, in which the
prover P wants to convince the verifier V of some statement x ∈ L.

Definition 1 (Interactive Argument [BCC88]). A pair of interactive Turing machines (P, V ) is
called an interactive argument system for language L if the machine V is a PPT machine and the
following conditions hold:

– Completeness: For every x ∈ L, w ∈ RL(x), V accepts the transcripts at the end of interaction
with P (x,w) with probability negligibly close to 1.

– Soundness: For every x /∈ L, and every non-uniform PPT prover P ∗, V rejects at the end of
interaction with P ∗ with probability negligibly close to 1.

Definition 2 (Witness Indistinguishability). An interactive argument (P, V ) for language L is
said to be witness indistinguishable (WI) if for every non-uniform PPT V ∗, every auxiliary input
z ∈ {0, 1}∗ to V ∗, every {(x,w0, w1)}x∈L such that both (x,w0) and (x,w1) ∈ RL, it holds that

{TransV ∗(P (x,w0), V
∗(z))}x∈L,z∈{0,1}∗

c
≈ {TransV ∗(P (x,w1), V

∗(z))}x∈L,z∈{0,1}∗ ,

where both distributions are over the random tapes of P and V ∗.

A zero knowledge argument system is an interactive argument for which the view of the (even
malicious) verifier in an interaction can be efficiently reconstructed. In this paper, we consider distri-
butional zero knowledge, defined by Goldreich [Gol93], for which the indistinguishability between
the real interaction and the simulation is only required to hold for any distribution over the inputs
to each party, rather than to hold for every individual inputs. We follow the definition of [CLP15b],
which departs from the one of [Gol93] in that it only requires that for each distribution over the
inputs there exists an efficient simulator8, and consider the case (following [DNRS03, CLP15b])
where the indistinguishability gap between the simulation and the real interaction is less than any
inverse polynomial ε (instead of a negligible function). As we will show, the size of encryption al-
gorithm of our encryption scheme is polynomial in the value 1

ε , which needs to be upper-bounded
by a fixed (but arbitrary) polynomial.

Steps of the Concurrent Verifier and Steps of a Session. We also allow the adversary V ∗ to launch
a concurrent attack [DNS98, PRS02] in which it interacts with a polynomial number of independent
provers over an asynchronous network, and fully controls over the scheduling of all messages in
these interactions.

We refer to the action of sending a message by V ∗ as a step (of V ∗). In a real concurrent inter-
action, we order the steps of V ∗ according to their appearance. Note that in the concurrent setting,
sessions of the Feige-Shamir protocol are executed in interleaving way, and thus, “the second verifi-
er step of a session” refers to the second verifier step that appears in this specific session, not to the
second step of V ∗ in the real concurrent interaction.

8 Instead, the definition of [Gol93] requires an efficient simulator for all distributions over the inputs.
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Definition 3 (ε-Distributional Concurrent zero knowledge). We say that an interactive argument
(P, V ) for language L is ε-distributional concurrent zero knowledge if for every concurrent adver-
sary V ∗, and every distribution ensemble {(Xn,Wn, Zn)}n∈N over RnL × {0, 1}∗, there exists a
non-uniform PPT Sim such that for all non-uniform PPT D and sufficient large n it holds that

Pr[D(TransV ∗(P (Xn,Wn), V
∗(Zn)), Zn) = 1]− Pr[D(Sim(V ∗, Xn, Zn), Zn) = 1] < ε(n),

where both distributions are over (Xn,Wn, Zn) and the random tapes of P and V ∗.

Parallelized Blum’s WI Proofs for NP. The basic building block of the Feige-Shamir protocols is
witness indistinguishable proofs. For our purpose, we will use the parallelized 3-round Blum’s proof
system based on injective one-way functions [Blu86]9.

Denote by (a, e, t) the three messages exchanged by the prover and the verifier in a execution
of the n-parallel-repetition of the 3-round Blum’s protocol. Our results rely on the following nice
properties of this protocol:

– Witness indistinguishability when the common input x has two different witnesses;
– Special soundness: the soundness error is 1

2n , and from any common input x and any pair of
accepting transcripts (a, e, t) and (a, e′, t′) with the same first message a but different challenges
e 6= e′, one can efficiently compute w such that (x,w) ∈ RL.

The Feige-Shamir ZK Argument for NP. We here describe the Feige-Shamir constant-round10

zero knowledge argument for NP based on an injective one-way function f : {0, 1}n → {0, 1}`(n).

PROTOCOL FEIGE-SHAMIR

Common input: x ∈ L.
The prover P ’s input: w such that (x,w) ∈ RL.
The verifier V ’s (auxiliary) input:z

First phase:
Execute the n-parallel-repetition of the 3-round Blum’s protocol in which V plays the role
of the prover:

V −→ P : Choose α1, α2 ← {0, 1}n independently and at random, compute β1 = f(α1),
β2 = f(α2), and compute the first prover message a of the 3-round n-parallel-
repetition of the Blum’s protocol in which V proves to P that he knows one of
α1, α2.
Send β1, β2 and a.

P −→ V : Send a random challenge e← {0, 1}n.
V −→ P : Send t.

Second phase:
P and V execute the n-parallel-repetition of the 3-round Blum’s protocol in which P proves
to V that either x ∈ L or he knows one of α1, α2.

9 Note that perfect binding commitment scheme can be constructed from injective one-way function.
10 By merging the first and the second prover messages, one can obtain a 4-round Feige-Shamir protocol.
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3 The Dissection of a Concurrent Verifier

In this section we develop a technique to dissect concurrent verifiers that reveals where a supposed
concrete attacker against the Feige-Shamir protocol magically endows some images of an injective
one-way function with a trapdoor. This is the key step towards constructing public-key encryption
(and key agreement) from an injective one-way function.

As mentioned in the introduction, we show that a magic adversary V ∗ will endow a set of images
of f with a trapdoor in the following sense: there are infinitely many n, for each of which there exists
a step index in, such that the images (β1, β2) output by V ∗ at its step in can only be inverted by PPT
algorithms with the trapdoor knowledge of a witness to the common input x with overwhelming
probability.

We need the following notations to give a formal statement of our lemma:

– Transin and h← Transin : The former denotes the distribution of the history prefix in the view
of V ∗ up to its in-th step in the real concurrent interaction TransV ∗(P (Xn, Wn), V ∗(Zn)); the
latter denotes the event of drawing a history prefix h from Transin , i.e., the event of generating
h in the real concurrent interaction between honest prover(s) and V ∗, where h consists of the
statement x, the auxiliary input z to V ∗ and the interaction history prefix upto the step in of the
verifier.

– V ∗ |h (j, 2) denotes the event that, conditioned on the given history prefix h, V ∗ reaches the
second verifier step of session j in the real concurrent interaction, i.e., V ∗ completes its proof
of knowledge of one pre-image in session j.

– PartRh consists of the randomness used by V ∗ and the partial randomness used by honest
provers in those incomplete sessions in h (i.e., sessions in which the last prover message does
not appear in h) in a real concurrent interaction.
Observe that in a session of the Feige-Shamir protocol, the honest prover uses the knowledge of
corresponding witnessw only in its last step, and the transcript of a session before the prover last
step is independent of w. Thus, the transcript of an incomplete session together with the prover’s
randomness used do not help reveal the witness w, but this is not the case for a complete session.

In the real concurrent interaction, given a history prefix h up to the in-th step of V ∗, we denote
by h = h′||(βj1, β

j
2, a

j) the event that V ∗ outputs the first verifier message (βj1, β
j
2, a

j) of some
session j at its in-th step, where “||” denotes concatenation of messages.

Let ε be an arbitrary inverse polynomial, and poly(·) be an arbitrary polynomial. Define

p(·) := ε(·)
2poly2(·)

.

Lemma 1. Let ε, p, poly be as above, and f be the one-way function used in the Feige-Shamir pro-
tocol. Assume that there is a non-uniform PPT verifier V ∗, running in at most poly(n) steps, that
breaks ε-distributional concurrent zero knowledge of the Feige-Shamir protocol on a joint distribu-
tion ensemble {(Xn,Wn, Zn)}n∈N over a NP relationRL11 and auxiliary inputs. Then, there exists
an infinite set I = {(n, in)} for which the following two conditions simultaneously hold:

1. For a random history prefix generated in the real concurrent interaction,

Pr

[
h← Transin :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
≥ p(n).

11 Though in our final construction of public-key encryption we need to assume a magic adversarial verifier
against the Feige-Shamir protocol for a distribution {(Xn,Wn)}n∈N over some OR NP-relation, Lemma 1
and the results in Section 4 and 5 hold with respect to distribution {(Xn,Wn)}n∈N over any NP relation.
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2. For every circuit family T of polynomial size, there is N0 such that for every n > N0 (s.t.
(n, ·) ∈ I) it holds that,

Pr

[
T (h,PartRh) ∈ {f−1(βj1), f−1(β

j
2)}
∣∣∣∣h′||(βj1, βj2, aj) = h← Transin

∧ Pr[V ∗ |h (j, 2)] ≥ p(n)

]
≤ 1− p(n).

Remark 3. Note that if, conditioned on outputting the first verifier message (βj1, β
j
2, a

j) of session
j at its in-th step, V ∗ reaches the second verifier step of session j (i.e., completes the proof of
knowledge of one pre-image) in the real concurrent interaction with probability greater than an
inverse polynomial, we can construct an efficient algorithm, taking the corresponding witness w as
input and playing the role of the honest prover, that extracts one of pre-images of (βj1, β

j
2) from V ∗

by rewinding it with probability negligibly close to 1. The first condition of our lemma asserts that
it is relatively easy to obtain images of f for which there is an efficient algorithm with knowledge
of w can invert one of them with overwhelming probability, while the second condition of the above
lemma guarantees that for any efficient algorithm without knowledge of w the success probability
of inversion is bounded away from 1. This illustrates the magic power that the supposed adversary
V ∗ endows the images output at its step in with a sort of trapdoor.

As we shall see later, in the final construction of public key encryption, the partial randomness
PartRh together with some images of f will be part of cipher-text, and to ensure the semantic security
it is naturally required that for any efficient algorithm with PartRh as input the success probability of
inverting the images of f is small. This is guaranteed by the second condition of the above lemma.

Remark 4. (On the role of the value ε) The main reason we deal only with ε-distributional concurrent
zero knowledge, rather than the standard one, is that, as we will see later, our approach will yield
encryption algorithm that runs in time poly( 1ε ), and thus the value 1

ε has to be upper-bounded by a
fixed (but arbitrarily) polynomial.

3.1 The Dissection Procedure Leading to a Proof of Lemma 1

Formally, if for an arbitrary inverse polynomial ε, V ∗ breaks ε-distributional concurrent zero knowl-
edge of Feige-Shamir protocol over distribution {(Xn,Wn, Zn)}n∈N, then ∀ Sim ∃ D and infinitely
many n, such that

Pr[D(TransV ∗(P (Xn,Wn), V
∗(Zn)), Zn) = 1]− Pr[D(Sim(V ∗, Xn, Zn), Zn) = 1] > ε(n).

(1)

As mentioned, the intuition behind Lemma 1 is quite straightforward: For a successful V ∗, there
must exist a step i at which V ∗ outputs a pair of images and will complete the proof of knowledge
of one pre-image at a later time in the real concurrent interaction with high probability, but without
knowledge of the corresponding witness no efficient algorithm can invert one of the images, since
otherwise, if for every step of V ∗ there is an efficient algorithm that can extract the target pre-images
with overwhelming probability, we are able to show that there exists a simulator, incorporating all
these efficient inverting algorithms as its subroutines, that will simulate the view of V ∗ successfully.

To formalize this intuition in the asymptotic setting, we view the behaviour of V ∗ as an infinite
table, in which the entry in the i-th row and n-th column represents the i-th step of V ∗ (followed im-
mediately by the response from the honest prover) in its concurrent interaction on input the security
parameter n (c.f. Fig 1).

With this table, we dissect V ∗ and examine its every step across all security parameters n ∈ N,
i.e., examine the set of entries {(n, in = i)}n∈N. A few terminologies follow.

Imaginary steps. Note that for the i-th row of the table (i.e., V ∗’s step i), if a security parameter n
satisfies poly(n) < i, V ∗ on the input security parameter n will never reach step i. To simplify the

11



(P (w), V ∗)

1
2

i

V ∗’s steps

1 2 n

concurrent executions of FS on
security parameter n

n+ 1
security

parameter

Fig. 1: V ∗’s behaviour.

presentation, we think of the step i in every n-th column with poly(n) < i as an imaginary step of
V ∗ with

Pr

[
h← Transi :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
= 0.

Significant/insignificant entries. Given a (possibly infinite) set K of security parameters, and a set
K ′ = {(n, in)}n∈K , we say the entry (n, in) ∈ K ′ is significant if for which the first condition of
Lemma 1 holds, i.e.,

Pr

[
h← Transin :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
> p(n).

Otherwise, we call it insignificant.

Solving a set of entries. Given a set (possibly infinite) K of security parameters, and a set K ′ =
{(n, in)}n∈K , we say a circuit family T of size P solves the set K ′, if for every significant entry
(n, in) ∈ K ′, T breaks the second condition of Lemma 1 on (n, in), i.e., for all n ∈ K,

Pr

[
T (h,PartRh) ∈ {f−1(βj1), f−1(β

j
2)}
∣∣∣∣h′||(βj1, βj2, aj) = h← Transin

∧ Pr[V ∗ |h (j, 2)] ≥ p(n)

]
> 1− p(n). (2)

Otherwise, we say T fails to solve the set K ′, i.e., there are some entries in K ′ on which the above
inequality does not hold for T . When we say T of size P fails to solve any entry in the set K ′, we
mean that every entry in K ′ is significant and T cannot solve even a single entry in K ′.

12



Note that we don’t make any requirement on T for those insignificant entries K ′ (i.e., those
entries for which the first condition of Lemma 1 does not hold). To take an extreme example, if for
all (n, in) ∈ K ′ the first condition of Lemma 1 fails to hold, i.e.,

Pr

[
h← Transin :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
< p(n),

then, by definition, any circuit family can solve the set K ′. For simplicity, we let the circuit family
that solves such a set K ′ to be a special dummy circuit family denoted by φ, which is of size 0.

With these definitions, we observe the following fact.

Fact 1. Fix a verifier step i. If for any polynomial P, there does not exist a circuit family of size
P that solves the set {(n, in = i)}n∈N, then there is an infinite set I on which both conditions of
Lemma 1 hold.

Proof. Observe first that if for any polynomial P, there is no P-size circuit family that solves the
set {(n, i)}n∈N, then for every P-size circuit family T , there exists an infinite set K of security
parameters such that T cannot solve any entry in the set {(n, i)}n∈K . To see this, suppose for the
sake of contradiction that, there is a P-size circuit family T for which there is a finite set K such that
T solves the set {(n, in = i)}n∈N\K . Let ck be the largest security parameter in K, and the circuit
family T ′ be the inverting algorithm that, upon receiving a pair of images, inverts one of them by
exhausting all possible pre-images. We now have a new circuit family of size P(n) + 2ck , denoted
by Ti, which applies T on the security parameters n ∈ N \K and T ′ on n ∈ K, can solve the set
{(n, i)}n∈N, which contradicts the hypothesis of this fact since P(n)+2ck is still a polynomial in n.

We now fix a polynomial (monomial) nc, and construct a best possible nc-size circuit family
T := {Tn}: Each circuit Tn is of size nc and achieves the highest success probability of inverting.
It follows from the observation above that there is an infinite set Kc of security parameters such that
T cannot solve any entry in {(n, i)}n∈Kc

.
Since for each security parameter n, the circuit Tn is best possible, we conclude that, for any

nc-size circuit family T ′ := {T ′n}, T ′ cannot solve any entry in {(n, i)}n∈Kc
(note that the success

probability of the inverting circuit T ′n is less than the one of Tn).
Note that Kc ⊆ Kc−1 for all c ∈ N. The desired infinite set I can be constructed as follows. Let

n0 = 0 and nc := min{Kc\{nc−1, nc−1, · · ·, n0}}12 for each c ∈ N. We define I to be

I := {(nc, i)}c∈N.
It is easy to verify that the first condition of Lemma 1 holds on I .13 Consider an arbitrary polynomial
size circuit family T , say, of size P†, and suppose that P†(n) ≤ nc′14. Then T cannot solve any entry
(nc, i) ∈ I for any c > c′. Note that c > c′ implies nc > nc′ , we have that T cannot solve any entry
(nc, i) ∈ I for any nc > nc′ . This establishes the second condition of Lemma 1.

ut

The following dissection procedure (c.f. Fig 2) will yield an infinite set I as desired.

The dissection procedure. Initially set I0 := {(n0 = 0, in0
= 0)}, S0 := {(T0 = φ,P0 = 0)}.

For i = 1, 2, ..., given Ii−1 = {(n0, in0
), ..., (nk−1, ink−1

)}15,Si−1 = {(T0,P0), ..., (Ti−1,Pi−1)}
and P = max{P0,P1, ...,Pi−1}, we check the i-th step of V ∗ for all n ∈ N and do the following:
12 Note that in case Kc is identical to Kc−1, then nc−1 ∈ Kc.
13 Note that for every c ∈ N, for any entry (n, i) in {(n, i)}n∈Kc , the first condition of Lemma 1 holds for

(n, i), since otherwise the entry (n, i) is insignificant, and by definition can be solved by any circuit family.
14 A little bit oversimplified. In case that, for some N , P†(n) ≤ nc′ only when n > N , we should set N0 to

be max{N,nc′} and conclude that T cannot solve any entry (nc, i) ∈ I for any nc > N0.
15 Here k ≤ i− 1. Note that we may not update the set I at each step i.
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1. If for any polynomial P′ there is no P′-size circuit family that solves the set {(n, in = i)}n∈N,
let I be as defined in the above Fact 1, and stop this process;

2. If there are a polynomial Pi such that Pi ≤ P, and a Pi-size circuit family Ti that solves the set
{(n, in = i)}n∈N, set Si ← Si−1 ∪ (Ti,Pi), and Ii ← Ii−1 (Note that we do not update the set
Ii−1);

3. If there are a polynomial Pi such that Pi > P, and a Pi-size circuit family Ti that solves the
set {(n, in = i)}n∈N, but no circuit family of size less than P that can solve the set {(n, in =
i)}n∈N, then
(a) set Si ← Si−1 ∪ {(Ti,Pi)}, and,
(b) if i > poly(nk−1)16, find a nk > nk−1 on which the first condition of Lemma 1 holds,

but no circuit family of size less than P can solve the set Ii−1 ∪ {(nk, ink
= i)}17. Set

Ii ← Ii−1 ∪ {(nk, ink
= i)}.

1
2

in1

ink−1

i

V ∗’s steps

1 2 n1

on input Ii−1 and Si−1, check if ∃Ti

that solves the i-th row for all n

nk−1 nk
security

parameter

Fig. 2: The dissection procedure. For a magic adversary V ∗ there must exist either a single row (a
step of V ∗) from which we find the desired infinite set I , or infinite many rows from each of which
we add a new entry to the set I .

Denote by I the set resulted from the above dissection procedure, which is either of the form
{(nc, i)}c∈N (when we encounter the first case during the dissection procedure), or of the form
{(nk, ink

)} (otherwise).
Lemma 1 follows from the following two claims that we will prove in the next sections.

Claim 1. If we encounter the first case during the above dissection, or there is no polynomial P s.t.
P = sup{Pi : i ∈ N}, i.e., there is no polynomial upper-bound on the infinite set {Pi : i ∈ N}, then
the set I is infinite and on which both conditions of Lemma 1 hold.
16 This means that the current i-step is an imaginary step of V ∗ for those n ≤ nk−1.
17 As will be showed in proof of claim 1 in the next section, we can always find such a nk.
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Claim 2. If we will never encounter the first case during the above dissection, and there is a poly-
nomial P s.t. P = sup{Pi : i ∈ N}, then there is a non-uniform PPT simulator that breaks the
inequality (1).

Remark 5. (On the mere existence of Ti and the dependence between Ti’s) Note that at each step
of the dissection procedure we only ask if there exists a good extractor Ti, and that these algorithms
may depend on a specific verifier. It may be the case that these Ti exist but we cannot construct them
from the code V ∗ efficiently, as we showed for the concrete adversary from [CKPR01].

However, as we will prove in Section 3.3, the mere existence of good extractors Ti, satisfying
that all of them have size upper-bounded by a fixed polynomial as in Claim 2, helps us show the
existence of a simulator for V ∗ under the natural security definition of “∀V ∗∃S”.

We stress that the dependence between the possible algorithms Ti’s is irrelevant here. Note that
at each step i, we set a clear bar P and check if there exists a circuit family Ti of size less than P that
can solve all those significant entries in the i-th row. If there exists a circuit family Ti that solves
this row but the minimal size Pi required is strictly greater than P, we record this new Pi and when
we enter the next step (i+ 1), we have a higher bar on the circuit size for checking the existence of
Ti+1.

Nevertheless, if one can construct a verifier V ∗ for which there is a deep dependence between
these Ti’s such that, say, the size of Ti−1 is twice that of Ti for many i, then we will soon find a
desired set I as required by Lemma 1.

3.2 Proof of Claim 1

As showed in Fact 1, if we encounter the first case when checking step i of V ∗ in the dissection
procedure, then there must be an infinite set I = {(n, in = i)} on which both conditions of Lemma 1
hold (c.f. Fig 3(a)).

In the case that we will never encounter the first case in the dissection procedure but there is no
specific polynomial that upper bounds the infinite set {Pi}i∈N, we need to prove the following to
complete the proof of Claim 1 (c.f. Fig 3(b)):

1. As i approaches infinity, the resulting set {(nk, ink
)}, denoted by Ii→∞, becomes infinite;

2. Both conditions of Lemma 1 hold on Ii→∞.

For the item 1, note that, for any (nk−1, ink−1
) ∈ Ii→∞, there must be a step i of V ∗, i >

poly(nk−1), such that the minimum size Pi for a circuit family to solve the set {(n, in = i)}n∈N is
strictly greater than P = max{P1,P2...,Pi−1} (since otherwise we will have a specific polynomial
upper bound on all {Pi}i∈N). From such a step i, we can always find a nk > nk−1 on which the first
condition of Lemma 1 holds, but there is no circuit Tnk of size ≤ P(nk) that can solve the entry
(nk, ink

= i), since otherwise, if for every n > nk−1, there exists a circuit Tn of size less than
P(n) that solves the entry (n, in = i), then the new circuit family {Tn}n>nk−1

can solve the set
{(n, in = i)}n>nk−1

, and thus we will have a circuit family of size less than P that can solve the
entire set {(n, in = i)}n∈N18, a contradiction.

Note that the step 3(b) of the dissection procedure guarantees that the first condition of Lemma 1
holds on the all entries in the infinite set Ii→∞. We now prove that the second condition of Lemma 1
also holds on Ii→∞. Consider an arbitrary circuit family T of size polynomial P†. Observe that, by
the hypothesis of Claim 1, there is a step i such that Pi > P†, and thus T cannot solve any entry
in the infinite set {(nk, ink

)}ink
>i ⊂ Ii→∞, i.e., the subset updated after the examining of the step

i of V ∗, since for every entry (nk, ink
) ∈ Ii→∞, if ink

> i, then the minimal size for a circuit
family to solve the entry (nk, ink

) is strictly greater than Pi(nk) > P†(nk). Observe that ink
> in′k

18 Recall that for all n ≤ nk−1, the step i of V ∗ is an imaginary step and thus by definition the set {(n, in =
i)}n≤nk−1

can be solved by a dummy circuit family.
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implies nk > n′k, therefore we conclude that, for an arbitrary T of size polynomial P†, there is
some N0 = n′k ∈ N (which depends on P†) such that T cannot solve any entry in the infinite set
{(nk, ink

)}nk>n′k
. This proves the second condition of Lemma 1 on Ii→∞.

1
2

i

V ∗’s steps

1 2 n1 n2 nk
security

parameter

(a)

1
2

in1

in2

ink

V ∗’s steps

1 2 n1 n2 nk
security

parameter

(b)

Fig. 3: There are infinite red entries in the set I on which both conditions of Lemma 1 hold: When
encountering the first case during the dissection, we have a desired set I which lies in a single row,
as depicted in figure (a); otherwise, we will have a desired set I of the form depicted in figure (b).
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3.3 Proof of Claim 2

From the “if condition” of Claim 2 it follows that there exists a set of circuit families {Ti}i∈N such
that each Ti of size upperbounded by P solves the i-th step of V ∗ for all n ∈ N (c.f. Fig 4).

We construct a simple simulator Sim of size at most poly(n)P(n), taking the collection of al-
gorithms ({Ti}1≤i≤poly(n)) as input (recall that V ∗ runs in at most poly(n) steps), that breaks the
inequality (1). See below for a formal description.

The Simulator Sim({Ti})
input : (x, z)← (Xn, Zn)

1. Upon receiving the first verifier message (β1, β2, a) in a session at the V ∗’s i-th step, apply
Ti to find one of pre-images of (β1, β2). If Ti succeeds, store it on a table L (indicating this
session is solved), and send a random challenge e to V ∗; if not, just send e to V ∗.

2. If the next-scheduled-message is the third prover message in a session (i.e., entering the second
phase in which the simulator plays the role of prover), check L if this session is already solved,
if so, use the pre-image as a fake witness to carry out this session; if not (i.e., the simulator gets
stuck), return ⊥.

output: (x, z) and the entire interaction (when V ∗ terminates).

1
2

i

j

V ∗’s steps

1 2 n n+ 1
security

parameter

T1

T2

Ti

Tj

Fig. 4: If lemma 1 does not hold, then for each i, there is an algorithm Ti that solves i’s step for all
n ∈ N and runs in time less than a priori fixed polynomial, which leads to a good simulator.

Now we turn to analysis of Sim. In the real interaction, we denote by V ∗ |lh (j, 2) the event
that V ∗, based on the history prefix h, outputs the second verifier message of the session j at its
l-th step, and by Fail(i,l)real the event that, conditioned on V ∗ outputting the first verifier message of
a session at its i-th step, Ti, given the history prefix h up to the i-th step of V ∗ and PartRh, fails to
extract the corresponding pre-image but V ∗ |lh (j, 2).
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By the inequality (2), and noting that the condition “Pr[V ∗ |h (j, 2)] ≥ p(n)” implied by
“Pr[V ∗ |lh (j, 2)] ≥ p(n)”, we have19

Pr[Fail(i,l)real]

=Pr

[
Fail(i,l)real

∣∣∣∣h′||(βj1, βj2, aj) = h← Transi

∧ Pr[V ∗ |lh (j, 2)] ≥ p(n)

]
Pr

[
h′||(βj1, β

j
2, a

j) = h← Transi

∧ Pr[V ∗ |lh (j, 2)] ≥ p(n)

]
+ Pr

[
Fail(i,l)real

∣∣∣∣h′||(βj1, βj2, aj) = h← Transi

∧ Pr[V ∗ |lh (j, 2)] < p(n)

]
Pr

[
h′||(βj1, β

j
2, a

j) = h← Transi

∧ Pr[V ∗ |lh (j, 2)] < p(n)

]
≤pPr

[
h′||(βj1, β

j
2, a

j) = h← Transi

∧ Pr[V ∗ |h (j, 2)] ≥ p(n)

]
+ pPr

[
h′||(βj1, β

j
2, a

j) = h← Transi

∧ Pr[V ∗ |h (j, 2)] < p(n)

]
≤p(n).

In the simulation, for 1 ≤ l ≤ poly(n), we denote by El be the event that Sim does not output⊥
upon receiving any message from V ∗ before the the step l of V ∗, and define Fail(i,l)sim in a way similar
to Fail(i,l)real.

For any i ≤ l, by standard hybrid argument (using the fact that witness indistinguishability
preserves in concurrent setting), we have that

Pr[Fail(i,l)sim|El] ≤ Pr[Fail(i,l)real] + negl(n) ≤ p(n) + negl(n),

and that the probability the simulator outputs ⊥ upon receiving the l-th verifier message, denote by
⊥← Sim|l, is at most (note that ⊥← Sim|l implies the event El)

Pr[⊥← Sim|l] =
l−1∑
i=1

Pr[Fail(i,l)sim|El] ≤ (l − 1)p(n) + negl(n).

Thus the probability that the simulator outputs ⊥ is at most

Pr[⊥← Sim] =

poly∑
l=1

Pr[⊥← Sim|l] ≤ poly2(n)p(n) + negl(n).

It again follows from the concurrent witness indistinguishability of the Feige-Shamir protocol
that, conditioned on not being ⊥, the output of Sim is indistinguishable from the real interaction.
Therefore for all non-uniform PPT D,

Pr[D(TransV ∗(P (Xn,Wn), V
∗(Zn)), Zn) = 1]− Pr[D(Sim(V ∗, Xn, Zn), Zn) = 1]

≤Pr[⊥← Sim] + negl(n)

≤poly2(n)p(n) + negl(n)

≤poly2(n)
ε(n)

2poly2(n)
+ negl(n)

≤ε(n),

which breaks the inequality (1) and thus concludes the proof of Claim 2.
19 Observe that, conditioned on the probability that V ∗ reaches the second verifier step of session j is less than
p, Fail(i,l)real happens with probability at most p.
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4 Tuning in to the Same Channel

As showed in the previous section, the real concurrent interaction between the honest prover and
a successful adversary V ∗ will magically generate a history prefix of the form h′||(β1, β2, a) for
which only algorithms with knowledge of the corresponding witness can extract one of the pre-
images of (β1, β2) with overwhelming probability. However, different algorithms using different
witnesses/randomness may recover different pre-images from this history. Thus, to exploit the power
of V ∗ in our setting, we first need to make sure that all parties are in the same channel, i.e., recover
the same pre-image from a given history.

In this section we construct non-interactive algorithms C and E from the magic adversary V ∗

such that, taking as input the witness to x, C generates a β and E can obtain the pre-image of the
same β.

Lemma 2. Let p, f , {(Xn,Wn, Zn)}n∈N , the infinite set I , and V ∗ be as in Lemma 1. Then there
exist two non-unifrom PPT algorithms C and E such that for every (n, in) ∈ I the following condi-
tions hold:

1. C generates β, α and an auxiliary stringaux satisfying β = f(α) with probability

Pr[(x,w, z)← (Xn,Wn,Zn) : C(x,w,z) = (β,α,aux)] ≥ p2 −negl(n).

2. It is easy for E with knowledge of w to invert the image output by C with probability

Pr[(x,w, z)←(Xn,Wn,Zn) :E(β, aux,w)=f−1(β)|C(x,w,z) = (β,α,aux)] ≥ 1−negl(n).

3. For any polynomial-size circuit family T without knowing w, there is N0 such that for every
n > N0 (s.t. (n, ·) ∈ I) it holds that:

Pr[(x,w, z)←(Xn,Wn,Zn) :T (β, aux) =f
−1(β)|C(x,w,z) = (β,α,aux)] ≤ 1−p.

Proof. Fix (n, i) ∈ I (from here on we drop the n on in for simplicity). Incorporating V ∗ and the
honest prover P , (n, i) and the inverse polynomial p, the algorithm C, on input (x,w, z), plays the
role of the honest prover and extracts (by rewinding) one-pre-image of the pair images of f output by
V ∗ at its i-th step, and then outputs the pre-image extracted and the corresponding image (together
with some auxiliary information). To make sure that different algorithms can extract the same pre-
image, we have C repeat the extraction precedure many times and output the image corresponding
to the most-often extracted pre-image. See below for the detailed description of C.

Consider the following set of history prefix (up to the step i of V ∗):

H := {h : h = h′||(β1, β2, aj) ∧ Pr[V ∗ |h (j, 2)] ≥ p(n)}.

By the first condition of Lemma 1, the probability that the history prefix h generated in the step
1 is in H( which implies C does not output “ ⊥ ” in its first step) is greater than p. Conditioned on
h ∈ H, C does not output “ ⊥ ” with probability at least p, and a single execution of the step 3(a)
fails to extract α only with probability (1 − p)

n
p ≈ e−n, which leads to the probability that all np

repetitions of the step 3(a) succeed is at least (1− (1− p)
n
p )

n
p > 1− negl(n). Thus the probability

that C outputs (β, α, aux) is at least p2(1− negl(n)) > p2 − negl(n), as desired.
The algorithm E, taking (β, aux,w) as input, simply repeats n

p times the step 3(a) of the algo-
rithm C to extract the pre-image of β.

Observe that the algorithm C has to succeed in all n
p executions of the step 3(a) in order to

output (β, α, aux). It follows from standard Chernoff bound that, except for exponentially small
probability, the probability that, conditioned on outputting (β, α, aux), a single execution of the
step 3(a) of C will extract one pre-image is at least 7

8 . Note also that the image β output by C is the
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one of which C extracts the corresponding pre-image more than n
2p times, therefore (by Chernoff

bound again), except for exponentially small probability, the probability that a single execution of
the step 3(a) of C based on h will extract the pre-image of β is at least 1

4 . Thus, the probability that
E fails to extract the pre-image of β is,

Pr[⊥← E(β, aux,w)|C(x,w,z) = (β,α,aux)] < (
1

4
)

n
p + negl(n),

which is negligible. This proves the second condition of Lemma 2.

The Algorithm C

input : (x,w, z)← (Xn,Wn, Zn)

1. Run P and V ∗ on input (x,w, z) until obtain the history prefix h up to the step i of V ∗. If the
V ∗’s step i message vi is the first verifier message of the form (β1, β2, a) in a session, say,
session j, then continue; otherwise, return ⊥.

2. Resume the interaction between P and V ∗ until V ∗ terminates. If the second accepting verifier
message t in session j appears in this interaction, continue; otherwise, return ⊥.

3. Repeat the following two steps n
p

times (there are at most n2

p2
iterations of step 2 within this

step):
(a) Run the above step 2 using fresh randomness (based on the same history prefix h) until

either the second accepting verifier message in session j appears twice or the n
p

-th iteration
is reached. If two accepting transcripts of the first phase in session j of the Feige-Shamir
protocol are obtained within these n

p
iterations (for the purpose of simplifying the analysis

of the algorithm E, here we don’t use the transcript obtained in step 2), compute α such
that βb = f(α) from them; otherwise, return ⊥.

(b) Store (βb, α) in a list.
4. Set β to be βb for which the corresponding pair (βb, α) appears most often in the above list,

and aux to be (h, PartRh, x, z), where PartRh includes only the randomness used by V ∗ and
the randomness used by honest provers in those incomplete sessions in producing h.

output: (β, α, aux).

The Algorithm E

input : (β, aux,w)

1. Parse aux into (h, PartRh, x, z), and parse the last message vi in h into (β1, β2, a).
2. Suppose that β = βb. Repeat the step 3(a) of C until the pre-image α of βb is extracted or the

n
p

-th iteration is reached, and if all iterations fail, return ⊥.

output: α.

ut

5 Hardness Amplification and a Tailored Hard-Core Lemma

For our applications, we need to increase the success probability of the algorithm C significantly
while decreasing T ’s success probability (as in the third condition of Lemma 2) to a negligible level.
In addition, if the statement x has multiple witnesses, we also want algorithm E to work when given
an arbitrary one (not necessarily the same as the one given as input to C) as input.
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Our basic strategy for achieving these goals is to use classic hardness amplification method with
some careful modifications. Let p be as in Lemma 1, and define

q1 :=
n

(p)2
, q2 :=

n

p
and q := q1q2.

Given as input a q1× q2 matrix of simples from (Xn,Wn, Zn), M runs C on each column and
outputs a vector of q2 number of images of f (together with the corresponding pre-images and some
auxiliary strings). The formal descriptions of algorithms M and Find are given below.

Lemma 3. The following properties hold for algorithms M and Find:

1. The probability that M outputs {(βi, αi, auxi)}q2i=1 such that βi = f(αi) holds for each i is
negligibly close to 1.

2. Conditioned on M outputting {(βi, αi, auxi)}q2i=1 , the probability that Find inverts all these βi’s
successfully is negligibly close to 1.

3. Conditioned on M outputting {(βi, αi, auxi)}q2i=1 , for any polynomial-size circuit family T ,
given as input only ({(xk, zk)}qk=1 , {(βi, auxi)}

q2
i=1 ) (without any witnesses to the xk’s), the

probability that T inverts all these βi’s successfully is negligible.
4. For any two inputs to Find with different witnesses, ({(xk, wk, zk)}qk=1 , {(βi, auxi)}

q2
i=1 ) and

({(xk, w′k, zk)}
q
k=1 , {(βi, auxi)}

q2
i=1 ) with {wk}qk=1 6= {w

′
k}
q
k=1 , Find succeeds on each input

with almost (negligibly close to each other) the same probability.

The Algorithm M
input : {(xk, wk, zk)}q

k=1

1. Arrange {(xk, wk, zk)}q
k=1

into q1 × q2 tuples, denoted by {(xji , w
j
i , z

j
i )}q2,q1

i,j=1
.

2. For i = 1, 2, ..., q2, run C on each (xji , w
j
i , z

j
i ), j ∈ [1, q1], until C outputs (β, α, aux). If for

some i all these q1 runs of C fail, return ⊥; otherwise, set (βi, αi, auxi) to be (β, α, aux).

output: {(βi, αi, auxi)}q2i=1
.

The Algorithm Find
input : {(xk, wk, zk)}q

k=1
, {(βi, auxi)}q2i=1

1. Arrange {(xk, wk, zk)}q
k=1

in the same way as M and obtain {(xji , w
j
i , z

j
i )}q2,q1

i,j=1
.

2. For i = 1, 2, ..., q2, obtain the statement xi from auxi, find the j-th entry (xji , w
j
i , z

j
i ) from

{(xji , w
j
i , z

j
i )}q1

j=1
such that xji = xi and fetch the corresponding wj

i , set wi = wj
i and run E

on input (βi, auxi, wi). If E fails, output ⊥, otherwise, set αi to be the output of E.

output: {αi}q2i=1
.

The first property follows from the fact that, for each i, the probability that C fails on all q1
tuples (xji , w

j
i , z

j
i ) is less than (1 − p2)q1 = (1 − p2)

n
p2 . Thus M succeeds on {(xji , w

j
i , z

j
i )}

q1
j=1

(i.e., C succeeds on {(xji , w
j
i , z

j
i )} for some j ∈ [1, q1]) for all i ∈ [1, q2] with probability greater

than

(1− (1− p2)q1)q2 = (1− (1− p2)
n
p2 )

n
p ≈ e

−n
enp > 1− n

enp
,
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which is negligibly close to 1.
The second property directly follows from the second condition of Lemma 2. Observe that the

third condition of Lemma 2 guarantees the failure probability of T on each i ∈ [1, q2] is greater
than p, then it will succeed on all i ∈ [1, q2] with probability at most (1− p)q2 = (1 − p)

n
p , which

gives us the above third property.
The last property is due to the following observation. For any two inputs ({(xk, wk, zk)}qk=1 ,

{(βi, auxi)}q2i=1 ) and ({(xk, w′k, zk)}
q
k=1 , {(βi, auxi)}

q2
i=1 ) with {wk}qk=1 6= {w

′
k}
q
k=1 , if the gap

between the probabilities that Find succeeds on them is non-negligible, then there are two inputs
(βk, auxk, wk) and (βk, auxk, w

′
k) to E with wk 6= w′k, (xk, wk), (xk, w′k) ∈ RL (recall that xk is

stored in auxk), such that the gap between the probabilities that E succeeds on them is also non-
negligible. This means that V ∗ can tell apart the real interactions in which the honest prover uses
different witnesses with non-negligible probability, which breaks the concurrent witness indistin-
guishability of the Feige-Shamir protocol.

The algorithm M generates q2 number of images (β1, β2, ..., βq2) of one-way function f :
{0, 1}n → {0, 1}`(n) in a way such that they are hard for any polynomial-size circuit family
(without knowing the corresponding witnesses) to invert simultaneously. This enables us to ap-
ply Goldreich-Levin hard-core predicate for the function of f

⊗
q2 with respect to the distribution

on (β1, β2, ..., βq2) generated by M. Formally, we need the following form of the Goldreich-Levin
theorem.

Lemma 4 (Goldreich-Levin). Let f : {0, 1}n → {0, 1}`(n) be a function computable in polynomi-
al time, G be a PPT algorithm. If for every polynomial-size circuit family T ,

Pr[(f(x), aux)← G(1n) : T (1n, f(x), aux) ∈ f−1(f(x))] ≤ negl(n),

then, the inner product of x and a random r modulo 2, denoted by 〈x, r〉, is a hardcore predicate for
f , i.e., for every polynomial-size circuit family T ′

Pr[(f(x), aux)← G(1n), r ← {0, 1}n : T ′(1n, f(x), r, aux) = 〈x, r〉] ≤ 1

2
+ negl(n).

The Goldreich-Levin theorem typically states for the distribution f(U), i.e., for x being drawn
from uniform distribution, but its proof ignores the distribution on the images of f and the auxiliary
input (as long as both T and T ′ are given the same auxiliary string as input) completely, so the same
proof applies to lemma 4 (c.f. [Gol01]).

In our setting, this means that the inner product (modulo 2) 〈(α1, α2, ..., αq2), r ← {0, 1}n×q2〉
is a hard core predicate for f

⊗
q2 : {0, 1}n×q2 → {0, 1}`(n)×q2 against arbitrary circuit families of

polynomial size that takes as auxiliary input ({(xk, zk)}qk=1 , {(βi, auxi)}
q2
i=1 ).

6 Constructions for Public-Key Encryption and Key Agreement

As mentioned in the introduction, to construct public-key encryption using the Goldreich-Levin
theorem, we have to assume that V ∗ breaks the ε-distributional zero knowledge of the Feige-Shamir
protocol on OR NP-statements.

We fix such an adversary V ∗ and an injective one-way function f . Let ε, q, q2 and the infinite
set I be as defined before. Given the algorithms M and Find constructed from V ∗ in the previous
section, we give an (infinitely-often) non-uniform construction of public-key encryption scheme as
follows. The key generation algorithm generates q number of YES instances together with their cor-
responding witnesses, {(x1,k, w1,k)}qk=1 , where {w1,k} qk=1 is kept secret and {x1,k} qk=1 is made
public. To encrypt a bit m, the encryption algorithm generates {(x2,k, w2,k)}qk=1 , prepares a se-
quence of OR statements {(x1,k ∨ x2,k)}qk=1 (thus each {wb,k}qk=1 , b ∈ [1, 2], are valid witnesses),
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and then applies M on {w2,k}qk=1 to generate an image of f
⊗
q2 and encrypts m using Goldreich-

Levin; to decrypt the cipher-text, the decryption algorithm applies Find on {w1,k}qk=1 as witnesses
to obtain the corresponding pre-image and then computes the plain-text.

Formally, we need to assume the following for our constructions of public-key encryption and
key agreement:

– An arbitrary injective one-way function f : {0, 1}n → {0, 1}`(n) (used in the Feige-Shamir
protocol). The injectiveness will be used for one party to recover the same hardcore bit that
generated by the other party.

– An arbitrary efficiently samplable distribution ensemble D = {Dn}n∈N over RL for an arbi-
trary NP language L.

– An arbitrary efficiently samplable distribution ensemble {Zn}n∈N over {0, 1}∗.
– A joint distribution ensemble {(Xn,Wn, Zn)}n∈N on which the adversary V ∗ breaks the ε-

distributional concurrent zero knowledge of Feige-Shamir protocol, where each distribution
(Xn,Wn, Zn) defined in the following way: Sample (x1, w1)← Dn, (x2, w2)← Dn, z ← Zn,
b← {1, 2}, and output ((x1, x2), wb).

We now give a formal description of our (infinitely-often) non-uniform public-key encryption for a
single bit message on each security parameter n s.t. (n, ·) ∈ I .

Key generation Gen(1n): {(x1,k, w1,k)} qk=1 ← D
⊗
q

n , and set pk = {x1,k} qk=1 , sk = {w1,k} qk=1 .

Encryption Enc(pk = {x1,k} qk=1 ,m) (m ∈ {0, 1}):

1. {(x2,k, w2,k)}qk=1 ← D
⊗
q

n , {zk} qk=1 ← Z
⊗
q

n .

2. for k ∈ [1, q], set xk to be a random order of the pair (x1,k, x2,k).

3. {(βi, αi, auxi)}q2i=1 ← M({(xk, w2,k, zk)} qk=1 ).

4. r ← {0, 1}n×q2 , h← 〈(α1, α2, ..., αq2), r〉 ∈ {0, 1}.

5. Output c = ({(xk, zk)} qk=1 , {(βi, auxi)}
q2
i=1 , r, h

⊕
m).

Decryption Dec(sk = {w1,k} qk=1 , c):

1. Parse c into {(xk, zk)} qk=1 ||{(βi, auxi)}
q2
i=1 ||r||c

′.

2. {αi}q2i=1 ← Find({(xk, w1,k, zk)} qk=1 , {(βi, auxi)}
q2
i=1 ).

3. h← 〈(α1, α2, ..., αq2), r〉.

4. Output m = h
⊕
c′.

Notice that the input to M in the encryption algorithm can be viewed as being drawn from (Xn,Wn, Zn)
defined above. The correctness of this scheme follows from properties 1, 2, 4 of algorithms M and
Find presented in the previous section. It should be noted that our scheme is not perfectly correct s-
ince it is possible for M/Find to fail during the encryption/decryption process. However, this happens
only with negligible probability.

It is also easy to verify the semantic security under chosen-plaintext-attack, which is essentially
due to the property 3 of M, together with the security of the hardcore bit for f

⊗
q2 .

Following the well-known paradigm, one can transform a semantic secure (under chosen-plaintext-
attack) public-key encryption scheme into a key agreement protocol (A,B) with security against
eavesdropping adversary in a simple way: the party A generates a public/secrete key pair and send
the public-key to B, and then B sends back a ciphertext of the session secret key under A’s public
key to A. This establishes a common session secret key between A and B.
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Extensions to Multiparty Key Agreement. Our key agreement protocol can be easily extended to
the multiparty setting. Roughly, if V ∗ is able to break ε-distributional concurrent zero knowledge
of the Feige-Shamir protocol on a distribution over instances of the form (x1 ∨ x2 ∨ ... ∨ xn), then
the n parties can establish a session secret key as follows. Each party Ai generates a sequence of
pairs {(xi,k, wi,k)}qk=1 ). In their first round the parties A1, A2, ..., An−1 send their sequences of
{(xi,k)}n−1,qi,k=1 ) to the n-th party, then the n-th party uses these sequences as a public key of the
above public-key encryption scheme to encrypt the session secret key and send the ciphertext to all
n − 1 parties. Upon receiving the ciphertext, each Ai, i = [1, n − 1], decrypts it and obtains the
session secret key using their own {(wi,k)}qk=1 .

7 Concluding Remarks

We prove a win-win result regarding the complexity of public-key encryption and the round-complexity
of concurrent zero knowledge. We believe that when one can prove one of these two statements listed
in Theorem 1, one might obtain a much stronger result (e.g., result with respect to the (nicer) stan-
dard definitions) than the ones stated therein. The ideas and techniques used here may be applied to
investigate some other black-box lower bounds in cryptography.

Our result can be viewed as a step toward breaking the known black-box/universal reduction
barriers, and a proof (or disproof) of either one of the two statements in Theorem 1 will be excit-
ing. A construction of public-key encryption (key agreement) from general one-way functions will,
borrowing from the Impagliazzo’s terminology [Imp95], rule out the world Minicrypt and build for
the first time the world Cryptomania from (trapdoor/algebraic) structure-free hardness assumption,
which definitely is a major achievement in cryptography.

On the other hand, a concurrent security proof of the Feige-Shamir protocol will also be an excit-
ing breakthrough, both technically and conceptually. On the technical level, such a proof will reveal
a fascinating fact that all possible efficient adversaries against the Feige-Shamir protocol have in
common a highly non-trivial structure of computation– e.g., the existence of those good extractors
{Ti}i∈N used by the simulator presented in Section 3.3, which might shed light on the longstand-
ing open problem of constructing extractable one-way functions from standard assumptions; on the
conceptual level, it will bring a new individual reduction/simulation for cryptography and refute the
impression that a new reduction technique always gives more complicated and inefficient construc-
tions.
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A Extending BB Lower Bounds of [CKPR01] to Distributional Settings

Following the work of [CKPR01], we argue that o( logn
log logn )-round ε-distributional concurrent black-

box zero knowledge protocol exists only for trivial distributions over hard problems, where “trivial
distribution” is an analogue of BPP. Below we essentially follow the definition by Barak, Lindell
and Vadhan (definition A.4. in [BLV03]).

Let L be an arbitrary NP language,RL andRnL be as defined previously. Let ` be the polynomial
such that for any (x,w) ∈ RL, |w| ≤ `(|x|).

Definition 4 (ε-Triviality). A NP relation RL is said to be ε-trivial if for every efficiently samplable
distribution ensemble D = {(D1

n, D
2
n)}n∈N over {0, 1}n×{0, 1}`(n) there is a (non-uniform) PPT

A such that the following two conditions hold:

– A accepts YES instances with high probability:

Pr[A(D1
n) = 0 ∧ (D1

n, D
2
n) ∈ RnL] < ε(n).

– For every NO instance x /∈ L, Pr[A(x) = 1] < negl(n).

We now define the ε-distributional concurrent black-box zero knowledge, where a universal and
black-box simulator is required. Similar to the treatment of [BLV03], we deal with (efficiently
samplable) arbitrary distributions (D1

n, D
2
n), which are not always defined overRL (since otherwise

deciding the membership of an instance drawn from D1
n is trivial). Though in definition 3 we only

consider distributions over RL, we stress that our main result also holds with respect to (efficiently
samplable) arbitrary distributions, as long as (D1

n, D
2
n) assigns non-negligible probability to RL.

Definition 5 (ε-Distributional Concurrent BB Zero Knowledge). We say that an interactive ar-
gument (P, V ) for language L is ε-distributional concurrent black-box zero knowledge if for every
efficiently samplable distribution ensemble {(D1

n, D
2
n, Zn)}n∈N over {0, 1}n×{0, 1}`(n)×{0, 1}∗,

there exists a non-uniform PPT Sim such that for every concurrent adversary V ∗, and all non-
uniform PPT D and sufficient large n it holds that

Pr[D(TransV ∗(P (D1
n, D

2
n), V

∗(Zn)), Zn) = 1 ∧ (D1
n, D

2
n) ∈ RnL]

−Pr[D(SimV ∗(D1
n, Zn), Zn) = 1 ∧D1

n ∈ L] < ε(n),

where both distributions are over (D1
n, D

2
n, Zn) and the random tapes of P and V ∗.

The following lower bounds on the round complexity of ε-distributional concurrent black-box
zero knowledge follows easily from the result of [CKPR01].

Theorem 2. [Implied by [CKPR01]] Suppose that (P, V ) is a o( logn
log logn )-round ε-distributional

concurrent black-box zero knowledge for L. Then RL is ε-trivial.

The basic proof idea in [CKPR01] for the lower bounds of (normally defined) concurrent black-
box zero knowledge is as follows. They devise an adversary Vh using a high independence hash
function h, and then use the simulator to decide x ∈ L if only if S makes Vh accept.

Theorem 2 follows from essentially the same idea. Here we only provide a proof sketch. To
prove RL is trivial, for an arbitrary distribution (D1

n, D
2
n), we construct a PPT A for deciding L as

follows. For a given x← D1
n, A runs the simulator S on x, and decide x ∈ L if only if S makes the

adversary Vh accept.
Note that in the real interaction, when (x,w) ← (D1

n, D
2
n) is in RL, then the honest prover

always makes Vh accept, and thus the ε-distributional concurrent black-box zero knowledge property
implies the the first condition of the ε-triviality definition; The second condition of the ε-triviality
definition follows from the soundness of the protocol (P, V ) and the property of Vh, as showed in
[CKPR01].
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