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Abstract. Functional encryption (FE) allows an authority to issue to-
kens associated with various functions, allowing the holder of some token
for function f to learn only f(D) from a ciphertext that encrypts D. The
standard approach is to model f as a circuit, which yields inefficient eval-
uations over large inputs. Here, we propose a new primitive that we call
updatable functional encryption (UFE), where instead of circuits we deal
with RAM programs, which are closer to how programs are expressed
in von Neumann architecture. We impose strict efficiency constrains in
that the run-time of a token P on ciphertext CT is proportional to the
run-time of its clear-form counterpart (program P on memory D) up to
a polylogarithmic factor in the size of D, and we envision tokens that are
capable to update the ciphertext, over which other tokens can be sub-
sequently executed. We define a security notion for our primitive and
propose a candidate construction from obfuscation, which serves as a
starting point towards the realization of other schemes and contributes
to the study on how to compute RAM programs over public-key en-
crypted data.

Keywords: Updatable functional encryption, RAM model, Persistent
memory.

1 Introduction

The concept of functional encryption (FE), a generalization of identity-based en-
cryption, attribute-based encryption, inner-product encryption and other forms
of public-key encryption, was independently formalized by Boneh, Sahai and
Waters [7] and O’Neil [20]. In an FE scheme, the holder of a master secret key
can issue tokens associated with functions of its choice. Possessing a token for f
allows one to recover f(D), given an encryption of D. Informally, security dictates
that only f(D) is revealed about D and nothing else.

Garg et al. [13] put forth the first candidate construction of an FE scheme
supporting all polynomial-size circuits based on indistinguishability obfuscation
(iO), which is now known as a central hub for the realization of many crypto-
graphic primitives [22].

The most common approach is to model functions as a circuits. In some
works, however, functions are modeled as Turing machines (TM) or random-
access machines (RAM). Recently, Ananth and Sahai [3] constructed an adap-
tively secure functional encryption scheme for TM, based on indistinguishability
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obfuscation. Nonetheless, their work does not tackle the problem of having the
token update the encrypted message, over which other tokens can be subse-
quently executed.

In the symmetric setting, the notion of garbled RAM, introduced by Lu
and Ostrovsky [18] and revisited by Gentry et al. [14], addresses this important
use-case where garbled memory data can be reused across multiple program ex-
ecutions. Garbled RAM can be seen as an analogue of Yao’s garbled circuits [23]
(see also [5] for an abstract generalization) that allows a user to garble a RAM
program without having to compile it into a circuit first. As a result, the time it
takes to evaluate a garbled program is only proportional to the running time of
the program on a random-access machine. Several other candidate constructions
were also proposed in [15,10,11,9].

Desmedt et al. [12] proposed an FE with controlled homomorphic properties.
However, their scheme updates and re-encrypts the entire data, which carries a
highly inefficient evaluation-time.

Our contribution. We propose a new primitive that we call updatable func-
tional encryption (UFE). It bears resemblance to functional encryption in that
encryption is carried out in the public-key setting and the owner of the master
secret key can issue tokens for functions—here, modeled as RAM programs—of
its choice that allow learning the outcome of the function on the message un-
derneath a ciphertext. We envision tokens that are also capable to update the
ciphertext, over which other tokens can be subsequently executed. We impose
strict efficiency constrains in that the run-time of a token P on ciphertext CT is
proportional to the run-time of its clear-form counterpart (program P on mem-
ory D) up to a polylogarithmic factor in the size of D. We define a security notion
for our primitive and propose a candidate construction based on an instance of
distributional indistinguishability (DI) obfuscation, a notion introduced by [4]
in the context of point function obfuscation and later generalized by [2]. Recent
results put differing-inputs obfuscation (diO) [1] with auxiliary information in
contention with other assumptions [6]; one might question if similar attacks ap-
ply to the obfuscation notion we require in our reduction. As far as we can tell,
the answer is negative. However, we view our construction as a starting point
towards the realization of other updatable functional encryption schemes from
milder forms of obfuscation.

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N and assume it is im-
plicitly given to all algorithms in unary representation 1λ. We denote the set of
all bit strings of length ` by {0, 1}` and the length of a string a by |a|. We write
a← b to denote the algorithmic action of assigning the value of b to the variable
a. We use ⊥/∈ {0, 1}? to denote a special failure symbol and ε for the empty
string. A vector of strings x is written in boldface, and x[i] denotes its ith entry.
The number of entries of x is denoted by |x|. For a finite set X, we denote its
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cardinality by |X| and the action of sampling a uniformly random element a from
X by a←$ X. If A is a probabilistic algorithm we write a←$ A(i1, i2, . . . , in; r) for
the action of running A on inputs i1, i2, . . . , in with random coins r, and assigning
the result to a. For a circuit C we denote its size by |C|. We call a real-valued
function µ(λ) negligible if µ(λ) ∈ O(λ−ω(1)) and denote the set of all negligible
functions by Negl. We adopt the code-based game-playing framework. As usual
“ppt” stands for probabilistic polynomial time.

Circuit families. Let MSp := {MSpλ}λ∈N and OSp := {OSpλ}λ∈N be two
families of finite sets parametrized by a security parameter λ ∈ N. A circuit
family CSp := {CSpλ}λ∈N is a sequence of circuit sets indexed by the security
parameter. We assume that for all λ ∈ N, all circuits in CSpλ share a common
input domain MSpλ and output space OSpλ. We also assume that membership
in sets can be efficiently decided. For a vector of circuits C = [C1, . . . ,Cn] and a
message m we define C(m) to be the vector whose ith entry is Ci(m).

Trees. We associate a tree T with the set of its nodes {nodei,j}. Each node is
indexed by a pair of non-negative integers representing the position (level and
branch) of the node on the tree. The root of the tree is indexed by (0, 0), its
children have indices (1, 0), (1, 1), etc. A binary tree is perfectly balanced if every
leaf is at the same level.

2.1 Public-key encryption

Syntax. A public-key encryption scheme PKE := (PKE.Setup,PKE.Enc,PKE.Dec)
with message space MSp := {MSpλ}λ∈N and randomness space RSp := {RSpλ}λ∈N
is specified by three ppt algorithms as follows. (1) PKE.Setup(1λ) is the prob-
abilistic key-generation algorithm, taking as input the security parameter and
returning a secret key sk and a public key pk. (2) PKE.Enc(pk,m; r) is the prob-
abilistic encryption algorithm. On input a public key pk, a message m ∈ MSpλ
and possibly some random coins r ∈ RSpλ, this algorithm outputs a ciphertext
c. (3) PKE.Dec(sk, c) is the deterministic decryption algorithm. On input of a
secret key sk and a ciphertext c, this algorithm outputs a message m ∈ MSpλ or
failure symbol ⊥.

Correctness. The correctness of a public-key encryption scheme requires that
for any λ ∈ N, any (sk, pk) ∈ [PKE.Setup(1λ)], any m ∈ MSpλ and any random
coins r ∈ RSpλ, we have that PKE.Dec(sk,PKE.Enc(pk,m; r)) = m.

Security. We recall the standard security notions of indistinguishability under
chosen ciphertext attacks (IND-CCA) and its weaker variant known as indistin-
guishability under chosen plaintext attacks (IND-CPA). We say that a public-key
encryption scheme PKE is IND-CCA secure if for every legitimate ppt adversary
A

Advind-cca
PKE,A (λ) := 2 · Pr[IND-CCAAPKE(λ)]− 1 ,

where game IND-CCAAPKE described in Figure 1, in which the adversary has
access to a left-or-right challenge oracle (LR) and a decryption oracle (Dec). We
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IND-CCAAPKE(λ):

(sk, pk) ←$ PKE.Setup(1λ)
b ←$ {0, 1}
b′ ←$ ALR,Dec(1λ, pk)
return (b = b′)

LR(m0,m1):
c ←$ PKE.Enc(pk,mb)
List← c : List
return c

Dec(c):
m← PKE.Dec(sk, c)
return m

Fig. 1. Game defining IND-CCA security of a public-key encryption scheme PKE.

say that A is legitimate if: (1) |m0| = |m1| whenever the left-or-right oracle is
queried; and (2) the adversary does not call the decryption oracle with c ∈ List.
We obtain the weaker IND-CPA notion if the adversary is not allowed to place
any decryption query.

2.2 NIZK proof systems

Syntax. A non-interactive zero-knowledge proof system for an NP language L
with an efficiently computable binary relation R consists of three ppt algorithms
as follows. (1) NIZK.Setup(1λ) is the setup algorithm and on input a security pa-
rameter 1λ it outputs a common reference string crs; (2) NIZK.Prove(crs, x, w) is
the proving algorithm and on input a common reference string crs, a statement x
and a witness w it outputs a proof π or a failure symbol⊥; (3) NIZK.Verify(crs, x, π)
is the verification algorithm and on input a common reference string crs, a state-
ment x and a proof π it outputs either true or false.

Perfect completeness. Completeness imposes that an honest prover can
always convince an honest verifier that a statement belongs to L, provided that
it holds a witness testifying to this fact. We say a NIZK proof is perfectly complete
if for every (possibly unbounded) adversary A

Advcomplete
NIZK,A (λ) := Pr

[
CompleteANIZK(λ)

]
= 0 ,

where game CompleteANIZK(λ) is shown in Fig. 2 on the left.

Computational zero knowledge. The zero-knowledge property guarantees
that proofs do not leak information about the witnesses that originated them.
Technically, this is formalized by requiring the existence of a ppt simulator Sim =
(Sim0,Sim1) where Sim0 takes the security parameter 1λ as input and outputs
a simulated common reference string crs together with a trapdoor tp, and Sim1

takes the trapdoor as input tp together with a statement x for which it must
forge a proof π. We say a proof system is computationally zero knowledge if, for
every ppt adversary A, there exists a ppt simulator Sim such that

Advzk
NIZK,A,Sim(λ) :=

∣∣∣Pr
[
ZK-RealANIZK(λ)

]
−
[
ZK-IdealA,SimNIZK (λ)

]∣∣∣ ∈ Negl ,

where games ZK-RealANIZK(λ) and ZK-IdealA,SimNIZK (λ) are shown in Fig. 3.
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Statistical simulation soundness. Soundness imposes that a malicious prover
cannot convince an honest verifier of a false statement. This should be true even
when the adversary itself is provided with simulated proofs. We say NIZK is sta-
tistically simulation sound with respect to simulator Sim if, for every (possibly
unbounded) adversary A

Advsound
NIZK,A(λ) := Pr

[
SoundA,SimNIZK (λ)

]
∈ Negl ,

where game SoundANIZK(λ) is shown in Fig. 2 on the right.

CompleteANIZK(1λ):

crs ←$ NIZK.Setup(1λ)
(x, w) ←$ A(1λ, crs)
if (x, w) /∈ R return 0
π ←$ NIZK.Prove(crs, x, w)
return ¬(NIZK.Verify(crs, x, π))

SoundANIZK(1λ):

crs ←$ NIZK.Setup(1λ)
(x, π) ←$ A(1λ, crs)
return (x /∈ L ∧
NIZK.Verify(crs, x, π))

Fig. 2. Games defining the completeness and soundness properties of a non-interactive
zero-knowledge proof system NIZK.

ZK-RealANIZK(1λ):

crs ←$ NIZK.Setup(1λ)
b ←$ AProve(1λ, crs)

Prove(x, w):
if (x, w) /∈ R return ⊥
π ←$ NIZK.Prove(crs, x, w)
return π

ZK-IdealA,SimNIZK (1λ):

(crs, tp) ←$ Sim1(1λ)
b ←$ AProve(1λ, crs)

Prove(x, w):
if (x, w) /∈ R return ⊥
π ←$ Sim2(crs, tp, x)
return π

Fig. 3. Games defining the zero-knowledge property of a non-interactive zero-
knowledge proof system NIZK.

2.3 Collision-resistant hash functions

A hash function family H := {Hλ}λ∈N is a set parametrized by a security param-
eter λ ∈ N, where each Hλ is a collection of functions mapping {0, 1}m to {0, 1}n
such that m > n. The hash function family H is said to be collision-resistant if no
ppt adversary A can find a pair of colliding inputs, with noticeable probability,
given a function picked uniformly from Hλ. More precisely, we require that

Advcr
H,A(λ) := Pr[CRAH (λ)] ∈ Negl,

where game CRAH (λ) is defined in Fig. 4.
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CRAH (λ):
h ←$ Hλ
(x0, x1) ←$ A(1λ, h)
return (x0 6= x1 ∧ h(x0) = h(x1))

Fig. 4. Game defining collision-resistance of a hash function family H.

2.4 Puncturable pseudorandom functions

A puncturable pseudorandom function family PPRF := (PPRF.Gen,PPRF.Eval,
PPRF.Punc) is a triple of ppt algorithms as follows. (1) PPRF.Gen on input
the security parameter 1λ outputs a uniform element in Kλ; (2) PPRF.Eval is
deterministic and on input a key k ∈ Kλ and a point x ∈ Xλ outputs a point
y ∈ Yλ; (3) PPRF.Punc is probabilistic and on input a k ∈ Kλ and a polynomial-
size set of points S ⊆ Xλ outputs a punctured key kS. As per [22], we require the
PPRF to satisfy the following two properties:

Functionality preservation under puncturing : For every λ ∈ N, every
polynomial-size set S ⊆ Xλ and every x ∈ Xλ \ S, it holds that

Pr

[
PPRF.Eval(k, x) = PPRF.Eval(kS, x)

∣∣∣∣ k ←$ PPRF.Gen(1λ)
kS ←$ PPRF.Punc(k,S)

]
= 1.

Pseudorandomness at punctured points : For every ppt adversary A :=
(A0,A1),

Advpprf
PPRF,A(λ) := 2 · Pr[PPRFAPPRF(λ)]− 1 ∈ Negl,

where game PPRFAPPRF(λ) is defined in Fig. 5.

PPRFAPPRF(λ):

(S, st) ←$ A0(1λ)
k ←$ PPRF.Gen(1λ)
kS ←$ PPRF.Punc(k, S)
b ←$ {0, 1}
b′ ←$ AFn

1 (1λ, kS, st)
return (b = b′)

Fn(x):
if x /∈ S return PPRF.Eval(kS, x)
if T [x] = ⊥ then
T [x] ←$ Yλ

if b = 1 return T [x]
else return PPRF.Eval(k, x)

Fig. 5. Game defining pseudorandomness at punctured points of PPRF :=
(PPRF.Gen,PPRF.Eval,PPRF.Punc).

2.5 Obfuscators

Syntax. An obfuscator for a circuit family CSp is a uniform ppt algorithm Obf
that on input the security parameter 1λ and the description of a circuit C ∈ CSpλ
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outputs the description of another circuit C. We require any obfuscator to satisfy
the following two requirements.

Functionality preservation : For any λ ∈ N, any C ∈ CSpλ and any m ∈
MSpλ, with overwhelming probability over the choice of C←$ Obf(1λ,C) we
have that C(m) = C(m).

Polynomial slowdown : There is a polynomial poly such that for any λ ∈ N,
any C ∈ CSpλ and any C ←$ Obf(1λ,C) we have that |C| ≤ poly(|C|).

In this paper we rely on the security definitions of indistinguishability obfus-
cation (iO) [13] and distributional indistinguishability (DI). The latter definition
was first introduced by [4] in the context of point function obfuscation and later
generalized by [2] to cover samplers that output not only point circuits. We note
that the work of [2] considers only statistically unpredictable samplers, which
is a more restricted class of samplers, and therefore is a more amenable form
of obfuscation. Unfortunately, for the purpose of proving the construction we
present in Section 3.2 secure, we rely on a DI obfuscator against a computation-
ally unpredictable sampler.

Indistinguishability obfuscation (iO). This property requires that given
any two functionally equivalent circuits C0 and C1 of equal size, the obfuscations
of C0 and C1 should be computationally indistinguishable. More precisely, for any
ppt adversary A and for any sampler S that outputs two circuits C0,C1 ∈ CSpλ
such that C0(m) = C1(m) for all inputs m and |C0| = |C1|, we have that

Advio
Obf,S,A(λ) := 2 · Pr[iOS,AObf (λ)]− 1 ∈ Negl,

where game iOS,AObf (λ) is defined in Fig. 6 on the left.

Distributional indistinguishability (DI). We define this property with
respect to some class of unpredictable samplers S. A sampler is an algorithm
S that on input the security parameter 1λ and possibly some state information
st outputs a pair of vectors of CSpλ circuits (C0,C1) of equal dimension and
possibly some auxiliary information z. We require the components of the two
circuit vectors to be encoded as bit strings of equal length. S is said to be
unpredictable if no ppt predictor with oracle access to the circuits can find a
differing input m such that C0(m) 6= C1(m). An obfuscator Obf is DI secure with
respect to a class of unpredictable samplers S if for all S ∈ S the obfuscations of
C0 and C1 output by S are computationally indistinguishable. More precisely,
for every S ∈ S and every ppt adversary A we have that

Advdi
Obf,S,A(λ) := 2 · Pr[DIS,AObf (λ)]− 1 ∈ Negl,

where game DIS,AObf (1λ) is defined in Fig. 6 (middle). Furthermore, we say sampler
S is computationally unpredictable if for any ppt predictor P

Advpred
S,P (λ) := Pr

[
PredPS (1λ)

]
∈ Negl ,

where game PredPS (1λ) is shown in Fig. 6 on the right.
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iOS,AObf (λ):

(C0,C1, z) ←$ S(1λ)
b ←$ {0, 1}
C ←$ Obf(1λ,Cb)
b′ ←$ A1(1λ, z,C)
return (b = b′)

DIS,AObf (λ):

(st, st′) ←$ A0(1λ)
(C0,C1, z) ←$ S(1λ, st)
b ←$ {0, 1}
C ←$ Obf(1λ,Cb)
b′ ←$ A1(1λ, z, st′,C)
return (b = b′)

PredPS (λ):

(st, st′) ←$ P0(1λ)
(C0,C1, z) ←$ S(st)
m ←$ PFn

1 (1λ, z, st′)
return (C0(m) 6= C1(m))

Fn(m):
return (C0(m))

Fig. 6. Games defining iO and DI security of an obfuscator Obf, and unpredictability
of a sampler S.

2.6 RAM programs

In the RAM model of computation, a program P has random-access to some
initial memory data D, comprised of |D| memory cells. At each CPU step of its
execution, P reads from and writes to a single memory cell address, which is
determined by the previous step, and updates its internal state. By convention,
the address in the first step is set to the first memory cell of D, and the initial
internal state is empty. Only when P reaches the final step of its execution, it
outputs a result y and terminates. We use the notation y ← PD→D?

to indicate
this process, where D? is the resulting memory data when P terminates, or
simply y ← PD if we don’t care about the resulting memory data. We also
consider the case where the memory data persists between a sequential execution
of n programs, and use the notation (y1, ..., yn) ← (P1, ...,Pn)D→D?

as short

for (y1 ← PD→D1
1 ; ... ; yn ← P

Dn−1→D?

n ). In more detail, a RAM program
description is a 4-tuple P := (Q, T ,Y, δ), where:

– Q is the set of all possible states, which always includes the empty state ε.
– T is the set of all possible contents of a memory cell. If each cell contains a

single bit, T = {0, 1}.
– Y is the output space of P, which always includes the empty output ε.
– δ is the transition function, modeled as a circuit, which maps (Q × T ) to

(T × Q × N × Y). On input an internal state sti ∈ Q and a content of a
memory cell readi ∈ T , it outputs a (possibly different) content of a memory
cell writei ∈ T , an internal state sti+1 ∈ Q, an address of a memory cell
addri+1 ∈ N and an output y ∈ Y.

In Figure 7 we show how program P is executed on a random-access machine
with initial memory data D.

To conveniently specify the efficiency and security properties of the primitive
we propose in the following section, we define functions runTime and accessPattern
that on input a program P and some initial memory data D return the number
of steps required for P to complete its execution on D and the list of addresses
accessed during the execution, respectively. In other words, as per description
in Fig. 7, runTime returns the value i when P terminates, whereas accessPattern
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returns List. More generally, we also allow these functions to receive as input a
set of programs (P1, ...,Pn) to be executed sequentially on persistent memory,
initially set to D.

Execute PD:
i← 0; addri ← 0; sti ← ε; y← ε; List← []
while (y = ε)

// step i
List← addri : List // record the access pattern
readi ← D[addri] // read from memory
(writei, sti+1, addri+1, y)← δ(sti, readi)
D[addri]← writei // write to memory
i← i+ 1

return (y)

Fig. 7. Execution of program P on a RAM machine with memory D.

3 Updatable Functional Encryption

We propose a new primitive that we call updatable functional encryption. It
bears resemblance to functional encryption in that encryption is carried out in
the public-key setting and the owner of the master secret key can issue tokens for
functions of its choice that allows the holder of the token to learn the outcome of
the function on the message underneath a ciphertext. Here, we model functions as
RAM programs instead of circuits, which is closer to how programs are expressed
in von Neumann architecture and avoids the RAM-to-circuit compilation. Not
only that, we envision tokens that are capable to update the ciphertext, over
which other tokens can be subsequently executed. Because the ciphertext evolves
every time a token is executed and for better control over what information is
revealed, each token is numbered sequentially so that it can only be executed once
and after all previous extracted tokens have been executed on that ciphertext.
Informally, the security requires that the ciphertext should not reveal more than
what can be learned by applying the extracted tokens in order. As for efficiency,
we want the run-time of a token to be proportional to the run-time of the program
up to a polylogarithmic factor in the length of the encrypted message.

3.1 Definitions

Syntax. An updatable functional encryption scheme UFE for program family
P := {Pλ}λ∈N with message space MSp := {MSpλ}λ∈N is specified by three ppt
algorithms as follows.

– UFE.Setup(1λ) is the setup algorithm and on input a security parameter 1λ

it outputs a master secret key msk and a master public key mpk;
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– UFE.TokenGen(msk,P, tid) is the token-generation algorithm and on input a
master secret key msk, a program description P ∈ Pλ and a token-id tid ∈ N,
outputs a token (i.e. another program description) Ptid;

– UFE.Enc(mpk,D) is the encryption algorithm and on input a master public
key mpk and memory data D ∈ MSpλ outputs a ciphertext CT.

We do not explicitly consider an evaluation algorithm. Instead, the RAM pro-
gram P output by UFE.TokenGen executes directly on memory data CT, a ci-
phertext resulting from the UFE.Enc algorithm. Note that this brings us close
to the syntax of Garbled RAM, but in contrast encryption is carried out in the
public-key setting.

Correctness. We say that UFE is correct if for every security parameter λ ∈ N,
for every memory data D ∈ MSpλ and for every sequence of polynomial length
in λ of programs (P1, ...,Pn), it holds that

Pr

 y1 = y′1 ∧ ... ∧ yn = y′n

∣∣∣∣∣∣∣∣∣∣∣∣

(msk,mpk) ←$ UFE.Setup(1λ)
CT ←$ UFE.Enc(mpk,D)
for i ∈ [n]

Pi ←$ UFE.TokenGen(msk,Pi, i)
(y1, ..., yn)← (P1, ...,Pn)D

(y′1, ..., y
′
n)← (P1, ...,Pn)CT

 = 1.

Efficiency. Besides the obvious requirement that all algorithms run in poly-
nomial-time in the length of their inputs, we also require that the run-time
of token P on ciphertext CT is proportional to the run-time of its clear-form
counterpart (program P on memory D) up to a polynomial factor in λ and up to
a polylogarithmic factor in the length of D. More precisely, we require that for
every λ ∈ N, for every sequence of polynomial length in λ of programs (P1, ...,Pn)
and every memory data D ∈ MSpλ, there exists a fixed polynomial function poly
and a fixed polylogarithmic function polylog such that

Pr

 runTime((P1, ...,Pn),CT) ≤
runTime((P1, ...,Pn),D)·
poly(λ) · polylog(|D|)

∣∣∣∣∣∣∣∣
(msk,mpk) ←$ UFE.Setup(1λ)
CT ←$ UFE.Enc(mpk,D)
for i ∈ [n]

Pi ←$ UFE.TokenGen(msk,Pi)

 = 1

over the random coins of all probabilistic algorithms. In particular, this means
that for a program P running in sublinear-time in |D|, the run-time of P over
the encrypted data remains sublinear.

Security. Let UFE be an updatable functional encryption scheme. We say UFE
is selectively secure if for any legitimate ppt adversary A

Advsel
UFE,A(λ) := 2 · Pr

[
SELAUFE(λ)

]
− 1 ∈ Negl ,

where game SELAUFE(λ) is defined in Fig. 8. We say A is legitimate if the following
two conditions are satisfied:
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1. (P1, ...,Pn)D0 = (P1, ...,Pn)D1

2. accessPattern((P1, ...,Pn),D0) = accessPattern((P1, ...,Pn),D1)

These conditions avoid that the adversary trivially wins the game by requesting
tokens whose output differ on left and right challenge messages or have different
access patterns.

SELAUFE(λ):

(D0,D1, (P1, ...,Pn), st) ←$ A0(1λ)
(msk,mpk) ←$ UFE.Setup(1λ)
b ←$ {0, 1}
CT ←$ UFE.Enc(mpk,Db)
for i ∈ [n]
Pi ←$ UFE.TokenGen(msk,Pi)

b′ ←$ A1(CT, (P1, ...,Pn), st)
return (b = b′)

Fig. 8. Selective security of an Updatable FE scheme UFE.

3.2 Our construction

The idea of our construction is the following. Before encryption we append to
the cleartext the token-id of the first token to be issued, the address of the first
position to be read and the initial state of the program. These values are all
pre-defined at the beginning. We then split the data into bits and label each
of them with a common random tag, their position on the array and a counter
that keeps track of how many times that bit was updated (initially 0). Then, we
build a Merkle tree over the labeled bits. Later, this will allow us to check the
consistency of the data without having to read through all of it. It also binds a
token-id, a read-position and a state to the data at a particular stage. Finally,
we encrypt each node of the tree, twice, and attach a NIZK proof attesting that
they encrypt the same content. Tokens include the decryption key inside their
transition circuit in order to perform the computation over the clear data and re-
encrypt the nodes at the end of each CPU step. These circuits are obfuscated to
protect the decryption key and the random coins necessary to re-encrypt come
from a puncturable PRF. The proof then follows a mix of different strategies
seen in [19,17,13,2,16].

• UFE.Setup(1λ) samples two public-key encryption key pairs (sk0, pk0) ←$

PKE.Setup(1λ) and (sk1, pk1) ←$ PKE.Setup(1λ), a common reference string
crs ←$ NIZK.Setup(1λ) and a collision-resistant hash function H ←$ Hλ.
It then sets constants (l1, l2, l3) as the maximum length of token-ids, ad-
dresses and possible states induced by the supported program set Pλ, re-
spectively, encoded as bit-strings. Finally, it sets msk ← sk0 and mpk ←
(pk0, pk1, crs,H, (l1, l2, l3)) and outputs the key pair (msk,mpk).
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• UFE.Enc(mpk,D) parses mpk as (pk0, pk1, crs,H, (l1, l2, l3)) and appends to
the memory data D the token-id 1, address 0 and the empty state ε, en-
coded as bit-stings of length l1, l2 and l3, respectively: D ← (D, 1, 0, ε).
(We assume from now on that |D| is a power of 2. This is without loss of
generality since D can be padded.) UFE.Enc sets z ← log(|D|), samples a
random string tag ←$ {0, 1}λ and constructs a perfectly balanced binary

tree T := {node(i,j)}, where leafs are set as

∀j ∈ {0, ..., (|D| − 1)}, node(z,j) ← (D[j], tag, (z, j), 0)

and intermediate nodes are computed as

∀i ∈ {(z− 1), ..., 0}, ∀j ∈ {0, ..., (2i − 1)},

node(i,j) ← (H(node(i+1,2j), node(i+1,2j+1))).

UFE.Enc then encrypts each node independently under pk0 and pk1, i.e.

∀i ∈ {0, ..., z}, ∀j ∈ {0, ..., (2i − 1)},

r
(i,j)
0 ←$ RSpλ ; r

(i,j)
1 ←$ RSpλ

CT
(i,j)
0 ← PKE.Enc(pk0, node

(i,j); r
(i,j)
0 )

CT
(i,j)
1 ← PKE.Enc(pk1, node

(i,j); r
(i,j)
1 )

and computes NIZK proofs that CT
(i,j)
0 and CT

(i,j)
1 encrypt the same content.

More precisely,

∀i ∈ {0, ..., z}, ∀j ∈ {0, ..., (2i − 1)},

π(i,j) ←$ NIZK.Prove(crs, x(i,j), (node(i,j), r
(i,j)
0 , r

(i,j)
1 )),

where x(i,j) is the NP statement

∃(m, r0, r1) : CT
(i,j)
0 = PKE.Enc(pk0,m; r0) ∧ CT

(i,j)
1 = PKE.Enc(pk1,m; r1).

Finally, UFE.Enc lets

CT := {(CT(i,j)
0 ,CT

(i,j)
1 , π(i,j))},

which encodes a perfectly balanced tree, and outputs it as a ciphertext of
memory data D under mpk.

• UFE.TokenGen(msk,mpk,P, tid) parses (pk0, pk1, crs,H, (l1, l2, l3)) ← mpk,
(Q, T ,Y, δ)← P and sk0 ← msk. It then samples a new puncturable PRF key

k←$ PPRF.Gen(1λ). Next, it sets a circuit δ̂ as described in Fig. 9, using the
parsed values as the appropriate hardcoded constants with the same nam-
ing. UFE.TokenGen then obfuscates this circuit by computing δ ←$ Obf(δ̂).
Finally, for simplicity in order to avoid having to explicitly deal with the
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data structure in the ciphertext, and following a similar approach as in [8],
we define token P not by its transition function, but by pseudocode, as the
RAM program that executes on CT the following:

1. Set initial state st← ε, initial address addr← 0 and empty output y← ε.
2. While (y = ε)

(a) Construct a tree T by selecting from CT the leaf at address addr and
the last (l1+ l2+ l3) leafs (that should encode tid, addr and st if CT is
valid), as well as all the necessary nodes to compute the hash values
of their path up to the root.

(b) Evaluate (T, addr, y)← δ(T).
(c) Update CT by writing the resulting T to it.

3. Output y.

Theorem 1. Let PKE be an IND-CCA secure public-key encryption scheme, let
NIZK be a non-interactive zero knowledge proof system with perfect completeness,
computational zero knowledge and statistical simulation soundness, let H be a
collision-resistant hash function family, let PPRF be a puncturable pseudorandom
function and let Obf be an iO-secure obfuscator that is also DI-secure w.r.t. the
class of samplers described in Game4. Then, the updatable functional encryption
scheme UFE[PKE,NIZK,H,PPRF,Obf] detailed in Section 3.2 is selectively secure
(as per definition in Fig. 8).

Proof (Outline). The proof proceeds via a sequence of games as follows.

Game0 : This game is identical to the real SEL game when the challenge bit
b = 0, i.e. the challenger encrypts D0 in the challenge ciphertext.

Game1 : In this game, the common reference string and NIZK proofs are simu-
lated. More precisely, at the beginning of the game, the challenger executes
(crs, tp) ←$ Sim0(1λ) to produce the crs that is included in the mpk, and
proofs in the challenge ciphertext are computed with Sim1 and tp. The dis-
tance to the previous game can be bounded by the zero-knowledge property
of NIZK.

Game2 : Let T0 := {node(i,j)0 } be the perfectly balanced tree resulting from the

encoding of D0 with tag0, and T1 := {node(i,j)1 } the one resulting from the
encoding of D1 with tag1, where (D0,D1) are the challenge messages queried
by the adversary and (tag0, tag1) are independently sampled random tags.

In this game, CT
(i,j)
1 in the challenge ciphertext encrypts node

(i,j)
1 ; the NIZK

proofs are still simulated. This transition is negligible down to the IND-CPA
security of PKE.

Game3 : In this game we hardwire a pre-computed lookup table to each circuit
δ̂l, containing fixed inputs/outputs that allow to bypass the steps described
in Fig. 9. If the input to the circuit is on the lookup table, it will imme-
diately return the corresponding output. The lookup tables are computed
such that executing the tokens in sequence starting on the challenge cipher-
text will propagate the execution over D0 in the left branch and D1 in the
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right branch. Because the challenge ciphertext evolves over time as tokens
are executed, to argue this game hop we must proceed by hardwiring one
input/output at the time, as follows: (1) We hardwire the input/output of
the regular execution [iO property of Obf]; (2) we puncture the PPRF key of

δ̂l on the new hardwired input [functionality preservation under puncturing
of PPRF + iO property of Obf]; (3) we replace the pseudorandom coins used
to produce the hardwired output with real random coins [pseudorandomness
at punctured points of PPRF]; (4) we use simulated NIZK proofs in the new
hardwired output [zero-knowledge property of NIZK]; (5) we compute circuit
δl independently on the right branch before encrypting the hardwired output
[IND-CPA security of PKE].

Game4 : In all circuits δ̂l, we switch the decryption key sk0 with sk1 and perform
the operations based on the right branch, i.e. we modify the circuits such

that node(i,j) ← PKE.Dec(sk1,CT
(i,j)
1 ). This hop can be upper-bounded by

the distributional indistinguishability of Obf. To show this, we construct an
adversary (S,B) against the DI game that runs adversary A as follows.
Sampler S runs A0 to get the challenge messages (D0,D1) and circuits δl.
Then, it produces the challenge ciphertext (same rules apply on Game3 and

Game4), and compute circuits δ̂l according to rules of Game3 (with decryp-
tion key sk0) on one hand and according to rules of Game4 (with decryption
key sk1) on the other. Finally, it outputs the two vectors of circuits and the
challenge ciphertext as auxiliary information.
Adversary B receives the obfuscated circuits δl either containing sk0 or sk1
and the challenge ciphertext. With those, it runs adversary A1 perfectly sim-
ulating Game3 or Game4. B outputs whatever A1 outputs.
It remains to show that sampler S is computationally unpredictable. Suppose
there is a predictor Pred that finds a differing input for the circuits output
by sampler S. It must be because either the output contains a NIZK proof
for a false statement (which contradicts the soundness property of NIZK),
or there is a collision in the Merkle tree (which contradicts the collision-
resistance of H), or the predictor was able to guess the random tag in one
of the ciphertexts (which contradicts the IND-CCA security of PKE). Note
that (1) the random tag is high-entropy, so lucky guesses can be discarded;
(2) we cannot rely only on IND-CPA security of PKE because we need the
decryption oracle to check which random tag the predictor was able to guess
to win the indistinguishability game against PKE. We also rely on the fact
that adversary A0 is legitimate in its own game, so the outputs in clear of
the tokens are the same in Game3 and Game4.

Game5 : In this game, we remove the lookup tables introduced in Game3. We
remove one input/output at the time, from the last input/output pair added
to the first, following the reverse strategy of that introduced in Game3.

Game6 : Here, the challenge ciphertext is computed exclusively from D1 (with
the same random tag on both branches). This transition is negligible down
to the IND-CPA security of PKE.
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Game7 : In this game, we move back to regular (non-simulated) NIZK proofs in
the challenge ciphertext. The distance to the previous game can be bounded
by the zero-knowledge property of NIZK.

Game8 : We now switch back the decryption key to sk0 and perform the de-
cryption operation on the left branch. Since NIZK is statistically sound, the
circuits are functionally equivalent. We move from sk1 to sk0 one token at
the time. This transition is down to the iO property of Obf. This game is
identical to the real SEL game when the challenge bit b = 1, which concludes
our proof.

ut

It is easy to check that the proposed scheme meets the correctness and efficiency
properties as we defined in Section 3.1 for our primitive. The size of the ciphertext
is proportional to the size of the cleartext. The size expansion of the token is
however proportional to the number of steps of its execution, as the circuit δ
must be appropriately padded for the security proof.

4 Future Work

The problem at hand is quite challenging to realize even when taking strong
cryptographic primitives as building blocks. Still, one might wish to strengthen
the security model by allowing the adversary to obtain tokens adaptively, or by
relaxing the legitimacy condition that imposes equal access patterns of extracted
programs on left and right challenge messages using known results on Oblivious
RAM. We view our construction as a starting point towards the realization of
other updatable functional encryption schemes from milder forms of obfuscation.
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Hardcoded: Transition circuit δ, token-id tid∗, secret key sk0, puncturable PRF key k,
public keys pk0 and pk1, common reference string crs, hash function H and bit-length
constants (l1, l2, l3). Input: Tree T.

1. Verify the NIZK proof in each node of tree T, and decrypt the first ciphertext of
each node with sk0. Let T be the resulting decrypted tree.

∀(i, j) ∈ N2 : node
(i,j) ∈ T,

parse node
(i,j)

as (CT
(i,j)
0 ,CT

(i,j)
1 , π(i,j)) or return ⊥

if NIZK.Verify(crs, x(i,j), π(i,j)) = false return ⊥
node(i,j) ← PKE.Dec(sk0,CT

(i,j)
0 )

let T := {node(i,j)}

2. On the decrypted tree T, verify the path of each leaf up to the root (i.e. intermediate
nodes must be equal to the hash of their children) and check that all leafs are
marked with the same random tag.

z← max{i ∈ N : node(i,j) ∈ T, ∃j ∈ N}
∀j ∈ N : node(z,j) ∈ T,
∀i ∈ {(z− 1), ..., 0}

if node
(i,b j

2(z−i)
c) 6= H(node

((i+1),2b j

2(z−i)
c)
, node

((i+1),(2b j

2(z−i)
c+1))

) return ⊥
parse node(z,j) as (value(z,j), tag(z,j), position(z,j), counter(z,j)) or return ⊥

if ∃(j, j′) ∈ N2 : node(z,j) ∈ T ∧ node(z,j
′) ∈ T ∧ tag(z,j) 6= tag(z,j

′) return ⊥

3. Read the token-id, address and state of the current step encoded in tree T. Check
that the token-id matches the one hardcoded in this token. Then, evaluate the
transition circuit δ.

read (tid, addr, st) with fixed bit-length (l1, l2, l3) from T or return ⊥
if tid 6= tid∗ return ⊥
(value(z,addr), st, addr, y)← δ(st, value(z,addr))

4. If the transition circuit δ outputs some result y then increase the token-id and reset
the internal state and address.

if y 6= ε then tid← tid + 1 ; st← 0 ; addr← 0

5. Write the (possibly new) token-id, address and state to tree T, update the counters
of leaf nodes and recompute the path of each leaf up to the root.

write (tid, addr, st) with fixed bit-length (l1, l2, l3) to T
∀j ∈ N : node(z,j) ∈ T, counter(z,j) ← counter(z,j) + 1
∀j ∈ N : node(z,j) ∈ T, ∀i ∈ {(z− 1), ..., 0},
node

(i,b j

2(z−i)
c) ← H(node

((i+1),2b j

2(z−i)
c)
, node

((i+1),(2b j

2(z−i)
c+1))

)

6. Re-encrypt all nodes of T (as before, encrypt under pk0 and pk1 and add NIZK
proofs under crs). To extract the necessary random coins, we use the puncturable
PRF under key k, providing as input the input of this circuit, i.e. T.
∀(i, j) ∈ N2 : node(i,j) ∈ T, (r

(i,j)
0 , r

(i,j)
1 , r

(i,j)
π )← PPRF.Eval(k, (T, (i, j)))

∀(i, j) ∈ N2 : node(i,j) ∈ T,

CT
(i,j)
0 ← PKE.Enc(pk0, node

(i,j); r
(i,j)
0 ); CT

(i,j)
1 ← PKE.Enc(pk1, node

(i,j); r
(i,j)
1 )

π(i,j) ← NIZK.Prove(crs, x(i,j), (node(i,j), r
(i,j)
0 , r

(i,j)
1 ); r

(i,j)
π )

7. Finally, output the updated (encrypted) tree T, the address for next iteration and
possibly the outcome of the token.

return (T, addr, y)

Fig. 9. Specification of circuit δ̂, as part of our updatable functional encryption scheme.
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