
Non-Malleable Codes with Split-State Refresh

Antonio Faonio and Jesper Buus Nielsen

Aarhus University

Abstract. Non-Malleable Codes for the split state model allow to encode a mes-
sage into two parts such that arbitrary independent tampering on the parts either
destroys completely the content or maintains the message untouched. If the code
is also leakage resilient it allows limited independent leakage from the two parts.
We propose a model where the two parts can be refreshed independently. We give
an abstract framework for building codes for this model, instantiate the construc-
tion under the external Diffie-Hellman assumption and give applications of such
split-state refreshing. An advantage of our new model is that it allows arbitrarily
many tamper attacks and arbitrarily large leakage over the life-time of the systems
as long as occasionally each part of the code is refreshed. Our model also tolerates
that the refreshing occasionally is leaky or tampered with.

1 Introduction

Non-malleable codes (NMCs) are a natural relaxation of the notions of error correcting
codes and error detecting codes, which tolerates more attacks by relaxing the security
guarantees. An error correcting code guarantees that the encoded message is always
correctly decoded. The price for this guarantee is that the code can tolerate only limited
attacks, e.g., that some small constant fraction of the codeword is tampered with. An
error detecting code decodes either the correct message or returns some special symbol
⊥ signalling an error. They can tolerate more general attacks, e.g., that some larger
constant fraction of the codeword is tampered with. A NMC only guarantees that either
the encoded message is correctly decoded or the decoder outputs a message which
is unrelated to the encoded message. This weak guarantee allows much more general
tampering. It is for instance possible to tolerate tampering that modifies the entire
codeword.

Despite the weaker security guarantee, NMCs can be used to protect against physical
attacks. Consider a physical device D with an embedded secret key K. For instance a
signature card which on input m outputs σ = SignK(m). Assume the device might fall
into the hands of an adversary that can apply a physical attack on the device to tamper
with K, producing a different but related key K ′. Now, on input m the device outputs
σ = SignK′(m). We would like to ensure that the adversary cannot learn any information
about K from seeing SignK′(m). Let Encode and Decode denote the encoding and
decoding algorithms of a NMC. Consider now a device D̃ on which we store an encoded
key X ← Encode(K). On input m the device outputs σ = SignDecode(X)(m). We
call D̃ the strengthened device. In face of a tampering with the key the strengthened
device outputs σ = SignDecode(X′)(m). The value of Decode(X ′) will either be K or an
unrelated key K ′. NMC security guarantees that when K ′ is an unrelated key, then the
adversary could in fact have computed K ′ itself without any access to K. It follows that
the adversary either learns a correct signature σ = SignK(m) or a value σ = SignK′(m)
it could have computed itself without access to the device. This ensures that tampering
does not result in information leaking from the device.

Formally security is defined as a tampering game between an adversary and a
simulator S. The adversary submits to the tampering game a message m and the game
computes a random encodingX ← Encode(m). The adversary then submits a tampering
function T . Now the game either computes m′ = Decode(T (X)) and gives m′ to the
adversary. Or, it computes m′ = S(T) and gives m′ to the adversary. The code is called
secure if for all adversaries there exists an efficient simulator such that the adversary
cannot guess which of the two cases occurred except with negligible advantage. A small
but crucial modification of the game is needed. Notice that the adversary might for
instance submit T equal to the identity function. In that case m′ = m in the first case,
so the simulator would be required to compute m too, which is impossible as it is not
given m as input and m might be a random value. The game is therefore modified to
allow S to give a special output ∗ in which case the game sets m′ = m before giving m′

to the adversary. Security therefore demonstrates that the adversary when submitting a
tampering function T could itself efficiently have computed whether the tampering will
have no effect (when S(T) = ∗) and in case there is an effect, which messagem′ = S(T)
would be the result of the tampering.

2

It is clear that we need to put some restriction on the tampering function. If the
adversary submits the function T (X) = Encode(Decode(X) + 1) the simulator would
have to outputm+1 without knowingm. The most popular way to restrict the tampering
functions is to assume the split-state model (STM), which was first used to get leakage-
resilient cryptography (see Dziembowski et al. [21]). In this model we assume that
the encoding X consists of two parts X = (X0, X1) stored on two separate storage
devices or seperate parts of a chip. The assumption is that the adversary can only tamper
independently with the two parts, i.e., in the model it submits tampering functions
T = (T 0, T 1) and the result of tampering is (X ′0, X ′1) = (T 0(X0), T 1(X1)). This is
also the model we consider in this paper. In the split state model it is possible to construct
codes which tolerates arbitrary tampering, except that the two parts must be tampered
independently.

Unfortunately NMC security is not sufficient for device strengthening if the adversary
can repeatedly tamper with the device. To see this assume for simplicity that the encoding
has the property that if a single bit is flipped in an encoding X , then Decode(X ′) = ⊥.
Consider then the tampering function Oi which overwrites the i’th bit in X by 0. Each
Oi is allowed in the split-state model. Now, Decode(Oi(X)) = ⊥ if and only if the
i’th bit of X is 1. Hence by applying O1, . . . , O|X| an adversary can learn X and then
compute m = Decode(X). This means that if the code is secure then by definition
the simulator can also compute m, which it cannot. Let us call the above attack the
fail-or-not attack.

Two different ways to circumvent the fail-or-not attack has been proposed in the
literature. In [33] Liu and Lysyanskaya propose that the strengthened device whenever it
reconstructed the key K = Decode(X) resamples a new encoding X ′ ← Encode(K)
and overrides X by X ′ on the storage medium. This way the adversary gets to tamper
with each fresh encoding only once and the NMC assumption is sufficient. In [24]
Faust et al. propose a model where the encoding X remains the same in all tamperings.
Instead the authors assume that the strengthened device self destructs when it detects that
Decode(X) = ⊥. In the fail-or-not attack the adversary is using failure or not to leak
information on the encoding X . If the device self destructs on failure this can however
only be exploited to leak logarithmic many bits, namely in which round of tampering the
self destruction happened. The authors in [24] then use a code which can tolerate limited
leakage on the two halves of the encoding and constructs the code such that computing
in which round the device would have self-destructed can be done using only limited
independent leakage from the two halves, reducing tampering to leakage, an idea we use
in our new code too.

Both [33] and [24] consider codes which are additionally leakage resilient in the
split state model. In [24] this is needed anyway to protect against tampering and in [33]
it is argued to be a natural requirement as we assume the device to be in the hands of
an adversary which might learn leakage on the two parts X0 and X1 by measuring the
device during operation. In both [33] and [24] it is assumed that the circuitry doing the
encoding (and refreshing) cannot be tampered with and that it is leakage free, i.e., only
the storage devices are subject to tampering and leakage. Below we will partially relax
this assumption by allowing occasional leakage and tampering of the refresh procedure.

3

Our Contributions We propose a new model in line with [33]. In particular we do not
assume the device can self destruct and we use refreshing to protect against the fail-or-not
attack. We propose two extra requirements on the refreshing which we motivate below.
First, we want the refreshing to be split-state, i.e., the refreshing algorithm should be
of the form Refresh(X) = (Refresh0(X0),Refresh1(X1)). Second, the code should
tolerate multiple tampering attacks in between refreshes.

To motivate the model, imagine the following application for strengthening a device.
The parts X0 and X1 are placed in separate storages. When the key is needed the device
computes K = Decode(X) and outputs SignK(m). In addition to this, occasionally the
device will read up a part Xi and write back X ′i = Refresh(Xi). The refreshing of the
parts might also be done by separate processes sitting in the storage device of the part,
as opposed to the circuitry doing the decoding. The practical motivation is as follows. In
all existing codes the encoding process is considerably more complex than the decoding
process. For instance encoding necessarily needs cryptographic strength randomness,
whereas decoding can be deterministic. It could therefore be much harder to create a
leakage and tamper free implementation of Encode. Also, refreshing by decoding and
re-encoding is unnecessarily risky as (real-world) leakage from this process could be
leakage on the decoded key K.

Notice on the other hand that if a partial refreshing X ′i = Refresh(Xi) is tampered
with, then it can simply be considered just another tampering attack on Xi in the split
state model. In the same way, if a partial refreshing X ′i = Refresh(Xi) is leaky, then it
can simply be considered just another leakage attack on Xi in the split state model. For
this to be true it is important that the refreshing is split state, motivating our first extra
requirement. As a consequence, if only occasionally the refreshing succeeds in being
tamper and leakage free, all the failed attempts can be recast as tamper and leakage
attacks. This means the code remains secure if it can tolerate several tamper and leakage
attacks in between refreshes, motivating our second extra requirement. Notice that for
this to be true, the security of the code should not depend on the two parts being refreshed
at the same time. We can only assume that each part occasionally gets refreshed.

Our model works as follows. The adversary submits to the game a message m
and the game samples (X0, X1) ← Encode(m). The adversary can then repeatedly
submit leakage or tamper queries. In a leakage query the adversary submits (i, L) and is
given R = L(Xi). In a tampering query the adversary submits (T 0, T 1) and is given
m′ = Decode(T 0(X0), T 1(X1)).1 The adversary can also make a refresh query by
submitting an index j to the game. Then the game refreshes the corresponding part:
Ej ← Refreshj(E

j). We give a simulation-based security definition. The simulator is
not given m. To simulate a leakage query the simulator is given (j, L) and must return
some value R to the adversary. To simulate a tampering query the simulator is given
(T 0, T 1) and must return some value m′, where m′ = ∗ is replaced with m′ = m before
m′ is returned to the adversary. To simulate a refresh query the simulator is given j and
has to return nothing. The adversary must not be able to tell whether it is interacting

1 Notice that tampering does not overwrite the codeword. This is called non-persistent tampering
and is stronger than persistent tampering in the split state model as the set of tampering
functions is closed under composition—subsequent tamperings can just first reapply all previous
tampering functions (cf. Jafargholi and Wichs [31]).

4

with the real world or the simulator. The only restriction on the adversary is that the
length of the leakage and the number of tampering attacks in between refreshes must be
limited. For any polynomials p(κ), q(κ) we construct a code that can tolerate p(κ) bits
of leakage and q(κ) many tampering attacks in between successful refreshes.

Our definition is not strong according to the notions of Non-Malleable Codes given
in the original paper [20]. In the security experiment of the strong NMCs the adversary
receives either the entire tampered codeword (as opposed to receive the decoded message
of the tampered codeword) or ∗ in case that the tampering function keeps the codeword
unaltered. The goal of the adversary is to distinguish the codewords of two different
message given the result of the tampering function. However, such definition cannot be
met in presence of a split-state refresh algorithm. In fact the adversary could forward, as
tampering function, the refreshing function itself and receives a valid codeword (since it
won’t be the same codeword). Given the codeword, it can easily distinguish by decoding.

Our techniques borrow ideas from both [33] and [24]. In X1 we will keep a secret
key sk for a public-key encryption scheme. In X0 we will keep the corresponding
public key pk = PK(sk), an encryption c = Enc(pk ,m) of the encoded message and a
simulation-sound NIZK proof of knowledge π of some sk such that pk = PK(sk) using
c as a label. Decoding will check the proof and if it is correct and sk matches pk . If
so, it outputs Dec(sk ′, c). To tolerate leakage and to allow refreshing we use a leakage
resilient encryption scheme which allows to refresh sk and c independently. The public
key pk in X1 will never be refreshed, which is secure as pk might in fact be public. To
allow the proof of knowledge to be refreshed we use a non-malleable proof with some
controlled malleability. We give a concrete instantiation of this framework based on the
Continual Leakage-Resilient scheme of Dodis et al. [18] and the Controlled-Malleable
NIZK system of Chase et al. [10] instantiated with Groth-Sahai proofs [29].

The structure of the encoding scheme is very similar to the one proposed by [33],
however there are few substantial differences: 1. We substitute the PKE and the NIZK
scheme with cryptographic primitives that allow efficient refresh mechanisms; 2. The
NP relationship of the NIZK is different. (In fact, it is inspired by the scheme of [24].)

The main proof technique is to reduce tampering to legal leakage queries on the
encryption scheme. In the reduction we are given separate leakage oracles of sk and c.
To simulate leakage from X1, leak from sk . To simulate leakage from X0, once and
for all produce a simulated proof π with label c and simulate each leakage query from
X0 by leaking from (pk , c, π). As for tampering queries, assume that the parts have
been tampered into X ′1 = sk ′ and X ′0 = (pk ′, c′, π′). First we use leakage to check
whether the decoding would fail. Leak from X ′1 the value pk ′′ = PK(sk′). Then leak
from X ′0 a single bit telling whether pk ′ = pk ′′ and whether π′ is a valid proof. This
is exactly enough to determine whether the decoding would fail or not. If the decoding
would fail, output ⊥. Otherwise, if the proof π′ still has c as label (which implies that
X ′0 = (pk ′′, c, π′) when the proof is valid), then output ∗ indicating that the decoding
would output the original encoded message. If the label of π′ is not c, then use the
extraction trapdoor of the proof to extract the secret key sk ′ matching pk ′′. Then output
Dec(sk ′, c′). This allows to simulate each tampering attack with limited leakage on
X0 and X1. Therefore the scheme remains secure as long as refreshing happens often

5

enough for the leakage needed to simulate tampering to not grow about the leakage
tolerance of the encryption scheme.

In [18], it was shown that Continually Leakage-Resilient Codes with Split-State
Refresh are impossible to construct without computational assumptions. The result holds
even when the leakage between each updates is 1 bit. It is easy to see that the same result
holds for Non-Malleable Codes with Split-State Refresh. (This is because a tampering
attack corresponds at least to 1 bit of leakage.)

More Related Work. Non-Malleable Codes were introduced to achieve tamper-proof
security of arbitrary cryptographic primitives. Since their introduction many works
have constructed NMCs in different models both under cryptographic assumptions or
information theoretically (see [19,1,2,12,25,15,31,3,37]).

A related line of work on tamper resilience (see [30,26,32,14]) aims at constructing
secure compilers protecting against tampering attacks targeting the computation carried
out by a cryptographic device (typically in the form of boolean and arithmetic circuits).

A third line of work on tamper resilience instead aims at constructing ad hoc solutions
for different contexts like for example symmetric encryption [6,35,27], public-key
encryption [5,38,7,34,23,16,17], hash functions [28] and more [8,37,13].

Roadmap. In the following we will first introduce some known notation and abstract
definitions of the properties we need from the primitives in the abstract framework. Then
we describe and prove the abstract framework, followed by an instantiation based on
External Diffie-Hellman assumption [4,9]. At the end we will present the application to
continual-tamper-and-leakage resilient cryptography in more details.

2 Preliminaries

2.1 Notation and Probability Preliminaries

We let N denote the naturals and R denote the reals. For a, b ∈ R, we let [a, b] = {x ∈
R : a ≤ x ≤ b}; for a ∈ N we let [a] = {0, 1, . . . , a}. If x is a bit-string, we denote
its length by |x| and for any i ≤ |x| we denote with x(i) the i-th bit of x; If X is a set,
|X | represents the number of elements in X . When x is chosen randomly in X , we write
x←$ X . When A is an algorithm, we write y ← A(x) to denote a run of A on input
x and output y; if A is randomized, then y is a random variable and A(x; r) denotes a
run of A on input x and randomness r. An algorithm A is probabilistic polynomial-time
(PPT) if A is allowed to use random choices and the computation of A(x; r) terminates
in at most poly(|x|) steps for any input x ∈ {0, 1}∗ and randomness r ∈ {0, 1}∗.

Let κ be a security parameter. A function negl is called negligible in κ (or simply
negligible) if it vanishes faster than the inverse of any polynomial in κ. For a relation
R ⊆ {0, 1}∗ × {0, 1}∗, the language associated withR is LR = {x : ∃w s.t. (x,w) ∈
R}.

For two ensembles X = {Xκ}κ∈N, Y = {Yκ}κ∈N, we write X
c
≈ε Y , meaning that

every probabilistic polynomial-time distinguisherD has ε(κ) advantage in distinguishing
X and Y , i.e., 1

2 |P[D(Xκ) = 1]−P[D(Yκ) = 1]| ≤ ε(κ) for all sufficiently large values
of κ.

6

We simply write X
c
≈ Y when there exists a negligible function ε such that X

c
≈ε

Y . Similarly, we write X ≈ε Y (statistical indistinguishability), meaning that every
unbounded distinguisher has ε(κ) advantage in distinguishing X and Y .

Given a string X = (X1, X2) ∈ ({0, 1}∗)2 and a value ` ∈ N let O`(X) be the
split-state leakage oracle. O`(X) accepts as input tuple of the form (i, f) where the first
element i is an index in {0, 1} and the the second element f is a function defined as a
circuit. If the total amount of leakage is below `, O`(X) outputs f1(Xi1) otherwise it
outputs the special symbol ⊥. More formally, the oracle O`(X) is a state machine that
maintains state variables O`(X).l0 and O`(X).l1 and upon input (i, f) where f is an
efficiently computable function with co-domain {0, 1}o for a value o ∈ N outputs f(Xi)
if (li + o) ≤ ` and then updates the value li to li + o, otherwise it outputs the value ⊥.

Given two PPT interactive algorithms A and B we write (y, k)← A(x) � B(z) to
denote the joint execution of the algorithm A with input x and the algorithm B with input
z. The string y (resp. z) is the output of A (resp. B) after the interaction. In particular
we write A � O`(X) to denote A having oracle access to the leakage oracle with input
X . Moreover, we write A � B, C to denote A interacting in an interleaved fashion both
with B and with C.

2.2 Cryptographic Primitives

NIZK Proof of Knowledge. We first introduce the necessary notation for label-malleable
NIZK (lM-NIZK for short) argument system. A label-malleable NIZK is intuitively a
non-malleable NIZK except that from a proof under a given label one can generate a
new proof for the same statement under a different label without using the witness. A
lM-NIZK NIZK := (I,P,V,RandProof, LEval) with label space L is a tuple of PPT
algorithms where: (1) The algorithm I upon input the security parameter 1κ, creates a
common reference string (CRS) ω; (2) The prover algorithm P upon input ω, a label
L ∈ L and a valid instance x together with a witness w produces a proof π. We write
PL(ω, x, w); (3) The verifier algorithm V upon input ω, a label L an instance x together
with a proof π outputs a verdict in {0, 1}. We write VL(ω, x, π); (4) The label-derivation
algorithm LEval upon input ω, a transformation φ, a label L an instance x and a proof π
outputs a new proof π′.

Definition 1 (Adaptive multi-theorem zero-knowledge). LetNIZK be a non-interactive
argument system for a relationR. We say that NIZK satisfies adaptive multi-theorem
zero-knowledge if the following holds:

(i) There exists a PPT algorithm S0 that outputs a CRS ω and a trapdoor τsim .
(ii) There exist a PPT simulator S1 and a negligible function ν such that, for all PPT

adversaries A, we have that∣∣∣P [A(ω) � P(ω, ·) = 1| ω ← I(1κ)]−

P [A(ω) � SIM(τsim , ·) = 1| (ω, τsim)← S0(1κ)]
∣∣∣ ≤ ν(κ).

The simulation oracle SIM(τsim , ·) takes as input a tuple (L, x,w) and checks if
(x,w) ∈ R, and, if true, ignores w and outputs a simulated argument S1(τsim , L, x),
and otherwise outputs ⊥.

7

Experiment ExpT −lmSE
Ext,S,A (κ):

(ω, τsim , τext)← S0(1κ);Q ← ∅;
(x∗, L∗, π∗)← A(ω) � SIM∗(τsim);
(w, φ, L)← Ext1(τext , L

∗, x∗, π);
Return (w, φ, L),Q.

Oracle SIM∗(τsim ,Q):
Upon message (L, x) ∈ L × LR;
Q ← Q∪ {(L, x)};
Return S1(τsim , L, x).

Experiment ExpT −lDP
NIZK(κ):

ω ← I(1κ);b←$ {0, 1};
(φ,L, x, w, π), st← A(ω);
if (x,w) /∈ R ∨

(
VL(ω, x, π) = 0

)
then Return 0;

if (b = 0) then π′ ← P(ω, φ(L), x, w);
else π′ ← LEval(ω, φ, (x, L, π));
b′ ← A(st, π′);
Return (b = b′).

Fig. 1: Experiments defining T -ml-SE and label derivation privacy of NIZK.

Given NIZK that supports the set of labels L, we say that a set T is a set of label
transformations for NIZK iff for any φ ∈ T the co-domain of φ is a subset of L.

Definition 2 (T -Malleable Label Simulation Extractability). Let T be a set of label
transformations for NIZK. Let NIZK be a non-interactive argument system for a
relationR. We say that NIZK is T -malleable label simulation extractable (T -ml-SE)
if the following holds:

(i) There exists an algorithm S0 that outputs a CRS ω, a simulation trapdoor τsim , and
an extraction trapdoor τext .

(ii) There exists a PPT algorithm Ext such that, for all PPT adversaries A, the probabil-
ity, taken over the experiment ExpT −lmSE

Ext,S,A (as defined in Fig. 1), of the conjunction
of the following events is negligible in the security parameter κ:
(a) (L∗, x∗) 6∈ Q and V(ω,L∗, x∗, π∗) = 1;
(b) (x∗, w) 6∈ R;
(c) Either φ 6∈ T or for any (L, x) either (L, x) 6∈ Q or φ(L) 6= L∗.
Moreover, we say that A wins the T -lm SE Experiment when all the above events
happen.

Definition 3 (Label Derivation Privacy). LetNIZK a lM-NIZK, and let T be a set of
label transformations. We say that NIZK has label derivation privacy if for all PPT A,
there exists a negligible function negl such that (P

[
ExpT −lDP

NIZK(κ) = 1
]
− 1

2) ≤ negl(κ)

(where the experiment is defined in Fig. 1).

Public-Key Encryption. A public-key encryption (PKE) scheme is a tuple of algorithms
E = (Setup,Gen,Enc,Dec) defined as follows. (1) Algorithm Setup takes as input the
security parameter and outputs public parameters pub ∈ {0, 1}∗. all algorithms are
implicitly given pub as input. (2) Algorithm Gen takes as input the security parameter
and outputs a public/secret key pair (pk , sk); the set of all secret keys is denoted by SK
and the set of all public keys by PK. Additionally, we require the existence of a PPT
function PK which upon an input sk ∈ SK produces a valid public key pk . (3) The
randomized algorithm Enc takes as input the public key pk , a message m ∈ M, and

8

randomness r ∈ R, and outputs a ciphertext c = Enc(pk ,m; r); the set of all ciphertexts
is denoted by C. (4) The deterministic algorithm Dec takes as input the secret key sk
and a ciphertext c, and outputs m = Dec(sk , c) which is either equal to some message
m ∈ M or to an error symbol ⊥. Additionally, we also consider two PPT algorithms:
1. Algorithm UpdateC takes as input a public key pk a ciphertext c and outputs a new
ciphertext c. 2. Algorithm UpdateS takes as input a secret key sk and outputs a new
secret key sk ′.

Correctness (with Updates). We say that E satisfies correctness if for all pub ←
Setup(1κ) and (pk , sk)← Gen(pub) we have that:

P [Dec(UpdateS(sk),UpdateC(pk ,Enc(pk ,m))) = m] = 1,

where the randomness is taken over the internal coin tosses of algorithms Enc, UpdateS
and UpdateC. Additionally, we require that for any pk , sk ← Gen(pub): (A) any sk ′

such that PK(sk ′) = pk and any c ∈ C we have that Dec(sk , c) = Dec(sk ′, c); (B) any
sk ′ ← UpdateS(sk) we have that PK(sk) = PK(sk ′).

CLRS Friendly PKE Security. We now turn to define Continual-Leakage Resilient
Storage Friendly public key encryption.

Experiment Expclrs
E,A(κ, `):

pub ← Setup(1κ)
(pk , sk)← Gen(pub)
b←$ {0, 1}; j ← 1
l0 := 0; l1 := 0
(m0,m1)← A(pub, pk)
if |m0| 6= |m1| set m0 ← m1

c← Enc(pk ,mb)
state0 := sk ,state1 := c;
st← A(pk) � Update,O`(state)
b′ ← A(pk , c)
Return (b′ = b)

Oracle Update(i):
O`(state).li := 0

r′←$ {0, 1}p(κ)
if (i = 0)

c = state0

c′ ← UpdateC(pk , c)
state0 := c′

if (i = 1)
sk = state1

sk ′ ← UpdateS(sk)
state1 := sk ′

Fig. 2: Experiment defining CLRS security of E.

Definition 4. For κ ∈ N, let ` = `(κ) be the leakage parameter. We say that E =
(Setup,Gen,Enc,Dec,UpdateC,UpdateS) is `-CLRS Friendly if for all PPT adver-
saries A there exists a negligible function ν : N→ [0, 1] such that∣∣∣∣P [Expclrs

E,A(κ, `) = 1
]
− 1

2

∣∣∣∣ ≤ ν(κ),

(where the experiment is defined in Figure 2).

9

We observe that Definition 4 is weaker than the definition of Dodis et al. [18], in fact we
do not consider leakage from the update process. We introduce an extra property on the
UpdateC algorithm of a CLRS Friendly PKE.

Definition 5. We say that E is perfectly ciphertext-update private if for any κ ∈
N, pub ← Setup(1κ), (pk , sk) ← Gen(pub) and any m ∈ M the distributions
{Encode(pk ,m)} and {UpdateC(pk ,Enc(pk ,m))} are equivalent.

If E is a CLRS Friendly PKE then the weaker version of the property above where the
two distributions are computationally indistinguishable already holds. The construction
in Section 4 can be proved secure using the computational ciphertext-update privacy
property. However, we prefer to include the perfectly ciphertext-update privacy property
because it simplifies the exposition.

3 Definition

In this section we consider three definitions of Non-Malleable Codes with Refresh
(NMC-R). The syntax given allows the scheme to depends on a common reference string
following [33].

A coding scheme in the CRS model is a tuple Σ = (Init,Encode,Decode) of
PPT algorithms with the following syntax: (1) Init on input 1κ outputs a common
reference string crs . (2) Encode on inputs crs and a message m ∈Mκ outputs X ∈ Cκ;
(3) Decode is a deterministic algorithm that on inputs crs and a codeword X ∈ Cκ
decodes to m′ ∈ Mκ. A coding scheme is correct if for any κ and any m ∈ Mκ we
have Pcrs,re [Decode(crs,Encode(crs,m; re)) = m] = 1.

We consider coding schemes with an efficient refreshing algorithm. Specifically,
for a coding scheme Σ there exists an algorithm Rfrsh that upon inputs crs and a
codeword X ∈ Cκ outputs a codeword X ∈ Cκ. For correctness we require that
P [Decode(crs,Rfrsh(crs, X)) = Decode(crs, X)] = 1, where the probability is over
the randomness used by the algorithms and the generation of the CRS.

We are interested in coding schemes in the split-state model where the two parts can
be refreshed independently and without the need of any interactions. Given a codeword
X := (X0, X1), we consider the procedure Rfrsh(crs, (i,Xi)) for i ∈ {0, 1} that
takes the i-th piece of the codeword and outputs a new piece X ′i. Abusing of notation,
given a codeword X := (X0, X1) when we write Rfrsh(crs, X) we implicitly mean
the execution of both Rfrsh(crs, (i,X0)) and Rfrsh(crs, (i,X1)). Similarly, given a
split-state function T = (T 0, T 1) we equivalently write T (X) meaning the application
of both T 0(X0) and T 1(X1).

We require that for any codeword X := (X0, X1) and for any i ∈ {0, 1}, let
X̄ such that X̄i ← Rfrsh(crs, (i,Xi)) and X̄i−1 = Xi then P[Decode(crs, X̄) =
Decode(crs, X)] = 1.

NMC with Refresh in the STM. We now give the security definition for Non-Malleable
Codes with Refresh. Although the definition would be meaningful for a more general
setting, for the sake of concreteness, we specialize it for the split-state model. Let Im
be a function fromM∪ {∗} toM which substitutes the symbol ∗ in input with the

10

message m and acts as the identity function otherwise. Let Tamper and SimTamper
be the experiments described in Figure 3.

Experiment TamperA,Σ(κ, `, ρ, τ):
Variables i, t0, t1 set to 0;
crs ← Init(1κ);
(m, z)← A0(crs); (m0, st0) := (m, z);
X0 := (X0

0 , X
1
0)← Encode(crs,m0);

forall i < ρ(κ):
(Ti+1, sti+1, j)← A1(mi, sti) � O`(Xi),
where Ti+1 is a split-state function;
X̃i+1 := Ti+1(Xi);
mi+1 := Decode(crs, X̃i+1);
Xi+1 := Xi;
For j′ ∈ {0, 1} if (tj

′
> τ) or (j′ = j)

Xj′

i+1 ← Rfrsh(crs, (j′, Xj′

i))

Set O`(Xi).lj
′

and tj
′

to 0;
Increment t0, t1 and i;

Return A2(stp).

Experiment SimTamperA,S(κ, `, ρ, τ):
Variable i set to 0;
(crs, aux)← S0(1κ);
(m, z)← A(crs);(m0, st0) := (m, z);
forall i < ρ(κ):

(Ti+1, st i+1, j)← A1(mi, st i) � S2(z);
m̄i+1 ← S1(Ti+1, z);
mi+1 := Im0(m̄i+1);
S3(j, z)
i := i+ 1;

Return A2(stp).

Fig. 3: Experiments defining the security of NMC with Refresh Σ. Notice that tj for
j ∈ {0, 1} counts the number of rounds since the last refresh of Xj . If tj > τ or if the
adversary triggers it then a refresh of Xj is executed.

Definition 6 (Non-Malleable Codes with Refresh). For κ ∈ N, let ` = `(κ), ρ =
ρ(κ), τ = τ(κ) be parameters. We say that the coding scheme Σ is a (`, ρ, τ)-Non-
Malleable Code with Refresh (NMC-R) in the split state model if for any adversary
A = (A0,A1,A2) where A0 and A2 are a PPT algorithm and A1 is deterministic
polynomial time, there exists a PPT simulator S = (S0,S1,S2,S3) and a negligible
function ν such that∣∣P [TamperA,Σ(κ, `, ρ, τ) = 1

]
− P

[
SimTamperA,S(κ, `, ρ, τ) = 1

]∣∣ ≤ ν(κ).

We give some remarks regarding the definition above. The simulator S is composed
of four different parts S0,S1,S2,S3. The algorithm S0 upon input 1κ produces a CRS
toghether with some trapdoor information aux , the CRS produced and the output of Init
are computational indistinguishable.

For simplicity, we assume that the state information aux is stored in a common read-
and-write memory that the simulators S0,S1,S2,S3 have access to. We will sometime
referee to S1 as the tampering simulator, to S2 as the leakage simulator and to S3 as the
refresh simulator.

The adversary A is composed by a PPT algorithm A0, a deterministic algorithm A1

and PPT distinguishing algorithm A2. The adversary A0 can sample a message m (as
function of the CRS) and some state information z. The latter may encode some side

11

information z about the message m and other information that A0 wants to pass to A1.
Notice that we can assume without loss of any generality A1 to be deterministic, in fact,
z may also contain random coins. The tampering simulator, the leakage simulator and
the refresh simulator take as input the state information z. In addition, in each round, the
tampering simulator S1 receives a split-state tampering function Ti+1 and it outputs a
message m̄i+1. First, we notice that, in general, the tampering Ti+1 can be produced as
a function of the initial message m, therefore the simulator (which does not know m)
cannot compute the tampering function by its own, even given z. Secondly, the adversary
can efficiently produce a tampering function that keeps the same encoded message but
modifies the codeword (for example, by submitting the refreshing algorithm Rfrsh as
tampering function). The task of the tampering simulator is to detect this (outputting the
special symbol ∗), in this case the function Im forwards to A the initial message m. (We
stress that the simulator does not know the message m, so it cannot forward m directly
to A but it needs to pass by Im.)

The tamper experiment takes four parameters: the security parameter κ, the leakage
parameter `, the round parameter ρ and the tampering parameter τ . The tampering
parameter τ counts how many times the adversary can tamper with the codeword before
a refresh of the codeword is needed.

4 Construction

Let E = (Setup,Gen,Enc,Dec,UpdateC,UpdateS) be a CLRS friendly PKE with
ciphertext space CE . LetR be the NP relation defined below:

R := {(pk , sk) : pk = PK(sk), sk ∈ SK} .

Let T be a set of label transformations defined below:

T := {φ : ∃pk , sk : ∀m, r : Dec(sk , φ(Enc(pk ,m; r)) = m, pk = PK(sk)} .

Notice that bothR and T are implicitly parametrized by the public parameters pub of
the PKE scheme. Let U be the following set of label transformations:

U := {UpdateC(pk , · ; ru) : ru ∈ {0, 1}κ, pk ∈ PK} .

It is easy to check that U ⊆ T . In fact, by the correctness of PKE, there exists sk such
that P [Dec(sk ,UpdateC(pk ,Enc(pk ,m)) = m] = 1 and pk = PK(sk).

Let NIZK := (I,P,V, LEval) be a lM-NIZK argument system for the relation R
with label space CE and set of transformation T . Let Σ be the following coding scheme
with refresh in the CRS model:

– Init(1κ): Sample ω ← I(1κ) and pub ← Setup(1κ). Return crs = (ω, pub).

– Encode(crs,m): Parse crs = (ω, pub), sample (sk , pk) ← Gen(pub), compute
c ← Enc(pk ,m) and π ← Pc(ω, pk , sk). Set X0 := (pk , c, π) and X1 := sk and
return X := (X0, X1).

12

– Decode(crs, X): Parse crs = (ω, pub) and X = (X0, X1) where X1 = sk and
X0 = (pk , c, π). Check: (A) pk = PK(sk) and (B) Vc(ω, pk , π) = 1.
If both checks (A) and (B) hold then return Dec(sk , c), otherwise return ⊥.

– Rfrsh(crs, (j,Xj)):
– j = 0, parse X0 = (c, pk , π), r←$ {0, 1}κ, compute c′ := UpdateC(pk , c; r)
and π′ ← LEval (ω, UpdateC(pk , ·; r), (pk , c, π)), return X0 := (pk , c′, π′).
– j = 1, parse X1 = sk and compute sk ′ ← UpdateS(sk), return X1 := (sk ′).

Theorem 1. For any polynomial τ(κ), ifE is an `′-CLRS-Friendly PKE scheme (Def. 4)
with public key space PK and message spaceM and where `′(κ) := `(κ) + τ(κ) ·
(max(κ+ 1, log(|M|+ 2) + 1, log |PK|)) and if NIZK is an adaptive multi-theorem
zero-knowledge (Def. 1) label-malleable non-interactive argument of knowledge system
with malleable label simulation extractability (Def. 2) and label derivation privacy
(Def. 3) then the scheme above is a (`, ρ, τ)-Non-Malleable Code with Refresh for any
polynomial ρ(κ).

The leakage rate of the encoding scheme depends on the relation between the size of
the proofs of the NIZK system and the parameters of the CLRS Friendly PKE. Roughly,
setting τ be a constant, assuming the size of the secret key and the size of the ciphertext
of the PKE be approximately the same and let r = |sk |/` be the leakage ratio of the
CLRS-Friendly PKE then the leakage ratio of the coding scheme is strictly less than
r/(2 + 1/poly(κ)). This comes from the extractability property2 of the NIZK system
and the O(κ)-bits of leakage needed to support tampering attacks.

Proof. The correctness follows immediately from the correctness of the E and NIZK
and U ⊆ T . The proof of security is divided in two parts. We first define a simulator,
then we define a sequence of mental experiments starting with the initial Tamper
experiment and proceeding toward the SimTamper experiment and we prove that the
experiments are computationally indistinguishable.

The Simulator. Let S̃ be the simulator of the NIZK as postulated by Def. 1. Given an
adversary A = (A0,A1,A2) consider the following simulator S = (S0,S1,S2,S3) for
the SimTamper experiment:

Simulator S0(1κ):

– Set the variables t0, t1, l0, l1 to 0.
– Run the NIZK simulator (ω, τsim , τext)← S̃0(1κ).
– Sample (pk , sk)← Gen(pub), c← Enc(pk , 0κ) and π ← S̃1(ω, c, pk).
– Set the joint state aux to (τsim , τext , X

0, X1, t0, t1) where (X0, X1) = ((pk , c, π), (sk)).

Simulator S1(T, z):

– Parse T = (T 0, T 1) and aux as (τsim , τext , X
0, X1, t0, t1) where (X0, X1) =

((pk , c, π), (sk)).

2 We also are assuming that the NIZK system is not succinct.

13

– Compute X̃i = T i(Xi) for i ∈ {0, 1}.
– Check p̃k = PK(s̃k) and Vc̃(ω, p̃k , π̃) = 1 (check (A) and (B) of Decode),

if at least one of the checks fails then return ⊥.
– Compute (sk ′, φ, c′)← Ext(τext , c̃, p̃k , π̃):

(I) If p̃k = PK(sk ′) then output m̃ = Dec(sk ′, c̃);
(II) If φ(c′) = c̃, c′ = c and T ∈ T return ∗;

(III) Else abort.

Simulator S2(z):

– Parse aux as (τsim , τext , X
0, X1, t0, t1, l0, l1) where (X0, X1) = ((pk , c, π), (sk)).

– Upon message (i, L) where i ∈ {0, 1}, compute y ← L(Xi). If li + |y| ≤ λ then
update li := li + |y| and output y else output ⊥.

Simulator S3(j, z):

– Parse aux as (τsim , τext , X
0, X1, t0, t1, l0, l1) where (X0, X1) = ((pk , c, π), (sk));

If j 6∈ {0, 1} and t0, t1 ≤ τ set Xi+1 := Xi; Else:
– If j = 0 or (t0 > τ) then compute c′ ← UpdateC(pk , c) and π′ ← S̃1(τsim , c

′, pk)
and reset l0, t0 to 0;
– If j = 1 or (t1 > τ) then compute sk ′ ← UpdateS(sk) and reset l1, t1 to 0.

– Set aux as (τsim , τext , X
′0, X ′1, t0, t1, l0, l1) where (X ′0, X ′1) = ((pk , c′, π′), (sk ′)).

The Hybrids. We consider a sequence of mental experiments, starting with the initial
Tamper experiment which for simplicity we denote by G0. We summarize the sequence
of mental experiments in Fig 3.

Game G0. This is exactly the game defined by the experiment Tamper, where Σ is
the coding scheme described above. In particular, the Init algorithm of Σ sam-
ples a CRS ω ← I(1κ) for NIZK, a pair (pk , sk0) ← Gen(pub), encrypts
c0 ← Enc(pk ,m) and computes π0 ← Pc(ω, pk , sk). The Rfrsh∗ algorithm if
Σ upon input j = 0 samples randomness ru←$ {0, 1}κ, defines the transforma-
tion φu(·) := UpdateC(pk , · ; ru) and computes ci+i := φu(ci) and πi+1 :=
LEval(ω, φu, (pk , ci, πi)).

Game G1. We change the way the proofs πi+1 are refreshed. For each iteration i ∈
[ρ(κ)], the refresh procedure Rfrsh∗ upon input j = 0 parsesX0

i as (pk , ci, πi), sam-
ples randomness ru←$ {0, 1}κ, defines the transformation φu(·) := UpdateC(pk , · ; ru),
computes ci+1 ← φu(ci) and a fresh proof:

πi+1 ← Pci+1(ω, pk , sk i).

Finally, it sets X0
i+1 := (pk , ci+1, πi+1).

Game G2. We change the way the CRS for theNIZK and the proofs πi are computed.
Let ω, τsim , τext ← S̃0(1κ) and for i ∈ [ρ(κ)] if Rfrsh∗ is called at the i-th iteration
with input j = 0 then the proof πi+1 is computed as:

πi+1 ← S̃1(τsim , ci+1, pk).

Also the proof π0 is computed in the same way.

14

G0, G1 , G2 , G3 , G4 , G5 , G6 , G7 , G8 ,

Variables i, l0, l1, t0, t1 set to 0;

ω ← I(1κ); ω, τsim , τext ← S̃0(1κ);
pub ← E.Setup(1κ);
crs := (ω, pub);
(m, z)← A0(crs); (m0, st0) := (m, z);
pk , sk ← KGen(pub);
c0 ← Encode(pk ,m); c0 ← Encode(pk , 0κ);

π0 ← Pc(ω, pk , sk); π0 ← S̃1(τsim , c0, pk);
X0

0 := (pk , c0, π0);
X1

0 := sk0; X0 := (X0
0 , X

1
0);

forall i < ρ(κ):
(Ti+1, st i+1, j)← A1(mi, sti) � O`(Xi);
X̃i+1 := Ti+1(Xi);
(p̃k , c̃, π̃), (s̃k) = X̃i+1;
if (Vc̃(ω, p̃k , π̃) = 1 and PK(s̃k) = p̃k) then

mi+1 := Dec(s̃k , c̃);

C := {c0, . . . , ci}; C := {ci};

sk ′, φ, c′ ← Ext(τext , π̃);

if (p̃k 6= PK(sk ′)) and

(φ(c) 6= c′ or c′ 6∈ C or φ 6∈ T);

then Abort

if p̃k = PK(sk ′) then mi+1 := Im(Dec(sk ′, c̃));

if (φ(c′) = c̃, c′ ∈ C, φ ∈ T) then mi+1 := Im(∗);
else mi+1 := ⊥;
Xi+1 := Xi;

For j′ ∈ {0, 1} if (tj
′
> τ) or (j′ = j)

Xj′

i+1 ← Rfrsh(crs, (j′, Xj′

i))

Set O`(Xi).lj
′
, tj
′

to 0;
Increment t0, t1 and i;

Return A2(stρ).

Procedure Rfrsh(crs, (j,Xj
i)):

if j = 0 then:
(pk , ci, πi) = X0

i ;
ru←$ {0, 1}κ;
φu(·) := UpdateC(pk , · ; ru);
ci+1 := φu(ci);
πi+1 ← LEval(ω, φu, X

0
i);

πi+1 ← Pci+1(ω, pk , sk);

πi+1 ← S̃1(τsim , ci+1, pk);
X0
i+1 := (pk , ci+1, πi+1);

if j = 1 then;
sk i = X1

i ;
sk i+1 ← UpdateS(sk i);
X1
i+1 := (sk i+1);

Fig. 4: Games in the proof of Theorem 1. Game G0 does not execute any of the colored
actions, whereas each colored game executes all actions from the previous game plus the
ones of the corresponding color. G6 executes all actions from the previous game but it
does not execute the dash-boxed instructions. Additionally, G8 does not execute any of
the boxed instructions.

15

Game G3. We extract the witness from the proof π̃ and abort if the extraction procedure
fails. The game is the same as G2 but, for each iteration i, let X̃i+1 be the tampered
codeword where X̃i+1 = (p̃k , c̃, π̃), (s̃k). The game first checks if Vc̃(ω, p̃k , π̃) = 1
and if so then it runs:

sk ′, φ, c′ ← Ext(τext , π̃).

Let C be the set of ciphertexts produced by the game until the i-th iteration. Namely
C := {c0, . . . , ci}. If both the conditions: (i) p̃k = PK(sk ′) and (ii) φ(c′) = c̃,
c′ ∈ C and φ ∈ T do not hold then the game outputs a special symbol Abort.

Game G4. We change the output of Decode to match point (I) of the simulator S1. The
game is the same as G3 but, for each iteration i ∈ [ρ(κ)], after the extraction, if the
condition p̃k = PK(sk ′) holds, it sets the message mi+1 := Im(Dec(sk ′, c̃)).

Game G5. We change the output of Decode. The game is the same as G4 but, for each
iteration i ∈ [ρ(κ)], after the i-th extraction, if the conditions φ(c′) = c̃, c′ ∈ C,
where C = {c0, . . . , ci} and φ ∈ T hold, it sets the message mi+1 := Im(∗) (the
original message).

Game G6. We do not decode explicitly anymore. The game is the same as G5 but, for
each iteration i ∈ [ρ(κ)], in the execution of the decoding algorithm Decode, we do
not execute the instruction mi+1 := Dec(s̃k , c̃).

Game G7. We change the output of Decode to match point (II) of the simulator S1. The
game is the same as G6 but, for each iteration i ∈ [ρ(κ)], after the i-th extraction,
let the set C be redefined as the singleton containing the ciphertext produced after
the last refresh, namely C := {ci}, the game checks that the conditions φ(c′) = c̃,
c′ ∈ C (instead of c′ ∈ {c0, . . . , ci}) and φ ∈ T hold then it sets the message
mi+1 := Im(∗) (the original message).

Game G8. We replace the ciphertext c with a dummy ciphertext. The game is the same
as G7 but it sets c← Enc(pk , 0κ) (instead of c← Enc(pk ,m)).

It is easy to check that G8 is equivalent to the SimTamperA,S.

Lemma 1. For all PPT adversaries A there exists a negligible function ν0,1 : N→ [0, 1]
such that |P [G0(κ) = 1]− P [G1(κ) = 1]| ≤ ν0,1(κ).

Proof. We reduce to label derivation privacy ofNIZK via an hybrid argument. For any
l ∈ [ρ(κ) + 1], let Hybl be the hybrid experiment that executes the same code of G1

until the l-th iteration (the proofs are new) and then executes the same code of G1 (the
proofs are re-labeled). In particular, for any l, in the hybrid Hybl, for any 0 ≤ i < l
the proof πi is computed as Pci+1(σ, pk , sk) while for i ≥ l the proof πi is computed
as LEval (ω, φu, (pk , ci, πi)). Moreover, Hybρ+1 is equivalent to G1 while Hyb1 is
equivalent to G0.

Suppose there exist a PPT adversary A, an index l ∈ [ρ(κ)] and a polynomial p(·)
such that, for infinitely many values of κ ∈ N, the adversary A distinghuishes between
Hybl and Hybl+1 with probability at least 1/p(κ).

We can construct an adversary B that breaks label derivation privacy. The adversary
B with input ω ← I(1κ) runs the code of hybrid Hybl on A until the l-th iteration.
At this point B forwards to its own challenger the tuple (φu, cl−1, pk , sk , πl−1) where

16

φu(·) := UpdateC(pk , · ; ru) with ru←$ {0, 1}κ, and receives back the proof π′. Notice
that cl := φu(cl−1).

If the challenge bit is b = 0 then π′ ← Pcl(ω, pk , sk), and therefore B perfectly sim-
ulates Hybl+1 otherwise if b = 1 then π′ ← LEval(ω, φu, (pk , cl−1, πl−1)), therefore
B perfectly simulates Hybl. Therefore B can break label derivation privacy of NIZK
with advantage 1/p(κ).

Lemma 2. For all PPT adversaries A there exists a negligible function ν1,2 : N→ [0, 1]
such that |P [G1(κ) = 1]− P [G2(κ) = 1]| ≤ ν1,2(κ).

Proof. We reduce to adaptive multi-theorem zero-knowledge of NIZK.
Suppose there exist a PPT adversary A and a polynomial p such that, for infinitely

many values of κ ∈ N, |P [G1(κ) = 1]− P [G2(κ) = 1]| ≥ 1/p(κ). Let B be a PPT
adversary for the multi-theorem zero-knowledge game that runs the same code of G2 but
for any i, instead of computing the proof πi, forwards to its oracle the query (ci, pk , sk).

The view provided by B to A is equivalent to G2 if B’s oracle is P and equivalent to
G3 if B’s oracle is SIM(τsim , ·). Therefore B can break multi-theorem zero-knowledge
of NIZK with advantage 1/p(κ).

Lemma 3. For all PPT adversaries A there exists a negligible function ν2,3 : N→ [0, 1]
such that |P [G2(κ) = 1]− P [G3(κ) = 1]| ≤ ν2,3(κ).

Proof. We reduce to the T -Malleable label simulation extractability of NIZK. Let
Abort be the event that the game G3 aborts with message Abort. Notice that the two
games proceed exactly the same until the event Abort happens. Therefore, we have

|P [G2(κ) = 1]− P [G3(κ) = 1]| ≤ P [Abort].

Suppose there exist a PPT adversary A and a polynomial p such that, for infinitely many
values of κ ∈ N, P [Abort] ≥ 1/p(κ), where the probability is over the game G3 with
adversary A.

Let B be a PPT adversary for the malleable label simulation extractability that runs
the same code of G3 but for any i, instead of computing the proof πi, forwards to its
oracle the query (ci, pk) and, if the event during the i-th iteration the message Abort is
raised, outputs the value X̃0

i+1 = (p̃k , c̃, π̃). Notice, that the message Abort is raised
only if the winning condition of the malleable label simulation extractability experiment
are met. Therefore the winning probability of B is the probability of the event Abort in
G3.

Lemma 4. P [G3(κ) = 1] = P [G4(κ) = 1].

Proof. Notice that the two games proceed the same until PK(s̃k) = PK(sk ′) but
Dec(s̃k , c̃) 6= Dec(sk ′, c̃). Let WrongDec be such event. Then we have

|P [G3(κ) = 1]− P [G4(κ) = 1]| ≤ P [WrongDec].

By the correctness of E we have that the event WrongDec has probability 0.

Lemma 5. P [G4(κ) = 1] = P [G5(κ) = 1].

17

Proof. Notice that two games proceed the same until φ(ci) = c̃ and φ ∈ T but
Dec(sk ′, c̃) 6= m (the original message). Let NotSame be such event. Therefore, we
have

|P [G3(κ) = 1]− P [G4(κ) = 1]| ≤ P [NotSame].

The definition of the set T and φ ∈ T together with the fact that ci is an encryption
of m under pk and φ(ci) = c̃ imply that Dec(sk ′, c̃) = m. In fact φ ∈ T implies that
Dec(sk , φ(c)) decrypts correctly if c is a valid ciphertext under pk and pk = PK(sk).
Therefore, we have that the event NotSame has probability 0.

Lemma 6. P [G5(κ) = 1] = P [G6(κ) = 1].

Proof. G6 does not execute the instruction mi+1 := Dec(s̃k , c̃), however notice that
already in game G5 either the value mi+1 is overwritten or the game outputs Abort.
So the two game are semantically the same.

Lemma 7. For all PPT adversaries A there exists a negligible function ν6,7 : N→ [0, 1]
such that |P [G6(κ) = 1]− P [G7(κ) = 1]| ≤ ν6,7(κ).

Proof. We reduce to the CLRS security of E via an hybrid argument. For l ∈ [ρ(κ)]
let Hybl be an hybrid experiment that executes the code of G6 until the (l − 1)-th
iteration and, after that, executes the code of G7. Specifically, for every i < l the hybrid
Hybl, at the i-th iteration, runs the extractor and checks if the conditions T ′(c) = c̃,
c′ ∈ {c0, . . . , ci} and T ∈ T hold, and, if yes, it sets mi+1 := m. For every i ≥ l
the hybrid Hybl, at the i-th iteration, runs the extractor and checks if the conditions
T ′(c) = c̃, c′ = ci and T ∈ T hold, and, if yes, it sets mi+1 := m. In particular, Hyb0

is equivalent to G7 while Hybρ is equivalent to G8.
Given an adversary A and an index k ∈ [l − 1] define the event OldCTk over the

random experiment Hybl to hold if A at the l-th iteration outputs a tampering function
Tl such that Tl(X0

l) = (p̃k , c̃, π̃) and, let (⊥, T ′, c′)← Ext(τext , c̃, π̃), then c′ = ck.
Let OldCT be the event {∃k ∈ [l − 1] : OldCTk}. It is easy to check that∣∣P [Hybl = 1]− P

[
Hybl+1 = 1

]∣∣ ≤ P [OldCT].

In fact, if the event OldCT does not happen in Hybl then the condition c′ = cl holds,
therefore the two hybrids behave exactly the same.

Suppose there exist an adversary A and a polynomial p(·) such that, for infinitely
many values of κ ∈ N, the adversary A distinguishes between game G6 and G7 with
probability at least 1/p(κ). Then P [OldCT] ≥ 1/p(κ).

We build a PPT adversary B that breaks CLRS Friendly PKE Security of E. LetH a
family of 2-wise independent hash functions with domain CE and co-domain {0, 1}κ.
We introduce some useful notation in Fig. 5. A formal description of B follows:

Adversary B:
1. Receive pub, pk from the challenger of the CLRS security experiment and

get oracle access to O`(state).
2. Set variables i, t0, t1 to 0 (as in the Tamper experiment).
3. Run ω, τsim , τext ← S̃0(1κ), set crs := (pub, ω) and send crs to A0.

18

4. Let m, z be the output from A0, let m′ be a valid plaintext for E such that
the first bit of m′ differs from the first bit of m and |m′| = |m|. Send the
tuple m,m′ to the challenger. Set st0 := z.

5. For i = 0 to (l − 1) execute the following loop:
(a) Sample ri←$ {0, 1}κ and run the adversary A1(mi, sti), upon query

(j, L) from A1, if j = 1 forward the same query to the leakage oracle,
if j = 0 forward the query (0,LL,ri,pk) to the leakage oracle.

(b) Eventually, the adversary A1 outputs (Ti+1, st i+1, j).
(c) Forward the query (1,PK(T 1

i+1(·))) to the leakage oracle and let pk ′ be
the answer. Forward the query (0,VT 0

i+1,ri,pk ,pk
′) to the leakage oracle

and let a be the answer, if a = 0 then set mi+1 := ⊥ and continue to
the next cycle.

(d) Otherwise, forward the query (0,MTi+1,ri,pk) and letm′ be the answer,
if m′ is Abort∗ then abort, otherwise set mi+1 := m′. Execute the
refresh algorithm Rfrsh∗(j) as defined by G6. (In particular, use the
trapdoor τsim to sample πi+1 ← S̃1(τsim , ci+1, pk).)

6. Sample H ←$H and rl←$ {0, 1}κ and run the adversary A1 on input
(ml−1, st l−1) and reply to the leakage oracle queries as in step (5a). Even-
tually, the adversary A1 outputs (Tl, st l, j) forward the leakage query
(0,HTl,rl,pk ,H), let h be the answer of the leakage oracle.

7. Set x to be the empty string. For i := 1 to η, where η := 2p2(κ) + 2p(κ)|c|,
execute the following:
(a) Sample rl+i←$ {0, 1}κ and run the adversary A1 on input (ml−1, st l−1)

and reply to the leakage oracle queries as in step (5a).
(b) Eventually the adversary A1 outputs (Tl, st l, j), forward the query

(0,HTl,r,pk ,x) to the leakage oracle, let a the answer, if a 6= ⊥ set
x := x‖a.

(c) Call the oracle Update(0) and increase the counter i.
8. If |x| < |c| then sample b′←$ {0, 1} and output b′. Otherwise, query the

leakage oracle with (1, (Dec(·, x))(0)) and let a be the answer. If a = m(0)

output 0 else output 1.

We compute the amount of leakage performed by B. For any executions of the loop in
step (5) the adversary B forwards all the leakage queries made by A and, additionally:

– In step (5c) leaks log |PK| bits from the secret key and 1 bit from the ciphertext;
– In step (5d) leaks log(|M| + 2) bits from the ciphertext (the output is either a

message or ∗ or Abort);

Notice that τ many of the leakage queries described above are allowed before an
invocation of Update is forced. Moreover, in step (6) the adversary B leaks κ bit from
the ciphertext and for any executions of the loop in step (7) leaks 1 bit from the ciphertext
and then it calls the Update algorithm.

Let `A the maximum amount of leakage between each invocation of the Rfrsh∗

algorithm done by A, then the amount of leakage done by B is:

`′ = `A + τ · (max(κ+ 1, log(|M|+ 2) + 1, log |PK|))

19

– LL,r,pk (c):

Return L(pk , c, S1(τsim , c, pk ; r)).

– VT,r,pk,pk′(c):

(p̃k , c̃, π̃) := T (pk , c, S1(τsim , c, pk ; r));
Output (Vc̃(ω, p̃k , π̃) = 1 ∧ p̃k = pk ′).

– MT,r,pk (c):

(p̃k , c̃, π̃) := T (pk , c, S1(τsim , c, pk ; r));
sk ′, T ′, c′ ← Ext(τext , π̃);
if p̃k = PK(sk ′) output Dec(sk ′, c̃);
if (T ′(c) = c′, c′ ∈ C, T ′ ∈ T) output ∗;
Output Abort∗.

– HT,r,pk,H(c):

(p̃k , c̃, π̃) := T (pk , c, S1(τsim , c, pk ; r));
sk ′, T ′, c′ ← Ext(τext , π̃);
If (c′ /∈ {c,⊥}) output H(c).
else output ⊥.

– CT,r,pk,H,x,h(c):

(p̃k , c̃, π̃) := T (pk , c, S1(τsim , c, pk ; r));
sk ′, T ′, c′ ← Ext(τext , π̃);
if (T ′(c) 6= c′ or T ′ 6∈ T) then output ⊥;
if h = H(c) then

if |x| < |c| then output (c(|x|+1)),
else output the empty string.

Fig. 5: Leakage functions on the ciphertext of E.

We compute the winning probability of B. Let c0, . . . , cl+η be the set of ciphertexts
produced (either by Enc, in the case of c0, or by the UpdateC procedure otherwise)
during the CLRS Security Experiment with B. Consider the following events and random
variables:

– Let Collision be the event {∃i, j ≤ [l + η] : i 6= j ∧H(ci) = H(cj)};
– Let Hit be the event that {∃k < l : h = H(ck)}, where h is the output of the leakage

query (0,HTl,rl,pk ,H) (see step 6).
– Let Hiti be the random variable equal to 1 if the condition (h = H(c)) in the i-th

execution of the leakage query (0,HTl,rl+i,pk ,x) (see step 7) holds, 0 otherwise.
– Let Complete be the event |x| = |c|.

It is easy to check that if (¬Collision ∧ Hit ∧ Complete) holds then, at step (8), there
exist a positive index k < l such that (x = ck) holds. Therefore conditioned on the
conjunction of the events the adversary B wins3 with probability 1.

Claim. P [Collision] ≤ (η + l)2 · 2−κ.

Proof. Recall that H is 2-wise independent, therefore for any fixed x, y ∈ CE such that
x 6= y, P [H(x) = H(y)] = 2−κ, where the probability is taken over the sampling of
H . Moreover, the ciphertexts ci for i ∈ [l + η] are sampled independently of the choice
of H , therefore given two indices i, j where i 6= j, by averaging over all the possible
assignment of ci, cj we have that P [H(ci) = H(cj)] = 2−κ. By union bound we get
the claim.

Claim. P [Hit | b = 0] = P [OldCT].

3 Notice we assume perfect correctness of E.

20

Proof. In fact, the adversary B (on challenge the ciphertext Enc(pk ,m)) follows the
code of Hybl until step 6. In particular, B has only oracle access to the ciphertext and
the secret key (as prescribed by the CLRS Security experiment), while the hybrid Hybl
has full access to them. However, the adversary B can perform the same operations
via its own leakage oracle access. Therefore, in the execution of the leakage query
(0,HTl,rl,pk ,H) at step (6), the event c′ = ck where sk ′, T ′, c′ ← Ext(τext , p̃k) holds
with the same probability of the event OldCT in the hybrid Hybl.

Claim. P [Complete] ≤ 2−2κ+1.

Proof. Let ϕ be the variable that denotes all the randomness used (including the chal-
lenger randomness) in the CLRS experiment between the challenger and the adversary
B just before the execution of the step 7. Let Good the event that {P [Hit] ≥ 1/2p(κ)}.
By a Markov argument the probability P [ϕ ∈ Good] is at least 1/2. We can condition
on the event Good.

We analyze the random variables {Hiti}i∈[η]. Fixing the choice of the randomness ϕ,
for any i, the random variable Hiti depends only on rl+i and on the output of UpdateC
at the (l + i)-th invocation. Notice that the adversary B at each iteration of step 7
samples a fresh rl+i, moreover by the perfectly ciphertext-update privacy (see Def. 5)
of E, for any j 6= i the ciphertext ci and cj are independent (in fact, for any k the
distribution of ck+1 does not depend on the value of ck). Therefore, the random variables
{Hiti}i∈[η] for any assignment of ϕ are independent. Let Z :=

∑
j∈[η] Hitj , we have

that E [Z |Good] ≥ η/2p(κ).

P [¬Complete |Good] =

P [Z < |c| |Good] = P [Z < E [Z |Good]− (E [Z |Good]− |c|) |Good] =

P [Z < E [Z |Good]− p(κ) · κ |Good] ≤ 2−2κ

Where, in the last step of the above disequations, we used the Chernoff bound.

Let Guess := (¬Hit ∨ ¬Complete), namely the event that triggers B to guess the
challenge bit at random. Obviously, for any a ∈ {0, 1}, P [b′ = b | Guess, b = a] = 1

2 .
For any a ∈ {0, 1} and infinitely many κ:

P[b′ = b] ≥
≥ 1

2P [Guess] + P [b′ = b ∧ Hit ∧ Complete]

≥ 1
2P [Guess] + P [¬Collision ∧ Hit ∧ Complete] (1)

≥ 1
2P [Guess] + (P [Hit]− P [¬Complete]− P [Collision])

≥ 1
2P [Guess] + P [Hit]− 2−2κ+1 − (η + l)2 · 2−κ

≥
(

1
2 −

1
2P [Hit]

)
+ P [Hit]− 2−2κ+1 − (η + l)2 · 2−κ (2)

≥ 1
2 + 1

4 · (P [OldCT] + P [Hit | b = 1])− ((η + l)2 + 1) · 2−κ.

Where Eq. (1) follows because P [b′ = b | ¬Collision ∧ Hit ∧ Complete] = 1 and Eq. (2)
follows because P [Guess] ≥ 1− P [Hit].

21

Lemma 8. For all PPT adversaries A there exists a negligible function ν7,8 : N→ [0, 1]
such that |P [G7(κ) = 1]− P [G8(κ) = 1]| ≤ ν7,8(κ).

Proof. We reduce to the CLRS Friendly PKE Security of E.
By contradiction, assume that there exists a PPT an adversary and a polynomial p(·)

such that for infinitely many values of κ ∈ N, we have that A distinguishes between
game G7 and game G8 with probability at least 1/p(κ). We build a PPT adversary B
that breaks CLRS Friendly PKE Security of E. The adversary B follows the points (1)
to (5) of the adversary defined in Lemma 7 with the following modifications: (i) The
adversary B runs internally D; (ii) The messages for the challenge arem and 0κ; (iii) The
cycle in step (5) runs for i = 0 to ρ(κ); (iv) The adversary B eventually outputs the same
output bit as A. Let `A the maximum amount of leakage between each invocation of the
Rfrsh∗ algorithm done by A, then the amount of leakage done by B is:

`′ = `A + τ · (max(log(|M|+ 2) + 1, log |PK|))

A formal description of B follows.

Adversary B:
1. Receive pub, pk from the challenger of the CLRS security experiment and

get oracle access to O`(state).
2. Set variables i, flg, l0, l1, t0, t1 to 0 (as in the Tamper experiment).
3. Run ω, τsim , τext ← S̃0(1κ), set crs := (pub, ω) and send crs to A0.
4. Let m, z be the output from A0. Send (m, 0κ) to the challenger and set

st0 := z.
5. For i = 0 to ρ(κ) execute the following loop:

(a) Sample ri←$ {0, 1}κ and run the adversary A1(mi, sti), upon query
(j, L) from A1, if j = 1 forward the same query to the leakage oracle,
if j = 0 forward the query (0,LL,ri,pk) to the leakage oracle.

(b) Eventually, the adversary A1 outputs (Ti+1, st i+1, j).
(c) Forward the query (1,PK(T 1

i+1(·))) to the leakage oracle and let pk ′ be
the answer. Forward the query (0,VT 0

i+1,ri,pk ,pk
′) to the leakage oracle

and let a be the answer, if a = 0 then set mi+1 := ⊥ and continue to
the next cycle.

(d) Otherwise, forward the query (0,MTi,ri,pk) and let m′ be the answer,
if m′ is Abort∗ then abort, otherwise set mi+1 := m′.

(e) Execute the refresh algorithm Rfrsh∗(j) as defined by G6. (In particu-
lar, use the trapdoor τsim to sample πi+1 ← S̃1(τsim , ci+1, pk).)

6. Output A2(stρ).

The view provided by B to A is equivalent to G7 if the challenge bit b of the PKE
Friendly Security experiment is 0. (This because the encrypted message ism.) Otherwise
the view is equivalent to G8.

Wrapping up all together we have that:∣∣P [G0 = 1]−P [G8 = 1]
∣∣

≤
∑
i∈[7]

|P [Gi = 1]− P [Gi+1 = 1]| ≤
∑
i∈[7]

νi,i+1 ≤ negl(κ).

22

5 Concrete Instantiations

For a group G of prime order q and a generator g of G, we denote by [a]g := ga ∈
G the implicit representation of an element a ∈ Zq. Let G be a PPT pairing gen-
eration algorithm that upon input the security parameter 1κ outputs a tuple gd =
(G1,G2,GT , q, g, h, e) where the first three elements are the description of groups
of prime order q > 2κ, g (resp. h) is a generator for the group G1 (resp. G2) and e is
an efficiently computable non-degenerate pairing function from G1 × G2 → GT . In
what follow, we indicate vectors with bold chars and matrices with capital bold chars,
all vectors are row vectors, given a group G, two matrices X ∈ Gn×m,Y ∈ Gm×t for
n,m, t ≥ 1 and an element a ∈ G we denote with X · Y the matrix product of X and
Y and with a ·X the scalar multiplication of X by a. Given two elements [a]g ∈ G1 and
[b]h ∈ G2 we denote with [a]g • [b]h = [a · b]e(g,h) the value e([a]g, [b]h), the notation is
extended to vectors and matrices in the natural way. Given a field F and natural numbers
n,m, j ∈ N where j ≤ min(n,m) we define Rkj(Fn×m to be the set of matrices in
Fn×m with rows rank j; given a matrix B we let Rank(B) be the rank of B.

Definition 7. The k-rank hiding assumption for a pairing generation algorithm pub :=
(G1,G2,GT , q, g1, g2, e)←$ G(1κ) states that for any i ∈ {1, 2} and for any k ≤
j, j′ ≤ min(n,m) the tuple (gi, [B]gi) and the tuple (gi, [B

′]gi) for random B←$ Rkj
and B′←$ Rkj′ are computational indistinghuishable.

The k-rank hiding assumption was introduced by Naor and Segev in [36] where the
authors showed to be implied by the more common k-linear (DLIN) assumption. The
assumption gets weaker as k increases. In fact for k = 1 this assumption is equivalent
to DDH assumption. Unfortunately, it is known that DDH cannot hold in symmetric
pairings where G1 = G2. However, it is reasonable to assume that DDH holds in
asymmetric pairings. This assumption is often called external Diffie-Hellman assumption
(SXDH) (see [4,9]).

5.1 The Encryption Scheme.

We consider a a slight variation of the the CLRS Friendly PKE scheme of [18]. Con-
sider the following PKE scheme E = (Setup,Gen,Enc,Dec,UpdateC,UpdateS) with
message spaceM := {0, 1} and parameters n,m, d ∈ N.

– Setup(1κ): Sample gd ← G(1κ) and vectors p,w←$ Zmq such that p · wT = 0
mod q. Return pub := (gd, [p]g, [w]h). (Recall that all algorithms implicitly take
pub as input.)

– Gen(pub): Sample t←$ Zmq , r←$ Znq and compute sk := [rT ·w + 1Tn · t]h, set
α := p · tT and compute pk := [α]g. The latter can be computed given only
[p]g ∈ Gm1 and t ∈ Zmq . Return (pk , sk).

– Enc(pk , b): Sample u←$ Znq and compute c1 := [uT · p]g and c2 := [αu + b1n]g .
Return C := (c1, c2).

23

– Dec(sk , C): Let f = e(g, h), parse sk = [S]h ∈ Gn×m2 , let S1 be the first row
of S and parse C = ([C]g, [c]g) ∈

(
Gn×m1 ×Gn1

)
. Compute b := [c−C · ST1]f

and output 1 if and only if b = [1n]f . In particular, [b]f can be computed by first
computing [c]f := e([c]g, h) and then [C · ST1]f :=

∏
i e(C[i],S[i]).

– UpdateC(pk , C): Parse C = ([C]g, [c]g) ∈
(
Gn×m1 ×Gn1

)
. Sample B←$ Zn×nq

such that B · 1Tn = 1n and the rank of B is d. Return ([B ·C], [B · cT]).
– UpdateS(sk): Parse sk = [S]h ∈ Gn×m2 . Sample A←$ Zn×nq such that A · 1Tn =
1n and the rank of A is d. Return [A · S]h.

Some remarks are in order. First, the main difference between the scheme above and
the PKE of [18] is in the public-keys and in the ciphertexts spaces. Let EDLWW be the
scheme proposed by [18]. A public key for EDLWW is the target group element [p · tT]f ,
while in the scheme above, a public key belongs to the group G1. Similarly, a ciphertext
for EDLWW is a tuple (c1, c2) where c2 ∈ GnT . The message space of EDLWW is GT ,
while the message space of the scheme above is {0, 1}. This is a big disadvantage,
however, thanks to this modification, the public keys, secret keys and ciphertexts belong
either to G1 or G2. As we will see, this modification is necessary to use lM-NIZK based
on Groth-Sahai proof systems [29].

Second, we cannot directly derive from the secret key the public key. However, we
can define the function PK′ that upon input sk = [S]h produces pk ′ = [p]g • [S1]h,
where S1 is the first row of S. Notice that the NMCΣ and the simulator S1 of Theorem 1
need to check if the public key stored in one side is valid for the secret key stored in the
other side. We can fix4 this issue by checking the condition e(pk , h) = PK′(sk) instead.

Theorem 2. For any m ≥ 6,n ≥ 3m − 6,d := n − m + 3 the above scheme is an
`-CLRS-friendly encryption scheme under the External Diffie-Hellman Assumption on G
for ` = min{m/6− 1, n− 3m+ 6} · log(q)− ω(log κ).

The proof of security follows the same line of [18]. We give the details in Appendix A.
The PKE scheme E is perfectly ciphertext-update private. We defer the formal proof to
Appendix A .

Unfortunately, the message space of the PKE is {0, 1} which limits the number of
applications of NMC-R. We propose two different way to overcome this weakness.

Direct Product Encryption. For any k ∈ N let E×k = (Setup,Gen,Enc×k,Dec×k)
where Enc×k(pk ,m1, . . . ,mk) := (Enc(pk ,m1),Enc(pk ,m2), . . . ,Enc(pk ,mk)) and
Dec×k performs the obvious decryption.

Lemma 9. For any polynomial k(κ), if E is a `-CLRS-Friendly secure PKE then E×k

is a `-CLRS-Friendly secure PKE.

The proof of the Lemma follows by a simply hybrid arguments . We defer the proof in
Appendix A. The main disadvantage is that while the size of the ciphertexts of E×k gets
bigger the amount of leakage (on the ciphertext) allowed does not grow proportionally.

4 In particular, the reduction in Lemma 7 in steps 5c can leak (1,PK′(Ti+1(·))) and then, in step
5d, we need to modify the function VT0

i+1,ri,pk,pk
′ to check if e(p̃k , h) = pk ′ and the function

MTi+1,ri,pk to check if e(p̃k , h) = PK′(sk ′).

24

CLRS-Friendly Key Encapsulation Mechanisms. Let pub ← Setup(1κ) and pk , sk ←
Gen(pub) as defined in Sec. 5.1 and let H be an efficiently computable mapping from
GT to {0, 1}κ such that the random variable H(U) for U ←$ GT is statistically close to
the uniform distribution over {0, 1}κ. Consider the following procedures:

– Enc′(pk): Sample u←$ Znq and z←$ Zq and compute c1 := [uT · p]g and c2 :=
[αu + z1n]g . Return C := (c1, c2) and K := H([z]e(g,h)).

– Dec′(sk , C): Let f = e(g, h), parse sk = [S]h ∈ Gn×m2 , let S1 be the first row of
S and parse C = ([C]g, [c]g) ∈

(
Gn×m1 ×Gn1

)
. Compute [z]f := [c−C · ST1]f

and output H([z]f) if only if v = [z · 1n]f . In particular, [z]f can be computed by
first computing [c]f := e([c]g, h) and then [C · ST1]f :=

∏
i e(C[i],S[i]).

In Appendix C we define CLRS-Friendly Key Encapsulation Mechanism (KEM) schemes
and Non-Malleable Key-Encoding schemes with Refresh (NMKE-R), we show that the
construction in Sec. 4 yields a Non-Malleable Key-Encoding scheme with Refresh when
instantiated with a CLRS-Friendly KEM, we show that the scheme (Setup,Gen,Enc′,
Dec′,UpdateC,UpdateS) is a CLRS-Friendly KEM and we provide a Continual-Tamper-
and-Leakage Resilient Compiler for the class of keyed-but-stateless cryptographic func-
tionalities.

5.2 The Label-Malleable NIZK.

We can cast a lM-NIZK as a special case of the Controlled-Malleable NIZK (cM-NIZK)
argument of knowledge systems [10]. Roughly speaking, cM-NIZK systems allow
malleability (from a specific set of allowable transformation) both on the instance and
on the NIZK proof. Similarly to lM-NIZK AoK systems, cM-NIZK systems have a
form of simulation sound extractability called Controlled-Malleable Simulation Sound
Extractability (cM-SSE). Informally, the extractor will either extract a valid witness or
will track back to a tuple formed by an instance queried to the simulation oracle and the
associated simulated proof. We provides the formal definitions of cM-NIZK along with
a generic transformation to lM-NIZK in Appendix B.

The elegant framework of [10] (full version [11]) builds on the malleability of Groth-
Sahai proof systems [29] and provides a set of sufficient conditions to have efficient
cM-NIZK systems. Here we translate the conditions to the setting of lM-NIZK systems.

Definition 8. For a relationR and a set of transformations T on the set of labels L, we
say (R, T) is LM-friendly if the following five properties hold:

1. Representable statements and labels: any instance and witness ofR can be rep-
resented as a set of group elements; i.e., there are efficiently computable bijections
Fs : LR → Gdsis for some ds and is, Fw : WR → Gdwid for some dw and iw where
LR := {x|∃w : (x,w) ∈ R} and LR := {w|∃x : (x,w) ∈ R} and Fl : L → Gdlil
for some dl and il = is.

2. Representable transformations: any transformation in T can be represented as a
set of group elements; i.e., there is an efficiently computable bijection Ft : T → Gdtit
for some dt and some it.

25

3. Provable statements: we can prove the statement (x,w) ∈ R (using the above
representation for x and w) using pairing product equations; i.e., there is a pairing
product statement that is satisfied by Fs(x) and Fw(w) iff (x,w) ∈ R.

4. Provable transformations: we can prove the statement “φ(L′) = L ∧ φ ∈ T ”
(using the above representations for labels L,L′ and transformation φ) using a
pairing product equation, i.e. there is a pairing product statement that is satisfied by
Ft(φ), Fl(L), Fl(L

′) iff T ∈ T ∧ φ(L′) = L.
5. Transformable transformations: for any φ, φ′ ∈ T there is a valid transformation
t(φ) that takes the statement “φ(L′) = L ∧ φ ∈ T ” (phrased using pairing
products as above) for the statement “(φ′ ◦ φ)(L′) = φ(L) ∧ (φ′ ◦ φ) ∈ T ” and
that preserves5 the label L′.

The definition above is almost verbatim from [11], the only differences are that the point
(1) is extended to support labels and that the original definition has a condition on the
malleability of the tuple statement/witness (which trivially holds for lM-NIZK). We
adapt a theorem of [11] to the case of Label Malleability:

Theorem 3. If the DLIN assumption holds then we can construct a lM-NIZK that
satisfies derivation privacy for any LM-friendly relation and transformation set (R, T).

With this powerful tool in our hand, we are now ready to show that there exists a
lM-NIZK for the relation and transformation set (Rpub , Tpub) defined above:

Rpub = {([α]g, [S]h) : [α]g = [p · ST1]g},
Tpub =

{
φB(C, c) :=

(
[B ·CT]g, [B · cT]g

)
: 1 = B · 1T

}
.

where pub = (gd, [p]g, [w]h) ← Setup(1κ). Notice that the set of all the possible
updates of a ciphertext,{

φ : φ(·) = UpdateC(pub, pk , · ;B),B ∈ Zn×nq ,1n = B · 1Tn , rank(B) = d
}
,

is a subset of Tpub . Therefore, we can apply the generic transformation of Sec. 4 given
a lM-NIZK for the relation Rpub and the set of transformations Tpub and the CLRS-
Friendly PKE defined above. We show that the tuple (Rpub , Tpub) is LM-Friendly.

Representable statements and labels: Notice that LRpub
⊆ G1, while the set of valid

label is the set Gn×m1 ×Gn1 .
Representable transformations: We can describe a transformation φB ∈ Tpub as a

matrix of elements [B]h ∈ Gn×n2 .
Provable statements: The relation Rpub can be represented by the pairing product

statement [α]g • [1]h = [p] • [ST1]h.
Provable transformations: Given a transformation φB ∈ Tpub and labels c = ([C]g, [c]g), c

′ =
([C ′]g, [c

′]g), the statement “φB(c′) = c ∧ φB ∈ T ” is transformed as the system
of pairing product statements: [B]h • [C ′T]g = [C]g • [1]h

[B]h • [c′T]g = [c]g • [1]h
[B]h • [1T]g = [1]f

(3)

5 For sake of readability, we defer the technical definition of “preserve” in Appendix B. Informally,
it means that the variables associated to L′ are not deleted from the pairing product equations.

26

Transformable transformations: Let φB, c, c′ be as before and let φB′ ∈ Tpub . We
show that we can transform the system in Eq. (3) to be a valid system of pairing
product statement for the statement (φB′ ◦ φB)(c′) = φB′(c) ∧ (φB′ ◦ φB) ∈ T .
Given the system of pairing product equations in Eq. (3) and B′ ∈ Zn×nq we can
perform operations at the exponent and derive: [B′ ·B]h • [C ′T]g = [B′ ·CT]g • [1]h

[B′ ·B]h • [c′T]g = [B′ · cT]g • [1]h
[B′ ·B]h • [1T]g = [1]f

The Set T ×k
pub of Transformations for E×k. For any k ∈ N, let the PKE scheme E×k

be defined as in Sec. 5.1, let CE×k = (CE)k be the ciphertexts space of E×k and let
T ×kpub = (Tpub)k. Explicitly, the set of transformations is defined as:

T ×kpub =

φB̄ :
φB̄(c̄) =

(
[Bi ·CiT]g, [B

i · ciT]g : i ∈ [k]
)
,

c̄ = (C1, c1), . . . , (Ck, ck),
B̄ = B1, . . . ,Bk, ∀i ∈ [k] : 1 = Bi · 1T


For any positive polynomial k(κ), the tuple (Rpub , T ×kpub) is LM-Friendly. The result

follows straight forward from the framework presented in Sec. B.3 of [11] where it
is shown that the for any pair of transformations on statements over pairing product
equations we can derive a new transformation for the conjunction of the statements.

6 Applications

Following the same approach of [22,33] we show a compiler that maps any functionality
G(s, ·) to a Continually-Leakage-and-Tamper Resilient functionality G′(s′, ·) equipped
with refresh procedure Rfrsh. Consider the experiments in Fig. 6.

Definition 9. A compiler Φ = (Setup,FCompile,MCompile,Rfrsh) is a Split-State
(`, ρ, τ)-Continually-Leakage-and-Tamper (for short (`, ρ, τ)-CLT) Compiler in the CRS
model if for every PPT adversary A there exists a simulator S such that for every efficient
functionality G : {0, 1}κ × {0, 1}i → {0, 1}o for κ, i, o ∈ N and any secret state
s ∈ {0, 1}κ, the output of the real experiment TamperFunc

(G,s)
A,Φ (κ, `, ρ, τ) and the

output of the simulated experiment IdealFunc(κ) are indistinghuishable.

Given a NMC-RΣ, consider the following compilerΠ = (Setup,MCompile,Enc,FCompile,Rfrsh):

– Setup(1κ): Output crs ←$Σ.Init(1κ);
– MCompile(crs, s): Output s′←$Σ.Enc(crs, s);
– FCompile(crs, G): Output G′(s′, x) := G(Σ.Dec(crs, s′));
– Rfrsh(crs, s′): Output Σ.Rfrsh(crs, s′).

Theorem 4. Let Σ be a (`, ρ, τ)-Non-Malleable Code with Refresh then Π as defined
above is a Split-State (`, ρ, τ)-CTL Compiler in the CRS model.

27

Experiment IdealFunc(G,s)S (κ):
Variables Q̄ set to ∅;
(crs,Q′, st)←$ S(1κ, G) � Ē(G, s);
Return (crs, Q̄ ∪ Q′, st).

Experiment TamperFunc
(G,s)
A,Φ (κ, `, ρ, τ):

Variables i, k, t0, t1, st0 set to 0 andQ := ∅;
Variables s′j′ := ⊥ for j′ ∈ [τ · ρ];
crs ←$ Setup(1κ);
s′0←$ MCompile(crs, s);
G′←$ FCompile(crs, G);
forall i < ρ(κ):

(st i+1, T, j)← A(crs, st i) � O`(s′i), E(G′);
s′k+1 := T (s′0);
If j ∈ {0, 1} then Rfrsh∗(j),
else s′i+1 := s′i;
For j′ ∈ {0, 1} if (tj

′
> τ)

then Rfrsh∗(j′);
Increment k, t0, t1 and i;

Return (crs,Q, stρ).

Oracle Ē(G, s):
Upon message x;
Compute y ← G(s, x);
Q̄ := Q̄ ∪ {(x, y)};
Return y.

Oracle E(G′):
Upon message (t, x);
If t 6∈ [ρ · τ] Return ⊥
Else y ← G′(s′t, x);
Q := Q∪ {(x, y)};
Return y.

Procedure Rfrsh∗(j):
Set O`(Xi).lj , tj to 0;
Increment t1−j ;
s′1−ji+1 := s′1−ji ;
s′ji+1←$ Rfrsh(crs, (j, s′ji))

Fig. 6: Experiment defining the security of CLT Resilient Compiler.

Proof. Given a PPT adversary A, let S′ = (S′0,S
′
1,S
′
2,S
′
3) be the simulator provided by

the (`, ρ, τ)-Non-Malleability of Σ. Consider the following simulator with oracle access
to Ē(G, s).

Simulator S0(1κ):

1. Let crs, aux ←$ S′0(1κ), set the state st0 := 1κ and set the variable j, t0, t1 to 0.
Set the variable s′j′ := ⊥ for any j′ ∈ [τ · ρ];
Set the state of the simulators S′1,S

′
2,S
′
3 to aux .

2. For i = 0 to ρ(κ) execute the following loop:
Run the adversary A on input crs and the state st i and the simulator S′2. Upon query
from A reply as follow:
– A sends a query (i′, L) to O`(s′i). Forward the query to S′2.
– A sends a query (t, x) to E(G′). If t 6∈ [ρ · τ] return ⊥ else if st = ∗ or t = 0
then query the oracle Ē(G, s) with message x and return what the oracle returns,
otherwise compute y ← G(st, x) set Q′ := Q′ ∪ {(x, y)} and return y.

Eventually, A outputs a state st i+1, a tampering function Ti+1 and an index j. Run
s̃←$ S′1(Ti+1) and set sk := s̃; Run the the refresh simulator S′3(j) and increment
k.

3. Output (crs,Q′, stρ)

Assume there are a distinghuisher D, a cryptographic functionality (G, s) and a poly-
nomial p such that for infinitely many κ the following equation is lower bounded by

28

1/p(κ):∣∣∣P [D(TamperFunc
(G,s)
A,Φ (κ, `, ρ, τ)) = 1

]
− P

[
D(IdealFunc

(G,s)
S (κ)) = 1

]∣∣∣ .
We describe a PPT adversary B for the NMC-R such that the following equation is lower
bounded by 1/p(κ):∣∣P [TamperB,Σ(κ, `, ρ, τ) = 1

]
− P

[
SimTamperB,S′(κ, `, ρ, τ) = 1

]∣∣ .
The formal description of B := (B0,B1) follows:

Adversary B0: Receive as input crs from the challenger and output the message
m and the auxiliary information 0.
Adversary B1:
1. Get input si and st i and oracle access to O`(s′i); Parse the state st i as

stAi ,Q, (s0, . . . , si−1).
2. Run the adversary A on input crs and state stAi . Upon query from A reply

as follow:
– A sends (i, L) to the leakage oracle. Forward the query to O`(s′i).
– A sends (t, x) to the execute oracle. If t ∈ [ρ · τ] compute y ← G(st, x),
set Q := Q∪ {(x, y)} and return G(st, x) else return ⊥.

3. Eventually, the adversary A outputs (stAi+1, Ti+1, j). Set st i+1 as (stAi+1,
Q, (s0, . . . , si)) and return (st i+1, Ti+1, j).

Adversary B2: Receive as input st i+1, parse it as (stAi+1,Q, (s0, . . . , si)) and
output D(crs,Q, stAi+1).

Claim. If B interacts with Σ in the experiment Tamper then the view that D receives
(see the code of B2) is equivalent to TamperFunc

The attacker B forwards all the leakage oracle query of A to the oracle O`(s′i) as pre-
scribed by the TamperFunc experiment. The attacker B on oracle query (t, x), if t ∈
[ρ · τ] then it computes y = G(st, x)) = G(Dec(s′t), x) as defined by TamperFunc
and by the compiler FCompile and stores Q := Q∪ {(x, y)}. Notice that the remaining
part of the experiments Tamper and TamperFunc are the same.

Claim. If B interacts with S′ in the experiment SimTamper then the view that D
receives is equivalent to IdealFunc.

The attacker B forwards all the leakage oracle query of A to the oracle S′2 as defined by
the simulator S experiment. The attacker B on oracle query (t, x), if t ∈ [ρ · τ] then it
computes y = G(st, x)) where st = Is(S′1(Ti)) and stores Q := Q∪ {(x, y)}. Notice
that, in this case, the simulator S would check if t = 0 or st = ∗ and this case forward
to its own oracle Ē(G, s) the query. This is equal to what B does, since Is would reply
with s whenever called on input ∗. Notice that, by the definition of S the remaining part
of the experiments is the same as SimTamper.

The two claims above together imply that B breaks the NMC Security of Σ. This is
sufficient to prove the statement of the theorem.

29

References

1. D. Aggarwal, Y. Dodis, and S. Lovett. Non-malleable codes from additive combinatorics. In
STOC, pages 774–783, 2014.

2. S. Agrawal, D. Gupta, H. K. Maji, O. Pandey, and M. Prabhakaran. A rate-optimizing
compiler for non-malleable codes against bit-wise tampering and permutations. In TCC,
pages 375–397, 2015.

3. M. Ball, D. Dachman-Soled, M. Kulkarni, and T. Malkin. Non-malleable codes for bounded
depth, bounded fan-in circuits. In EUROCRYPT, pages 881–908, 2016.

4. L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-resistant storage via
keyword-searchable encryption. Cryptology ePrint Archive, Report 2005/417, 2005. http:
//ia.cr/2005/417.

5. M. Bellare, D. Cash, and R. Miller. Cryptography secure against related-key attacks and
tampering. In ASIACRYPT, pages 486–503, 2011.

6. M. Bellare and T. Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-
PRFs, and applications. In EUROCRYPT, pages 491–506, 2003.

7. M. Bellare, K. G. Paterson, and S. Thomson. RKA security beyond the linear barrier: IBE,
encryption and signatures. In ASIACRYPT, pages 331–348, 2012.

8. A. Boldyreva, D. Cash, M. Fischlin, and B. Warinschi. Foundations of non-malleable hash
and one-way functions. In ASIACRYPT, pages 524–541, 2009.

9. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO, pages 41–55,
2004.

10. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and
applications. In EUROCRYPT, pages 281–300, 2012.

11. M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and
applications. IACR Cryptology ePrint Archive, 2012:12, 2012.

12. E. Chattopadhyay and D. Zuckerman. Non-malleable codes against constant split-state
tampering. In FOCS, pages 306–315, 2014.

13. Y. Chen, B. Qin, J. Zhang, Y. Deng, and S. S. M. Chow. Non-malleable functions and their
applications. In PKC, pages 386–416, 2016.

14. D. Dachman-Soled and Y. T. Kalai. Securing circuits and protocols against 1/poly(k)
tampering rate. In TCC, pages 540–565, 2014.

15. D. Dachman-Soled, F. Liu, E. Shi, and H. Zhou. Locally decodable and updatable non-
malleable codes and their applications. In TCC, pages 427–450, 2015.

16. I. Damgård, S. Faust, P. Mukherjee, and D. Venturi. Bounded tamper resilience: How to go
beyond the algebraic barrier. In ASIACRYPT, pages 140–160, 2013.

17. I. Damgård, S. Faust, P. Mukherjee, and D. Venturi. The chaining lemma and its application.
In ICITS, pages 181–196, 2015.

18. Y. Dodis, A. B. Lewko, B. Waters, and D. Wichs. Storing secrets on continually leaky devices.
In FOCS, pages 688–697, 2011.

19. S. Dziembowski, T. Kazana, and M. Obremski. Non-malleable codes from two-source
extractors. In CRYPTO, pages 239–257, 2013.

20. S. Dziembowski, T. Kazana, and D. Wichs. One-time computable self-erasing functions. In
TCC, pages 125–143, 2011.

21. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–302,
2008.

22. S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. In Innovations in
Computer Science, pages 434–452, 2010.

23. A. Faonio and D. Venturi. Efficient public-key cryptography with bounded leakage and tamper
resilience. In ASIACRYPT, page to appear, 2016.

30

http://ia.cr/2005/417
http://ia.cr/2005/417

24. S. Faust, P. Mukherjee, J. B. Nielsen, and D. Venturi. Continuous non-malleable codes. In
TCC, pages 465–488, 2014.

25. S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes and key-
derivation for poly-size tampering circuits. In EUROCRYPT, pages 111–128, 2014.

26. S. Faust, K. Pietrzak, and D. Venturi. Tamper-proof circuits: How to trade leakage for
tamper-resilience. In ICALP, pages 391–402, 2011.

27. D. Goldenberg and M. Liskov. On related-secret pseudorandomness. In TCC, pages 255–272,
2010.

28. V. Goyal, A. O’Neill, and V. Rao. Correlated-input secure hash functions. In TCC, pages
182–200, 2011.

29. J. Groth and A. Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J.
Comput., 41(5):1193–1232, 2012.

30. Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits II: Keeping secrets in
tamperable circuits. In EUROCRYPT, pages 308–327, 2006.

31. Z. Jafargholi and D. Wichs. Tamper detection and continuous non-malleable codes. In TCC,
Part I, pages 451–480, 2015.

32. A. Kiayias and Y. Tselekounis. Tamper resilient circuits: The adversary at the gates. In
ASIACRYPT, pages 161–180, 2013.

33. F. Liu and A. Lysyanskaya. Tamper and leakage resilience in the split-state model. In
CRYPTO, pages 517–532, 2012.

34. X. Lu, B. Li, and D. Jia. Related-key security for hybrid encryption. In Information Security,
pages 19–32, 2014.

35. S. Lucks. Ciphers secure against related-key attacks. In FSE, pages 359–370, 2004.
36. M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO,

volume 2009, pages 18–35, 2009.
37. B. Qin, S. Liu, T. H. Yuen, R. H. Deng, and K. Chen. Continuous non-malleable key derivation

and its application to related-key security. In PKC, pages 557–578, 2015.
38. H. Wee. Public key encryption against related key attacks. In PKC, pages 262–279, 2012.

31

Appendix

A CLRS Friendly PKE

In this section we show that the PKE scheme given in Sec. 5 is CLRS-Friendly Secure.
Recall that the scheme is a slight variation of the scheme of [18] where ciphertexts and
public keys are vectors of source group elements (as opposed to vectors of both source
and target group elements).

The elegant proof of [18] involves a lot of hybrids, some of which would proceed
exactly the same. We provide a comparative analysis of the security of our scheme. We
analyze only the hybrid steps where the proof of our scheme and the proof of the scheme
of [18] differ. The main differences with the proof in [18] follows:

– Lemma C.1, pag. 26. The reduction gets as input [P]g and a vector w such that
P ←$ Z2×m

q where the rank of P is either 1 or 2 and w ∈ Ker(P). Let us denote
the two rows of P by p,c1 respectively. The reduction samples its own t to set up the
initial public/secret key and computes [C]g = [uT c1]g for u ∈ Znq . In the reduction
for our scheme, we can compute the matching second component of the cipertext
efficiently as deterministic function of [C]g and t. Namely [α ·u]g = [C · t+ b ·1n].
The remaining part of the reduction proceeds exactly the same.

– Lemma C.3, pag 27. The reduction gets as input [W ′]h and p where W ′ ∈
Z(m−2)×m
q with rank either 1 or m − 2 and p ∈ Ker(W ′). The reduction sam-

ples its own t. In the reduction for our scheme, the initial chipertex is sampled using
the knowledge of the vector at the exponent c←$ Ker(w1) where w1←$ Ker(p).
We can set pk = [t · pT]g . The remaining part of the reduction proceeds exactly the
same.

– Claim C.5, pag 28. The reduction gets as input [W ′]h and p where W ′ ∈ Z(m−3)×m
q

with rank either 1 or m − 3 and p ∈ Ker(W ′). The reduction samples its own t.
In the reduction for our scheme, the initial chipertex is sampled using the knowl-
edge of the vector at the exponent c←$ Ker(w1) where w1←$ Ker(p). We can set
pk = [t · pT]g . The remaining part of the reduction proceeds exactly the same.

– Claim C.6, pag 29. The reduction gets as input [W ′]h and p, c where W ′ ∈ Z2×m
q

with rank either 1 or 2 and p, c ∈ Ker(W ′). The reduction samples its own t. In the
reduction for our scheme, the initial chipertex is sampled using the knowledge of the
vector at the exponent c given as input. We can set pk = [t · pT]g. The remaining
part of the reduction proceeds exactly the same.

– Lemma C.8, pag 30. As pointed out by the authors the proof of the lemma is
analogous to the proof of Lemma C.3. The same holds in the reduction for our
scheme.

– Lemma C.14, pag 33. The reduction gets as input [C]g and w where C ∈ Zn×mq

with rank either m− 1 or 1 and w ∈ Ker(C). The reduction samples its own t. In

the reduction for our scheme, the initial chipertex is sampled using [C]g and the
matching second component is computed efficiently using [C]g, b, t. We sample
p←$ Ker(w) and we can set pk = [t · pT]g. The remaining part of the reduction
proceeds exactly the same.

– Claim C.16, pag 34. The reduction gets as input [C ′]g and w where C ′ ∈ Z2×m
q

with rank either 2 or 1 and w ∈ Ker(C ′). Let us label the rows of C ′ by c1, c2. The
reduction samples its own t and p←$ Ker(w). In the reduction for our scheme, the
initial chipertex, it sets [C]g where C = uT · c1 + eT · c2 for uniformly random
u and e being it i + 1 standard basis vector whose i + 1 coordinate is 1 and all
others are 0. The reduction creates the matching second component efficiently using
[C]g, b, t as eiter an encryption of 1 (for rows j ≤ i) or the message b (for rows
j > i). We can set pk = [t · pT]g. The remaining part of the reduction proceeds
exactly the same.

The property of E necessary for the proof of the Thm. 1 is perfectly ciphertext-update
privacy.

Theorem 5. The above PKE scheme E is perfectly ciphertext-update private.

Proof. Let [p]g, [w]h and sk , pk = [α]g = [p · tT]g and c = (C, c) be computed as
defined by the Setup, Gen and Enc algorithms.

We explicitly write the randomness used by the algorithms Enc and UpdateC. In
particular, for any b ∈ {0, 1} we denote with Enc(pk , b;u) an encryption of m using
randomness u. For any c ∈ C we denote with UpdateC(pk , c,B) an update of c using
randomness B.

We show a mapping Fc from the domain
{
B : rank(B) = d,B ∈ Zn×nq

}
to the

co-domain {u : u ∈ Znq } such that for any B:

UpdateC(pk , c;B) = Enc(pk , b;Fc(B))

For any encryption c of the message b under the public parameter pub and the public
key pk there exists a vector u′ such that c = ([u′T · p]g, [α · u′ + b · 1n]g). Let Fc be
defined as Fc(B) := B · u′T . Easily:

UpdateC(pk , c;B)

=
(
[B · u′ · p]g, [α ·B · u′T + b ·B · 1Tn]g

)
= ([Fc(B) · p]g, [α · F (B) + b · 1n]g) = Enc(pk , b;Fc(B))

Moreover, the random variable u := Fc(B) is uniformly distributed over Znq because
we can u as uniformly chosen vector over a uniformly random subspace of dimension d.
This is sufficient to prove the theorem.

A.1 Direct Product Encryption

Lemma 9. For any polynomial k(κ), if E is a `-CLRS-Friendly secure PKE then E×k

is a `-CLRS-Friendly secure PKE.

33

Proof. Consider the hybrid experiment Hybi defined as follow:

– Experiment Hybi:
pub ← Setup(1κ)
(pk , sk)← Gen(pub)
b←$ {0, 1}; j ← 1
l0 := 0; l1 := 0
(m0,m1)← A(pub, pk) where mi = (mi

1, . . . ,m
i
k)

if |m0| 6= |m1| set m0 ← m1

for 1 ≤ j < i: cj ← Enc(pk , 0)
for i ≤ j ≤ k: cj ← Enc(pk ,mb

j)
Set state0 := sk , state1 := c1, . . . , ck;
st← A(pk) � Update,O`(state)
b′ ← A(pk , c)
Return (b′ = b)

Notice that Hyb0 is exactly the CLRS Security Experiment for the scheme E×k, while
P [Hybk = 1] = 1

2 .

Claim. There exists a negligible function ν such that for any PPT adversary A and for
any i ∈ [1, k],

∣∣P [Hybi = 1]− P
[
Hybi+1 = 1

]∣∣ ≤ ν(κ).

We reduce to the CLRS security of the base scheme E. Assume there exists a polyno-
mial p such that

∣∣P [Hybi = 1]− P
[
Hybi+1 = 1

]∣∣ ≥ 1/p(κ) for infinitely many κ.
Consider the following attacker B for the basic scheme E:

Adversary B:

1. Receive pub, pk from the challenger of the CLRS security experiment and
get oracle access to O`(state).

2. Run the adversary A with inputs pub, pk . Let (m0,m1) the output of A
where mj = mj

1,m
j
2, . . . ,m

j
k for j ∈ {0, 1}.

3. Pick a random bit b′←$ {0, 1} and forward (mb′

i , 0) to the challenger.
Receive oracle access to Update and O`(state).

4. Compute for any 1 ≤ j < i the ciphertext cj ← Enc(pk , 0) and for any
i < j < k the ciphertext cj ← Enc(pk ,mb′

j).
5. Run the adversary A, proxy the update queries to the update oracle and

reply to the leakage query as follow:
– Upon query (0, L) forward the query to the oracle O`(state).
– Upon query (1, L) set the functionL′(c) := L(c1, . . . , ci−1, c, ci+1, . . . , ck)
and forward the leakage query (1, L′) to the oracle O`(state).

6. Eventually, A outputs a guess bit b′′ if b′′ = b′ then output 0 else output 1.

First notice that the amount of leakage done by B is equal to the leakage done by A
which is bounded by `.

If the challenge bit b of the CLRS experiment with adversary B and PKE scheme
E is equal to 0 then B perfectly simulates Hybi. In fact, ci = Enc(pk ,mb′

i). In this
case the winning probability of B is equal to P [Hybi = 1]. Otherwise, if the challenge

34

bit b is equal to 1 then B perfectly simulates Hybi+1. In fact, ci = Enc(pk , 0). In this
case the winning probability of B is equal to P

[
Hybi+1 = 1

]
. Therefore the winning

probability of B is equal to

P
[
Expclrs

E,B(κ, `) = 1
]

= 1
2

(
P [Hybi = 1] + P

[
Hybi+1 = 1

])
≥ 1/2p(κ).

B Label-Malleable NIZK Argument of Knowledge

We summarize the relevant definitions and theorems from [11]. Most of what follows is
taken verbatim from [11]. Let T = (Tx, Tw) be a pair of efficiently computable n-ary
functions, Tx : {{0, 1}∗}n → {0, 1}∗, Tw : {{0, 1}∗}n → {0, 1}∗. We refer to such a
tuple T as an n-ary transformation.

Definition 10 (Definition 2.1 of [11]). An efficient relationR is closed under an n-ary
transformation T = (Tx, Tw) if for any n-tuple {(x1, w1), . . . , (xn, wn)} ∈ Rn, the
pair (Tx(x1, . . . , xn), Tw(w1, . . . , wn)) ∈ R. IfR is closed under T , then we say that
T is admissible for R. Let T be some set of transformations; if for every T ∈ T , T is
admissible forR, then T is an allowable set of transformations.

We define a malleable proof system; i.e., one in which, from proofs (π1, . . . , πn) that
(x1, . . . , xn) ∈ L, one can compute a proof π that Tx(x1, . . . , xn) ∈ L, for an admissible
transformation T = (Tx, Tw):

Definition 11 (Definition 2.3 of [11]). Let (I,P,V) be a non-interactive proof system
for a relation R. Let T be an allowable set of transformations for R. Then this proof
system is malleable with respect to T if there exists an efficient algorithm ZKEval that on
input (ω, T, {xi, πi}), where T ∈ T is an n-ary transformation, and V(ω, xi, πi) = 1
for all i, 1 ≤ i ≤ n, outputs a valid proof π for the statement x = Tx({xi}) (i.e., a proof
π such that V(ω, x, π) = 1).

Definition 12 (Definition 2.4 of [11]). For a non-interactive proof system (I,P,V,ZKEval)
for an efficient relationR malleable with respect to T , an adversary A, and a bit b, let
pbA(κ) be the probability of the event that b′ = 0 in the following game:

– Step 1. ω ← I(1κ).
– Step 2. (state, x1, w1, π1, . . . , xq, wq, πq, T)← A(ω)
– Step 3. If V(ω, xi, πi) = 0 for some i, (xi, wi) 6∈ R for some i, or T 6∈ T , abort

and output ⊥. Otherwise, form

π ←
{

P(ω, Tx(x1, . . . , xq), Tw(w1, . . . , wq)) if b = 0
ZKEval(ω, T, {xi, πi}) if b = 1

– Step 4. b← A(state, π).

We say that the proof system is derivation private if for all PPT algorithms A there exists
a negligible function ν(·) such that |p̄0

A(κ)− p1
A(κ)| < ν(κ).

35

Definition 13 (Definition 3.1 of [11]). Let NIZK = (I,P,V) be a NIZK proof of
knowledge system for an efficient relationR, with a simulator (S0,S1) and an extractor
Ext. Let T be an allowable set of unary transformations for the relation R such that
membership in T is efficiently testable. Let A be given, and consider the following game:

– Step 1. (ω, τsim , τext)← S0(1κ).
– Step 2. (x, π)← A(ω, τsim) � SIM∗(ω, τsim ,).
– Step 3. (w, x′, T)← Ext(ω, τext , x, π).

Where the simulation oracle SIM∗ takes as input a tuple (L, x) and outputs a simulated
argument S1(τsim , L, x). We say that NIZK satisfies controlled-malleable simulation-
sound extractability (CM-SSE, for short) if for all PPT algorithms A there exists a
negligible function ν() such that the probability (over the choices of S0,A, and SIM)
that V(ω, x, π) = 1 and (x, π) 6∈ Q (where Q is the set of queried statements and their
responses) but either (1) w 6= ⊥ and (x,w) 6∈ R; (2) (x′, T) 6= (⊥,⊥) and either x′ 6∈
Qx (the set of queried instances), x 6= Tx(x′), or T 6∈ T ; or (3) (w, x′, T) = (⊥,⊥,⊥)
is at most ν(κ).

Given a relation and a transformations set (R, T) and a set of labels L, consider the
following the following extended relationship:

R′ := {(x, L), w : (x,w) ∈ R, L ∈ L}

Consider the following extended transformation set:

T ′ := {Tφ = (Tx, Ty) : Tx((x, L)) = (x, φ(L)), Tw(w) = w, φ ∈ T }

Notice that T ′ is set of allowable transformation for R′, since for any ((x, L), w) in
R′ and any transformation Tφ ∈ T ′ where φ ∈ T the element ((x, φ(L)), w) is in R′.
Given a CM-NIZK NIZK′ = (I′,P′,V′,ZKEval) for the relations R′ and the set of
transformation T ′ we construct a lM-NIZK NIZK = (I,P,V, LEval) for the relation
R with labels set L and trasformation T :

– I(1κ): Same as I′(1κ).
– PL(ω, x,w): Set x′ := (x, L) and return P′(ω, x′, w).
– VL(ω, x, π): Set x′ := (x, L) and return V′(ω, x′, π).
– LEval(ω, φ, (x, L, π)): Set x′ := (x, L) and return ZKEval(ω, Tφ, (x

′, π)).

Theorem 6. For any NP relationR and set of label transformations T , ifNIZK′ is a
CM-NIZK for the relationR′ with allowable set of transformation T ′, it is derivation
private and it satisfies controlled-malleable simulation extractability then NIZK is a
lM-NIZK for the relation R and it is labele-derivation private and it is T -malleable
label simulation extractable.

Notice that the transformation from CM-NIZK to lM-NIZK is mostly syntatic. We
simple add the label as part of the instance and, apart of this, we can see CM-NIZK as a
generalization of lM-NIZK.

We consider the set of relations and tranformations for which we can use Groth-Sahai
proofs to construct CM-NIZK:

36

Definition 14 (Definition C.1 of [11]). For a relationR and a set of transformations T
on the set of labels L, we say (R, T) is CM-friendly if the following six properties hold:

1. Representable statements: any instance and witness of R can be represented
as a set of group elements; i.e., there are efficiently computable bijections Fs :
LR → Gdsis for some ds and is, Fw : WR → Gdwid for some dw and iw where
LR := {x|∃w : (x,w) ∈ R} and LR := {w|∃x : (x,w) ∈ R}.

2. Representable transformations: any transformation in T can be represented as a
set of group elements; i.e., there is an efficiently computable bijection Ft : T → Gdtit
for some dt and some it.

3. Provable statements: we can prove the statement (x,w) ∈ R (using the above
representation for x and w) using pairing product equations; i.e., there is a pairing
product statement that is satisfied by Fs(x) and Fw(w) iff (x,w) ∈ R.

4. Provable transformations: we can prove the statement “Tx(x′) = x ∧ T ∈ T ”
(using the above representations for x, x′ and T) using a pairing product equation,
i.e. there is a pairing product statement that is satisfied by Ft(T), Fl(L), Fl(L

′) iff
T ∈ T ∧ Tx(x′) = x.

5. Transformable statements: for any T ∈ T , there is a valid transformation s(T)
that takes the statement “(x,w) ∈ R” (phrased using pairing products as above)
and produces the statement “(Tx(x), Tw(w)) ∈ R”.

6. Transformable transformations: for any T, T ′ ∈ T there is a valid transformation
t(T) that takes the statement “Tx(x′) = x ∧ T ∈ T ” (phrased using pairing
products as above) and produces the statement “(T ′ ◦T)(x′) = T (x)∧ (T ′ ◦T) ∈
T ”, and preserves the variables in x′.

Definition 15 (Definition B.2. of [11]). We say a valid transformation T preserves
X1, . . . Xn if it can be expressed as a set of basic operations which does not include
RemoveVar(Xi) for any i ∈ [n]

Theorem 7 (Theorem 4.6 of [11]). If DLIN holds, then we can construct a cm-NIZK
that satisfies derivation privacy for any CM-friendly relation and transformation set
(R, T).

We are ready to prove Theorem 3 of Section 5.

Proof (of Thm. 3). Given a LM-friendly relation and trasformation set (R, T) where T
is a set of label transformations for the set of labels L, we show that the extended sets
(R′, T ′) as defined above are CM-friendly. The theorem follows by Thm. 7. Notice that
points 2,3,6 of Def. 14 match points 2,3,5 of Def. 8.

Representable statements: Let ((x, L), w) be an instance forR′, by our hypothesis on
(R, T) there exist efficiently computable bijections Fs : L → Gdsis , Fl : L → Gdlil
and il = is. So we can define an efficiently computable bijection F ′s(x, L) :=
(Fs(x), Fl(x)).

Transformable statements: Given a transformation T ∈ T ′ there exists a label trans-
formation φ ∈ T such that Tx((x, L)) := (x, φ(L)) and Tw(w) := w where
T = (Tx, Tw). We need to show that there is a valid transformation s(T) that

37

takes the statement “((x, L), w) ∈ R′” (phrased using pairing products) and pro-
duces the statement “((x, φ(L)) ∈ R′. By definition of R′ the pairing products
for “((x, L), w) ∈ R′” do not involves variables Fl(L), therefore let s(T) be the
identity function. Notice that the transformation does not remove any variables of L.

C Non-Malleable Key-Encoding Scheme

A key-encoding scheme in the CRS model is a tupleΣ = (Init,Encode,Decode) of PPT
algorithms with the following syntax: (1) Init on input 1κ outputs a common reference
string crs . (2) Encode on inputs crs outputs K ∈ {0, 1}κ, X ∈ Cκ; (3) Decode is a de-
terministic algorithm that on inputs crs and a codeword X ∈ Cκ decodes to k ∈ {0, 1}κ.
We consider coding schemes with an efficient refreshing algorithm. Specifically, for a
coding scheme Σ there exists an algorithm Rfrsh that upon inputs crs and a codeword
X ∈ Cκ outputs a codeword X ∈ Cκ.

We are interested in coding schemes in the split-state model where the two parts can
be refreshed independently and without the need of any interactions. Given a codeword
X := (X0, X1), the procedure Rfrsh(crs, (i,Xi)) for i ∈ {0, 1} takes the i-th piece
of the codeword and outputs a new piece X ′. We define correctness in the obvious way.

Let Tamper and SimTamper be the experiments described in Figure 3.

Experiment TamperA,Σ(κ, `, ρ, τ):
Variables i, t0, t1 set to 0;
crs ← Init(1κ);
(X0

0 , X
1
0),K ← Encode(crs);

X0 := (X0
0 , X

1
0);st0 := 0;

forall i < ρ(κ):
(Ti+1, sti+1, j)← A1(Ki, sti) � O`(Xi);
X̃i+1 := Ti+1(Xi);
Ki+1 := Decode(crs, X̃i+1);
If j ∈ {0, 1} then Rfrsh∗(j),
else Xi+1 := Xi;
For j′ ∈ {0, 1} if (tj

′
> τ)

then Rfrsh∗(j′);
Increment t0, t1 and i;

Return A2(stp).

Experiment SimTamperA,S(κ, `, ρ, τ):
Variable i set to 0;
(crs, aux)← S0(1κ);
st0) := 0
forall i < ρ(κ):

(Ti+1, st i+1, j)← A(Ki, st i) � S2(z);
K̄i+1 ← S1(Ti+1, z);
Ki+1 := Im0(K̄i+1);
S3(j, z)
i := i+ 1;

Return A2(stp).

Procedure Rfrsh∗(j):
Set O`(Xi).lj , tj to 0;
Increment t1−j ;
X1−j
i+1 := X1−j

i ;
Xj
i+1 ← Rfrsh(crs, (j,Xj

i))

Fig. 7: Experiments defining the security of NMC with Refresh Σ.

Definition 16 (Non-Malleable Codes with Refresh). For κ ∈ N, let ` = `(κ), ρ =
ρ(κ), τ = τ(κ) be parameters. We say that the coding scheme Σ is a (`, ρ, τ)-Non-
Malleable Key-Encoding Scheme with Refresh (NMKeyEnc-R) in the split-state model if

38

for any adversary A = (A0,A1) where A0 is a PPT algorithm and A1 is deterministic
polynomial time, there exist a PPT simulator S = (S0,S1,S2,S3) and a negligible
function ν such that∣∣P [TamperA,Σ(κ, `, ρ, τ) = 1

]
− P

[
SimTamperA,S(κ, `, ρ, τ) = 1

]∣∣ ≤ ν(κ).

C.1 Key Encapsulation Mechanisms

A Key Encapsulation Mechanisms (KEM) scheme is a tuple of algorithms KEM =
(Setup,Gen,Enc,Dec) defined as follows. (1) Algorithm Setup takes as input the secu-
rity parameter and outputs public parameters pub ∈ {0, 1}∗. all algorithms are implicitly
given pub as input. (2) Algorithm Gen takes as input the security parameter and outputs
a public/secret key pair (pk , sk); the set of all secret keys is denoted by SK and the
set of all public keys by PK. Additionally, we require the existence of a PPT function
PK which upon an input sk ∈ SK produces a valid public key pk . (3) The randomized
algorithm Enc takes as input the public key pk and randomness r ∈ R, and outputs
a ciphertext c = Enc(pk ,m; r) and a key K ∈ {0, 1}κ; the set of all ciphertexts is
denoted by C. (4) The deterministic algorithm Dec takes as input the secret key sk and
a ciphertext c, and outputs a key K = Dec(sk , c) which is either in {0, 1}κ or equal to
an error symbol ⊥. Additionally, we also consider two PPT algorithms: 1. Algorithm
UpdateC takes as input a public key pk a ciphertext c and outputs a new ciphertext c.
2. Algorithm UpdateS takes as input a secret key sk and outputs a new secret key sk ′.

CLRS Friendly KEM Security. We now turn to define Continual-Leakage Resilient
Storage Friendly Key Encapsulation Mechanisms.

Experiment Expclrs−kem
E,A (κ, `):

pub ← Setup(1κ)
(pk , sk)← Gen(pub)
b←$ {0, 1}; j ← 1
l0 := 0; l1 := 0
c,K0 ← Enc(pk),K1←$ {0, 1}κ
state0 := sk ,state1 := c;
st← A(pk ,Kb) � Update,O`(state)
b′ ← A(pk , c)
Return (b′ = b)

Oracle Update(i):
O`(state).li := 0

r′←$ {0, 1}p(κ)
if (i = 0)

c = state0

c′ ← UpdateC(pk , c)
state0 := c′

if (i = 1)
sk = state1

sk ′ ← UpdateS(sk)
state1 := sk ′

Fig. 8: Experiment defining CLRS security of E.

39

Definition 17. For κ ∈ N, let ` = `(κ) be the leakage parameter. We say that E =
(Setup,Gen,Enc,Dec,UpdateC,UpdateS) is `-CLRS Friendly if for all PPT adver-
saries A there exists a negligible function ν : N→ [0, 1] such that∣∣∣∣P [Expclrs−kem

E,A (κ, `) = 1
]
− 1

2

∣∣∣∣ ≤ ν(κ),

where the experiment Expclrs−kem
E,A (κ, `, δ) is defined in Figure 8.

Consider the following Key Encapsulation Mechanism (KEM) schemeKEM = (Setup,
Gen,Enc,Dec,UpdateC,UpdateS) with parameters n,m, d ∈ N.

– Setup(1κ): Sample gd ← G(1κ) and vectors p,w←$ Zmq such that p · wT = 0
mod q. Return pub := (gd, [p]g, [w]h). (Recall that all algorithms implicitly take
pub as input.)

– Gen(pub): Sample t←$ Zmq , r←$ Znq and compute sk := [rT ·w + 1Tn · t]h, set
α := p · tT and compute pk := [α]g. The latter can be computed given only
[p]g ∈ Gm1 and t ∈ Zmq . Return (pk , sk).

– Enc(pk): Sample u←$ Znq and z←$ Zq and compute c1 := [uT · p]g and c2 :=
[αu + z1n]g . Return C := (c1, c2) and K := [z]e(g,h).

– Dec(sk , C): Let f = e(g, h), parse sk = [S]h ∈ Gn×m2 , let S1 be the first row of
S and parse C = ([C]g, [c]g) ∈

(
Gn×m1 ×Gn1

)
. Compute [z]f := [c−C · ST1]f

and output H([z]f) if only if v = [z · 1n]f . In particular, [z]f can be computed by
first computing [c]f := e([c]g, h) and then [C · ST1]f :=

∏
i e(C[i],S[i]).

– UpdateC(pk , C): Parse C = ([C]g, [c]g) ∈
(
Gn×m1 ×Gn1

)
. Sample B←$ Zn×nq

such that B · 1Tn = 1n and the rank of B is d. Return ([B ·C], [B · cT]).
– UpdateS(sk): Parse sk = [S]h ∈ Gn×m2 . Sample A←$ Zn×nq such that A · 1Tn =
1n and the rank of A is d. Return [A · S]h.

Theorem 8. For any m ≥ 6,n ≥ 3m − 6,d := n − m + 3 the above scheme is an
`-CLRS-friendly KEM under the External Diffie-Hellman Assumption on G for ` =
min{m/6− 1, n− 3m+ 6} · log(q)− ω(log κ).

We omit the formal proof of the theorem above.

C.2 The Construction

Let Σ be the following coding scheme with refresh in the CRS model:

– Init(1κ): Sample ω ← I(1κ) and pub ← Setup(1κ). Return crs = (ω, pub).
– Encode(crs): Parse crs = (ω, pub), sample (sk , pk) ← Gen(pub), compute
c,K ← Enc(pk) and π ← Pc(ω, pk , sk). Set X0 := (pk , c, π) and X1 := sk
and return X := (X0, X1),K.

– Decode(crs, X): Parse crs = (ω, pub) and X = (X0, X1) where X1 = sk and
X0 = (pk , c, π). Check: (A) pk = PK(sk) and (B) Vc(ω, pk , π) = 1.
If both checks (A) and (B) hold then return Decode(sk , c), otherwise return ⊥.

40

– Rfrsh(crs, (j,Xj)):
– j = 0, parse X0 = (c, pk , π), r←$ {0, 1}κ, compute c′ := UpdateC(pk , c; r)
and π′ ← LEval (ω, UpdateC(pk , ·; r), (pk , c, π)), return X0 := (pk , c′, π′).
– j = 1, parse X1 = sk and compute sk ′ ← UpdateS(sk), return X1 := (sk ′).

Theorem 9. For any polynomial τ(κ), if E is an `′-CLRS-Friendly KEM scheme
(Def. 17) with public key space PK and message space M and where `′(κ) :=
τ(κ) · (`A(κ) + max(κ + 1, log(|M| + 2) + 1, log |PK|)) and if NIZK is an adap-
tive multi-theorem zero-knowledge (Def. 1) label-malleable non-interactive argument
of knowledge system with malleable label simulation extractability (Def. 2) and la-
bel derivation privacy (Def. 3) then the scheme in above is a (`, ρ, τ)-Non-Malleable
Key-Encoding scheme with Refresh for any polynomial ρ(κ).

The proof of security follows the same line of the proof of Theorem 1. We omit a formal
proof. Let us consider the class FKeyG of cryptographic primitive (Gen, G) composed

by a key generator Gen and a functionality G.

Definition 18. A compiler Φ = (Setup,FCompile,MCompile,Rfrsh) is a Split-State
(`, ρ, τ)-Continually-Leakage-and-Tamper (for short (`, ρ, τ)-CLT) Compiler in the CRS
model for the class FKeyG if for every PPT adversary A there exists a simulator S such
that for every cryptographic functionality (Gen, G) ∈ FKeyG the output of the real
experiment TamperFunc

(Gen,G))
A,Φ (κ, `, ρ, τ) and the output of the simulated experiment

IdealFunc
(Gen,G)
S (κ) are indistinghuishable.

Given a NMKeyEnc-R Σ, consider the following compiler Π = (Setup,MCompile,
Enc,FCompile,Rfrsh):

– Setup(1κ): Output crs ← Σ.Init(1κ);
– MCompile(crs): Compute s′,K ← Σ.Enc(crs) output (s, aux)← Gen(1κ;K);
– FCompile(crs, G): Output G′(s′, x) := G(Gen(Σ.Dec(crs, s′)), x);
– Rfrsh(crs, s′): Output Σ.Rfrsh(crs, s′).

Theorem 10. Let Σ be a (`, ρ, τ)-Non-Malleable Code with Refresh then Π as defined
above is a Split-State (`, ρ, τ)-CTL Compiler for FKeyG in the CRS model.

Definition 18 is strictly weaker respect to the Definition 9. In fact, in the Ideal Experiment
we average over all possible outputs of Gen while in Def 18 we consider for any possible
secret state s′. However, this relaxation makes possible to apply the notion of NMKeyEnc-
R. Instead of encoding the secret state we encode the randomness that would create the
secret state. Notice that Gen might output some other auxiliary information (such as a
public key or a verification key). This information are passed to the simulator.

41

Experiment IdealFunc(G,s)S (κ):
Variables Q̄ set to ∅;
s, aux ← Gen(1κ);
(crs,Q′, st)← S(1κ, G, aux) � Ē(G, s);
Return (crs, Q̄ ∪ Q′, st).

Experiment TamperFunc
(G,s)
A,Φ (κ, `, ρ, τ):

Variables i, k, t0, t1, st0 set to 0 andQ := ∅;
Variables s′j′ := ⊥ for j′ ∈ [τ · ρ];
crs ← Setup(1κ);
s′0 ← MCompile(crs);
G′ ← FCompile(crs, G);
forall i < ρ(κ):

(st i+1, T, j)← A(crs, st i) � O`(s′i), E(G′);
s′k+1 := T (s′0);
If j ∈ {0, 1} then Rfrsh∗(j),
else s′i+1 := s′i;
For j′ ∈ {0, 1} if (tj

′
> τ)

then Rfrsh∗(j′);
Increment k, t0, t1 and i;

Return (crs,Q, stρ).

Oracle Ē(G, s):
Upon message x;
Compute y ← G(s, x);
Q̄ := Q̄ ∪ {(x, y)};
Return y.

Oracle E(G′):
Upon message (t, x);
If t 6∈ [ρ · τ] Return ⊥
Else y ← G′(s′t, x);
Q := Q∪ {(x, y)};
Return y.

Procedure Rfrsh∗(j):
Set O`(Xi).lj , tj to 0;
Increment t1−j ;
s′1−ji+1 := s′1−ji ;
s′ji+1 ← Rfrsh(crs, (j, s′ji))

Fig. 9: Experiment defining the security of CLT Resilient Compiler for FKeyG.

42

	Non-Malleable Codes with Split-State Refresh

