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Abstract. We study the problem of devising provably secure PRNGs
with input based on the sponge paradigm. Such constructions are very
appealing, as efficient software/hardware implementations of SHA-3 can
easily be translated into a PRNG in a nearly black-box way. The only
existing sponge-based construction, proposed by Bertoni et al. (CHES
2010), fails to achieve the security notion of robustness recently consid-
ered by Dodis et al. (CCS 2013), for two reasons: (1) The construction
is deterministic, and thus there are high-entropy input distributions on
which the construction fails to extract random bits, and (2) The construc-
tion is not forward secure, and presented solutions aiming at restoring
forward security have not been rigorously analyzed.
We propose a seeded variant of Bertoni et al.’s PRNG with input which
we prove secure in the sense of robustness, delivering in particular con-
crete security bounds. On the way, we make what we believe to be an
important conceptual contribution, developing a variant of the security
framework of Dodis et al. tailored at the ideal permutation model that
captures PRNG security in settings where the weakly random inputs are
provided from a large class of possible adversarial samplers which are
also allowed to query the random permutation.
As a further application of our techniques, we also present a simple and
very efficient key-derivation function based on sponges (which can hence
be instantiated from SHA-3 in a black-box fashion), which we also prove
secure when fed with samples from permutation-dependent distributions.
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1 Introduction

Generating pseudorandom bits is of paramount importance in the design of
secure systems – good pseudorandom bits are needed in order for cryptogra-
phy to be possible. Typically, software-based pseudorandom number generators
(PRNGs) collect entropy from system events into a so-called entropy pool, and
then apply cryptographic algorithms (hash functions, block ciphers, PRFs, etc.)
to extract pseudorandom bits from this pool. These are also often referred to as
PRNGs with input, as opposed to classical seed-stretching cryptographic PRGs.

There have been significant standardization efforts in the area of PRNGs
[19,1,6], and an attack-centric approach [21,18,30,26,8] has mostly driven their
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evaluation. Indeed, the development of a comprehensive formal framework to
prove PRNG security has been a slower process, mostly due to the complexity of
the desirable security goals. First models [21,13,5] indeed only gave partial cov-
erage of the security desiderata. For instance, Barak and Halevi [5] introduced a
strong notion of PRNG robustness, but their model could not capture the ability
of a PRNG to collect randomness at a low rate. Two recent works [15,17] consid-
erably improved this state of affairs with a comprehensive security framework for
PRNG robustness whose inputs are adversarially generated (under some weak
entropy constraints). The framework of [15] was recently applied to the study of
the Intel on-chip PRNG by Shrimpton and Terashima [29].

This paper continues the investigation of good candidate constructions for
PRNGs with inputs which are both practical and provably secure. In particu-
lar, we revisit the question of building PRNGs from permutations, inspired by
recent sponge-based designs [10,31]. We provide variants of these designs which
are provably robust in the framework of [15]. On the way, we also extend the
framework of [15] to properly deal with security proofs in ideal models (e.g. when
given a random permutation), in particular considering PRNG inputs sampled
by adversaries which can make queries to the permutation.

Overall, this paper contributes to the development of a better understanding
of sponge-based constructs when processing weakly random inputs. As a further
testament of this, we apply our techniques to analyze key-derivation functions
using sponge-based hash functions, like SHA-3.

Sponge-based PRNGs. SHA-3 relies on the elegant sponge paradigm by Ber-
toni, Daemen, Peeters, and van Assche [9]. Beyond hash functions, sponges have
been used to build several cryptographic objects from permutations. In particu-
lar, in later work [10], the same authors put forward a sponge-based design of a
PRNG with input. It uses an efficiently computable (and invertible) permutation
π, mapping n-bit to n-bit strings, and maintains an n-bit state, which is initially
set to S0 = 0n. Then, two types of operations can be alternated (for additional
parameters r ≤ n, and c = n− r):

- State refresh. Weakly random material (e.g., resulting from measuring several
system events) can be added r-bit at a time. Given a string Ii of weakly
random bits, the state is refreshed to

Si ← π(Si−1 ⊕ (Ii ‖ 0c)) .

- Random-bit generation. Given the current state Si, we can extract r bits
of randomness by outputting Si[1 . . . r], and updating the state as Si+1 ←
π(Si). This process can be repeated multiple times to obtain as many bits
as necessary.

This construction is very attractive. First off, it is remarkably simple. Second, it
resembles the structure of the SHA-3/KECCAK hash function, and thus efficient
implementations of this PRNG are possible with the advent of more and more
optimized SHA-3 implementations in both software and hardware. In fact, recent
work by Van Herrewege and Verbauwhede [31] has already empirically validated
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the practicality of the design. Also, the permutation π does not need to be the
KECCAK permutation – one could for example use AES on a fixed key.

PRNG security.Of course, we would like the simplicity of this construction to
be also backed by strong security guarantees. The minimum security requirement
is that whenever a PRNG has accumulated sufficient entropy material, the out-
put bits are indistinguishable from random. The original security analysis of [10]
proves this (somewhat indirectly) by showing that the above construction is in-
differentiable [23] from a “generalized random oracle” which takes a sequence of
inputs I1, I2, . . . through refresh operations, and when asked to produce a certain
output after k inputs have been processed, it simply applies a random function
to the concatenation of I1, I2, . . . , Ik. This definition departs substantially from
the literature on PRNG robustness, and only provides minimal security – for
example, it does not cover any form of state compromise.

In contrast, here we call for a provably-secure sponge-based PRNG construc-
tion which is robust in the sense of [15]. However, there are two reasons why the
construction, as presented above, is not robust.

1) No forward secrecy. As already recognized in [10], the above PRNG is
not forward secure – in particular, learning the state S just after some pseudoran-
dom bits have been output allows to distinguish them from random ones by just
computing π−1(S). The authors suggest a countermeasure to this: simply zeroing
the upper r bits of the input to π before computing the final state, possibly multi-
ple times if r is small. More formally, given the state S′k produced after outputting
pseudorandom bits, and applying π, we compute S′k+1, Sk+1, . . . , S

′
k+t, Sk+t as

S′i+1 ← π(Si) ,

for i = k, . . . , k+ t− 1, where Si is obtained from S′i by setting the first r bits to
0. While this appears to prevent the obvious attack, and make the construction
more secure as t increases, no formal validation is provided in [10].

In particular, note that the final state Sk+t is not random, as its first r bits
are all 0. Robustness demand that we obtain random bits from Sk+t even when
no additional entropy is added – unfortunately we cannot just proceed as above,
since this will result in outputting r zero bits. (Also note that applying π also
does not make the state random, since π is efficiently invertible.) This indicates
that a further modification is needed.

2) Lack of a seed. The above sponge-based PRNG is unseeded: This allows
for high min-entropy distributions (only short of one bit from maximal en-
tropy) for which the generated bits are not uniform. For example, consider
I = (I1, . . . , Ik), where each Ij is an r-bit string, and such that I is uniformly
distributed under the sole constraint that the first bit of the state Sk obtained
after injecting all k blocks I1, . . . , Ik into the state is always 0. Then, we can
never expect the construction to provide pseudorandom bits under such inputs.

One could restrict the focus to “special” distributions as done in [5], argu-
ing nothing like the above would arise in practice. As discussed in [15], however,
arguing which sources are possible is difficult, and following the traditional cryp-
tographic spirit, it would be highly desirable to reduce assumptions on the input
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distributions, which ideally should be adversarially generated, at the cost of in-
troducing a (short) random seed which is independent of the distribution.

We note that the above distribution would also invalidate the weak security
expectation from [10]. However, their treatment bypasses this problem by em-
ploying the random permutation model, where effectively the randomly chosen
permutation acts as a seed, independent of the input distribution. We believe
however this approach (which is not unique to [10]) to be problematic – the
random permutation model is only used as a tool in the security proof due to
the lack of standard-model assumptions under which the PRNG can be proved
secure. Yet, in instantiations, the permutation is fixed. In contrast, a PRNG seed
is an actual short string which can and should be actually randomly chosen.

Our results.We propose and analyze a new sponge-based seeded construction
of a PRNG with input (inspired by the one of [10]) which we prove robust. To
this end, we use an extension of the framework of [15] tailored at the ideal-
permutation model, and dealing in particular with inputs that are generated by
adversarial samplers that can query the permutation. The construction (denoted
SPRG) uses a seed seed, consisting of s r-bit strings seed0, . . . , seeds−1. (s is not
meant to be too large here, not more than 2 or 3 in actual deployment). Then,
the construction allows to interleave two operations:

- State refresh. The construction here keeps a state Si ∈ {0, 1}n and a counter
j ∈ {0, 1, . . . , s− 1}. Given a string Ii of r weakly random bits, the state is
refreshed to

Si+1 ← π(Si ⊕ (Ii ⊕ seedj) ‖ 0c) ,

and j is set to j + 1 mod s.
- Random-bit generation. Given the current state Si, we can extract r bits of

randomness by computing Si+1 ← π(Si), and outputting the first r bits of
Si+1. (This process can be repeated multiple times to obtain as many bits as
necessary.) When done, we refresh the state by repetitively zeroing its first
r bits and applying π, as described above. (How many times we do this is
given by a second parameter – t – which ultimately affects the security of
the PRNG.)

For a sketch of SPRG see Fig. 5. Thus, the main difference over the PRNG of [10]
are (1) The use of a seed, (2) The zero-ing countermeasure discussed above, and
(3) An additional call to π before outputting random bits. In particular, note
that SPRG still follows the sponge principle, and in fact (while this may not be
the most efficient implementation), can be realized from a sponge hash function
(e.g., SHA-3) in an entirely black-box way.3

In our proof of security, the permutation is randomly chosen, and both the
attacker and an adversarial sampler of the PRNG inputs have oracle access to it.
In fact, an important contribution of our work is that of introducing a security
framework for PRNG security based on [15,29] for the ideal permutation model,

3 Zeroing the upper r bits when refreshing the state after PRNG output can be done
by outputting the top r-bit part to be zeroed, and adding it back in.
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and we see this as a step of independent interest towards a proper treatment of
ideal-model security for PRNG constructions. As a word of warning, we stress
that our proofs consider a restricted class of permutation-dependent distribution
samplers, where the restriction is in terms of imposing an unpredictability con-
straint which must hold even under (partial) exposure of some (but not all) of
the sampler’s queries. While our notion is general enough to generalize previous
oracle-free samplers and to encompass non-trivial examples (in particular mak-
ing seedless extraction impossible, which is what we want for the model to be
meaningful), we see potential for future research in relaxing this requirement.

Sponge-based key derivation.We also note that our techniques can be used
to immediately obtain provable security guarantees for sponge-based key-derivation.
(See Section 6.) While the security of sponge-based key derivation already fol-
lows from the original proof of [9], our result will be stronger in that it will also
hold for larger classes of permutation-dependent sources. We elaborate on this
point a bit further down in the last paragraph of the introduction, mentioning
further related work.

Our techniques. We note that our analysis follows from two main results, of
independent interest, which we briefly outline here. Both results are obtained
using Patarin’s H-coefficient method, as reviewed in Appendix 2.

The first result – which we refer to as the extraction lemma – deals with
the ability of extract keys from weak sources using sponges. In particular, we
consider the seeded construction Sp which starting from some initial state S0 =
IV, and obtaining I1, . . . , Ik from a weak random source, and a seed seed =
(seed0, . . . , seeds−1), iteratively computes S1, . . . , Sk as

Si ← π(Si−1 ⊕ (Ii ⊕ seedj) ‖ 0c) ,

where j is incremented modulo s after each iteration. Ideally, we want to prove
that if I1, . . . , Ik has high min-entropy h, then the output Sk is random, as long
as the adversary (who can see the seed and choose the IV) cannot query the
permutation more than (roughly) 2h times.4 Note that this cannot be true in
general – take e.g. k = 1, and even if I1 is uniformly random, one single inversion
query π−1(S1) is enough to distinguish S1 from a random string, as in the former
case the lower c bits will equal those of the IV. Still, we will be able to prove
that this attack is the only way to distinguish – roughly, we will prove that Sk is
uniform as long as the adversary does not query π−1(Sk) when given a random
St. This will be good enough for key-derivation applications, where we will need
this result for specific adversaries for which querying π−1(Sk) will correspond to
querying the secret key for an already secure construction. In fact, we believe the
approach of showing good extraction properties for restricted adversaries only

4 One may hope to prove a result which is independent of the number of queries, akin
to [14], as after all this structure resembles that of CBC. Yet, we will need to restrict
the number of queries for the overall security to hold, and given this, we can expect
better extraction performance – in particular, the output can be uniform for h� n,
whereas h ≥ n would be necessary if we wanted an unrestricted result.
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to be novel for ideal-model analyses, and of potential wider appeal. (A moral
analogue of this in the standard-model is the work of Barak et al on application-
specific entropy-loss reduction for the leftover-hash lemma [4].)

We note that the extraction lemma is even more general – we will consider a
generalized extraction game where an adversary can adaptively select a subset
of samples from an (also adversarial) distribution sampler with the guarantee of
having sufficient min-entropy. We also note that at the technical level this result
is inspired by recent analyses of key absorption stages within sponge-based PRFs
using key-prepending [3,20]. Nonetheless, these works only considered the case
of uniform keys, and not permutation-dependent weakly-random inputs.

Another component of possibly independent interest studies the security of
the step generating the actual random bits, when initialized with a state of
sufficient pseudorandomness. This result will show that security increases with
the number t of zero’ing steps applied to the state, i.e., the construction is secure
as long as the adversary makes less than 2rt queries.

Related work on oracle dependence.As shown in [28], indifferentiability
does not have any implications on multi-stage games such as robustness for
permutation-dependent distributions. Indeed, [28] was also the first work (to the
best our knowledge) to explicitly consider permutation-dependent samplers, in
the context of deterministic and hedged encryption. These results were further
extended by a recent notable work of Mittelbach [25], who provided general
conditions under which indifferentiability can be used in multi-stage settings.

We note that Mittelbach’s techniques can be used to prove that some indif-
ferentiable hash constructions are good extractors. However, this does not help
us in proving the extraction lemma, as the construction for which we prove the
lemma is not indifferentiable to start with, and thus the result fails. There is
hope however that Mittlebach’s technique could help us in proving our KDF
result of Section 6 via the indifferentiability proof for sponges [9] possibly for an
even larger class of permutation dependent samplers. We are not sure whether
this is the case, and even if possible, what the quantitative implications would be
– Mittelbach results are not formulated in the framework of sponges. In contrast,
here we obtain our result as a direct corollary of our extraction lemma.

We also note that oracle-dependence was further considered in other multi-
stage settings, for instance for related-key security [2]. Also, oracle-dependence
can technically be seen as a form of seed-dependence, as considered e.g. in [16],
but we are not aware of any of their techniques finding applications in our work.

2 Preliminaries

Basic notation. We denote [n] := {1, . . . , n}. For a finite set S (e.g., S =
{0, 1}), we let Sn and S∗ be the sets of sequences of elements of S of length n and
of arbitrary length, respectively. We denote by S[i] the i-th element of S ∈ Sn
for all i ∈ [n]. Similarly, we denote by S[i . . . j], for every 1 ≤ i ≤ j ≤ n, the sub-
sequence consisting of S[i], S[i+1], . . . , S[j], with the convention that S[i . . . i] =
S[i]. S1 ‖S2 denotes the concatenation of two sequences S1, S2 ∈ S∗, and if S1,S2
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are two subsets of S∗, we denote by S1 ‖ S2 the set {S1 ‖S2 : S1 ∈ S1, S2 ∈ S2}.
Moreover, for a single-element set S1 = {X} we simplify the notation by writing
X ‖ S2 instead of {X} ‖ S2. We let Perms(n) be the set of all permutations on

{0, 1}n. We denote by X
$← X the process of sampling the value X uniformly at

random from a set X . For a bitstring X ∈ {0, 1}∗, we denote by X1, . . . , X`
r← X

parsing it into ` r-bit blocks, using some fixed padding method. The distance of
two discrete random variables X and Y over a set X is defined as SD(X,Y ) =
1
2

∑
x∈X |Pr[X = x] − Pr[Y = x]|. Finally, recall that the min-entropy H∞(X)

of a random variable X with range X is defined as − log (maxx∈X PrX(x)).

Game-based definitions.We define our security notions using a game-playing
formalism in the spirit of [7]. For a game G, we denote by G(A) ⇒ 1 the event
that after an adversary A plays this game, the game outputs the bit 1. Similarly,
G(A)→ 1 denotes the event that the output of the adversary A itself is 1.

Ideal permutation model.We perform our analysis in the ideal permutation
model (IPM), where each party has oracle access to a public, uniformly random
permutation π selected at the beginning of any security experiment. For any
algorithm A, we denote by Aπ (or A[π]) that it has access to an oracle permu-
tation π, which can be queried in both the forward and backward direction. In
the games description below, we sometimes explicitly mention the availability
of π to the adversary as oracles π and π−1 for forward and backward queries,
respectively.

In the following, we define a natural extension of distinguishing random vari-
ables in the IPM. Given two distributions D0 and D1, possibly dependent on the

random permutation π
$← Perms(n), and an adversary A querying π, we denote

AdvdistA (D0, D1) = Pr
[
X

$← Dπ
0 : Aπ(X)⇒ 1

]
−Pr

[
X

$← Dπ
1 : Aπ(X)⇒ 1

]
.

We call A a qπ-adversary if it asks qπ queries to π.

PRNGs with input. We use the framework of [15] where a PRNG with input
is defined as a triple of algorithms G = (setup, refresh, next) parametrized by
integers n, r ∈ N, where:

- setup is a probabilistic algorithm that outputs a public parameter seed;

- refresh is a deterministic algorithm that takes seed, a state S ∈ {0, 1}n, and
an input I ∈ {0, 1}∗, and outputs a new state S′ ← refresh(seed, S, I) ∈
{0, 1}n;

- next is a deterministic algorithm that takes seed and a state S ∈ {0, 1}n,
and outputs a pair (S′, R) ← next(seed, S) ∈ {0, 1}n × {0, 1}r where S′ is
the new state and R is the PRNG output.

The parameters n, r denote the state length and output length, respectively.
Note that in contrast to [15], we do not restrict the length of the input I to
refresh. In this paper, by a PRNG we always mean a PRNG with input in the
sense of the definition above.
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The H-Coefficient Method. We give the basic theorem underlying the H-
Coefficient method [27], as recently revisited by Chen and Steinberger [11].

Let A be a deterministic, computationally unbounded adversary trying to
distinguish two experiments that we call real, respectively ideal, with respective
probability measures Prreal and Prideal. Let Treal (resp. Tideal) denote the ran-
dom variable of the transcript of the real (resp. ideal) experiment that contains
everything that the adversary was able to observe during the experiment. Let
GOOD∪BAD be a partition of all valid transcripts into two sets – we refer to the
elements of these sets as good and bad transcripts, respectively. Then we have:

Theorem 1 (H-Coefficient Method). Let δ, ε ∈ [0, 1] be such that:

(a) Pr [Tideal ∈ BAD] ≤ δ.
(b) For all τ ∈ GOOD, Pr [Treal = τ ]/Pr [Tideal = τ ] ≥ 1− ε .

Then
∣∣∣Prideal(A ⇒ 1)− Prreal(A ⇒ 1)

∣∣∣ ≤ SD(Treal,Tideal) ≤ ε+ δ .

3 PRNG Security in the IPM

The notions of robustness, recovering security, and preserving security for PRNGs
were originally introduced in [15]. In this section, we recast them for use in the
ideal permutation model to meet the needs of our analysis below. This requires
several extensions:

- We adjust for the presence of the permutation oracle π available to all parties.
In particular, we see the notion of a legitimate distribution sampler that
allows for oracle dependence given below as an important contribution.

- Our definitions take into account that the state of the entropy pool of the
sponge-based PRNG at some important points (e.g. after extraction) is not
desired to be close to a uniformly random string, but to a uniform element
of 0r ‖ {0, 1}c instead. Note that this is an instance of a more general point
raised already in [29], as we discuss in greater detail after giving the defini-
tions.

We then proceed by proving that these modified notions still maintain the useful
property shown in [15,29]: the combination of recovering security and preserving
security still implies the robustness of the PRNG.

3.1 Oracle-dependent randomness and distribution samplers

This section discusses the issue of generating randomness in a model where a

randomly sampled permutation π
$← Perms(n) is available to all parties. We

give a formal definition of adversarial distribution samplers to be used within
the PRNG security notions formalized further below.

For our purposes, an (oracle-dependent) source S = Sπ is an input-less ran-
domized oracle algorithm which makes queries to π and outputs a string X.
The range of S, denoted [S], is the set of values x output by Sπ with positive
probability, where the probability is taken over the choice of π and the internal
random coins of S.
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Distribution samplers.We extend the paradigm of (adversarial) distribution
samplers considered in [15] to allow for oracle queries to a permutation oracle

π
$← Perms(n).5 Recall that in the original formalization, a distribution sampler

D is a randomized stateful algorithm which, at every round, outputs a triple
(Ii, γi, zi), where zi is auxiliary information, Ii is a string, and γi is an entropy
estimate. In order for such sampler to be legitimate, for every i (up to a certain
bound qD), given Ij for every j 6= i, as well as (z1, γ1), . . . , (zqD , γqD ), it must be
hard to predict Ii with probability better than 2−γi , in a worst-case sense over
the choice of Ij for j 6= i and (z1, γ1), . . . , (zqD , γqD ).

Extending this worst-case requirement will need some care. To facilitiate this,
we will consider a specific class of oracle-dependent distribution samplers, which
explicitly separate the process of sampling the auxiliary information from the
processes of sampling the I values. Formally, we will achieve this by explicitly
requiring that D outputs (the description of) a source Si, rather than a value
Ii, and the actual value Ii is sampled by running this Si once with fresh random
coins.

Definition 2 (Distribution samplers). A Q-distribution sampler is a ran-
domized stateful oracle algorithm D which operates as follows:

- It takes as input a state σi (the initial state is σ0 = ⊥)
- On input σi−1, Dπ(σi−1) outputs a tuple (σi,Si, γi, zi), where σi is a new

state, zi is the auxiliary information, γi is an entropy estimation, and Si is

a source with range [Si] ⊆ {0, 1}`i for some `i ≥ 1. Then, we run Ii
$← Sπi

to sample the actual value.
- When run for qD times, the overall number of queries made by D and
S1, . . . ,SqD is at most Q(qD). If Q = 0, then D is called oracle indepen-
dent.

We often abuse notation, and compactly denote by (σi, Ii, γi, zi)
$← Dπ(σi−1)

the overall process of running D and the generated source Si to jointly produce
(σi, Ii, γi, zi).

Also we will simply refer to D as a distribution sampler, omitting Q, when the
latter is not relevant to the context. Finally, note that in contrast to [15], we
consider a relaxed notion where the outputs Ij can be arbitrarily long strings,
and are not necessarily fixed length. Still, we assume that the lengths `1, `2, . . .
are a-priori fixed parameters of the samplers, and cannot be chosen dynamically.

We note that this definition appears to exhibit some degree of redundancy.
In particular, it seems that without loss of generality one can simply assume
that the generated Si outputs a fixed value. (Note that Si can be chosen itself
from a distribution.) However, this separation will be convenient in defining our
legitimacy notion for such sampler, as we will distinguish between permutation
queries made by Si, and other permutation queries made by D (and Sj for j 6= i).

5 We present the notions here for this specialized case, but needless to say, they extend
naturally to other types of randomized oracles, such as random oracles or ideal
ciphers.
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Game GLEGqD,i∗(A, D):

1. Sample π
$← Perms(n)

2. Run Dπ qD rounds, producing outputs (γ1, z1), . . . , (γqD , zqD ), as well as
I1, . . . , IqD . This in particular entails sampling sources S1, . . . ,SqD , and
sampling I1, . . . , IqD from them (recall that each Si can query π). Let QD
be the set of all input-output pairs of permutation queries made by D and
by Sj (for j 6= i∗) in this process. (That is, the queries made by Si∗ are
omitted.)

3. Run A on input (γj , zj)j∈[qD ] and (Ij)j∈[qD ]\{i∗}, and let VA be A’s final
output.

4. The game then outputs ((I1, γ1, z1), . . . , (IqD , γqD , zqD ), VA, QD)

Fig. 1. Definition of the game GLEGqD,i∗(A,D).

Legitimate distribution samplers. Intuitively, we want to say that once a
source Si is output with entropy estimate γi, then its output has min-entropy γi
conditioned on everything we have seen so far. However, due to the availability of
the oracle π, which is queried by D, by Si, and by a potential observer attempting
to predict the output of Si, this is somewhat tricky to formalize.

To this end, let D be a distribution sampler, A an adversary, and fix i∗ ∈ [qD],
and consider the game GLEGqD,i∗(A,D) given in Figure 1. Here, the adversary
is given Ij for j 6= i∗ and (z1, γ1), . . . , (zqD , γqD ), and can make some ideal per-
mutation queries by itself. Then, at the end, the game outputs the combination
of (z1, γ1, I1), . . . , (zqD , γqD , IqD ), the adversary’s output, and a transcript of all
permutation queries made by (1) D, and (2) Sj for j 6= i∗. We ask that in the
worst case, the value Ii∗ cannot be predicted with advantage better than 2−γi∗

given everything else in the output of the game. Formally:

Definition 3 (Legitimate distribution sampler). We say that a distribu-
tion sampler D is (qD, qπ)-legitimate, if for every adversary A making qπ queries
and every i∗ ∈ [qD], and for any possible values (Ij)j 6=i∗ , (γ1, z1), . . . , (γqD , zqD ),
VA, QD potentially output by the game GLEGqD,i∗(A,D) with positive probability,

Pr
[
Ii∗ = x

∣∣ (Ij)j 6=i∗ , (γ1, z1), . . . , (γqD , zqD ), VA,QD
]
≤ 2−γi∗ (1)

for all x ∈ {0, 1}`i∗ , where the probability is conditioned on these particular
values being output by the game.

Note that the unpredictability of Ii∗ is due to what is not revealed, including
the oracle queries made by Si∗ , and internal random coins of Si∗ and D. For
instance, for oracle-independent distribution samplers (which we can think of
as outputting “constant” sources), our notion of legitimacy is equivalent to the
definition of [15]. We show a more interesting example next.

An example: Permutation-based randomness extraction.Consider the
simple construction Hπ : {0, 1}n → {0, 1}n/2 which on input X outputs the first
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n/2 bits of π(X). It is not hard to prove that if X is an n-bit random variable
with high min-entropy k, i.e., Pr [X = X] ≤ 2−k for all X ∈ {0, 1}n, and Un/2 is
uniform over the (n/2)-bit strings, then for all adversaries A making qπ queries,

AdvdistA (Hπ(X),Un/2) ≤ O
( qπ

2n/2

)
+
qπ
2k

. (2)

The proof (which we omit) would simply go by saying that as long as the attacker
does not query X to π (on which it has k bit of uncertainty), or queries π(X) to
π−1 (on which it has only n/2 bits of uncertainty), the output looks sufficiently
close to uniform (with a tiny bias due to the gathered information about π via
A’s direct queries).

Now, let us consider a simple distribution sampler D which does the following
– at every round, regardless of this input, it always outputs a source S = Sπ, as
well as γ = n−1, and z = ⊥. The source S does the following: It queries random
n-bit strings Xi to π, until the first bit of π(Xi) is 0, and then outputs Xi. It
is not hard to show that for any qD and qπ, this sampler is (qD, qπ)-legitimate.
This is because even if A knows the entire description of π, S always outputs an
independent uniformly distributed n-bit string X conditioned on π(X) having
the first bit equal 0, and the distribution is uniform over 2n−1 possible such X’s.
Yet, given X sampled from D (and thus from S), it is very easy to distinguish
Hπ(X) and Un/2 with advantage 1

2 , by having A simply output the first bit of
its input, and thus without even making a query to π!

We stress that this is nothing more than the ideal-model analogue of the
classical textbook proof that seedless extractors cannot exist for the class all k-
sources, even when k is as large as n− 1. Above all, this shows that our class of
legitimate samplers is strong enough to encompass such pathological examples,
thus allowing to eliminate the odd artificiality of ideal models.

A brief discussion.The example above shows that our notion is strong enough
to include (1) non-trivial distributions forcing us to use seeds and (2) permutation-
independent samplers. It is meaningful to ask whether it is possible to weaken
the requirement so that the output of Si∗ is only unpredictable when the π
queries issued by Sj for j 6= i∗ and by D are not revealed by the game, and
still get meaningful results. We believe this is possible in general, but without
restrictions, there are non-trivial dependencies arising (thanks to the auxiliary
input) between what the adversary can see and the sampling of Ii∗ which we
cannot handle in our proofs in a generic way.

3.2 Robustness, Recovering and Preserving Security in the IPM

Robustness. The definition of robustness follows the one from [15], with two
modifications.

The first change implements the IPM: a random permutation π is sampled
in the initialize procedure, and the adversary A is given two additional oracles π
and π−1 allowing forward and backward queries to it (note that for simplicity,
our notation does not distinguish between the permutation π itself, and the



12 Peter Gaži and Stefano Tessaro

Procedure initialize:

π
$← Perms(n)

seed
$← setupπ()

S
$← 0r ‖ {0, 1}c

σ ← ⊥
corrupt← false

e← c
b

$← {0, 1}
return seed

Procedure finalize(b∗):
return (b = b∗)

Procedure π(x):
return π(x)

Procedure π−1(x):

return π−1(x)

Procedure D-refresh:

(σ, I, γ, z)
$← Dπ(σ)

S ← refreshπ(seed, S, I)
e← e+ γ
if e ≥ γ∗:

corrupt← false

return (γ, z)

Procedure next-ror:

(S,R0)
$← nextπ(seed, S)

R1
$← {0, 1}`

if corrupt = true:
e← 0
return R0

return Rb

Procedure get-next:

(S,R)
$← nextπ(seed, S)

if corrupt = true:
e← 0

return R

Procedure get-state:
e← 0
corrupt← true

return S

Procedure set-state(S∗):
e← 0
corrupt← true

S ← S∗

Fig. 2. Definition of the game ROBγ
∗

G (A,D).

oracle giving access to it). The distribution sampler D is allowed to query π in
both directions as well. We note that this modification is straightforward and
can easily be extended to any other ideal permutation – we avoid doing so for
ease of notation.

The second change makes the definition useful in the context of a sponge-
based PRNG: the initial state S sampled in the initialize procedure consists of r
zero-bits concatenated with c uniformly random bits, for some r + c = n.

The formal definition of robustness is based on the game ROB given in Fig-
ure 2 and parametrized by a constant γ∗. The game description consists of special
procedures initialize and finalize and 7 additional oracles. It is run as follows: first
the initialize procedure is run, its output is given to the adversary which is then
allowed to query the 7 oracles described, and once it outputs a bit b∗, this is then
given to the finalize procedure, which generates the final output of the game.

For an adversary A and a distribution sampler D, their advantage against
the robustness of a PRNG with input G is defined as

Advγ
∗-rob

G (A,D) :=
∣∣∣2 · Pr

[
ROBγ

∗

G (A,D)⇒ 1
]
− 1
∣∣∣ .

An adversary against robustness that asks qπ queries to its π/π−1 oracles, qD
queries to its D-refresh oracle, qR queries to its next-ror/get-next oracles, and qS
queries to its get-state/set-state oracles, is called a (qπ, qD, qR, qS)-adversary.

Recovering security. We follow the definition from [15], again with several
differences. Most importantly, we only require that the state resulting from the
final next call in the experiment has to be indistinguishable from a c-bit uniformly
random string preceded with r zeroes, instead of a random n-bit string.
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1. The challenger chooses π
$← Perms(n), seed

$← setupπ(), and b
$←

{0, 1} and sets σ0 ← ⊥. For k = 1, . . . , qD, the challenger computes
(σk, Ik, γk, zk)← Dπ(σk−1).

2. The attacker A gets seed and γ1, . . . , γqD , z1, . . . , zqD . It gets access to
oracles π/π−1 that work as above. Moreover, it also gets access to an
oracle get-refresh() which initially sets k ← 0 and on each invocation
increments k ← k + 1 and outputs Ik. At some point, A outputs a value
S0 ∈ {0, 1}n and an integer d such that k + d ≤ qD and

∑k+d
j=k+1 γj ≥ γ

∗.
3. For j = 1, . . . , d the challenger computes Sj ← refreshπ(seed, Sj−1, Ik+j).

If b = 0 it sets (S∗, R) ← nextπ(seed, Sd), otherwise it sets (S∗, R)
$←

(0r ‖ {0, 1}c) × {0, 1}r. The challenger gives Ik+d+1, . . . , IqD and (S∗, R)
to A.

4. The attacker again gets access to π/π−1 and outputs a bit b∗. The output
of the game is 1 iff b = b∗.

Fig. 3. Definition of the game RECγ
∗,qD

G .

1. The challenger chooses π
$← Perms(n), seed

$← setupπ() and b
$← {0, 1}

and a state S0
$← 0r ‖ {0, 1}c.

2. The attacker A gets access to oracles π/π−1 that work as above, and
outputs a sequence of values I1, . . . , Id with Ij ∈ {0, 1}∗ for all j ∈ [d].

3. The challenger computes Sj ← refreshπ(seed, Sj−1, Ij) for all j = 1, . . . , d.

If b = 0 it sets (S∗, R) ← nextπ(seed, Sd), otherwise it sets (S∗, R)
$←

(0r ‖ {0, 1}c)× {0, 1}r. The challenger gives (S∗, R) to A.
4. The attacker A again gets access to π/π−1 and outputs a bit b∗. The

output of the game is 1 iff b = b∗.

Fig. 4. Definition of the game PRESG.

Recovering security is defined in terms of the game REC parametrized by qD,
γ∗, given in Figure 3. For an adversary A and a distribution sampler D, their
advantage against the recovering security of a PRNG with input G is defined as

Adv
(γ∗,qD)-rec
G (A,D) :=

∣∣∣2 · Pr
[
RECγ

∗,qD
G (A,D)⇒ 1

]
− 1
∣∣∣ .

An adversary against recovering security that asks qπ queries to its π/π−1 oracles
is called a qπ-adversary.

Preserving security. We again follow the definition from [15], with similar
modifications as in the case of recovering security above.

The formal definition of preserving security is based on the game PRES given
in Figure 4. For an adversary A, their advantage against the preserving security
of a PRNG with input G is defined as

AdvpresG (A) := |2 · Pr [PRESG(A)⇒ 1]− 1| .

An adversary against preserving security that asks qπ queries to its π/π−1 oracles
is again called a qπ-adversary.
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Relationship to [29]. Our need to adapt the notions of [15] confirms that, as
observed in [29], assuming that the internal state of a PRNG is pseudorandom
is overly restrictive. Indeed, our formalization is a special case of the approach
from [29] into the setting of sponge-based constructions, where the so-called
masking function would be defined as sampling a random S ∈ 0r ‖ {0, 1}c (and
preserving the counter j). Our notions would then correspond to the “boot-
strapped” notions from [29] and moreover, our results on recovering security
below indicate that a naturally-defined procedure setup (for generating the ini-
tial state as in [29]) would make this masking function satisfy the honest-
initialization property.

Combining preserving and recovering security.This theorem establishes
the very useful property that, roughly speaking, the preserving security and the
recovering security of a PRNG together imply its robustness. We give an outline
of its proof (following [15]) in Appendix A.

Theorem 4. Let G[π] be a PRNG with input that issues qrefπ (resp. qnxtπ ) π-
queries in each invocation of refresh (resp. next); and let qπ := qπ+Q(qD). For ev-
ery (qπ, qD, qR, qS)-adversary A against robustness and for every Q-distribution

sampler D, there exists a family of (qπ + qR · qnxtπ + qD · qrefπ )-adversaries A(i)
1

against recovering security and a family of (qπ + qR · qnxtπ + qD · qrefπ )-adversaries

A(i)
2 against preserving security (for i ∈ {1, . . . , qR}) such that

Advγ
∗-rob

G (A,D) ≤
qR∑
i=1

(
Adv

(γ∗,qD)-rec
G (A(i)

1 ,D) + AdvpresG (A(i)
2 )
)
.

4 Robust Sponge-based PRNG

We consider the following construction of a PRNG with input, given a permu-
tation π ∈ Perms(n), depending on parameters s and t. This construction is a
seeded variant of the general paradigm introduced by Bertoni et al. [10], includ-
ing countermeasures to prevent attacks against forward secrecy. As we will see
in the proof, the parameters s and t are going to enforce increasing degrees of
security.

The construction. Let s, t ≥ 1, and r ≤ n, let c := n − r. We define
SPRGs,t,n,r = (setup, refresh, next), where the three algorithms setup, refresh,
next make calls to some permutation π ∈ Perms(n) and operate as follows:

Proc. setupπ():
for i = 0, . . . , s− 1 do

seedi
$← {0, 1}r

seed← (seed0, . . . , seeds−1)
j ← 1
return seed

Proc. refreshπ(seed, S, I):

I1, . . . , I`
r← I

S0 ← S
for i = 1, . . . .` do

Si ← π(Si−1⊕
(Ii ⊕ seedj ‖ 0c))

j ← j + 1 mod s
return S`

Proc. nextπ(seed, S):
S0 ← π(S)

R
$← S0[1 . . . r]

for i = 1, . . . , t do
Si ← π(Si−1)
Si[1 . . . r]← 0r

j ← 1
return (St, R)
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π
⊕

Ii

⊕seed(i mod s)

/

/

r

c

S π

R

π 0r
S′

refresh

applied t times

next

Fig. 5. Procedures refresh (processing a one-block input Ii) and next of the construction
SPRGs,t[π].

Note that apart from the entropy pool S, the PRNG also keeps a counter j
internally as a part of its state. This counter increases (modulo s) as blocks are
processed via refresh, and gets resetted whenever next is called. We will often
just write SPRG, omitting the parameters s, t, n, r whenever the latter are clear
from the context. In particular, the parameter s determines the length of the
seed in terms of r-bit blocks. The construction SPRG is depicted in Figure 5.

We also note that it is not hard to modify our treatment to allow for next
outputting multiple r-bit blocks at once, instead of just one, and this length could
be variable. This could be done by providing an additional input, indicating the
number of desired blocks and this would ensure better efficiency. The bounds of
this paper would only be marginally affected by this, but we decided to keep the
presentation simple in this paper. We will point out the necessary modifications
later below in our analysis to handle the more general case.

Insecurity of the unseeded version.We show that seeding is necessary to
achieve robustness. A similar argument implies that the original construction
of [10] cannot be secure if the distribution sampler is allowed to depend on the
public random permutation π.

To this end, we consider the distribution sampler D which on its first call
outputs an `·r-bit string, for a parameter ` such that (`−1)r ≥ γ∗. In particular,
on its first call D simply outputs a source S1 which behaves as follows, given the
corresponding entropy estimate (`− 1) · r:

- It internally samples r-bit strings I1, . . . , I`−1 uniformly at random.

- Then, it samples random I1
` , I

2
` , . . . until it finds one such that Rj [1] = 0,

where R are the r-bit returned by running next after running refresh, from
the some initial state S, with inputs I1, . . . , I`−1, I

j
` .

Additionally, consider a robustness adversary A that first calls set-state(S) and
then D-refresh(). Finally, it queries next-ror() obtaining R∗, and checks whether
R∗[1] = 0. Clearly, A achieves advantage 1/2 despite D being legitimate.
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5 Security Analysis of SPRG

This section presents our security analysis of SPRG given in Section 4 above,
under the assumption that the underlying permutation is a random permutation
π ∈ Perms(n).

Theorem 5 (Security of SPRG). Let SPRG := SPRGs,t,n,r[π] denote the
PRNG given in Section 4. Let γ∗ > 0, let A be a (qπ, qD, qR, qS)-adversary
against robustness and let D be a (qD, qπ)-legitimate Q-distribution sampler such
that the length of its outputs I1, . . . , IqD padded into r-bit blocks is at most ` · r
bits in total. Then we have

Advγ
∗-rob

SPRG(A,D) ≤ qR ·
(

2(2`+ 2)(qπ + q′ + t+ `) + 4`2

2n
+
qπ + q′ + t+ 1

2γ∗
+

+
22(qπ + q′ + t+ 1)2 + qπ + q′

2c
+

2(qπ + q′)

2(r−1)t
+
Q(qD)

2sr

)
,

where we use the notational shorthands qπ := qπ+Q(qD) and q′ := (t+1)qR+`.

Note in particular that the construction is secure as long as qR · qπ · ` < 2n,
qR · qπ, q2

R < 2c, qπ, q
2
R ≤ 2γ

∗
, q2
R, qπqR ≤ 2(r−1)t. Note that these are more than

sufficient margins for SHA-3-like parameters, where n = 1600 and c ≥ 1024
always holds. However, one should assess the bound more carefully for a single-
key cipher instantiation, where n = 128. In this case, choosing a very small r
(note that our construction and bound would support r ≥ 2) would significantly
increase margins.

The theorem follows from the bounds on the recovering security and pre-
serving security of SPRG proven in Lemmas 11 and 12 below, combined using
Theorem 4. To be able to establish these two bounds, we first give two underlying
lemmas that represent the technical core of our analysis. The first one, Lemma 6,
investigates the ability of a seeded sponge construction to act as a randomness
extractor also on inputs that are coming from a permutation-dependent dis-
tribution sampler. The second statement, given in Lemma 10, shows that the
procedure next, given a high min-entropy input, produces an output that is very
close to random. We believe that both statements are of independent interest.

5.1 The Sponge Extraction Lemma

The first component of our analysis of SPRG is a general lemma that addresses
how sponge-based constructions can be used to extract (or in fact, condense)
randomness. To this end, we first give a general definition of adaptively secure
extraction functions.

Let Ex[π] : {0, 1}u×{0, 1}v ×{0, 1}∗ → {0, 1}n be an efficiently computable
function taking as parameters a u-bit seed seed, a v-bit initialization value IV,
together with an input string X ∈ {0, 1}∗. It makes queries to a permutation
π ∈ Perms(n) to produce the final n-bit output Exπ(seed, IV, X). Then, for every
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Game GEXTγ
∗,qD

Ex (A,D):

1. The challenger chooses seed
$← {0, 1}u, π

$← Perms(n) and b
$← {0, 1} and

sets σ0 ← ⊥. For k = 1, . . . , qD, the challenger computes (σk, Ik, γk, zk)←
D(σk−1).

2. The attacker A gets seed and γ1, . . . , γqD , z1, . . . , zqD . It gets access to
oracles π/π−1 that work as above. Moreover, it also gets access to an
oracle get-refresh() which initially sets k ← 0 and on each invocation
increments k ← k + 1 and outputs Ik. At some point, A outputs a value
IV and an integer d such that k + d ≤ qD and

∑k+d
j=k+1 γj ≥ γ

∗.

3. If b = 1, we set Y ∗
$← {0, 1}n, and if b = 0, we let Y ∗ ←

Exπ(seed, IV, Ik+1 ‖ · · · ‖ Ik+d). Then, the challenger gives back Y ∗ and
Ik+d+1, . . . , IqD to A.

4. The attacker again gets access to π/π−1 and outputs a bit b∗. The output
of the game is 1 iff b = b∗.

Fig. 6. Definition of the game GEXTγ
∗,qD

Ex (A,D).

γ∗ > 0 and qD, for such an Ex, an adversary A and a distribution sampler D, we

consider the game GEXTγ
∗,qD

Ex (A,D) given in Figure 6. It captures the security
of Ex in producing a random looking output in a setting where an adaptive
adversaryA can obtain side information and entropy estimates from a samplerD,
together with samples I1, . . . , Ik, until it commits on running Ex on adaptively
chosen IV, as well as Ik+1 . . . Ik+d for some d such that the guaranteed entropy

of these values is
∑k+d
i=k+1 γi ≥ γ∗. We define the (qD, γ

∗)-extraction advantage
of A and D against Ex as

Adv
(γ∗,qD)−ext
Ex (A,D) := 2 · Pr

[
GEXTγ

∗,qD
Ex (A,D)⇒ 1

]
− 1 .

Also, we denote by Adv(γ∗,qD)−hit
n (A,D) the probability thatA queries π−1(Y ∗)

conditioned on b = 1 in game GEXTγ
∗,qD

Ex (A,D) above, i.e., Y ∗ is the random
n-bit challenge. (The quantity really only depends on n, and not on the ac-
tual function Ex, which is dropped from the notation.) Note that in general

Adv(γ∗,qD)−hit
n (A,D) can be large, but we will consider it for specific adversaries

A for which it can be argued to be small, as we discuss below in greater detail.

Sponge-based extraction. Let us consider the following sponge-based in-
stantiations of Ex. That is, for parameters r ≤ n (recall that we use the
shorthand c = n − r), we consider the construction Spn,r,s[π] : {0, 1}s·r ×
{0, 1}n × {0, 1}∗ → {0, 1}n using a permutation π ∈ Perms(n) which, given seed
seed = (seed0, . . . , seeds−1) (where seedi ∈ {0, 1}r for all i), initialization value
IV ∈ {0, 1}n, input X ∈ {0, 1}∗, first encodes X into r bit blocks X1, . . . , X`,
and then outputs Y`, where Y0 ← IV and for all i ∈ [`],

Yi ← π(Yi−1 ⊕ (Xi ⊕ seedi mod s) ‖ 0c) .
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We now turn to the following lemma, which will be used as a component in
the rest of our analysis of SPRG. The statement has however other interesting
applications, as we discuss further below in Section 6. We consider the lemma to
be of sufficient interest to deserve a detailed discussion, which we give just after
its statement, and before turning to its formal proof.

Lemma 6 (Extraction Lemma). Let r, s be integers, let qD, qπ be arbitrary,
and let γ∗ > 0. Also, let D be a (qD, qπ)-legitimate Q-distribution sampler, such
that the length of its outputs I1, . . . , IqD padded into r-bit blocks is at most ` · r
bits in total. Then, for any adversary A making qπ ≤ 2c−2 queries,

Adv
(γ∗,qD)−ext
Spn,r,s

(A,D) ≤ qπ
2γ∗

+
Q(qD)

2sr
+

14q2
π

2c
+

2qπ`+ 2`2

2n
+Adv(γ∗,qD)−hit

n (A,D) ,

(3)
where qπ = qπ +Q(qD).

Discussion.First off, note that in (3), we cannot in general expect the advantage

Adv(γ∗,qD)−hit
n (A,D) to be small – any A sees Y ∗ and thus can query it, and

the bound is hence void for such adversaries. The reason why this is not an
issue is that the extraction lemma will be applied to specific A’s resulting from
reductions in scenarios where Spn,r,s is used to derive a key for an algorithm
which is already secure when used with a proper independent random key. In this
case, it is easy to upper bound Adv(γ∗,qD)−hit

n (A,D) in terms of the probability
of a certain adversary A′ (from which A is derived) recovering the secret key of
a secure construction.

But why is this term necessary? We note that one can expect the output
to be random even without this restriction on querying π−1(Y ), if we have the
guarantee that the weakly random input fed into Spn,r,s is long enough. However,
this only yields a weaker result. In particular, if Spn,r,s is run on r-bit inputs
Ik+1, . . . , Ik+d to produce an output Y ∗ (which may be replaced by a random
one in the case b = 1), it is not hard to see that guessing Ik+2, . . . , Ik+d is
sufficient to distinguish, regardless of Ik+1. This is because an adversary A can
simply “invert” the construction starting from computing Sk+d−1 ← π−1(Y ∗),
Sk+d−2 ← π−1(Sk+d−1⊕(Ik+d⊕seedk+d mod s) ‖ 0c), . . . until it recovers S0, and
then checks whether S0[r + 1 . . . n] = IV[r + 1 . . . n]. This will succeed always in
the b = 0 case, but with small probability in the b = 1 case. Above all, the crucial
point is that Ik+1 is not necessary to perform this attack. In particular, this would
render the result useless for d = 1, whereas our statement still makes it useful
as long as qπ ≤ 2r, which is realistic for say r ≥ 80, and Adv(γ∗,qD)−hit

n (A,D) is
small.

An independent observation is that for oracle-independent distribution sam-
plers (i.e., which do not make any permutation queries), we have Q(qD) = 0. In
this case, the bound becomes independent of s, and indeed one can show that
the bound holds even if the seed is contant (i.e., all zero), capturing the common
wisdom that seeding is unnecessary for oracle-independent distributions.

Proof intuition.The proof of Lemma 6, which we give in full detail below, is
inspired by previous analyses of keyed sponges, which can be seen as a special
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case where a truly random input is fed into Spn,r,s.
6 We will show that the advan-

tage of A and D is bounded roughly by the probability that they jointly succeed
in having made all queries necessary to compute Spn,r,s(seed, IV, Ik+1 ‖ . . . ‖ Ik+d).
Indeed, we show that as long as not all necessary queries are made, then the dis-
tinguisher cannot distinguish the case b = 0 from the case b = 1 with substantial
advantage. The core of the proof is bounding the above probability that all
queries are issued.

To this end, with X1, . . . , X` representing the encoding into r-bit blocks of
Ik+1 ‖ . . . ‖ Ik+d, we consider all possible sequences of ` queries to the permuta-
tion, each made by A or D, resulting in (not necessarily all distinct) input-output
pairs (α1, β1), . . . , (α`, β`) with the property that

αi[r + 1 . . . n] = βi−1[r + 1 . . . n]

for every i ∈ [`], where we have set β0 = IV for notational compactness. (We
call such sequence of ` input-output pairs a potential chain.) We are interested
in the probability that for some potential chain we additionally have

αi[1 . . . r] = βi−1[1 . . . r]⊕Xi ⊕ seedi mod s (4)

for all i ∈ [`]. Let us see why we can expect the probability that this happens to
be small.

Recall that our structural restriction on D enforces that all of the values
Ik+1, . . . , Ik+d are explicitly sampled by component sources Sk+1, . . . ,Sk+d. One
first convenient observation is that as long as the overall number of permutation
queries by D and A, which is denoted by q̄π, is smaller than roughly 2c/2, then
every potential chain can have only one of the two following formats:

- Type A chains. For k ∈ [0 . . . `], k input-output pairs (α1, β1), . . . , (αk, βk)
resulting from forward queries made by D outside the process of sampling
Ik+1 . . . Ik+d by Sk+1, . . . ,Sk+d, followed by ` − k more input-output pairs
(αk+1, βk+1), . . . , (α`, β`) resulting from queries made by A directly.

- Type B chains. The potential chain is made by some input-output pairs
(α1, β1), . . . , (α`, β`) all resulting from forward permutation queries made by
D, in particular also possibly by the component sources Sk+1, . . . ,Sk+d.

One can also show that for qπ < 2c/2, it is likely that the number of such potential
chains (either of Type A or Type B) is at most qπ and Q(qD), respectively. Now,
we can look at the process of creating Type A and Type B chains separately, and
note that in the former, the outputs of Sk+1, . . . , Sk+d have some uncertainty
left (roughly, at least γ∗ bits of entropy), thus the generated X1, . . . , X` end
up satisfying (4) for each of the Type A potential chains with probability at
most 2−γ

∗
. Symmetrically, the process of generating Type B chains is totally

independent of the seed, and thus once the seed is chosen (which is made of s · r
random bits), each one of the at most Q(qD) potential Type B chains ends up
satisfying (4) with probability upper bounded by roughly 2−rs.

We stress that making this high-level intuition formal is quite subtle.

6 We note that none of these analysis tried to capture a general statement.
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Can we achieve a better bound?The extraction lemma requires qπ ≤ 2c/2

for it to be meaningful. One can indeed hope to extend the techniques from [14]
and obtain a result (at least for permutation independent sources) which holds
even if π is completely known to A, while still being randomly sampled. However,
we stress that in this regime one can only expect the state output by Spn,r,s to
be random only as long as at least n random bits have been input. In contrast,
here we aim at the heuristic expectation (formalized in the ideal model) that
as long as the number of queries is small in proportion to the entropy of the
distribution, then the output looks random.

We note that the restriction qπ ≤ 2c/2 is common for sponges – beyond
this, collisions become easy to find, and parameters are set to prevent this.
Nonetheless, recent analyses of key absorption (which can be seen as a special
case where the inputs are uniform) in sponge-based PRFs [20] trigger hope for
security for nearly all qπ ≤ 2c, as they show that such collisions are by themselves
not harmful. Unfortunately, in such high query regimes the number of potential
chains as described above effectively explodes, and using the techniques of [20]
(which are in turn inspired by [12]) to bound the number of chains results in a
fairly weak result.

Proof (of Lemma 6). The proof uses the H-coefficient method, as illustrated in

Section 2 – indeed, to upper bound Adv
(γ∗,qD)−ext
Spn,r,s

(A,D), by a standard argu-

ment, one needs to upper bound the difference between the probabilities that
A outputs 1 in the b = 1 and in the b = 0 cases, respectively. Throughout this
proof, we assume that A is deterministic, and that D is also deterministic, up
to being initialized with a random input R (of sufficient length) consisting of all
random coins used by D. In particular, R also contains the random coins used
to sample the I1, I2, . . . , IqD values by the sources S1, . . . ,SqD output by D.

To simplify the proof, we enhance the game GEXTγ
∗,qD

Spn,r,s
(A,D) so that the

adversary A, when done interacting with π, learns some extra information just
before outputting the decision bit b′. This extra information includes:

- All strings Ik+1, . . . , Ik+d generated by D and hidden to A so far.
- The randomness R and all queries to π made by the distribution sampler D

throughout its qD calls. This includes all queries made by S1, . . . ,SqD . Recall
that there are at most Q(qD) such queries by definition.

While this extra information is substantial, note that A cannot make any further
queries to the random permutation after learning it, and, as we will see, this
information does not hurt indistinguishability. Introducing it will make reasoning
about the proof substantially easier. To start with, note that an execution of

GEXTγ
∗,qD

Spn,r,s
(A,D) defines a transcript of the form

τ = ((u1, v1), . . . , (uq′ , vq′), Y
∗, R, seed = (seed1, . . . , seeds),

γ1, . . . , γqD , I1, . . . , IqD , z1 . . . zqD , IV, k, d) , (5)

where (ui, vi) are the input-output pairs resulting from the π-queries by D and
A (that is, either π(ui) = vi or π−1(vi) = ui for each (ui, vi) was queried by at
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least one of D and A), removing duplicates, and ordered lexicographically. Note
in particular that q′ ≤ Q(qD) + qπ = qπ, and that the information whether a
pair is the result of a forward or a backward query (or both) is omitted from the
transcript, as it will not be used explicitly in the following.

We say that a transcript τ as in (5) is valid if when running GEXTγ
∗,qD

Spn,r,s
(A,D)

with seed value fixed to seed, feeding Y ∗ to A, executing D with randomness
R, and answering permutation queries via a partial permutation π′ such that
π′(ui) = vi for all i ∈ [q′], then

- The execution terminates, i.e., every permutation query is on a point for
which π′ is defined. Moreover, all queries in (u1, v1), . . . , (uq′ , vq′) are asked
by either D or A at some point.

- D indeed outputs (I1, z1, γ1), . . . , (IqD , zqD , γqD ).
- A indeed outputs IV and d, after k calls to get-refresh().

Now let T0 and T1 be the distributions on valid transcripts resulting from

GEXTγ
∗,qD

Spn,r,s
(A,D) in the b = 0 and b = 1 cases, respectively. Then,

Adv
(γ∗,qD)−ext
Spn,r,s

(A,D) ≤ SD(T0,T1) , (6)

since the extra information can only help, and a (possibly non-optimal) distin-
guisher for T0 and T1 can still mimic A’s original decision (i.e., output bit),
simply ignoring all additional information contained in the transcripts.

We are now ready to present our partitioning of transcripts into good and bad
transcripts. Note first that a transcript explicitly tells us the blocks Ik+1, . . . , Ik+d

processed by Spn,r,s, and concretely let X1 . . . X` be the enconding into r-bit
blocks of Ik+1 ‖ · · · ‖ Ik+d when processed by Spn,r,s, i.e., in particular we let
` = `(τ) be the length here (in terms of r-bit blocks) of this encoding.

Definition 7 (Bad transcript). We say that a transcript τ as in (5) is bad
if one of the two following properties is satisfied:

- Hit. There exists an (ui, vi), for i ∈ [q′], with vi = Y . Note that this may
be the result of a forward query π(ui) or a backward query π−1(vi), or both.
Which one is the case does not matter here.

- Chain. There exist ` permutation queries

(α1, β1), . . . , (α`, β`) ∈ {(u1, v1), . . . , (uq′ , vq′)}

(not necessarily distinct) that constitute a chain, i.e., such that

αi[1 . . . r] = βi−1[1 . . . r]⊕Xi ⊕ seedi mod s

αi[r + 1 . . . n] = βi−1[r + 1 . . . n]
(7)

for every i ∈ [`], where we have set β0 = IV for notational compactness.

Also, we denote by B the set of all bad transcripts.
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The proof is then concluded by combining the following two lemmas using
Theorem 1 in Section 2. We prove these lemmas in Appendices B and C, respec-
tively.

Lemma 8 (Ratio analysis). For all good transcripts τ ,

Pr [T0 = τ ] ≥
(

1− 2q′`+ 2`2

2n

)
· Pr [T1 = τ ] .

Lemma 9 (Bad event analysis). For B as defined above,

Pr [T1 ∈ B] ≤ Q(qD) + qπ
2γ∗

+
Q(qD)

2rs
+

14(Q(qD) + qπ)2

2c

+
2Q(qD) + qπ

2n
+ Adv(γ∗,qD)−hit

n (A,D) .

ut

5.2 Analysis of next

We now turn our attention to the procedure next, which is the second main step
of our analysis. We are going to prove that if the input state to next has sufficient
min-entropy, then the resulting state and the output bits are indistinguishable
from a random element from 0r ‖ {0, 1}c and {0, 1}r, respectively. The full proof
of the following lemma is given in Appendix D.

Lemma 10 (Security of next). Let S be a random variable on the n-bit strings.
Then, for any qπ-adversary A and all t ≥ 1,

AdvdistA (nextπt (S), (0r ‖Uc,Ur)) ≤
qπ

2H∞(S)
+

qπ
2(r−1)t

+
4(qπ + t)2

2c
+

1

2n
, (8)

where Ur and Uc are uniformly and independently distributed over the r- and
c-bit strings, respectively.

Proof outline. Intuitively, given a value (St, R) output by either next(S) or
simply by sampling it uniformly as in 0r ‖Uc,Ur, the naive attacker would pro-
ceed as follows. Starting from St, one could try to guess the t r-bit parts in the
computation of next (call them Z1, . . . , Zt) which have been zero’ed out, and re-
peatedly applying π−1 to recover the state S0 (in the real case) which was used
to generate the R part of the output. Our proof will proceed in proving that this
attack is somewhat optimal, but one needs to exercise some care. Indeed, the
proof will consist of two steps, which need to be made in the right sequence:

1) We are going to first show that if the attacker cannot succeed in doing the
above, then it cannot distinguish whether it is given, together with R, the
actual St value output by next on input S, or a value S′t which is sampled
independently of the internal working of next (while still being given the
actual R).
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2) We are going to then show that given S′t is now sampled independently of
next(S), then the adversary will not notice a substantial difference if the real
R part of the output of next(S) (which is still given to A) is finally replaced
by an independently random one.

While 2) is fairly straightforward, the core of the proof is in 1). Similar to the
proof of the extraction lemma, we are going to consider here the adversary as
attempting to build some potential “chains” of values, which are sequences of
queries (αi, βi) for i ∈ [t] where βi−1[r + 1 . . . n] = αi[r + 1 . . . n] for all i ≥ 2,
αi[1 . . . r] = 0r for all i ≥ 2, and βt[r + 1 . . . n] = St[r + 1 . . . n]. The adversary’s
hope is that one of these chains is such that βi[1 . . . r] = Zi, and this would allow
to distinguish.

It is not hard to show that as long as qπ ≤ 2c/2, there are at most qπ
potential chains with high probability. However, it is harder to argue that the
probability that one of these potential chains really matchs the Zi values is small
when the adversary is given the real St output by next(S). This is because the
values Z1, . . . , Zt are already fixed during the execution, and arguing about their
conditional distribution is difficult. Rather, our proof (using the H-coefficient
technique) shows that it suffices to analyze the probability that the adversary
builds such a valid chain in the ideal world, where the adversary is given an
independent S′t. This analysis becomes much easier, as the values Z1, . . . , Zt can
be sampled lazily after the adversary is done with its permutation queries, and
they are essentially random and independent of the potential chains they can
match.

5.3 Recovering Security

We now use the insights obtained in the previous sections to establish the recov-
ering security of our construction SPRG. To slightly simplify the notation, let
εext(qπ, qD) denote the first four terms on the right-hand side of the bound (3)
in Lemma 6 as a function of qπ and qD; and let εnext(qπ) denote the right-hand
side of the bound (8) in Lemma 10 as a function of qπ.

Lemma 11. Let SPRGs,t,n,r be the PRNG given in Section 4 and let εext(·, ·)
and εnext(·) be defined as above. Let γ∗ > 0 and qD ≥ 0, let A be a qπ-adversary
against recovering security and D be a (qD, qπ)-legitimate Q-distribution sampler
D such that the length of its outputs I1, . . . , IqD padded into r-bit blocks is at most
` · r bits in total. Then we have

Adv
(γ∗,qD)-rec
SPRG[π] (A,D) ≤ εext(qπ + t+ 1, qD) + 2εnext(qπ) +

qπ
2n

,

where qπ := qπ +Q(qD).

Proof. Intuitively, we argue that due to the extractor properties of Spn,r,s shown

in Lemma 6, the state Sd in the experiment RECγ
∗,qD

SPRG (after precessing the
inputs hidden from the adversary) will be close to random; and due to Lemma 10
the output of next invoked on this state will be close to random as well.
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More formally, we start by showing that there exists a (qπ+t+1)-adversaryA1

and a qπ-adversary A2 such that

Adv
(γ∗,qD)-rec
SPRG[π] (A,D) ≤ Adv

(γ∗,qD)−ext
Spn,r,s,D

(A1) + AdvdistA2
(nextπ(Un), (0r ‖Uc,Ur)) ,

(9)
where U` always denotes an independent random `-bit string. Afterwards, we
apply Lemmas 6 and 10 to upper-bound the two advantages on the right-hand
side of (9).

Let A be the adversary against recovering security from the statement. Con-
sider an adversary A1 against extraction that works as follows: Upon receiving
seed, γ1, . . . , γqD , z1, . . . , zqD from the challenger, it runs the adversary A and
provides it with these same values. During its run, A issues queries to the or-
acles π/π−1 and get-refresh, which are forwarded by A1 to the equally-named
oracles available to it. At some point, A outputs a pair (S0, d), A1 responds by
setting IV ← S0 and outputting (IV, d) to the challenger. Upon receiving Y ∗

and Ik+d+1, . . . , IqD from the challenger, A1 computes (S∗, R∗)← next(Y ∗) and
feeds both (S∗, R∗) and Ik+d+1, . . . , IqD to A. Then it responds to the π-queries
of A as before, and upon receiving the final bit b∗ from A, A1 outputs the same
bit. It is easy to verify the query-complexity of A1.

For analysis, note that if the bit chosen by the challenger is b = 0, for A
this is a perfect simulation of the recovering game RECγ

∗,qD
SPRG with the challenge

bit being also set to 0. On the other hand, if the challenger sets b = 1, A is
given (S∗, R∗) ← next(Un) for an independent random n-bit string Un, while

the game RECγ
∗,qD

SPRG with challenge bit set to 1 would require randomly chosen

(S∗, R∗)
$← (0r ‖ {0, 1}c) × {0, 1}r instead. The latter term in the bound (9)

accounts exactly for this discrepancy – to see this, just consider an adversary A2

that simulates both A1 and the game GEXTγ
∗,qD

Spn,r,s
(A1,D) with b = 1, and then

uses the dist-challenge instead of the challenge for A.
We conclude by upper bounding the advantages on the right-hand side of (9).

First, Lemma 6 gives us

Adv
(γ∗,qD)−ext
Spn,r,s,D

(A1) ≤ εext(qπ + t+ 1, qD) + Adv
(γ∗,qD)−hit
D,n (A1) .

It hence remains to bound Adv
(γ∗,qD)−hit
D,n (A1), which is the probability that A1

queries π−1(Y ∗) in the ideal-case b = 1 in GEXTγ
∗,qD

Spn,r,s
(A,D). Note that (apart

from forwarding A’s π-queries) the only π-queries that A1 asks “itself” are to
evaluate the call next(Y ∗), and these are only forward queries. Therefore, it suf-
fices to bound the probability that A queries π−1(Y ∗) and A1 forwards this
query. Since the only information related to Y ∗ that A obtains during this ex-
periment is (S∗, R∗)← next(Y ∗), if we replace these values by randomly sampled

(S∗, R∗)
$← (0r ‖ {0, 1}c)× {0, 1}r, the value Y ∗ will be completely independent

of A’s view. Therefore, again there exists a qπ-adversary A3 (actually, A3 = A2)
such that

Adv
(γ∗,qD)−hit
D,n (A1) ≤ qπ

2n
+ AdvdistA3

(nextπ(Un), (0r ‖Uc,Ur)) .
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Finally, by Lemma 10 for both i ∈ {2, 3} we have

AdvdistAi (nextπ(Un), (0r ‖Uc,Ur)) ≤ εnext(qπ)

≤ qπ
2H∞(Un)

+
qπ

2(r−1)t
+

4(qπ + t)2

2c
+

1

2n
=
qπ + 1

2n
+

qπ
2(r−1)t

+
4(qπ + t)2

2c
,

which concludes the proof. ut

5.4 Preserving Security

Here we proceed to establish also the preserving security of SPRG.

Lemma 12. Let SPRG[π] be the PRNG given in Section 4, and let εnext(·) be
defined as above. For every qπ-adversary A against preserving security, we have

AdvpresSPRG[π](A) ≤ εnext(qπ) +
qπ
2c

+
(2d′ + 1)(qπ + d′)

2n
≤

≤ (2d′ + 2)(qπ + d′)

2n
+

qπ
2(r−1)t

+
4(qπ + t)2 + qπ

2c
,

where d′ is the number of r-bit blocks resulting from parsing A’s output I1, . . . , Id.

Proof. Intuitively, the proof again consists of two steps: showing that (1) since
the initial state S0 is random and hidden from the adversary, the state Sd will
most likely look random to it as well; and (2) if Sd is random, we can again rely
on Lemma 10 to argue about the pseudorandomness of the outputs of next.

More formally, consider a game PRES′ which is defined exactly as the game
PRES in Fig. 4, except that instead of computing the value Sd iteratively in

Step 3, we sample it freshly at random as Sd
$← {0, 1}n. Moreover, imagine the

permutation π as being lazy-sampled in both games.

Let A be an adversary participating in the game PRESSPRG[π]. Let QR(1)
π

denote the set of query-response pairs that the adversary A asks to π via its
oracles π/π−1 in its first stage (before submitting I1, . . . , Id). More precisely, let

QR(1)
π denote the set of pairs (u, v) ∈ {0, 1}n × {0, 1}n such that A in its first

stage either asked the query π(u) and received the response v, or asked the query
π−1(v) and received the response u. Moreover, let us denote by I ′1, . . . , I

′
d′ the

r-bit blocks resulting from parsing the inputs I1, . . . , Id in sequence, using the
parsing mechanism from the refresh procedure. Finally, recall that “→” denotes
the output of the adversary, as opposed to the game output.

We first argue that∣∣∣Pr
[
PRESSPRG[π](A)→ 1

∣∣ b = 0
]
− Pr

[
PRES′SPRG[π](A)→ 1

∣∣ b = 0
]∣∣∣

≤ qπ
2c

+
(2d′ + 1)(qπ + d′)

2n
. (10)
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To see this, first note that the value S0 is chosen independently at random from
the set 0r ‖ {0, 1}c and hidden from the adversary. Therefore, we have

Pr
[
∃(u, v) ∈ QR(1)

π : S0 ⊕ ((I ′1 ⊕ seed1) ‖ 0c) = u
]
≤

∣∣∣QR(1)
π

∣∣∣
2c

≤ qπ
2c

.

If this does not happen, the first invocation of π during the sequence of evalua-
tions of refresh on I1, . . . , Id will be on a fresh value and hence its output (call it

S′1) will be chosen uniformly at random from the 2n−
∣∣∣QR(1)

π

∣∣∣−1 unused values.

Hence, again the probability that the next π-invocation will be on an already
defined value is at most 2(qπ+1)/2n. This same argument can be used iteratively
up to the final state Sd: with probability at least 1−qπ/2c−2d′(qπ+d′)/2n all of
the π-invocations used during the sequence of refresh-calls will happen on fresh
values, and therefore Sd will be also chosen uniformly at random from the set of
at least 2n− qπ − d′ values. This means that in this case, the statistical distance
of Sd in the game PRESSPRG[π] from Sd in the game PRES′SPRG[π] where it is
chosen at random will be at most (qπ + d′)/2n. Put together, this proves (10).

Now we observe that there exists a qπ-adversary A′ such that∣∣∣Pr
[
PRES′SPRG[π](A)→ 1

∣∣ b = 0
]
− Pr

[
PRES′SPRG[π](A)→ 1

∣∣ b = 1
]∣∣∣ ≤

≤ AdvdistA′ (nextπt (Un), (0r ‖Uc,Ur)) ≤ εnext(qπ) (11)

where U` denotes a uniformly random `-bit string. Namely, it suffices to consider
A′ that runs the adversary A and simulates the game PRES′ for it (except for the
π-queries; also note that A′ does not need to compute the sequence of refresh-
calls), then replaces the challenge for A by its own challenge, and finally outputs
the same bit A does.

The proof is finally concluded by combining the bounds (10) and (11) and
observing that if b = 1, the games PRES and PRES′ are identical. ut

6 Key-derivation Functions from Sponges

This section discusses an application of the sponge extraction lemma (Lemma 6)
to key-derivation functions (KDFs), following the formalization of Krawczyk [22].
While the fact that sponges can be used for randomness extraction is widely be-
lieved thanks to the existing indifferentiability analysis [9], our treatment allows
for a stronger result for adversarial and oracle-dependent distributions.

KDFs and their security. A key derivation function is an algorithm KDF :
{0, 1}s × {0, 1}∗ × {0, 1}∗ × N → {0, 1}∗, where the first input is the seed, the
second is the source material, the third is the context variable, and the fourth
is the output length. In particular, for all seed ∈ {0, 1}s, W,C ∈ {0, 1}∗ and
len ∈ N, we have |KDF(seed,W,C, len)| = len, and moreover KDF(seed,W,C, len′)
is a prefix of KDF(seed,W,C, len) for all len′ ≤ len.
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Game GKDFγ
∗,qD

KDF (A,D):

1. The challenger chooses seed
$← {0, 1}u, π

$← Perms(n) and b
$← {0, 1} and

sets σ0 ← ⊥. For k = 1, . . . , qD, the challenger computes (σk, Ik, γk, zk)←
D(σk−1).

2. The attacker A gets seed and γ1, . . . , γqD , z1, . . . , zqD . It gets access to
oracles π/π−1 that work as above. Moreover, it also gets access to an oracle
get-refresh() which initially sets k ← 0 and on each invocation increments
k ← k + 1 and outputs Ik. At some point, A outputs an integer d such
that k + d ≤ qD and

∑k+d
j=k+1 γj ≥ γ

∗.
3. If b = 1, we let F = RO(·, ·), and if b = 0, F =

KDFπ(seed, Ik+1 ‖ . . . ‖ Ik+d, ·, ·). Then, the challenger gives back
Ik+d+1, . . . , IqD to A.

4. The attacker gets access to π/π−1, and in addition to F , and outputs a
bit b∗. The output of the game is 1 iff b = b∗.

Fig. 7. Definition of the game GKDFγ
∗,qD

KDF,D(A). Here, RO is an oracle which associates
with each string x a potentially infinitely long string ρ(x), and on input (x, len), it
returns the first len bits of ρ(x).

We consider KDF constructions making calls to an underlying permutation
π ∈ Perms(n).7 We define security of KDF function in terms of a security game

GKDFγ
∗,qD

KDF (A,D) which is slightly more general than the one used in [22], and
described in Figure 7. In particular, similar to GEXT above, the game consid-
ers an incoming stream of qD weakly random values, coming from a legitimate
and oracle-dependent distribution sampler, and the attacker can choose a sub-
set of these values with sufficient min-entropy adaptively to derive randomness
from, as long as these values are guaranteed to have (jointly) min-entropy at
least γ∗. The game then requires that the attacker A, given seed, to distinguish
KDF(seed, Ik+1 ‖ · · · ‖ Ik+d, ·, ·) from RO(·, ·), where the latter returns from ev-
ery X and len, the first len bits of an infinitely long stream of random bits ρ(X)
associated with X.

Then, the kdf advantage of A is

Adv
(γ∗,qD)−kdf
KDF (A,D) = 2 · Pr

[
GKDFγ

∗,qD
KDF (A,D)⇒ 1

]
− 1 .

Sponge-based KDF. We present a sponge based KDF construction – denoted
SpKDFn,r,s – that can be easily implemented on top of SHA-3. It depends on
three parameters n, r, s, and uses a seed of length k = r · s bits, represented as
seed = (seed0, . . . , seeds−1). It uses a permutation π, and given W,C ∈ {0, 1}∗,
and len ∈ N, it operates as follows: It first splits W and C into r-bit blocks

7 Once again, our treatment easily extends to other ideal models, but we dispense here
with a generalization to keep our treatment sufficiently compact.
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W1 . . .Wd and C1 . . . Cd′ ,
8 and then computes, starting with S0 = IV, the states

S1, . . . , Sd, Sd+1, . . . , Sd+d′ , where

Si ← π((Wi ⊕ seedi mod s) ‖ 0c ⊕ Si−1) for all i ∈ [d]

Si ← π((Ci ‖ 0c)⊕ Si−1) for all i ∈ [d+ 1 . . . d+ d′]

Then, for t := dlen/re, if t ≥ 2, it computes the values Sd+d′+1, . . . , Sd+d′+t−1 as
Si ← π(Si−1) for i ∈ [d+d′+1 . . . d+d′+t−1]. Finally, SpKDFπn,r,s(seed,W,C, len)
outputs the first len bits of Sd+d′ [1 . . . r] ‖ · · · ‖Sd+d′+t−1[1 . . . r].

Security of sponge-based KDF. The proof of the following theorem (given
in Appendix E) is an application of the sponge extraction lemma (Lemma 6),
combined with existing analyses of the PRF security of keyed sponges with
variable-output-length [24].

Theorem 13 (Security of SpKDF). Let r, s be integers, let qD, qπ be arbi-
trary, and let γ∗ > 0. Also, let D be a (qD, qπ)-legitimate Q-distribution sampler
D for which the overall output length (when invoked qD times) is at most ` · r
bits. Then, for all adversaries A making qπ ≤ 2c−2 queries to π, and q queries
to F , where every query to the latter results in an input C encoded into at most
`′ r-bit blocks, and in an output of at most len bits, we have

Adv
(γ∗,qD)−kdf
SpKDFn,r,s

(A,D) ≤ q̃π
2γ∗

+
Q(qD)

2sr
+

14q̃2
π + 6q2 ¯̀+ 3q ¯̀̃qπ

2c
+

+
2q̃π`+ 2`2 + 6q2 ¯̀2 + q̃π

2n
,

where q̃π = (qπ +Q(qD))(1 + 2dnr e) and ¯̀= `+ `′ + dlen/re.
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A Proof Outline for Theorem 4

Following [15], we will refer to any adversarial queries to either get-next or
next-ror oracles as next-queries. A next-query is uncompromised if corrupt =
false during the query, and compromised otherwise. An uncompromised next-
query is called preserving if the corrupt flag remained false throughout the
entire period between the previous next-query (or the beginning of the experi-
ment, if there was none) and the current one. If an uncompromised next-query
is not preserving, it is called recovering.

To prove Theorem 4, we will take a similar approach as is used for proving
the analogous theorem in [15, Thm. 2]. On a high level, their proof considers
an invariant stating that at each uncompromised next-query, the output and the
resulting state are indistinguishable from fresh random strings. This is true about
the state at the beginning of the experiment, and the two assumed properties of
the PRNG (recovering security and preserving security) can be used to show that
the invariant is maintained from any uncompromised next-query to the following
one. In particular, if the latter is preserving then one needs preserving security of
the PRNG, and similarly for recovering queries, one needs to assume recovering
security of the PRNG.

For our setting, we need to consider two modifications:

1. We have to account for the newly available queries to π/π−1.
2. The invariant changes, now postulating that the state is indistinguishable

from a value sampled uniformly at random from the set 0r ‖ {0, 1}c (a change
already accounted for in [29]).

Technically, we use a hybrid argument over 2qR + 1 hybrids. The hybrid
games are then defined as follows:

Game0 is the real game, i.e., the game ROBγ
∗

G .
Gamei for i ∈ {1, . . . , qR} behaves like Game0, except that for the first i next-

queries, if a next-query is uncompromised, the values (S,R)
$← (0r ‖ {0, 1}c)×

{0, 1}r are always chosen at random, instead of invoking the procedure next
of the PRNG.

Gamei+ 1
2

for i ∈ {1, . . . , qR} behaves exactly like Gamei does for the first i

next-queries. Then, if the (i+ 1)-st next-query is recovering, it acts on it as
Gamei, otherwise (if the query is preserving) it acts as Gamei+1. For all later
next-queries, it behaves as Gamei again.

The proof of the theorem is concluded by constructing families of qπ-adver-

saries A(i)
1 and A(i)

2 (against preserving and recovering security, respectively)
and showing that for all i ∈ {0, . . . , qR − 1} we have∣∣∣Pr [Gamei ⇒ 1]− Pr

[
Gamei+ 1

2
⇒ 1

]∣∣∣ ≤ AdvpresG (A(i+1)
2 ) (12)

and∣∣∣Pr
[
Gamei+ 1

2
⇒ 1

]
− Pr [Gamei+1 ⇒ 1]

∣∣∣ ≤ Adv
(γ∗,qD)-rec
G (A(i+1)

1 ,D) . (13)
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The adversaries are constructed in a black-box way from A and use the same
reduction as in [15], after accounting for the two modifications mentioned above.

In a nutshell, A(i)
1 and A(i)

2 can use their own π-oracles to answer the π-queries
of A; and the change of the invariant does not affect the proof, since all three
definitions involved were modified accordingly. We omit the detailed description
of the reductions in this version of the paper. Let us just remark that since each

A(i)
1 needs to simulate A and on top of it, for each A’s query to D-refresh (resp.

next-query), it needs to compute the refresh (respectively next) function of the

PRNG, its total π-query complexity is qπ + qR · qnxtπ + qD · qrefπ . In turn, each A(i)
2

additionally also simulates D and hence needs qπ + qR · qnxtπ + qD · qrefπ π-queries.
The equations (12) and (13) considered for all i ∈ {0, . . . , qR − 1} together

imply the theorem via triangle inequality. ut

B Proof of Lemma 8

First off, we note that the probability that any valid transcript τ as in (5) occurs
in the ideal world, i.e., T1 = τ , is exactly

Pr [T1 = τ ] = p(τ) · 2−n ,

where by p(τ) we denote the probability, over a sampling of a random permuta-

tion π
$← Perms(n), of the random coins R, and of the seed seed, that π(ui) = vi

and that R and seed are sampled. Here, we have used explicitly the fact that the
n-bit Y ∗ is sampled uniformly at random, and independently of anything else.
In contrast, when we turn to the real world, and additionally assume that τ is
good, then

Pr [T0 = τ ] = p(τ) · q(τ) ,

where q(τ) is the probability that Spπn,r,s(seed, IV, Ik+1 ‖ · · · ‖ Ik+d) = Y ∗, given
a permutation π sampled uniformly at random conditioned on π(ui) = vi for all
i ∈ [q′]. Thus,

Pr [T0 = τ ] ≥ q(τ)

2n
· Pr [T1 = τ ] .

Denote in particular by Πτ ⊆ Perms(n) the set of permutations π such that
π(ui) = vi for all i ∈ [q′], i.e., that are consistent with τ . In the following, let
0 ≤ `′ ≤ ` be maximal such that there exists (αi, βi) for i ∈ [`′] in τ such that
(with β0 = IV)

αi[1 . . . r] = βi−1[1 . . . r]⊕Xi ⊕ seedi mod s

αi[r + 1 . . . n] = βi−1[r + 1 . . . n]
(14)

for every i ∈ [`′]. Since τ is good, we must have `′ < `. Also, we must have
vi 6= Y ∗ for all i ∈ [q′]. The probability q(τ) is now the probability that we have

T` = Y ∗ in an experiment where we sample π
$← Πτ , and then define values
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T`′ , S`′+1, T`′+1, . . . S`, T`, where T`′ = β`′ from above, and

Si ← Ti−1 ⊕ (Xi ⊕ seedi mod s)

Ti ← π(Si) .

Note that we can think of setting up π
$← Πτ lazily, sampling a fresh random

output (consistent with rest of π and in particular with π(ui) = vi for all i ∈ [q′])
as we evaluate. Then note that q(τ) = Pr [T` = Y ∗], which can be lower-bounded
by

Pr [T` = Y ∗ ∧ ∀j ∈ [`′ + 1 . . . `] : Sj /∈ {u1, . . . , uq′ , S`′+1, . . . , Sj−1}] ,

recalling that we know that S`′+1 /∈ {u1, . . . , uq′} already by the fact that `′ is
maximal. In particular, denote by FRESHi the event that Si is not in among
{u1, . . . , uq′ , S`′+1, . . . , Si−1}, and we just argued that FRESH`′+1 is always true
given τ . We can now expand this as

q(τ) ≥ Pr

T` = Y ∗
∣∣ ∧̀
j=`′+1

FRESHj

 · Pr

 ∧̀
j=`′+1

FRESHj

 .

On the one hand, we note that because
∧`
j=`′+1 FRESHj means in particular that

T` = π(S`) is a fresh output, uniformly distributed among at most 2n possible
ones, we have

Pr

T` = Y ∗
∣∣ ∧̀
j=`′+1

FRESHj

 ≥ 1

2n
.

Also, since Ti−1 = π(Si−1) is set freshly for all i = `′+2, . . . , i given
∧i−1
j=`′+1 FRESHj ,

Si is uniformly distributed over a set of at least 2n − q′ − ` ≥ 2n−1 elements,
and thus we have

Pr

¬FRESHi
∣∣ i−1∧
j=`′+1

FRESHj

 ≤ 2 · (q′ + `)

2n
.

Hence, the union bound yields

Pr

 ∧̀
j=`′+1

FRESHj

 ≥ 1− 2 · (q′`+ `2)

2n
,

which concludes the proof. ut

C Proof of Lemma 9

To start with, we note that it is convenient to re-think carefully the execution of

GEXTγ
∗,qD

Spn,r,s
(A,D) in the ideal case with b = 1. In particular, we note that the
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adversary never learns Ik+1, . . . , Ik+d until the very end of the execution, when A
is done with its π queries (by our extension of the experiment where we assumed
that this happens wlog). Our structural assumption on the distribution sampler
D allows to think of this as sampling these d values (i.e., running Sk+1, . . . ,Sk+d)
at the very end, after A is done with its permutation queries, since nothing A
sees up to this point actually depends on these values – recall that we are in the
ideal case, and this is what makes this point possible, as the value Y ∗ fed to A
is truly random and independent of Ik+1, . . . , Ik+d.

More concretely, we think of the execution as being made of three phases,
which we refer to as Phase 0, Phase 1a and Phase 1b, respectively. It is in
particular clear that one can generate a transcript τ from this execution with

the same distribution as the one obtained from GEXTγ
∗,qD

Spn,r,s
(A,D) in the ideal

case b = 1.

Phase 0.

1. The challenger chooses π
$← Perms(n) and σ0 ← ⊥. For k =

1, . . . , qD, the challenger computes (σk,Sk, γk, zk)
$← Dπ(σk−1).

Phase 1a.

1. We choose seed
$← {0, 1}r·s

2. The attacker A gets seed and γ1, . . . , γqD , z1, . . . , zqD . It gets access
to oracles π/π−1 that work as above. Moreover, it also gets access
to an oracle get-refresh() which initially sets k ← 0 and on each

invocation increments k ← k + 1 and outputs Ik
$← Sπk . At some

point, A outputs a value IV and an integer d such that k + d ≤ qD
and

∑k+d
j=k+1 γj ≥ γ∗.

3. The challenger gives back Y ∗ and Ik+d+1, . . . , IqD to A, where Ij
$←

Sπj for j = k + d+ 1, . . . , qD.

4. The attacker again gets access to π/π−1.

Phase 1b.

1. We run Sk+1, . . . ,Sk+d with π to output Ik+1, . . . , Ik+d.

A convenient feature of this representation of the execution is that the distri-
bution of the transcript is independent of the ordering in which Phases 1a and
Phase 1b are executed.

Consider now the sets HIT and CHAIN, consisting of those bad transcripts
such that the first or the second condition in the definition of a bed transcript
is met. In particular, B = HIT ∪ CHAIN,

Pr [T1 ∈ B] ≤ Pr [T1 ∈ HIT] + Pr [T1 ∈ CHAIN] .

To start off, we note that

Pr [T1 ∈ HIT] ≤ 2Q(qD) + qπ
2n

+ Adv(γ∗,qD)−hit
n (A,D) ,
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as the first term accounts for the probability that a forward query hits Y ∗ by
accident, or that one of the at most Q(qD) backward queries of D (which are
independent of the random choice of Y ∗) is for Y ∗. Moreover, the second term
accounts (by definition!) for the probability that A simply queries Y ∗ directly
after learning it.

The bulk of the proof is proving a bound on Pr [T1 ∈ CHAIN]. To this end,
we are going to first count the number of potential chains in the set of queries
(ui, vi)i∈[q′] generated by D and A’s queries.

Definition 14 (Potential chains). We say that a sequence of (non-necessarily
distinct) such pairs (α1, β1), . . . , (α`, β`) is a potential chain if, with β0 = IV,

αi[r + 1 . . . n] = βi−1[r + 1 . . . n]

for all i ∈ [`], i.e., αi and βi−1 match on the lower c bits. In particular, a
potential chain has an associated input X ′ = (X ′1, . . . , X

′
`) such that

X ′i := βi−1[1 . . . r]⊕ αi[1 . . . r]⊕ seedi mod s

for all i ∈ [`].

We want to bound the probability that one of these potential chains is an actual
chain, i.e., the actual samples X1, . . . , X` equals the input X ′ associated with
some potential chain.

To this end, for a given transcript τ , we call a query (ui, vi) an x-query (for
x ∈ {0, 1a, 1b}) if it was issued in Phase x. Note that the same query can be
issued in multiple phases, also in different directions (i.e., once as a forward and
once as a backward query), and thus it can be a x-query for multiple x’s. We
distinguish among three types of potential chains in a transcript:

- A-chains. All queries are 0 or 1a-queries.
- B-chains. All queries are 0 or 1b-queries.
- Mixed-chains. These are chains that do not fall in the above two categories.

To simplify the calculation of the bound, we are going to define an additional
event, called NICE, and prove that the probability that NICE does not occur is
small enough. Then we will focus only on proving a bound on the probability
that we generate a transcript τ ∈ CHAIN given NICE has occurred. (We also use
the shorthand CHAIN for the event τ ∈ CHAIN.)

Definition 15 (Nice transcripts). The event NICE does not occur if (at least)
one of the following events happens:

1. A forward query (ui, vi) is such that vi[r + 1 . . . n] = ui[r + 1 . . . n]
2. A forward 0-query (ui, vi) is such that vi[r+1 . . . n] collides with uj [r+1 . . . n]

or vj [r + 1 . . . n] for an earlier 0-query (uj , uj).
3. A forward 1a-query (ui, vi) is such that vi[r + 1 . . . n] collides with uj [r +

1 . . . n] or vj [r+ 1 . . . n] for an arbitrary 0- or 1b-query, or for an earlier 1a
query (uj , uj).
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4. A forward 1b-query (ui, vi) is such that vi[r + 1 . . . n] collides with uj [r +
1 . . . n] or vj [r+ 1 . . . n] for an arbitrary 0- or 1a-query, or for an earlier 1b
query (uj , uj).

Also, τ is not nice if one of the symmetric conditions for inverse permutation
queries hold.

Note that we can easily bound

Pr [¬NICE] ≤ 14(Q(qD) + qπ)2

2c
.

Now, it is convenient to think for a second of the queries to π as defining a graph
with vertex set {0, 1}c and having an edge (u, v) whenever ui[r+1 . . . n] = u and
v = vi[r+ 1 . . . n]. Potential chains in particular define paths of length ` starting
at IV[r+1 . . . n]. Assuming that NICE occurs, it is easy to see that potential chains
(α1, β1), . . . , (αd, βd) define a tree rooted in IV[r+ 1 . . . n]. Moreover, every such
potential chain, assuming NICE, is made of zero or more 0-queries, followed by
either 1a or 1b queries, but not mixed of them. We will denote by CHAINA and
CHAINB the events that a chain of the respective type occurs. In other words:
Every potential chain is only an A- or a B-chain. Moreover, there are at most
Q(qD) + qπ potential chains overall by the fact that they constitute a tree with
at most as many edges.

We also define the events NICEA and NICEB so that NICEA occurs if NICE
would occur when ignoring all queries which are not 0 or 1a queries. Similarly,
we define NICEB symmetrically. Note that NICE ⊆ NICEA ∧ NICEB , and the
latter is included in both NICEA and NICEB . Then,

Pr [CHAIN ∧ NICE] ≤ Pr [CHAINA ∧ NICE] + Pr [CHAINB ∧ NICE]

≤ Pr [CHAINA ∧ NICEA] + Pr [CHAINB ∧ NICEB ] .

We now bound both terms separately.

Chains of Type A. Here, we think of first running Phase 0, then Phase 1a, and
finally run Phase 1b, so that the sources Sk+1, . . . ,Sk+d generate Ik+1, . . . , Ik+d

after A is done. Let us define a few extra random variables. In particular, let QD
be the set of queries made byD, excluding those made by Sj for j /∈ [k+1 . . . k+d]
(for the k, d chosen by A in the execution). Let QA be the set of queries made by
A directly. Note that QA and QD alone determine whether NICEA has occurred,
and we let NA be the set of pairs (QA,QD) for which NICEA occurs. Then,
Pr [CHAINA ∧ NICEA] equals∑

I,Z,seed,k,d,(QA,QD)∈NA

Pr [QA,QD, seed, k, d, I, Γ,Z] ·

· Pr
[
CHAINA

∣∣AA,QD, seed, k, d, I, Γ,Z
]
,

where Pr [QA,QD, seed, k, d, I, Γ ] is the probability that certain sets of queries
QA andQD are made, seed is chosen as seed,A picks k, d, and I = (Ij)/∈[k+1...k+d]
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are the I-values the adversary see, and Γ = (γ1, . . . , γqD ) and Z = (z1, . . . , zqD )
is the auxiliary information D samples. Moreover, the conditional probability
Pr
[
CHAINA

∣∣AA,QD, seed, k, d, I, Γ,Z
]

determines the probability that CHAINA
occurred conditioned on all of these values being fixed. We will now prove that

p∗(QA,QD, seed, k, d, I, Γ,Z) =

Pr
[
CHAINA

∣∣QA,QD, seed, k, d, I, Γ,Z
]
≤ qπ · 2−γ

∗

for all I, Z, k, d, QA,QD, seed that can occur, i.e., in particular
∑k+d
j=k+1 γi ≥ γ∗,

from which the bound follows, since the sum of the probabilities∑
I,Z,seed,k,d,(QA,QD)∈NA

Pr [QA,QD, seed, k, d, I, Γ,Z] ≤ 1 .

To bound the probability, let I be the set of vectors (ik+1, . . . , ik+d) of values
for Ik+1, . . . , Ik+d which would provoke one of the potential 1a-chains defined
by QA and QD to become an actual chain with respect to seed. (Note that
here we assume that every associated input X ′ can be parsed uniquely as such
(ik+1, . . . , ik+d), which is given by the fact that for every i the outputs of Si
have some fixed length `i.) Since NICEA occurs, then clearly |I| ≤ Q(qD)+qπ as
argued above. With all of the following probabilities understood as being tacitly
conditioned on QA,QD, seed, k, d, I, Γ,Z,

p∗(QA,QD, seed, k, d, I, Γ,Z) =
∑

(ik+1,...,ik+d)∈I

Pr

 k+d∧
j=k+1

Ij = ij


=

∑
(ik+1,...,ik+d)∈I

k+d∏
j=k+1

Pr

Ij = ij
∣∣ j=1∧
j′=k+1

Ij′ = ij′


≤

∑
(ik+1,...,ik+d)∈I

k+d∏
j=k+1

2−γj ≤ |I| · 2−
∑k+d
j=k+1 γj ≤ (Q(qD) + qπ) · 2−γ

∗
.

where we have used that Pr
[
Ij = ij

∣∣ ∧j=1
j′=k+1 Ij′ = ij′

]
≤ 2−γi , as one can build

a qπ-query adversary A′ for the game GLEGqD,i(A′,D) such that with some
positive probability, the ensemble of the values output by GLEGqD,i(A′,D) is
consistent with the values we are conditioning upon in the above probabilities,
and thus the upper bound holds.

Chains of Type B. Here, we just execute Phase 0, then Phase 1b, and then just
initiate Phase 1a by sampling seed. Since there are at most Q(qD)+qπ potential
B-chains, and the seed is chosen uniformly at random, we need to check what
is the probability that for one of these potential chains with associated input
X ′1, . . . , X

′
` we have

Xi = X ′i ⊕ seedi mod s
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for all i ∈ [`]. Since the seed is chosen independently of the B-chains, and its s
components are independently distributed over the r-bit strings we have (by the
union bound)

Pr [CHAINB ∧ NICEB ] ≤ qπ +Q(qD)

2sr
.

This concludes the proof. ut

D Proof of Lemma 10

We start the proof by defining three algorithms, making queries to π on input
S, sampling particular output distributions. Note that the first two algorithms
define internally variables Z1, . . . , Zt which will be used within some of the ar-
guments below.

Algorithm Dπ
0 (S):

S0 ← π(S)
R← S0[1 . . . r]
for i = 1, . . . , t do

Si ← π(Si−1)
Zi ← Si[1 . . . , r]
Si[1 . . . r]← 0r

return (St, R)

Algorithm Dπ
1 (S):

S0 ← π(S)
R← S0[1 . . . r]
for i = 1, . . . , t do

Si ← π(Si−1)
Zi ← Si[1 . . . , r]
Si[1 . . . r]← 0r

St
$← 0r ‖ {0, 1}c

return (St, R)

Algorithm D2(S):

R
$← {0, 1}r

St
$← 0r ‖ {0, 1}c

return (St, R)

First off, note that for any fixed n-bit value S, the output of Dπ
0 (S) has the same

distribution as nextπt (S), and similarly, Dπ
2 (S) is distributed as (0r ‖Uc, Ur).

Thus, for any random variable S, the triangle inequality yields

AdvdistA (nextπ(S), (0r ‖Uc,Ur)) = AdvdistA (Dπ
0 (S), D2(S))

≤ AdvdistA (Dπ
0 (S), Dπ

1 (S)) + AdvdistA (Dπ
1 (S), D2(S)) .

(15)

Without loss of generality, we assume that A is deterministic, and that it makes
exactly q = qπ non-redundant queries to π, i.e., if it queries π(ui) = vi, it does
not query π−1(vi) = ui, and vice versa. We are now going to prove individual
upper bounds on AdvdistA (Dπ

0 (S), Dπ
1 (S)) and AdvdistA (Dπ

1 (S), D2(S)). We will use
the H-coefficient method as explained in Appendix 2.

Distinguishing Dπ
0 (S) and Dπ

1 (S). It is convenient to extend the distinguishing
games (where A, together with access to π, is given a sample (St, R) of either of
Dπ

0 (S) and Dπ
1 (S)) so that at the end of the interaction, the adversary A learns

some extra information, with the restriction that after learning this information,
A is not allowed to make any further queries to π. We will show that the advan-
tage will be small enough even given this information, and the introduction of
this extra information will make the proof much simpler.
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Concretely, at the end of the interaction, A learns S (the value of S) as well
as all r-bit values Z1, . . . , Zt. Moreover, for a given value k to be defined next,
we are going to include the values S0, S1, . . . , Sk−2 (as they are set at the end
of the execution, i.e., S1, . . . , Sk−2 have their first r bits equal 0r), where we let
k be the smallest integer in [1 . . . t] (if it exists) such that the following holds:
There exist k− t+ 1 (not necessarily distinct) queries (αk, βk), . . . , (αt, βt) to π
made by A9 with the following properties:

- βi−1[r + 1, . . . , n] = αi[r + 1, . . . , n] for all i ∈ [k + 2 . . . t]
- βi[1 . . . r] = Zi for i ∈ [k . . . t]
- αi[1 . . . r] = 0r for i ∈ [max{k, 2} . . . t]
- βt[r + 1 . . . n] = St[r + 1 . . . n]

Also, let S∗ = Zk−1 ‖αk[r + 1 . . . n]. If no such k exists, then we let k = t + 1
and S∗ = Zt ‖St[r + 1 . . . n]. We are going to think of A’s interaction with π,
together with the values of R,St received, as defining a transcript of the form

τ = ((u1, v1), . . . , (uq, vq), R, St, S, S0, . . . , Sk−2, k, S
∗, Z1, . . . , Zt) (16)

where (ui, vi) are defined by A’s π-queries of the form either π(ui) = vi or
π−1(vi) = ui. In particular, we say that this transcript is valid if it can occur
in the experiment where A receives Dπ

1 (S). It is also not hard to see that every
transcript that can appear in the experiment with Dπ

0 (S) can also appear in the
one with Dπ

1 (S).

Definition 16 (Bad Transcripts). A valid transcript τ as in (16) is bad if
either k = 1, or if Sk−2 ∈ {S, S0, S1, . . . , Sk−3} ∪ {u1, . . . , uqπ}, i.e., the value
of π(Sk−2) is defined by the transcript. We denote by B the set of bad valid
transcripts.

Now let T0 and T1 be the random variables describing the transcripts when
A is given Dπ

0 (S) and Dπ
1 (S), respectively. Clearly,

AdvdistA (Dπ
0 (S), Dπ

1 (S)) ≤ SD(T0,T1) , (17)

A bound on (17) follows directly from the following two lemmas, which are both
proved below, when combined via Theorem 1.

Lemma 17. For all good transcripts τ ,

Pr [T0 = τ ] ≥ Pr [T1 = τ ] .

Lemma 18. For T1 and B defined as above,

Pr [T1 ∈ B] ≤ 1

2n
+

4(qπ + t)2

2c
+

qπ
2t(r−1)

.

9 i.e., either A queries π(αi), obtaining βi, or π−1(βi), obtaining αi
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Distinguishing Dπ
1 (S) and Dπ

2 (S). Again, we model the interaction of A via a
transcript τ similar to above, but this time include – beyond the qπ queries
(ui, vi) issued to π by A, also the values of S, R, and St. We say that τ =
((u1, v1), . . . , (uqπ , vqπ ), S,R, St) is good if and only if S /∈ {u1, . . . , uq}, and
bad otherwise. Denote by G the set of such good valid τ ’s. We denote now in
particular the transcript distributions obtained when interacting with Dπ

1 (S) and
Dπ

2 (S) as T1 and T2, respectively. Then, observe first that

Pr [T2 /∈ G] ≤ qπ · 2−H∞(S) , (18)

since A’s interaction is independent of S. Moreover, for all τ ∈ G, we have (for

π
$← Perms(n))

Pr [T1 = τ ] = 2−c · Pr [∀i ∈ [qπ] : π(ui) = vi] · Pr [π(S)[1 . . . r] = R] ≥

≥ 2−c · Pr [∀i ∈ [qπ] : π(ui) = vi] ·
2n−r − qπ

2n
=

=
(

1− qπ
2c

)
· Pr [T2 = τ ] ,

(19)

because there are at least 2n−r−qπ possible outputs Y of π not among v1, . . . , vqπ
with Y [1 . . . r] = R. Combining (18) and (19) with Theorem 1 yields

AdvdistA (Dπ
1 (S), D2(S)) ≤ SD(T1, T2) ≤ qπ

2H∞(S)
+
qπ
2c

, (20)

which concludes the proof of Lemma 10. ut

Proof (of Lemma 17). Let τ be a good and valid transcript of the format given
above, i.e.,

τ = ((u1, v1), . . . , (uq, vq), R, St, S, S0, . . . , Sk−2, k, S
∗, Z1, . . . , Zt)

In particular, note that k ∈ [2 . . . t + 1], since the transcript is good. Now,
recall that T0 and T1 only depend on the sampling of π. Now, the probability
that T0 = τ is fairly easy to compute. For this to be true, it is sufficient for a
randomly sampled π to satisfy: (1) π(ui) = vi for all i ∈ [qπ], (2) π(S) = S0,
(3) π(Si−1) = Si for all i ∈ [k − 2], and finally (4) π(Sk−2) = S∗. Denote by p∗

the probability that (1) + (2) + (3) happens. Since π(Sk−2) is not defined by
satisfying (1) + (2) + (3), we have

Pr [T0 = τ ] ≥ p∗ · Pr
[
π(Sk−2) = S∗

∣∣π satisfies (1) + (2) + (3)
]

= p∗ · 1

2n − q∗
,

where q∗ is the number of values of π defined when satisfying (1) + (2) + (3).
Note that in order for T1 = τ , (1) + (2) + (3) above still need to be satisfied

by the randomly sampled π. As for π(Sk−2), the only necessary condition we
know of is that it needs to set such that its output has the first r bits equal
Zk−1, and there are at most 2c such values available for π(Sk−2) to be set to.
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Moreover, St is sampled randomly, thus it is going to equal the right value with
probability 2−c. Therefore,

Pr [T1 = τ ] ≤ p∗ · 2c

2n − q∗
· 1

2c
≤ Pr [T0 = τ ] .

This concludes the proof of Lemma 17. ut

Proof (of Lemma 18). For the analysis of Pr [T1 ∈ B], we first observe that the
experiment sampling Dπ

1 (S) can be modified without loss of generality so that
it first computes only S, S0, and R, as well as the randomly sampled St, and
only at the very end of the execution computes S1, . . . , St−1, and Z1, . . . , Zt. In
particular, this final computation occurs when A is done with its π queries. This
is true because nothing of what the adversary A can see up to the very end of the
experiment depends on S1, . . . , St−1 and Z1, . . . , Zt, and thus their computation
can be deferred.

Let (u1, v1), . . . , (uqπ , vqπ ) be the input-output pairs resulting from direct
permutation queries made to π by A.

Definition 19 (Potential chains). We say that a sequence of t (not neces-
sarily distinct) queries (α1, β1), . . . , (αt, βt) from {(u1, v1), . . . , (uqπ , vqπ )} are a
potential chain if

- βi−1[r + 1, . . . , c] = αi[r + 1 . . . c] for all j ∈ [2 . . . t]

- αi[1 . . . r] = 0r for all j ∈ [2 . . . t]

- βt[r + 1 . . . n] = St[r + 1 . . . n]

The vector (Z ′1, . . . , Z
′
t) associated with a partial chain is defined such that Z ′i =

βi[1 . . . r].

To complete the analysis, we introduce the following events:

- BAD1 is the event that a forward query π(ui) = vi is such that vi[r+1 . . . n] =
vj [r + 1 . . . n] or vi[r + 1 . . . n] = uj [r + 1 . . . n] for some earlier permutation
query defining a pair (uj , vj), or vi[r+1 . . . n] = ui[r+1 . . . n]. Symmetrically,
BAD1 occurs also if the same happens for a backward query π−1(vi) = ui.

- BAD2 is the event that S0 ∈ {S, u1, . . . , uqπ}, and BAD3 is the event that
S1, S2, . . . , St−1 are not all fresh, i.e., once we get to Si, π(Si) is already set.

- BAD4 is the event that there is a chain, i.e., for a potential chain defined
by A’s queries with associated vector (Z ′1, . . . , Z

′
t), we have Zi = Z ′i for all

i ∈ [t].

Note that if T1 ∈ B holds, then BAD1 ∨ BAD2 ∨ BAD3 ∨ BAD4 must hold,

Pr [T1 ∈ B] ≤ Pr [BAD1] + Pr [BAD2] + Pr
[
BAD3

∣∣¬BAD2

]
+

+ Pr
[
BAD4

∣∣¬BAD1 ∧ ¬BAD2 ∧ ¬BAD3

]
.



42 Peter Gaži and Stefano Tessaro

The first two probabilities are the easiest to bound. First off, by using the union
bound twice, as well as the fact that qπ ≤ 2c−1,

Pr [BAD1] ≤ 2q2
π

2c − qπ
≤ 4q2

π

2c
.

Also, we have

Pr [BAD2] ≤ 1

2n
+
qπ
2c

,

for two reasons: First off, because π(S) = S0 is uniformly distributed when
initially queried (this gives the first term). Second, given R, S0 is uniformly
distributed over all 2c strings that have their first r bits equal R, and thus the
probability that any of A’s queries π(ui) = vi or π−1(vi) = ui is such that
ui = S0 is 1

2c , and the term qπ
2c follows by the union bound.

As for BAD3, assuming that BAD2 does not occur, we note that when com-
puting the values S1, . . . , St−1, first off, S0 is fresh by ¬BAD2. Then, note that
the probability that Si is not fresh given π(Si−1) has been set to random is at
most qπ+t

2c−1 , because qπ + t ≤ 2c−1. Thus, by the union bound,

Pr
[
BAD3

∣∣¬BAD2

]
≤ 2t(qπ + t)

2c
,

To conclude, let us see what is the probability that BAD4 happens, given ¬BAD1,
¬BAD2, and ¬BAD3. In particular, it is not hard to see that there are at most
qπ potential chains if ¬BAD1 holds: This is because permutation queries can be
seen as defining a graph with vertices {0, 1}c, and (v, u) is an edge if there exists
a query (ui, vi) with ui[r+ 1 . . . n] = u and vi[r+ 1 . . . n]. Then, potential chains
can be seen as directed paths starting in St[r + 1 . . . n] and since ¬BAD1 holds,
we can see that these paths must constitute a tree with at most qπ edges, and
thus this number also bounds the number of leaves of the tree (and consequently,
of potential chains). Also, every such partial chain corresponds to a vector of t
r-bit values (Z ′1, . . . , Z

′
t) as explained above. Then,

Pr
[
∀i ∈ [t] : π(Si−1)[1 . . . r] = Z ′i

∣∣¬BAD1 ∧ ¬BAD2 ∧ ¬BAD3

]
≤

≤ 2ct

2t(n−1)
=

1

2t(r−1)
.

Note that the t values π(Si−1) for i ∈ [t] are all uniformly distributed and distinct
over a set of at least 2n − qπ − 1 ≥ 2n−1 values (recall that we are conditioning
in particular on both ¬BAD2 and ¬BAD3), and at most 2ct of these sequences
can be consistent with (Z ′1, . . . , Z

′
q). The bound on

Pr
[
BAD4

∣∣¬BAD1 ∧ ¬BAD2 ∧ ¬BAD3

]
follows by taking the union bound on all qπ potential chains.

Combining all of the above inequalities gives the upper bound, and concludes
the proof of the lemma. ut
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E Proof of Theorem 13

To start with, we define the (variable output length) keyed-sponge construction
KSpn,r[π] : {0, 1}n × {0, 1}∗ × N → {0, 1}∗ which takes as input a value K,
a message C ∈ {0, 1}∗, and an output length len ∈ N, and produces the len-
bit output as follows: It first splits C into r-bit blocks and C1 . . . Cd′ (ensuring
Ci 6= 0r for all i ∈ [d′]) and then computes, starting with S0 = K, the states
S1, . . . , Sd′ , where

Si ← π((Ci ‖ 0c)⊕ Si−1)

for all i ∈ [d′]. Then, for t := dlen/re, if t ≥ 2, it computes additionally
Sd+d′+1, . . . , Sd+d′+t−1 as

Si ← π(Si−1) ,

for i ∈ [d′ + 1 . . . d′ + t− 1]. Finally, KSpπn,r(K,C, len) outputs the first len bits
of

Sd+d′ [1 . . . r] ‖ · · · ‖Sd+d′+t−1[1 . . . r]

For Spn,r,s as in Section 5.1, we can now see that

SpKDFn,r,s(seed,W,C, len) = KSpn,r(Spn,r,s(seed,W ), C, len) .

We consider three variants of the KDF game GKDFγ
∗,qD

KDF,D(A), which we refer to
as G0, G1, and G′0. They are defined as follows:

- G0(A) is exactly GKDFγ
∗,qD

KDF,D(A) with b = 0. The game’s output is the bit
output by A.

- G1(A) is exactly GKDFγ
∗,qD

KDF,D(A) with b = 1, i.e., queries are answered by a
random function. The game’s output is the bit output by A.

- Finally, the game G′0(A) behaves as G0(A) does, except that we set F =
KSpn,r(K, ·, ·) for an independent random key. The game’s output is the bit
output by A.

We can now split the kdf advantage as (with A being identical to A, except that
the output bit is complemented)

Adv
(γ∗,qD)−kdf
SpKDF (A,D) = Pr

[
G0(A)⇒ 1

]
− Pr

[
G1(A)⇒ 1

]
= (Pr

[
G0(A)⇒ 1

]
− Pr

[
G′0(A)⇒ 1

]
)

+ (Pr
[
G′0(A)⇒ 1

]
− Pr

[
G1(A)⇒ 1

]
) .

Recall now that the prf security of KSpn,r and an adversary B is defined via
the following advantage

AdvprfKSpn,r
(B) = Pr

[
BKSpn,r(K,·,·),π,π−1

⇒ 1
]
− Pr

[
BRO(·,·),π,π−1

⇒ 1
]
,

where the probabilities are over the choice π
$← Perms(n) (which is used in par-

ticular by KSpn,r), of K
$← {0, 1}n, and of the variable-output-length random

oracle RO. It is not hard to see that there exists an adversary B1 such that

Pr
[
G′0(A)⇒ 1

]
− Pr

[
G1(A)⇒ 1

]
= AdvprfKSpn,r

(B1) .
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Adversary B1, given oracle access to F (·, ·), π and π−1, where F is either
KSpn,r(K, ·, ·) or RO(·, ·), simply simulates either of G′0(A) and G1(A) by simu-

lating GKDFγ
∗,qD

KDF,D(A) with the specific function F given by the oracle, and out-

putting A’s output. Note that B1 makes qπ +Q(qD) ≤ q̃π permutation queries,
and q queries to its first oracle. Recent work by [24] shows that in particular

AdvprfKSpn,r
(B1) ≤ 2q2 ¯̀2

2n
+

2q2 ¯̀

2c
+
q ¯̀̃qπ
2c

. (21)

On the other hand, we can also build an adversary B2 such that

Pr
[
G0(A)⇒ 1

]
− Pr

[
G′0(A)⇒ 1

]
= Adv

(γ∗,qD)−ext
Spr,n,s

(B2,D) .

Here, the adversary B2 simply uses the value Y ∗ to simulate an oracle F (·, ·) =

KSpn,r(Y
∗, ·, ·) to A in GKDFγ

∗,qD
KDF,D(A). Finally, B2 outputs A’s output bit. To

upper bound this advantage, we use Lemma 6, which yields

Adv
(γ∗,qD)−ext
Spr,n,s

(B2,D) ≤ q̃π
2γ∗

+
Q(qD)

2sr
+

14q̃2
π

2c
+

2q̃π`+ 2`2

2n
+Adv(γ∗,qD)−hit

n (B2,D) .

(22)

By construction, Adv(γ∗,qD)−hit
n (B2,D) is exactly the probability that B1 given

above, when accessing KSpn,r(K, ·, ·), π, π−1, makes the query π−1(K).
This can be bound as follows. Consider a prf adversary B3 which behaves

exactly as B1, but at the end of the execution, it picks an X ∈ {0, 1}n such that
no query (X, ?) was made to the first oracle (such X must exist as q < 2n),
and makes an additional query (X,n) to its first oracle, obtaining a value Z ∈
{0, 1}n, either from RO(·, ·) or KSpn,r(K, ·, ·). Then, it goes through all values
K ′ for which π−1(K ′) was queried, and computes Z(K ′) = KSpn,r(K

′, X, n)
by making direct permutation queries. If there is K ′ such that Z(K ′) = Z, then
B3 returns 1, and it returns 0 otherwise. Note that it takes 2dnr e permutation
queries to compute KSpn,r(K

′, X, n), and thus B3 makes at most (1+2dnr ee(qπ+
Q(qD)) = q̃π queries to the permutation, q + 1 ≤ 2q queries to its first oracle,
and its advantage is

AdvprfKSpn,r
(B3) ≥ Adv(γ∗,qD)−hit

n (B2,D)− q̃π
2n

, (23)

because Z is uniform and independent of everything else in the case B3 accesses
RO(·, ·), and there are at most q̃π possible values for K ′. We can now use the
same bound as in (21) (with 2q replacing q), and conclude that

Adv(γ∗,qD)−hit
n (B2,D) ≤ AdvprfKSpn,r

(B3) +
qπ
2n
≤ 4q2 ¯̀2

2n
+

4q2 ¯̀

2c
+

2q ¯̀̃qπ
2c

+
q̃π
2n

.

(24)

The bound in the theorem statement follows by combining all of the above. ut
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