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Abstract

The Fiat-Shamir paradigm [CRYPTO’86] is a heuristic for con-
verting three-round identification schemes into signature schemes, and
more generally, for collapsing rounds in constant-round public-coin in-
teractive protocols. This heuristic is very popular both in theory and
in practice, and its security has been the focus of extensive study.

In particular, this paradigm was shown to be secure in the so-called
Random Oracle Model. However, in the plain model, mainly negative
results were shown. In particular, this heuristic was shown to be in-
secure when applied to computationally sound proofs (also known as
arguments). Moreover, recently it was shown that even in the re-
stricted setting where the heuristic is applied to interactive proofs (as
opposed to arguments), its soundness cannot be proven via a black-box
reduction to any so-called falsifiable assumption.

In this work, we give a positive result for the security of this paradigm
in the plain model. Specifically, we construct a hash function for which
the Fiat Shamir paradigm is secure when applied to proofs (as opposed
to arguments), assuming the existence of a sub-exponentially secure in-
distinguishability obfuscator, the existence of an exponentially secure
input-hiding obfuscator for the class of multi-bit point functions, and
the existence of a sub-exponentially secure one-way function.

While the hash function we construct is far from practical, we be-
lieve that this is a first step towards instantiations that are both more
efficient and provably secure. In addition, we show that this result
resolves a long-lasting open problem in the study of zero-knowledge
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proofs: It implies that there does not exist a public-coin constant-
round zero-knowledge proof with negligible soundness (under the as-
sumptions stated above).

1 Introduction

In 1986, Fiat and Shamir [FFS86] proposed a general method for reducing in-
teraction in any constant-round public-coin protocol by replacing the verifier
with a hash function. Initially, this heuristic was proposed for the sake of
transforming three-round public-coin identification (ID) schemes into digital
signature schemes. This so-called Fiat-Shamir heuristic, quickly gained pop-
ularity both in theory and in practice, since known ID schemes (in which a
sender interactively identifies himself to a receiver) are significantly simpler
and more efficient than known signature schemes, and thus this heuristic
gives an efficient and easy way to implement digital signature schemes.

The Fiat-Shamir heuristic also has important applications outside the
regime of ID and signature schemes. For example, it was used by Micali in
his construction of CS-proofs [Mic94]. More generally, the importance of the
Fiat-Shamir heuristic stems from the fact that latency, caused by sending
messages back and forth, is often a bottleneck in running cryptographic
protocols [MNPS04, BDNPO0S].

The Fiat-Shamir method is extremely simple and intuitive: The basic
idea is to reduce interaction by having the verifier send the prover a hash
function H (chosen at random from some family of hash functions). The
prover then “simulates” all the verifier’s messages on his own by applying H
to the transcript so far. For example, a three-message interactive proof,
where we denote the transcript by (a, 3,7), is converted to the following
2-message protocol, where the verifier first sends a hash function H to the
prover, and then the prover simulates the three messages on his own as
follows: He first computes his first message «, then he computes the verifier’s
message 3 by setting f = H(«), and finally he computes his final message ~,
and sends («, 3,7) to the verifier.

The intuition for why this method is secure, is that if H looks like a truly
random function, and if all the prover can do is use H in a black-box manner,
then interacting with H is similar to interacting with the real verifier, and
hence security follows. This intuition was formalized by Pointcheval and
Stern [PS96], who proved that the Fiat-Shamir heuristic is secure in the so-
called Random Oracle Model (ROM) — when the hash function is modeled by
a random oracle [BR93]. This led to the belief that if a 2-message protocol,



obtained by applying the Fiat-Shamir paradigm, is insecure, then it must
be the case that the hash family used is not “secure enough”, and the hope
was that there exists another hash family that is sufficiently secure.

Since Pointcheval and Stern published their positive result (in the ROM),
and due to the popularity and importance of the Fiat-Shamir heuristic, many
researchers tried to prove the security of this paradigm in the plain model.
Unfortunately, these attempts led mainly to negative results. Barak [Bar(1]
gave the first negative result, by constructing a (contrived) constant-round
public-coin protocol such that when the Fiat-Shamir heuristic is applied
to it, the resulting 2-round protocol is not sound, no matter which hash
family is used. In a followup work, Goldwasser and Kalai [GKO03], gave
another (contrived) construction for a 3-round public-coin ID scheme, for
which the resulting signature scheme obtained by applying the Fiat-Shamir
heuristic, is insecure, no matter which hash family is used. However, both
these negative results are for protocols that are only computationally sound,
also known as arguments.

This gave rise to the following question:

Is the Fiat-Shamir method secure when applied to interactive proofs (as
opposed to arguments)?

Barak, Lindell and Vadhan [BLV06] presented a security property for the
Fiat-Shamir hash function, which if realized, would imply the security of the
Fiat-Shamir paradigm applied to any constant-round public-coin interactive
proof system.! However, they left open the problem of realizing this security
definition under standard hardness assumptions (or under any assumption
beyond simply assuming that the definition holds for a given hash function).
Recently, Dodis, Ristenpart and Vadhan [DRV12] showed that under specific
assumptions regarding the existence of robust randommness condensers for
seed-dependent sources, the definitions of [BLV06] can be realized. However,
the question of constructing such suitable robust randomness condensers was
left open by [DRV12].

On the other hand, Bitansky et. al. [BDGT13] gave a negative result.
They showed that that soundness of the Fiat-Shamir paradigm, even when
applied to interactive proofs, cannot be proved via a black-box reduction to
any so-called falsifiable assumption (see Naor [Nao03]).?

'Loosely speaking, a hash family {h} is said to have this security property if for every
probabilistic polynomial time adversary .4, that is given a random seed s and outputs
an element in the domain of hs, the random variable hs(A(s)) conditioned on A(s) has
almost full min entropy.

2 Qur assumptions (see Section 1.1), which deal with exponential-time (rather than



Finally, we remark that in a recent work Canetti, Chen and Reyzin [CCR15]
construct a correlation intractable function ensemble that withstands rela-
tions that can be computed in a-priori bounded polynomial complexity. This
does not have implications to the security of the Fiat-Shamir paradigm,
where we need correlation intractable ensembles for hard-to-compute rela-
tions. A further discussion follows the description of our results.

1.1 Our Results

In this work, we construct a hash function, and prove that the Fiat-Shamir
paradigm is sound w.r.t. this hash function, when applied to interactive
proofs (as opposed to arguments), under the following three cryptographic
assumptions:

1. The existence of 2™-secure indistinguishability obfuscation iO, where
2" is the domain size of the functions being obfuscated.’

Recently, several constructions of iO obfuscation were proposed, start-
ing with the work of Garg et al. [GGH"13]. However, to date, none
of these constructions are known to be provably secure under what
is known as a complexity assumption [GK16] or more generally a fal-
sifiable assumption [Nao03]. We mention that [GLSW14] provided a
construction and proved its security under the subgroup elimination
assumption, which is a complexity assumption (and in particular is a
falsifiable assumption). However, this assumption has been refuted in
all candidate multi-linear groups.

2. The existence of 2"-secure puncturable pseudo-random function (PRF)
family F, where 2" is the domain size.

Puncturable PRFs were defined in [BW13,BGI14,KPTZ13]. The PRF
family of [GGMS86] is a puncturable PRF family, and thus 2™-secure
puncturable PRFs can be constructed from any sub-exponentially se-
cure one-way function.

polynomial-time) adversaries, are inherently not falsifiable. Note that [BDG'13] allow
an unbounded challenger, but restrict to polynomial-time attackers. In the context of
obfuscation, the attacker is the algorithm trying to break the security of the obfuscation.
We assume hardness against super polynomial-time attackers, and thus our assumptions
do not fall into the category ruled out by Bitansky et al..

3This assumption has been made in many previous works on iO and is referred to as
sub-exponential iO since the security parameter can be polynomially larger than n (which
makes 2" sub-exponential in the security parameter).



3. The existence of an exponentially secure input-hiding obfuscation hideO
for the class of multi-bit point functions {Z,, 1 }. The class {Z, \} con-
sists of functions of the form I, g where |a| = n and |3| = k, and where
I,p(x) = B for x = o and I, g(x) = 0 otherwise. An obfuscation for
this class is said to be input-hiding with T-security if any poly-size ad-
versary that is given an obfuscation of a random function I, g in this
family, guesses a with probability at most 7!, We note that the value
£ may be correlated with « and furthermore, it may be computation-
ally difficult to find 8 from «. For our construction we require 1" which
is roughly equal to 2™ /u, where p is the soundness of the underlying
proof-system. For example, if we start off with an interactive-proof
with soundness 27", then we require roughly 7' = 2"~

This assumption was considered in [CD08,BC14], who also provided a
candidate construction based on a strong variant of the DDH assump-
tion (we elaborate on this in Section 2.4).%

Theorem 1.1. [(Informally Stated, see Theorem 3.1)] Under the assump-
tions above, for any constant-round interactive proof 11, the resulting 2-
message argument 1175, obtained by applying the Fiat-Shamir paradigm to
IT with the function family iO(F), is secure.

Here and throughout this work iO(F) refers to an iO obfuscation of a pro-
gram that computes the PRF, using a hardwired random seed.

Remark 1.2. Clearly, we do not expect the Fiat-Shamir paradigm to be
instantiated in practice using this hash function, first and foremost because
known indistinguishability obfuscators are completely impractical. Neverthe-
less, we believe that, in general, the first step towards constructing schemes
that are both provably secure and practical is building a theory that allows us
to prove security, even if initially the theory is far from ready for practical
deployment (the main result in this work). Thus, even though the current
hash candidate is far from practical, we believe that the ideas introduced in
the construction and its security analysis can guide research towards more
efficient and provably secure instantiations. Moreover, as we discuss next,
this positive result settles a long lasting open problem about zero-knowledge

Proofs.

*While DDH (and even discrete log) can be broken in time less than 2™ (even in
the generic group model - e.g., by the baby-step giant-step algorithm), this does not
imply a non-trivial polynomial-time attack (i.e., one with success probability greater than

poly(n)/2").




1.1.1 Impossibility of Constant-Round Public-Coin Zero-Knowledge

Dwork et. al. [DNRS99] (and independently, Hada and Tanaka [HT98]) ob-
served an intriguing connection between the security of the Fiat-Shamir
paradigm and the existence of certain zero-knowledge protocols. In partic-
ular, if there exists a constant-round public-coin zero-knowledge proof for a
language outside BPP, then the Fiat-Shamir paradigm is not secure when
applied to this zero-knowledge proof. Intuitively, this follows from the fol-
lowing observation: Consider the cheating verifier that behaves exactly like
the Fiat-Shamir hash function. The fact that the protocol is zero-knowledge
implies that there exists a simulator who can simulate the view in an in-
distinguishable manner. Thus, for elements in the language the simulator
generates accepting transcripts. The simulator cannot distinguish between
elements in the language and elements outside the language (since the sim-
ulator runs in poly-time and the language is outside of BPP). In addition,
the protocol is public-coin, which implies that the simulator knows whether
the transcript is accepted or not. Hence, it must be the case that the sim-
ulator also generates accepting transcripts for elements that are not in the
language, which implies that the Fiat-Shamir paradigm is not secure.
Thus, Theorem 1.1 implies the following corollary.

Corollary 1.3. Under the assumptions above, there does not exist a constant-
round public-coin zero-knowledge proof with negligible soundness for lan-
guages outside BPP.

In particular, this corollary implies that (under the assumptions above)
parallel repetition of Blum’s Hamiltonicity protocol for NP [Blu87] is not
zero-knowledge. Previously it was not known whether (in general) paral-
lel repetition preserves zero-knowledge. Our result shows that it does not
(under the assumptions above).

The existence of constant-round public-coin zero-knowledge proofs has
been a long-standing open question (see, e.g., [GO94, GK96, KPRI8, Ros00,
CKPRO02, BLV06, BGGLO1, BL04, Rey01]). For black-box zero-knowledge
proofs (which means that the simulator only uses the verifier as a black-
box), the work of Goldreich and Krawczyk [GK96] ruled out constant-round
public-coin protocols (for languages outside of BPP). We know, however,
that non black-box techniques can be quite powerful in the context of zero-
knowledge [Bar01]. Under the assumptions stated above, our work rules out
any constant-round public-coin zero knowledge proof (even non black-box
ones).

We note that even for those who are skeptical about the obfuscation



assumptions we make, this corollary implies that finding a constant-round
public-coin zero-knowledge proof requires overcoming technical barriers, and
in particular requires disproving the existence of sub-exponentially secure iO
obfuscation, or the existence of exponentially secure input-hiding obfusca-
tion for the class of multi-bit point functions (or, less likely, disproving the
existence of sub-exponential OWF).

1.1.2 Comparison to Concurrent Works

Comparison to [CCR15]. As mentioned above, in a concurrent and in-
dependent work, Canetti et al. [CCR15] construct a correlation intractable
function ensemble that withstands all relations computable in a-priori bounded
polynomial complexity. Namely, for any fixed polynomial p, they construct
a function ensemble as follows: for any evasive (see below) relation R com-
putable in time p, given a random function f in the ensemble, it is hard to
find x such that (z, f(z)) € R.

As mentioned above, this result does not have any implications to the
security of the Fiat-Shamir paradigm, since to prove the security of this
paradigm we need a correlation intractable ensemble for relations that can-
not be computed in polynomial time.

In terms of the assumptions used, [CCR15] assume the existence of sub-
exponentially secure indistinguishability obfuscation, the existence of a sub-
exponentially secure puncturable PRF family, and the existence of input-
hiding obfuscation for the class of evasive functions. An evasive family is a
collection of functions where for any input x, a random function from the
collection outputs 0 on x with overwhelming probability [BBC"14]. Com-
paring to the assumptions we make in this work, we also make the first
two assumptions. However, we assume input-hiding obfuscation only for
multi-bit point functions (a significantly smaller family compared to general
evasive functions). On the other hand, we require an exponentially secure
input-hiding obfuscation, whereas their work only needs polynomial-time
hardness of the input-hiding obfuscation.

Comparison with [MV16]. In an additional independent and concur-
rent work, Mittelbach and Venturi [MV16] showed a hash function for which
the Fiat-Shamir is secure for a very particular class of protocols. The class of
protocols that they consider in itself does not include any previously-studied
protocols. However, [MV16] show an additional transformation for 3 mes-
sage protocols (on top of Fiat-Shamir) that works when the first message
in the underlying 3-message protocol is independent (as a function) of the



input. Mittelbach and Venturi also show that their transformation, which
is based on indistinguishability obfuscation, maintains zero-knowledge, and
can be used to obtain signature schemes and NIZKs.

In contrast to [MV16], our primary motivation and goal is showing that
the Fiat-Shamir transformation can be used to reduce interaction while pre-
serving soundness. Reducing the interaction in cryptographic protocols and
particularly showing that the Fiat-Shamir transform can be proved sound
has been a central and widely-studied question in the cryptographic liter-
ature. We emphasize that the [MV16] result does not yield a method for
reducing rounds while preserving soundness.’

1.2 Overview

Throughout this overview we focus on proving the security of the Fiat-
Shamir paradigm, when applied to 3-round public-coin interactive proofs.
The more general case, of any constant number® of rounds, is then proved
by induction on the number of rounds (we refer the reader to Section 4
for details). Consider any 3-round proof II for a language L. Denote the
transcript by (o, 3,7) where « is the first message sent by the prover, j is
the random message sent by the verifier, and « is the final message sent by
the prover. Fix any x ¢ L. The fact that II is a sound proof means that for
every «, for most of the verifier’s messages 3, there does not exist v that
makes the verifier accept.

The basic idea stems from the original intuition for why the Fiat-Shamir
is secure, which is that if we use a hash function H that looks like a truly
random function, then all the prover can do is use H in a black-box man-
ner, in which case interacting with H is similar to interacting with the real
verifier, and hence security follows.

The first idea that comes to mind is to choose the hash function ran-
domly from a pseudo-random function (PRF) family. However, the security
guarantee of a PRF is that given only black-box access to a random func-
tion f in the PRF family, one cannot distinguish it from a truly random

5Indeed, for the class of protocols that [MV16] support, reducing to 2 rounds while
preserving soundness (but not necessarily zero-knowledge) is straightforward: Since the
prover’s first message is not a function of the input, the verifier can compute the prover’s
first message « for it, and sends a (together with the coins used to generate it) to the
prover.

5The Fiat Shamir paradigm refers to constant round protocols. Indeed, there are
interactive proofs with a super-constant number of rounds (and negligible soundness error)
for which the Fiat Shamir paradigm is insecure.



function. No guarantees are given if the adversary is given a succinct circuit
for computing f.

Obfuscation to the Rescue. A natural next step is to try to obfus-
cate f, in the hope that whatever can be learned given the obfuscation
of f can also be learned from black-box access to f. However, this requires
virtual-black-box (VBB) security, and VBB obfuscation is known not to
exist [BGIT12]. Moreover, there are specific PRF families for which VBB
obfuscation is impossible [BGIT12]. Further obstacles to VBB obfuscation
of PRFs and, more generally, functions with high pseudo-entropy (w.r.t.
auxiliary input) are given in [GKO05, BCCT14]. Given these obstacles to
achieving VBB obfuscation, could we hope to prove security using relaxed
notions of obfuscation, such as iO obfuscation? The question is:

Is iO obfuscation strong enough to prove the security of the Fiat-Shamir
paradigm?

It is well known that iO obfuscation is not strong enough to prove the se-
curity of the Fiat-Shamir paradigm when applied to computationally sound
interactive arguments. Indeed the Fiat-Shamir paradigm is known be inse-
cure when applied to arguments as opposed to proofs.” In contrast, we show
that iO obfuscation (together with additional assumptions) is strong enough
to prove security when the Fiat-Shamir paradigm is applied to interactive
proofs (rather than arguments).

For proving security of the Fiat-Shamir paradigm for proofs, consider a
cheating prover for the transformed protocol IIFS, who receives the obfus-
cation iO(fs) of a pseudo-random function fs. Since fs is a PRF, we know
that there will only be a small set Bads of inputs a (corresponding to the
prover’s first message in the proof II), for which the communication prefix
(o, fs(a)) can lead the verifier in the interactive proof to accept (i.e. a’s for
which there exists v s.t. (o, f(),7) is an accepting transcript).

To show the security of the resulting protocol, we now want to claim that
the obfuscation hides this (small) set Bads of inputs, and that a cheating
prover P* cannot find any input a € Bads. Note, however, that iO obfus-
cation only guarantees that one cannot distinguish between the obfuscation
of two functionally equivalent circuits of the same size, and it does not give
any hiding guarantees.

"More specifically, the insecurity is in the sense that there exist contrived interactive
arguments such that for any hash family H, applying the Fiat-Shamir paradigm with the
hash family H, results in an insecure 2-round protocol [Bar01, GK03].



Puncturable PRFs to the Rescue? As mentioned above, iO obfusca-
tion does not immediately seem to give any hiding guarantees. Nonetheless,
starting with the beautiful work of Sahai and Waters [SW14], iO has proved
remarkably powerful in the construction of a huge variety of cryptographic
primitives. A basic technique used in order to get a hiding guarantee from
iO obfuscation, as pioneered in [SW14], is to use it with a puncturable PRF
family.

A puncturable PRF family is a PRF family that allows the “puncturing”
of the seed at any point « in the domain of f. Namely, for any point « in
the domain, and for any seed s of the PRF, one can generate a “punctured”
seed, denoted by s{a}. This seed allows the computation of fs anywhere in
the domain, except at point «, with the security guarantee that for a random
seed s chosen independently of «, the element f,(«) looks (computationally)
random given (s{a}, a). The security of iO obfuscation guarantees that one
cannot distinguish between iO(s) and i0(s{a}, @, fs(a)),® which together
with the security of the puncturable PRF, implies that one cannot distin-
guish between iO(s) and iO(s{a}, a,u) for a truly random output u. Thus,
we managed to use iO, together with the puncturing technique, to gener-
ate a circuit for computing fs that hides the value of fs(«). We emphasize
that this technique crucially relies on the fact that the punctured point «
is independent of the seed s, and hence as a result fs(«) is computationally
random.

It is natural to try and use obfuscated puncturable PRF's to show security
of the Fiat-Shamir paradigm. Consider the following naive (and flawed)
analysis, which loosely speaking proceeds in three steps: Suppose that there
exists a poly-size cheating prover P* that convinces the verifier to accept x ¢
L. Recall that we denote transcripts by («, 3,7). The (statistical) soundness
of I implies that for every «, for most of the verifier’s messages 3, there
does not exist v that makes the verifier accept. For any function f consider
the (evasive) relation R = {(«, 8) : 3y s.t. V(z,«, 5,7) = 1}. Suppose that
the cheating prover P*, given iO(s), outputs « such that («, fs(a)) € R,
with non-negligible probability.

1. Puncture the PRF at a random point o* s.t. a* € Bad, and send the
obfuscation of iO(s{a*}, o, fs(a*)) to the cheating prover P*. Note
that this does not change the functionality.

Therefore, we can use the (sub-exponential) security of iO to argue
that the cheating prover P* cannot tell where we punctured the PRF,

SWe use (s{a}, a, fs()) to denote the circuit that on input a outputs the hardwired
value fs(«), and on any other input = # « computes fs(z) using the punctured seed s{a}.

10



and still succeeds with non-negligible probability. In particular, taking
M to be the expected number of a’s such that («, fs(a)) € R, we have
that P* outputs a* with probability ~ 1/M (up to poly(n) factors).”

2. Next, we want to use the (sub-exponential) security of the puncturable
PRF to argue that the cheating prover P* cannot distinguish between
(s{a*},a*, fs(a*)) and (s{a*}, a*, B*) where (a*, 3*) is random in R.
Thus, given iO(s{a*}, a*, 8*) the cheating prover P* still outputs o*
with probability ~ 1/M (up to poly(n) factors).

3. In the final step, we argue that a* is close to uniform (for an ap-
propriate modification of the original protocol) and independent of s.
Thus, given i0O(s{a*}, a*, 5*), the cheating prover P* outputs o* with
probability ~ 1/M (up to poly(n) factors), where a* is close to truly
random. We want to argue that this contradicts the (sub-exponential)
security of i0.

Unfortunately, the argument sketched above is doubly-flawed. In partic-
ular, the arguments in Step (2) and Step (3) are simply false. In Step (2)
we start with a distribution where fs is punctured at a point o* for which
(o, fs(a*)) is not (computationally) random, and in fact the choice of a*
depends on the seed s. We want to argue that this is indistinguishable from
the case where we pick (o, 5*) randomly in R, and then puncture at o*. It
is not a-priori clear why the puncturable PRF or iO would guarantee this
indistinguishability. Indeed, the functions generated by these two distri-
butions can be distinguished with some advantage by simply counting the
number of input-output pairs that are in R.

Nevertheless, in our analysis (see Lemma 3.3) we manage to argue that
the cheating prover P*, given iO(s{a*},a*, 3*) where (a*,3*) is random
in R, still outputs o* with probability significantly higher than 1/2" (i.e.,
significantly higher than guessing). Indeed, P* still outputs o* with proba-
bility ~ 1/M (up to poly(n) factors).

We next move to the flaw in Step (3). The problem here is that punc-
turing at the point a* does not at all hide o*. It is also not clear whether
the iO obfuscation of the punctured seed hides a*.

Input-Hiding Obfuscation to the Rescue. We overcome this hurdle by
using an exponentially secure input-hiding obfuscation to hide the punctured
point.

We think of n as polynomially related to the security parameter, where 2" is the
domain size of f,.

11



Namely, we replace iO(s{a*}, a*, 5*) with iO(s, hideO(a*, 3*)), where
hideO is an exponentially secure input hiding obfuscator, and where we did
not change the functionality of the circuit; i.e. the circuit on input = first
runs hideO(a*, 8*) to check if x = a*; if so it outputs * and otherwise
it outputs fs(z). The security of iO implies that P*(iO(s, hideO(a*, 5%)))
outputs a* with probability 1/M (up to poly(n) factors).

It remains to note that s is independent of (a*, 3*), and hence we con-
clude that there exists a poly-size adversary that given hideO(a*, 5*) out-
puts o with probability 1/M (up to poly(n) factors). In the last step we
replace the distribution of (a*, 8*) with a distribution where a* is chosen
uniformly at random from {0,1}" and * is chosen at random such that
(a*,*) € R and prove that still there exists a poly-size adversary that
given hideO(a*, *) (where (a*,*) is according to the new distribution)
outputs a* with probability 1/M (up to poly(n) factors). This contradicts
the exponential security of the input-hiding obfuscator hideO.

Remark 1.4. We note that the input-hiding obfuscator was only used in the
security analysis. It plays no role in the construction itself. This is similar
to some other recent uses of indistinguishability obfuscation in the literature.

We hope that the idea of using input-hiding obfuscation to hide the
punctured point, will find further applications.

2 Preliminaries

2.1 Indistinguishability

Definition 2.1. For any function T : N — N and for any function p: N —
[0, 1], we say that p = negl(T) if for every constant ¢ > 0 there exists K € N
such that for every k > K,

p(k) < T (k)™

Definition 2.2. Two distribution families X = {Xs}ren and Y = { Vi }ren

are said to be T-indistinguishable (denoted by X y V) if for every circuit
family D = {Dy}uen of size poly(T(x)),
AdvEY(S) € [Pr[D(z) = 1] — Pr[D(y) = 1]| = negl(T(x)),

where the probabilities are over x < X, and over y <+ V.

12



2.2 Puncturable PRFs

Our construction uses a 2"-secure pseudo-random function (PRF) family
that is puncturable [ BW13,BGI14,KPTZ13,SW14], see the definitions below.

Definition 2.3 (T-Secure PRF [GGMS6]). Let m = m(k), n = n(k) and
k = k(k) be ensembles of integers. A PRF family is an ensemble F =
{Fr}ren of function families, where F,, = {fs : {0,1}" — {0, 1}k}se{0,1}m-
The PRF F is T-secure, for T = T(k), if for every poly(T)-size (non-
uniform) adversary Adv:

Adv/s(1%) — Adv/ (1%)| = negl(T'(x)),

where fs is a random function in F,, generated using a uniformly random
seed s € {0,1}™%) and f is a truly random function with domain {0,1}"
and range {0, 1}*.

We use 2™-secure PRF families in our construction (for k = poly(n)). We
can construct such PRFs assuming subexponentially hard one-way functions
by taking the seed length m to be a sufficiently large polynomial in n.
Observe that, since the entire truth table of the function can be constructed
in time poly(n)-2", we get that 2"-security implies that the entire truth table
of a PRF f, is indistinguishable from a uniformly random truth table.'”

Definition 2.4 (T-Secure Puncturable PRF [SW14]). A T-secure family of
PRFs (as in Definition 2.3) is puncturable if there exist PPT procedures
puncture and eval such that

1. Puncturing a PRF key s € {0,1}™ at a point r € {0,1}" gives a
punctured key s{r} that can still be used to evaluate the PRF at any
point v’ # r

vr e {0,1}", 7" #r: Pr leval(s{r},r") = fs(r')] =1

s,8{r}<—puncture(s,r)

2. For any fized r € {0,1}", given a punctured key s{r}, the value fs(r)
is pseudorandom:

T(x)

(s{r},r fs(r)) = (s{r},ru),

10The fact that subexponential OWF yield PRFs for which distinguishing the entire
truth table from a random truth table the truth table of a random function has been
previously noted in the literature, most notably by Razborov and Rudich [RR97] in their
work on natural proofs.
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where s{r} is obtained by puncturing a random seed s € {0,1}™*%) qat
the point v, and u is uniformly random in {0, 1}*.

We note that the GGM-based construction of PRF's gives a construction
of 2"-secure puncturable PRFs from any subexponentially hard one-way
function [GGMS86, HILL99)].

2.3 Indistinguishability Obfuscation

Our construction uses an indistinguishability obfuscator iO with 27" se-
curity. A candidate construction was first given in the work of Garg et

al. [GGH*13].

Definition 2.5 (T-secure Indistinguishability Obfuscator [BGI"12]). Let
T : N — N be a function. Let C = {C,}pen be a family of polynomial-
size circuits, where C,, is a set of boolean circuits operating on inputs of
length n. Let iO be a PPT algorithm, which takes as input a circuit C € C,
and a security parameter k € N, and outputs a boolean circuit iO(C') (not
necessarily in C).

i0 is a T-secure indistinguishability obfuscator for C if it satisfies the
following properties:

1. Preserving Functionality: For every n,x € N, C € C,,, = € {0,1}":
(i0(C,17))(z) = C(x).

2. Indistinguishable Obfuscation: For every two sequence of circuits {C}}nen
and {C2},en, such that for every n € N, |CL| = |C2|, C} = C2, and
Cl C2 € C, , it holds that for any n = n(x) < poly(x):

T(k
ot 1%) " 012, 1%,

2.4 Input-Hiding Obfuscation

An input-hiding obfuscator for a class of circuits C, as defined by Barak
et al. [BBCT14], has the security guarantee that given an obfuscation of
a randomly drawn circuit in the family C, it is hard for an adversary to
find an accepting input. In our work, we consider input-hiding obfuscation
for the class of multi-bit point functions. A multi-bit point function I, is
defined by an input x € {0,1}", and an output y € {0,1}*. I, outputs y
on input z, and 0 on all other inputs. Informally, we assume that given the
obfuscation of I, for a uniformly random z and an arbitrary y, it is hard
for an adversary to recover .
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Definition 2.6 (T-secure Input-Hiding Obfuscator [BBCT14]). LetT : N —
N be a function, and let C = {C,}nen be a family of poly-size circuits,
where C,, is a set of boolean circuits operating on inputs of length n. A PPT
obfuscator hideO is a T-secure input-hiding obfuscator for C, if it satisfies
the preserving functionality requirement of Definition 2.5, as well as the
following security requirement. For every poly-size (non-uniform) adversary
Adv and all sufficiently large n,
- -1
C<—C}n),rhideo [C'(Adv(hideO(C))) # 0] < T (n).

We emphasize that (unlike other notions of T-security used in this work),
we only allow the adversary for a T-secure input hiding obfuscation to run
in polynomial time. Nevertheless, depending on the function 7', the defini-
tion of T-secure input hiding is quite strong. In particular, for the typical
case of proof-systems with soundness 2" (where € > 0 is a constant) we
will assume input-hiding obfuscation for T = 2"~"", which means that a
polynomial-time adversary can only do sub-exponentially better than the
trivial attack that picks random inputs until it finds an accepting input
(this attack succeeds with probability poly(n)/2™). This is also why we do
not separate the security parameter from the input length (the adversary
can always succeed with probability 27", assuming there exists an accepting
input).

We assume input-hiding obfuscation for the class of multi-bit point func-
tions (see above), where the point x is drawn uniformly at random, and the
output y is arbitrary. In particular, we do not assume that the collection C
of pairs (z,y) can be sampled efficiently, only that its marginal distribution
on z is uniform.

Assumption 2.7 (T-secure Input-Hiding for Multi-Bit Point Functions).
Let T,k : N = N be functions. An obfuscator hideO is a T-secure input-
hiding obfuscator for (n, k)-multi-bit point functions if for every collection C
as below, hideO is a T-secure input-hiding obfuscator for C. In the collection
C, for every n € N, every function I, € C,, has x € {0,1}",y € {0, 1}F(),
and the marginal distribution of a random draw from C, on x is uniform.

The assumption is strong in that we do not assume that a random func-
tion in C can be sampled efficiently, or that the output ¥ is an efficient func-
tion of the input x. This assumption was studied in [CD08,BC14]. A candi-
date construction was provided in [CDO08]. Loosely speaking, their construc-
tion is an extension of the point function obfuscation of Canetti [Can97],
where the obfuscation of I, consists of a pair of the form (r,r%), together
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with k pairs of the form (r;,7{") where a; = x if y; = 1 and is uniformly
random otherwise. It was proved in [BC14] that this construction is se-
cure in the generic group model, where the inversion probability is at most

poly(n) - 27™.

2.5 Interactive Proofs and Arguments

An interactive proof, as introduced by Goldwasser, Micali and Rackoff [GMR89],
is a protocol between two parties, a computationally unbounded prover and

a polynomial-time verifier. Both parties have access to an input x and the
prover tries to convince the verifier that x € L. Formally an interactive
proof is defined as follows:

Definition 2.8 (Interactive Proof [GMR&9]). An r-message interactive proof
for the language L is an r-message protocol between the verifier V', which is
polynomial-time, and a prover P, which is computationally unbounded. We
require that the following two conditions hold:

e Completeness: For every x € L, if V interacts with P on common
input x, then V accepts with probability at least 2/3.

e Soundness: For every x ¢ L and every (computationally unbounded)
cheating prover strategy P, the verifier V accepts when interacting with
P with probability at most 1/3.

We say that an interactive-proof is public-coin if all messages sent from
V to P consist of fresh random coins tosses. Also, recall that the constants
1/3 and 2/3 are arbitrary and can be amplified by (e.g., parallel) repetition.

Interactive Arguments. An interactive argument is defined similarly
to an interactive proof except that the parties also get access to a security
parameter x and the soundness condition is only required to hold for cheating
provers that run in time polynomial in k. We also require that the honest
prover run in polynomial-time, given also the witness.

Definition 2.9 (Interactive Argument). An r-message argument for the lan-
guage L € NP is an r-message protocol between a verifier V and a prover P,
both of which are polynomial-time algorithms. We require that the following
two conditions hold:

e Completeness: For every x € L, if V interacts with P on common
input x, where P is given in addition an NP witness w for x € L, then
V' accepts with probability at least 2/3.
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e Soundness: For every x ¢ L and every polynomial-time cheating
prover strategy P, the verifier V' accepts when interacting with P with
probability at most 1/3.

2.6 The Fiat-Shamir Paradigm

In this section, we recall the Fiat-Shamir paradigm. For the sake of sim-
plicity of notation, we describe this paradigm when applied to 3-round (as
opposed to arbitrary constant round) public-coin protocols. Let I = (P, V)
be a 3-round public-coin proof system for an NP language L. We denote its
transcripts by (a, 8,7), where § are the messages sent by the verifier, and
«, 7y are the messages sent by the prover. We denote by n the length of «
(ie., a € {0,1}"), and we denote by k the length of 3 (i.e., f € {0,1}%).
We assume that k& < poly(n) (since otherwise we can just pad).

Let {H,, }nen be an ensemble of hash functions, such that for every n € N
and for every h € H,,

h:{0,1}" — {0, 1}*.

We define IIFS, with respect to the hash family H to be the 2-round pro-
tocol obtained by applying the Fiat-Shamir transformation to II using .
A formal presentation of the “collapsed” protocol II"® = (PFS VFS) is in
Figure 2.1.

Remark 2.10. We emphasize that our main result is that the Fiat-Shamir
paradigm in its original formulation (as presented in Figure 2.1) is secure
when applied to interactive proofs and when using a particular hash function
(based on the assumption mentioned above).

3 Security of Fiat-Shamir for 3-Message Proofs

We show an instantiation of the Fiat-Shamir paradigm that is sound when
it is applied to interactive proofs (as opposed to arguments). Taking n to
be a bound on the message lengths of the prover in II, our instantiation
assumes the existence of a 2"-secure indistinguishability obfuscation scheme
i0, a 2™-secure puncturable PRF family F, and a 2"-secure input-hiding
obfuscation for the class of multi-bit point functions Z,, .

For clarity of exposition, we first show that our instantiation is secure
for 3-round public-coin interactive proofs. This is the regime for which the
Fiat-Shamir paradigm was originally suggested. We then build on the proof
for the 3-message case (or rather the 4-message case, see below), and prove
security for any constant number of rounds.
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Protocol TI7°(1", z) for an NP Language L

Prover’s Input: Statement x and a witness w for = € L.
Verifier’s Input: Statement x.

VFS 5 PFS: The verifier VF® chooses a random h < #,,, and sends h to
the prover PFS.

PFS 5 VFS: The prover PFS simulates an execution with the prover P of
II in the following way:

e Choose a random tape for P and continue the emulation of (P, V')
by running P. Let a € {0,1}" be the first message sent by P
in IL

e Compute h(a) = 3.

e Continue the emulation of P assuming P received [ as the second
message from VF°. Let v be the third message sent by P.

Send (a, 8,7) to the verifier VFS.

Verification: The verifier V> accepts if and only if:

o ha)=p.
e I/ accepts the transcript («, 3,7).

Figure 2.1: Collapsing a 3-round Protocol II = (P, V') into a 2-round Proto-
col TIPS = (PF5 VFS) using H

Theorem 3.1 (Fiat-Shamir for 3-message Proofs). Let II be a public-coin 3-
message interactive proof system, where the lengths of the prover’s message
are bounded by n, the verifier’s message is of length k < poly(n), and the
soundness error is negligible.

Assume the existence of a 2™-secure puncturable PRFE family F, the exis-
tence of a 2"-secure Indistinguishability Obfuscation iO, and the existence of
a 2" -secure input-hiding obfuscation for the class of multi-bit point functions
{Z, r}. Then the resulting 2-round argument IIFS, obtained by applying the
Fiat-Shamir paradigm (see Figure 2.1) to II with the function family iO(F),
is secure.
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(Recall that we defined iO(F) as the iO obfuscation of a program that com-
putes the PRF, using a hardwired random seed.)

In Section 4 we prove the security of the Fiat-Shamir paradigm when
applied to any constant round interactive proof. To prove the general (con-
stant round) case, we need to rely on a more general (and more technical)
variation of Theorem 3.1. First, we rely on the security of the Fiat-Shamir
paradigm for any 4-round interactive proof II where the first message is sent
by the verifier. In the transformed protocol IIFS, the first message of the
verifier consists of the first message as in II, along with a Fiat-Shamir hash
function, which will be applied to the prover’s first message. In addition, in
the generalized theorem we allow the verifier in the original protocol II to
run in time 20,

We state the generalized theorem below.

Theorem 3.2 (Theorem 3.1, more General Statement). Let II be a 4-
message public-coin interactive proof system, where the first message is
sent by the wverifier, the lengths of the prover’s messages are bounded by
n, the verifier’s messages are of length k < poly(n), the soundness error is
p(n) = negl(n), and the running time of the verifier is 200"

Assume the existence of a 2"-secure puncturable PRF family F, the exis-
tence of a 2"-secure Indistinguishability Obfuscation iO, and the existence of
a T'-secure input-hiding obfuscation for the class of multi-bit point functions
{Znr}, where T = p - 2™ - poly(n).

Then the resulting 2-round argument II™S | obtained by applying the Fiat-
Shamir paradigm'' to TI with the function family iO(F), is secure.

We remark that p-2"-poly(n) is a shorthand for a function T such that for
every ¢ > 0 and all sufficiently large n € N it holds that T'(n) > u(n)-2"-nc.

Proof of Theorem 3.2. Fix any 4-round interactive proof II = (P, V) as
claimed in the theorem statement. Let 1 = negl(n) be the soundness error of
II. Suppose for the sake of contradiction that there exists a poly-size cheat-
ing prover P* who breaks the soundness of the protocol IIFS with respect to
some z* ¢ L with probability v = 1/poly(n).

There must exist a choice for the verifier’s first message 7 in 11, such that
the following two conditions hold: (i) Even conditioned on the first part of
the first message in IIFS being 7, the cheating prover P* still breaks the
soundness of the protocol II" on 2* with probability at least (/2), and (i)

H¥or 4-message proofs, the same paradigm as in Figure 2.1 is used, except that the
verifier also sends its first message from the base proof-system (i.e., a random string) in
the first round.
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even conditioned on the first message in II being 7, the original protocol 11
still has soundness error at most (2u/v) . Such a 7 must exist because at
least a (v/2)-fraction of the messages must satisfy condition (i) (otherwise
P* cannot break II™ with total probability v), and the fraction that do not
satisfy condition (i) must be smaller than (v/2) (otherwise the soundness
of IT is smaller than p).

Fix the verifier’s first message to always be 7 (both in the original and
in the transformed protocols). We have that:

slj(r) P*(7,i0(s)) = (o, y) s.t. V(2*, 7, fs(a),y) = 1| > v/2, (3.1)

where iO(s) refers to the iO obfuscation of a random function fs from the
family F.

The relaxed verifier and its properties. To obtain a contradiction, we
analyze a relaxed verifier V/ (which is only used in the security analysis).
The relaxed verifier accepts a transcript (a, 3,7) if the original verifier V'
would accept, or if the first [log(v/(2u)] bits of 8 are all 0 (where recall

that p is the soundness error of IT).!? In particular, whenever V accepts,
the relaxed verifier V'’ also accepts, and so:

Slj(r) P*(1,i0(s)) = (a,7) s.t. V'(z*, 7, a, fs(a),y) = 1} >v/2. (3.2)

We take u’ to be the soundness of the interactive proof (P, V') (after 7 is
fixed), which runs the relaxed verifier. Observe that by a union bound

i < (2u/v) + 27 Nos/m)T < Ap/v,
(in particular if p is negligible, then so is u').
We define:
ACC = {(a,ﬂ) s Iy st V@t 10, 8,7) = 1}

Observe that membership in ACC can be computed in time 2" - poly(n) =
20(") by enumerating over all 4’s and running V’. Equation (3.2) implies

1211 the original protocol II, it may be the case that different messages o sent by the
prover can lead the verifier to accept with different probabilities. E.g., some specific a’s
may lead the verifier to accept with probability p and others with probability 0. This
presents a technical difficulty later in the proof and so we construct the relaxed verifier V’
so that every string « leads it to accept with roughly the same probability (up to a small
multiplicative constant) without increasing the soundness error by too much.
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that there exists a poly-size adversary A (that just outputs the first part of
P*’s output) such that:

Eg {A(iO(s)) outputs some a s.t. (o, fs(a)) € ACC} >v/2. (3.3)

Using Eq. (3.3) we prove our main lemma.

Lemma 3.3.

Pr o [A(iO(s{a*},a*,u*)) =a" ‘ (o, u*) € ACC} > 272y
s, u*i

where o and u* are uniformly distributed (in {0,1}" and {0,1}*, respec-

tively) and iO(s{a™}, a*, u*) refers to an iO obfuscation of the program that

contains the seed s punctured at the point o, and on input « first checks if

a = a* and if so outputs u* and otherwise outputs fs(c).

Proof. We prove the lemma by analyzing the probability that the event
(A(iO(s{a*},a*,u*)) = a*) A ((a*,u*) € ACC>

occurs.
By the exponential hardness of the puncturable PRF, and the fact that
membership in ACC is computable in 2" time, we have that

A(iO(s{a*}, o*, u*)) = a* A(iO(s{a*}, o, fs(a*))) = a*
Pr A > Pr A — 27,
8,a7,ui0 (a*,u*) € ACC 8,a7,i0 (a*,fs(a*)) € ACC

(3.4)

Further applying the exponential hardness of the iO scheme (and the fact
that membership in ACC can be decided in 20 time), we get that:

A(O(s{a*}, a*,u*)) = a* A(iO(s)) = o*
Pr A > Pr A —2.27%
st utio (af,u*) € ACC SO (o, fo(a®)) € ACC
(3.5)
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Using elementary probability theory, we have that:

A(iO(s)) = a*
o n = Pr_{J((A(0(s)) = a") A ((a, fi(a")) € ACC) A (0 = o))
s, 1 (a*,fs<a*)) c ACC S,a* 1

= Pr [((A(iO(s)) = @) A ((a, fs(@)) € ACC) A (o = )]

=27" Slj(r) [(A(IO(s)) = @) A ((a, fs()) € ACC)]

=2"" P(r) [A(iO(s)) outputs some a s.t. («, fs(r)) € ACC]
>2"".v/2
where the last inequality is by Eq. (3.3). Thus, we have that:

A(O(s{a*}, a*,u*)) = a*
Pr A >
Barunio (a*,u*) € ACC

S27 .

F

By the soundness of the underlying proof-system, it holds that Pro« .« [(o*, u*) €
ACC] < 1/ (since otherwise a cheating prover could violate soundness by just
sending a random «*).'® By definition of conditional probability we have
that

A(O(s{a*}, a*,u*)) = a*
Prs,a*,u*,io A
(a*,u*) e ACC

Pr [A(iO(s{a*},a*,u*)) = a*

s, u*,i0

(") € ACC] = Pro- - [(a*, u) € ACC]
i 27" V/:u/7

v

and the lemma follows. O

We are now ready to use (and break) our input-hiding obfuscator hideO.
Lemma 3.3, together with the 2"-security of the iO implies that

1 1
Pr o [.A(iO(s, hideO(a*,u*))) = o ’(a*,u*) € ACC} > 1 27"y 27" > 3 27" v/,
(3.6)

13Tt may at first seem odd that we only use the soundness of the underlying proof-
system with respect to a cheating prover that just sends a random message . Recall
however that here we consider the relazed verifier who, by design, has a (roughly) similar
acceptance probability given any string a.
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where o and u* are uniformly distributed and iO(s, hideO(a*, u*)) refers to
the i0 obfuscation of the program that contains a seed s for a PRF (in its
entirety), and the input-hiding obfuscation hideO(a*, u*) of a multi-bit point
function that on input a* outputs w*. The program uses the input-hiding
obfuscation to check if its input equals o*, and if so outputs the same value
as hideO(a*,u*). Otherwise the program behaves like the PRF.

Eq. (3.6) is almost what we want. Namely, an adversary that given
access to hideO(a*,u*) produces a* with probability w(poly(n)/2") (since
v is inverse polynomial and p is a negligible function). The only remaining
problem is that the distribution of (a*,u*) is not quite what we need. More
specifically, in Eq. (3.6) (a*,u*) are distributed uniformly conditioned on
(a*,u*) € ACC, whereas we need for the marginal distribution of « to be
uniform in order to break the hideO obfuscation. Using the properties of the
relaxed verifier, we show that these two distributions are actually closely
related.

We define the following two distributions. The distribution 77 is obtained
by jointly picking a pair («, 5) uniformly from ACC (this is the distribution
from which (o, u*) are sampled from in Eq. (3.6)). 7z is the distribution
obtained by picking a uniformly random « € {0,1}" and then a random f
conditioned on (o, 3) € ACC (i.e. the marginal distribution on « is uniform).
For a* € {0,1}", p* € {0,1}*, we use Ti[a*, 8] and Tz[a*, %] to denote the
probability of the pair (a*, 8*) by T; and by Tz (respectively).

Proposition 3.4. For any o* € {0,1}" and 8* € {0,1}*:
1
Rla”, 57 2 JTila", 6]
Proof. For every a* denote by:
Se+ = {B* €{0,1}" : (a*, B*) € ACC}.

By construction of the relaxed verifier V/, we know that for every a € {0,1}"
it holds that

P Sl A
v 28 T v
In particular, for any «,a* € {0,1}™:
1
’Sa‘ > Z|Sa*‘
Now we have that:
1 4 4
Tile”, 87 = < = = ATz[a", 7]
Eae{o,l}” ‘SCY’ Zae{o,l}" ‘Sa*’ n . |Sa*|
(3.7)
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O]

In particular, drawing by 75 rather than 77 can only decrease the success
probability of A by a multiplicative factor of 4. Moreover, when drawing by
T2, the marginal distribution on a* s uniform. Thus Proposition 3.4 and
Eq. (3.6) imply that there exists a poly-size adversary A, such that

1 v
Pr A(hideO(a*,u*)) = a*] > — -
(a*,u*)<—7'2,hideo[ ( ( ) I= 32 ' -2n
where o drawn by 72 is uniformly random. Since v is an inverse polynomial
and p/ = O(p/v), this contradicts the T = p - 2™ - poly(n)-security of the

input-hiding obfuscation hideO.
O

4 Security of Fiat-Shamir for Multi-Round Proofs

In this section we show a secure instantiation of the Fiat-Shamir method-
ology for transforming any constant-round interactive proof into a 2-round
computationally-sound argument. We assume for the sake of simplicity, and
without loss of generality, that the verifier always sends the first message,
and thus consider interactive protocols with an even number of rounds.
Namely, for any constant ¢ > 2, we consider a 2¢-round interactive proof
I = (P,V). We assume without loss of generality that all of the prover’s
messages are of the same length, and denote this length by n (i.e Vi,a; €
{0,1}™). Similarly, we assume without loss of generality that all of the ver-
ifier’s messages are of the same length, and denote this length by k& (i.e.
Vi, B; € {0,1}%). We assume without loss of generality that & < n. All
these assumptions are only for the simplicity of notations, and can be easily
achieved by padding.

For every i € [c — 1], let {fqu)}neN be an ensemble of hash functions,
such that for every n € N and for every f() € F,,

FO {0,130 5 {0, 1}k

We assume without loss of generality that there exists a polynomial p such
that for every i € [c — 1] and for every n € N,

FI = {9} seqonyptm-

We define IIFS to be the 2-round protocol obtained by applying the multi-

round Fiat-Shamir transformation to II using (iO(fégll)), —,i0( LS:;”)), where
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fs(f) « 7\ for every i € [c — 1]. The security of TIF® is shown in Theorem

4.1 below.

Theorem 4.1 (Fiat-Shamir Transform for Multi-Round Interactive Proofs).
Let p : N — [0,1] be a function. Assume the existence of a 2"-secure
puncturable PRF family F, assume the existence of a 2"-secure Indistin-
guishability Obfuscation, and assume the existence of a p-2™-poly(n)-secure
input-hiding obfuscation for the class of multi-bit point functions {I,}.

Then for any constant ¢ € N such that ¢ > 2, and any 2c-round in-
teractive proof II with soundness u, the resulting 2-round argument II7S,
obtained by applying the multi-round Fiat-Shamir transformation to I1 with
the function family iO(F), is secure.

Proof. The proof is by induction on ¢ € N, for ¢ > 2. The base case ¢ = 2
follows immediately from Theorem 3.1. Suppose the theorem statement is
true for < ¢ rounds, and we will prove that it is true for ¢ rounds.

To this end, fix any 2c-round interactive proof II for proving membership
in a language L. Suppose for the sake of contradiction that IIFS is not secure.
Namely, there exists a poly-size cheating prover P* and there exists * ¢ L
such that P* succeeds in convincing the verifier of IIFS that z* € L with
non-negligible probability. We assume without loss of generality that P* is
deterministic.

Consider the following protocol ¥ for proving membership in L, which
consists of 2¢ — 2 rounds: In the first round the verifier chooses the first
message that it would have sent in I, which we denote by £y. In addition,
it chooses a random seed s; < {0,1}?(™ and sends to the prover the pair
(6o, iO(fs(ll))). Then, the prover chooses (aq, 31, @2) such that 51 = fs(ll)(oq),
and such that «; and ag are chosen as in II. It sends (a1, 1, a2) to the
verifier. Then the prover and verifier continue to execute the protocol II
interactively, conditioned on (fo, a1, 51, a2). Finally, the verifier accepts if
and only if the verifier of II would have accepted the resulting transcript
and f1 = f1 ().

Consider the protocol Wp«, in which we fix the first message from the
prover in ¥ to be the message (o, 81, @) generated by P* in TIFS. If Wp« is
a sound proof then, by our induction hypothesis (¥ p~ )FS is sound. However,
note that P* can be trivially converted into a cheating prover that breaks the
soundness of (¥ p*)FS, contradicting our induction hypothesis that the Fiat-
Shamir transformation is sound for interactive proofs with 2(¢ — 1) rounds
(with the function family iO(F)). Thus, it must be the case that Up- is
not a sound proof. Namely, there exists a (possibly inefficient) cheating
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prover P** an element z* ¢ L, and a polynomial ¢, such that P** convinces
the verifier of Up» to accept x* with probability > 1/¢(k) for infinitely
many k € N.

Consider the 4-round protocol ®, which consists of the first 4 rounds
of II, denoted by (8o, a1, f1, a2). Given a transcript (5o, a1, 51, a2) the ver-
ifier of ® accepts if and only if there exists a strategy of the (cheating)
prover of II that causes the verifier of II to accept with probability > 1/¢(k)
conditioned on the first 4-rounds of IT being (5o, a1, 81, a2). Note that the
verifier of ® runs in time poly(2¢"*t#)) = 20(") The statistical soundness
of II implies that & is also statistically sound. Note however that ®" is not
computationally sound. To see this, consider a poly-size cheating prover for
®FS that sends the message (a1, B1, a2) that P* sends in II. By the fact that
U p« is not sound (since P** breaks its soundness), the verifier of ®F> will
accept #* ¢ L. This is in contradiction to Theorem 3.2 (where we used the
fact that Theorem 3.2 holds even for verifiers running in time 2°0(%)).
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