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Abstract. Confidentiality and message authentication are the most important security goals
that can be achieved simultaneously by Signcryption scheme. It is a cryptographic technique
that performs both the functions of digital signature and public key encryption in a single logical
step significantly at a lower cost than that of conventional method of signature-then-encryption.
The paper proposes an efficient Certificateless Signcryption Scheme(CLSC) in random oracle
model on bilinear mapping. It is provably secure under the assumptions of intractability of
k-CAA, Inv-CDH, q-BDHI and CDH problems.
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1 Introduction

Signcryption is a cryptographic primitive designed to operate both the function encryption and
signing in a one single logical step significantly at a lower cost than that of conventional approaches.
Hence, it provides both the security goals confidentiality and authentication simultaneously. In order
to authenticate the user’s public keys in public key cryptography, public key infrastructure (PKI)
and identity based cryptography (IBC) are applied. Issuing of the certificate and managing can be
carried out by setting a hierarchical framework called public key infrastructure (PKI).

In the PKI, a trusted third party called a certificate authority (CA) issues a certificate that
provides an unforgeable and trusted link between the public key and the identity of a user by the
signature of the CA. However certificate management includes storage, revocation, distribution of
certificates is complex in traditional PKI. Further, the validity of the certificate is verified prior
to use them. Hence there is a key management problem in PKI. This is resolved by identity-based
cryptography (IBC) that was introduced by Shamir [2] in 1984. At IBC, the public key of the users is
in the form of binary string that can identify the user through the certificates. The binary strings may
be the IP address, e-mail address, etc. Since 1984, many identities-based signature schemes (IBS) have
been proposed [3, 4]. But the efficient identity-based encryption (IBE) was proposed by [23] in 2001
using bilinear pairing over super singular curves. Afterward, numerous identify-based signcryption
scheme (IBSC) are proposed [6, 8–12]. The advantage of IBC is that it reduces the requirement of
public key certificates with the help of a trusted third party known as a public key generator (PKG).
The role of PKG is generated and issue the private key of all of its users so that only these users can
decrypt the ciphertext that provides the implicit in certification. Hence, it reduces the space and time
complexity. However, this leads the key escrow problem to the IBC. Also in IBS scheme, PKG might
forge any user’s signature participating in the protocol. Generally in all the traditional signcryption
schemes, the user’s public key is the pseudo random bit string to be chosen from a particular given
set. So, the user’s authorization can be achieved by signcryption scheme.

In order to solve this key escrow problem in IBC, a new paradigm is introduced by Al-Riyami
and Paterson [13] which is known as certificateless cryptography which does not require the use
of the certificate. However, it does not solve fully key escrow problem of IBC. In order to serve in
between PKI and IBC, the public key cryptography is framed with certificateless setting. There exist
a trusted third party known as a key generator center (KGC) is to be fixed and is not be allowed to
access the user’s private key in IBC. KGC takes the user’s identity and master secret key as input and
generates a partial private key. Then the user chooses a secret value, combines with the partial private
key and computes full private key. Since the public key is no longer computable from the identity
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of the user, it is not identity-based technique. If a sender would send a message to the receiver in
certificateless setting, she has to obtain the public key of the receiver. However it does not require
the authentication of receiver’s public key and no need of the certificates.

In this paper, we propose a provably secure certificateless signcryption schme in random oracle.
Security of the scheme relies on k-CAA, Inv-CDH, q-BDHI and CDH problem. We prove that, the
proposed scheme has the indistiguishability property against adaptive chosen ciphertext attack and
existential unforgeable against chosen message attack under the defined security model.

The paper is organized as follows. Section-1 and 3 present introduction and related works on
CLSC. In section-3, we define mathematical assumption and properties of the admissible bilinear
map. The framework of the scheme and security model are described in section-4 and 5 respectively.
The proposed scheme is presented in section-6 and finally we conclude in section-7.

2 Previous Works

The notion of certificateless signcryption(CLSC) was introduced by Barbosa and Farshim [21] in
2008. Al-Riyami and Paterson [13], Selvi et al. [14] and Xie et al. [25] proposed three different
provably secure schemes individually in the random oracle model. In the random oracle model, it
is assumed that, the hash function is substituted by a random function called random oracle. The
random function is allowed to access publicly. As a result, in the random oracle model, the hash
value cannot be computed by the adversary. Liu et al. [24] proposed a CLSC scheme in the standard
model in 2009. In the standard model, the adversary gets a limited amount of time and computing
power to access the system. The vulnerability of the scheme has proven by Selvi et al. [14]. Also,
she has proven these schemes are not publicly verifiable and have forward security. The technique
of tag-Key Encapsulation method signcryption scheme was proposed by Li et al. [26] using the
certificateless setting. However, Selvi emph et al. [14] proved that the hybrid scheme is not secure
against existentially unforgeable attack and proposed an improved version of the scheme. In an
identity-based setting Malone-Lee constructed a signcryption scheme [18]. Boyen extended this work
and formulated the security framework that achieved different security goals that could be constructed
by an identity-based signcryption scheme [8]. Subsequently, by Libert et al. in [19] and Chen et al.
in [9] proposed a secure and efficient signcryption scheme.

Numerous of CLSC [21] [24] have been proposed based on bilinear mapping and discuss the
complexity in the computation of pairing operations. However the computation time and cost in the
computation of pairing operations remains same and did not reduce. Selvi et al. [15] and Xie et
al. [16] have proposed two CLS without pairing. This motivated to construct pairing free CLSC and
proposed in [17]. Furthermore, in these schemes there are some modular exponent operation which
results poor performance in computation due to high computational time.

Due to less computational cost and communication overhead, our scheme is most suited to imple-
ment on low-end constrained devices, such as wireless sensor network, smart phone, PDA etc. The
proposed scheme is provably secure in the random oracle model. In many cryptographic applications
such as secure board cast, mobile adhoc network, etc where both authentication and confidentiality
is required at a time. Therefore Signcryption technique can be used in these application. Further,
sicne our scheme is based on identity-based cryptography, no need to authenticate a public key . This
results to reduce in computational cost.

3 Preliminaries

3.1 Bilinear Pairings and Complexity Assumptions

Bilinear pairing is a map between two groups. There are two form of bilinear pairings on elliptic
curves known as Weil and Tate pairings. It is defined as:
Let G1 be a cyclic additive group of prime order q and G2 be a cyclic multiplicative group of the
same prime order p. Let ê be a bilinear map which is non-degenerated and computable.

ê : G1 ×G1 → G2

holds following

– Bilinearity: Let a, b ∈ Z∗
q and P,Q ∈ G1



1. ê(aP, bQ) = ê(P,Q)ab.
2. ê(P +Q,R) = ê(P,R)ê(Q,R), for P,Q,R ∈ G1.

– Non-degenerate: Generator of G2 is ê(P, P ), if the generator of G1 is P . ê(P,Q) ̸= 1G2 for
P,Q ∈ G1.

– Computability: ê(P,Q) can be compute efficiently for all P,Q ∈ G1.

ê is the bilinear map and is considered as admissible.
We consider the pairing is the modified Tate pairing and weil pairing on super singular elliptic curve.

Definition 1. k-Collusion Attack Algorithm Assumption(k-CAA) Let k be an integer, s
R←−

Z∗
p and P be the generator of an additive group <G,+>. k-CAA problem in the group G is defined

as given
P, βP and k-pairs H1, (β+H1)

−1P ), (H2, (β+H2)
−1P ) . . . (Hk, (β+Hk)

−1P ), it is computationally
infeasible to compute pair (H∗

1 , (β +H∗
2 )

−1P ) for some H∗ /∈ {H1,H2 . . . Hk} and β.

Definition 2. Inverse Computational Diffie-Hellman Problem(Inv-CDH) Inverse Compu-

tational Diffie-Hellman Problem(Inv-CDH) is given P, βP is to compute 1
βP , where β

R←− Z∗ is an
unknown quantity.

Definition 3. q-Strong Diffie-Hellman Problem(q-SDHP) Let G1 and G2 are two groups of
same prime order p and e : G1 × G1 → G2 be the bilinear map. P be a generator of the group G1.
q-Strong Diffie-Hellman Problem(q-SDHP)in (G1,G2, e) is given (P,QβQ, β2Q . . . βqQ), q+2 tuples

as input, to compute (c, 1
c+βP ), where c

R←− Z∗
q be an unknown quantity.

Definition 4. q-Bilinear Diffie-Hellman Inverse Problem(q-BDHIP) Let G1 and G2 are two
groups of same prime order p and e : G1×G1 → G2 be the bilinear map. P be a generator of the group
G1. q-Bilinear Diffie-Hellman Inverse Problem(q-BDHIP) in (G1,G2, e) is given (P, βP, β2P . . . βqP )

is to compute (P, P )
1
β .

4 Framework of Certificateless Signcryption(CLSC)

Certificateless Signcryption Scheme(CLSC) comprises following seven probabilistic polynomial time
solvable algorithms.

– Setup: It is a global probabilistic polynomial time solvable algorithm run by KGC. Let 1k be the
security parameter is given as input. It outputs Msk as a KGC’s master secret key and params

as system parameters which consists of Mpk, M, C and R as master public key, descriptions of
message space, ciphertext space and randomness space respectively. Formally

(params, Msk) ← Setup(1k)

– Extract-Partial-Private-Key: The algorithm constructs user ’s partial private key SID. It
takes the system parameters params, master secret key Msk , identity of the corresponding user
ID ∈ {0, 1}∗. Formally we can write

SID ← Extract-Partial-Private-Key(params, Msk, ID)

– Generate-User-Keys: This algorithm generates a secret value µ and a public key PKID. It takes
params and an identity ID as input. The secret value generated is used to construct the full private
key by the following algorithm and the public key generated is published without certification.
Formally we can write :

µ← Generate-User-Keys( params, ID)

– Set-Private-Key: The algorithm constructs the user’s full private key dID. It take the two
parameters user’s partial private key SID and a secret value µ as input . Formally

Set-Private-Key(SID, µ)

– CL-Signcrypt: This algorithm constructs the certificateless signcrypt text ciphertext c ∈ C. It
run taking the system parameter params, plaintext message m ∈M, the sender’s full private key
dIDs , user’s identity IDs and sender’s public key PKIDs , and the receiver’s identity IDr and
receiver’s public key PKIDr .



c← CL-Signcrypt(params, m, dIDs , IDs, PKIDs , IDr, PKIDr )

– CL-Unsigncrypt: This algorithm returns the plaintext message m and symbol ⊥ for failure if
plaintext message is not valid. It takes the system parameter params, a ciphertext c, the sender’s
identity IDs and public key PKIDs , and the receiver’s full private key SIDr , identity IDr and
public key PKIDr . Formally

( m / ⊥ ) ← CL-Unsigncrypt(params, IDs, PKIDs , SIDr , IDr, PKIDr )

5 Security Model

5.1 Security Discussions

The security of signcryption have two issues: the security goal that we want to achieve and the attack
model where to evaluate the capabilities of the adversary. The notion of security was defined by
Barbosa and Farshim [21]. Confidentiality and Unforgeability are the two most important security
requirement for a CLSC scheme. In CLSC confentiality is defined by the model as indistinguishability
against adaptive chosen ciphertext attacks (IND-CCA2) and Unforgeability is defined by the model
as existential unforgeability against adaptive chosen messages attacks (UF-CMA).

Consider the strong notion of insider security. So the notion of strong existential unforgeability
against adaptive chosen message attacks is denoted by (sUF-CMA). Here, the adversary wins the
game, if it returns a valid message and signcryption (m,σ) provided the signcryption oracle does not
returns the signcryption σ on the message m in before. Similar to the author proposed in [8, 9], the
attacks targeting to signcryption does not consider for IDs = IDr. These type of queries are not
not allowed for significant oracles and are not taken the signcryption as a valid forgery. Following two
types of adversaries exists in the model.
Type-I and II attacker

– Type-I: The adversary constructs an attacker who is considered as a common user of the system
and not in possession of the master secret key generated by KGC. But he can replace the public
key of the users with valid public keys of his choice in an adaptive manner.

– Type-II: The adversary constructs an honest-but-curious KGC who knows the KGC’s master secret
key. But he cannot able to replace public keys of the users.

Game for Confidentiality:
The security model is defined by the game play between the adversary and challenger. With respect
to the two types of attacker, there are games “IND-CCA2-I” and “IND-CCA2-II for confidentiality
. Let the adversary of both types are denoted by AI and AII respectively. During the game they
interact with their “challenger” and maintain a record to store all history of “query-answer”.

IND-CCA2-I:

Initial: In initialization stage, the challenger generates master secret key msk and the system
parameters by running the algorithm Setup .

(params,msk)← Setup(1k)

The challenger provides the system parameter params to AI and keeps secret the master secret key
msk . In Phase 1:, the adversary AI submits polynomials bounded number of queries adaptively.

– Extract partial private key: In the extraction of partial private key, an user’s identity ID
is chosen by the adversary AI transmits to the challenger. The challenger runs the algorithms
Extract-Partial-Private-Key and computes the partial private key DID of the corresponding
user.

DID ←Extract-Partial-Private-Key(params,msk, ID)

Then sends DID to AI .
– Extract-Secret-value : The attacker AI chooses an identity ID and sends to the challenger.

Then the challenger first run the Extract-Partial-Private-Key algorithm taking the identity
and system parameter as input and constructs the secret value and the public key of the corre-
sponding user. Formally, we can write as



(xID, PKID)← Generate-User-Keys(params, ID).

Then he provides this secret value xID to AI . The previous queries are stored by the challenger.
AI provides the corresponding secret value xID to the user with condition that his public key is
being replaced and AI is not allowed to query the challenge receiver’s partial private key. This
constraint is imposed , since it is difficult to expect that the challenger is able to provide a full
private key for a user for which it does not know the secret value.

– Request public key: The adversary AI chooses an identity ID. The challenger computes
(xID, PKID) ←Generate-User-Keys(params, ID) and provides the public key PKID of the
corresponding user to AI and store a record for all.

– Replace public key: AI chooses randomly a valid public key PK for t he corresponding user
and replaces a public key PKID with the chosen PK.

– Signcryption queries: AI takes the plaintext message m, a sender’s identity IDs and a re-
ceiver’s identity IDr, the challenger recovers from his “query-answer” list for full private key
SIDs and public key PKIDs of the sender and public key PKIDr of receiver. Then computes the
signcryption as

σ ← Signcrypt(params,m, SIDs , IDs, PKIDs , IDr, PKIDr ),

and returns σ to AI . All the queries are being stored. If the sender’s public key has been replaced,
then AI provides the secret value of the sender to the challenger. Here the queries for IDs = IDr

is not allowed.
– Unsigncryption queries: AI takes the signcrytion σ, a sender’s identity IDs and a receiver’s

identity IDr, the challenger recovers SIDr from its “query-answer” list, computes

Unsigncrypt(params, σ, IDs, PKIDs , SIDr , IDr, PKIDr ),

and returns the result to AI . The output is either a plaintext message m or ⊥ if the verification
does not hold. We can note that, when the public key of the receiver is replaced, the challenger
is not conscious about the secret value of the receiver. In this circumstance, the secret value will
not be provided by AI . So the queries for IDs = IDr is not allowed.

Challenge: When Phase-I is completed, AI would like to challenge for two equal length plaintexts
(m0,m1), a sender’s identity ID∗

s , and a receiver’s identity ID∗
r . He generates these challenge param-

eters. We note that, AI will be disallowed to query to extract partial private key for ID∗
r . Also that

ID∗
r cannot be equal to an identity for which both the public key has been replaced and the partial

private key has been extracted. The challenger picks a random bit δ from {0, 1}, computes

σ∗ ← Signcrypt(params,mδ, SID∗
s
, ID∗

s , PKID∗
s
, ID∗

r , PKID∗
r
),

and returns σ∗ to AI . Phase 2: The adversary AI can ask a polynomially bounded number of queries
adaptively again as in Phase -1. The restriction is applied here: AI cannot extract the private key
for ID∗

r . AI cannot extract the partial private key for ID∗
r if the public key of this identity has been

replaced before the challenge phase. In addition, AI cannot make an unsigncryption query on σ∗

under ID∗
s and ID∗

r , unless the public key PKID∗
s
or PKID∗

r
has been replaced after the challenge

phase.
Guess: AI produces a bit δ′ and wins the game if δ′ = δ. The advantage of AI is defined to be

AdvIND−CCA2−I
CLSC (AI) = |2Pr[δ′ = δ]− 1|,

where Pr[δ′ = δ] denotes the probability that δ′ = δ.

IND-CCA2-II:

This is the game where the type-II attacker AII interacts with the “challenger”: Initial: The
challenger runs the Setup algorithm and generates the system parameters and master secret key as

(params,msk)← Setup(1k) and gives both params and msk to AII .

Phase 1: The adversary AII can perform adaptively polynomial bounded number of queries. Since
AI can computes partial private key by using msk, it does not require the partial-private key
extraction query . The queries Extract private key , Request public key, Signcryption and
Unsigncryption as in game IND-CCA2-I are same in IND-CCA2-II . Challenge : When phase-I is



completed, AII chooses two plaintexts messages (m0,m1) of equal length, a sender’s identity ID∗
s ,

and a receiver’s identity ID∗
r on which he would like to challenge. We note that, AII is not allowed

to extract the secret value of ID∗
r and replace his public key. However, he quires the full private key

for the receiver ID∗
r .

The challenger picks a random bit δ from {0, 1}, computes

σ∗ ← Signcrypt(params,mδ, SID∗
s
, ID∗

s , PKID∗
s
, ID∗

r , PKID∗
r
),

and returns σ∗ to AII . Phase 2: The adversary AII can ask a polynomial bounded number of queries
adaptively again as in Phase-1. AII cannot extract the private key for ID∗

r . In addition, AII cannot
make an unsigncryption query on σ∗ under ID∗

s and ID∗
r , unless the public key PKID∗

s
or PKID∗

r
has

been replaced after the challenge phase. Guess: AII produces a bit δ′ and wins the game if δ′ = δ.
The advantage of AII is defined to be

AdvIND−CCA2−II
CLSC (AII) = |2Pr[δ′ = δ]− 1|,

where Pr[δ′ = δ] denotes the probability that δ′ = δ.

Definition 5. A CLSC scheme is said to be IND-CCA2-I secure (resp.IND-CCA2-II secure) if there
is no probabilistic polynomial time (PPT) adversary AI (resp. AII) which wins IND-CCA2-I (resp.
IND-CCA2-II) with non-negligible advantage. A CLSC scheme is said to be IND-CCA2 secure if it is
both IND-CCA2-I secure and IND-CCA2-II secure.

Game for Unforgeability

This is the strong existential unforgeability, we describes two games “sUF-CMA-I” and “sUF-CMA-II”.
Consider two adversaries of type-I and type-II as FI and FII. They interacts with their corresponding
challengers. The challenges maintains a records contains the history of “query-answer”. sUF-CMA-I:
Initial: The challenger runs the Setup algorithm and obtains the system parameter and master
secret key. The master secret key is to be keeping secret with him and send the system parameter to
the attacker. It is given by

(params,msk)← Setup(1k) and gives params to FI .

The challenger keeps master secret key msk and sends params to FI .
Attack: The adversary FI performs a polynomial bounded number of queries in an adaptive

manner. Forgery: FI generates (m∗, σ∗, ID∗
s , ID

∗
r). We note that, ID∗

s was not queried to extract
partial private key but FI can query to extract full-private key of ID∗

r . Further, ID
∗
s should not

be equal to an identity for which both the public key has been replaced and the partial private key
has been extracted. In the meantime σ∗ was not returned by the signcryption oracle on the input
(m∗, ID∗

s , ID
∗
r) during Attack stage. FI wins the game if the result of

Unsigncrypt(params, σ∗, ID∗
s , PKID∗

s
, SID∗

r
, ID∗

r , PKID∗
r
)

is not the the symbol ⊥. Particularly σ∗ is a valid ciphertext of m∗ in ID∗
s and ID∗

r as challenge
sender and receiver respectively. The advantage of wining of FI is defined by the probability given
by

Pr[succ] = AdvsUF−CMA−I
CLSC (FI)

sUF-CMA-II:

This is the game in which FII interacts with the “challenger”: Initial: The challenger runs (params,msk)←
Setup(1k) and gives both params and msk to FII . Attack: The adversary FII performs a poly-
nomial bounded number of queries just like in the IND-CCA2-II game. Forgery: FII produces a
quaternion (m∗, σ∗, ID∗

s , ID
∗
r). ID

∗
s should not be queried to extract a private key. In addition, σ∗

was not returned by the signcryption oracle on the input (m∗, ID∗
s , ID

∗
r) during Attack stage. FII

wins the game if the result of

Unsigncrypt(params, σ∗, ID∗
s , PKID∗

s
, SID∗

r
, ID∗

r , PKID∗
r
)

is not the ⊥ symbol. The advantage of FII is defined as the probability that it wins.

Definition 6. A CLSC scheme is said to be sUF-CMA-I secure (resp. sUF-CMA-II secure) if there
is no PPT adversary FI (resp. FII) which wins sUF-CMA-I (resp. sUF-CMA-II) with non-negligible
advantage. A CLSC scheme is said to be sUF-CMA secure if it is both sUF-CMA-I secure and sUF-
CMA-II secure.



6 Proposed Certificateless Signcryption Scheme(CLSC)

6.1 Construction

The proposed CLSC is defined be the following seven PPT algorithms.

– Setup: given security parameter k, KGC chooses bilinear map groups (G1,G2) of same prime order
p > 2k and generators P ∈ G1, g = e(P, P ), where g ∈ G2. Again KGC chooses three collision
resistant cryptographic hash functions H1 and H2 maps as:
• H1 : {0, 1}∗ → Z∗

p.
• H2 : {0, 1}∗ ×G2 → Z∗

p.
• H3 : G2 → {0, 1}n.

KGC picks randomly s
R←− Z∗

p as master key and computes its public key as Ppub = sP ∈ G1.
Public system parameters are

params = {G1,G2, P, g, Ppub,H1, H2,H3}

– Partial-Private-Key-Extract: Given an user’s identity ID ∈ Z∗
p, PKG computes the private key

as SID = 1
H1(ID)+sP ∈ G1, and sends to the respective user through a secure channel. The user

can verify through the equation e(SID, Ppub +H1(ID)P ) = g. Let for the sake of convenience,
denotes U = Ppub +H1(ID)P .

– Set-Secret-Value: The user with identity ID set his secret value v by picking v
R←− Z∗

p randomly.
– Set-Private-Key: The user with identity ID set his complete private key as S : (SID, v).
– Set-Public-Key: The user with identity ID computes his public key as PKID = v · U . Hence
PKIDi = viUi, for i = s and r denotes as sender and receiver respectively.

– CL-Signcrypt: Given a message m ∈ {0, 1}∗, sender’s private key SIDs , recipient’s identity IDr.
She performs the following steps to compute signcrypt.

1. Select µ
R←− Z∗

p randomly and computes λ = gµ.
2. Set h = H2(m,PKIDr ).
3. Computes T = µ · Ur.
4. Computes c = m⊕H3(λ).
5. Computes σ = 1

vs+hSIDs .
Signcrypt is τ = <c, σ, T>

– CL-UnSigncrypt:Given the ciphertext c, σ, IDs, IDr, T and receiver partial private key SIDr

computes the plaintext message as
1. Computes λ = e(SIDr , T )
2. Computes m = c⊕H3(λ)

– CL-Verify: Given params, m and σ, any user/sender with his identity IDs verifies as
1. Computes h = H2(m,PKIDs).
2. Accept the message m iff the following equation holds

g = e(σ, PKIDs + hUs) (1)

and returns the message m and signature (σ, h) ∈ G1 × Z∗
p.

6.2 Analysis of the scheme

This section, we proof the consistency of the scheme and analyze the security and performance.

6.3 Consistency

e(SID, T ) = e( 1
H1(ID)+sP, µ(Ppub +H1(ID)P )

= e( 1
H1(ID)+sP, µ(H1(ID) + s)P )

= e(P, P )µ = gµ = λ
Now we verify the consistency of equation 1.
e(σ, PKIDs + hUs) = e( 1

vs+hSIDs , vsUs + hUs)

= e( 1
vs+hSIDs , (vs + h)Us)

= e(SIDs , Us) = e(P, P )
= e(P, P ) = g



6.4 Security Analysis

In this section, we present the security proof for Confidentiality and Unforgeability of our
proposed scheme, where hash functions are modeled as random oracle over the game against Type-I
and Type-II adversary defined in Section 4.

Theorem 1. Under the assumption of intractability of q-BDHIP and CDHP in G1, the proposed
CLSC scheme is IND-iCCA-I and IND-iCAA-II secure in random oracle model respectively.

Lemma 1. Assume that there exist an PPT IND-iCCA-I attacker A of Type-I has an advantage ϵ
against the proposed CLSC scheme in time t submitting queries qhi to the corresponding hash functions
Hi, i = 1, 2 and 3 modeled as random oracle. Let qk is query to the secret-value, Lpk is query to public
key replacement, qse and qus denotes signcrypt and qus unsigncrypt extraction query respectively, then
there exist an (ϵ∗, t∗) algorithm B that can solve q-BDHI problem in G1 with probability

ϵ∗ > ϵ
qh1

(2qh2
+qh3

) (
qse(qse+qh2

)

2k
)( qus

2k
)

within a time

t∗ < t+O(q2h1
)tsm +O(qse + qus)tpair +O(qusqh2)texp

Where tsm denotes the running time for scalar multiplication on G1, tpair running time for pairing
computation and texp denotes the running time for exponent operation.

Proof. AI runs B as a subroutine to solve q-BDHIP problem to break IND-iCCA-I security. Given

instance (P, βP, β2P . . . βqP ) q-BDHI problem to B and computes e(P, P )
1
β . It performs the following

phases:

Preparation Phase: B picks randomly l
R←− {1, 2 . . . qh1}, elements θl

R←− Z∗
p and vi

R←− Z∗
p and

computes θi = θl − vi, for all i ∈ {1, 2 . . . p}\{l}. We follow the technique of [22], it set up the
generator Q ∈ G1 and another element V = βQ ∈ G1 by expanding the polynomial

φ(x) =
∏q

i= 1,i̸=l(x+ vi) =
∑q−1

j= 0 cjx
j

Generator Q and the element V of G1 can be computed as

Q =
∑q−1

j= 0(cj(β
jP ) = φ(β)P

and V =
∑q

j=1 cj−1(β
jP ) = βφ(β)P = βQ. As in [22],the pairs (vi,

1
β+vi

Q), ∀ i = 1, 2 . . . l−1, l+
1 . . . q are computed by expanding the following polynomial

φi(x) =
φ(x)
x+vi

=
∑q−2

j= 0 τjx
i

and computes

1
β+vi

Q =
∑q−1

j=1 τj(β
jP ) = φ(β)

β+vi
P

It setup the public key of PKG as Qpub = −V −θlQ = (−β−θl)Q and master key as s = (−β−θl)
R←−

Z∗
p.

Where (θl,− 1
(β+vi)

Q), i
R←− {1, 2, . . . l − 1, l + 1 . . . q}. B setup the generator Q and system parame-

ters as Qpub = (−β−θl)Q and g = e(Q,Q). Simulation of B is performed in the following two phases:

Phase-I: To simulate the hash oracles H1,H2 and H3, B constructs three list L1, L2 and L3 to store
the output of the respective queries submitted to these hash functions. Also B maintains list Lk,
Lse and Lus for user’s public key and secret value tuple, Signcryption and Unsigncryption queries
respectively.

At the beginning, B setup a counter π = 1 and takes (P,Q,Qpub) as input. Assume that all H1

queries are distinct, that at some instant, the identity IDr which is the targeted one is submitted to
H1. Any query associated with ID should have to submit after H1 query on ID.

– H1-Queries: All the queries submitted to H1 are indexed by π. On input IDπ, B returns θπ and
add the entry (IDπ, θπ) to L1 and increment π.

– Extract Partial Private-Key Queries: On input IDπ, if π = l, then B returns fail. Otherwise
it knows that H1(IDπ) = θπ from L1 and returns Jπ = 1

θπ+xQ to AI .



– Secret-value Queries: On input IDπ, B searches the entry <IDπ, µπ, PKIDπ> in the list Lk

and returns µπ to AI . Otherwise, B picks µπ
R←− Z∗

p as the secret-value and computes PKIDπ =
µπU , where U = Ppub+θπ. In this queries, B has to searches IDπ and runs H1-queries. B includes
<IDπ, µπ, PKIDπ> to Lk.

– Request Public-Key Queries: On input IDπ, B searches the entry <IDπ, µπ, PKIDπ>, if

founds, then returns PKIDπ , otherwise B picks µπ
R←− Z∗

p randomly and computes PKIDπ = µπU .
B includes <IDπ, µπ, PKIDπ> to Lk and returns PKIDπ to AI .

– Replace Public-Key Queries:AI submits public key replacement queries on input (IDπ, PKIDπ ).
If IDπ exists in Lk, B sets PKIDπ = PK

′

IDπ
, includes the tuples <IDπ, µ

′

π, PKIDπ> to Lpk.

Here we have to assume that, B can recovers µ
′

π from AI as a secret value to the corresponding
replaced public key PK

′

IDπ
. Otherwise B runs the public key extraction query to generate the

tuple <IDπ, µπ, PKIDπ>, then sets PKIDπ = PK
′

IDπ
and includes <IDπ, µ

′

π, PKIDπ> to Lpk.
– H2-Queries: L2 contains the tuples of type <mj , IDπ, PKIDπ , h2,j>. On input (IDπ,mj),B

runs H2 query. She picks h2,j
R←− Z∗

p randomly.Sets h2,j = H2(mj , PKIDπ ) and includes
<mj , IDπ, PKIDπ

, h2,j> to L2. Then sends h2,j to AI .
– H3-Queries: B recovers the secret value µπ from Lk and computes the value λ. On input λ, B

runs the query H3. She picks random value h3,j
R←− {0, 1}n and sets h3,j = H3(λ) and add the

entry (λ, h3,j) to the list L3.
– Signcryption Queries: At any time, B simulates Signcryption queries on message m and iden-

tities (IDs, IDr) = (IDρ, IDπ), for ρ, π ∈ {1, 2 . . . qh1}. Note that, if ρ ̸= l, B knows the private
key of sender i.e SIDρ = Jρ, where Jρ = − 1

θρ+xP and can answer the query based on the

construction of Signcryption. So we assume ρ = l and π ̸= l by the reflexivity assumption [22].
Note that B knows the private key of the recipient i.e SIDπ = Jπ. The computational infeasibility
to find a random tuple (σ,U, h) ∈ G1 ×G1 × Z∗

p for which the following equation holds:

e(U, SIDπ ) = e(σ, PKIDl
+ hU) (2)

To perform so B picks ξ, h
R←− Z∗

p and computes the following:
• σ = ξ−1SIDπ

• U(1− ξ−1SIDπ ) = ξ−1PKIDl

in order to get the required equality e(SIDπ , U) = e(σ, PKIDl
+ hU) before patching the hash

value H2(m,PKIDπ ) to h2. B fails if H2 is defined already but is only happen with probability
(qs + qh2)

1
2k
. Returns signcrypt τ = (m⊕H3(λ), σ, U).

– UnSigncryption Queries: On input the signcrypt τ = <c, σ, U> for identities (IDs, IDr) =
(IDρ, IDπ), B submits this queries. Let us assume that, π = l and by irreflexivity property
ρ ̸= l, because otherwise B knows the private key of the recipient SIDπ = −Jπ can executes
UnSigncrypt algorithm normally. Since ρ ̸= l, B has the private key SIDρ of the sender and
knows that for all valid signcrypt logSDρ

(σ) = log(PKIDπ+hQpub+hθπQ)(Qpub + θπQ), where
h = H2(m,PKIDπ ) is the digest obtains in the Signcrypt algorithm and U = Qpub + θπQ.
Hence we have the equation

e(U, SIDρ) = e(σ, PKIDπ + hU) (3)

Hence, the query is managed by computing ψ = e(σ, PKID) and search the entries ((mi, λ, h2,i, c, ψ)
indexed by i = {1, 2, . . . qh2}, if not found τ is rejected, otherwise continue the simulation for
each indexes and B checks the following equation

e(U, SIDρ)

e(σ, PKIDπ )
= e(σ,U)

h2,i (4)

All pairing computations are performed once and it needs maximum qh2 number of exponentiations
that satisfies equation- 3. If there exists a unique index i ∈ {1 . . . qh2} that satisfies equation-4 then it
returns the matching pairs (mi, <h2,i, σ>), otherwise it rejects τ . In general, an unsuitable rejection
occurs with probability Pr[τ = “reject′′] ≤ qu

2k
during the entire game.

Challenge: During the challenge phase, A sets two plaintext messages (m0,m1) of equal length
and the identities (IDs, IDr) on which it would like to be challenged. If IDr ̸= IDl, B aborts,

otherwise B picks ζ
R←− Z∗

p, c
R←− {0, 1}n and σ

R←− G1 randomly and outputs τ∗ = <c, σ, U> where
U = −ζQ ∈ G1. Let set γ = ζ/β. We have



U = −ζQ = −γβQ = (s+ θl)γQ = θlγQ+ γQpub.

Hence as long as AI does not query H2 or H3 on input e(Q,Q)γ , she cannot recognize that τ∗ is an
invalid ciphertext.

Phase-II :AI can submit polynomially bounded number of queries in an adaptive manner against
Phase-I with constraint that she cannot submit a key extraction query on IDr and cannot make an
unsigncryption query on τ∗ to obtain the corresponding plaintext. B answers the queries of B as in
Phase-I. During the guess stage, her view is simulated as before and the eventual output obtained
is ignored. To produce a result, B fetches a random entry (m,λ, h2, c, ψ) or (λ, .) from the list L2 or
L3. Since L3 contains maximum (qh2 + qh3) number of records, the selected entry will contain the

valid element λ = e(Q,Q)γ = e(P, P )φ(β)2ζ/β with probability 1
2qh2

+qh3
, where φ(x) =

∑q−1
j= 0 cjx

j

is the polynomial for which Q = φ(β)P . The solution of q-BDHIP can be computed by noting that,

if ψ∗ = e(Q,Q)
1
β , then

e(Q,Q)
1
β = ψ∗c20e(

∑q−2
i=0 (cj+1(β

jP ), c0P ))e(Q,
∑q−2

j=0 ci+2(β
j)P )

Probability Analysis

We can analyze the advantages of B and calculate the probability of successes. Note that due to the
occurrence of one of the following independent events, it fails to provide a consistent simulation.

– E1: AI does not choose the identity IDl of the receiver during the challenge phase.
– E2: a key extraction query is made on IDl.
– E3: Because of collision property of H2, B aborts in a Signcryption query.
– E4: At a particular instant of the game, B aborts Unsigncryption query since rejecting a valid

ciphertext.

So the probability of the above invents are

– Pr[¬E1] =
1

qh1

– ¬E1 ⇒ ¬E2

– Pr[¬E3] ≥ (1− qse(qse+qh2
)

2k
)

– Pr[¬E4] ≥ (1− qus

2k
)

Hence the probability of B does not abort is

Pr[¬abort] = Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4]

⇒ Pr[¬abort] ≥ 1
qh1

(1− qse(qse+qh2
)

2k
)(1− qus

2k
)

Further B selects the valid element from L2 or L3 with probability 1
qh1

(2qh2
+qh3

) Hence

ϵ∗ ≥ ϵ
qh1

(2qh2
+qh3

) (1−
qse(qse+qh2

)

2k
)(1− qus

2k
)

Running time

Running time is computed by calculating the various operations that are to be performed bymathcalB
during the above simulation of all oracles.

Let to compute the bound of B’s computation as she requires O(q2h1
) scalar multiplications in G1

in preparing phase, O(qse + qus) number of pairing operation and O(qusqh2) exponents in G2. Hence
the B’s running time is bounded by

t∗ < t+O(q2h1
)tsm +O(qse + qus)tpair +O(qusqh2)texp

Lemma 2. Assume that there exist an PPT IND-iCCA-II attacker A of Type-II has an advantage ϵ
against the proposed CLSC scheme in time t submitting queries qhi to the corresponding hash functions
Hi, i = 1, 2 and 3 modeled as random oracle. Let qk is query to the secret-value, qse and qus denotes
signcrypt and qus unsigncrypt extraction query respectively, then there exist an (ϵ∗, t∗) algorithm B
that can solve CDH problem in G1 with probability

ϵ∗ > ϵ
qw(2qh2

+qh3
) (1−

qse(qse+qh2
)

2k
)(1− qus

2k
)



within a time

t∗ < t+O(q2w)tsm +O(qse + qus)tpair +O(qusqh2)texp

Proof. AII run B as a subroutine to solve CDH problem to break IND-iCCA-II security. Given tuples
<U, aU, bU>, she has to compute abU in G1. It performs the following phases:

Preparation Phase: B generates master secret key s and Ppub. Sends to AII . B chooses l
R←−

{1, 2, . . . qw}.
Phase-I: AII is given access to run a series of queries in an adaptive manner.

– H1-Queries: All the queries submitted to H1 are indexed by π. On input IDπ, B returns θπ and
add the entry (IDπ, θπ) to L1 and increment π.

– Extract Partial Private-Key Queries: In Type-II model, KGC is modeled an honest but
curious, the adversary knows the master secret key s who can generate partial private key for
himself. So it does not require Partial-Private key extraction query.

– Request Public-Key Queries: On input IDπ, B searches the entry <IDπ, µπ, PKπ>, if founds,

then returns PKIDπ
, otherwise B picks µπ

R←− Z∗
p randomly and computes PKIDπ

= µπU . B
includes <IDπ, µπ, PKπ> to Lk and returns PKIDπ to AI .

– Secret-value Queries: On input IDπ, if π = l i.e, B searches the entry <IDπ, µπ, PKπ> in

the list Lk and returns µπ to AI and aborts the simulation. Otherwise, B picks µπ
R←− Z∗

p as
the secret-value and computes PKIDπ = µπU , where U = Ppub + θπ. In this queries, B has to
searches IDπ and runs H1-queries. B includes <IDπ, µπ, PKπ> to Lk.

– Replace Public-Key Queries: On input IDπ, if π = l, B aborts the simulation, otherwise AI

submits public key replacement queries on input (IDπ, PKIDπ ). If IDπ exists in Lk, B replaces
<IDπ, µπ, PKπ> with <IDπ, µπ,⊥PK>. Simultaneously also B has to run H1 queries and send
the obtain public key PK to AI .

– H2-Queries: L2 contains the tuples of type <mj , IDπ, PKIDπ
, h2,j>. On input (IDπ,mj),B

runs H2 query. She picks h2,j
R←− Z∗

p randomly.Sets h2,j = H2(mj , PKIDπ ) and includes
<mj , IDπ, PKIDπ , h2,j> to L2. Then sends h2,j to AI .

– H3-Queries: B recovers the secret value µπ from Lk and computes the value λ. On input λ, B
runs the query H3. She picks random value h3,j

R←− {0, 1}n and sets h3,j = H3(λ) and add the
entry (λ, h3,j) to the list L3.

– Signcryption Queries: Sender generates signcrypt on message m ∈ {0, 1}∗ and sends to the
receiver. Assume that both the sender and receiver’s public keys and recever’s secret values have
been queried, if public key of receiver has been replaced, then B should provide the corresponding
secret value and simulates as:

• Case-I: IDs ̸= IDl, IDs’s full private key S : (SIDs , µs) could be queried and B returns the
signcryption (σ,U, h).

• Case-II: IDs = IDl, B picks the value µ, s
R←− Z∗

p and computes U = Ppub+θsP , λ = gµ, c =
m ⊕H3(λ) and σ = µ

µ+h (PKIDs)
−1P , where the hash value θs, h and k are obtained from

the simulation of H1, H2 and H3 oracle respectively. Then <c, σ, U> is a valid signcryption
since it can pass the verification equation 1.
• UnSigncryption Queries: The receiver obtains <c, σ, U> from the sender. We consider
that the respective user’s public keys and secret values have been queried. B simulates as
∗ Case-I: IDr ̸= IDl. It is similar to the proof of lemma-1.
∗ Case-II: IDr = IDl, B computes λ = e(SIDr , PKIDr ). AII decrypts the message as
c⊕H3(λ). Then she verifies the equation g = e(σ, PKIDr +hU). If successes, AII accepts
the message, otherwise interrupts the simulation.

Challenge: AII returns <m0,m1, ID
∗
s , ID

∗
r> to be challenged. If IDr = IDj , then B aborts

the simulation, otherwise she picks δ ∈ {0, 1}, µ∗ R←− Z∗
p and sets λ∗ = gµ

∗
, c∗ = mδ⊕k∗, U∗ =

sP + θ∗sP and h∗. Where k∗ = H3(λ
∗). It returns <c∗, σ∗, U∗> to the adversary AII .

Phase-II: AII is not allowed to submit Unsigncrypt query on τ∗ under ID∗
s and ID∗

r as sender
and receiver respectively. Hence the public key of ID∗

r can not be replaced.
Guess: AII returns δ

′ ∈ {0, 1} as her guess. AII wins the game if δ = δ
′
. It needs to solve CDH

problem. B searches the entry <λ, IDs, IDr, µ, h3> in L3, there exist the value bPKID∗
r
= abU

with the chance of 1
(2qh2

+qh3
) .



Probability Analysis

We can analyze the advantages of B and calculate the probability of successes. Note that due to the
occurrence of one of the following independent events, it fails to provide a consistent simulation.

– E1: AII does not ask the secret value identity IDl during the phase-I.
– E2: AII does not challenged on the identity IDl, if E1 happens.
– E3: Because of collision property of H2, B aborts in a Signcryption query.
– E4: At a particular instant of the game, B aborts Unsigncryption query since rejecting a valid

ciphertext.

So the probability of the above invents are

– Pr[¬E1] =
1
qw

– ¬E1 ⇒ ¬E2

– Pr[E3] ≥ (1− qse(qse+qh2
)

2k
)

– Pr[E4] ≤ (1− qus

2k
)

Hence the probability of B does not abort is

Pr[¬abort] = Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4]

⇒ Pr[¬abort] ≥ 1
qw

(1− qse(qse+qh2
)

2k
)(1− qus

2k
)

Further B selects the valid element from L2 or L3 with probability 1
qw

(2qh2 + qh3)

ϵ∗ > ϵ
qw(2qh2

+qh3
) (1−

qse(qse+qh2
)

2k
)(1− qus

2k
)

Running time

Let to compute the bound of B’s computation as she requires O(q2w) scalar multiplications in G1 in
preparing phase, O(qse+ qus) number of pairing operation and O(qusqh2) exponents in G2 during the
simulation of all the oracles. Hence bound of B’s running time is

t∗ < t+O(q2w)tsm +O(qse + qus)tpair +O(qusqh2)texp

Theorem 2. Under the assumption of intractability of k-CAA and Inv-CDH in G1, the proposed
CLSC scheme is sUF-iCMA-I and sUF-iCMA-II secure in random oracle model respectively.

The theorem follows from Lemmas 3 & 4.

Lemma 3. Assume that there exist an PPT sUF-iCMA-I attacker AI of Type-I has an advantage ϵ
against the proposed CLSC scheme in time t submitting queries qhi to the corresponding hash functions
Hi, i = 1, 2, 3 modeled as random oracle. Let qppk, qpk, qqk, qqse and quc denotes query to the partial
private-key extraction, private key extraction oracle, public key request, signcryption and unsigncryp-
tion oracles respectively, then there exist an (ϵ∗, t∗) algorithm B that can solve k-CAA problem in G1

with probability

ϵ∗ ≥ 1
q1
(1− qse(qse+qppk+qpk)

2k
)(1− qus

2k
)

t∗ < t+O(q21 + qse)tsm +O(qse)tinv +O(qse)texp

Proof. Let the forger apply a reliable simulation algorithm B and solve k-CAA problem. B is given a
random instance P,U = sP ← G1, {Q1, Q2 . . . Qq} ← Z∗

q and

{ 1
s+Q1

P, 1
s+Q2

P . . . 1
s+Qq

P} ∈ G1, after interacting with Type-I adversary AI the algorithm B
has to compute a pair (Q∗, 1

s+Q∗P for some Q∗ /∈ {Q1, Q2 . . . Qq}. The game is played between C and

AI . B picks l
R←− {1, 2 . . . q1}.

– Setup: To set g = e(P, P ) and Ppub = sP , B initializes these parameters by running Setup

algorithm. The master secret key s is unknown to B. B chooses a challenged ID
R←− Z∗

p and
returns the public parameters {P, g, Ppub,H1,H2} and sends to FI . Let us we assume that, before
submitting any queries to H2, partial private-key extraction and private-key extraction taking
IDi as input to the algorithm then AI submits queries to H1.
Phase-I: FI runs the algorithm B as subroutine and access to series of oracles adaptively.



– H1-Queries: On input IDi, B returns θi = H1(IDi) = Qi and includes the entry<i, IDi, θi, Ji>,
where Ji =

1
s+Qi

P to L1. If i = l, θl = H1(IDl) = Q∗ which is unknown to B.
– Extract Partial Private-Key Queries: When FI asks for IDl, B aborts. Otherwise, B retrieves
Ji from L1.

– Signcryption Queries: When the sender likes to deliver the messagem = {0, 1}∗ to the receiver,
it undergoes the following two cases.
• Case-I: If IDs ̸= IDl, B can extract the public key PKIDs and full private key Ss : (µs, Js)
by running Public Key, Partial-Private key and Secret-value extraction queries. Then she
executes CL-Signcryption algorithm.

• Case-II:If IDs = IDl, B picks µ, h
R←− Z∗

p and computes U = Ppub + θsP , where θs =

H1(IDs), σ = 1
(µs+h)Js, λ = gµ, c = m ⊕ H3(λ). Eventually B returns τ = <c, σ, U>

provides to FI . All the simulation of hash oracles for H1,H2 and H3 are same that have been
described in the previous lemma.

– UnSigncryption Queries: In Unsigncryption queries, it undergoes the following two cases:
• Case-I: If IDr ̸= IDl, B executes CL-UnSigncrpt by the following algorithm

m← CL− UnSigncrypt(params, IDs, PKIDs , IDr, PKIDr , Sr, τ).
Then B can verifies through the verification equation. If it cannot pass, it returns ⊥, otherwise
sends m to FI .
• Case-II: If IDr = IDl, FI cannot compute the value λ = e(P, P )µ. B recovers L3 with
tuple <∗, h3>. If there exists corresponding tuple matches with it, the take λ form the list
and computes m = c ⊕ h3, otherwise B selects a random value λ ∈ G1 and generates
decryption key h3. Then FI run the CL-UnSigncrypt algorithm using the key and perform
the verification process. If the verification equation holds, FI accepts m, otherwise returns
‘‘failure’’.

Forgery phase: At the end of the simulation, FI returns τ∗ = <c∗, σ∗, U∗> as a valid signcryp-
tion with respect to the targeted identities ID∗

s , ID
∗
r . If IDs ̸= IDl, B aborts the simulation and

repeats by choosing the same random values, but different value of µ. It computes λ∗1 = gµ
∗
1 and

λ∗2 = gµ
∗
2 . c∗1 = m ⊕H3(λ

∗
1) and c∗2 = m ⊕H3(λ

∗
2). Similarly also computes h∗1 and h∗2. Then

computes two different σ∗
1 and σ∗

2 as

σ∗
1 = 1

µ∗
1+h∗

1
J∗
ID, σ∗

2 = 1
µ∗
2+h∗

2
J∗
ID

σ∗
1 − σ∗

2 = { 1
µ∗
1+h∗

1
− 1

µ∗
2+h∗

2
}J∗

ID

J∗
ID = (σ∗

1 − σ∗
2){ 1

µ∗
1+h∗

1
− 1

µ∗
2+h∗

2
}−1

⇒ 1
s+Q∗P = (σ∗

1 − σ∗
2){ 1

µ∗
1+h∗

1
− 1

µ∗
2+h∗

2
}−1

Hence B can succeeds computing the group element 1
s+Q∗P and returns the pair (Q∗, 1

s+Q∗P ) as

a solution to the challenge of FI for Q∗ /∈ {Q1, Q2 . . . Qq}.

Probability Analysis

We can analyze the advantages of B and calculate the probability of successes. Note that due to the
occurrence of one of the following independent events, it fails to provide a consistent simulation.

– E1: FI does not ask the partial private key.
– E2: FI does not ask sender’s identity as IDl during the forgery phase.
– E3: Because of collision property of H2 and H3, B aborts in a Signcryption query.
– E4: At a particular instant of the game, B aborts Unsigncryption query that generates a valid

ciphertext.

So the probability of the above invents are

– Pr[¬E1] =
1
q1

– ¬E1 ⇒ ¬E2

– Pr[E3] ≥ 1− qse(qse+qppk+qpk)
2k

– Pr[E4] ≥ (1− qus

2k
)

Hence the probability of B does not abort is

Pr[¬abort] = Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4]

⇒ Pr[¬abort] ≥ 1
q1
(1− qse(qse+qppk+qpk)

2k
)(1− qus

2k
)



Further B selects the valid element from L2 or L3 with probability 1
qh1

(2qh2
+qh3

)

ϵ∗ ≥ 1
q1
(1− qse(qse+qppk+qpk)

2k
)(1− qus

2k
)

Running time

Let to compute the bound of B’s computation as she requires O(q21 + qse) number of scalar multipli-
cations in preparation phase and signcryption oracle query and one inversion and exponent operation
in signcryption oracle query in G2. Hence the bound of B’s running time is

t∗ < t+O(q21 + qse)tsm +O(qse)tinv +O(qse)texp

Lemma 4. Assume that there exist an PPT sUF-iCMA-II attacker AII of Type-II has an advan-
tage ϵ against the proposed CLSC scheme in time t submitting queries qhi to the corresponding hash
functions Hi, i = 1, 2, 3 modeled as random oracle. Let qppk, qse and quc denotes query to the partial
private-key extraction, query to signcryption and query to unsigncryption, then there exist an (ϵ∗, t∗)
algorithm B that can solve Inv-CDH problem in G1 with probability

t∗ < t+O(q21 + qse)tsm +O(qse)tinv

Proof. To proof the lemma, the challenger constructs an algorithm B as subroutine to solve Inv-CDH
problem over G1. It takes the Inv-CDH instance (α, P, αP ) as input to computes 1

αP . So goal of B
is to computes 1

µ+hP over the group G1. Let the Type-II adversary is denoted by FII . B chooses

l = {1, 2 . . . q1} answers the oracle queries as follows:

– Setup: To set g = e(P, P ) and Ppub = sP ., B initializes these parameters by running Setup

algorithm.
FII submits a series of polynomially bounded number of queries in an adaptive manner.

– H1-Queries: All the queries submitted to H1 are indexed by π. On input IDπ, B returns θπ and
add the entry (IDπ, θπ) to L1 and increment π.

– H2-Queries: On input (m,λ), B returns the previously defined value if it exist, otherwise it

returns a random h2
R←− Z∗

p. To look forward probable subsequent Unsigncrypt/Verify requests
moreover B has to simulates H3 random oracle to get h3 = H3(λ) ∈ {0, 1}n. Includes the entry
(m,λ, h2, c, ψ) to L2, where ψ = e(σ, PKID).

– H3-Queries: It calls the input λ, B returns the preceding value, if it exists, otherwise select

random value h3
R←− {0, 1}n and add the entry (λ, h3) to the list L3.

– Partial-Private-Key query: FII can use the master secret key and computes the partial-
private-key. Hence it does not require to run this query.

– Secret-value Query: B terminates the simulation if FII asks the queries on secret value chosen
by IDl.

– Request Public-Key Queries: In this query, On input IDl, mathcalB set the public key as
PKIDl

= µlU send to FII .
– Replace-Public-Key Queries: B terminates the simulation if FII asks the queries on input
IDl.

– Signcryption Queries: Sender with identity IDs sends transmits the message m ∈ {0, 1}∗. In
this query, on input <IDl, m̃>, B performs as
• If IDs ̸= IDl, FII can recovers the public key PKIDs and full private key S = (SIDs , µs)
from the above defined oracles and B runs the CL-Signcrypt algorithm.
• If IDs = IDl, B retrieves the corresponding entry <m̃, IDl, Ql, PKIDl

, h2,l> from L2 list
and computes σ̃ = 1

(µl+h2,l)(s+Ql)
P . Simultaneously it runs H3 query oracle and retrieve λi

and computes c̃ = m̃⊕H3(λ). B returns the signcrypt τ and sends to FII .
– UnSigncryption Queries: When the recipient receives τ = <c, σ, U>, B needs to consider

following two conditions.
• If IDr ̸= IDl, on input IDr, FII runs secret value queries. The B computes the message m
by performing CL-Unsigncrypt algorithm as

m← CL-Unsigncrypt(params, IDs, PKIDs , IDr, PKIDr , Sr, τ)
and verifies. If the verification equation holds, returns ⊥, otherwise transmits m to FII .
• If IDr = IDl, λ can be computed B recovers L3 with tuple <∗, h3>. If there exists cor-
responding tuple matches with it, the take λ form the list and computes m = c ⊕ h3,
otherwise B selects a random value λ ∈ G1 and generates decryption key h3. Then FII runs
the CL-UnSigncrypt algorithm using the key and perform the verification process. If the
verification equation holds, FII accepts m, otherwise returns ‘‘failure’’.



Forgery Phase: Then for identity IDi, σ̃ is the sincrypt. Eventually FII returns a signcrypt τ∗

on message m∗ by the CL-Signcrypt algorithm taking the public key PK∗
ID for the identity ID∗

which passes the verification equation. If ID∗ ̸= IDl, B returns ‘‘failure ’’ and terminates
the simulation. If ID∗ = IDl, B retrieves the corresponding tuple <m∗, ID∗, Q∗h∗2> from the
list L2. Now consider the verification equation e(P, P ) = e(σ∗, PKID∗ + h∗U).
e(σ∗, PKID∗ + h∗U) = (σ∗, PK∗

ID + h∗(Ppub +Q∗P ))
= e(σ∗, µ(Ppub +Q∗P ) + h∗(Ppub +Q∗P ))
= e(σ∗, (µ+ h∗)(Ppub +Q∗P )
= e(σ∗, (µ+ h∗)(s+Q∗)P )
= e(P, σ∗(µ+ h∗)(s+Q∗)) = e(P, P )
⇒ σ∗(µ+ h∗)(s+Q∗) = P
⇒ 1

(µ+h∗)P = (s+Q∗)σ∗

Hence B can succeeds to compute the group element 1
(µ+h∗)P = (s+Q∗)σ∗. In the other ward,

she can solve Inv-CDH problem in G1.

Probability Analysis

We can analyze the advantages of B and calculate the probability of successes. Note that due to the
occurrence of one of the following independent events, it fails to provide a consistent simulation.

– E1: AI does not choose the identity IDl of the receiver during the challenge phase.

– E2: a key extraction query is made on IDl.

– E3: Because of collision property of H2, B aborts in a Signcryption query.

– E4: At a particular instant of the game, B aborts Unsigncryption query since rejecting a valid
ciphertext.

So the probability of the above invents are

– Pr[¬E1] =
1

qh1

– ¬E1 ⇒ ¬E2

– Pr[E3] ≤
qse(qse+qh2

)

2k

– Pr[E4] ≤ qus

2k

Hence the probability of B does not abort is

Pr[¬abort] = Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧ ¬E4]

⇒ Pr[¬abort] ≥ 1
qh1

(
qse(qse+qh2

)

2k
)( qus

2k
)

Further B selects the valid element from L2 or L3 with probability 1
qh1

(2qh2
+qh3

)

ϵ∗ ≥ ϵ
qh1

(2qh2
+qh3

) (
qse(qse+qh2

)

2k
)( qus

2k
)

Running time

B’s requires O(q2h1
) scalar multiplications in G1 during the preparing phase, one scalar multiplication

and inversion operation are required in signcryption oracle query. Hence the bound of B’s running
time is given by

t∗ < t+O(q21 + qse)tsm +O(qse)tinv

7 Conclusion

This article proposes a generic construction of Certificateless Signcryption Scheme(CLSC) which is
provably secure in random oracle model. The scheme is proven to be satisfied confidentiality and
unforgeability against chosen ciphertext and message attack of Type-I and Type-II in an adaptive
manner respectively. Our scheme is more efficient in term of computational cost and secure than the
schemes proposed by et al.. It is suited to implement on low power and processor devices such as
PDA, smart phone, WSNs and smart card etc.
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