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Abstract. Generalized Selective Decryption (GSD), introduced by Panjwani [TCC’07],
is a game for a symmetric encryption scheme Enc that captures the difficulty of proving
adaptive security of certain protocols, most notably the Logical Key Hierarchy (LKH)
multicast encryption protocol. In the GSD game there are n keys k1, . . . , kn, which the
adversary may adaptively corrupt (learn); moreover, it can ask for encryptions Encki(kj)
of keys under other keys. The adversary’s task is to distinguish keys (which it cannot
trivially compute) from random. Proving the hardness of GSD assuming only IND-CPA
security of Enc is surprisingly hard. Using “complexity leveraging” loses a factor expo-
nential in n, which makes the proof practically meaningless.
We can think of the GSD game as building a graph on n vertices, where we add an edge
i → j when the adversary asks for an encryption of kj under ki. If restricted to graphs
of depth `, Panjwani gave a reduction that loses only a factor exponential in ` (not n).
To date, this is the only non-trivial result known for GSD.
In this paper we give almost-polynomial reductions for large classes of graphs. Most
importantly, we prove the security of the GSD game restricted to trees losing only a
quasi-polynomial factor n3 logn+5. Trees are an important special case capturing real-
world protocols like the LKH protocol. Our new bound improves upon Panjwani’s on
some LKH variants proposed in the literature where the underlying tree is not balanced.
Our proof builds on ideas from the “nested hybrids” technique recently introduced by
Fuchsbauer et al. [Asiacrypt’14] for proving the adaptive security of constrained PRFs.

1 Introduction

Proving security of protocols where an adversary can make queries and/or corrupt players
adaptively is a notoriously hard problem. Selective security, where the adversary must commit
to its queries before the protocol starts, often allows for an easy proof, but in general does not
imply (the practically relevant) adaptive security notion [CFGN96].

Panjwani [Pan07] argues that the two common approaches to achieving adaptive security,
namely requiring that all parties erase past data [BH93], or using non-committing encryption
[CFGN96] are not satisfactory. He introduces the generalized selective decryption (GSD) prob-
lem and uses it as an abstraction of security requirements of multicast encryption protocols
[WGL00,MP06]. GSD is defined by a very simple game that captures the difficulty of proving
adaptive security of some interesting protocols.

The generalized selective decryption (GSD) game. In the GSD game we consider a
symmetric encryption scheme Enc and a parameter n ∈ N. Initially, we sample n random keys
k1, . . . , kn and a bit b ∈ {0, 1}. During the game the adversary A can make two types of queries.
Encryption query: on input (i, j) she receives c = Encki(kj); corruption query: on input i, she
receives ki. At some point, A chooses some i to be challenged on. If b = 0, she gets the key ki;
if b = 1, she gets a uniformly random ri.

3 Finally, A outputs a guess bit b′. The goal is prove
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that for any efficient A, |Pr[b = b′] − 1/2| is negligible (or, equivalently, ki is pseudorandom)
assuming only that Enc is a secure encryption scheme. We only allow one challenge query, but
this notion is equivalent to allowing any number of challenge queries by a standard hybrid
argument (losing a factor that is only the number of challenge queries).

It is convenient to think of the GSD game as dynamically building a graph, which we call
key graph. We start with a graph with n vertices labeled 1, . . . , n, where we associate vertex i
with key ki. On an encryption query Encki(kj) we add a directed edge i→ j. On a corruption
query i we label the vertex i as corrupted. Note that if i is corrupted then A also learns all
keys kj for which there is a path from i to j in the key graph by simply decrypting the keys
along that path. To make the game non-trivial, challenge queries are thus only allowed for
keys that are not reachable from any corrupted key. Another restriction we must make is to
disallow encryption cycles, i.e., loops in the graph. Otherwise we cannot hope to prove security
assuming only standard security (in our case IND-CPA) of the underlying encryption scheme, as
this would require circular (or key-dependent-message) security [BRS03], which is stronger than
IND-CPA [ABBC10]. Finally, we require that the challenge query is a leaf in the graph; this
restriction too is necessary unless we make additional assumptions on the underlying encryption
scheme (cf. Footnote 11).

Selective security of GSD. In order to prove security of the GSD game, one must turn
an adversary A that breaks the GSD game with some advantage ε = |Pr[b = b′] − 1/2| into
an adversary B that breaks the security of Enc with some advantage ε′ = ε′(ε). The security
notion we consider is the standard notion of indistinguishability under chosen plaintext attacks
(IND-CPA). Recall that in the IND-CPA game an adversary B is given access to an encryption
oracle Enck(·). At some point B chooses a pair of messages (m0,m1), then gets a challenge
ciphertext c = Enck(mb) for a random bit b, and must output a guess b′. The advantage of B
is |Pr[b = b′]− 1/2|.

It is not at all clear how to construct an adversary B that breaks IND-CPA from an A
that breaks GSD. This problem becomes much easier if we assume that A breaks the selective
security of GSD, where A must choose all its encryption, corruption and challenge queries before
the experiment starts.

In fact, it is sufficient to know the topology of the connected component in the key graph
that contains the challenge node. Let α denote the number of edges in this component. One
can now define a sequence of 2α hybrid games H0, . . . ,H2α−1, where the first game is the real
game (i.e., the GSD game with b = 0 where the adversary gets the key), the last hybrid is
the random game (b = 1), and moreover, from any adversary that distinguishes Hi from Hi+1

with some advantage ε′, we get an adversary against the IND-CPA security of Enc with the
same advantage. Thus, given an A breaking GSD with advantage ε, we can break the IND-CPA
security with advantage ε′ ≥ ε/(2α − 1) ≥ ε/n2 (as an n vertex graph has ≤ n2 edges). We
illustrate this reduction in Fig. 1.

Adaptive security of GSD. In the selective security proof for GSD we crucially relied
on the fact that we knew the topology of the underlying key graph. Proving adaptive security,
where the adversary decides what queries to ask adaptively during the experiment, is much more
difficult. A generic trick to prove adaptive security is “complexity leveraging”, where one simply
turns an adaptive adversary into a selective one by initially guessing the adaptive adversary’s
choices and committing to those (as required by the selective security game). If during the
security game the adaptive choices by the adversary disagree with the guessed ones, we simply
abort. The problem with this approach is that assuming the adaptive adversary has advantage
ε, the constructed selective adversary only has advantage ε/P where 1/P is the probability of
that our guess is correct, which is typically exponentially small. Concretely, in the GSD game

just a semantic change assuming the following: during the experiment we always answer encryption
queries of the form (a, b) with Encka(kb) (note that we don’t know if we’re encrypting the challenge
at this point), and once the adversary chooses a challenge i, if b = 1, we simply switch the values of
ri and ki (this trick is already used in [Pan07]).
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we need to guess the nodes in the connected component containing the challenge, and as the
number of such choices is exponential in the number of keys n, this probability is 2−Θ(n).

No proofs for the adaptive security of GSD with a subexponential (in n) security loss are
known in general. But remember that the GSD problem abstracts problems we encounter in
proving adaptive security of many real-world applications where the underlying key graph is
typically not completely arbitrary, but often has some special structure. Motivated by this,
Panjwani [Pan07] investigated better reductions assuming some special structure of the key
graph. He gives a proof where the security degradation is only exponential in the depth of
the key graph, as opposed to its size. Concretely, he proves that if the encryption scheme is
ε-IND-CPA secure then the adaptive GSD game with n keys where the adversary is restricted
to key graphs of depth ` is ε′-secure where

ε′ = ε ·O(n · (2n)`) .

Until today, Panjawain’s bound is the only non-trivial improvement over the 2Θ(n) loss for GSD.

Our result. The main result of this paper is Theorem 2, which states that GSD restricted
to trees can be proven secure with only a quasi-polynomial loss

ε′ = ε · n3 log(n)+5 .

Our bound is actually even stronger as the entire key graph need not be a tree; it is sufficient
that the subgraph containing only the nodes from which the challenge node can be reached is
a tree (when ignoring edge directions).

The bound above is derived from a more fine-grained bound: assuming that the longest path
in the key graph is of length `, the in-degree of every node is at most d and the challenge node
can be reached from at most s sources (i.e., nodes with in-degree 0) we get

ε′ = ε · dn((2d+ 1)n)dlog se (3n)dlog `e .

Note that `, d and s are at most n and the previous bound was derived from this by setting
` = d = s = n. Panjwani [Pan07] uses his bound to give a quasi-polynomial reduction of the
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Fig. 1: Hybrids for the selective security proof. Green nodes correspond to keys, dark nodes are random
values. The adversary A commits to encryption queries (1, 3), (2, 3), (3, 5) and challenge 5 (Encryption
query (4, 6) is outside the connected component containing the challenge and thus not relevant for
the hybrids. A could also corrupt keys 4 and 6, which are also outside.) Hybrid H0 is the real game,
hybrid H5 is the random game, where instead of an encryption of the challenge key Enck3(k5), the
adversary gets an encryption of the random value Enck3(r5). If an adversary A can distinguish any two
consecutive hybrids Hi and Hi+1 with some advantage δ, we can use A to construct B which breaks the
IND-CPA security of Enc with the same advantage δ: E.g., assume B is given an IND-CPA challenge
C = Enck(z) where z is one of two messages (which we call k5 and r5). Now B can simulate game H2

for A, but when A makes the encryption query (3, 5), B answers with C. If z = k5 then B simulates
game H2; but if z = r5, it simulates game H3. Note that B can simulate the games because k3, which
in the simulation is B’s challenger’s key, is not used anywhere else. Thus, B has the same advantage in
the IND-CPA game as A has in distinguishing H3 from H4.
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Logical Key Hierarchy (LKH) protocol [WGL00]. Panjwani first fixes a flaw in LKH, and calls
the new protocol rLKH with “r” for repaired. rLKH is basically the GSD game restricted to a
binary tree.4

The users correspond to the leaves of this tree, and their keys consists of all the nodes from
the root to their leaf. Thus, if the tree is almost full and balanced, then it has only depth
` ≈ log n and Panjwani’s bound loses only a quasi-polynomial factor nlog(n)+2 (if ` = log n). As
here d = 2, ` = log n, s = n, our bound gives a slightly worse bound nlog(n)+log log(n)+4 for this
particular problem, but this is only the case if a large fraction of the keys are actually used,
and the adversary gets to see almost all of them. If ` is significantly larger than log n (e.g.,
because only few of the keys are active, or the tree is constructed in an unbalanced way like
e.g. proposed in [SS00]), our bounds decrease only marginally, as opposed to exponentially fast
in ` in [Pan07].

Graphs with small cut-width. The reason our result is restricted to trees is that in the
process of generating the hybrids, we have to guess nodes such that removing this node splits
the tree in a “nice” way (this has to be done log n times, losing a factor n in the distinguishing
advantage every time).

One can generalize this technique (but we do not work out the details in this paper) to graphs
with small “cut-width”, where we say that a graph has cut-width w if for any two vertices u, v
that are not connected by an edge, there exists a set of at most w vertices such that removing
those disconnects u from v (a tree has cut-width w = 1). For graphs with cut-width w we get

ε′ = ε · n(2w+1) log(n)+4 ,

which is subexponential in n, and thus beats the existing exponential bound whenever w =
o(n/ log2(n)). Whether there exists a subexponential reduction which works for any graph is
an intriguing open problem.

Shorter keys from better reduction. An exponential security loss (as via complexity
leveraging) means that, even when assuming exponential hardness of Enc (which is a typical
assumption for symmetric encryption schemes like AES), one needs to use keys for Enc whose
length is at least linear in n to get any security guarantee for the hardness of GSD at all. Whereas
our bound for trees means that a key of length polylog(n) is sufficient to get asymptotically
overwhelming security (again assuming Enc is exponentially hard).

Nested hybrids. In a classical paper [GGM86] Goldreich, Goldwasser and Micali constructed
a pseudorandom function (PRF) from a pseudorandom generator (PRG). More recently, three
papers independently [BW13,KPTZ13,BGI14] observed that this construction is also a so-called
constrained PRF, where for every string x one can compute a constrained key kx that allows
evaluation of the PRF on all inputs with prefix x. Informally, the security requirement is that
an adversary that can ask for constrained keys cannot distinguish the output of the PRF on
some challenge input from random.

All three papers [BW13,KPTZ13,BGI14] only prove selective security of this constrained
PRF, where before any queries the adversary must commit to the input on which it wants to be
challenged. This proof is a hybrid argument losing a factor 2m in the distinguishing advantage,
where m is the PRF input length. One can then get adaptive security losing a huge exponential
factor 2m via complexity leveraging. Subsequently, Fuchsbauer et al. [FKPR14] gave a reduction
that only loses a quasi-polynomial factor (3q)logm, where q denotes the number of queries made
by the adversary. Our proofs borrows ideas from their work.

Very informally, the idea behind their proof is the following. In the standard proof for
adaptive security using leveraging one first guesses the challenge query (losing a huge factor

4 Let us stress that the graph obtained when just adding an edge for every encryption query in rLKH
is not a tree after a rekeying operation. But for every node v, the subgraph we get when only keeping
the nodes from which v can be reached is a tree, and as explained above, this is sufficient.
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Fig. 2: Illustration of our adaptive security proof for paths.

2m), which basically turns the adaptive attacker into a selective one, followed by a simple hybrid
argument (losing a small factor 2m) to prove selective security. The proof from [FKPR14] also
first makes a guessing step, but a much simpler one, namely which of the q queries made by the
adversary is the first to coincide with the challenge query on the first m/2 bits. This is followed
by a hybrid argument losing a factor 3, so both steps together lose a factor 3q. At this point
the reduction is not finished yet, but intuitively the problem was reduced to itself but on inputs
of only half the size m/2. These two steps can be iterated logm times (losing a total factor of
(3q)logm) to get a reduction to the security of the underlying PRG.

Proof outline for paths. Our proof for GSD uses an approach similar to the one just
explained, iterating fairly simple guessing steps with hybrid arguments, but the analogy ends
here, as the actual steps are very different.

We first outline the proof for the adaptive security of the GSD game for a special case
where the adversary is restricted in the sense that the connected component in the key graph
containing the challenge must be a path. Even for this very special case, currently the best
reduction [Pan07] loses an exponential factor 2Θ(n). We will now outline a reduction losing only
a quasi-polynomial nlogn factor.5 Recall that the standard way to prove adaptive security is to
first guess the entire connected component containing the challenge, and then prove selective
security as illustrated in Fig. 1.

Our approach is not to guess the entire path, but in a first step only the node in the middle
of the path (as we make a uniform guess, it will be correct with probability 1/n). This reduces
the adaptive security game to a “slightly selective” game where the adversary must commit
initially to this middle node, at the price of losing a factor n in the distinguishing advantage.6

Let H0 and H3 denote these “slightly selective” real and random GSD games (we also
assume that the adversary initially commits to the challenge query, which costs another factor

5 Let us mention that it is trivial to prove security of GSD restricted to paths if we additionally assume
that for random keys k, k′ the ciphertext Enck(k′) is uniform given k′ (this is e.g. the case for one-time
pad encryption Enck(k′) = k ⊕ k′): then the real and random challenge have the same distribution
(they’re uniform) and thus even a computationally unbounded adversary has zero advantage. (This
is because in the path case, every key is used only once to encrypt.) The proof we outline here
does not require this special property of Enc, and this will be crucial to later generalize it to more
interesting graphs.

6 We never actually construct this “slightly selective” adversary, but (as in complexity leveraging)
we simply commit to a random guess, then run the adaptive adversary, and if its queries are not
consistent with our guess, we abort outputting a random value. (We could also output a constant
value; the point is that the advantage of the adversary, conditioned on our guess being wrong, is
zero; whereas, conditioned on the guess being correct, it is the same as the advantage of the adaptive
adversary). However, instead of this experiment it is easier to follow our proof outline by thinking
of the adversary actually committing to its choices initially, but the reduction paying a factor (in
the distinguishing advantage of the adversary that is allowed to make this choice adaptively) that
corresponds to the size of the sample space of this guess.
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of n). We illustrate this with a small example featuring a path of length 4 in Fig. 2. The correct
guess for the middle node for the particular run of the experiment illustrated in the figure
is i = 5. As now we know the middle vertex is i = 5, we can define new games H1 and H2

which are derived from H0 and H3, respectively, by replacing the ciphertext Enckj (ki) with an
encryption Enckj (ri) of a random value (in the figure this is illustrated by replacing the edge
kj → ki with kj → ri).

So, what have we gained? If our adaptive adversary has advantage ε in distinguishing the real
and random games then she has advantage at least ε/n to distinguish the “slightly selective”
real and random games H0 and H3, and thus for some i ∈ {0, 1, 2} she can distinguish the
games Hi and Hi+1 with advantage ε/3n. Looking at two consecutive games Hi and Hi+1, we
see that they only differ in one edge (e.g., in H2 we answer the query (3, 5) with Enck3(r5), in
H3 with Enck3(k5)), and moreover this edge will be at the end of a path that now has only
length 2, that is, half the length of the path in our original real and random games.

We can now continue this process, constructing new games where the path length is halved,
paying a factor 3n in distinguishing advantage. For example, as illustrated in Fig. 2, we can
guess the node that halves the path leading to the differing query in games H2 and H3 (for the
illustrated path this would be i = 3), then define new games where we assume the adversary
commits to this node (paying a factor n), and then define two new games H ′2 and H ′3, which are
derived from games H2 and H3 (which now are augmented by our new guess), respectively, by
answering the query (j, i) that asks for an encryption of this node (in the figure (j, i) = (1, 3))
with an encryption Enck1(r3) instead of Enck1(k3).

If we start with a path of length ` ≤ n then after log ` ≤ log n iterations of this process we
proved the existence of two consecutive games (call them G0 and G1) that differ only in a single
edge j → i and the vertex j has in-degree 0. That is, both games are identical, except that in
one game the encryption query (j, i) is answered with Enckj (ki) and in the other with Enckj (ri).
Moreover, the key kj is not used anywhere else in the experiment and we know exactly when
this query is made during the experiment (as the adversary committed to i).

Given a distinguisher A for G0 and G1, we can now construct an attacker B that breaks the
IND-CPA security of the underlying encryption scheme with the same advantage: in the IND-
CPA game B chooses two random messages m0,m1 and asks to be challenged on them.7 The
game samples a random bit b and returns the challenge C = Enck(mb) to B, which must then
output a guess b′ for b. At this point, B invokes A and simulates the game G0 for it, choosing all
keys at random, except that it uses C to answer the encryption query (j, i).8 Finally, B forwards
A’s guess b′. Identifying (k,m0,m1) with (kj , ki, ri), we see that depending on whether b = 0
or b = 1, B simulates either G0 or G1. Thus, whatever advantage A has in distinguishing G0

from G1, B will break the IND-CPA security of Enc with the same advantage.

Proof outline for trees. We will now outline our reduction of the adaptive security of
GSD to the IND-CPA security of Enc for a more general case. Namely, the adversary is only
restricted in that the key graph resulting from its queries is such that the connected component
containing the challenge is a tree. (Recall that we already disallowed cycles in the key graph as
this would require circular security. Being a tree means that we also have no cycles in the key
graph when ignoring edge directions). Note that paths as discussed in the previous section are
very special trees. The GSD problem on trees is particularly interesting, as it captures some
multicast encryption protocols like the Logical Key Hierarchy (LKH) protocol [WGL00]. We
refer the reader to [Pan07] for details.

Trees with in-degrees ≤ 1. Let us first consider the case where the connected component
containing the challenge is a tree, and moreover all its vertices have in-degree 0 or 1. It turns
out that the proof outlined for paths goes through with only minor changes for such trees. Note
that such a tree has exactly one vertex with in-degree 0, which we call the root, and there is

7 Note that B makes no encryption queries at all (which are allowed by the IND-CPA experiment).
8 Note that since node j has in-degree 0, we can identify kj with the key k used by the IND-CPA

experiment, as we never have to encrypt kj .
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Fig. 3: Illustration of our adaptive security proof for general trees.

a unique path from the root to the challenge node. We can basically ignore all the edges not
on this path and do a reduction as the one outlined above. The only difference is that now,
when simulating the game Gb (where b is 0 or 1 depending on the whether the challenge C
with which we answer the encryption query (j, i) is Enckj (ki) or Enckj (ri)), the adversary can
also ask for encryption queries (j, x) for any x. This might seem like a problem as we do not
know kj (we identified kj with the key used by the IND-CPA challenger). But recall that in
the IND-CPA game there is an encryption oracle Enckj (·), which we can query for the answer
Enckj (kx) to such encryption queries.

General Trees. For general trees, where nodes can have in-degree greater than 1, we need
to work more. The proof for paths does not directly generalize, as now nodes (in particular,
the challenge) can be reached from more than one node with in-degree 0. We call these the
sources of this node; for example in the tree H0 in Fig. 3, the (challenge) node k7 has 4 sources
k1, k2, k3 and k12.

On a high level, our proof strategy will be to start with a tree where the challenge node c
has s sources (more precisely, we have two games that differ in one edge that points to ki in
one game, and to ri in the other, like games H0 and H7 in Fig. 3). We then guess a node v
that “splits” the tree in a nice way, by which we mean the following: Assume v has in-degree
d and we divert every edge going into v to a freshly generated node; let’s call them v1, . . . , vd.
Then this splits the tree into a forest consisting of d + 1 trees (the component containing the
challenge and one component for every vi). The node v “well-divides” the tree if after the split
the node c and all of v1, . . . , vd have at most ds/2e sources.

As an example, consider again the tree H0 in Fig. 3, where the challenge node k7 has 4
sources. The node k9 would be a good guess, as it well-divides the tree: consider the forest after
splitting at this node as described above (creating new nodes v1, v2, v3 and diverting the edges
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going into k9 to them, i.e., replacing k5 → k9 by k5 → v1, k6 → k9 by k6 → v2, and k12 → k9
by k12 → v3). Then we obtain 4 trees, where now c = k7 has only one source (k9) and the new
nodes v1, v2, v3 have 2, 1 and 1 sources, respectively.

Once we have guessed a well-dividing node v (or equivalently, the adversary has committed
to such a node), we define 2d hybrid games (where d is the degree of the well-dividing node)
between the two initial games, which we call H0 and H2d+1, as follows. H1 is derived from H0

by diverting the first encryption query that asks for an encryption of v (i.e., that is of the form
(j, v) for some j) from real to random; that is, we answer with Enckj (rv) instead of Enckj (kv).
For i ≤ d, Hi is derived from H0 by diverting the first i encryption queries. Hd+1 is derived
from Hd by diverting the encryption query that asks for an encryption of the challenge c from
real to random. The final d− 1 hybrids games are used to switch the encryption of v back from
random to real, one edge at a time. This process is illustrated in the games H0 to H7 in Fig. 3.

Because v was well-dividing (and we show in Lemma 2 that such a node always exists), we
can prove the following property for any two consecutive games Hi and Hi+1: they differ in
exactly one edge, which for some j, v in one game is kj → kv and kj → rv in the other, and
moreover, kj has at most ds/2e sources.

If an adversary can distinguish H0 and H2d+1 with advantage ε then it must distinguish
two hybrids Hi and Hi+1 with advantage ε/((2d+1)n) (where n accounts for guessing the well-
dividing node). But any such two hybrids now only have at most ds/2e sources. If we repeat
this guessing/hybrid steps log s times, we end up with two games G0 and G1 which differ in
one edge that has only one source. At this point we can then use our reduction for trees with
only one source outlined above.

Analyzing the Security Loss. To halve the number of sources, we guess a well-dividing
vertex (which costs a factor n in the reduction), and then must add up to 2d intermediate hybrids
(where d is the maximum in-degree of any node), costing another factor 2d+ 1. Assuming that
the number of sources is bounded by s, we have to iterate the process at most log s times.
Finally, we lose another factor d (but only once) because our final node can have more than
one ingoing edge. Overall, assuming the adversary breaks the GSD game with advantage ε on
trees with at most s sources and in-degree at most d, our reduction yields an attacker against
the IND-CPA security of Enc with advantage

ε/ dn((2d+ 1)n)dlog se (3n)dlog `e .

For general trees, since s, d ≤ n, we have ε/ n3 logn+5.

2 Preliminaries

For a ∈ N, we let [a] = {1, 2, . . . , a} and [a]0 = [a]∪ {0}. We say adversary (or distinguisher) D
is t-bounded if D runs in time t.

Definition 1. (Indistinguishability) Two distributions X and Y are (ε, t)-indistinguishable,
denoted Y ∼(ε,t) X or ∆t(Y,X) ≤ ε, if no t-bounded distinguisher D can distinguish them with
advantage greater than ε, i.e.,

∆t(Y,X) ≤ ε ⇐⇒ ∀Dt :
∣∣Pr [Dt(X) = 1]− Pr [Dt(Y ) = 1]

∣∣ ≤ ε .
Symmetric encryption. A pair of algorithms (Enc,Dec) with input k ∈ {0, 1}λ, where λ
is the security parameter, and a message m (or a ciphertext) from {0, 1}∗ is a symmetric-key
encryption scheme if for all k,m we have Deck(Enck(m)) = m. Consider the game Expind-cpa-b

Enc,D

between a challenger C and a distinguisher D: C chooses a uniformly random key k ∈ {0, 1}λ
and a bit b ∈ {0, 1}; D can make encryption queries for messages m and receives Enck(m);
finally, D outputs a pair (m0,m1), is given Enck(mb) and outputs a bit b′ ∈ {0, 1}, which is also
the output of Expind-cpa-b

Enc,D .9

9 For this notion to be satisfied, Enc must be probabilistic. In this paper one may also consider deter-
ministic encryption, in which case the security definition must explicitly require that the challenge
messages are fresh in the sense that D has not asked for encryptions of them already.
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Definition 2. Let t ∈ N+ and 0 < ε < 1. An encryption scheme (Enc,Dec) is (t, ε)-IND-
CPA secure if for any t-bounded distinguisher D, we have∣∣Pr

[
Expind-cpa-1

Enc,D = 1
]
− Pr

[
Expind-cpa-0

Enc,D = 1
]∣∣ ≤ ε .

3 The GSD Game

In this section we describe the generalized selective decryption game as defined in [Pan07]

and give our main theorem. Consider the following game, Exp
gsd-(n, b)
Enc,A called the generalized

selective decryption (GSD) game, parameterized by an encryption scheme Enc,10 an integer
n and a bit b. It is played by the adversary A and the challenger B. First B samples n keys
k1, k2, . . . , kn uniformly at random from {0, 1}λ. A can make three types of queries during the
game:

– encrypt: A query of the form encrypt(i, j) is answered with c← Encki(kj).

– corrupt: A query of the form corrupt(i) is answered with ki.

– challenge: The response to challenge(i) depends on the bit b: if b = 0, the answer is ki; if
b = 1, the answer is a random value ri ∈ {0, 1}λ.

A can make multiple queries of each type, adaptively and in any order. It can also make several
challenge queries at any point in the in the game. Allowing multiple challenge queries models
the fact that the respective keys are jointly pseudorandom (as opposed to individual keys being
pseudorandom by themselves). Allowing to interleave challenges with other queries models that
they remain pseudorandom even after corrupting more keys or seeing further ciphertexts.

We can think of the n keys that B creates as n vertices, labeled 1, 2, . . . , n, in a graph. In
the beginning of the game there are no edges, but every time A queries encrypt(i, j), we add
the edge i→ j to the graph. When A queries corrupt(i) for some i ∈ [n], we mark i as a corrupt
vertex; when A queries challenge(i), we mark it as a challenge vertex. For an adversary A we
call this graph the key graph, denoted G(A) and we write V corr(A) and V chal(A) for the sets of
corrupt and challenge nodes, respectively. (Note that G(A) is a random variable depending on
the randomness used by A and its challenger.)

Legitimate adversaries. Consider an adversary that corrupts a node i in G(A) and queries
challenge(j) for some j which is reachable from i. Then A can successively decrypt the keys on
the path from i to j, in particular kj , and thus deduce the bit b. We only consider non-trivial
breaks and require that no challenge node is reachable from a corrupt node in G(A).

Two more restrictions must be imposed on G(A) if we only want to assume that Enc satisfies
IND-CPA. First, we do not allow key cycles, that is, queries yielding

Encki1 (ki2),Encki2 (ki3), . . . ,Enckis−1
(kis),Encks(ki1) ,

as this would require the scheme to satisfy key-dependent-message (a.k.a. circular) security
[BRS03,CL01].

Second, IND-CPA security does not imply that keys under which one has seen encryptions
of random messages remain pseudorandom.11 Pseudorandomness of keys (assuming only IND-
CPA security of the underlying scheme) can thus only hold if their corresponding node does not
have any outgoing edges. We thus require that all challenge nodes in the key graph are sinks
(i.e., their out-degree is 0). The requirements (as formalized also in [Pan07]) are summarized
in the following.

10 We will never actually use the decryption algorithm Dec in the game, and thus will not mention it
explicitly.

11 Consider any IND-CPA-secure scheme (Enc,Dec) and define a new scheme as follows: keys are
doubled in length and encryption under k = k1||k2 is defined as Enck(m) = Enck1(m)||k2. This
scheme is still IND-CPA, but given a ciphertext C = Enck(m) one can easily distinguish k from a
random value even if m is random and unknown.
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Definition 3. An adversary A is legitimate if in any execution of A in the GSD game the
values of G(A), V corr(A) and V chal(A) are such that:

– For all i ∈ V corr(A) and j ∈ V chal(A): j is unreachable from i in G(A).

– G(A) is a directed acyclic graph (DAG) and every node in V chal(A) is a sink.

Let n ∈ N+ and G be a class of DAGs with n vertices. We say that a legitimate adversary A is
a G-adversary if in any execution the key graph belongs to G, i.e., G(A) ∈ G.

Definition 4. Let t ∈ N+, 0 < ε < 1. An encryption scheme Enc is called (n, t, ε,G)-GSD
secure if for every G-adversary A running in time t, we have∣∣Pr

[
Exp

gsd-(n, 1)
Enc,A = 1

]
− Pr

[
Exp

gsd-(n, 0)
Enc,A = 1

]∣∣ ≤ ε .
Assuming one challenge query is enough. Although the definition of GSD allows the
adversary to make any number of corruption queries, Panjwani [Pan07] observes that by a
standard hybrid argument one can turn any adversary with advantage ε (which makes at most
q ≤ n challenge queries) into an adversary that makes only one challenge query, but still
has advantage at least ε/q. From now on we therefore only consider adversaries that make
exactly one challenge query (keeping in mind that we have to pay an extra factor n in the final
distinguishing advantage for statements about general adversaries).

4 Single Source

In this section we will analyze the GSD game for key graphs in which the challenge node is only
reachable from one source node. That is, for some q ≤ n there is a path p1 → p2 → . . . → pq
where p1 has in-degree 0, all nodes pi, 2 ≤ i ≤ q have in-degree 1 (but arbitrary out-degree)
and the (single) challenge query is challenge(pq) (recall that the challenge has out-degree 0).
Let G1 be the set of all such graphs, and G`1 ⊆ G1 be the subset where this path has length at
most `.

Theorem 1 (GSD on trees with one path to challenge). Let t ∈ N, 0 < ε < 1 and G1
be the class of key graphs just defined. If an encryption scheme is (t, ε)-IND-CPA secure then
it is also (n, t′, ε′,G1)-GSD secure for

ε′ = ε · n (3n)dlogne and t′ = t−QAdvTEnc − Õ(QAdv) ,

where TEnc denotes the time required to encrypt a key, and QAdv denotes an upper bound on the
number of queries made by the adversary.12 More generally, if we replace G1 with G`1, we get

ε′ = ε · n (3n)dlog `e and t′ = t−QAdvTEnc − Õ(QAdv) .

GSD on single-source graphs. For b ∈ {0, 1}, we consider the GSD game Exp
gsd-(n, b)
Enc on

G1 between B and an adversary A. Challenger B first samples n random keys k1, k2, . . . , kn and
we assume that already at this point B samples fake keys r1, . . . , rn. On all encrypt(i, j) queries
B returns real responses Encki(kj). If b = 0, the response to challenge(z) is kz; if b = 1, the
response is rz.

We require that the key graph is in G1, that is the connected component of the key graph
which contains the challenge z has a path p1 → p2 → . . . → pq = z with p1 having in-degree
0, all other pi having in-degree 1 and pq = z having out-degree 0 (this means A made queries
encrypt(pi−1, pi), but no queries encrypt(x, pi) for x 6= pi−1).

12 If Enc is deterministic then w.l.o.g. we can assume QAdv ≤ n2 as there are at most n(n − 1)/2
possible encryption queries (plus ≤ n corruption and challenge queries). If Enc is probabilistic then
A is allowed any number of encryption queries.
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Eventually, A outputs a bit b′ ∈ {0, 1}, which is also the output of the game. If the encryption
scheme Enc is not (t′, ε′,G1)-GSD secure then there exists a G1-adversary A running in time t′

such that ∣∣Pr
[
Exp

gsd-(n, 0)
Enc,A = 1

]
− Pr

[
Exp

gsd-(n, 1)
Enc,A = 1

]∣∣ > ε′ . (1)

Our goal. Suppose we knew that our GSD adversary A wants to be challenged on a fixed
node z∗ and that it will make a query encrypt(y, z∗) for some y which it will not use in any
other query. Then we could use A directly to construct a distinguisher D as in Definition 2:
D sets up all keys kx, x ∈ [n], samples a value rz∗ and runs A, answering A’s queries using
its keys; except when encrypt(y, z∗) is queried for any y ∈ [q], D queries its own challenger on
(kz∗ , rz∗) and forwards the answer to A. Moreover, challenge(z∗) is answered with kz∗ . If D’s
challenger, C, chose b = 0, this perfectly simulates the real game for A. If b = 1 then A gets an
encryption of rz∗ and the challenge query is answered with kz∗ , although in the random GSD
game A expects an encryption of kz∗ and challenge(z∗) to be answered with rz∗ . However, these
two games are distributed identically, since both kz∗ and rz∗ are uniformly random values that
do not occur anywhere else in the game. Thus D simulates the real game when b = 0 and the
random game when b = 1. Note that D implicitly set ky to the key that C chose, but that’s
fine, since we assumed that ky is not used anywhere else in the game and thus not needed by
D for the simulation.

Finally, suppose that, in addition to the challenge z∗, we knew y∗ for which A will query
encrypt(y∗, z∗). Then we could also allow A to issue queries of the form encrypt(y∗, x), for x
other than z∗. D could easily simulate any such query by querying kx to its encryption oracle.

Unfortunately, general GSD adversaries can decide adaptively on which node they want to be
challenged, and worse, they can make queries encrypt(x, y), where y is a key that encrypts the
challenge.

We will construct a series of hybrids where any two consecutive games Game and Game′

are such that from a distinguisher A for them, we can construct an adversary D against the
encryption scheme with the same advantage. For this, the two games should only differ in
the response of one encryption query on the path to the challenge, say encrypt(y, z), which is
responded to with a real ciphertext Encky (kz) in Game and with a fake ciphertext Encky (rz)
in Game′.

Moreover, the key ky must not be encrypted anywhere else in the game, as our distinguisher
D will implicitly set ky to be the key of its IND-CPA challenger C. Thus, in Game and Game′

all queries encrypt(x, y), for any x, are responded to with a fake ciphertext Enckx(ry). Summing
up, we need the two games to have the following properties for some y:

– Property 1. Game and Game′ are identical except for the response to one query encrypt(y, z),
which is replied to with a real ciphertext in Game and a fake one in Game′.

– Property 2. Queries encrypt(x, y) are replied to with a fake response in both games.

If we knew the entire key graph G(A) before answering A’s queries then we could define a
series of 2q − 1 games as in Fig. 1 where we consecutively replace edges from the source to
the challenge by fake nodes and then go back replacing fake edges with real ones starting with
pq−2 → pq−1. Any two consecutive games in such a sequence would satisfy the two properties,
so we could use them to break IND-CPA.

The problem is that in general the probability of guessing the connected component con-
taining the challenge is exponentially small in n and consequently from a GSD adversary’s
advantage ε′ we will obtain a distinguisher D with advantage ε = ε′/O(n!). To avoid an expo-
nential loss, we thus must avoid guessing the entire component at once.

The first step. Our first step is to define two new games Game{q}∅ and Game{q}{q} , which

are modifications of Expgsd-0 and Expgsd-1, respectively. Both new games have an extra step
at the beginning of the game: B guesses which key is going to be the challenge key and at
the end of the game only if its guess was correct, the output of the game is A’s output and
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otherwise it is 0. Clearly B’s guess is correct with probability 1/n. Aside from this guessing step,
Game{q}∅ is identical to Expgsd-0; all responses are real. We therefore have Pr[Game{q}∅ = 1] =
1/n · Pr[Expgsd-0 = 1].

Analogously, we define an auxiliary game, Game{q}1 , which is identical to Expgsd-1, except

for the guessing step. Again we have Pr[Game{q}1 = 1] = 1/n · Pr[Expgsd-1 = 1]. We then
define Game{q}{q} exactly as Game{q}1 , except for a syntactical change: Let z be the guessed value
for the challenge node. Then any query encrypt(x, z) is replied to with Enckx(rz), that is, an
encryption of the fake key rz. (Note that this game can be simulated, since we “know” z when
guessing correctly.) On the other hand, the query challenge(z) is answered with kz (rather than
rz in Expgsd-1). Since the difference between Game{q}1 and Game{q}{q} is that we have replaced all
occurrences of kz by rz and all occurrences of rz by kz, which are distributed identically (thus
we’ve merely swapped the names of kz and rz), we have Pr[Game{q}{q} = 1] = Pr[Game{q}1 = 1] =
1/n · Pr[Expgsd-1 = 1].

Together with Equation (1), we have thus∣∣Pr
[
Game

{q}
∅ = 1

]
− Pr

[
Game

{q}
{q} = 1

]∣∣
= 1/n ·

∣∣Pr
[
Expgsd-0 = 1

]
− Pr

[
Expgsd-1 = 1

]∣∣ > 1/n · ε′ .

We continue to use the notational convention that for sets I ⊆ P ⊆ [n], the game GamePI is
derived from the real game by additionally guessing the nodes corresponding to P and answering
encryptions of the nodes in I with fake keys. This is made formal in Fig. 4 below.

The second step. Assume q is a power of 2 and consider Game{q/2, q}∅ , which is identical to

Game{q}∅ , except that in addition to the challenge node, B also guesses which node x ∈ [n] is
going to be the node in the middle of the path to the challenge, i.e. pq/2 = x. The output of
Game{q/2, q}∅ is A’s output if the guess was correct and 0 otherwise. Since B guesses correctly
with probability 1/n, we have

Pr
[
Game

{q/2, q}
∅ = 1

]
= 1/n · Pr

[
Game

{q/2}
∅ = 1

]
.

By guessing the middle node, we can assume the middle node is known and this will enable
us to define a hybrid game, Game{q/2, q}{q/2} , in which the query for the encryption of kpq/2 is

responded to with a fake answer. In addition, we consider games Game{q/2, q}{q} and Game{q/2, q}{q/2, q}

which are similarly defined by making the same changes to game Game{q}{q} , i.e. guessing the
middle node and replying to the encryption query of the guessed key with a fake and a real
ciphertext respectively. Again, we have Pr[Game{q/2, q}{q} = 1] = 1/n · Pr[Game{q}{q} = 1]. Therefore

(t′, ε′/n)-distinguishability of Game{q}∅ and Game{q}{q} implies that Game{q/2, q}∅ and Game{q/2, q}{q}

are (t′, ε′/n2)-distinguishable, i.e. ∆t

(
Game{q/2, q}∅ ,Game{q/2, q}{q}

)
> ε′/n2, and therefore by the

triangle inequality

∆t

(
Game

{q/2, q}
∅ ,Game

{q/2, q}
{q/2}

)
+∆t

(
Game

{q/2, q}
{q/2} ,Game

{q/2, q}
{q/2, q}

)
+∆t

(
Game

{q/2, q}
{q/2, q},Game

{q/2, q}
{q}

)
≥ ∆t

(
Game

{q/2, q}
∅ ,Game

{q/2, q}
{q}

)
> 1/n2 · ε′ . (2)

By Line 2, at least one of the pairs of games on the left-hand side must be (t′, ε′/3n2)-distin-
guishable. The two games of every pair differ in exactly one point, as determined by the subscript
of each game. For instance, the difference between the last pair Game{q/2, q}{q/2, q} and Game{q/2, q}{q} is
the encryption of node q/2.

Recall that our goal is to construct a pair of hybrids where the differing query encrypt(y, z)
is such that all queries encrypt(x, y) are replied to with Enckx(ry), as formalized by Property
2. Games Game{q}∅ and Game{q}{q} differed in the last query on the path and the only key above
it that is not encrypted anywhere is the start of the path. What we have achieved with our
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GamePI , with I ⊆ P ⊆ [n] is defined as follows:

– For every i ∈ P , B chooses vi ← [n], which is B’s guess for the node at position i in the final path.

– B chooses 2n keys k1, r1, k2, r2 . . . , kn, rn ← {0, 1}λ and runs A.

– Whenever A makes a query encrypt(x, y), B does the following: If y = vi for some i ∈ I then reply
with Enckx(rvi); otherwise reply with Enckx(ky).

– When A makes the query challenge(z), return kz.

– Let b′ ∈ {0, 1} be A’s output. At then end of the game, consider the longest path
p0 → p1 → · · · → pq in G(A), with pq being the argument of A’s challenge query. If for all
i ∈ P : vi = pi then B returns b′; otherwise, B returns 0.

Fig. 4: Definition of GamePI for the single-source case.

games above is to halve that distance: the first pair, (Game{q/2, q}∅ ,Game{q/2, n}{q/2} ), and the last

pair, (Game{q/2, q}{q/2, q} ,Game{q/2, q}{q} ), differ in a node that is only half way down the path; and the

middle pair, (Game{q/2, q}{q/2} ,Game{q/2, q}{q/2, q}), differ in the last node, but half way up the path there is
a key, namely kq/2, which is not encrypted anywhere, as all queries encrypt(x, q/2) are answered
with Enckx(rq/2).

The remaining steps. For any of the three pairs that is (t′, ε′/3n2)-distinguishable (and by
Line 2 there must exist one), we can repeat the same process on the half of the path which
ends with the query that is different in the two games. For example, assume this holds for the
last pair, that is

∆t

(
Game

{q/2, q}
{q/2, q},Game

{q/2, q}
{q}

)
>

ε′

3n2
. (3)

We repeat the process of guessing the middle node between the differing node and the random
node above (in this case the root of the path), which is thus node q/4, and obtain a new pair
which satisfies

∆t

(
Game

{q/4, q/2, q}
{q/2, q} ,Game

{q/4, q/2, q}
{q}

)
>

ε′

3n3
, (4)

by Line 3 and the fact that the guess is correct with probability 1/n. We can now define two
intermediate games

Game
{q/4, q/2, q}
{q/4, q/2, q} and Game

{q/4, q/2, q}
{q/4, q} (5)

where we replaced the encryption of kpq/4 by one of rpq/4 . As in Line 2, we can again define a
sequence of games by putting the games in Line 5 between the ones in Line 4 and argue that by
Line 4, two consecutive hybrids must be (t′, ε′/(32n3))-distinguishable. What we have gained is
that any pair in this sequence differs by exactly one edge and the closest fake answer above is
only a fourth of the path length away.

Repeating these two steps a maximum number of dlog qe times, we arrive at two consecutive
games, where the distance from the differing node to the closest “fake” node above is 1. We
have thus found two games that satisfy Properties 1 and 2, meaning we can use a distinguisher
A to construct an adversary D against the encryption scheme.

Since a path has at most n nodes, after at most log n steps we end up with two games
that are (t′, ε′/n(3n)dlogne)-distinguishable and which can be used to break the encryption
scheme. If the adversary is restricted to paths of length ` (i.e., graphs in G`1), this improves to
(t′, ε′/n(3n)dlog `e).

Proof of Theorem 1. We formalize our method to give a proof of the theorem. In Fig. 4 we
describe game GamePI , which is defined by the nodes on the path that are guessed (represented
by the set P ) and the nodes where an encryption of a key is replaced with an encryption of a
value r (represented by I ⊆ P ).
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Lemma 1. Let I ⊆ P ⊆ [n] and z ∈ P \ I. Also let y be the largest number in I such that
y < z, and y = 0 if z is smaller than all elements in I. If GamePI and GamePI∪{z} are (t, ε)-
distinguishable then the following holds.

– If z = y + 1 then Enc is not (t+QAdvTEnc + Õ(QAdv)), ε)-IND-CPA-secure.
– If z > y + 1, define z′ = y + b(z − y)/2c, P ′ = P ∪ {z′} and

I1 = I , I2 = I ∪ {z′} , I3 = I ∪ {z′, z} , I4 = I ∪ {z} .

Then for some i ∈ {1, 2, 3}, games GameP
′

Ii and GameP
′

Ii+1
are (t, ε/3n)-distinguishable.

Applying Lemma 1 repeatedly dlog ne times (or dlog `e if we know an upper bound on the path
length `), we obtain the proof of Theorem 1.

Proof. [of Lemma 1] If z = y + 1 then the pair (GamePI ,GamePI∪{z}) satisfies Properties 1 and
2. As we’ll explain below, this allows us to construct distinguisher D that breaks the IND-CPA
security of the encryption scheme with the same advantage, in time t that it takes to run A plus
the time that it takes to simulate the game GamePI , which consists of at most QAdv encryption
or challenge queries, each taking time TEnc, plus some Õ(QAdv) bookkeeping overhead. Thus we
get a total running time of of t+QAdvTEnc + Õ(QAdv).

In both games the query encrypt(py−1, py) is answered with Enckpy−1
(rpy ), meaning that

kpy is never encrypted (as there cannot be other queries encrypt(x, py), since A is a G1 adver-
sary). Moreover, note that py cannot be queried to corrupt either. The query encrypt(py, pz) is

responded to with a real answer Enckpy (kpz ) in GamePI and with a fake answer Enckpy (rpz ) in

GamePI∪{z}.

We now let our distinguisher D against Enc simulate the game GamePI implicitly replacing
kpy with its challenger’s key (but sampling all remaining real and random keys itself). D answers
queries encrypt(py, x), for x 6= pz by using the encryption oracle. When A queries encrypt(py, pz),
D outputs the challenge (kpz , rpz ) and forwards the answer to A. Depending on D’s challenger’s

bit, D either simulates GamePI or GamePI∪{z}, and thus has the same advantage as A.

For the case z > y+1 we have that the node z′ is roughly in the middle of y and z on the path.

If GamePI and GamePI∪{z} are (t, ε)-distinguishable then games Game
P∪{z′}
I and Game

P∪{z′}
I∪z are

(t, ε/n)-distinguishable: the guess of z′ ← [n] does not influence A’s behavior (it only influences
B’s output after A has stopped), and the probability of guessing correctly is 1/n. We therefore

have Pr[GamePJ = 1] = 1/n · Pr[Game
P∪{z′}
J = 1] for any J ⊆ P and thus

∆t

(
Game

P∪{z′}
I ,Game

P∪{z′}
I∪{z}

)
=

1

n
·∆t

(
GamePI ,GamePI∪{z}

)
>

ε

n
.

By the triangle inequality we have (recall that P ′ = P ∪ {z′}):

∆t

(
GameP

′

I ,GameP
′

I∪{z′}
)

+∆t

(
GameP

′

I∪{z′},GameP
′

I∪{z′,z}
)

+∆t

(
GameP

′

I∪{z′,z},GameP
′

I∪{z}
)
≥

∆t

(
GameP

′

I ,GameP
′

I∪{z}
)
>

ε

n
.

Thus at least one of the pairs must be (t, ε/3n)-distinguishable.

5 General Trees

For a node v in a directed graph G let Tv denote the subgraph of G we get when only keeping
the edges on paths that lead to v. In this section we prove bounds for GSD if the underlying
key graph is a tree. Concretely, let Gτ be the class of key graphs that contain one designated
“challenge node” z and where the graph Tz is a tree (when ignoring edge directions).
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To give more fine-grained bounds we define a subset Gs,d,`τ ⊆ Gτ as follows. For G ∈ Gτ , let
z be the challenge node and Tz as above. Then G ∈ Gs,d,`τ if the challenge node has at most s
sources (i.e., there are at most s nodes u of in-degree 0 s.t. there is a directed path from u to
z), every node in Tz has in-degree at most d and the longest path in Tz has length at most `.
Note that as d < n, s < n and ` ≤ n any G ∈ Gτ with n nodes is trivially in Gn−1,n−1,nτ .

Theorem 2 (Security of GSD on trees). Let n, t ∈ N, 0 < ε < 1 and Gτ be the class
of key graphs just defined. If an encryption scheme is (t, ε)-IND-CPA secure then it is also
(n, t′, ε′,Gτ )-GSD secure for

ε′ = ε · n2(6n3)dlogne ≤ ε · n3dlogne+5 and t′ = t−QAdvTEnc − Õ(QAdv)

(with QAdv, TEnc as in Theorem 1). If we replace Gτ with Gs,d,`τ then

ε′ = ε · dn((2d+ 1)n)dlog se (3n)dlog `e and t′ = t−QAdvTEnc − Õ(QAdv) .

5.1 Proof of Theorem 2

Notation. As all our graphs will have vertex set [n], with “graph” we also refer to the set of
edges of a graph. Thus for two graphs (set of edges) T, T′, by T\T′ we mean the graph T (with
vertex set [n]) after removing all edges of T′ and T ∪ T′ is the graph of all edges of T and T′.

For a node x ∈ [n] we denote by Tx the graph (set of edges) of all the paths in G(A) that
reach x. Recall that a node with in-degree 0 is called a source and denote by S(v) the number
of sources in the tree Tv. Note that S(v) is also the number of paths to a node v. For a tree T
with at least 2 sources we say a node v well-divides T if the number of sources in each subtree
obtained from removing all edges of the form ∗ → v, is less than or equal to half of the sources
in T. If (x, y) ∈ T, we call x a parent of y and y a child of x. Furthermore, we let x[i] denote the
i-th parent of node x, which means that in the GSD game resulting in G(A) there was a query
encrypt(x[i], x) and before that there were i− 1 queries of the form encrypt(y, x) with y 6= x[i].

Our approach. Generalizing the proof for single-source graphs from Section 4, we will define
a sequence of hybrids such that there are two games Game and Game′ which have the following
properties:

– the two games differ in exactly one query, encrypt(y, z);

– the node y has only one source, i.e., S(y) = 1.

Finding Game and Game′ will enable us to apply Theorem 1 to these two games and derive
contradiction as we did before.

In the single-source game we guessed which node will be in the middle of the path to the
challenge, as this allowed us to reduce the problem to smaller problems. Here we need a new
metric since there are multiple paths. Whereas before we halved the length of the path to the
challenge, we now first halve the number of such paths, by guessing a node v that well-divides
the tree.

Let us look at the original games Expgsd-0 and Expgsd-1 and suppose they are δ-distinguishable.
Unlike for the single-source case, these games differ not in one but in at most d edges: with z
denoting the challenge, in Expgsd-0 all edges ∗ → z are real, whereas they are fake in Expgsd-1

(and there are at most d of them). We start with defining two new games, where the only

change is that we guess the challenge node. Other than that Game
(0)
(0) is defined as Expgsd-0 and

Game
(0)
(d) as Expgsd-1 (except for the syntactical swap of kz and rz). Note that the subscript (d)

of Game denotes that the “first d” (that is, all) queries of the form encrypt(∗, z) are replied to

with fake ciphertexts. Games Game
(0)
(0) and Game

(0)
(d) are thus (δ/n)-distinguishable.

We now define d − 1 intermediate games Game
(0)
(i) , 1 ≤ i ≤ d − 1, where in Game

(0)
(i) the

first i responses to encrypt(∗, z) are fake and the rest are real. For some i ∈ [d], Game
(0)
(i−1) and
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Game
(0)
(i) are thus (δ/(dn))-distinguishable. What we have gained is that now in the sequence of

hybrids, two games only differ in the response of one query.

Suppose that Game
(0)
(j−1) and Game

(0)
(j) are (δ/(dn))-distinguishable and let z denote the

challenge. The games differ in the edge z[j] → z, which is real in Game
(0)
(j−1) and fake in

Game
(0)
(j). The node z[j] could itself still have s sources, so our next step is to reduce this. We

thus define two new games where we guess a well-dividing node for Tz[j]. We define Game
(0,j)
(j−1)

as Game
(0)
(j−1), where in addition to the challenge, we guess the node v that well-divides Tz[j],

that is the tree above the j-th edge that goes into z. We analogously define Game
(0,j)
(j) and have

that Game
(0,j)
(j−1) and Game

(0,j)
(j) are (δ/(dn2))-distinguishable.

Having found a well-dividing node v, we can now define 2d intermediate hybrids, where we

replace every edge ∗ → v, one by one, with a fake edge and call these hybrids Game
(0,j)
(j−1,i) for

i = 1, . . . , d. Game
(0,j)
(j−1,i) is thus defined as Game

(0,j)
(j−1), except that the first i answers to queries

encrypt(∗, v) are fake. In Game
(0,j)
(j−1,d), our splitting node v has thus only fake ingoing edges,

which means that in the key graph we have removed S(v) real sources from the challenge and

added one source, namely v. The next hybrid is Game
(0,j)
(j,d) (where we changed the edge z[j]→ z

from real to random), and then a sequence of hybrids Game
(0,j)
(j,i) for i = d, . . . , 1, which changes

back the edges ∗ → v from fake to real.
What have we gained by this? Since v well-divided the tree, each differing edge between two

consecutive hybrids in the sequence

Game
(0,j)
(j−1) = Game

(0,j)
(j−1,0), . . . ,Game

(0,j)
(j−1,d),Game

(0,j)
(j,d), . . . ,Game

(0,j)
(j,0) = Game

(0,j)
(j) (6)

has at most ds/2e sources. Moreover, there must be two consecutive hybrids that are δ/((2d+
1)dn2)-distinguishable .

Continuing with this pair and guessing a well-dividing node (paying a factor 1/n), we embed
2d intermediate hybrids, of which a pair must be (δ/((2d + 1)2dn3))-distinguishable. The dif-
fering edge in this pair has now only ds/4e source nodes. We can now continue this recursion,

e.g., guessing and then embedding between games Game
(0,j1,j2)
(j1,j2−1) and Game

(0,j1,j2)
(j1,j2)

the sequence

Game
(0,j1,j2)
(j1,j2−1)

= Game
(0,j1,j2)
(j1,j2−1,0), . . . ,Game

(0,j1,j2)
(j1,j2−1,d),Game

(0,j1,j2)
(j1,j2,d)

, . . . ,Game
(0,j1,j2)
(j1,j2,0)

= Game
(0,j1,j2)
(j1,j2)

.

But what happens if in Line 6, the middle games Game
(0,j)
(j−1,d) and Game

(0,j)
(j,d) are distin-

guishable? They differ in the j-th edge to the challenge, i.e., z[j] → z. Since in both games
all edges going into v (the first splitting node) are fake, we now need to find a node which
well-divides the tree Tz \ Tv, as this is the tree containing all the real sources leading to z.
Whereas j ∈ [d] in the superscript denoted guessing a well-dividing node for the j-th tree
above, we denote by ‘0’ the fact that the guessed node must well-divide the tree below. We

thus obtain Game
(0,j,0)
(j−1,d) and Game

(0,j,0)
(j,d) from Game

(0,j)
(j−1,d) and Game

(0,j)
(j,d), respectively, where in

addition we guess a node v′ well-dividing the tree Tz \Tv. In any case we obtain a pair that is
(δ/((2d+ 1)3dn4)-distinguishable and the differing edge has fewer than ds/8e sources.

Since, every time we guess and embed intermediate games, we halve the number of sources,
after dlog se such steps we have two games that differ in one edge which has only 1 source,
(meaning we have found Game and Game′). These games are thus (δ/d(2d+1)dlog sendlog se+1)-
distinguishable. We now switch to the technique from Section 4, guessing the middle node of
the path and embedding 2 intermediate hybrids, losing 1/3n in every step. After dlog `e (where
` is the maximum length of any path), we arrive at two games from which we can construct
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GamePI is defined as follows:

– P is a list (a1, . . . , amP ), where a1 = 0 and ai ∈ [d]0.

– I is a list (e1, . . . , emI ) with mI ≤ mP and ei ∈ [d]0
– B starts with guessing nodes v1, v2, . . . , vmP .

– For all 1 ≤ i ≤ mI and every ei = I[i], B returns fake responses to the first ei queries encrypt(∗, vi).
All other queries are responded with real answers. In the end A outputs bit b ∈ {0, 1}.

– Define T(1), . . . ,T(mP ) from P, v1, . . . , vmP as in Line 7.

– If v1 is the challenge node and for i > 1, vi well-divides T(i), then return b; otherwise return 0.

Fig. 5: Definition of GamePI for the general-tree case.

an IND-CPA distinguisher. We lost another factor 1/(3n)dlog `e. In total, starting from a GSD
adversary with success probability δ, we obtain an IND-CPA distinguisher with probability

δ/
(
dn((2d+ 1)n)dlog se (3n)dlog `e

)
.

To formalize this approach, in Figure 5 we formally define a hybrid game GamePI , where P
determines the nodes we guess in the graph and I determines the queries (involving the guessed
nodes) that are replied to with a fake answer. In contrast to Section 4, P and I are ordered
lists rather than sets. We explain our definition in the following.

Checking whether we’ve guessed correctly. We start with explaining how in GamePI
we check whether our guesses were well-dividing nodes. As an example, consider Figure 3. H0

corresponds to Game
(0,1)
(0,0) (the superscripts mean that we must guess the challenge v1 (the 0 in

(0, 1)) and a splitting node v2 for the tree Tv1[1] that ends in the first (denoted by 1 in (0, 1))
edge going into the challenge; the subscripts mean that there are 0 fake edges going into v1
and 0 fake nodes going into v2. Guesses v1 = 7 and v2 = 9 would be correct, since A queried
challenge(7) and v2 = 9 well-divides the first subtree going into the challenge, that is Tv1 .

Now consider H3 and H4, corresponding to Game
(0,1)
(0,3) and Game

(0,1)
(1,3), respectively. The next

guess v3 should split the tree Tv1 \Tv2 (obtaining games Game
(0,1,0)
(0,3) and Game

(0,1,0)
(1,3) ). If we were

to further recurse between these games, we thus never have to consider Tv2 anymore, because
in all games all edges going into v2 are fake edges.

The tree T(i), which vi should well-divide is thus defined for i = 1, . . . as follows: as long
as there have not been any ai = P [i] with ai = 0 (that is, we considered a subtree below the
splitting node), T(i) is the tree ending in the ai-th parent of vi−1 (that is, Tvi−1[ai]). When we

have ai = 0 for the first time then the lower subtree is chosen, that is T(i) = T(i−1)\Tvi−1
. In any

further recursion, we need not consider Tvi−1
anymore, so we store it as R(i) (for “removed”).

If ai+1 ≥ 1 then vi+1 must well-divide Tvi[ai+1] \ R(i). We need to apply the same method for

the rest of the guessed nodes as well. Meaning we let R(i) be the set of all the removed edges
in the first ith steps and we first remove R(i) from Tvi−1[ai] or T(i−1) for ai ≥ 1 and ai = 0
respectively, and what is left must be well-divided by the new guessed node. Formally,

R(1) = ∅ , T(1) = Tv1 ,
if ai = 0 then R(i) = R(i−1) ∪ Tvi−1

, T(i) = T(i−1) \ R(i),

if ai ≥ 1 then R(i) = R(i−1), T(i) = Tvi−1[ai] \ R(i)
(7)

Set I and the hybrid games. In Section 4 the set I was a subset of P and for every x in
I the query encrypt(∗, x) was responded with a fake answer. Unlike before, here we can have
multiple queries of form encrypt(∗, x), therefore I needs to determine which queries are fake
for each node in P . To do so, the i-th element in I, ei, determines that the first ei queries
encrypt(∗, vi) are responded with fake answers and the rest of queries are responded with real
ones. If ei = 0 then all such queries are replied with real answers.
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Previously, for each new element z added to P , and for any game GamePI , we defined two new
hybrid games, one with a fake response and one with a real response to the query encrypt(∗, z).
Thus for any pair of games GamePI and GamePI′ , with |I4I ′| = 1 we ended up with 4 games
which built up 3 pairs of games satisfying property 1. Here, for a newly guessed node vi, we
can define many new games with Pnew = P ‖ (ai) and Inew = I ‖ (ei), for ai, ei ∈ [d]0.
However not all of such games are needed. First consider two games GamePI and GamePI′ with
|P | = |I| = m− 1 such that they satisfy Property 1, meaning

– I and I ′ are identical except at one position i, we have I[i] = ei and I ′[i] = e′i, and
|I| = |I ′| = m− 1,

– e′i < d and ei = e′i + 1,
– If i < m− 1 then, ai+1 = ei, ei+1 = d and ∀j , i+ 1 < j < m, ej = 0, aj = d.

The differentiating step in these two games is encrypt(vi[ei], vi). Therefore the new element (to
be guessed) must be in the subtree that ends with vi[ei]. That’s why if the (i + 1)-th element
is already in the set P then it must be ai+1 = ei, and to add a new element in P we must set
am = 0. On the other hand, if ai is the last element in S, the new element must be am = ei.
Thus we only need to define 2(d + 1) games which create 2d + 1 pairs of games satisfying
Property 1, as listed below.(

Game
P‖(am)
I‖(em) ,Game

P‖(am)
I‖(em+1)

)
for 0 ≤ em < d,(

Game
P‖(am)
I′‖(em),Game

P‖(am)
I′‖(em+1)

)
for 0 ≤ em < d,(

Game
P‖(am)
I‖(d) ,Game

P‖(am)
I′‖(d)

)
.

Finally, one of the pairs of games satisfying property 1, must be δ/n(2d+ 1)-distinguishable, if
GamePI and GamePI′ are δ-distinguishable.

In Lemma 3 we formalize this argument. Let us first show that well-dividing nodes always
exist.

Lemma 2. Let T be a tree of n nodes, s sources, s ≥ 2 and let x be a sink in T with strictly
more than one source reaching x. Then there exists a node x∗ in T such that x∗ well-divides
Tx.

Proof. [of Lemma 2] We proof Lemma 2, by giving an algorithm that finds x∗ in Tx in Figure 6.
Let S(x) denote the number of sources in the subtree Tx and let x[1], . . . , x[d] be all nodes

where there is an edge x[i]→ x in T. As long as S(x) ≥ 2, the following algorithm will output
a node x∗ in tree Tx such that x∗ well-divides Tx.

Termination. In each iteration of the while loop either x is replace with one of its parents,
which can happen at most n times before reaching a source, or the algorithm terminates.
Therefore there can be at most be n iterations of the while loop.

Correctness. The algorithm starts from the sink x of the tree and it traverses the tree up
until it finds a well-dividing node. In each iteration, the variable m keeps track of the number
of sources in the subtree T−Tx, where x is the node at hand and T is the tree it started with.
In other words, at each iteration of the while loop, m+ S(x) is the total number of sources in
the tree. Note that at most one of the parents of x can satisfy the predicate of the if statement
and if such a parent exists then that node has more than half of the sources of the entire tree,
so we update m and x accordingly and search for the well-dividing node in the new Tx. On the
other hand, if no such a parent exists, it means that after removing all the ingoing edges of x
from the tree all the subtrees ending in one of the parents of x have less sources than half of
the sources of the entire tree. Also note that m is never greater than sT/2, since m is changed
only when S(x[i]) > sT/2. Therefore the tree T\Tx has less than sT/2 sources as well, meaning
x is the well-dividing node.
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Well-Dividing Node(T, x)
m← 0
sT ← S(x)
found ← false
while found = false do

if ∃ i with S(x[i]) > sT/2 then
m← sT − S(x[i])
x← x[i]

else
found ← true

end if
end while
output x

Fig. 6: Algorithm finding a well-dividing node in a tree

Lemma 3. Let P and I be sets of integers as defined in Figure 5 and |P | = |I| = m− 1 ≥ 0,
and I ′ be identical to I except for i∗-th element, we have I[i∗] = ei∗ and I ′[i∗] = e′i∗ = ei∗ − 1.
Then there are 2 cases: either

– i∗ = m− 1, then let am := ei∗ ; or

– i∗ < m − 1, ai∗+1 = ei∗ , ei∗+1 = d and ∀j, i∗ + 1 < j < m, aj = 0, ej = d, then let
am := 0.

If GamePI and GamePI′ are (t, ε)-distinguishable then

– if m = dlog se+ 1 then, (Enc,Dec) is not (t+QAdvTEnc + Õ(QAdv), ε/(3n)dlog `e)-IND-CPA-
secure.

– Otherwise, at least one of the following pairs of games is (t, ε/n(2d+ 1))-distinguishable

Game
P‖(am)
I‖(em) and Game

P‖(am)
I‖(em+1) for 0 ≤ em < d

Game
P‖(am)
I‖(d) and Game

P‖(am)
I′‖(d)

Game
P‖(am)
I′‖(em) and Game

P‖(am)
I′‖(em+1) for 0 ≤ em < d

Proof. [of Lemma 3] According to P , I and I ′, the two games only differ in the response to
ei∗ -th query of the form encrypt(vi∗ [ei∗ ], vi∗). If m < log s, we add another element to P . The
m-th guessed node must well-divide subtree T(m) := Tvi∗ [ei∗ ] −

∑
i∈{2,3,··· ,m−1}:P [i]=0 Tvi−1

in

both games. If such a node exists, the probability of guessing the node correctly is 1/n, thus

Game
P‖(am)
I and Game

P‖(am)
I′ are (t, ε/n)-distinguishable. Moreover, by the triangle inequality

we have

d−1∑
em=0

∆t

(
Game

P‖(am)
I‖(em) ,Game

P‖(am)
I‖(em+1)

)
+∆t

(
Game

P‖(am)
I‖(d) ,Game

P‖(am)
I′‖(d)

)

+

d−1∑
em=0

∆t

(
Game

P‖(am)
I′‖(em),Game

P‖(am)
I′‖(em+1)

)
≥ ∆t

(
Game

P‖(am)
I ,Game

P‖(am)
I′

)
>
ε

n
.

Consequently at least one of the 2d+1 pairs of games, on the left hand side of the inequality
above, must be (t, ε/n(2d+ 1))-distinguishable. On the other hand if no such a node exists we

simply ignore the rest of the guessed nodes in the game. Then Game
P‖(am)
I‖(d) and Game

P‖(am)
I′‖(d) are

as distinguishable as GamePI and GamePI′ . Therefore the claim of the lemma holds in this case
as well.
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Since every guessing step reduces the number of sources in the subtree reaching the challenge
into at most half of what it was before, after m − 1 = dlog se steps, we know for certain that
there is at most one source left in the subtree reaching the challenge, in which case we can
apply Lemma 1 at most dlog `e times to conclude the proof.

Guessing the challenge node and defining games Game
(0)
(0), . . . ,Game

(0)
(d) loses a factor n · d.

Applying Lemma 3 repeatedly for dlog se times, we get the proof of Theorem 2.

6 Conclusions and Open Problems

We showed a quasipolynomial reduction of the GSD game on trees to the security of the under-
lying symmetric encryption scheme. As already discussed in the introduction, it is an interesting
open problem to extend our reduction to general (directed, acyclic) graphs or to understand
why this is not possible. This is the second result using the “nested hybrids” technique (after
its introduction in [FKPR14] to prove the security of constrained PRFs), and given that it
found applications for two seemingly unrelated problems, we believe that there will be further
applications in the future.

One candidate is the problem of proving security under selective opening attacks [DNRS99]
[FHKW10,BHY09], where one wants to prove security when correlated messages are encrypted
under different keys. Here, the adversary may adaptively chose to corrupt some keys after
seeing all ciphertexts, and one requires that the messages in the unopened ciphertexts are in-
distinguishable from random messages (sampled so they are consistent with the already opened
ciphertexts). This problem is notoriously hard, and no reduction avoiding complexity leveraging
to IND-CPA security of the underlying scheme is known.
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