
Subtleties in Security Definitions for Predicate Encryption with
Public Index

Johannes Blömer and Gennadij Liske?

Paderborn University, Germany
bloemer@upb.de, gennadij.liske@upb.de

Abstract. We take a critical look at established security definitions for predicate encryption (PE)
with public index under chosen-plaintext attack (CPA) and under chosen-ciphertext attack (CCA).
In contrast to conventional public-key encryption (PKE), security definitions for PE have to deal
with user collusion which is modeled by an additional key generation oracle. We identify three
different formalizations of key handling in the literature implicitly assumed to lead to the same
security notion. Contrary to this assumption we prove that the corresponding models result in two
different security notions under CPA and three different security notions under CCA. Similarly
to the recent results for PKE and conventional key-encapsulation mechanism (KEM) (Journal
of Cryptology, 2015) we also analyze subtleties in security definitions for PE and predicate key-
encapsulation mechanism (P-KEM) regarding the so-called ”no-challenge-decryption” condition.
While the results for PE and PKE are similar, the results for P-KEM significantly differ from the
corresponding results for conventional KEM. Our analysis is based on appropriate definitions of
semantic security and indistinguishability of encryptions for PE under different attacks scenarios.
These definitions complement related security definitions for identity-based encryption and func-
tional encryption. As a result of our work we suggest security definitions for PE and P-KEM under
different attack scenarios.

Keywords: predicate encryption with public index, predicate key-encapsulation mechanism, se-
mantic security definition, indistinguishability definition, chosen-plaintext attack, chosen-ciphertext
attack

1 Introduction

Cryptographic primitives and schemes considered in modern cryptography have increasingly become more
complex over the last decades. Clearly, one has to abstract from many details when novel constructions
or techniques are presented. Therefore, it is all the more important that security models are rigorously
studied and made accessible to the cryptographic community through comprehensive and perspicuous
explanation, especially when these models are translated into novel contexts. Recently, issues in one of the
best-studied security definitions for public-key encryption (PKE) under chosen-ciphertext attack were
detected [5]. For digital signatures and for symmetric-key encryption the well-known security definitions
were reconsidered in [15]. These works showed that the mentioned established definitions do not provide a
comprehensive model of adversarial behavior and fail to take into account many attack scenarios. If even
these security definitions suffer from weaknesses, what about newly and more involved cryptographic
schemes and their security models which are often justified by their origin in well-known definitions?

In this paper we look at predicate encryption (PE) with public index and predicate key-encapsulation
mechanism (P-KEM) with public index. On the one hand, these cryptographic primitives have been
extensively studied due to their usefulness in various cryptographic applications. On the other hand,
established security definitions for PE and P-KEM lean to a large extent on the corresponding security
definitions in context of PKE and KEM even though the functionality of predicate-based schemes is
more complex compared to conventional PKE. We analyze the security definitions for PE and P-KEM,
formalize the assumed adversarial behavior and identify several subtleties in the established definitions.
As a result we propose well-grounded security definitions for these cryptographic primitives under
different attack scenarios.

? The authors were partially supported by the German Research Foundation (DFG) within the Collaborative
Research Centre ”On-The-Fly Computing” (SFB 901).

Predicate encryption with public index (PE) (also called payload hiding PE) is a relatively new but
already established and well-studied primitive which can be used to realize fine-grained access control to
data by cryptographic encryption. In a PE scheme for predicate R the data are encrypted under ciphertext
indices cInd, which specify access requirements and are not confidential. The users hold secret keys with
key indices kInd, which represents their access rights. A user with a secret key for kInd can reconstruct
the message, encrypted under cInd, if the predicate is satisfied by the indices, that is if R (kInd, cInd) = 1.
Predicate key-encapsulation mechanism (P-KEM) can be seen as specialized PE which can only be used
to encrypt a random bit string. Therefore P-KEMs are applied in hybrid constructions together with
symmetric-key encryption schemes.

In contrast to conventional PKE, in PE schemes all user secret keys are generated from a single
master secret key by a trusted authority. The authority is responsible for key generation; hence, it
manages access to the encrypted data. The study of PE actually started when A. Shamir introduced the
idea of identity-based encryption (IBE) [21], a predicate encryption for the equality predicate. The first
fully-functional IBE was presented in [9] whereas the study of PE for more involved predicates started
with [20]. Furthermore, the more general concept of functional encryption (FE) was introduced in [11].

If we look at the security models previously used in the context of PE, we recognize that they
originate from the security models for IBE (cf. [20]), which in turn go back to the security models for
PKE (cf. [9]). An intuitive security requirement for encryption schemes is that the ciphertext should not
reveal any information about the encrypted message to anyone who is not allowed to get access to the
message. Semantic security (SS) is an intuitive simulation-based formalization of this requirement whereas
indistinguishability (IND) of encryptions is an alternative definition. One evidence of a good security
definition is its robustness under slightly adapted variations and under reasonable attack scenarios. In
fact, in the case of conventional PKE a lot of different extensions and variants of semantic security
definitions have been proved to be equivalent (cf. [12]). In particular, the involved definition of what
we call adaptive multiple-challenge SS was proved to be equivalent to the simple single challenge SS-
definition, which in turn is equivalent to the IND-definition. These equivalences hold under (passive)
chosen-plaintext attack (CPA) and (active) chosen-ciphertext attack (CCA). Amongst other results this
gave strong evidence that the SS-definition is the right formalization of the required security properties
for PKE. On the other hand, the equivalent IND-definition is more easier to handle and hence, it is
widely used in security proofs for PKE schemes.

Starting with [9] the indistinguishability definition for PKE was adopted and used for IBE [22, 13,
14, 23, 16] and for more sophisticated PE [20, 3, 18, 24, 25, 17, 1, 7]. Consequently, in [2] security
models for IBE were studied under different attack scenarios. One of the results of this work was an
equivalence proof of SS-definitions and IND-definitions. Similar to the PKE this result holds under CPA
and under CCA even in the adaptive multiple-challenge scenario. Contrary, for the more general context
of functional encryption the IND-definition was proved not to be suitable (cf. [11, 19]). Surprisingly and
seemingly contradicting to the previous results, in [11] the authors also proved that semantic security
can not be achieved even for IBE. This impossibility result was identified in [6, 4] as a consequence
of the so-called key-revealing selective-opening attacks (SOA-Ks) which were implicitly covered by the
SS-definitions of [19, 11], but were not considered in [2]. The analysis of [19, 11, 6, 4] was restricted to
the CPA attack scenario.

At first, it looks like the semantic security and the indistinguishability of encryptions for PE are well
studied and well understood. On the one hand, the results for FE under CPA can be applied to PE and
the results for IBE cover CCA-security and can be extended to PE. On the other hand, in [5] the authors
already mentioned that the identified issues in the definitions for PKE also appear in the definitions for
IBE. Furthermore, in [7] the authors used a more sophisticated indistinguishability definition for PE and
justified this by specific properties of PE. These intricacies motivated us to reconsider security definitions
in the context of predicate-based schemes.

1.1 Main Contribution

We now explain our main contribution in more detail.

How to handle user secret keys? Whereas in the context of conventional PKE there is only a single secret
key in question, in PE schemes there are many user secret keys generated from the master secret key.
Actually, several users may hold (different) keys for the same key index. Already security definitions for

2

IBE [9] explicitly prevent user collusion and formalize this by an additional key generation oracle. But
the IBE schemes in [9] have a very special property. Namely, there is a unique user secret key for every
identity and as a result, the existence of different user secret keys was not considered, neither under
CPA nor under CCA. In PE key indices and more complex and specify the access rights of the user. We
identify three different formalizations for PE regarding the user secret keys in the literature and name
these as follows:

One-Key model (OK-model)

One-Use model (OU-model)

Covered-Key model (CK-model)

In the first two models the adversary (denoted by A) has access to oracles KGen(·) and Dec(·, ·)
under CCA. For the first oracle A specifies a key index and receives a secret key for this key index. For
the second oracle A specifies a ciphertext as well as a key index, and the ciphertext will be decrypted
using a secret key for the specified key index. The OK-model and the OU-model differ in the handling
of the user secret keys in these oracles. In the OK-model a unique secret key for kInd is generated
and stored if this index is submitted by A for the first time. This user secret key is used to answer all
oracle queries related to kInd. In particular, oracle query KGen(kInd) always results in the same key.
In turn, in the OU-model the challenger generates a new secret key for every key generation query and
for every decryption query. Hence, every generated user secret key is used only once. Under CCA the
OK-model has previously been used e.g. in [9, 13, 24, 25] and the OU-model has previously been used
e.g. in [10, 14]. The CK-model has previously been used in [7]. In this model the user secret keys are
generated and numbered in the co-called covered key generation oracle CKGen (·). The adversary can
ask to reveal the generated keys, which realizes the functionality of the original key generation oracle
but now the adversary can also make more specific decryption queries. For such a query A specifies the
number of the secret key which has to be used for decryption. This models the actual situation in the
reality, where different keys even for the same key index are held and used by different users and an
adversary might be able to realize chosen-ciphertext attack on these users and their secret keys (cf. [7]).

The three identified models have previously been used and most researcher seem to think they refer
to the same security notion. In [8] the authors shortly discuss the OK-model and the OU-model for
the case that the key generation algorithm in (H)IBE is probabilistic and state that ”The resulting
security definitions [...] seem incomparable, and there does not appear to be a reason to prefer one over
the other.” As a consequence, the authors assume that the key generation algorithm is deterministic,
which, as discussed above, is a plausible assumption in the context of IBE. However, the key generation
algorithm in PE for sophisticated predicates is always probabilistic and it is a usual case that several keys
for the same key index are held by different users. We prove for predicate-based schemes that under CPA
the OK-model is weaker than the other two models, whereas CK-model and OU-model are equivalent.
Under CCA we show that all three resulting security notions are different and that the security notion
achieved from CK-model is the strongest one. Both results hold for PE as well as for P-KEM. Hence, we
examine the CK-security of known PE schemes which were proved to satisfy the weaker security notions
under CCA. Obviously, the CCA-secure scheme from [9] with unique secret keys is CK-secure. For other
schemes this is not obvious and we have to look at their security proofs in detail. Interestingly, for many
known schemes we can argue that they also satisfy CK-security, but the arguments differ for every single
scheme. For some schemes the question regarding CK-security remains open.

When and how should a challenge decryption be disallowed? We consider this question in the context of
PE and P-KEM following the results in [5] for PKE and KEM. While it is not surprising that we can
prove similar results for PE, the situation is different when key-encapsulation mechanisms are considered.
Namely, in the context of conventional KEM six different security notions were identified and proved to
be equivalent in [5]. First of all, we consider two additional security notions (due to the additional key
generation oracle) and prove that four of the eight security definitions are too weak in general. The other
four notions are in fact equivalent, but some reductions between these notions are not tight. We deduce
that in the context of P-KEM we can disallow the decapsulation query on the challenge encapsulation
only in the second query phase and can, equivalently, model this restriction both in the penalty-style
(SP) and in the exclusion-style (SE). In contrast to this result, the first query phase can be completely
dropped for conventional KEM [5].

3

Reasonable restrictions of adversaries in SS-definitions and IND-definitions. We present an appropriate
semantic security definition for PE and appropriate indistinguishability definitions for PE and P-KEM.
On the one hand, the analysis of our above mentioned results is based on these definitions. On the
other hand, we justify additional restrictions of adversaries previously used in all security definitions
for PE. Namely, for meaningful security notion we have to require that adversaries do not query a user
secret key neither in the first query phase nor in the second query phase if this key can be used to
decrypt the challenge ciphertext. To the best of our knowledge in all previously used security definitions
for predicate-based schemes this restriction was modeled in exclusion-style, that is, adversaries which
violate this restriction are not even considered. But in security definitions for PE and P-KEM the
challenge ciphertext index is not specified in the first query phase and one can not decide if a key index,
submitted in this phase by adversary, matches the challenge ciphertext index. As observed in [5] for no-
challenge-decryption condition, exclusion-style adversarial restrictions regarding the first query phase are
counterintuitive and may have unpredictable consequences. We show that with slightly modified security
definitions these issues do not arise with restrictions on key queries in the first phase.

Furthermore, we prove the equivalence of SS-definition and IND-definition for PE under different
attack scenarios including chosen-ciphertext attack, which was not explicitly covered by previous results
for IBE and FE. Finally, based on our SS-definition for PE we discuss the impossibility results known
from the context of functional encryption.

Conclusion. Based on our results we first of all conclude that the simpler indistinguishability definition
for PE is appropriate for both CPA and CCA attack scenarios as long as key-revealing selective-opening
attacks are not concerned. Under chosen-ciphertext attack we suggest to use the CK-model to handle
user secret keys while under chosen-plaintext attack simpler OU-model is appropriate. This suggestion
hold for PE as well as for P-KEM. Finally, under CCA the SE-model is the most advisable in order to
handle the no-challenge-decryption condition for both PE and P-KEM.

Organization. In Section 2 we present the preliminaries including syntactical definitions of PE and
P-KEM. Section 3 contains SS-definition and IND-definition for PE, the security definition for P-KEM,
as well as their analysis and the formal treatment of adversarial restrictions. Based on the presented
definitions we look at different formalizations regarding handling of user secret keys in Section 4.
Finally, in Section 5 we consider security notions originating from restrictions of adversaries to query the
decryption of the challenge ciphertext.

2 Preliminaries

2.1 Notation

We denote by α := a the assignment of the value a to the variable α. We also use the operator := to
define new objects. Let X be a random variable on a finite set S. We denote by [X] the support of X.
This notation can be extended to ppt algorithms, since every ppt algorithm A on input x defines a finite
output probability space which we denote by A (x). That is, [A (x)] denotes all possible outcomes of A on
input x. In turn, we write α← X to denote sampling of an element from S according to the distribution
defined by X (y ← A (x) for ppt algorithms). We also write α ← S when sampling an element from S
according to the uniform distribution.

We apply the following general conventions by description of algorithms: if we write that an algorithms
takes x ∈ S as input, the output of the algorithm must be the error symbol ⊥ if x /∈ S. In particular,
there must be an efficient membership test for the set S. Contrarily, if we write that an algorithm takes
element x as input, x is just the identifier of the corresponding input and the algorithm itself does not
make any demands on x.

2.2 Predicate Encryption With Public Index

In this subsection we shortly recall the formal definitions of predicate families and predicate encryption
schemes with public index following [1, 7]. We notice that in this work we often call these schemes just
predicate encryptions.

4

Let Ω, Σ be arbitrary sets. A predicate family RΩ,Σ is a set of binary relations RΩ,Σ =
{

Rκ :

Xκ×Yκ → {0, 1}
}
κ∈Ω×Σ , where Xκ and Yκ are sets called the key index space and the ciphertext index

space of Rκ, respectively. The following conditions must hold:
– Membership test for Xκ : There exists a polynomial-time algorithm which on input (κ, kInd) ∈

(Ω ×Σ)× {0, 1}∗ returns one if and only if kInd ∈ Xκ.
– Membership test for Yκ : There exists a polynomial-time algorithm which on input (κ, cInd) ∈

(Ω ×Σ)× {0, 1}∗ returns one if and only if cInd ∈ Yκ.
– Easy to evaluate : There exists a polynomial-time algorithm which on input (κ, kInd, cInd) ∈ (Ω ×Σ)×

Xκ × Yκ returns Rκ (kInd, cInd).
For example, in key-policy ABE Xκ is a set of Boolean formulas φ over variables x1, . . . , xn, set Yκ is the
power set of the xi’s, and Rκ (φ, γ) = 1⇔ φ(γ) = 1 (xi ∈ γ for γ ∈ Yκ means xi = 1). Let κ = (des, σ).
Indices des ∈ Ω specify some general description properties of the corresponding predicates (e.g. the
size of γ in the example above might be restricted), and indices σ ∈ Σ specify domain of computation
which depends on the security parameter (e.g. Zp for prime p). In the following definition we use some
additional conventions, which will be subsequently explained.

Definition 2.1. A predicate encryption with public index Π for predicate family RΩ,Σ and message
space M = {0, 1}∗ consists of four ppt algorithms:

Setup
(
1λ,des

)
→ (msk,ppκ) : takes as input security parameter λ, and description parameter des. It

outputs a master secret key and public parameters. The algorithm determines among other elements
σ ∈ Σ and the relation index κ = (des, σ) ∈ Ω ×Σ is (implicitly) included in ppκ.

KeyGen
(
1λ,ppκ,msk, kInd

)
→ sk : takes as input public parameters for relation index κ, the master

secret key msk, and a key index kInd ∈ Xκ. It generates a user secret key sk for kInd.
We denote by UKkInd ⊇ [KeyGen (ppκ,msk, kInd)] a set of syntactically correct secret keys for kInd
with efficient membership test (given ppκ). Furthermore, we define UKppκ :=

⊎
kInd∈Xκ UKkInd.

Enc
(
1λ,ppκ, cInd,m

)
→ CT : takes as input public parameters for relation index κ, a ciphertext index

cInd ∈ Yκ, and a message m ∈M. It outputs a ciphertext CT of m under cInd.
We denote by CcInd ⊇

⋃
m∈M [Enc (ppκ, cInd,m)] a set of syntactically correct encryptions under cInd

with efficient membership test (given ppκ). Furthermore, we define Cppκ :=
⊎

cInd∈Yκ CcInd.

Dec
(
1λ,ppκ, sk,CT

)
→ m: takes as input public parameters for relation index κ, a secret key sk ∈

UKkInd ⊆ UKppκ and a ciphertext CT ∈ CcInd ⊆ Cppκ . It outputs a message m ∈ M or the error
symbol ⊥ /∈M. If Rκ (kInd, cInd) = 0, the output is ⊥.

Correctness: For every security parameter λ, every des ∈ Ω, every (msk,ppκ) ∈
[
Setup

(
1λ,des

)]
, every

m ∈M, every kInd ∈ Xκ and cInd ∈ Yκ which satisfy Rκ (kInd, cInd) = 1 it must hold

Pr
[
Dec

(
1λ,ppκ,KeyGen

(
1λ,ppκ,msk, kInd

)
,Enc

(
1λ,ppκ, cInd,m

))
= m

]
= 1 .

An important property of PE with public index is that the ciphertext index can be efficiently computed
from every syntactically correct ciphertext. The same can be assumed for user secret keys and their
indices. Hence, we introduce the set UKppκ and the set Cppκ in order to make implicit syntactical checks
in the algorithms and in the security experiments explicit. If this kind of checks is required by the
scheme, the sets have to be defined appropriately. This prevents implementation errors and inaccuracy
of definitions. The requirement CT ∈ CcInd ⊆ Cppκ should be read as follows: the (public) ciphertext
index of CT satisfies cInd ∈ Yκ and CT is an element of CcInd. Similar notation is used for user secret
keys.

We assume for convenience that public parameters ppκ have length at least λ, and that λ and
κ ∈ Ω×Σ can be efficiently determined from ppκ. Hence, we avoid to write 1λ as input of the algorithms
except for the setup algorithm. Furthermore, if the public parameters ppκ are fixed and obvious from
the context, we also avoid to write ppκ as input of the algorithms.

2.3 Predicate Key Encapsulation Mechanism With Public Index

In practice, PE schemes are usually used to encrypt a symmetric secret key, which then is used to encrypt
the actual message. Special PE schemes constructed extra for this application are also called predicate
key-encapsulation mechanism. We use the same notational conventions as for PE and hence, simplify the
description.

5

Definition 2.2. A predicate key encapsulation mechanism with public index Π for predicate
family RΩ,Σ and family of key spaces K = {Kλ}λ∈N consists of four ppt algorithms:

Setup
(
1λ,des

)
→ (msk,ppκ) : takes as input security parameter λ and description index des. It outputs

a master secret key and public parameters.
KeyGen

(
1λ,ppκ,msk, kInd

)
→ sk : takes as input public parameters for relation index κ, a master

secret key msk, and a key index kInd ∈ Xκ. It generates a user secret key sk for kInd.
Encaps

(
1λ,ppκ, cInd

)
→ (K,CT) : takes as input public parameters for relation index κ and a ciphertext

index cInd ∈ Yκ. It outputs a key K ∈ Kλ and an encapsulation CT of this key under cInd.
Decaps

(
1λ,ppκ, sk,CT

)
→ K: takes as input public parameters for relation index κ, a secret key sk ∈

UKkInd ⊆ UKppκ and an encapsulation CT ∈ CcInd ⊆ Cppκ . It outputs a key K ∈ Kλ or the error
symbol ⊥ /∈ Kλ. If Rκ (kInd, cInd) = 0, the output is ⊥.

Correctness: For every security parameter λ, every des ∈ Ω, every (msk,ppκ) ∈
[
Setup

(
1λ,des

)]
, every

m ∈ M, every kInd ∈ Xκ and cInd ∈ Yκ which satisfy Rκ (kInd, cInd) = 1, and every (K,CT) ∈[
Encaps

(
1λ,ppκ, cInd

)]
it must hold

Decaps
(
1λ,ppκ,KeyGen

(
1λ,ppκ,msk, kInd

)
CT
)

= K .

We furthermore define the smoothness for P-KEM, which is similar to the definition of smoothness
for conventional KEMs (cf. [5]).

Definition 2.3. Let Π be a P-KEM with public index for predicate family RΩ,Σ. Furthermore, let
des ∈ Ω and λ ∈ N be arbitrary. Define

SmthΠ (λ, des) := E

 max
cInd∈Yκ,

CT∈{0,1}∗

(
Pr

(K,CT′)←Encaps(1λ,ppκ,cInd)

[
CT′ = CT

]) ,

where the expected value is taken over (msk,ppκ) ← Setup
(
1λ,des

)
. Π is called smooth if for every

des ∈ Ω the function SmthΠ (·,des) is negligible.

3 Semantic Security and Indistinguishability for PE

In this section we first define two formal security definitions or rather definitional templates for PE: a
semantic security (SS) template and an indistinguishability (IND) template. We explicitly notice that the
definitions are not novel, but as already mentioned in the introduction there exist important subtleties in
these definitions in context of PE which must be considered. The templates prescind from some details and
prepare the formal treatment of adversarial behavior and some further definitional aspects considered in
the following sections. Furthermore, they allows us to compare these two well-known security definitions
in the context of PE independently of the concrete attack scenario.

3.1 Semantic Security Template

We first define a basic version of semantic security for PE. We begin with formal definition of adversaries
with only few pure syntactic restrictions. Let Π be a PE scheme with public index for a predicate family
RΩ,Σ . Formally, a semantic security adversary A = (A1,A2) against Π is a pair of algorithms with
oracle access such that A1 given among other things correctly generated public parameters ppκ outputs
a triple (cInd∗, τ, St). The first element is referred to as the challenge ciphertext index and has to
satisfy cInd∗ ∈ Yκ; τ is referred to as the challenge template and itself contains a triple of circuits
τ = (M̂, h, f) such that the number of input bits of h and f is equal to the number of output bits of
M̂; the last element St is referred to as the state information and there are no demands on it. For
technical reasons, explained below, we allow A1 to output an error symbol ⊥. The set of SS-adversaries
against Π is denoted by ASS

Π or just ASS if Π is obvious from the context.
The definition of semantic security is a simulation-based definition and hence, we require two probability

experiments presented in Figure 1. The real experiment on the left side is parametrized by attack scenario
ATK and by adversary A ∈ ASS, whereas in the simulation experiment on the right side algorithm

6

SS-PEATK
Π,A (λ, des) : (msk,ppκ)← Setup

(
1λ,des

)
;(

cInd∗,
(
M̂, h, f

)
, St
)
← AOATK

1 (·)
1

(
1λ,ppκ

)
;

Output 0 if A1 outputs ⊥; m̂← M̂
(
Upoly(λ)

)
;

CT∗ ← Enc (cInd∗, m̂) ; ν ← AOATK
2 (·)

2 (CT∗, h (m̂) , St) ;

Output ν = f (m̂) ∧ BadQuery;

SS-PE-SimΠ,A′ (λ,des) :((
M̂, h, f

)
, St
)
← A′1

(
1λ,des

)
;

Output 0 if A′1 outputs ⊥;

m̂← M̂
(
Upoly(λ)

)
; ν ← A′2 (h (m̂) , St) ;

Output ν = f (m̂) ;

Fig. 1. Semantic security experiments for PE.

A′ = (A′1,A′2) is (for a moment) arbitrary. In the real experiment, we use oracles O1 (·), O2 (·) in order
to model additional powers of A in the first and in the second query phase. Concrete specifications of
these oracles depend on attack scenario ATK and will be considered later in detail. The probability event
BadQuery will be used to define the restrictions on the oracle queries of A formally. Think for a moment
about the usual restriction in context of PE that A is not allowed to query a user secret key if this key
can be used to decrypt the challenge ciphertext CT∗. In this section we only notice that in all considered
attack scenarios the event BadQuery can be efficiently recognized at the end of the experiment and the
oracles can be efficiently realized using the public parameters and the master secret key.

By the definition, the challenge message m̂ is chosen according to the probability distribution implicitly
specified by M̂. The notation M̂

(
Upoly(λ)

)
means that polynomially many input bits of M̂ are chosen

uniformly at random. Algorithms A2 and A′2 are given the value h (m̂). The real adversary A2 is also
given an encryption of m̂ which is called the challenge ciphertext. The output of the experiments is
equal one if A2 respectively A′2 correctly predict f(m̂).

We call an algorithm A′ a simulator for A with respect to des ∈ Ω if for every possible challenge
template τ̂ outputted by A1 (incl. ⊥) it holds

Pr [A′1 outputs τ̂] ≥ Pr
[
A1 outputs τ̂ ∧ BadQuery

]
.

The advantage Adv-SS-PEATK
Π,A,A′ (λ,des) of A against A′ under attack scenario ATK is defined by

Pr
[
SS-PEATK

Π,A (λ, des) = 1
]
− Pr [SS-PE-SimΠ,A′ (λ,des) = 1] .

We say that the advantage of an adversary A ∈ ASS
Π under attack scenario ATK is negligible if

for all des ∈ Ω there exists a ppt simulator A′ of A with respect to des such that the advantage
Adv-SS-PEATK

Π,A,A′ (λ,des) of A against A′ under attack scenario ATK is negligible. Finally, semantic
security is defined as follows.

Definition 3.1. A predicate encryption scheme with public index Π is called semantically secure
under attack scenario ATK (or SS-ATK-secure) if every ppt adversary A ∈ ASS

Π has negligible advantage
under attack scenario ATK.

Intuitively, semantic security states that a ppt adversary A cannot learn anything about the message
m̂ from its encryption CT∗ except for negligible probability. Formally, this is proved by providing a
simulator A′, which can perform as good as A but is not given the challenge ciphertext CT∗. Compared
to the real adversary, simulator A′1 gets des ∈ Ω instead of ppκ as input. This is due to the fact that all
inputs of A′2 are independent of the concrete public parameters. We explicitly mention that in the more
general context of functional encryptions the authors of [4] revealed issues regarding the possibility of
the simulators to generate the public parameters for themselves. But they also proved that all or nothing
schemes (including PE), where the user secret keys only allow to reconstruct the original message rather
than some function on this message, are not affected.

Our definition differs from the SS-definitions for PKEs [12], IBE [2], and FE [19, 11, 6, 4] in two
ways. First of all, we make the restrictions of adversaries explicit by presenting the BadQuery event and
a penalty for adversary if it violates the restrictions of the experiment. This kind of formalization goes
back to [5], where the authors showed that not carefully reasoned assumptions about adversarial behavior
may lead to weaknesses in security definitions. Due to the explicit penalty through the BadQuery event
we slightly modified the definition of the simulators. We notice that a simulator of A is allowed to

7

output an arbitrary challenge template in the case that A violates the restrictions of the experiment. In
turn, the challenge templates must be identically distributed in the experiments SS-PEATK

Π,A (λ,des) and
SS-PE-SimΠ,A′ (λ,des) if A never causes the BadQuery event (that is, A does not violate the restrictions
of the experiment). This is the usual condition in SS-definitions in order to relate the computation of
simulator A′ to the computation of adversary A.

The second difference is due to the presented possibility of adversary to abort after the first query
phase, which is already the result of the formal treatment of adversarial restrictions. As already mentioned
in the introduction, in all known security definitions for PE one does not even consider adversaries which
query user secret keys in both query phases which can be used to decrypt the challenge ciphertext. That
is, adversaries which violate this restriction are not considered at all. We identified a problem with this
modeling for general predicate families. Namely, in order to justify this assumption for the first query
phase, one has to show that given a polynomially large set of (corrupted) key indices chosen by A, a
ciphertext index cInd∗ which does not match all these key indices can be efficiently find. For sophisticated
predicates this can be a hard problem. For example in key-policy attribute-based schemes, in order to
find a set of attributes, which can be used as the challenge ciphertext index, one has to find an assignment
which does not satisfy the given Boolean formulas (corrupted key indices). In order to deal with this
problem we allow the adversary to output an error symbol after the first query phase which is treated
as an early guess and is not penalized. This modeling enables us to keep the mentioned restriction in
the first query phase. The introduced possibility to abort does not influence the security guaranties,
since A has to abort before she gets the challenge and in the case that A violates the restrictions she is
penalized even if she outputs ⊥. This ensures that the possibility to output ⊥ does not contribute to the
advantage of A. On the one hand, our extension simplifies the description of our constructed adversaries
in the cases where A1 has to abort. On the other hand, we have to take care of this output during the
simulation of adversaries and in the formal security analysis.

3.2 Indistinguishability Templates for PE and P-KEM

Next, we define indistinguishability adversaries and an indistinguishability template in the usual single-
challenge form for PE as well as for P-KEM. Also here we abstract from concrete attack scenarios and
make the restrictions of adversaries explicit through BadQuery events.

Let Π be a PE scheme for predicate family RΩ,Σ . An indistinguishability adversary A = (A1,A2)
against Π is a pair of algorithms with oracle access such that A1 given correctly generated public
parameters ppκ outputs the error symbol ⊥ or a tuple (cInd∗,m0,m1, St) satisfying cInd∗ ∈ Yκ, m0,m1 ∈
M and |m0| = |m1|, whereas A2 always outputs a bit. The set of IND-adversaries against Π is denoted
by AIND

Π or just by AIND if Π is obvious from the context. The set AΠ,P-KEM of adversaries against
P-KEM scheme Π is defined similarly except for the outputs of A1, which does not contain the messages.
The indistinguishability experiments are presented in Figure 2, where in the case of P-KEM the family
of key spaces of Π is denoted by K = {Kλ}λ∈N.

IND-PEATK
Π,A (λ,des) :

b← {0, 1} ; (msk,ppκ)← Setup
(
1λ,des

)
;

(cInd∗,m0,m1, St)← A
OATK

1 (·)
1

(
1λ,ppκ

)
;

Output b ∧ BadQuery if A1 outputs ⊥;

CT∗ ← Enc (ppκ, cInd∗,mb) ;

b′ ← AOATK
2 (·)

2 (CT∗, St) ;

Output b = b′ ∧ BadQuery;

P-KEMATK
Π,A (λ, des) :

b← {0, 1} ; K1 ← Kλ; (msk,ppκ)← Setup
(
1λ,des

)
;

(cInd∗, St)← AOATK
1 (·)

1

(
1λ,ppκ

)
;

Output b ∧ BadQuery if A1 outputs ⊥;

(K0,CT∗)← Encaps (ppκ, cInd∗) ; K∗ := Kb;

b′ ← AOATK
2 (·)

2 (K∗,CT∗, St) ;

Output b = b′ ∧ BadQuery.

Fig. 2. Indistinguishability experiments for PE and P-KEM.

8

Definition 3.2. A PE scheme with public index Π for predicate family RΩ,Σ has indistinguishable
encryptions under attack ATK (or IND-ATK-secure) if for every des ∈ Ω and every ppt adversary
A ∈ AIND the advantage

Adv-IND-PEATK
Π,A (λ, des) := 2 · Pr

[
IND-PEATK

Π,A (λ, des) = 1
]
− 1

is negligible.

The security definition for P-KEM is similar. We notice that by our definition A cannot increase its
advantage using error symbol ⊥ but this behavior is also not penalized. Indeed, as long as A does not
cause the event BadQuery, the output of the experiment will be one with probability 1/2 in the case that
A outputs ⊥. Using this modeling approach we deal with the fact that A must not find a valid challenge
ciphertext index in order to avoid the BadQuery event. A side effect of our definition is that A1 can
output a guess (in form of ⊥) which often simplifies the description of adversaries.

3.3 Attack Scenarios and Additional Restrictions of Adversaries

Next, we specify to a certain extent the BadQuery event and the oracles for ATK ∈ {CPA,CCA1,CCA2}.
We use the syntax of P-KEM, since during the further analysis this primitive is mainly used. All results
in this subsection can be translated to PE for both SS and IND. We formally show which assumptions
about the behavior of adversaries can be made without loss of generality. Even though most of these
assumptions are folklore, the work of [5] showed that even in the context of PKE the real effects of certain
assumptions about adversarial behavior have sometimes been underestimated or even misunderstood.

Compared to PKE setting, in the case of predicate-based schemes one has to prevent so-called collusion
attacks. Intuitively, this means that a set of users should not be able to combine their secret keys in order
to decrypt a ciphertext, which none of the users can decrypt on its own. In the security experiments for
P-KEM respectively PE this is modeled by the key generation oracle KGen. This oracle takes as input
a key index kInd ∈ Xκ and returns a user secret key for kInd. We call kInd ∈ Xκ a corrupted key
index if A queried KGen (kInd). The key generation oracle is the only one available if chosen-plaintext
attacks (CPAs) are considered.

Under so-called adaptive chosen-ciphertext attack (CCA2) the adversary against a PE scheme addi-
tionally gets access to the decryption oracle Dec in both query phases whereas in the a priori chosen-
ciphertext attacks (CCA1) this oracle is available only for A1. The decryption oracle takes as input a
ciphertext CT ∈ CcInd ⊂ Cppκ and a key index kInd ∈ Xκ and returns the decryption of CT under a
secret key for kInd. In the context of P-KEM this oracle is called the decapsulation oracle and is denoted
by Decaps. The result of an oracle query is the error symbol ⊥ if the inputs to the oracle do not satisfy
the syntactical form as described above.

Through the BadQuery event we specify two additional restrictions on A. The first restriction is
folklore and states that the adversary is not allowed to corrupt key index kInd if Rκ (kInd, cInd∗) = 1. It
is important to notice that in the first query phase cInd∗ is not specified, but at the end of the experiment
the BadQuery event can be recognized as required. The second restriction which we consider here is for
CCA2 attack scenario and disallows decryption query on CT∗ in the second query phase.

The following lemma summarizes assumptions about the behavior of A which can be made w.l.o.g.
in the context of P-KEM. The formal proof is presented in Appendix C on page 30.

Lemma 3.1. Let ATK ∈ {CPA,CCA1,CCA2} and Π be a P-KEM scheme with public index for
predicate family RΩ,Σ. Π is ATK-secure if and only if every ppt adversary A ∈ AΠ,P-KEM which satisfy
the following conditions has negligible advantage under attack scenario ATK. Let ppκ be the public
parameter generated during the experiment. The conditions are as follows:

– The output of A1 is the error symbol ⊥ or a tuple (cInd∗,St) such that cInd∗ ∈ Yκ. The output of
A2 is a bit.

– All key indices kInd submitted by A1 and A2 satisfy kInd ∈ Xκ.
– For every CT submitted to the decapsulation oracle by A1 and A2 it holds CT ∈ CcInd ⊂ Cppκ .

Furthermore, the corresponding key index kInd satisfies Rκ (kInd, cInd) = 1.
– For every corrupted key index kInd (in both query phases) it holds Rκ (kInd, cInd∗) = 0.
– (Only for CCA2) A2 never submits CT∗ to the decapsulation oracle.

9

In the proof, given an arbitrary A ∈ AP-KEM we construct A′ ∈ AP-KEM which satisfies the conditions
in the lemma and achieves advantage of A. The main non-trivial step in the proof is to ensure that the
condition regarding key generation queries of A′1 is satisfied. Similar lemmas can also be proved for our
SS-security definition and for our IND-security definition when the first restriction on the form of the
output of A1 is adopted according to the definition of ASS and AIND, respectively.

Remark 3.1. The restrictions on adversarial queries can be extended as long as the adversary can verify
the corresponding conditions previous to the query by herself. The last restriction in Lemma 3.1 is a
good example for such a restriction whereas a similar restriction for A1 is not covered, since the challenge
ciphertext is not defined in the first query phase.

3.4 Relations Between SS-Security and IND-Security for PE

For identity-based encryption (IBE), a special case of PE, different security notions and attack scenarios
were considered in [2]. In turn, for more general functional encryption (FE) SS-definitions and IND-
definitions were previously analyzed under CPA in [19, 11, 6, 4]. In this subsection based on the presented
templates we discuss the relations between SS-security and IND-security in context of PE. We can prove
the following theorem similarly to the case of PKE and IBE. The formal proof is presented in Appendix A.

Theorem 3.1. Suppose ATK ∈ {CPA,CCA1,CCA2} and Π is a predicate encryption scheme with
public index. Then, Π is SS-ATK-secure if and only if it is IND-ATK-secure.

With this theorem one might think that the relation between semantic security and indistinguishability
are evident. But, as already mentioned at the beginning of this section, our SS-definition is really basic.
Indeed, there are several reasonable and at least syntactically stronger definitions of semantic security.
Let us first consider the probability experiments presented in Figure 3.

aSS-PEATK
Π,A (λ,des) : (msk,ppκ)← Setup

(
1λ,des

)
;(

cInd∗,
(
M̂, h

)
, St
)
← AOATK

1 (·)
1

(
1λ,ppκ

)
;

Output 0 if A1 outputs ⊥;

m̂← M̂
(
Upoly(λ)

)
; CT∗ ← Enc (cInd∗, m̂) ;

(f, ν)← AOATK
2 (·)

2 (CT∗, h (m̂) , St) ;

Output ν = f (m̂) ∧ BadQuery;

aSS-PE-SimΠ,A′ (λ,des) :((
M̂, h

)
, St
)
← A′1

(
1λ,des

)
;

Output 0 if A′1 outputs ⊥;

m̂← M̂
(
Upoly(λ)

)
;

(f, ν)← A′2 (h (m̂) , St) ;

Output ν = f (m̂) ;

Fig. 3. Adaptive semantic security experiments

In these experiments the function f is specified by adversary only at the end of the experiment. In
particular, this function might also depend on CT∗ as well as on the computations and on the queries of
A2. It seems like A has much more power in this experiment. We indeed have to weaken the restriction
on the simulator and allow the distributions of the triples (M̂, h, f) to be indistinguishable in both
experiments (cf. Definition B.1 in Appendix B). But then, we can prove the following theorem (see the
proof in Appendix B on page 27).

Theorem 3.2. For every ATK ∈ {CPA,CCA1,CCA2} a predicate encryption scheme is semantically
secure under attack scenario ATK if and only if it is adaptive semantically secure under attack scenario
ATK.

The adaptive semantic security definition is only a few (non-trivial) steps shy of so-called SS2-security
definition for FE presented in [6]. This definition is proved to be equivalent to the indistinguishability
definition even in the more general context of functional encryptions. The required extensions toward the
SS2-security are similar to the extensions for PKE and IBE and we refer to [12, 2] for extensive study of
these extensions.

Based on the results in [19, 11, 6, 4] for functional encryption we deduce that, as long as key-revealing
selective-opening attacks (SOA-Ks) are not considered, indistinguishability definition remains the most
suitable security definition in the context of PE.

10

4 Handling of User Secret Keys

Whereas in the context of conventional PKE there is only a single secret key in question, in predicate
encryption (PE) schemes there are many user secret keys generated from the same master secret key.
Actually, several users may hold (different) keys for the same key index. In the templates from the
previous sections we prescinded from details regarding this circumstance. The goal of this section is to
consider different possibilities to handle user secret keys in the security experiments. Indeed, we identify
three different formalizations regarding the user secret keys in the literature and name these as follows:
one-key model (OK-model), one-use model (OU-model), and covered key model (CK-model). The oracles
for these models under CCA2 attacks are presented in Table 1. The oracles for CPA and CCA1 are the
same with the usual restrictions.

OK OU CK
KGen (kInd): KGen (kInd): CKGen (kInd):

If (kInd, sk) ∈ Sk return sk; sk← KeyGen (msk, kInd); sk← KeyGen (msk, kInd);
sk← KeyGen (msk, kInd); Return sk; i++; Sk.add

(
(i, sk)

)
;

Sk.add
(
(kInd, sk)

)
; Decaps (CT, kInd): Open (i):

Return sk; sk := KGen (kInd) Return sk from (i, sk) ∈ Sk;
Decaps (CT, kInd): Return Decaps (sk,CT); Decaps (CT, i):

sk := KGen (kInd); Return Decaps (sk,CT),
Return Decaps (sk,CT); where (i, sk) ∈ Sk;

Sk contains all keys which have been generated by KGen / CKGen.

Table 1. Oracle specification for different models under CCA2 attacks.

In the OK-model the challenger generates and stores a unique secret key for kInd if this index is
submitted by A for the first time. This user secret key is used to answer all oracle queries related
to kInd. In particular, oracle query KGen(kInd) always results in the same key. The OK-model was
previously used e.g. in [9, 13, 24, 25]. In the OU-model the challenger generates a new secret key for
every query and the generated key will be used only once. This model was previously used e.g. in [10, 14].
In the CK-model the adversary specifies not only the key indices, but also the keys which have to be
used to answer the decryption queries, which is formalized using additional covered key generation oracle.
The CK-model intuitively reflects the reality, where users hold specific secret keys and use their keys for
decryption. Hence, adversaries realizing chosen ciphertext attacks might not only know the access rights
of the users (that is, the key indices of their keys), but could also exploit the fact that the same secret
key is used several times. In [7] the authors explicitly used the CK-model and adopted the dual system
encryption methodology [23] in order to deal with additional power of adversary due to the more specific
decryption oracles.

CK

OKOU

CK

OKOU

66

6

6

A barred arrow is a separation. A dashed arrow denotes obvious implication.

Fig. 4. Relation between different security models for PE and P-KEM under CCA1 and CCA2 attacks on the
left and under CPA attacks on the right.

In this section we prove that under CCA attacks the OK-model and the OU-model are weaker than
the CK-model (cf. Figure 4). We notice that using the CKGen oracle and the Open oracle we can
simulate the behavior of every adversary in the other two models. Hence, CK-security obviously implies
OK-security and OU-security. Furthermore, under CPA the CK-model and the OU-model are equivalent
due to the absence of the decryption oracle. The deduce the weakness of the OK-model under CPA from
the corresponding result under CCA. All mentioned results hold for PE as well as for P-KEM. We show

11

the separation results for P-KEM, since the constructions in the proofs are a bit more involved in this
context.

For convenience, we define sets AOK
P-KEM, AOU

P-KEM, ACK
P-KEM of adversaries which are as AP-KEM, but

the adversaries use the oracles as defined in the corresponding models. Obviously, the oracles in all three
models can be realized using the master secret key and the public parameters as required in Section 3.
Furthermore, P-KEMATK,mod

Π,A (λ, des) is an instantiation of P-KEMATK
Π,A (λ,des) with oracles as defined

in model mod.

Definition 4.1. Let mod ∈ {OK,OU,CK} and ATK ∈ {CPA,CCA1,CCA2}. A P-KEM Π with public
index for predicate family RΩ,Σ and a family of key spaces K is called secure in model mod under attack
ATK (also mod-ATK-secure) if for every des ∈ Ω and every ppt adversary A ∈ Amod

Π,P-KEM, the advantage

Adv-P-KEMATK,mod
Π,A (λ,des) := 2 · Pr

[
P-KEMATK,mod

Π,A (λ,des) = 1
]
− 1

with respect to des is negligible.

In the following subsections we usually write mod-secure instead of mod-ATK-secure, when the attack
scenario is obvious from the context.

4.1 OK-security does not imply OU-security and CK-security

In this subsection we construct an OK-secure scheme which is neither OU-secure nor CK-secure. We
start from an OK-secure scheme and assume existence of pseudorandom functions.

Let RΩ,Σ be an arbitrary predicate family, Π be a P-KEM for RΩ,Σ . Furthermore, let PRF be a
family of pseudorandom functions. The random choice of a pseudorandom function will be denoted by
f ← PRF for simplicity.

Theorem 4.1. Let ATK ∈ {CPA,CCA1,CCA2} be an attack scenario and PRF be a family of PRFs.
Suppose Π is an OK-ATK-secure P-KEM for predicate family RΩ,Σ and family of key spaces K. Then,
there exists an OK-ATK-secure P-KEM scheme Π′ for RΩ,Σ and K which is neither OU-ATK-secure
nor CK-ATK-secure.

Proof. Let Π = (Setup,KeyGen,Encaps,Decaps) and PRF be as defined in the theorem. Furthermore,
let 〈·〉 be any canonical representation of the master secret keys. W.l.o.g. we assume that for every des ∈ Ω
and every (msk,) ∈

[
Setup

(
1λ,des

)]
it holds |〈msk〉| = MKLen (λ) for some polynomial MKLen (·).

P-KEM Π′ =
(
Setup′,KeyGen′,Encaps′,Decaps′

)
is defined as follows:

– Setup′
(
1λ,des

)
: generate (msk,ppκ)← Setup

(
1λ,des

)
. Choose a pseudorandom function f ← PRF

and output msk′ := (msk, f) and ppκ.
– KeyGen′

(
msk′, kInd

)
for kInd ∈ Xκ and msk′ = (msk, f): generate skkInd ← KeyGen (msk, kInd),

choose a bit b← {0, 1}, set

rand :=

{
f (kInd) if b = 0

f (kInd)⊕ 〈msk〉 if b = 1 ,

and output sk′kInd := (skkInd, rand).
– Encaps′ (cInd) = Encaps (cInd).
– Decaps′

(
sk′kInd,CT

)
for sk′kInd = (skkInd, rand) returns Decaps (skkInd,CT).

Scheme Π′ is trivially broken in the OU-model and in the CK-model, where the adversary may get
several keys for the same key index and hence, learns the master secret key. At the same time Π′ is still
OK-secure, since the adversary receives for every kInd ether f (kInd) or f (kInd)⊕〈msk〉 and hence, due
to the property of the pseudorandom function the values rand are useless for A. To prove this formally
it is sufficient to consider an imaginary scheme where f is replaced by a truly random function. For such
a scheme it is clear that the additional values in the user secret keys are useless for adversary and the
scheme is OK-secure due to the security property of Π. Furthermore, no ppt adversary can distinguish
between this imaginary scheme and the scheme Π′, since otherwise there would be a ppt distinguisher
for PRF . ut

12

The construction in the proof reveals the weakness of the OK-model even though the scheme is
artificial. Namely, the OK-model does not cover the practice where several keys for the same key index
will exist. At least potentially, user secret keys for the same key index can leak more information about
the master secret key than user secret keys for different key indices. Hence, already under CPA the
OK-model makes unwarranted restrictions of adversarial abilities which might cause security issues.

4.2 OU-Security Does Not Imply OK-Security and CK-Security Under
Chosen-Ciphertext Aattack

In this subsection we consider only chosen-ciphertext attack and construct an OU-secure scheme which
is neither OK-secure nor CK-secure.

Theorem 4.2. Let ATK ∈ {CCA1,CCA2} be an attack scenario. Suppose Π is an OU-ATK-secure
P-KEM for predicate family RΩ,Σ and family of key spaces K. Then, there exists an OU-ATK-secure
P-KEM scheme Π′ for RΩ,Σ and K which is neither OK-ATK-secure nor CK-ATK-secure.

Proof. Let Kλ = {0, 1}KLen(λ)
. In the following construction of Π′ we first assume that for all λ,

all (msk,ppκ) ∈
[
Setup

(
1λ,des

)]
, all kInd ∈ Xκ and all sk ∈ [KeyGen (msk, kInd)] it holds |〈sk〉| =

KLen (λ), where 〈·〉 is any canonical representation of the user secret keys. This enhances the perspicuity
of the presented construction. Below, we explain how to drop this assumption.

P-KEM Π′ =
(
Setup′,KeyGen′,Encaps′,Decaps′

)
as follows:

– Setup′
(
1λ,des

)
= Setup

(
1λ,des

)
.

– KeyGen′ (msk, kInd): generate sk← KeyGen (msk, kInd), choose a bit string r ← {0, 1}|〈sk〉|, output
sk′ := (sk, r).

– Encaps′ (cInd): generate (CT,K)← Encaps (cInd) set CT′ = 00‖CT and output
(
CT′,K

)
.

– Decaps′
(
sk′,CT′

)
: parse CT′ = b1b2‖CT, where b1, b2 ∈ {0, 1} and sk′ = (sk, r). Output

K =

Decaps (sk,CT) if b1 = b2 = 0

r if b1 = 1 ∧ b2 = 0

r ⊕ 〈sk〉 if b1 = b2 = 1

⊥ otherwise

.

Π′ is OU-secure since using the decapsulation oracle the OU-adversary will be able to learn either r or
r ⊕ 〈sk〉 which on their own are useless. This is due to the fact that every key is used only once. In
the other two security models the adversary can get every user secret key using only two decapsulation
queries and can trivially break the scheme.

Now we explain how to drop our assumption from the beginning of the proof. Indeed, it is sufficient
to have a single key index kInd such that for all sk ∈ [KeyGen (msk, kInd)] it holds |〈sk〉| ≤ l (λ) for some
polynomial l(λ). In turn, this can be assumed w.l.o.g. If l(λ) > KLen (λ), we extend the encapsulation
by l = dlog (l(λ)/KLen(λ))e+ 2 bits such that the first bit encodes if the encapsulation is correct (b1 = 0)
or not (b1 = 1), the second bit encodes if r or r⊕ 〈skkInd〉 should be used, and the following bits encode
the number of the block which should be returned. That is, if b1 = 1, b2 = 1 and b3b4 . . . bl = t, the
output will be the t’s block of r⊕〈sk〉, where every block is of size KLen (λ). Then, using 2 · (l−1) many
queries one can get the key for kInd and break the scheme. ut

In the case of PE schemes with message space {0, 1}∗, we must not take care about the length of
〈skkInd〉 and can use the construction in the proof with two additional bits in the ciphertexts.

Even though the scheme Π′ from the proof is artificial, it shows the main weakness of the OU-model.
Namely, the model does not ensure that the decryption oracle does not leak partial information about the
used user secret key if queried with an ill-formed ciphertext. This kind of partial information is difficult
to exploit but might cause security issues.

4.3 Discussion

We discuss the results of this section with the security of known schemes in mind. As mentioned in the
introduction to this section most known PE schemes are proved secure in the OK-security model or in

13

the OU-security model. Hence, we examine the CK-CCA2-security of the above mentioned schemes and
summarize the results in Table 2.

Construction Type Used model CK-secure?
[9] IBE OK YES
[10] (H)IBE OU ?

[13] (explicit check) IB-KEM OK YES
[13] (implicit check) IB-KEM OK YES

[14] (scheme I) IBE OU YES
[14] (scheme II) IBE OU YES

[18] PE OU ?
[24] (from verifyability) ABE OK YES
[24] (from delegation) ABE OK ?

[25] PE OK YES

Table 2. CK-CCA2-security for PE schemes proved to be OU-CCA2-secure or OK-CCA2-secure.

In the case of IBE, the key index is the identity of the user and hence, it is often (implicitly) assumed
that for every key index there is a unique secret key. Furthermore, in the IBE scheme from [9] the keys
are unique by construction and hence, all three security notions are identical for this scheme. But usually
the IBE schemes do not have unique user secret keys (cf. [22, 13, 14]). The public verifiability of the
first scheme in [13] ensures that the output of the decryption algorithm executed with different secret
keys is the same, since ill-formed ciphertexts are explicitly rejected. The second scheme from [13] use
fresh randomness during the decryption and rejects ill-formed ciphertexts with overwhelming probability
independently of the used key. The schemes in [14] ensure that the ill-formed ciphertexts are rejected
with overwhelming probability due to the authenticated symmetric encryption. Furthermore, the generic
transformations from CPA to CCA2 secure schemes for attribute-based encryption (ABE) [24] and for
predicate encryption [25] require the existence of verification algorithms which ensure that the output of
the decryption algorithm is independent of the used secret key. For the remaining schemes from [10, 18, 24]
it is at least not trivial to argue from the original proofs if the CK-security notion is satisfied or not. We
leave this as an open question.

We notice that for most known PE schemes the correct form of the ciphertexts cannot be efficiently
checked. This is due to the dual system encryption methodology used to construct most known adaptively
secure PE schemes [23, 16, 17]. In the schemes from this technique there exist incorrectly formed
ciphertexts which are indistinguishable from correctly generated ciphertexts. Hence, one can not simply
reject ill-formed ciphertext in order to ensure CK-security.

Due to the results of this section regarding CCA2 security we encourage to use the CK-model in
order to specify the security guarantees of the schemes precisely. If the CPA attacks are considered we
recommend to use the simpler OU-model.

5 When and How to Restrict Challenge Decryption

In this section we consider possible restrictions of adversarial abilities regarding the decryption of
the challenge under adaptive chosen-ciphertext attacks CCA2. We formally analyze the corresponding
security notions in order to prevent mistakes and misunderstanding as previously made in the literature
in the context of PKE, as described in [5].

5.1 Valid Adversaries and Security Notions

Due to the results in Section 4, in this section we only consider the CK-model. Furthermore, we mainly
consider P-KEM and first of all redefine the set AP-KEM of valid adversaries according to the syntax of
CK-CCA2-model and using the results from Subsection 3.3.
A = (A1,A2) ∈ AP-KEM if and only if the following conditions are satisfied:

14

– Given public parameters ppκ the algorithm A1 outputs the error symbol ⊥ or a tuple (cInd∗,St)
such that cInd∗ ∈ Yκ. The output of A2 is a bit.

– A1 and A2 query the oracle CKGen only on kInd ∈ Xκ.

– A1 and A2 submit index i to oracles Open and Decaps only after the i’th query to the CKGen
oracle.

– For every (CT, i) submitted to the decapsulation oracle by A1 and A2 it holds CT ∈ CcInd ⊂ Cppκ
and Rκ (kInd, cInd) = 1, where kInd is the key index submitted during the i’th covered key generation
query.

– For every corrupted key index kInd it holds Rκ (kInd, cInd∗) = 0.

We dropped the last restriction of Lemma 3.1. The restriction regarding the decapsulation query on the
challenge encapsulation will be considered separately in this section.

Let us shortly recall four different security notions for PKE identified and formalized in [5]. According
to this work there are two dimensions in the definition of CCA2-security regarding the restrictions of
adversaries to query the decryption of the challenge ciphertext. The first dimension specifies the style of
the restrictions or rather how queries are disallowed. The authors differentiate between the penalty style
definitions (denoted by P) and the exclusion style definition (denoted by E). So far we have used the
former style in this work. That is, an adversary which violates restrictions of the security experiment is
penalized at the end of the experiment. In the exclusion style definitions the set of adversaries is restricted
from the beginning such that for every considered adversary the probability that the restrictions are
violated is zero. Furthermore, we can disallow the adversary to query the decryption of the challenge
ciphertext only in the second query phase (denoted by S) or in both query phases (denoted by B). That
is either A2 is not allowed to query the decryption of CT∗, or A1 and A2 are not allowed to make such
a query. As result, we have four different security notions denoted by SP, SE, BP, and BE.

SP

SE

BP

BE

6

6

smooth

smooth
6

The continuous arrows denote implications and the barred arrows denote separations. The dashed
arrows denote trivial implications.

Fig. 5. Relation between different security models for predicate encryptions.

For PE we can prove the same relations between mentioned notions as for PKE (cf. Figure 5), which
is not surprising and was stated without a proof in [5] for IBE schemes. The proof ideas are the same as
for PKE even though some extensions are required.

In the context of conventional KEM two additional notions have been considered in [5]. Namely, the
first query phase can be completely dropped mainly due to the fact that the adversary cannot influence
the generated challenge. This results in two additional security notions denoted by OP and OE, where
”O” stays for ”One phase”. Indeed, for conventional KEM all six security notions were proved to be
equivalent [5].

P-KEM substantially differ from conventional KEM, since the adversary might be able to influence
the ciphertext index. We indeed prove that the corresponding security notions are not all equal due
to this property. First of all, because of the key generation oracle we consider two additional security
notions, where the adversary has access to this oracle in both phases, but the decapsulation oracle is
available only in the second query phase. The corresponding penalty style security notion is denoted by
OdP and the exclusion style notion is be denoted by OdE. Here ”Od” stays for ”One decapsulation”
phase.

15

SP

SE

BP

BE

OdP

OdE

OP

OE

66

The continuous arrows denote implications and the barred arrows denote separations. The dashed
arrows denote trivial implications.

Fig. 6. Relation between different security notions for P-KEM.

We prove that the OdE and the OdP security notions are weaker than the BE security notion (cf.
Figure 6). The one-phase security notions OE and OP are even weaker. We also prove that the other four
security notions (SP, SE, BP, and BE) are equivalent for P-KEM. Nevertheless, the reductions are not
all tight and we advice against both BP and BE security models. The main difference between KEM and
P-KEM is in the fact that whereas security of conventional KEM implies smoothness [5], this is not the
case for P-KEM. Rather, BE-security implies that every ppt algorithm has only a negligible advantage in
finding a ciphertext index with only few possible encapsulations, which we call a weak ciphertext index.

In order to formalize the exclusion style definitions we define restricted sets of adversaries. Furthermore,
we keep a uniform security experiment and formalize the required restrictions in the first query phase
by appropriate restrictions of the adversaries. Let S1 and S2 be the sets of encapsulations submitted to
the decapsulation oracle by A1 and by A2, respectively. Furthermore, let SK1 be the set of key indices
corrupted by A1. For every security model mod ∈ {SP,BP,OdP,OP,SE,BE,OdE,OE} we define a set
of adversaries denoted by Amod

P-KEM. Namely, for every adversary A ∈ AP-KEM we define:

A ∈ ASE
P-KEM iff Pr [CT∗ /∈ S2] = 1 , A ∈ ABE

P-KEM iff Pr [CT∗ /∈ S1 ∪ S2] = 1 ,

A ∈ AOdP
P-KEM iff Pr [S1 = ∅] = 1 , A ∈ AOdE

P-KEM iff Pr [S1 = ∅ ∧ CT∗ /∈ S2] = 1 ,

A ∈ AOP
P-KEM iff Pr [SK1 = ∅ ∧ S1 = ∅] = 1 , and

A ∈ AOE
P-KEM iff Pr [SK1 = ∅ ∧ S1 = ∅ ∧ CT∗ /∈ S2] = 1 .

Furthermore, we define ASP
P-KEM = ABP

P-KEM = AP-KEM.
The exclusion/penalty style of the definitions only refer to the restriction regarding the decapsulation

queries on the challenge encapsulation. The additional restrictions regarding the first query phase are all
in exclusion style. This is only due to our goal of uniform templates. Alternatively we could define extra
probability experiments with restricted first query phase or without the first query phase at all.

5.2 CCA2-Security Template for P-KEM

Let mod ∈ {SP,BP,OdP,OP,SE,BE,OdE,OE}, RΩ,Σ be a predicate family, K = {Kλ}λ∈N be a family

of key spaces, and Π be a P-KEM for RΩ,Σ and K. CCA2-security experiment P-KEMCCA2,mod
Π,A (λ,des)

is defined in Figure 7.
The oracles are as defined in Table 1 except for decapsulation oracle which additionally stores all

queried ciphertexts in S1 or in S2 in the first phase or in the second phase, respectively.

Definition 5.1. Let Π be a P-KEM with public index for predicate family RΩ,Σ and
mod ∈ {SP,BP,OdP,OP,SE,BE,OdE,OE} be a security model. Π is called secure under adaptive
chosen ciphertext attacks in model mod (or mod-secure) if for every des ∈ Ω the advantage of
A ∈ Amod

P-KEM with respect to des, defined by

Adv-P-KEMCCA2,mod
Π,A (λ,des) := 2 · Pr

[
P-KEMCCA2,mod

Π,A (λ, des) = 1
]
− 1

is negligible.

16

P-KEMCCA2,mod
Π,A (λ,des) :

b← {0, 1} ;S1, S2, Sck, Sk ← ∅; (msk,ppκ)← Setup
(
1λ,des

)
;

(cInd∗, St)← ACKGen(·),Open(·),Decaps1(·,·)
1

(
1λ,ppκ

)
;

Output b if the output of A1 is ⊥;

(K0,CT∗)← Enc (ppκ, cInd∗) ; K1 ← Kλ; K∗ := Kb;

b′ ← ACKGen(·),Open(·),Decaps2(·,·)
2 (K∗,CT∗, St) ;

Output :

SE,BE,OdE,OE : return b′ = b;

SP,OdP,OP : return b′ = b ∧ (CT∗ /∈ S2) ;

BP : return b′ = b ∧ (CT∗ /∈ S1 ∪ S2) .

Fig. 7. CCA2-security experiment for different security notions of P-KEM.

5.3 Separation Results and Implication Results

In this subsection we prove the implication results and the separation results mentioned in Figure 6. It
is easy to check that the four top down and the six rightwards relations hold mainly by the definition of
the experiments and by the definitions of the corresponding sets of adversaries. The three implications
between the exclusion and the corresponding penalty notions are covered by Remark 3.1 from Subsec-
tion 3.3.

OE-security does not imply OdE-security. In this subsection we show that OE-security notion
is weaker then the OdE-security notion. The difference between the OE-security notion and the OdE-
security notion is in the first query phase. Whereas in the OE-model this phase does not exist at all, in
the OdE-model the adversary is allowed to corrupt user secret keys. To prove the stated separation, we
present a counterexample based on a natural predicate family, which point up the weakness of the one
phase notions for P-KEMs.

Consider a predicate family R for equality predicate with Xκ = Yκ = {0, 1}n and n = λ, that is
Rκ (kInd, cInd) = 1 if and only if kInd = cInd. Notice that equality predicate corresponds to the identity-
based schemes. Let F be a family of injective functions, Adv-InvertF,I (λ) be the advantage of algorithm

I in computing the preimage of y defined through by f ← F
(
1λ
)
, x ← {0, 1}λ, y := f(x). F is called

one-way if Adv-InvertF,I (λ) is negligible for all ppt I.

Theorem 5.1. Suppose F is a family of injective one-way functions and Π is an OE-secure P-KEM for
predicate family R and a family of key spaces K. Then, there exists a P-KEM Π′ for R and K which is
not OdE-secure but is OE-secure. In particular, for every des ∈ Ω and every ppt A ∈ AOE

Π′,P-KEM there

is a ppt B ∈ AOE
Π,P-KEM and a ppt inverter I such that it holds

Adv-P-KEMCCA2,OE
Π′,A (λ, des) ≤ Adv-P-KEMCCA2,OE

Π,B (λ, des) + Adv-InvertF,I (λ) .

Proof. Let Π = (Setup,KeyGen,Encaps,Decaps) and K = {Kλ}λ∈N.

Π′ =
(
Setup′,KeyGen′,Encaps′,Decaps′

)
as follows:

Setup′
(
1λ,des

)
: Generate (ppκ,msk) ← Setup

(
1λ,des

)
. Choose f ← F

(
1λ
)
, cIndw ← {0, 1}n, and

compute Y := f (cIndw). Choose Kw ← Kλ, set pp′κ := (ppκ, f,Kw, Y), and msk′ = (msk, cIndw).
Output

(
pp′κ,msk′

)
.

KeyGen′
(
pp′κ,msk′, kInd

)
for pp′κ = (ppκ, fi,Kw, Y), and msk′ = (msk, cIndw) : Generate a secret key

sk← KeyGen (ppκ,msk, kInd) and output sk′ := (sk, cIndw).
Encaps′ (pp′κ, cInd) for pp′κ := (ppκ, f,Kw, Y) : If f (cInd) = Y output key Kw and encapsulation CT′ =

0‖
(
cInd, 1λ

)
. Otherwise compute (K,CT) ← Encaps

(
ppp,n, cInd

)
, set CT′ := 1‖CT and output(

K,CT′
)
.

17

Decaps′
(
pp′κ,CT′, sk′

)
for pp′κ := (ppκ, f,Kw, Y), CT′ = c‖CT, and sk′ = (sk, cIndw) : Output Kw if

CT′ = 0‖
(
cIndw, 1

λ
)
. If c = 0, output ⊥. Otherwise output Decaps (ppκ, sk,CT).

Obviously, Π′ is not OdE-secure since every secret key reveals cIndw and the challenge for this weak
ciphertext index can be easily solved.

Next we argue that Π′ is OE-secure. Intuitively, the adversary in this model cannot exploit the
modification of the scheme, since it has to commit to the challenge ciphertext index without querying
the key generation oracle. Formally, from every A = (A1,A2) ∈ AOE

Π′,P-KEM we construct B = (B1,B2) ∈
AOE

Π,P-KEM which simulates A and exploits its success probability except for the case that A1 outputs
cInd∗ = cIndw. In turn, we can construct an inverter I for F , which given the challenge (f, y) (where

f ← F
(
1λ
)
, x← {0, 1}λ, y:=f(x)) simulates A using f and Y := y, and exploits the event cInd∗ = cIndw

which corresponds to the event f(cInd∗) = y. ut

OdE-security does not imply BE-security. By definition of adversaries it holds AOdE
P-KEM ⊂ ABE

P-KEM.
The adversaries in AOdE

P-KEM have the additional restriction that they do not make decapsulation queries

in the first query phase. Consider a predicate family R for prefix predicates with Xκ = Yκ = {0, 1}≤n,
where n = 2 ·λ, that is Rκ (kInd, cInd) = 1 if and only if kInd is a prefix of cInd. Note that CCA2-secure
P-KEM for R can be realized from hierarchical IBE [16].

Theorem 5.2. Suppose F is a family of injective one-way functions and Π is an OdE-secure P-KEM
for predicate family R and a family of key spaces K. Then, there exists a P-KEM Π′ for R and K which
is not BE-secure but is OdE-secure. In particular, for every des ∈ Ω and every ppt A ∈ AOdE

Π′,P-KEM there

exist ppt adversaries B,B′ ∈ AOdE
Π,P-KEM and a ppt inverter I such that

Adv-P-KEMCCA2,OdE
Π′,A (λ,des) ≤ Adv-P-KEMCCA2,OdE

Π,B (λ, des) + Adv-InvertF,I (λ)

+2 · λ ·Adv-P-KEMCCA2,OdE
Π,B′ (λ, des) .

Proof. Let Π = (Setup,KeyGen,Encaps,Decaps). Assume w.l.o.g. that K = {Kλ}λ∈N, Kλ = {0, 1}λ and
that the encapsulations under cInd are of the form (cInd, ct).

Π′ =
(
Setup′,KeyGen′,Encaps′,Decaps′

)
as follows:

Setup′
(
1λ,des

)
: Choose (ppκ,msk) ← Setup

(
1λ,des

)
, r = (r1, . . . , rλ) ← {0, 1}λ. Set cIndw := 1λ‖r

and for all i ∈ [λ] denote kIndi = cIndi = 1i. For every i ∈ [λ] generate (CTi,Ki)← Encaps
(
1λ, cIndi

)
until the i’th bit of Ki is equal ri. Choose Kw ← Kλ, f ← F , and compute Y := f (r). Output msk
and pp′κ := (ppκ, f,Kw, Y,CT1, . . . ,CTλ).

KeyGen′ (pp′κ,msk, kInd) : Output sk← KeyGen (ppκ,msk, kInd).

Encaps′ (pp′κ, cInd) : If cInd = 1λ‖r′ and f (r′) = Y output Kw and CT′ = 1‖
(
cInd, 1λ

)
. Otherwise

compute (K,CT)← Encaps (ppκ, cInd) and output K and CT′ := 0‖CT.

Decaps′
(
pp′κ,CT′, sk

)
: Parse CT′ = b‖ (cInd, ct). Output Kw if b = 1, ct = 1λ, cInd = 1λ‖r′, and

f (r′) = Y . If b = 1 output ⊥. Otherwise output Decaps (ppκ, (cInd, ct) , sk).

Obviously Π′ is not BE-secure, since cIndw can be revealed using decapsulation oracle on CTi’s. The
idea of the presented construction is as follows. In order to decapsulate just one CTi ∈ pp′κ in the first
query phase, an OdE-adversary needs a key for any prefix of cIndλ. If A queries the corresponding key,
it cannot use the weak ciphertext index cIndw = 1λ‖r for the challenge anymore.

Next we give a sketch of the proof that Π′ is OdE-secure. Formally, from every ppt A = (A1,A2) ∈
AOdE

Π′,P-KEM we construct B = (B1,B2) ∈ AOdE
Π,P-KEM which extends the public parameters, simulates A and

exploits its success probability except for the case that A1 outputs cInd∗ = cIndw. Then, we prove that
the probability for cInd∗ = cIndw is negligible. Namely, we construct an inverter I for F , which given
the challenge (f, y) generates the public parameters and thereby computes all CTi by Encaps

(
1λ, cIndi

)
.

I wins if A outputs cInd∗ = cIndw = 1λ‖r′, f (r′) = y. The last step is to prove that the probability
for cInd∗ = cIndw in the real experiment and in the experiment with public parameters as generated
by I is the same except for negligible probability. For this last step it is sufficient to consider hybrid
distributions, one for the modification of a single CTi which results in the reduction algorithm B′. ut

18

BE-security implies SE-security. Next we prove that BE-security implies SE-security for P-KEMs.
Even though we are able to prove this result, the corresponding reduction is not tight even for smooth
schemes. Namely, the security guaranties linearly decrease in the number of decapsulation oracles of
adversary in the first query phase. Contrary, the corresponding reduction for conventional KEMs from [5]
is tight for smooth schemes.

The difference between SE-security and BE-security is in the definition of ASE
P-KEM and ABE

P-KEM,
since the experiments are completely equal. By definition, for every A ∈ AP-KEM it holds A ∈ ASE

P-KEM if
and only if Pr [CT∗ ∈ S2] = 0, and A ∈ ABE

P-KEM if and only if Pr [CT∗ ∈ S1 ∪ S2] = 0. Every adversary
against the scheme in SE-model with non-negligible advantage achieves a non-negligible advantage also
in BE model as long as p = Pr [CT∗ ∈ S1] = 0. The main difficulty in the proof is to deal with adversaries
with p > 0. The idea is to guess the number of the decapsulation query, where the challenge index cInd∗

(or rather CT ∈ CcInd∗) is used for the first time.

Theorem 5.3. Suppose Π is a BE-secure P-KEM for predicate family RΩ,Σ. Then, Π is SE-secure. In
particular, for every A = (A1,A2) ∈ ASE

P-KEM and every des ∈ Ω there exist A′,A′′ ∈ ABE
P-KEM such that

Adv-P-KEMCCA2,SE
Π,A (λ, des) ≤ (l + 1) ·Adv-P-KEMCCA2,BE

Π,A′ (λ,des)

+l ·
√

2 · (l + 1) ·Adv-P-KEMCCA2,BE
Π,A′′ (λ, des) ,

where l = l (λ, des) is the upper bound for the maximum number of decapsulation queries of A1 in

P-KEMCCA2,SE
Π,A (λ,des). For smooth Π it holds

Adv-P-KEMCCA2,SE
Π,A (λ, des) ≤ (l + 1) ·Adv-P-KEMCCA2,BE

Π,A′ (λ, des) + l · SmthΠ (λ,des) .

Proof. Let A = (A1,A2) ∈ ASE
P-KEM and des ∈ Ω are arbitrary, but fixed. Let l = l (λ, des) be the upper

bound for the number of decapsulation queries of A1 in P-KEMCCA2,SE
Π,A (λ, des). W.l.o.g. we can assume

that A1 makes exactly l decapsulation queries in this experiment.1 Let us first estimate the advantage
of A according to the event CT∗ ∈ S1, which we denote by BD:

Adv-P-KEMCCA2,SE
Π,A (λ, des) ≤

(
2 · Pr

[
P-KEMCCA2,SE

Π,A (λ,des) = 1 ∧ BD
]
− Pr

[
BD
])

+ Pr [BD] . (1)

For smooth schemes we can immediately estimate the probability for the event BD by union bound,
since it holds Pr [BD] ≤ l ·SmthΠ (λ,des). But, whereas secure conventional KEMs are smooth as proved
in [5], we can not prove this for P-KEMs. What we prove is that for every A ∈ ASE

P-KEM the probability
Pr [BD] is negligible due to the BE-security of Π.

Let us first prove that the first summand in (1) is negligible. We construct an adversary A′ =
(A′1,A′2) ∈ ABE

P-KEM which exploits the success probability of A ∈ ASE
P-KEM in the case that the event

BD does not occur in P-KEMCCA2,SE
Π,A (λ, des). We have to ensure that the probability that A′ (and

especially A′1) submits CT∗ to the decapsulation oracle is equal zero. Whereas in the second query
phase this is trivial, the main difficulty is to prevent such a query in the first query phase, where the
challenge ciphertext index cInd∗ is not known. The main observation is that the probability for the event
CT∗ ∈ S1 is equal zero if and only if A1 does not query the decapsulation oracle on correctly generated
encapsulations under cInd∗. Hence, A′1 will avoid to submit CT ∈ CcInd∗ and this way we ensure the
required property.

In order to prevent the event CT∗ ∈ S1 in the first query phase, A′ guesses by j ← [l + 1] the step
where A1 will use the challenge index cInd∗ for the first time. This can be a decapsulation query (j ∈ [l])
or the challenge ciphertext index itself (j = l + 1). Let us assume at this point, that j was correctly
guessed and j ∈ [l]. That is, the ciphertext index cIndj of the submitted ciphertext CTj is equal to the
challenge ciphertext index and has not been used before. When the j’th decapsulation query is asked
by A, then A′ will directly ask for the challenge on cIndj and after that it will proceed to simulate A1.
If the guess was correct, A′ receives CT∗ already in the j’th query and can avoid decapsulation queries
on CT ∈ CcInd∗ in the first query phase. Furthermore, if j was guessed correctly, A can be perfectly

1 This can not be assumed if A1 outputs ⊥ without querying the decapsulation oracle, but this event will be
not relevant for the analysis.

19

simulated as long as it does not cause BD event. In turn, if j was guessed incorrectly, A′ will output
⊥ and hence, also avoid the BD event. Hence, the advantage of A′ compared to the advantage of A
decreases only due to the BD event CT∗ ∈ S1 in P-KEMCCA2,SE

Π,A (λ, des) and by factor 1/l+1 due to the
guess. We can prove that it holds

Adv-P-KEMCCA2,BE
Π,A′ (λ,des) ≥ 1

l + 1
·
(

Adv-P-KEMCCA2,SE
Π,A (λ,des)− Pr [BD]

)
.

For smooth schemes we immediately get the statement in the theorem. For the general case we
construct A′′ = (A′′1 ,A′′2) ∈ ABE

P-KEM which exploits the event BD in P-KEMCCA2,SE
Π,A (λ,des). Again we

use similar ideas in order to ensure that A′′ never queries the decapsulation of CT∗ in the first query
phase. But there is an additional challenge. Namely, A′′ can not directly exploit the BD event CT∗ ∈ S1

in order to break the challenge, since the corresponding encapsulated key is not given in the query.
Rather, the main observation is that if this event occurs with non-negligible probability, we know that
the probability Pr(K,CT)←Encaps(ppκ,cInd∗) [CT = CT∗] is non-negligible for the given ciphertext index

cInd∗. Hence, A′′ just generates an additional encapsulation
(
K′,CT′

)
and then solves the challenge

given the correct encapsulated key K′ for CT∗ if CT′ = CT∗. Note, that A′′ will not even use A2. We
can prove that it holds

Adv-P-KEMCCA2,BE
Π,A′′ (λ, des) ≥ 1

2 · (l + 1) · l2
· (Pr [BD])

2
.

From this we finally deduce the statement of the theorem. ut

We deduce that the security notions SP, SE, BP, and BE are equivalent for P-KEMs. But the
reductions are not all tight due to the security guarantees in Theorem 5.3. In particular, the reductions
for BE ⇒ SE and BE ⇒ BP are not tight even for smooth schemes. For the implication BP ⇒ SP a
tight reduction can be presented for smooth schemes, mainly due to the fact that we do not have to
avoid the BD event as in the proof of Theorem 5.3. To the best of our knowledge all practical predicate
encryption schemes are smooth and hence, we could also use the BP-model for these schemes. But since
the probability for the event CT∗ ∈ S1 can always be estimated by l · SmthΠ (λ,des), we do not really
get any advantage from this model.

References

[1] Attrapadung, N.: Dual system encryption via doubly selective security: Framework, fully secure functional
encryption for regular languages, and more. In: Advances in Cryptology - EUROCRYPT 2014. LNCS, vol.
8441, pp. 557–577. Springer (2014)

[2] Attrapadung, N., Cui, Y., Galindo, D., Hanaoka, G., Hasuo, I., Imai, H., Matsuura, K., Yang, P., Zhang,
R.: Relations among notions of security for identity based encryption schemes. In: LATIN 2006: Theoretical
Informatics. LNCS, vol. 3887, pp. 130–141. Springer (2006)

[3] Attrapadung, N., Imai, H.: Dual-policy attribute based encryption: Simultaneous access control with
ciphertext and key policies. IEICE Transactions 93-A(1), 116–125 (2010)

[4] Barbosa, M., Farshim, P.: On the semantic security of functional encryption schemes. In: Public-Key
Cryptography - PKC 2013. LNCS, vol. 7778, pp. 143–161. Springer (2013)

[5] Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the definition of IND-CCA: when and how should challenge
decryption be disallowed? Journal of Cryptology 28(1), 29–48 (2015)

[6] Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility results, impossibility results
and the quest for a general definition. In: Cryptology and Network Security - CANS 2013. Lecture Notes in
Computer Science, vol. 8257, pp. 218–234. Springer (2013)

[7] Blömer, J., Liske, G.: Construction of fully cca-secure predicate encryptions from pair encoding schemes.
In: Topics in Cryptology - CT-RSA 2016. LNCS, vol. 9610, pp. 431–447. Springer (2016)

[8] Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption.
SIAM Journal on Computing 36(5), 1301–1328 (2007)

[9] Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM J. Comput. 32(3), 586–615
(2003)

[10] Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption schemes. In: Advances in
Cryptology - ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470. Springer (2008)

20

[11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges. In: Theory of
Cryptography - 8th Theory of Cryptography Conference, TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer
(2011)

[12] Goldreich, O.: The Foundations of Cryptography - Volume II, Basic Applications. Cambridge University
Press (2004)

[13] Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encapsulation without random
oracles. Theoretical Computer Science 410(47-49), 5093–5111 (2009)

[14] Kiltz, E., Vahlis, Y.: CCA2 secure IBE: standard model efficiency through authenticated symmetric
encryption. In: Topics in Cryptology - CT-RSA 2008. LNCS, vol. 4964, pp. 221–238. Springer (2008)

[15] Koblitz, N., Menezes, A.: Another look at security definitions. Advances in Mathematics of Communications
(AMC) 7(1), 1–38 (2013)

[16] Lewko, A.B., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short
ciphertexts. In: Theory of Cryptography, 7th Theory of Cryptography Conference, TCC 2010. LNCS, vol.
5978, pp. 455–479. Springer (2010)

[17] Lewko, A.B., Waters, B.: New proof methods for attribute-based encryption: Achieving full security through
selective techniques. In: Advances in Cryptology - CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer
(2012)

[18] Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional
linear assumption. In: Advances in Cryptology - CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer
(2010)

[19] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010),
https://eprint.iacr.org/2010/556

[20] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Advances in Cryptology - EUROCRYPT 2005.
LNCS, vol. 3494, pp. 457–473. Springer (2005), full

[21] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in Cryptology, Proceedings
of CRYPTO ’84. LNCS, vol. 196, pp. 47–53. Springer (1984)

[22] Waters, B.: Efficient identity-based encryption without random oracles. In: Advances in Cryptology -
EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer (2005)

[23] Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In:
Advances in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer (2009)

[24] Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions for chosen-ciphertext secure
attribute based encryption. In: Public Key Cryptography - PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer
(2011)

[25] Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro, N.: Verifiable predicate
encryption and applications to CCA security and anonymous predicate authentication. In: Public Key
Cryptography - PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer (2012)

21

https://eprint.iacr.org/2010/556

A Equivalence of SS and IND for PE

In order to prevent additional work regarding the ability of the adversary to abort in the first query
phase let us consider here how it influence the advantage of the adversary. These results will be used in
the following proofs.

Let us consider an arbitrary but fixed adversary A = (A1,A2) ∈ ASS which satisfies the conditions
of the conditions of Lemma 3.1 adopted to PE and SS-definition. Let des ∈ Ω be arbitrary but fixed.
We denote by E the event that A1 outputs ⊥ in the experiment SS-PEATK

Π,A (λ,des). Furthermore, let

pdes (λ) be the probability for the event E in this experiment, that is pdes (λ) = Pr
[
E
]

= 1 − Pr [E] . A
never cause the event BadQuery and hence, for every simulator A′ = (A′1,A′2) of A with respect to des
the challenge templates are identically distributed in SS-PEATK

Π,A (λ, des) and SS-PE-SimΠ,A′ (λ,des). In
particular, the probability that A′1 outputs ⊥ (event E′) is equal to 1 − pdes (λ). Since A as well as A′
loose in their experiments if the event E respectively E′ occur, it holds

Adv-SS-PEATK
Π,A,A′ (λ, des)

by def.
= Pr

[
SS-PEATK

Π,A (λ, des) = 1
]
− Pr [SS-PE-SimΠ,A′ (λ,des) = 1]

= pdes (λ) ·
(

Pr
[
SS-PEATK

Π,A (λ, des) = 1
∣∣ E
]

−Pr
[
SS-PE-SimΠ,A′ (λ,des) = 1

∣∣ E′
])
. (2)

By the analysis of adversarial advantage, if pdes (λ) is negligible, the second factor does not matter or
rather such an adversary, which outputs ⊥ with all except negligible probability, can be ignored. Contrary,
if pdes (λ) is not negligible, it will be sufficient to consider the success probability of A conditioned on
the fact that A1 did not output ⊥.

Let us also consider the advantage of an arbitrary adversary A = (A1, A2) ∈ AIND
Π which satisfies the

conditions of Lemma 3.1 adopted to PE and SS-definition. By E we denote the event that A1 outputs
⊥ in the experiment IND-PEATK

Π,A (λ,des). Furthermore, let pdes (λ) be the probability for the event E in

this experiment, that is pdes (λ) = Pr
[
E
]

= 1−Pr [E] . Then, it holds by the definition of the experiment:

Adv-IND-PEATK
Π,A (λ, des)

by def.
= 2 · Pr

[
IND-PEATK

Π,A (λ,des) = 1
]
− 1

= 2 ·
(

1

2
· Pr[E] + Pr

[
IND-PEATK

Π,A (λ,des) = 1 ∧ E
])
− 1

= 2 · Pr
[
IND-PEATK

Π,A (λ,des) = 1
∣∣ E
]
· Pr

[
E
]
− (1− Pr[E])

= pdes (λ) ·
(
2 · Pr

[
IND-PEATK

Π,A (λ, des) = 1
∣∣ E
]
− 1
)

= pdes (λ) ·
(

Pr
[
IND-PEATK

Π,A (λ, des) = 1
∣∣ E ∧ b = 0

]
+ Pr

[
IND-PEATK

Π,A (λ, des) = 1
∣∣ E ∧ b = 1

]
− 1
)

= pdes (λ) ·
(

Pr
[
b′ = 0

∣∣ E ∧ b = 0
]

+ Pr
[
b′ = 1

∣∣ E ∧ b = 1
]
− 1
)
, (3)

where in the penultimate equation we used the fact the the choice of b and the event E are independent.
All except the last equation hold also if A cause the event BadQuery. In particular, the second equation
holds due to the fact that the event BadQuery cannot be caused if A1 outputs ⊥.

A.1 Indistinguishability implies semantic security

The following lemma shows that it is sufficient to prove the indistinguishability of encryptions in order
to prove semantic security of the scheme.

Lemma A.1. Suppose Π is a predicate encryption scheme for a predicate family RΩ,Σ which is IND-ATK-
secure, where ATK ∈ {CPA,CCA1,CCA2}. Then, Π is SS-ATK-secure. In particular, for every ppt

22

adversary A ∈ ASS there exists a ppt simulator A′ for A and a ppt adversary B ∈ AIND such that for
every des ∈ Ω, λ ∈ N it holds

Adv-IND-PEATK
Π,B (λ,des) ≥ Adv-SS-PEATK

Π,A,A′ (λ,des) .

Proof. Note that the statement in the lemma is even stronger than required by the definition of semantic
security, since A′ will not depend on des.

Define a modification SS-PE-ModATK
Π,A (λ,des) of the experiment SS-PEATK

Π,A (λ,des), where CT∗ is

computed by Enc
(
ppκ, cInd∗, 1|m̂|

)
instead of Enc (ppκ, cInd∗, m̂). It is important to notice that the

experiments are identical until the generation of the challenge ciphertext.

Let A = (A1,A2) ∈ ASS be an arbitrary but fixed adversary against Π which does not cause the
BadQuery. In order to prove the statement of the lemma it is sufficient to show that the advantage of A
is negligible (due to Lemma 3.1 adopted to PE and SS-definition). Note that even though A never cause
the event BadQuery in SS-PEATK

Π,A (λ,des), the probability Pr [BadQuery] in the modified experiment

SS-PE-ModATK
Π,A (λ,des) is not necessarily zero. The same holds also for the other conditions defined in

Lemma 3.1. Nevertheless, due to the special modification of the experiment SS-PE-ModATK
Π,A (λ,des) all

these properties hold for A1. This will be explicitly used in our construction of B ∈ AIND below.

Let additionally des ∈ Ω, λ ∈ N be arbitrary, but fixed. First, we construct a simulation algorithm
A′ = (A′1,A′2) which uses A as a subroutine. Note, that simulator A′2 does not receive the encryption
of m̂ and hence, cannot simulate A2 as in SS-PEATK

Π,A (λ,des). But A′2 can properly simulate the view of

A in SS-PE-ModATK
Π,A (λ, des). Intuitively, due to the indistinguishability of ciphertexts A can not notice

the difference. This will be formally proved in the second part of the proof.

A′1
(
1λ,des

)
:

– Generate (msk,ppκ)← Setup
(
1λ,des

)
.

– Compute
(

cInd∗,
(
M̂, h, f

)
, St
)
← AO1(ppκ,msk,·)

1

(
1λ,ppκ

)
.

– Output ⊥ if A1 outputs ⊥.

– Set St′ := (St,msk,ppκ, cInd∗) and output
(

cInd∗,
(
M̂, h, f

)
, St′

)
.

A′2
(
1|m̂|, h (m̂) , St′

)
with St′ = (St,msk,ppκ, cInd∗):

– Generate CT′ ← Enc
(
ppκ, cInd∗, 1|m̂|

)
.

– Compute ν ← AO2(ppκ,msk,·)
2

(
CT′, |m̂| , h (m̂) , St

)
and output the output of A2.

The distribution of the challenge template generated by A′1 is as required in the Definition 3.1,

since A′1 uses correctly generated (msk,ppκ) and A1 in order to generate
(
M̂, h, f

)
. Hence, A′ is a

simulator of A. Furthermore, by construction of A′ the view of A in this experiment is the same as in
the experiment SS-PE-ModATK

Π,A (λ,des). Hence, if A wins in SS-PE-ModATK
Π,A (λ, des), then A′ wins in

SS-PE-SimΠ,A′ (λ,des). The opposite direction does not necessarily hold, since A might get a penalty
(caused by A2) whereas A′ could still win in this case. We deduce that it holds

Pr [SS-PE-SimΠ,A′ (λ, des) = 1] ≥ Pr
[
SS-PE-ModATK

Π,A (λ,des) = 1
]
. (4)

Now we are ready to construct an adversary B = (B1,B2) ∈ AIND for the indistinguishability
experiment IND-PEATK

Π,B (λ,des) and to relate its success probability to Adv-SS-PEATK
Π,A,A′ (λ, des):

23

BO1(ppκ,msk,·)
1

(
1λ,ppκ

)
:

– Compute
(

cInd∗,
(
M̂, h, f

)
, St
)
← AO1(ppκ,msk,·)

1

(
1λ,ppκ

)
using own oracles in order to answer

the queries of A1. Output ⊥ if the output of A1 is ⊥.
– Choose m̂← M̂

(
Upoly(λ)

)
, set m0 := 1|m̂| and m1 := m̂. Set St′ := (St, |m̂| , h (m̂) , f (m̂)).

– Output (cInd∗,m0,m1, St
′).

B
O2(ppκ,msk,·)
2 (CT∗, St′) with St′ =

(
St, n, ĥ, f̂

)
:

– Simulate ν ← AO2(ppκ,msk,·)
2

(
CT∗, n, ĥ, St

)
using own oracles in order to answer the queries of A2.

Thereby abort the simulation of A2 and output b′ = 0 if A2 cause the event BadQuery.
– Output b′ = 1 if ν = f̂ . Otherwise output 0.

By construction it obviously holds B ∈ AIND. B (in particular B1) redirects all queries of A and does not
make additional queries. Furthermore, in the first query phase B1 perfectly simulates the view of A1 in
the experiment SS-PEATK

Π,A (λ,des) (respectively in the experiment SS-PE-ModATK
Π,A (λ,des)). Hence, B1

never cause the event BadQuery. In turn, B2 explicitly prevents the event BadQuery. We deduce that B
never cause a penalty and wins if b′ = b.

Let E be the event that an adversary outputs ⊥ after the first query phase of the corresponding
experiment (we will make the adversary explicit in the subindex). Furthermore, let pdes (λ) = Pr

[
EB
]

=

Pr
[
EA
]
. Let b be the challenge bit of B. We will analyze the view of A2 and the success probability of

B for both values of b conditioned on the event EB.

– EB∧b = 0: It holds CT∗ = Enc
(
ppκ, cInd∗, 1|m̂|

)
, where m̂← M̂

(
Upoly(λ)

)
. Hence, the view of A2 is

as in the experiment SS-PE-ModATK
Π,A (λ,des). In particular, A2 might still cause the event BadQuery.

In this case B2 outputs b′ = 0 without causing the penalty and wins. We deduce

Pr
[
b′ = 0

∣∣ EB ∧ b = 0
] (∗)

= Pr
[
BadQuery

∣∣ EA
]

+ Pr
[
ν 6= f (m̂) ∧ BadQuery

∣∣ EA
]

= 1− Pr
[
ν = f (m̂) ∧ BadQuery

∣∣ EA
]

= 1− 1

pdes (λ)
· Pr

[
ν = f (m̂) ∧ BadQuery ∧ EA

]
by def.

= 1− 1

pdes (λ)
· Pr

[
SS-PE-ModATK

Π,A (λ,des) = 1
]

4
≥ 1− 1

pdes (λ)
· Pr [SS-PE-SimΠ,A′ (λ,des) = 1] ,

where in (∗) we switch from probability distribution defined by IND-PEATK
Π,B (λ, des) to the probability

distribution defined by SS-PE-ModATK
Π,A (λ,des).

– EB ∧ b = 1: It holds CT∗ = Enc (ppκ, cInd∗, m̂), where m̂ ← M̂
(
Upoly(λ)

)
. Hence, the view of A2

is as in the experiment SS-PEATK
Π,A (λ,des). In particular, A2 never cause the event BadQuery. We

deduce

Pr
[
b′ = 1

∣∣ EB ∧ b = 1
] (∗)

= Pr
[
ν = f (m̂)

∣∣ EA
]

=
1

pdes (λ)
· Pr

[
ν = f (m̂) ∧ EA

]
by def.

=
1

pdes (λ)
· Pr

[
SS-PEATK

Π,A (λ,des) = 1
]
,

where in (∗) we switch from probability distribution defined by IND-PEATK
Π,B (λ, des) to the probability

definition defined by SS-PEATK
Π,A (λ, des).

24

B does not cause the event BadQuery and hence, the advantage of B is as follows

Adv-IND-PEATK
Π,B (λ, des)

(3)
= pdes (λ) ·

(
Pr
[
b′ = 0

∣∣ E ∧ b = 0
]

+ Pr
[
b′ = 1

∣∣ E ∧ b = 1
]
− 1
)

≥ Pr
[
SS-PEATK

Π,A (λ,des) = 1
]
− Pr [SS-PE-SimΠ,A′ (λ,des) = 1]

by def.
= Adv-SS-PEATK

Π,A,A′ (λ,des) .

But for every B ∈ AIND and every des ∈ Ω the advantage Adv-IND-PEATK
Π,B (λ,des) is negligible due

to the IND-ATK-security of Π.

Due to this lemma, in order to prove that a predicate encryption scheme is semantically secure it is
sufficient to prove that this scheme has indistinguishable encryptions.

A.2 Semantic security implies indistinguishability of encryptions

The following lemma shows that the notion of indistinguishable encryptions is not to strong.

Lemma A.2. Let ATK ∈ {CPA,CCA1,CCA2} and Π be a predicate encryption scheme for predicate
family RΩ,Σ which is SS-ATK-secure. Then, Π is IND-ATK-secure. In particular, for every ppt adversary
A ∈ AIND there exists a ppt adversary B ∈ ASS such that for every des ∈ Ω and every ppt simulator B′
of B with respect to des it holds

2 ·Adv-SS-PEATK
Π,B,B′ (λ, des) ≥ Adv-IND-PEATK

Π,A (λ, des) .

Proof. Let λ ∈ N, des ∈ Ω, ATK ∈ {CPA,CCA1,CCA2}, and A = (A1,A2) ∈ AIND be arbitrary but
fixed such that A satisfies the restrictions defined in Lemma 3.1 (adopted to PE). In particular, A never
cause the event BadQuery.

We construct B = (B1,B2) ∈ ASS which exploits the advantage of A as follows:

BO1(ppκ,msk,·)
1

(
1λ,ppκ

)
:

– Simulate (cInd∗,m0,m1, St)← AO1(ppκ,msk,·)
1

(
1λ,ppκ

)
using the own oracles in order to answer the

queries of A1.
– Output ⊥ if the output of A1 is ⊥.
– Set M̂ to a circuit corresponding to the uniform distribution on {m0,m1}, set h to an arbitrary

function such that h (m0) = h (m1), and set f to an arbitrary function such that f (m0) = 0 and
f (m1) = 1.a

– Output
(

cInd∗,
(
M̂, h, f

)
, St
)

.

BO2(ppκ,msk,·)
2 (CT∗, |m̂| , h (m̂) , St):

– Simulate b′ ← AO2(ppκ,msk,·)
2 (CT∗, St) using the own oracles in order to answer the queries of A1.

– Output ν := b′.

a For simplicity we assumed w.l.o.g. that m0 6= m1. If m0 = m1, A cannot have any advantage and B1 can
output ⊥.

B ∈ ASS by construction. Furthermore, the view of A is as defined in
IND-PEATK

Π,A (λ,des). In particular, A1 receives correctly generated public parameters and all queries
of A1 are correctly answered. In turn, A2 receives the encryption of m0 or the encryption of m1, both
with probability 1/2 and all queries of A2 are also correctly answered. Hence, B never cause the event
BadQuery since A never cause the corresponding event. Consider an arbitrary simulator B′ = (B′1,B′2)
of B with respect to an arbitrary but fixed des ∈ Ω. Due to the requirement on B′ the distribution of(
M̂, h, f

)
generated by B′1 must be the same as above in the experiment with B.

25

By construction, B1 outputs ⊥ if and only ifA1 outputs ⊥ and B′1 outputs ⊥ with the same probability
by definition. Let E be the event that an adversary (or a simulator) outputs ⊥ after the first query phase
(we will make the adversary explicit in the subindex). Furthermore, let pdes (λ) = Pr

[
EB
]

= Pr
[
EB′
]

=

Pr
[
EA
]
. Due to h (m0) = h (m1) and |m0| = |m1| the input of B′2 is independent of m̂ and it holds

Pr
[
SS-PE-SimΠ,B′ (λ, des) = 1

∣∣ EB′
]

=
1

2
,

since M̂ is the uniform distribution on {m0,m1}, f (m0) = 0, and f (m1) = 1.
Consider the sucess probability of B. By construction it holds

Pr
[
SS-PEATK

Π,B (λ, des) = 1
∣∣ EB

]
= Pr

[
m̂ = m0 ∧ b′ = f (m̂)

∣∣ EB
]

+ Pr
[
m̂ = m1 ∧ b′ = f (m̂)

∣∣ EB
]

= Pr
[
b′ = f (m̂)

∣∣ EB ∧ m̂ = m0

]
· Pr

[
m̂ = m0

∣∣ EB
]

+ Pr
[
b′ = f (m̂)

∣∣ EB ∧ m̂ = m1

]
· Pr

[
m̂ = m1

∣∣ EB
]

f
=

1

2
·
(

Pr
[
b′ = 0

∣∣ EB ∧ b = 0
]

+ Pr
[
b′ = 1

∣∣ EB ∧ b = 1
])

(3)
=

1

2 · pdes (λ)
·Adv-IND-PEATK

Π,B (λ,des) +
1

2
.

We deduce that for every simulator B′ of B with respect to des it holds (we explicitly use the fact
that Pr [BadQuery] = 0 in SS-PEATK

Π,B (λ, des)):

2 ·Adv-SS-PEATK
Π,B,B′ (λ, des)

(2)
= 2 · pdes (λ) ·

(
Pr
[
SS-PEATK

Π,B (λ, des) = 1
∣∣ EB

]
−Pr

[
SS-PE-SimΠ,B′ (λ,des) = 1

∣∣ EB′
])

= Adv-IND-PEATK
Π,B (λ, des) .

Using this result we argue by contradiction. Assume that Π is not IND-ATK-secure. That is, there

exists d̂es ∈ Ω and a ppt adversary Â =
(
Â1, Â2

)
∈ AIND which satisfies the restrictions defined

in Corollary 3.1 such that the advantage Adv-IND-PEATK
Π,Â

(
λ, d̂es

)
is non-negligible. Then, B̂ ∈ ASS

constructed as above from Â has non-negligible advantage under attack scenario ATK. In particular, for

every simulator B̂′ of B̂ with respect to d̂es it holds

Adv-SS-PEATK
Π,B̂,B̂′

(
λ, d̂es

)
≥ 1

2
·Adv-IND-PEATK

Π,Â

(
λ, d̂es

)
.

Hence, Adv-SS-PEATK
Π,B̂,B̂′

(
λ, d̂es

)
is non-negligible and this finally proves the lemma. ut

B Adaptive Semantic Security Template

Definition B.1. Let ATK ∈ {CPA,CCA1,CCA2}. A PE scheme Π for predicate family RΩ,Σ is called
(adaptively) semantically secure under attack scenario ATK (also aSS-ATK-secure) if for every
des ∈ Ω and for every ppt algorithm A ∈ AaSS there exists a ppt algorithm A′ = (A′1,A′2) such that it
holds:

1. It holds Pr [A′1 outputs ⊥] = Pr [A1 outputs ⊥] and the distributions of triples
(
M̂, h, f

)
in

aSS-PEATK
Π,A (λ,des) and in aSS-PE-SimΠ,A′ (λ,des) are computationally indistinguishable.

2. The advantage of A defined by

Adv-aSS-PEATK
Π,A,A′ (λ, des) := Pr

[
aSS-PEATK

Π,A (λ, des) = 1
]
− Pr [aSS-PE-SimΠ,A′ (λ,des) = 1]

is a negligible (in λ) function.

26

Proof. (Proof of Theorem 3.2) The adaptive semantic security trivially implies the semantic security,
since every adversary in the adaptive security experiment can easily be adopted to a valid adversary for
the semantic security experiment and would have the same success probability. The target function f
can be just passed from A1 to A2 using St. The other direction will be formally proven next.

Let ATK ∈ {CPA,CCA1,CCA2} be arbitrary. Assume that there exists a predicate encryption
scheme Π which is SS-ATK-secure, but is not adaptively SS-ATK-secure. From the latter we deduce that

there exists an adversary Â ∈ AaSS with non-negligible advantage. Hence, there exists d̂es ∈ Ω such that

for every simulator Â′ of Â with respect to d̂es the advantage Adv-aSS-PEATK
Π,Â,Â′

(
λ, d̂es

)
is not-negligible.

Given such an Â, we construct an adversary A ∈ ASS with non-negligible advantage. In particular, A will

be such that for every simulator A′ of A with respect to d̂es the advantage Adv-SS-PEATK
Π,A,A′

(
λ, d̂es

)
is

non-negligible.

Let Â and d̂es be as described above. Let E be the event that Â1 outputs ⊥ and p
d̂es

(λ) = Pr
[
E
]

be the probability of E in SS-PEATK
Π,Â

(
λ, d̂es

)
. We deduce that p

d̂es
(λ) is non-negligible, which will be

later used in the proof. First of all, consider the following simulator Â′ of Â with respect to d̂es:

Â′1
(

1λ, d̂es
)

:

– Compute (msk,ppκ)← Setup
(

1λ, d̂es
)

.

– Simulate
(

cInd∗,
(
M̂, h

)
, St
)
← ÂO1(ppκ,msk,·)

1

(
1λ,ppκ

)
using (msk,ppκ).

– Output ⊥ if A1 outputs ⊥.

– Set St′ := (St,msk,ppκ, cInd∗) and output
(

cInd∗,
(
M̂, h

)
, St′

)
.

Â′2
(
1|m̂|, h (m̂) , St′

)
with St′ = (St,msk,ppκ, cInd∗):

– Compute CT′ := Enc
(
ppκ, cInd∗, 1|m̂|

)
.

– Simulate (f, ν)← ÂO2(ppκ,msk,·)
2

(
CT′, |m̂| , h (m̂) , St

)
using (msk,ppκ).

– Output the output of Â2.

We have to show that Â′ is indeed a simulator of Â with respect to d̂es. By construction Â′1 outputs

⊥ if and only if Â′ outputs ⊥. It remains to show that
(
M̂, h, f

)
in the real experiment with Â is

indistinguishable from
(
M̂, h, f

)
in the simulated experiment with Â′. It is important to note that the

distribution of the first two elements is identical in both experiments, since Â′ simulates Â perfectly using
correctly generated public parameter and the master secret key. Furthermore, Â′2 simulates Â using CT′

generated by Enc
(
ppκ, cInd∗, 1|m̂|

)
instead of CT∗ = Enc (ppκ, cInd∗, m̂).

Assume that there is a ppt distinguisher D for the triples
(
M̂, h, f

)
generated in the real experiment

aSS-PEATK
Π,Â

(
λ, d̂es

)
and in the experiment aSS-PE-SimΠ,Â′

(
λ, d̂es

)
. More specifically, let ε (λ) be the

non-negligible advantage of D: 2

ε (λ) := Pr
[
D
(
M̂, h, f

)
= 1

∣∣∣ EÂ ∧ CT∗ = Enc
(

ppκ, cInd∗, 1|m̂|
)]

−Pr
[
D
(
M̂, h, f

)
= 1

∣∣∣ EÂ ∧ CT∗ = Enc (ppκ, cInd∗, m̂)
]
.

We will show that this contradicts the security guaranties of Π. Namely, we construct an adversary B ∈
ASS with non-negligible advantage under the assumption that ε (λ) is non-negligible. B = (B1,B2) ∈ ASS

is as follows:

2 If −ε(λ) is non-negligible, just invert the output of D in the contraction of B.

27

BO1(ppκ,msk,·)
1

(
1λ,ppκ

)
:

– Simulate
(

cInd∗,
(
M̂, h

)
, St
)
← ÂO1(ppκ,msk,·)

1

(
1λ,ppκ

)
using own oracles.

– Output ⊥ if the output of Â1 is ⊥.
– Choose m̂ ← M̂, set m0 := m̂ and m1 := 1|m̂|. Construct a circuit M̂′ which corresponds to the

uniform distribution on {m0,m1}. Compute ĥ := h (m̂). Choose an arbitrary h′ such that h′ (m0) =

h′ (m1). Choose an arbitrary f ′ such that f ′ (m0) = 0 and f ′ (m1) = 1.a Set St′ :=
(
St,M̂, h, ĥ

)
and output

(
cInd∗,

(
M̂′, f ′, h′

)
, St′

)
.

BO2(ppκ,msk,·)
2 (CT∗, |m̂′| , h (m̂′) , St′) with St′ =

(
St,M̂, h, ĥ

)
.

– Simulate (f, ν)← ÂO2(ppκ,msk,·)
2

(
CT∗, |m̂′| , ĥ, St

)
using the own oracles.b

– Simulate D on input
(
M̂, h, f

)
and output the output of D.

a We assume w.l.o.g. that m0 6= m1, which implies m̂ 6= 1|m̂|. In the case m̂ = 1|m̂| we could set f ′ := h′ and
output the correct value. No simulator can do better in this case. At the same time both distributions in
question are the same in this case.

b W.l.o.g. we assume that Â2 does not cause the BadQuery, since this can happen only in the case m1 is
encrypted and B an directly win. In the proof of Lemma A.1 we already considered similar case formally.

By construction of B the view of any simulator B′ = (B′1,B′2) of B with respect to d̂es is independent
of the challenge message and hence, it holds

Pr
[
SS-PE-SimΠ,B′

(
λ, d̂es

)
= 1

∣∣∣ EB′
]

=
1

2
.

Now, let us consider the success probability of B:

Pr
[
SS-PEATK

Π,B

(
λ, d̂es

)
= 1

∣∣∣ EB

]
= Pr

[
m̂′ = m1 ∧ D

(
M̂, h, f

)
= f ′ (m̂′)

∣∣∣ EB

]
+ Pr

[
m̂′ = m0 ∧ D

(
M̂, h, f

)
= f ′ (m̂′)

∣∣∣ EB

]
M̂′,f ′

=
1

2
·
(

Pr
[
D
(
M̂, h, f

)
= 1

∣∣∣ E′ ∧ m̂′ = 1|m̂|
]

+ Pr
[
D
(
M̂, h, f

)
= 0

∣∣∣ E′ ∧ m̂′ = m̂
])

=
1

2
·
(

Pr
[
D
(
M̂, h, f

)
= 1

∣∣∣ E′ ∧ m̂′ = 1|m̂|
]

1− Pr
[
D
(
M̂, h, f

)
= 1

∣∣∣ E′ ∧ m̂′ = m̂
])

=
1

2
+

1

2
· ε (λ) .

By construction it holds Pr
[
EB
]

= Pr
[
EB
]

= Pr
[
EÂ
]

= p
d̂es

(λ). Hence, all together we get

Adv-SS-PEATK
Π,B,B′ (λ,des)

(2)
= p

d̂es
(λ) ·

(
Pr
[
SS-PEATK

Π,B (λ,des) = 1
∣∣ EB

]
−Pr

[
SS-PE-SimΠ,B′ (λ, des) = 1

∣∣ EB′
])

=
1

2
· p

d̂es
(λ) · ε (λ) ,

where p
d̂es

(λ) and ε (λ) are non-negligible, which contradicts the SS-ATK-security of Π. We deduce that

Â′ is a simulator of Â with respect to d̂es, which finalize the first part of the proof. Hence, by our

assumption the advantage Adv-aSS-PEATK
Π,Â,Â′

(
λ, d̂es

)
is not negligible.

28

Next, we construct A = (A1,A2) ∈ ASS such that for every simulator A′ of A with respect to d̂es

the advantage Adv-SS-PEATK
Π,A,A′

(
λ, d̂es

)
is not negligible. A is as follows:

AO1(ppκ,msk,·)
1

(
1λ,ppκ

)
:

– Simulate
(

cInd∗,
(
M̂, h

)
, St
)
← ÂO1(ppκ,msk,·)

1

(
1λ,ppκ

)
using own oracles.

– Output ⊥ if the output of Â1 is ⊥.
– Choose m̂ ← M̂, set m0 := m̂ and m1 := 1|m̂|. Construct a circuit M̂′ which corresponds

to the uniform distribution on {m0,m1}. Choose an arbitrary h′ such that h′ (m0) = h′ (m1).

Choose an arbitrary f ′ such that f ′ (m0) = 0 and f ′ (m1) = 1.a Compute ĥ := h (m̂), set

St′ :=
(
St, ĥ, m̂

)
and output

(
cInd∗,

(
M̂′, f ′, h′

)
, St′

)
.

AO2(ppκ,msk,·)
2 (CT∗, |m̂′| , h (m̂′) , St′) with St′ =

(
St, ĥ, m̂

)
– Simulate (f, ν)← ÂO2(ppκ,msk,·)

2

(
CT∗, |m̂′| , ĥ, St

)
using own oracles.

– Output b′ := 0 if f (m̂) = ν and b′ := 1 otherwise.

a For simplicity we ignore the case m0 = m1, where Â cannot have any advantage. In this case A1 just
sets f (m0) = f (m1) = 0 and A2 outputs 0. Hence, no simulator of A can do better in this case.

It is easy to verify that A ∈ ASS. By construction, also for every simulator A′ of A with respect to d̂es
it holds

Pr
[
SS-PE-SimΠ,A′

(
λ, d̂es

)
= 1

∣∣∣ EA′
]

=
1

2
.

Consider the success probability of A. Let EA be the event that A1 outputs ⊥, which implies Pr
[
EA
]

=
p

d̂es
(λ). Analogously to the previous analyzes it holds

Pr
[
SS-PEATK

Π,A

(
λ, d̂es

)
= 1

∣∣∣ EA

]
= Pr

[
m̂′ = m0 ∧ b′ = f ′ (m̂′)

∣∣ EA
]

+ Pr
[
m̂′ = m1 ∧ b′ = f ′ (m̂′)

∣∣ EA
]

f,M̂
=

1

2
·
(
Pr
[
b′ = 0

∣∣ m̂′ = m0 ∧ EA
]

+ Pr
[
b′ = 1

∣∣ m̂′ = m1 ∧ EA
])

=
1

2
·
(

Pr
[
f (m̂) = ν

∣∣ CT∗ = Enc (ppκ, cInd∗, m̂) ∧ EA
]

+1− Pr
[
f (m̂) = ν

∣∣∣ CT∗ = Enc
(

ppκ, cInd∗, 1|m̂|
)
∧ EA

])
(∗)
=

1

2
+

1

2
·
(

Pr
[
aSS-PEATK

Π,Â

(
λ, d̂es

)
= 1

∣∣∣ EÂ

]
−Pr

[
aSS-PE-SimΠ,Â′

(
λ, d̂es

)
= 1

∣∣∣ EÂ′
])

=
1

2
+

1

2 · p
d̂es

(λ)
·Adv-aSS-PEATK

Π,Â,Â′

(
λ, d̂es

)
,

where in equation (∗) we switch from the probability distribution defines by SS-PEATK
Π,A

(
λ, d̂es

)
to the

probability distribution defined by aSS-PEATK
Π,Â

(
λ, d̂es

)
conditioned on different computations of the

challenge ciphertext CT∗. The last equation can be proved similarly to (2).

All together, for every simulator A′ of A with respect to d̂es it holds:

Adv-SS-PEATK
Π,A,A′

(
λ, d̂es

)
(2)
= p

d̂es
(λ) ·

(
Pr
[
SS-PEATK

Π,A

(
λ, d̂es

)
= 1

∣∣∣ EA

]
−Pr

[
SS-PE-SimΠ,A′

(
λ, d̂es

)
= 1

∣∣∣ EA′
])

=
1

2
·Adv-aSS-PEATK

Π,Â,Â′

(
λ, d̂es

)
29

This contradicts our precondition, that the advantage of A is negligible. Hence, the statement of the
theorem holds. ut

C Further proofs

Proof. (Proof of Lemma 3.1) Let Π, ATK be as in the lemma and B ∈ AP-KEM be arbitrary. We construct
an adversary A = (A1,A2) ∈ AP-KEM which simulates B, has the same advantage but never cause the
event BadQuery. A is as follows:

AO1(ppκ,msk,·)
1

(
1λ,ppκ

)
:

Simulate (cInd∗, St) ← BO1(ppκ,msk,·)
1

(
1λ,ppκ

)
using own oracles in order to answer the queries of B1.

Store all corrupted key indices in the set Sck. Furthermore, answer the queries with respect to the
following rules:

– Return ⊥ without querying the own oracle if the input of the queries in not syntactically correct:
• kInd submitted to the key generation oracle must satisfy kInd ∈ Xκ.
• CT submitted to the decapsulation oracle must satisfy CT ∈ Cppκ . That is, there must be

cInd ∈ Yκ such that CT ∈ CcInd.
• If CT ∈ CcInd is submitted to the decapsulation oracle, the key index kInd related to this query

must satisfy Rκ (kInd, cInd) = 1.
• Any further syntactical restrictions which can be efficiently verified.

Output ⊥ if the output of B1 is ⊥.
Output ⊥ if there is kInd ∈ Sck such that Rκ (kInd, cInd∗) = 1. Otherwise output (cInd∗, St).

AO2(ppκ,msk,·)
2 (K∗,CT∗, St)

Simulate b′ ← BO2(ppκ,msk,·)
2 (K∗,CT∗, St) using the own oracles in order to answer the queries of B2

with respect to the following rules:

– If the input of the queries in not syntactically correct perform as A1.
– If B2 queries the key generation oracle for kInd ∈ Xκ such that Rκ (kInd, cInd∗) = 1 abort the

simulation and output a guess b′ ← {0, 1}.
– (Only for ATK = CCA2) If B2 queries the decryption of CT∗ (and the key index kInd specified for

this query satisfies Rκ (kInd, cInd∗) = 1 a) abort the simulation and output a guess b′ ← {0, 1}.

Output b′.

a Already ensured by syntactical checks.

By construction it holds A ∈ AP-KEM, all queries of A are syntactically correct, and for every des ∈ Ω it
holds Pr [BadQuery] = 0 in P-KEMATK

Π,A (λ,des). Note that A correctly answers all queries of B, since it
returns ⊥ as answer to the queries if and only if the inputs are syntactically incorrect and the algorithms
would return the same output. Next we will analyze the advantage of A.

Let BD be the event in the experiment P-KEMATK
Π,A (λ, des) that A1 outputs ⊥ due to the illegal

challenge index or A2 aborts the simulation of B2 and outputs a guess. By construction, event BD occurs
if and only if B cause the event BadQuery in the corresponding experiment P-KEMATK

Π,B (λ,des). Hence,

30

it holds

Adv-P-KEMATK
Π,A (λ,des)

by def.
= 2 · Pr

[
P-KEMATK

Π,A (λ,des) = 1
]
− 1

= 2 ·
(

Pr
[
P-KEMATK

Π,A (λ,des) = 1 ∧ BD
]

+ Pr
[
P-KEMATK

Π,A (λ,des) = 1 ∧ BD
])
− 1

(∗)
≥ 2 ·

(
Pr
[
P-KEMATK

Π,B (λ, des) = 1 ∧ BadQuery
]

+ 0
)
− 1

= 2 · Pr
[
P-KEMATK

Π,B (λ,des) = 1
]
− 1

by def.
= Adv-P-KEMATK

Π,B (λ,des) ,

where in the inequality (∗) we ignore the success probability in the case of BD. Furthermore, the event
BD occurs if and only if the event BadQuery occurs and for all des ∈ Ω the view of B is as defined in
the experiment P-KEMATK

Π,B (λ,des) if A does not abort the simulation. The penultimate equation holds

since P-KEMATK
Π,B (λ, des) = 1 implies that the event BadQuery does not occur. ut

31

	Subtleties in Security Definition for Predicate Encryption with Public Index
	Introduction
	Main Contribution

	Preliminaries
	Notation
	PE With Public Index
	P-KEM With Public Index

	SS and IND for PE
	Semantic Security Template
	Indistinguishability Templates for PE and P-KEM
	Attack Scenarios and Additional Restrictions of Adversaries
	Relations Between SS-Security and IND-Security for PE

	Handling of User Secret Keys
	Weakness of the OK-security
	Weakness of the OU-security
	Discussion

	When and How to Restrict Challenge Decryption
	Valid Adversaries and Security Notions
	CCA2-Security Template for P-KEM
	Separation Results and Implication Results
	OE does not imply OdE.
	OdE does not imply BE.
	BE implies SE.

	Equivalence of SS and IND for PE
	IND implies SS
	SS implies IND

	Adaptive Semantic Security Template
	Further proofs

