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Abstract

This paper presents a unified framework that supports different
types of privacy-preserving search queries over encrypted cloud data.
In the framework, users can perform any of the multi-keyword search,
range search and k-nearest neighbor search operations in a privacy-
preserving manner. All three types of queries are transformed into
predicate-based search leveraging bucketization, locality sensitive hash-
ing and homomorphic encryption techniques. The proposed framework
is implemented using Hadoop MapReduce, and its efficiency and accu-
racy are evaluated using publicly available real data sets. The imple-
mentation results show that the proposed framework can effectively be
used in moderate sized data sets and it is scalable for much larger data
sets provided that the number of computers in the Hadoop cluster is
increased. To the best of our knowledge, the proposed framework is
the first privacy-preserving solution, in which three different types of
search queries are effectively applied over encrypted data.
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1 Introduction

Recently, the need for reliably storing and efficiently processing massive
amount of data experienced a sudden surge. The required computing and
storage infrastructure to deal with the problem, however, is prohibitively
expensive, thus most probably non-existent altogether for most small and
medium-sized enterprises (SMEs). Even for large corporations, technical
competency for the challenging task of big data management is often lacking
or at least a matter of investment outside the core business area. Data
outsourcing in the form of cloud computing is, therefore, a viable solution
to relieve enterprises of the associated burdens.

Nevertheless, outsourced data often contains sensitive information, which
can result in privacy violations [1, 2]. Performing any operation over the
outsourced data in a secure and privacy-preserving manner, not only re-
quires the encryption of data, but also of queries submitted to the cloud,
operated by a third party.

While data encryption prior to outsourcing ensures the confidentiality
of data content, the classical encryption methods do not allow even sim-
ple operations over the ciphertext. For instance, searching over the en-
crypted data for documents containing a particular set of keywords (multi-
keyword search), finding similar documents to a given document (similarity
search), or accessing a set of database elements that fall in a range in the
n-dimensional space of attributes (range queries), which are very common
queries, cannot be supported unless novel techniques, which enable these
operations, are developed.

In recent years, several solutions have been proposed that are based on
a searchable index structure which, succinctly represents the data without
revealing the sensitive information. However, all existing work in the liter-
ature propose techniques that target a single type of search operation over
the encrypted data. On the other hand, supporting different types of search
operations is especially important for data sets composed of different data
types (e.g., numeric, currency, name, date) as it increases data utilization.

Data and query confidentiality and hiding access patterns often rely
on prohibitively expensive techniques in terms of computation complexity,
which hinder their adoption in real applications. Thus, the efficiency of pro-
posed solutions is a fundamental necessity. Also, another important concern
is effectiveness, which evaluates the success rate of a method for matching
relevant data items with a given query.

In this paper, to address all the expressed and implied concerns, we pro-
pose a novel, secure and searchable index generation framework that can
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be utilized for three main query types, namely multi-keyword, k-nearest
neighbor and range search operations. The proposed framework utilizes lo-
cality sensitive hashing (LSH) and homomorphic encryption for searchable
index structure to achieve the privacy of user queries and applies symmet-
ric encryption for data confidentiality mainly against the owner/operator of
cloud storage. In the adopted index generation method, numeric data is rep-
resented by a set of terms and handled in the same manner as are keywords.
Therefore, the same secure index structure is used for both range searches
over numerical data and equality and similarity searches over text data. To
the best of our knowledge, the proposed approach is the only solution, which
enables efficient and effective applications of all three search operations over
encrypted data within the same framework in a privacy-preserving manner.

The rest of this work is organized as follows. The related work in the
literature is summarized in Section 2. Section 3 illustrates the proposed
framework. Preliminary definitions are provided in Section 4. The security
model used is defined in Section 5. Section 6 provides the construction of the
privacy preserving search methods. Security analysis are given in Section 7.
Section 8 presents the experimental results and Section 9 concludes the
paper.

2 Related Work

Searchable encryption is a generic methodology that allows secure and privacy-
preserving search over encrypted data. Many searchable encryption meth-
ods are proposed over the recent years in the literature [3, 4, 5, 6, 7, 8].
Curtmola et al. provide strong security definitions to formalize the secu-
rity requirements of searchable encryption methods incorporating adaptive
adversaries [9].

Bilinear pairings are proposed for keyword-based search over encrypted
data [4, 5]. However, their computational costs are prohibitively high for
practical applications in many circumstances. In [3], an encrypted inverted
index structure is utilized to represent sensitive data. However, as user in-
teraction is required during the search process, the practicality of the system
is limited. Orencik and Savas [10] propose a multi-keyword search scheme
that maps sensitive information to constant length binary arrays using hash
functions. The method incorporates a limited ranking capability. Cao et
al. [6] propose a multi-keyword search scheme that encodes sensitive data
into two binary matrices with randomization techniques and uses inner prod-
uct similarity during matching. Another multi-keyword search method that
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returns the matching data items in a ranked ordered manner using sub-
linear search time is proposed by Strizhov and Ray [7]. The authors of
this paper previously proposed a multi-keyword search method with rank-
ing capability [8]. While that work only focused on multi-keyword search,
the current work addresses a unified framework that supports a variety of
different privacy-preserving search operations.

The problem of secure k-Nearest Neighbor (k-NN) or secure similar doc-
ument detection aims to find top k most similar documents in an out-
sourced database to a given document or a relatively small set of docu-
ments without revealing document and query contents. Wong et al. [11]
formalize security and execution requirements for secure k-NN search and
propose a method called SCONEDB (Secure Computation ON Encrypted
Data Base). The method utilizes a scheme referred as the asymmetric scalar-
product-preserving encryption (ASPE) scheme, in which the query points
and database points are encrypted in a different manner. While the encryp-
tion scheme ensures that the distances between data points are not recov-
erable in encrypted domain, the scalar product of a data point and a query
point can be computed using their ciphertexts. Yao et al. [12] investigate
the secure nearest neighbor problem and rephrased its definition. Instead
of finding the exact nearest neighbor in the encrypted domain directly, the
proposed method returns a partition of the encrypted data set, which is
guaranteed to contain the exact nearest neighbor. Elmehdwi et al. [13] also
consider the secure k-NN problem and propose a method that provides users’
pattern confidentiality in addition to the security guarantees given by other
works. Here, pattern confidentiality refers to hiding the access patterns of
a user, which is regarded as a more challenging than the classical security
requirements such as data, query and response confidentiality. Overall, the
method provides high security guarantees, but the computation costs are
significantly higher than the methods that reveal pattern confidentiality.

While one of the first methods on secure range search over encrypted
data is proposed by Shi et al. [14], the model has security weaknesses such
that value localization can be possible. Later, Hore et al. [15] propose a
multidimensional range search based on bucketization techniques. In the
method, data item are partitioned into a number of different multidimen-
sional buckets depending on their attribute values. A query is transformed
into a subset of buckets, whose contents are returned as the matching items.
The disadvantage of this scheme is that the query results contain a large
number of false positives that need to be eliminated by the user. Saman-
thula and Jiang propose a range query method based on secure multi-party
computation. The data owner encrypts the database attribute-wise using
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a homomorphic encryption scheme. The query is then executed based on
a secure bit decomposition protocol. In another work, similar to our ap-
proach, Demertzis et al. [16] propose a method that reduce range search to
multi-keyword search using range covering techniques with tree-like indexes.

In summary, a common characteristic of the works in the literature is
that they target only a single type of query. This is a drawback and possibly
decreases the data utilization as the outsourced data contains a rich variety
of data types and therefore, necessitates different types of search queries.
In this paper, we demonstrate that different types of queries can be sup-
ported in an efficient, effective and privacy-preserving manner within the
same framework.

3 The Framework

In our framework, we provide privacy-preserving search in three different
search models: multi-keyword search, k-NN search for documents (i.e., doc-
ument similarity) and range query search. We consider a data outsourcing
scenario that consists of three entities: data owner, two non-colluding semi-
honest servers and users. The big picture for the interactions between the
entities is illustrated in Figure 1.

Figure 1: The framework

Data Owner is a person or organization that owns a data set and wants
to outsource the database functionality along with the data to the cloud.
Since the data may contain sensitive information, it is encrypted prior to
its outsourcing to the cloud. Beside the encrypted data, a searchable index
is also generated by the data owner for enabling secure search operations
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and shared with the cloud. It is important to note that, searchable index
and encrypted data are outsourced to two different non-colluding servers as
explained below.

Cloud Server is a party that offers storage and computational services.
We assume the cloud servers are semi-honest (i.e., honest but curious), a
common model for cloud environment. In our settings we utilize two non-
colluding servers: file server and search server.

The search server takes a query from a user, applies the requested search
operation over the secure index and returns encrypted intermediate results
to the file server. Then, the file server decrypts and sorts the intermediate
results and sends the final results to the user. The aim of using two non-
colluding servers is to hide the correlation between the queries and final
results. The search server only learns the encrypted queries but not what
they match with. Similarly, the file server learns the requested matching
data but not the corresponding encrypted query itself.

Users are the authorized entities that have the right to query the cloud
data. A user employs certain cryptographic techniques to protect the query
confidentiality. A query generated in this manner is then sent to the search
server. The user receives the search results from the file server.

As three different queries are supported in our scheme, it requires the
execution of different types of operations over the encrypted data or rather
its secure index. We will henceforth refer to them as the data mining op-
eration for sake of simplicity. Then, the secure data mining operation can
be formalized as follows. Let D be a database with n data records and ∆
be the set of all features (or terms), which are included in data entries or
queries. There are five main phases in the method, namely: Setup, Trapdoor
Generation, Index Generation, Query Generation and Search.

1. Setup (ψ): Given a security parameter (ψ), it generates a symmetric
key and a public-private key pair as K = {Kid, (Kpub,Kpr)}.

2. Trapdoor Generation (∆): Given the list of all possible features ∆, it
generates λ random permutations of ∆ as T = {P1, . . . , Pλ}, where λ
is a precision parameter.

3. Index Generation (K,D): Given a database D, a secure searchable
index I, that represents each entry Di ∈ D, is generated by using the
features of the entries Di and the key K.

4. Query Generation (T , F ): Given the set of trapdoors T and a set of
features to be queried, it generates a secure query Q for the given
features that does not reveal the content information.
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5. Search (I, Q): The given query Q is compared with the searchable
index I and the encrypted entries from D that match with Q are
returned.

4 Preliminaries

In this section, we provide a brief introduction to the building blocks used
in our construction of the proposed scheme.

4.1 Locality Sensitive Hashing (LSH)

The main goal of locality sensitive hashing (LSH) [17] is to represent data
items with arbitrary number of features using constant sized sets that are
called signatures. The idea is to hash each feature set Fi into a constant
size (and preferably small) signature that preserves the similarity between
the data entries. More precisely, signatures provide an approximation for
measuring the similarity between two data entries and the accuracy of the
approximation is directly related with the length of the signatures, whereby
longer signatures yield better accuracy in similarity. However, while very
small signatures are usually sufficient for detection of either almost identical
or totally unrelated data entries, relatively longer signatures are required
for similarity levels that fall somewhere in between being identical and com-
pletely dissimilar.

In a LSH mapping, the requirement is that, given similar inputs, the
mapping returns outputs that are likely to be similar. Conversely, if the
inputs are dissimilar, the outputs are dissimilar as well with high probabil-
ity. Note that, this requirement is completely different from that of crypto-
graphic hash functions, whereby finding two different inputs that result in
the same output is a very hard problem.

The signatures are represented as sets. A well known metric for repre-
senting the similarity between two sets is the Jaccard similarity.

Definition 1 (Jaccard Similarity). Let A and B be two sets, the Jaccard
similarity of A and B is defined as in Equation 1.

Js(A,B) =
|A ∩B|
|A ∪B|

. (1)

The elements of a signature are computed using MinHash functions [17],
which is defined as follows.
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Definition 2 (MinHash). : Let ∆ be a set of elements, P be a permutation
on ∆ and P [i] be the ith element in the permutation P . MinHash of a set
F ⊆ ∆ under permutation P is defined as:

hP (F ) = min({i|1 ≤ i ≤ |∆| ∧ P [i] ∈ F})

Each data element signature is represented by λ MinHash functions,
each of which is applied using a different, randomly chosen permutation.
The resulting signature for a data set element D that contains the set of
features F is:

Sig(D) = {hP1(F ), . . . , hPλ(F )}, (2)

where hPj is the MinHash Function under permutation Pj .
The MinHash functions are used while generating the signatures as there

is a perfect correlation between the Jaccard similarity and MinHash function
outputs. The probability that a MinHash function provides the same output
for two inputs A and B is equal to the Jaccard similarity between the sets
A and B, as shown in Equation 3. [17]

Pr[h(A) = h(B)] =
|A ∩B|
|A ∪B|

= Js(A,B). (3)

As each MinHash function with a different permutation provides an inde-
pendent experiment, using longer signatures (i.e., larger λ) provides more
accurate results.

4.2 Term Relevancy Score

The signatures obtained using MinHash functions as described capture the
similarity between two database entries in accordance with the number of
common elements shared by both of them. However, they cannot repre-
sent the importance of the common terms. Therefore, we also utilize tf-idf
weighting factor [18], which is derived from term frequency (tf) and inverse
document frequency (idf) values, to capture the importance of each term
in an entry. While term frequency represents the occurrence rate of a term
within a database entry, idf measures the rarity of the terms within the
whole data set.

4.3 Hadoop and MapReduce Framework

The Hadoop framework [19] is a well known and widely used parallel process-
ing framework, which employs a cluster of computers for parallel processing.
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Figure 2: MapReduce Job Execution

The Hadoop framework works utilizing the MapReduce programing model,
which employs a parallel execution and coordination method that can be
used to manage complex computations over massive data sets [17].

Data replication is one of the key factors that improves the effectiveness
of the Hadoop framework, which survives node failures while utilizing huge
number of cluster nodes for data intensive computations. In the Hadoop
framework, the MapReduce model is successfully implemented such that the
details of the network communication, process management, inter-process
communication, efficient massive data movements and fault tolerance are
all transparent to the user. Typically, a developer needs to provide only
configuration parameters and several high-level routines.

The MapReduce model is based on two functions, Map and Reduce. The
Map function is responsible for assigning a list of data items, represented
as key-value pairs, to cluster nodes. It receives key-value pairs, and sends
the results as intermediate data to Reduce function. The Reduce function
receives the intermediate data as a combination of a key and a list of values as
(key, [values]) and applies the user defined processing operations on the
value part of the data. The shuffling process between the Map and Reduce
functions, as illustrated in Figure 2, is responsible for designating all data
items with the same key values to the same computation node in the cluster.
The Reduce function performs desired operations for the records that share
a common property and sends the final results to the user. Figure 2 depicts
the working principle of the MapReduce framework.
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5 Security Model

In this section, we analyze the security of the proposed scheme in the passive
adversary model as it is a common adversarial model considered in secure
data outsourcing scenario [15]. We assume the adversary is anyone on the
search server side (e.g., a database administrator) as it is the entity that
has the access to the secure index and secure queries and may try to extract
any sensitive information leaking from them. In this model, the server is
considered honest but curious, i.e., it implements all storage and processing
functions correctly, but learns from any information leak.

The main privacy requirements that need to be satisfied are data and
query confidentiality, whose intuitive definitions are given in Definitions (3) and (4).
The privacy can further be extended to hide some side information such as
access pattern confidentiality. Violation of access pattern confidentiality
may cause the system be subject to some adversarial analysis [20]. Al-
though access pattern confidentiality can be provided with oblivious RAM
techniques [21, 22], due to efficiency concerns, we allow to leak that infor-
mation in this work, which is in parallel with most of the related work in
the literature.

Definition 3 (Data Confidentiality). A secure search scheme provides data
confidentiality if the outsourced data (i.e., encrypted data and searchable
meta-data) does not leak the information of the actual content or features of
the data set elements.

Definition 4 (Query Confidentiality). A secure search scheme provides
query confidentiality if the given query does not leak the information of the
actual queried terms or features.

6 Proposed Method

This section provides the details of the proposed unified framework for the
three search methods. Overall, the secure search operations are executed as
follows. Initially, a secure (encrypted) search index structure is generated by
the data owner, over which the search operation is performed. The secure
search index is then sent to the search server and the actual encrypted data
is sent to the file server. While it is still possible for an authorized user to
search for the desired features, the secure index prevents the cloud service
provider (i.e., search server) from learning sensitive information about the
actual data (see Figure 1).
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6.1 Secure Search Index Generation

In all three of our search methods, we utilize the bucketization technique
developed by Kuzu et al. [23] for similar purposes. Bucketization is a parti-
tioning technique which distributes each database entry (e.g., documents in
our case) into a constant number of buckets according to the outputs of the
MinHash functions (i.e., signatures). Due to the principle of locality in Min-
Hash functions, the probability of two documents be assigned to the same
bucket is the same as their Jaccard similarity, as shown in Equation (3).
Hence, more similar documents share higher number of common buckets.

The main idea of our work is to create a signature based on MinHash
functions to represent each document in the data set. The signatures are
used to compare the corresponding documents. The proposed method for
constructing the secure index consists of three phases, namely: feature ex-
traction, bucket index construction and bucket index encryption. These
phases, as illustrated in Figure 3 and explained in the next sections, are
performed by the data owner in an offline stage.

6.1.1 Feature Extraction

For each data elementDi ∈ D the corresponding feature set Fi = {f1i , . . . , f
y
i }

is extracted.
In the case of documents of text data, which are used for k-Nearest
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Neighbor (k-NN) search and multi-keyword search in this work, each feature
is composed of pairs f ji = (wij , rsij), where wij is the term j in document i,
and rsij is the relevancy score of that term in the corresponding document.
In this work, the tf-idf value is used for the relevancy score of a term for the
document. This relevancy score is then used to rank the results of the queries
in the search process. Since relevancy scores (rsij) are sensitive information,
they are uploaded to the cloud only after encryption. There is a family of
cryptographic algorithms, known as homomorphic cryptosystems that allow
certain operations to be performed over the encrypted data (ciphertext) and
generates an encrypted result which, when decrypted, matches the result of
operations performed on the plaintext. In order to take advantage of these
homomorphic properties, we use Paillier encryption [24], which is a well
known additive homomorphic encryption method. The relevancy scores are
encrypted with the Paillier scheme and all the numerical calculations on the
server are performed over these encrypted values, thanks to its homomorphic
properties.

In a feature set Fi of a document, there can be several terms with very
low relevancy scores. Representing all those terms with low importance has
an adverse effect on the accuracy of the method, since they may obstruct
terms with high relevancy score in the signature. Therefore, we prune the
feature set and use only the terms with tf-idf values higher than a predefined
threshold σ. In the case, where there is no or only very few terms with tf-idf
values higher than σ, we select tmin terms with the highest relevancy scores.
By using this constraint, we guarantee that each document is represented
by at least tmin, but possibly more, terms.

In the case of numeric data, which is used for range search, the numeric
values are converted to text values that represents the underlying numeric
data. Let the range of the numeric data be [vmin, vmax]. This range is
discretized to t values as

[vmin < v1 < v2 < . . . < vt < vmax].

Any numeric data x such that vi < x ≤ vi+1, is represented by the following
t features:

“x > v1”, . . . , “x > vi”, “x < vi+1”, . . . , “x < vt”.

As each numeric data is represented by a set of features, the setting is almost
identical to the setting of multi-keyword search. The only difference is in the
scoring part. In the feature set of a data x, each feature like “x > vi” either
occurs a single time or does not occur at all. Therefore a binary scoring is
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chosen instead of a term frequency based scoring. Hence, for range search,
the features of data are still represented as pairs f ji = (wij , rsij) but the
score values rsij are constant and equals to 1.

6.1.2 Bucket Index construction

In the bucket index construction there are two phases. First, using the
feature sets and the MinHash functions, a constant length signature is gen-
erated for each data set entry. Each feature set is hashed with λ MinHash
functions, where each function is under a random permutation Pj of the set
of all possible features ∆. Let Fi be the feature list of document Di ∈ D,
then the signature of Di is calculated as

Sig(Di) = {hP1(Fi), . . . , hPλ(Fi)}. (4)

The signatures are sets of λ elements. An important property of signatures
is that, the similarity between signatures of two data items represents the
similarity of the underlying feature sets of the corresponding data items as
discussed in Section 4.1.

After the generation of signatures, the identifier of each data item is
distributed to λ different buckets according to their signatures. Let Bi

k be
the bucket identifier for the ith MinHash function with output k, the content
vector VBik

that stores the contents of the corresponding bucket is defined
as

(id(Dj), rsjk) ∈ VBik ⇐⇒ id(Dj) ∈ Bi
k. (5)

Note that, independent of the number of its features, each data element
is mapped to exactly λ different buckets, but the total number of different
buckets depends on the set of features ∆, the feature set of each data element
(Fi) and the randomly chosen MinHash functions.

6.1.3 Bucket Index Encryption

Both the bucket identifiers and the bucket content vectors contain some
sensitive information, which need to be protected prior to outsourcing. The
bucket identifier represents the MinHash function used and its output. This
may reveal some important information of the input feature set such as the
terms it does not contain and one term that it definitely contains. There-
fore, bucket and query contents should be protected using a cryptographic
primitive. However, the server also needs to be able to match the queried
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encrypted buckets to the buckets stored in the server. This requirement
necessitates using a deterministic cryptographic scheme for protecting the
bucket identifiers. HMAC functions can be considered as cryptographic
hash functions that take a secret key as input besides the message. We use
HMAC functions to hide the information that may leak from bucket identi-
fiers. As the process is deterministic, comparison of buckets is still possible.
The HMAC secret key (Kid) is not revealed to any of the servers, hence it
is secure against any brute-force attack. The encrypted bucket identifier is
denoted as

πBik
= HMACKid(B

i
k). (6)

On the other hand, the bucket content vector stores the document iden-
tifiers and relevancy scores of the data elements, which are mapped to that
bucket. In order to get the score of a document, it is required to map the
bucket elements with the same document identifier. Therefore, the docu-
ment identifiers are again hashed with a cryptographic hash function that
is denoted as H(id(Di)). For the relevance scores, we use additive homo-
morphic encryption methods that permit homomorphic addition operation
over the encrypted data without requiring decryption. More specifically, we
use the Paillier encryption scheme [24], which is a very efficient additive
homomorphic encryption technique. Formally, Paillier encryption satisfies
the following fundamental homomorphic property,

E(m1, r1) · E(m2, r2) = E(m1 +m2, r3),

where m1 and m2 are two messages and ri values are random numbers.
A public encryption key (Kpub) for the Paillier cryptosystem is used for

encrypting each bucket element before outsourcing the data to the server.
The encryption of the bucket content vector VBik

is denoted as V
Bjk

and the

result of this encrypted vector is a list of pairs as

VBik = {(H(id(Dj)), EKpub(rsjk)}∀id(Dj) ∈ Bi
k. (7)

Paillier encryption provides semantic security against chosen plain text
attacks, which means multiple encryptions of the same message result in
different ciphertexts, which cannot be linked.

The secure index generation method is summarized in Algorithm 1.
Finally, the data owner outsources the secure index I to the search

server and the private key Kpriv to the file server (i.e., the two non-colluding
servers).
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Algorithm 1 Index Generation

Require: ∆: set of possible terms, D: database, h: MinHash function, Ψ:
security parameter

Ensure: I: Secure index for D

Kid,Kpub,Kpriv ← Setup(Ψ)
L ← ∅ {L: Bucket identifier list}
for all Di ∈ D do
Fi ← extract features of Di

Sig(Di)← {hP1(Fi), . . . , hPλ(Fi)}
for j = 1 to λ do
Bj
k ← Sig(Di)[j − 1]

if Bj
k /∈ L then

add Bj
k to L

create V
Bjk

as an empty vector

end if
add (H(id(Di)), EKpub(rsik) to V

Bjk
end for

end for
for all Bj

k ∈ L do

π
Bjk
← HMACKid(B

j
k)

add (π
Bjk
,V

Bjk
) to secure index I

end for
return I

6.2 Secure Query Generation

This section provides the query generation process using the trapdoors.
Again there are three types of queries; keyword search, k-NN search and
range search. All those query types are represented as multi-term search
operations, where all the queried terms are combined and encoded in a sin-
gle secure query. However, there are still some minor differences in between
each specific query.

• In the case of keyword search, the query is a set of any number of
terms. All the terms in the query have equal relevancy scores (i.e.,
tf-idf values) such that no term has more significance than others.

• In the case of k-NN search, we search for the k most similar documents
to a given document, hence the query is the set of all terms in a
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document. Similar to the keyword search, the query is represented as
a set of terms, with the only difference that each term in the set have
different relevancy score depending on its tf-idf value.

• In the case of range queries, the range boundaries (i.e., [vmin, vmax])
are also represented as a set of terms as {x > vmin, x < vmax}. The
search query can also include multiple ranges from different attributes
such as “salary > w1” and “age > v1”, “age < v2”. Similar to the
keyword search, all queried range terms have the same relevancy score.

Secure query generation is very similar to the index generation process.
As in the flowchart given in Figure 3, after feature extraction MinHash
functions are applied on the query terms which create a query signature.
Let the set of query terms be Fq, then the query signature is calculated as

Sig(Fq) = {hP1(Fq), . . . , hPλ(Fq)}.

Using query signature Sig(Fq), the λ buckets corresponding to the query
are determined. The bucket identifiers are then hidden with the HMAC
function used in the index generation phase as

πi = HMACKid(Bi), (8)

using the same key Kid of Equation 6.
The list of λ bucket identifiers is the secure query, Q. Depending on the

query type (i.e., k-NN search), a relevancy score may accompany the list
of bucket identifiers. Note that, the same set of λ MinHash functions are
used both in index and query generations. Therefore, authenticated users
need to know the permutations generated in index generation for MinHash
functions. The set of permutations, which is referred as the trapdoor, is
shared with all authenticated users, but hidden from the both non-colluding
cloud servers.

In k-NN search, the tf-idf values of the terms in the query document are
also used in the query generation phase. Recall that, output of a MinHash
function, which determines the corresponding bucket identifier, is one of the
terms in the query set. Therefore, tf-idf value of the output term is used in
the query together with the bucket identifier. However, tf-idf values are also
sensitive information that may reveal the corresponsing term. In order to
hide the tf-idf values in secure queries, we apply an order preserving hashing
(hop) to each tf-idf value such that if x > y then hop(x) > hop(y). The order
preserving function used in the protocol is defined as,

hop(x) = MSBζ(rx+ r2), (9)
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where r and r2 are two random numbers (r2 < r) and MSBζ is a function
that returns the most significant ζ bits of the given input. While the same
random r is used for all λ calls of hop for a given query, r2 is randomly chosen
in each call of the function. If a deterministic function were used for hid-
ing the tf-idf scores, for different MinHash functions that produce the same
output, the corresponding scores would also be the same. This would even-
tually reveal bucket identifiers that correspond to the same terms.In order
to avoid such leakage, we use a randomized order preserving function that
outputs different, but close values for the same input with high probability.

The extracted ζ bit values are combined with HMACed bucket identi-
fiers, resulting a vector of λ pairs as

Vq = {(π1, hop(rsπ1), . . . , (πλ, hop(rsπλ))}.

Note that, scoring is only used for k-NN queries and for keyword and range
queries only the bucket identifiers protected by HMAC functions are used
in the query.

Algorithm 2 describes the process of query generation.

Algorithm 2 Query Generation

Require: F : feature set of keywords to be queried,
h: λ MinHash functions, Kid: HMAC key

Ensure: Vq: Secure query

Find Sig(F ) as in Algorithm 1
Generate an odd random r
for i = 1 to λ do
πi ← HMACKid(Sig(F )[i])
if k-NN search then

Generate random r2 < r
rsπi ← score of Sig(F )[i]
hop(rsπi)←MSBζ(r(rsπi) + r2)
set Vq[i]← (πi, hop(rsπi))

else
set Vq[i]← πi

end if
end for
return Vq
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6.3 Secure Search

Search over the encrypted data is performed over the secure index stored
on the search server. As briefly mentioned previously, two non-colluding
servers are employed in the search process, namely search server and file
server. While the search server stores the secure index generated by the data
owner as explained in Section 6.1, the file server stores the actual encrypted
data elements and also knows the private key Kpriv for the homomorphic
encryption (i.e., Paillier cryptosystem) that is used in the encryption of the
relevancy scores.

A user generates a secure query as explained in Section 6.2 and submits
it to the search server. The search server works homomorphically over the
secure index and calculates encrypted, unsorted relevancy scores for the list
of the matching results.

Given the secure query Vq, the matching λ vectors of VBik (Equation 7)
are retrieved by the search server. Note that, each vector VBik contains
pairs of document id and corresponding encrypted score that match with
that bucket. Then, for each document id in those vectors the accumulated
encrypted relevancy score is calculated by summing the encrypted scores of
the same document from different vectors. Due to the additive homomorphic
property of the encryption method used in the encryption of the relevancy
scores, accumulated encrypted score can be calculated without decrypting
any of the individual scores. A data structure like hash table can be utilized
to increase the performance of this operation.

In the case of k-NN search, the query also contains relevancy scores which
are stored using an order preserving hash function (Equation 9). Utilizing
the scalar multiplicative homomorphic property of the encryption method,
the scores in the secure k-NN query are first multiplied with the scores of
data items in the matching vectors of VBik ∈ I and then the accumulated
encrypted results are calculated. Note that, the relevancy scores in the index
I are stored encrypted at all times and all the calculations are done over
the encrypted values.

The accumulated encrypted results are then sent to the file server that
possesses the private key of the homomorphic encryption. It decrypts and
sorts the relevancy score list of the matching data items and sends those
encrypted, top matching data items to the query owner.
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7 Security Analysis

In the proposed method, all the actual data items that are stored in the
file server are encrypted with a semantically secure symmetric encryption
scheme (e.g., AES with CBC and CTR modes) prior to outsourcing. There-
fore, an adversary can learn no information using the encrypted data ele-
ments. However, meta-data called the secure index, that is used for applying
secure search operation, is also outsourced together with the encrypted data.
In order to show the security of the search method, we need to formalize
which information can and cannot be learned from the method. A common
way to show the security of a search method is to formalize the leakage, and
prove that the adversary learns nothing more than this leakage, which is
introduced by Curtmola et al. [9].

Definition 5. History (Hn) Let D be the collection of documents in the
data-set and Q = {Q1, . . . , Qn} be a collection of n search queries. The
n-query history is defined as Hn(D,Q).

Definition 6. Search Pattern (Sp) is the frequency of the queries searched,
which is found by checking the similarity between two queries. In our case, a
query is a collection of λ bucket identifiers. Hence, search pattern is defined
as the frequency of the queried bucket identifiers (πi).

Definition 7. Access Patten (Ap) is the collection of data identifiers that
match with a user query (i.e., that are returned to the user). Let Fi be the
feature set of Qi and

R(Fi) = {H(id(Di)) | Fi ∈ Di}

be the collection of hashed identifiers of data elements that match with feature
set Fi, then Ap(Qi) = R(Fi).

Definition 8. Trace (γ(Hn)) Let C = {C1, . . . , Cl} be the set of encrypted
documents, id(Ci) be the identifier of Ci, |Ci| be the size of Ci and |I| be
the number of buckets in the secure index I. The trace of Hn is defined as:

γ(Hn)={∀Ci∈C(id(Ci), |Ci|), Sp(Hn), Ap(Hn), |I|}.

We allow leaking the trace to an adversary.

Definition 9. View (v(Hn)) is the information that is accessible by an
adversary. Let I be the searchable secure index and, id(Ci) and Q be as
defined above. The view of Hn is defined as:

v(Hn) = {(id(C1), . . . , id(Cl)), C, I,Q}.
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Definition 10. Semantic Security [9] A cryptosystem is semantically se-
cure, if for all probabilistic polynomial time algorithms (PPTA), there exists
a simulator S such that, given the trace of a history Hn, S can simulate the
view of Hn with probability 1− ε, where ε is a negligible probability.

Theorem 1. The proposed method satisfies semantic security in accordance
with Definition 10.

Proof. Let the real view v(Hn) and trace γ(Hn) be

v(Hn) = {(id(C1), ..., id(Cl)), C, I,Q}
γ(Hn) ={∀Ci∈C(id(Ci), |Ci|), Sp(Hn), Ap(Hn), |I|}.

Further let the view simulated by a simulator S be v∗(Hn) = {(id∗(C1), . . . , id
∗(Cl)), C

∗, I∗,Q∗}.
The proposed method is adaptive semantically secure if v(Hn) is indistin-
guishable from v∗(Hn).

• The first component of the view v(Hn) is the pseudo identifiers of the
documents, id(Ci), which are also available in the trace. Hence, S can
trivially simulate document identifiers as id∗(Ci) = id(Ci). Since for
all possible values of i, id∗(Ci) = id(Ci), they are indistinguishable.

• Each document is encrypted using a PCPA-secure encryption method.
Note that, the output of a PCPA-secure encryption method [9] is by
definition indistinguishable from a random number that has the same
size as the ciphertext. To simulate ciphertexts C, S assigns l random
numbers to C∗ such that C∗ = {C∗1 , . . . , C∗l }, where ∀i, |C∗i | = |Ci|
using the size information of each ciphertext, which is available in the
trace. Considering that for all i, Ci and C∗i are indistinguishable, C
and C∗ are also indistinguishable.

• Note that I is a collection of bucket identifier (πi) and encrypted vector
pairs where each vector is a list of pairs as

Vi = H(id(Di)), EKpub(rsi).

Simulator S generates |I| index elements, I∗[i] = (π∗i ,V∗i ) such that
π∗i is a randomly chosen element from the search pattern Sp using the
given distribution. Note that, we allowed to leak Sp which shows the
occurrence frequency of each bucket identifier πi. Since π∗i is actually
chosen from possible bucket identifiers using the same frequency dis-
tribution, it has the same occurrence probability with πi and hence, π∗i
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and πi are indistinguishable. Similarly, the first part of Vi is a hashed
document identifier which exist in the access pattern. Simulator S
generates H(id(Di))

∗ as a randomly chosen element from the access
pattern Ap ∈ γ(Hn) using the given distribution of hashed document
identifiers in Ap. Hence, H(id(Di)) and H(id(Di))

∗ are indistinguish-
able. The second part of Vi is a ciphertext of a Paillier encryption
method (EKpub(rsi)), which provides semantic security and therefore
can be simulated by a random number. Hence, I is indistinguishable
from I∗.

• Q = {Q1, . . . , Qn} is a set of n queries, where each query Qi is com-
posed of λ encrypted bucket identifiers. Hashed bucket identifiers (π∗i )
can be simulated by the S as shown in the simulation of I. S can
simulate the queries from the search pattern Sp using the given dis-
tribution. For each Q∗i , λ random simulated bucket identifiers are
chosen from Sp. Note that real and simulated bucket identifiers are
indistinguishable from each other as they have exactly the same fre-
quency distribution. Hence, for all i, Qi is indistinguishable from Q∗i
and following from this, Q is indistinguishable from Q∗.

The simulated view v∗ is indistinguishable from the genuine view v since
the components of v and v∗ are indistinguishable. Henceforth, the proposed
method satisfies adaptive semantic security.

The adversary can learn the hashed document identifiers that match
with a query (i.e., access pattern) and the hashed bucket identifiers (i.e.,
search pattern), but the corresponding features of the documents and the
queries are protected. Hence, the method satisfies both data confidentiality
and query confidentiality in accordance with definitions 3 and 4.

8 Experiments

In order to assess the performance of the proposed scheme, we build a small
cluster of 3 nodes with Cloudera CDH4 for cluster management. The cluster
has two nodes with Xeon processor E5-1650 3.5 GHz with 12 cores and one
node with Core i7 3.07 GHz with 8 cores. All three nodes have 16 GB of
RAM and on each node, Ubuntu 12.04 LTS, 64 -bit operating system is
installed and Java 1.6 JVM is used.

In our experiments, we used the Enron data set [25] for evaluating the
text based operations (i.e., multi-keyword and k-NN search) of the proposed
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method. This data set contains a collection of 517, 000 real e-mail files. The
size of each file changes from 4 KB to 2 MB.

In the case of range queries, a numerical data is required instead of text
data, hence we conducted experiments with a different data set. The TPC-H
data set is utilized, which is a decision support benchmark widely used in the
database community [26]. TPC-H data set contains 131, 000 data elements
with 4 numeric attributes (or features in the adopted terminology).

Initially, the entire data set is processed to determine the features of
each data item in what is known as the feature extraction phase. First, the
data set is cleaned from the mail headers and stop words and the terms are
stemmed to their roots using a stemmer. The tf-idf values of each term in
each file are then calculated and stored. After the feature extraction phase,
secure index is generated as explained in Section 6.

For the accuracy experiments we consider two metrics namely precision
and recall. Intuitively, precision is the ratio of correctly found matches over
the total number of returned matches and recall is the ratio of correctly
found matches over the total number of expected results (i.e., the ground
truth). Both precision and recall are real numbers between 0 and 1, where
a higher value means better accuracy.

We assume that the server receives several search requests at any time
which is in line with the big data context. Therefore instead of processing
each query individually, we group several individual queries and process a
bulk search for all. Bulk search operations have a great positive effect on the
throughput of the system as the distributed file systems and parallel pro-
graming models do not benefit relatively small number of such operations.

8.1 Experiments with Multi-keyword Search

The classical definitions of precision and recall metrics do not consider the
importance of features for a data item, but only their mere presence. For
example, if a query contains t terms and a data item contains t− 1 of those
terms with high tf-idf values, but fails to contain one term, then it is consid-
ered as a false match for the given query so far as precision and recall metrics
are concerned. Although those metrics can be advantageous in several areas,
we claim that they may not be highly suitable for search over unstructured
data, where some features can be significantly more important than others.
Therefore, we measure the accuracy of the method by calculating precision
and recall in comparison to what we refer as the ground truth.

In the ground truth, for a given query, we consider the data items with
top 50 scores in the data set as the actual matching results, instead of those
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that contain all the terms in a query. The top 50 matching results are found
by evaluating the search over the plaintext data (i.e., without using the
secure index) utilizing the full tf-idf scores. These actual results are then
compared with the output of the proposed scheme to measure the accuracy
of the method. The average precision and recall rates are calculated by
taking the average of 50 queries, randomly generated with 2, 3 and 4 terms.
Note that, in the proposed method all the data items that have non-zero
scores (i.e., match candidates) contain a nonempty subset of the queried
terms. Therefore, for single term queries, both precision and recall rates are
1.0 (i.e., without any false accept or false reject).

The average precision and recall rates are presented in Figures 4 and
5, respectively. The retrieval ratio in the figures represents the ratio of the
data elements with non-zero scores that are considered as a match with the
given query. As retrieval ratio increases, more data items are returned as
a match and hence, it has a positive effect on recall, but a negative effect
on precision. Recall that, as MinHash functions with different permutations
provide independent experiments for approximating the Jaccard similarity,
using longer signatures (i.e., larger λ) provides more accurate results. The
results given in Figures 4 and 5 also support this fact as accuracy increases
with λ.

We test the performance of the multi-keyword search with λ = 150 as it
is an optimum value that provides recall rates very close to 1.0. The search
operation has two major phases. In the first phase, the search server re-
ceives a query and homomorphically finds the encryption of an accumulated
score for each data element that matches (at least partially) with the given
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query. The encrypted scores are then sent to the file server which applies
the decryption operation. The file server then sorts the data items with
respect to their relevancy scores and returns the top matches based on a
pre-determined retrieval ratio.

In order to show the effect of bulk search over the throughput of the
system we tested the scheme for three sets of 100, 200 and 1000 queries,
respectively. As Figure 6 presents, 100 queries can be processed in about 83
seconds, whereas 200 queries can be processed in less than 114 seconds and
1000 queries can be processed in 310 seconds. Note that a 10 times increase
in the number of queries only increases the process time less than 4 times.
These results demonstrate that performing search operation with larger sets
of queries has a significantly positive effect on throughput, but it may also
increase latency of the queries; hence bulk size should not be too large.
Therefore, we use bulks with 200 queries in the rest of the experiments.
We also observe from Figure 6 that on average, about 60% and 40% of the
total search time are spent in the search server and the file server phases,
respectively.

8.2 Experiments with k-NN Search

Similar to multi-keyword, k-NN search operation is also tested using the
Enron data set [25]. There are two main differences of a k-NN search from
a multi-keyword search. The first difference is that, the number of queried
terms is much larger in k-NN search since all the important terms of a data
item is considered as a term in the query. In the case of multi-keyword
search, we assume the number of queried terms will be small (e.g., less than
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5). The second difference is that, in k-NN search the queried terms have
also different importance levels (e.g., tf-idf values) for the data item. Recall
that in multi-keyword search, the terms in a query have equal importance.

As the number of terms in queries is significantly larger than the ones in
multi-keyword search, a larger value of λ needs to be used in order to satisfy
an equivalent level of accuracy. Furthermore, in the case of k-NN search,
both precision and recall metrics are equivalent as the number of returned
matches and the number of actual matches are both equal to k. We therefore
used a single metric, namely precision, to evaluate the accuracy of the k-
NN search method. The accuracy of k-NN search in our experiments is
illustrated in Figure 7 for different values of k and λ.

Figure 7 demonstrates that increase in λ has a positive effect on accu-
racy as expected due to the properties of locality sensitive hash functions.
Similarly, increase in k has also a positive effect on the accuracy. The pro-
posed method can find the most similar data items (i.e., nearest neighbors)
to the queried item, but possibly in a different order with respect to the
actual results. Therefore, for small values of k, some of the actual most
similar matches may not fall in the top k slots and leads to a negative effect
on the accuracy. However, for relatively larger values of k, most of the top
matching data items are usually accommodated in the top k slot and thus
leads to high accuracy rates.

The k-NN search operation is the most expensive among the three oper-
ations studied in this work (see Figure 8). This has two main reasons. First
of all, as the number of the terms in a query is significantly large, the size
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of the signatures used is almost three times larger than the ones used for
the other two types of search operation. Secondly, different from the multi-
keyword search, the features of the queries also have scores in k-NN search;
hence an additional homomorphic multiplication is applied as explained in
Section 6.3. Similar to the experiments with the multi-keyword search, we
empirically evaluate the computation costs of search operation using bulk
queries of 200, as shown in Figure 8.

8.3 Experiments with Range Search

Range search operation works with attributes that take on numerical values.
Therefore, we used the LineItem table of TPC-H data set [26], instead of
the Enron data set, which consists of text data. In the experiments we used
four different features for range queries.

A range query can be thought of a predicate-based query, where the
range boundaries for each attribute are tested. For instance, a query for
determining the staff of a company whose salary is greater than $2500 a
month and whose age is between 20 and 30 can be found by testing whether
the predicate {(Qs > 2500), (Qa > 20), (Qa < 30)} is satisfied, where Qs
and Qa stand for salary and age features, respectively. From a broader
perspective, a range query can be formulated very similar to a multi-keyword
search, in such way that every predicate testing in the former is equivalent
to a term in the latter. In fact, we use the word term to refer a predicate
testing such as (Qa < 30) in this work. Consequently, the secure index for
range queries can be constructed in an identical manner. The only difference
between a range search and a multi-keyword search is that a basic scoring
based on only the number of common buckets, is used, as tf-idf scoring is
inapplicable in numerical data sets.

We evaluate the accuracy of the range search operation using queries of
2 and 4 features with both minimum and maximum boundaries (i.e., queries
with 4 and 8 terms, respectively). A workload of 100 queries (50 for each
case) is generated, where the range of each query was randomly selected from
a uniform distribution which has the same range as the data sets. The results
are presented in Table 1. In order to make the results comparable with the
multi-keyword search, the value of λ is set as 150 and the accuracy results
are calculated with respect to the ground truth as explained in Section 8.1.

The accuracy experiments demonstrate that both precision and recall
results are significantly better than those of multi-keyword and k-NN search
operations. This phenomenon is due to the fact that a structured data
is used in range search, as opposed to the unstructured data set used for
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the other two query types. Indeed, the data set for range search can be
represented by only a few hundreds terms, whereas a text based data set
such as Enron necessitates tens of thousands or even more terms. The results
also show that increase in the number of queried terms has a positive effect
on recall, but a negative effect on precision. As the number of queried terms
increases, the number of elements in the data set that contain all those
terms significantly decreases, which increases the recall values. However,
the increase in the number of queried terms also increases the data elements
with nonzero scores (i.e., that contain at least one of the queried terms)
which causes a decrease in precision values.

Table 1: Accuracy of Range Search
2 attributes 4 attributes

precision 0.88 0.81

recall 0.96 0.98

As the structure of the range search is identical to the multi-keyword
search and they both utilize the same signature length (i.e., λ = 150), their
timing results are also equivalent. The number of terms in a query has no
effect in the cost of a search operation since, independent from the number
of terms in a query, it has a constant length, which is λ.

9 Conclusion

In this work, we propose a general privacy preserving search scheme over
encrypted cloud data. The proposed scheme provides privacy preserving
search operations in large data sets with high performance by leveraging the
MapReduce paradigm. The scheme is efficiently implemented for all three
types of search operations on an experimental cloud computing environment
using Hadoop MapReduce. Performance and accuracy of the search opera-
tions are evaluated using publicly available real data sets and shown to be
efficient and effective. Moreover, it is shown that the scheme is scalable,
and hence the performance can trivially be improved by providing larger
Hadoop clusters.
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