Round Optimal Concurrent MPC
via Strong Simulation

Saikrishna Badrinarayanan* Vipul Goyal! Abhishek Jain* = Dakshita Khurana*
Amit Sahai*

Abstract

In this paper, we study the round complexity of concurrently secure multi-party computation
(MPC) with super-polynomial simulation (SPS) in the plain model. In the plain model, there
are known explicit attacks that show that concurrently secure MPC with polynomial simulation
is impossible to achieve; SPS security is the most widely studied model for concurrently secure
MPC in the plain model. We obtain the following results:

e Three-round concurrent MPC with SPS security against Byzantine adversaries, assuming
sub-exponentially secure DDH and LWE.

e Two-round concurrent MPC with SPS security against Byzantine adversaries for input-
less randomized functionalities, assuming sub-exponentially secure indistinguishability ob-
fuscation and DDH. In particular, this class includes sampling functionalities that allow
parties to jointly sample a secure common reference string for cryptographic applications.

Prior to our work, to the best of our knowledge, concurrent MPC with SPS security required
roughly 20 rounds, although we are not aware of any work that even gave an approximation of
the constant round complexity sufficient for the multi-party setting. We also improve over the
previous best round complexity for the two-party setting, where 5 rounds were needed (Garg,
Kiyoshima, and Pandey, Eurocrypt 2017).

To obtain our results, we compile protocols that already achieve security against “semi-
malicious” adversaries, to protocols secure against fully malicious adversaries, additionally as-
suming sub-exponential DDH. Our protocols develop new techniques to use two-round zero-
knowledge with super-polynomial strong simulation, defined by Pass (Eurocrypt 2003) and very
recently realized by Khurana and Sahai (FOCS 2017). These remain zero-knowledge against
adversaries running in time larger than the running time of the simulator.

*UCLA. Email: {saikrishna, dakshita, sahai}@cs.ucla.edu. Research supported in part from a DARPA/ARL
SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an
Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research
Projects Agency through the ARL under Contract W911NF-15-C-0205. The views expressed are those of the authors
and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or
the U.S. Government.

fCarnegie Mellon University. Email: goyal@cs.cmu.edu

1Johns Hopkins University. Email: abhishek@cs.jhu.edu. Research supported in part by a DARPA /ARL Safeware
Grant W911NF-15-C-0213 and a sub-award from NSF CNS-1414023.

Contents

1 Introduction
1.1 Our Results

2 Technical Overview
2.1 Three Round MPC Without Setup
2.2 Two Round MPC without Setup for Input-Less Randomized Functionalities

3 Preliminaries
3.1 ZK With Superpolynomial Simulation.,
3.2 ZK with Super-polynomial Strong Simulation

4 Three Round Malicious Secure MPC
4.1 High-Level Overview e
4.2 Construction e e
4.3 Security Proof
5 Two Round Malicious Secure MPC for Input-less Functionalities
5.1 High-Level Overview
5.2 Construction L L
5.3 Security Proof
6 Three Round Concurrently Secure MPC
6.1 Security Proof
7 Two Round Concurrently Secure MPC for Input-less Functionalities
7.1 Security Proof
References

3.3 Non-Malleability w.r.t. Commitment
3.4 Secure Multiparty Computation

A Secure Multiparty Computation

A.1 Defining Security. L
A.2 Security Against Semi-Malicious Adversaries

11
12
13
15

21
22
23
24

30
32

38
40

46

1 Introduction

The round complexity of secure multi-party computation (MPC) [Yao82, Yao86, GMW87] has been
a problem of fundamental interest in cryptography. The last few years have seen major advances in
improving the round complexity of secure computation with dishonest majority [BMR90, KOS03,
Pas04, D105, DI06, PPV08, Weel0, Goyl1, LP11, GLOV12, GMPP16, ACJ17, BHP17], culminating
eventually in four round protocols for secure multi-party computation from general assumptions
such as DDH and LWE [GMPP16, ACJ17, BHP17].

Intriguingly, however, when we only require security against (semi-malicious) adversaries that
follow protocol specifications, recent research has also constructed MPC protocols that require even
less that four rounds of simultaneous message exchange in the plain model. For instance, [DHRW16]
give a two-round protocol based on indistinguishability obfuscation, while [BHP17] very recently
gave a three round protocol from the hardness of the learning with errors assumption.

However, these protocols do not offer any privacy guarantees at all against Byzantine adver-
saries that may deviate from protocol specifications. Can we achieve meaningful security against
Byzantine adversaries in two or three rounds? This question is even more interesting in the setting
where parties participate in multiple executions of the MPC protocol concurrently. Indeed, as our
world becomes increasingly interconnected, it is hard to imagine that future cryptographic proto-
cols will be carried out in a standalone setting, where participants interact in only a single instance
of the protocol. Thus, we ask:

“Can we achieve concurrently secure MPC' in two or three rounds?”

Super-polynomial security. Indeed, even defining security against concurrent adversaries in the
plain model requires care. Barak, Prabhakaran and Sahai [BPS06] give an explicit “chosen protocol
attack” that rules out concurrently secure MPC with polynomial simulation in any number of rounds
in the plain model. In fact, even in the stand-alone setting, three round secure computation with
polynomial simulation and black-box reductions turns out to be impossible to achieve [GMPP16].

However, it has been known for a long time that for MPC, a powerful security notion in the
plain model is security with super-polynomial time simulation (SPS) [Pas03, PS04, BS05, MMY06,
CLP10, GGJS12, GKP17, BGI"17, KS17]. SPS security circumvents the impossibility results above
including the chosen protocol attack in the concurrent setting, and is the most widely studied
security model for concurrent MPC in the plain model.

To understand the intuition behind SPS security, it is instructive to view SPS security through
the lens of the security loss inherent in all security reductions. In ordinary polynomial-time simula-
tion, the security reduction has a polynomial security loss with respect to the ideal world. That is,
an adversary in the real world has as much power as another adversary that runs in polynomially
more time in the ideal world. In SPS security, the security reduction has a fixed super-polynomial
security loss, for example 2", where n is the security parameter, with respect to the ideal world.
Just as in other applications in cryptography using super-polynomial assumptions, this situation
still guarantees security as long as the ideal model is itself super-polynomially secure. For instance,
if the ideal model hides honest party inputs information-theoretically, then security is maintained
even with SPS. For example, this is true for applications like online auctions, where no informa-
tion is leaked in the ideal world about honest party inputs beyond what can be easily computed
from the output. But SPS also guarantees security for ideal worlds with cryptographic outputs,
like blind signatures, as long as the security of the cryptographic output is guaranteed against
super-polynomial adversaries. Indeed, SPS security was explicitly considered for blind signatures
in [GRS™11, GG14] with practically relevant security parameters computed in [GG14]. Additional

discussion on the meaningfulness of SPS security can be found in the original works of [Pas03, PS04]
that introduced SPS security in the protocol context.

Prior to our work, the best round complexity even for concurrent two-party computation
with SPS security was 5 rounds [GKP17] from standard sub-exponential assumptions. For con-
current MPC with SPS security from standard sub-exponential assumptions, the previous best
round complexity was perhaps approximately 20 rounds in the simultaneous message exchange
model [GGJS12, KMO14], although to the best of our knowledge, no previous work even gave an
approximation of the constant round complexity that is sufficient for the multi-party setting.

1.1 Owur Results

We obtain several results on concurrently secure MPC in 2 or 3 rounds:

1. We obtain the following results for multi-party secure computation with SPS in three rounds
in the simultaneous message model, against rushing adversaries.

e A compiler that converts a large class of three round protocols secure against semi-
malicious adversaries, into protocols secure against malicious adversaries, additionally
assuming the sub-exponential hardness of DDH or QR or N*" residuosity.

e A compiler that converts a large class of three round protocols secure against semi-
malicious adversaries, into protocols secure against malicious concurrent adversaries,
additionally assuming the sub-exponential hardness of DDH or QR or N** residuosity.

On instantiating these compilers with the three-round semi-malicious protocol in the recent
work of Brakerski et al. [BHP17], we obtain the following main result.

Informal Theorem 1. Assuming sub-exponentially secure LWE and DDH, there exists a
three-round protocol in the simultaneous message exchange model with rushing adversaries,
that achieves sub-exponential concurrent SPS security for secure multi-party computation for
any efficiently computable function, in which all parties can receive output.

The same result holds if the sub-exponential DDH assumption above is replaced with the sub-
exponential QR or N residuosity assumptions.

2. We also obtain the following results for multi-party secure computation with SPS in two
rounds in the simultaneous message model, against rushing adversaries.

e A compiler that converts a large class of two round protocols secure against semi-
malicious adversaries, into protocols secure against malicious adversaries computing
input-less randomized functionalities, assuming assuming sub-exponential hardness of
DDH and indistinguishability obfuscation.

e A compiler that converts a large class of two round protocols secure against semi-
malicious adversaries, into protocols secure against concurrent malicious adversaries
computing input-less randomized functionalities, assuming assuming sub-exponential
hardness of DDH and indistinguishability obfuscation.

On instantiating these compilers with the two-round semi-malicious protocol in [DHRW16],
we obtain the following main result.

Informal Theorem 2. Assuming sub-exponentially secure indistinguishability obfuscation
and DDH, there exists a two-round protocol in the simultaneous message exchange model with
rushing adversaries, that achieves sub-exponential concurrent SPS security for secure multi-
party computation for any efficiently computable randomized input-less function, in which all
parties can receive output.

In particular, our protocols can be used to generate samples from any efficiently sampleable
distribution. For example, they can be used to concurrently securely sample common refer-
ence strings from arbitrary distributions for cryptographic applications, such that the random-
ness used for sampling remains hidden as long as at least one of the participants is honest.
Applications include generating a common reference string sufficient for building universal
samplers [HJKT16]. Before our work, only the special case of multi-party coin-flipping with
SPS was known to be achievable in two rounds [KS17].

2 Technical Overview

We will now give an overview of the techniques used in our work.

2.1 Three Round MPC Without Setup

A well established approach to constructing secure computation protocols against malicious ad-
versaries in the standalone setting is to use the GMW compiler [GMWS8T7]: compile a semi-honest
protocol with zero-knowledge arguments to enforce correct behavior. Normally, such compilers
involve an initial ‘coin-tossing’ phase, which determines the randomness that will be used by all
parties in the rest of the protocol. Unfortunately, in two or three rounds, there is no scope at all
to carry out an initial coin-tossing.

However, as observed by [AJLT12, MW16, BHP17], certain two and three round protocols sat-
isfy semi-malicious security: that is, the protocol remains secure even when the adversary is allowed
to chose malicious randomness, as long as the adversary behaves according to protocol specifica-
tions. When compiling semi-malicious protocols, the coin-tossing phase is no longer necessary: at
a very high level, it seems like it should suffice to have all parties give proofs of correct behav-
ior. Several difficulties arise when trying to implement such compilers in extremely few rounds.
Specifically, in many parts of our protocols, we will have only two rounds to complete the proof
of correct behavior. However, attempts to use two-round zero-knowledge with super-polynomial
simulation [Pas03] run into a few key difficulties, that we now discuss.

A key concern in MPC is that malicious parties may be arbitrarily mauling the messages sent by
other parties. In order to prevent this, we will use two-round non-malleable commitments, that were
recently constructed in [KS17, LPS17, GKS16]. In particular, we will rely on a construction of two-
round concurrent non-malleable commitments with simultaneous messages, that were constructed
by [KS17] assuming sub-exponential DDH.

The very first difficulty arises as soon as we try to compose non-malleable commitments with
SPS-ZK.

Difficulty of using two-round SPS-ZK in few rounds with Simultaneous Messages.
Standard constructions of two-round SPS zero-knowledge can be described as follows: the verifier
generates a challenge that is hard to invert by adversaries running in time 7", then the prover proves
(via WI) that either the statement being proven is in the language, or that he knows the inverse of
the challenge used by the verifier. This WI argument is such that the witness used by the prover

can be extracted (via brute-force) in time 7" < T. Naturally, this restricts the argument to be
zero-knowledge against verifiers that run in time T, < T" < T.

Thus, if a prover generates an accepting proof for a false statement, the WI argument can be
broken in time 7” to invert the challenge, leading to a contradiction. On the other hand, there exists
a simulator that runs in time Ts;, > T to invert the receiver’s challenge and simulate the proof
(alternatively, such a simulator can non-uniformly obtain the inverse of the receiver’s challenge).
Thus, we have Ts;y, > Ty.

Let us now consider an SPS-ZK protocol, run simultaneously with a non-malleable commit-
ment, as illustrated in Figure 1. The two-round concurrent non-malleable commitment scheme
from [KS17] requires the committer and receiver to send simultaneous messages in the first round
of the exection, followed by a single message from the committer in the second round.

SPS‘ZKchaIIenga NMCchaIIenge NMC(MU') V

SPS—ZKrespon587 N MCI'SSPO"Se

Figure 1: Composing SPS-ZK with Non-malleable commitments

Let us also imagine that multiple parties running such a protocol are sending non-malleable
commitments to their inputs, together with messages of the underlying semi-malicious protocol,
and SPS-ZK proofs of correct behavior.

In order to begin a reduction between the real and ideal worlds, we would have to begin by
simulating the proofs sent by honest parties, and then argue that adversarial parties cannot maul
honest parties’ inputs. However, while arguing non-malleability, we cannot simulate proofs non-
uniformly, since that would end up also non-uniformly fixing the messages of the non-malleable
commitments. Thus, we would want non-malleability of NMCom to hold even while we are sending
simulated proofs in time Tgjy,.

On the other hand, when we switch a real SPS ZK proof to being simulated, we must argue
that the values within the non-malleable commitments provided by the adversary did not suddenly
change. To achieve this, it must be true that the quality of the SPS ZK simulation is sufficiently high
to guarantee that the messages inside the non-malleable commitments did not change. Specifically,
we must be able to break the non-malleable commitments and extract from them in time that is
less than T,,. Putting together all these constraints, we have that non-malleable commitments
should be breakable in time that is less than the time against which they remain non-malleable:
this is a direct contradiction.

In order to solve this problem, we must rely on ZK argument systems where the quality of
the SPS ZK simulation ezceeds the running time of the SPS simulator, namely where Tg;y, << Ty.
Zero-knowledge with strong simulation ([Pas03]), is roughly a primitive that satisfies exactly this
constraint. We call such a ZK protocol an SPSS-ZK argument. Such a primitive was recently
realized by [KS17], by constructing a new form of two-round extractable commitments. Note that
if one uses SPSS-ZK instead of SPS-ZK, the contradiction described above no longer holds. This
is a key insight that allows us to have significantly simpler arguments of SPS security, especially in
the concurrent security setting.

However, as we already mentioned, in arguing security against malicious adversaries, we must
be particularly wary of malleability attacks. In particular, we would like to ensure that while the
simulator provides simulated proofs, the adversary continues to behave honestly — thereby allowing

such a simulator to correctly extract the adversary’s input and force the right output. This is
the notion of simulation soundness [Sah99]. However, it is unknown how to build a two-round
concurrently simulation-sound SPSS ZK argument. We address this by providing a mechanism to
emulates two-round and three-round simulation-soundness via strong simulation, in a simultaneous
message setting. This mechanism allows us to compile a semi-malicious protocol with a type of
non-malleable proofs of honest behavior.

Roughly speaking, the idea behind our strategy for enforcing simulation soundness is to have
each party commit not only to its input, but also all the randomness that it will use in the underlying
semi-malicious secure protocol. Then, the high quality of the SPSS ZK simulation will ensure that
even the joint distribution of the input, the randomness, and the protocol transcript cannot change
when we move to SPS simulation. Since honest behavior can be checked by computing the correct
messages using the input and randomness, the quality of the SPSS ZK simulation guarantees that
adversarial behavior must remain correct. Counter-intuitively, we enforce a situation where we
cannot rule out that the adversary isn’t “cheating” on his ZK arguments, but nevertheless the
adversary’s behavior in the underlying semi-malicious MPC protocol cannot have deviated from
honest behavior.

We note that our simulation strategy is uniform and straight-line. The only non-trivial use
of rewinding in our protocol is in arguing non-malleability, and this is abstracted away into the
underlying non-malleable commitment scheme that we invoke. This leads to a significantly simpler
proof of concurrent security.

Several additional subtleties arise in the proofs of security. Please refer to Section 4 for additional

details on our protocol and complete proofs.
Barriers to Two Round Secure Computation of General Functionalities We also note
that barriers exist to constructing two-round two-party SPS-secure computation of general func-
tionalities with super-polynomial simulation, where both parties receive the output. Let us focus
on protocols for the secure computation of a specific functionality F(x,y) = (z 4+ y), which com-
putes the sum of the inputs of both parties, when interpreted as natural numbers. However, our
arguments also extend to all functionalities that are sensitive to the private inputs of individual
parties. We will also restrict ourselves to two-round protocols where both parties send an encoding
of their message in the first round while the next round is used to compute the output. It is not
difficult to see that any protocol for two-round two-party secure computation of general function-
alities, must satisfy this property, as long as security must hold against non-uniform adversaries.
If the first message wasn’t committing, then a non-uniform adversary could obtain a first message
that is consistent with two inputs, and then by aborting in the second round, it could obtain two
outputs of the function with two different inputs, violating security.

Let II denote a two-round secure computation protocol between two parties A and B, where
both parties receive the output. We will also consider a “mauling” rushing adversary that corrupts
B, let us denote this corrupted party by B. At the beginning of the protocol A sends an honest
encoding of its input X. After obtaining the first round message from party A, suppose that B
“mauls” the encoding sent by A and generates another encoding of the same input X. Because the
encodings must necessarily hide the inputs of parties, the honest PPT party A cannot detect if such
a mauling occurred, and sends the second message of the protocol. At this point, B generates its
second round message on its own, but does not send this message. Instead, B computes the output
of the protocol (which is guaranteed by correctness). The adversary B learns 2X, and blatantly
breaks security of the SPS-secure protocol. Similarly, a rushing adversary could choose to corrupt
party A and launch the same attack. Getting over this barrier would clearly require constructing
non-interactive non-malleable commitments.

2.2 Two Round MPC without Setup for Input-Less Randomized Functionalities

We begin by noting that the discussion above on the hardness of two-round MPC with super-
polynomial simulation does not rule out functionalities that are mot sensitive to the private inputs
of parties. In particular, let us consider input-less randomized functionalities. Even though the
functionality is input-less, still each party must contribute to selecting the secret randomness on
which the function is to be evaluated. At first glance, it may appear that we still have the same
problem: in only two rounds, perhaps this “implied input” can be compromised. However, note
that for input-less functionalities, if the adversary aborts, then even if the adversary learns the
“implied inputs” of the honest parties, this does not violate security because the honest parties will
not accept the output of the protocol. Thus, the honest parties’ contributions to the randomness
is discarded since the protocol execution is aborted. As such, we only need to guarantee security
of the honest party inputs if the protocol terminates correctly — that is, if the adversary is able to
send second-round messages that do not cause the protocol to abort.

More technically, the only actual requirement is that a super-polynomial simulator must be able
to correctly and indistinguishably, force the output of the computation to an externally generated
value. The security of each honest party’s contribution to the randomness is implied by this forcing.

We show that this is indeed possible using only two rounds of interaction in the simultaneous
message model, under suitable cryptographic assumptions. We describe a compiler that compiles
a large class of two-round secure computation protocols for input-less randomized functionalities
from semi-malicious to full malicious (and even concurrent) security. We consider functionalities
where each party contributes some randomness, and the joint randomness of all parties is used to
sample an output from some efficiently sampleable distribution.

Our protocol follows a similar template to the protocol described for the 3-round case: parties
first commit to all the input and randomness that they will use throughout the execution via a
non-malleable commitment. Simultaneously, parties run an underlying two-round semi-malicious
protocol and by the end of the second round, provide SPSS-ZK proofs that they correctly computed
all messages. We stress again that it is only if the adversary successfully completes both rounds
of the protocol without causing an abort, that we actually need to care about hiding the shares of
randomness contributed by honest parties — in order to argue overall security.

At the same time, in order to enforce correctness, the simulator would still need to extract the
randomness used by the adversary at the end of the first round of the computation. Unlike our
three round protocol, here, the simulator will try to extract randomness at the end of the first
round anyway. This is because the simulator can afford to be optimistic: Either its extraction is
correct, and it can make use of this in forcing the output. Or its extraction is incorrect, but in
this case we will guarantee that the adversary will cause the protocol to abort in the second round
because of the SPSS ZK argument that the adversary must give proving that it behaved honestly
in the first round.

We need to take additional care when defining the simulation strategy when the simulator
extracts incorrect randomness: this causes other subtleties in our proof of security. The complete
constructions and proofs of standalone as well as concurrent security, can be found in Section 5.

3 Preliminaries

Here, we recall some preliminaries that will be useful in the rest of the paper. We will typically use
n to denote the security parameter. We will say that T7(n) > Ts(n) if Ti(n) > Ta(n) - n¢ for all
constants c.

We define a T-time machine as a non-uniform Turing Machine that runs in time at most 7.
All honest parties in definitions below are by default uniform interactive Turing Machines, unless
otherwise specified.

3.1 ZK With Superpolynomial Simulation.

We will use two message ZK arguments with strong superpolynomial simulation (SPS) and with
super-polynomial strong simulation (SPSS) [Pas04].

Definition 1 (Two Message (Tsim,Tok, 02k)-ZK Arguments With Superpolynomial Simulation).
[Pas04] We say that an interactive proof (or argument) (P,V) for the language L € NP, with
the witness relation Ry, is (Tsim, Tok, O0-k)-simulatable if for every Tyc-time machine V* ezists a
probabilistic simulator S with running time bounded by Tsim such that the following two ensembles
are Ty, O,k) -computationally indistinguishable (when the distinguishing gap is a function inn = |z|):

o {({(P(y), V" (2))(®))}2e(0,1y wer for arbitrary y € Ry (x)
o {S(:C’Z)}ze{o,l}*,:cEL

That s, for every probabilistic algorithm D running in time polynomial in the length of its first
input, every polynomial p, all sufficiently long x € L, all y € Rp(x) and all auxiliary inputs
z € {0,1}" 4t holds that

Pr[D(x, 2, ((P(y), V*(2))(2)) = 1] - Pr[D(a, 2, S(z, 2)) = 1] < 64(\)

Definition 2. We say that a two-message (Tsim, Tyk, 02k)-SPS ZK arqument satisfies non-uniform
simulation (for delayed statements) if we can write the simulator S = (S1,S2) where S1(V*(2)),
which outputs o, runs in Tsim-time, but where Sy(x, z,0), which outputs the simulated view of the
verifier V*, runs in only polynomial time.

3.2 ZK with Super-polynomial Strong Simulation

We now define zero-knowledge with strong simulation. We use the definition in [KS17].

Definition 3 ((T11, Tsim, T2k, 1L, 0.k)-SPSS Zero Knowledge Arguments). We call an interactive
protocol between a PPT prover P with input (x,w) € Ry, for some language L, and PPT verifier V
with input x, denoted by (P, V)(xz,w), a super-polynomial strong simulation (SPSS) zero-knowledge
argument if it satisfies the following properties and Ty < Tgim < Ty < T :

e Completeness. For every (z,w) € Rp, Pr[V outputs 1|(P,V)(z,w)] > 1 — negl()\), where
the probability is over the random coins of P and V.

e Ti-Adaptive-Soundness. For any language L that can be decided in time at most Ty,
every x, every z € {0,1}", and every poly-non-uniform prover P* running in time at most
T that chooses x adaptively after observing verifier message, Pr[(P*(z),V)(z) =1 N = &
L] < negl(\), where the probability is over the random coins of V.

® Tsim, Tyk, 0.k-Zero Knowledge. There exists a (uniform) simulator S that runs in time
Tsim, such that for every xz, every non-uniform Ty -verifier V* with advice z, and every Ty-
distinguisher D: |Pr[D(, z, viewy- [(P, V*(2)) (z, w)]) = 1] —Pr[D(z,2,8"" (x,2)) = 1]| < du(A)

3.3 Non-Malleability w.r.t. Commitment

Throughout this paper, we will use A to denote the security parameter, and negl(\) to denote any
function that is asymptotically smaller than m for any polynomial poly(-). We will use PPT
to describe a probabilistic polynomial time machine. We will also use the words “rounds” and
“messages” interchangeably.

We follow the definition of non-malleable commitments introduced by Pass and Rosen [PRO05]
and further refined by Lin et al [LPV08] and Goyal [Goyll] (which in turn build on the original
definition of [DDN91]). In the real interaction, there is a man-in-the-middle adversary MIM in-
teracting with a committer C (where C commits to value v) in the left session, and interacting
with receiver R in the right session. Prior to the interaction, the value v is given to C as local
input. MIM receives an auxiliary input z, which might contain a-priori information about v. Then
the commit phase is executed. Let MIM py(val, z) denote a random variable that describes the

value val committed by the MIM in the right session, jointly with the view of the MIM in the full
experiment. In the simulated experiment, a PPT simulator § directly interacts with the MIM. Let
Simc, R>(1’\,z) denote the random variable describing the value val committed to by & and the

output view of S. If the tags in the left and right interaction are equal, the value val committed in
the right interaction, is defined to be L in both experiments.

Concurrent non-malleable commitment schemes consider a setting where the MIM interacts with
committers in polynomially many (a-priori unbounded) left sessions, and interacts with receiver(s)
in upto £(n) right sessions. If any of the tags (in any right session) are equal to any of the tags
in any left session, we set the value committed by the MIM to L for that session. The we let
MIM ¢ Ry (val,)™ denote the joint distribution of all the values committed by the MIM in all
right sessions, together with the view of the MIM in the full experiment, and Sim<C,R>(1)‘, z)many
denotes the joint distribution of all the values committed by the simulator S (with access to the
MIM) in all right sessions together with the view.

Definition 4 (Non-malleable Commitments w.r.t. Commitment). A commitment scheme (C, R)
is said to be non-malleable if for every PPT MIM, there exists a PPT simulator S such that the
following ensembles are computationally indistinguishable:

- A
{MIM<CvR>(Va|’Z)}neN,ve{O,l}A,zE{O,l}* and {Simc,p) (1 ’z)}nEN,UE{O,l}A726{0,1}*

Definition 5 (¢(n)-Concurrent Non-malleable Commitments w.r.t. Commitment). A commitment
scheme (C, R) is said to be £(n)-concurrent non-malleable if for every PPT MIM, there exists a PPT
simulator S such that the following ensembles are computationally indistinguishable:

man . A man
{MIM ¢, gy (val,)™ y}neN,vE{O,l}A,zE{O,l}* and {Simc,g) (17, 2)™ y}neN,ue{OJ}A,ze{OJ}*

We say that a commitment scheme is fully concurrent, with respect to commitment, if it is
concurrent for any a-priori unbounded polynomial ¢(n).

3.4 Secure Multiparty Computation

As in [Gol04], we follow the real-ideal paradigm for defining secure multi-party computation. The
only difference is that our simulator can run in super-polynomial time. A formal definition can be
found in Appendix A.

Semi-malicious adversary: An adversary is said to be semi-malicious if it follows the protocol

correctly, but with potentially maliciously chosen randomness. We refer the reader to Appendix A.2
for more details.

10

Concurrent security The definition of concurrent secure multi-party computation considers
an extension of the real-ideal model where the adversary participates simultaneously in many
executions, corrupting subsets of parties in each execution. We refer the reader to [CLP10, GGJS12]
for a detailed definition of concurrent security.

4 Three Round Malicious Secure MPC

Let f be any functionality. Consider n parties Py, ..., P, with inputs xi,...,X, respectively who
wish to compute f on their joint inputs by running a secure multiparty computation(MPC) protocol.
Let 75M be any 3 round protocol that runs without any setup for the above task and is secure
against adversaries that can be completely malicious in the first round, semi-malicious in the next
two rounds and can corrupt upto (n — 1) parties. In this section, we show how to generically
SM into a 3 round protocol m without setup with super-polynomial simulation and
secure against malicious adversaries that can corrupt upto (n — 1) parties. Formally, we prove the
following theorem:

transform

Theorem 1. Assuming sub-exponentially secure:
o A, where A € {DDH, Quadratic Residuosity, N** Residuosity} AND

e 3 round MPC protocol for any functionality f that is secure against malicious adversaries in
the first round and semi-malicious adversaries in the next two rounds,

the protocol presented in Figure 2 is a 8 round MPC protocol for any functionality f, in the plain
model with super-polynomial simulation.

We can instantiate the underlying MPC protocol with the construction of Brakerski et al.[BHP17],
which satisfies our requirements. That is:

Imported Lemma 1. ([BHP17]): There exists a 3 round MPC protocol for any functionality
f based on the LWE assumption that is secure against malicious adversaries in the first round and
semi-malicious adversaries in the next 2 rounds.

Additionally, Dodis et al.[DHRW16] give a 2 round construction based on indistinguishability
obfuscation that is secure against semi-malicious adversaries. Of course, this can be interpreted as
a 3 round construction where the first round has no message and is trivially secure against malicious
adversaries in the first round.

Formally, we obtain the following corollary on instantiating the MPC protocol with the sub-
exponentially secure variants of the above:

Corollary 2. Assuming sub-exponentially secure:
e A, where A € {DDH, Quadratic Residuosity, N'* Residuosity} AND
e B, where B € {LWE, Indistinguishability Obfuscation}

the protocol presented in Figure 2 is a 8 round MPC protocol for any functionality f, in the plain
model with super-polynomial simulation.

Note that though the two underlying MPC protocols can be based on the security of polynomi-
ally hard LWE and polynomially hard iO respectively, we require sub-exponentially secure variants
of the MPC protocol and hence we use sub-exponentially secure LWE and iO in our constructions.

11

Remark 1 (On the Semi-Malicious security of [DHRW16]). We note that the protocol in [DHRW16]
works in two rounds: In the first round, each party provides a suitably “spooky” homomorphic
encryption of its input, under public keys chosen by each party independently. After the first
round, each party carries out a deterministic homomorphic evaluation procedure that results in an
encryption of f(x), where x is a vector that combines inputs of all parties. In the second round,
each party computes a partial decryption of this ciphertext. The result is guaranteed to be the sum
of these partial decryptions in a suitable cyclic group.

Furthermore, their protocol satisfies the invariant that given the (possibly maliciously chosen)
randommness of the corrupted parties for the first round, and given the vector of ciphertexts that are
fized after the first round, it is possible to efficiently compute, at the end of the first round, the
decryption shares for all corrupted parties. Thus, if there is one honest party and the other parties
are corrupted, given the final output value f(x), the first round ciphertexts and the randomness
of the corrupted semi-malicious parties, it is possible to compute the unique decryption share of
the honest party that would force the desired output value. This property shows that their protocol
satisfies semi-malicious security, since the first round message of the simulated honest party can
simply be the honest first round message corresponding to the input 0, and the second round message
can be computed from f(x), the first round ciphertexts and the randomness of the corrupted semi-
malicious parties. The work of [MW16] further showed how to transform such a 2-round semi-
malicious MPC protocol that handles exactly all-but-one corruptions into a 2-round semi-malicious
MPC protocol that handles any number of corruptions.

4.1 High-Level Overview

Before describing our protocol formally, to help the exposition, we first give a brief overview of the
construction in this subsection.

Consider n parties Py, ..., P, with inputs x1, ..., X, respectively who wish to run a secure MPC
to compute a function f on their joint inputs. Initially, each party P; picks some randomness r;
that it will use to run the semi-malicious protocol 7M.

In the first round, each party P; sends the first round message of the protocol 7M. Then,
with every other party P;, P; initiates two executions of the SPSS.ZK argument system playing the
verifier’s role. Additionally, P; and P; also initiate two executions of a non-malleable commitment
scheme - each acting as the committer in one of them. P; commits to the pair (x;,r;) - that is, the
input and randomness used in the protocol 7M. Recall that the first round messages of M are
already secure against malicious adversaries, so intuitively, the protocol doesn’t require any proofs
in the first round.

In the second round, each party P; sends the second round message of the protocol 7°M using
input x; and randomness r;. Then, P; finishes executing the non-malleable commitments (playing
the committer’s role) with every other party P;, committing to (x;,r;). Finally, with every other
party P;, P; completes the execution of the SPSS.ZK argument by sending its second message - P;
proves that the two messages sent so far using the protocol 7°M were correctly generated using the
pair (x;,r;) committed to using the non-malleable commitment.

In the third round, each party P; first verifies all the proofs it received in the last round and
sends a global abort (asking all the parties to abort) if any proof does not verify. Then, P; sends
the third round message of the protocol 7°M using input x; and randomness r;. Finally, as before,
with every other party P;, P; completes the execution of the SPSS.ZK argument by sending its
second message - P; proves that the two messages sent so far using the protocol 7>M were correctly
generated using the pair (x;,r;) committed to using the non-malleable commitment.

Each party P; now computes its final output as follows. P; first verifies all the proofs it received

12

in the previous round and sends a global abort (asking all the parties to abort) if any proof does not
verify. Then, P; computes the output using the output computation algorithm of the semi-malicious
protocol 7M. This completes the protocol description.

Security Proof: We now briefly describe how the security proof works. Let’s consider an ad-
versary A who corrupts a set of parties. Recall that the goal is to move from the real world to
the ideal world such that the outputs of the honest parties along with the view of the adversary is
indistinguishable. We do this via a sequence of computationally indistinguishable hybrids.

The first hybrid Hyb,, refers to the real world. In Hyb,, the simulator extracts the adversary’s
input and randomness (used in protocol 7°M) by a brute force break of the non-malleable com-
mitment. The simulator aborts if the extracted values don’t reconstruct the protocol messages for
the underlying semi-malicious protocol correctly. These two hybrids are indistinguishable because
from the soundness of the proof system, except with negligible probability, the values extracted by
the simulator correctly reconstruct to protocol messages.

Then, in Hybs, we switch the SPSS.ZK arguments used by all honest parties in rounds 2 and 3
to simulated ones. This hybrid is computationally indistinguishable from the previous hybrid by
the security of the SPSS.ZK system. Notice that when we switch from real to simulated arguments,
we can no longer rely on the adversary’s zero knowledge arguments to argue the correctness of the
values extracted by breaking the non-malleable commitment. That is, the adversary’s arguments
may not be simulation sound. However, recall that to check the validity of the extracted values,
we only rely on the correct reconstruction of the semi-malicious protocol messages, and hence this
is not a problem. Also, the running time of the simulator in these two hybrids is the time taken to
break the non-malleable commitment ng'jn - which must be lesser than the time against which the
zero knowledge property holds - Tzk.

In Hyb,, we switch all the non-malleable commitments sent by honest parties to be commitments
of 0 instead of the actual input and randomness. Recall that since the arguments of the honest
parties are simulated, this doesn’t violate correctness. Also, this hybrid is computationally indistin-
guishable from the previous hybrid by the security of the non-malleable commitment scheme. One
issue that arises here is whether the simulator continues to extract the adversary’s inputs correctly.
Recall that to extract, the simulator has to break the non-malleable commitment for which it has
to run in time ng‘:n. However, then the reduction to the security of the non-malleable commitment
only makes sense if the simulator runs in time lesser than that needed to break the non-malleable
commitment. We overcome this issue by a sequence of sub-hybrids where we first switch the simu-
lator to not extract the adversary’s inputs, then switch the non-malleable commitments and then
finally go back to the simulator extracting the adversary’s inputs. We elaborate on this in the
formal proof.

Then, in Hybs we run the simulator of M using the extracted values to generate the protocol
messages. This hybrid is indistinguishable from the previous one by the security of 7M. Once
again, in order to ensure correctness of the extracted values, we require the running time of the
simulator - which is T%gﬁn to be lesser than the time against which the semi-malicious protocol M
is secure. This is because, then, the simulator can continue to extract the adversary’s message and
randomness used for the protocol 7°M by breaking the semi-malicious protocol. This hybrid (Hybs)
now corresponds to the ideal world. Notice that our simulation is in fact straight-line. There are
other minor technicalities that arise and we elaborate on this in the formal proof.

4.2 Construction

We first list some notation and the primitives used before describing the construction.

13

Notation:
e)\ denotes the security parameter.

e SPSS.ZK = (ZK1, ZK9, ZK3) is a two message zero knowledge argument with super polynomial
strong simulation (SPSS-ZK). The zero knowledge property holds against all adversaries
running in time Tzk. Let Sim?X denote the simulator that produces simulated ZK proofs and
let T%‘,’(“ denote its running time. [KS17] give a construction of an SPSS.ZK scheme satisfying
these properties that can be based on one of the following sub-exponential assumptions: 1)
DDH; 2) Quadratic Residuosity; 3) N** Residuosity.

e NMCom = (NMCom¥, NMCom3$, NMCom3) is a two message concurrent non-malleable com-
mitment scheme with respect to commitment in the simultaneous message model. Here,
NMCom¥, NMCom3 denote the first message of the receiver and sender respectively while
NMComg denotes the second message of the sender. It is secure against all adversaries run-
ning in time T%f)cm, but can be broken by adversaries running in time TEQ:T] Let Ext.Com

denote a brute force algorithm running in time TEC;g'ﬁn that can break the commitment scheme.

[KS17] give a construction of an NMCom scheme satisfying these properties that can be based

on one of the following sub-exponential assumptions: 1) DDH; 2) Quadratic Residuosity; 3)

Nt Residuosity.

The NMCom we use is tagged. In the authenticated channels setting, the tag of each user
performing a non-malleable commitment can just be its identity. In the general setting, in
the first round, each party can choose a strong digital signature verification key VK and
signing key, and then sign all its messages using this signature scheme for every message sent
in the protocol. This VK is then used as the tag for all non-malleable commitments. This
ensures that every adversarial party must choose a tag that is different than any tags chosen
by honest parties, otherwise the adversary will not be able to sign any of its messages by
the existential unforgeability property of the signature scheme. This is precisely the property
that is assumed when applying NMCom. For ease of notation, we suppress writing the tags
explicitly in our protocols below.

e ™M is a sub-exponentially secure 3 round MPC protocol that is secure against malicious

adversaries in the first round and semi-malicious adversaries in the next two rounds. This
protocol is secure against all adversaries running in time Tgy. Let (MSGy, MSGe, MSG3)
denote the algorithms used by any party to compute the messages in each of the three rounds
and OUT denotes the algorithm to compute the final output. Further, let’s assume that this
protocol m°M runs over a broadcast channel. Let S = (S1,82,83) denote the straight line
simulator for this protocol - that is, S; is the simulator’s algorithm to compute the i** round
messages. Also, we make the following assumptions about the protocol structure, that is
satisfied by the instantiations:

1. &1 and S run without any input other than the protocol transcript so far - in particular,
they don’t need the input, randomness and output of the malicious parties. For Sy,
this must necessarily be true since the first round of M is secure against malicious
adversaries. We make the assumption only on S.!

2. The algorithm MSG3 doesn’t require any new input or randomness that was not already
used in the algorithms MSGy, MSGs. Looking ahead, this is used in our security proof

!This assumption can be removed by running the commitment extractor on the first round messages itself. This
idea is used in Section 5.

14

when we want to invoke the simulator of this protocol 7°M, we need to be sure that
we have fed the correct input and randomness to the simulator. This is true for all
instantiantions we consider, where the semi-malicious simulator requires only the secret
keys of corrupted parties (that are fixed in the second round) apart from the protocol
transcript.

In order to realize our protocol, we require that poly(A) < T%Q“ < T?ffm < ng'fn < Tzk, Tsm.
The construction of the protocol is described in Figure 2. We assume broadcast channels. In

our construction, we use proofs for a some NP languages that we elaborate on below.

NP language L is characterized by the following relation R.
Statement : st = (cy, €1, C2, msg,, Msgy, T)

Witness : w = (inp, r,r¢)

R(st,w) =1 if and only if :

o (= NMCom%(inp, r;re) AND

e ¢ = NMComj (inp, r,c1;re) AND
e msg; = MSG;(inp;r) AND

e msgy, = MSGy(inp, 7;r)

That is, the messages (c1,¢1,c2) form a non-malleable commitment of (inp,r) such that msg, is
the second round message using input inp, randomness r by running the protocol 7°M, where the
protocol transcript so far is 7.

NP language L; is characterized by the following relation R;.
Statement : st = (c,¢1, C2, Msgs, T)

Witness : w = (inp, r,r¢)

R(st,w) =1 if and only if :

e & = NMCom3(inp, r;rc) AND
e c; = NMCom3 (inp, r,cy;r.) AND
e msgs; = MSGs(inp, 7;r)

That is, the messages (c1,¢1,c2) form a non-malleable commitment of (inp,r) such that msgs is
the third round message using input inp, randomness r by running the protocol #°M, where the
protocol transcript so far is 7.

In the protocol, let’s assume that every party has an associated identity id. For any session sid,
each parties generates its non-malleable commitment using the tag (id||sid).

The correctness of the protocol follows from the correctness of the protocol 7M. the non-
malleable commitment scheme NMCom and the zero knowledge proof system SPSS.ZK.

4.3 Security Proof

In this section, we formally prove Theorem 1.
Consider an adversary A who corrupts ¢ parties where t < n. For each party P;, let’s say that the
size of input and randomness used in the protocol =M is p(A) for some polynomial p. That is,

15

Inputs: Each party P; has input x; and uses randomness r; to compute the message in each round
of the protocol 7M. We now describe the messages sent by party P;. We will use superscripts to
denote the intended recipient of the message if it is not meant to be used by all parties.

1. Round 1:
P; does the following:
e Compute msgy ; < MSG1(x;;r;).
e For each j € [n] with j # i, compute:
- éjll — NMCom3 (x;, r;; rfn) using a random string rgz and c{z — NMComft(1%).
- (ver{’i,zkstii) ¢ ZK;(1*) and (ver) ;, zkst] ;) + ZKy(1%).
e Send (msgy ;, ¢ ;,c] ;,ver] ;,vers ;) for all j.
2. Round 2:
Let 71 denote the protocol transcript after round 1. P; does the following:
e Compute msgy; < MSGa(x;, 715 1;).
e For each j € [n] with j # i, compute:

— cj22 — NMComj (x;, ri, cil’j; ril) using the same random string ril
— prove); + ZKy(ver! ; st} ; wj ;) for the statement st} , = (ci ,,¢] ;. ; msg, ,,
msg, ;, 71) € L using witness wy ; = (xi, ri, 17 ;).
e Send (msgu,céﬂ-, proveJQ‘,i) for all j.
3. Round 3:
Let 7 denote the protocol transcript after round 2. P; does the following:
e Compute msgs; < MSGz(x;, T2; ;).
e For each j € [n]| with j # 4, do:
— Abort if ZKg(zkst{J,sté,j) # 1 where st’é’j = (c{ji,é’i’j,céyj,msglyj,mng,j,Tl). In
particular, send a global abort signal to all parties so that everyone aborts.

— provey ; — ZKg(verh ;, sty ;,wy ;) for the statement st} ; = (c} ;,¢] ;, ¢35, Msgs 5, T2) €

Ly using witness wy ; = (X, i, 1l ;).
e Send (msgj, proveéyi) for all j.
4. Output Computation:
Let 73 denote the protocol transcript after round 3. P; does the following:

e For each j € [n] with j # i, do:
— Abort ifZKg(zkstgvi,st:@’j) # 1 where stgj = (C{,ia éij,cg’j, msg; ;, 72). In particular,
send a global abort signal to all parties so that everyone aborts.
e Compute output y; < OUT(x;, 73;1;).

Figure 2: 3 round MPC Protocol 7 for functionality f.

|(xi,r;)| = p(A). The strategy of the simulator Sim against a malicious adversary A is described in
Figure 3.

Here, in the simulation, we crucially use the two assumptions about the protocol structure. The
first one is easy to notice since the simulator Sim has to run the semi-malicious to produce the first

16

1. Round 1: For each honest party P;, Sim does the following:
o Compute msg, ; < S1(1*,i). For each j € [n] with j # i, compute:
— &+ NMCom$ (0PW), ¢ , «~ NMCom$(1*).

- (ver{,i,zkst{i) + ZKy(1*) and (verg’i,zkstéi) — ZKq(1%).

e Send (msglﬁi,é{wc{’i,ver{’i,veréj) for all j € [n].
2. Round 2: Let 7; denote the protocol transcript after round 1. For each honest party P;,
e Compute msgy; < Sz(71,4). For each j € [n] with j # i, compute:
- Cjéﬂ- — NMCom3 (0P, c’i’j; rii) using a random string riﬂ
- prove;i — SimZK(verij,sté,i) for stgﬂ» = (cij,é]i’i,c;i, msg; ;, Msgy;,71) € L. Ob-

serve that this takes time T%i{(".

e Send (msgu,c%'J, prove%}i) for all j € [n].
3. Input Extraction: Sim does the following:
e For each honest party P; and for each j € [n] with j # 4, do:
— Abort if ZK3(zkst{,i,st§’j) # 1 where 7 is the protocol transcript after round 1
such that stéd = (cii,éli,j,cé,j, msgy j, Msgy ;,T1)
Lort) = Ext.Com(cjllﬂ.7 éli,j’ céj). That is, this is the input and random-

AN
ness of party P; seen by party P;. This step takes time TEk .

— Compute (x

e For each malicious party P;, do:

— Output “Special Abort” if the set of values {(xé, r;)} computed in the last step, for
all i corresponding to honest parties P; is not equal. Set (x;,r;) = (le, rjl) Output

“Special Abort” if msg; ; # MSGi(x;,rj) and msgy ; # MSGa(x;, rj, 1)

— Send all extracted x; to the trusted functionality and receive output y.

— Let R denote the set of all {x;,r;}.

4. Round 3: Let 7 denote the protocol transcript after round 2. For each honest party P;,
compute and send msgs; < S3(y,R,72,4) together with proveéﬂ- for j € [n],j # i where
proveéi — SimZK(veréJ,stg,i) for the statement sté}i = (c’i7j,é{7i,cg7i, msgs ;, 72) € L1. Ob-

serve that this takes time T%im.
5. Special Abort Phase: Sim does the following:

e Output “Special Abort” if for each malicious party P;, msgs ; # MSGz(x;,rj, T2).
6. Output Computation: Sim does the following:
e For each honest party P; and for each j € [n] with j # 4, abort if ZKg(zkstgﬂ., stéyj) #1

i (i i
where stj ; = (¢ ;,€] ;, €5, msgs ;, T2).

e Else instruct the ideal functionality to deliver output to the honest parties.

Figure 3: Simulation strategy in the 3 round protocol

and second messages before it has extracted the adversary’s input and randomness. For the second
assumption, observe that in order to run the simulator algorithm Ss, Sim has to feed it the entire
input and randomness of the adversary and so these have to be bound to by the end of the second

17

round.

We now show that the simulation strategy described in Figure 3 is successful against all malicious
PPT adversaries. That is, the view of the adversary along with the output of the honest parties
is computationally indistinguishable in the real and ideal worlds. We will show this via a series
of computationally indistinguishable hybrids where the first hybrid Hyb; corresponds to the real
world and the last hybrid Hybg corresponds to the ideal world.

1. Hyb;: In this hybrid, consider a simulator Simpyp, that plays the role of the honest parties.
Simpyp Tuns in polynomial time.

2. Hyby: In this hybrid, the simulator Simpyp also runs the “Input Extraction” phase and the

“Special Abort” phase in step3 and 5 in Figure 3. Simpyp, runs in time ngﬁn.

3. Hybg: This hybrid is identical to the previous hybrid except that in Rounds 2 and 3, Simpyp
now computes simulated SPSSZK proofs as done in Round 2 in Figure 3. Once again, Simpyy,

: : Brk
runs in time TZZ5 ..

4. Hyb,: This hybrid is identical to the previous hybrid except that Simpy, now computes all
the (6{7i, c%l) as non-malleable commitments of 0P as done in Round 2 in Figure 3. Once
Brk

again, Simpyp runs in time TECf .

5. Hybs: This hybrid is identical to the previous hybrid except that in Round 3, Simpy, now
computes the messages of the protocol 7°M using the simulator algorithms S = (Sy, S, S3)
as done by Sim in the ideal world. Simpy, also instructs the ideal functionality to deliver
outputs to the honest parties as done by Sim. This hybrid is now same as the ideal world.

. . . . Brk
Once again, Simpyp, Tuns in time TZgs .

We now show that every pair of successive hybrids is computationally indistinguishable.

Lemma 1. Assuming soundness of the SPSS.ZK argument system, binding of the non-malleable
commitment scheme and correctness of the protocol mM, Hyb, is computationally indistinguishable
from Hyb,.

Proof. The only difference between the two hybrids is that in Hyby, Simpy, may output “Special
Abort” which doesn’t happen in Hyb;. More specifically, in Hyby, “Special Abort” occurs if event
E described below is true.

Event E: Is true if : For any malicious party P;

e All the SPSS.ZK proofs sent by P; in round 2 and 3 verify correctly.
(AND)

e Either of the following occur:

The set of values {(xz-, r;)} that are committed to using the non-malleable commitment
is not same for every i where P; is honest. (OR)

msg; ; # MSGi(x;,r;) (OR)
msgy ; # MSGa(x;, rj, 71) where 71 is the protocol transcript after round 1. (OR)

— msgy ; # MSG3(x;, rj, T2) where 7 is the protocol transcript after round 2.

18

That is, in simpler terms, the event E occurs if for any malicious party, it gives valid ZK proofs
in round 2 and 3 but its protocol transcript is not consistent with the values it committed to.

Therefore, in order to prove the indistinguishability of the two hybrids, it is enough to prove
the lemma below.

Sub-Lemma 1. Pr[Event E is true in Hyb,] = negl(}).

Proof. We now prove the sub-lemma. Suppose the event E does occur. From the binding property
of the commitment scheme and the correctness of the protocol 7°M, observe that if any of the above
conditions are true, it means there exists 7, j such that the statement sth = (le,i’ cgJ, msg; ;, Msgy j,71) &
L, where P; is honest and P; is malicious. However, the proof for the statement verified correctly
which means that the adversary has produced a valid proof for a false statement. This violates the
soundness property of the SPSSZK argument system which is a contradiction. O

O]

Lemma 2. Assuming the zero knowledge property of the SPSS.ZK argument system, Hyby is com-
putationally indistinguishable from Hybs.

Proof. The only difference between the two hybrids is that in Hyb,, Simpy}, computes the proofs in
Rounds 2 and 3 honestly, by running the algorithm ZKy of the SPSS.ZK argument system, whereas
in Hybs, a simulated proof is used. If the adversary A can distinguish between the two hybrids, we
will use A to design an algorithm Azk that breaks the zero knowledge property of the argument
system.

Suppose the adversary can distinguish between the two hybrids with non-negligible probability
p. Then, by a simple hybrid argument, there exists hybrids Hyb, ;, and Hyby ;. that the adversary
can distinguish with non-negligible probability p’ < p such that: the only difference between the
two hybrids is in the proof sent by an honest party P; to a (malicious) party P; in one of the rounds
. Let’s say it is the proof in round 2.

Azk performs the role of Simpyp in its interaction with A and performs all the steps exactly
as in Hyby , except the proof in Round 2 sent by P; to P;. It interacts with a challenger C
of the SPSS.ZK argument system and sends the first round message ver"lvj it received from the
adversary. Az receives from C a proof that is either honestly computed or simulated. Azk sets
this received proof as its message provei2 in Round 2 of its interaction with A. In the first case,
this exactly corresponds to Hyb, ;, while the latter exactly corresponds to Hybs ;1. Therefore, if A
can distinguish between the two hybrids, Azk can use the same distinguishing guess to distinguish
the proofs: i.e, decide whether the proofs received from C were honest or simulated. Now, notice
that Azk runs only in time ngl:n (during the input extraction phase), while the SPSS.ZK system
is secure against adversaries running in time Tzk. Since nglﬁn < Tyzk, this is a contradiction and
hence proves the lemma.
In particular, this also means the following: Pr[Event E is true in Hybs] = negl()). O

Lemma 3. Assuming the non-malleability property of the non-malleable commitment scheme NMCom,
Hybs is computationally indistinguishable from Hyb,.

Proof. We will prove this using a series of computationally indistinguishable intermediate hybrids
as follows.

e Hyb; ,: This is same as Hybs except that the simulator Simyyp, does not run the input extrac-
tion phase apart from verifying the SPSS.ZK proofs. Also, Simyy, does not run the special
abort phase. In particular, the Ext.Com algorithm is not run and there is no “Special Abort”.

In this hybrid, Simpyp runs in time T%‘l’(“ which is lesser than ngl:n

19

e Hyb;5: This hybrid is identical to the previous hybrid except that in Round 2, Simpyp now
computes all the messages (¢ i c) Z) as non-malleable commitments of 0P as done by Sim
in the ideal world. In this hybrid too, Simpy, runs in time TS'm

e Hybs 3: This is same as Hybs except that the simulator does run the input extraction phase
and the special abort phase. It is easy to see that Hybg 3 is the same as Hyb,. In this hybrid,

Simpyp runs in time TEC;(;‘:“ which is greater than T%iﬁ".

We now prove the indistinguishability of these intermediate hybrids and this completes the proof
of the lemma.

Sub-Lemma 2. Hyb; is statistically indistinguishable from Hybsg ;.

Proof. The only difference between the two hybrids is that in Hybs, the simulator might output
“Special Abort” which doesn’t happen in Hybs ;. As shown in the proof of Lemma 2, the probability
that Event E occurs in Hybs is negligible. This means that the probability that the simulator
outputs “Special Abort” in Hybs is negligible and this completes the proof. O

Sub-Lemma 3. Assuming the non-malleability property of the non-malleable commitment scheme
NMCom, Hybs ; is computationally indistinguishable from Hybs o.

Proof. The only difference between the two hybrids is that in Hybs ;, for every honest party P;,
Simyyp computes the commitment messages (é{}i, c%l) as a commitment of (x;, r;), whereas in Hybs o,
they are computed as a commitment of (Op()‘)). If the adversary A can distinguish between the two
hybrids, we will use A to design an algorithm Anmc that breaks the security of the non-malleable
commitment scheme NMCom.

Anmc acts as the man-in-the-middle adversary interacting with a challenger C. Anymc also plays
the role of SlmHyb in its interaction with the adversary A. It generates all the messages except the
messages ¢} i and (c1 i c) Z) exactly as done by Simpyp, in Hybs ;. Corresponding to each message c p
that Anmc has to send it receives one first round message from C (on the right side) correspondmg
to the scheme NMCom. Similarly, it receives first round messages c1 from C (on the left side).

Anmc forwards these messages to the adversary A as its first round messages (cLi7 c{l) Similarly,
for each pair of messages (éij, ciLj) it receives from A as part of the first round messages of the
scheme NMCom, Anmc forwards the messages to C as its first round messages for the commitment
(to the left and right side respectively). Then, for each ¢, that Anmc is supposed to send to A, it
receives a second round commitment message from the cilallenger C. In one case, all of these are
commitments to the respective (x;,r;) values while in the second case, they are all commitments to
(Op) Anmc forwards these messages as its commitment messages c i to the adversary A. Once
again, it forwards each message CZJ it receives from A, as its second round commitment message
in its interaction with the challenger C. That is, these are the commitments on the right side
generated by the man-in-the-middle.

Now, we can clearly see that in the first case, when C generates commitments to (x;,r;), A’s
view corresponds to Hybs; while in the latter case, it exactly corresponds to Hybs,. However,
from the security of the non-malleable commitment scheme, the joint distribution of the value
committed to by the adversary Anmc (which is the same as A’s commitments) and its view must
be indistinguishable in both cases. Therefore, if A can distinguish between the two hybrids, then
Anmc can break the non-malleability property of the commitment scheme NMCom. However, Axmc
only runs in time T%‘l’(“ < Tsefn and hence this is a contradiction, thus proving the sub-lemma.

20

Also, notice that since the joint distribution of the adversary A’s committed values and his
view is indistinguishable in both hybrids, this implies that Event E still occurs only with negligible
probability in Hybs 5 as well. O

Sub-Lemma 4. Hybs o is statistically indistinguishable from Hybsg 5.

Proof. The only difference between the two hybrids is that in Hybg 5, the simulator might output
“Special Abort” which doesn’t happen in Hybs,. As shown in the proof of Sub-Lemma 3, the
probability that Event E occurs in Hybs 5 is negligible. This means that the probability that the
simulator outputs “Special Abort” in Hybs 5 is negligible and this completes the proof.]

O]

Lemma 4. Assuming the security of the protocol ™M, Hyb, is computationally indistinguishable
from Hybs.

Proof. The only difference between the two hybrids is that in Hyb,, Simpy, computes the messages
of protocol ™M correctly using the honest parties’ inputs, whereas in Hybs, they are computed
by running the simulator S for protocol 7M. If the adversary A can distinguish between the two
hybrids, we will use A to design an algorithm Asy that can break the security of protocol 7M.
Aswm interacts with a challenger C to break the security of protocol 7M. Also, Asym performs
the role of Simpyp, in its interaction with the adversary A. Whatever parties A wishes to corrupt,
Asm corrupts the same parties in its interaction with 7M. Similarly, whatever messages A sends
to Agm as part of the protocol 7 that correspond to 7°M messages, Asm sends the same messages
to the challenger C. Now, whatever messages C sends, Agy forwards the same to the adversary A
as its messages for the m°M protocol. Agy does everything else exactly as in Hyb:;.
Observe that Agpy runs in time TE:}:“. If C sends messages that are computed correctly, this
exactly corresponds to Hyb, in Agum’s interaction with A. On the other hand, if C sends simulated
messages, this exactly corresponds to Hybs. Therefore, if A can distinguish between these two
hybrids, Asym can use the same distinguishing guess to break the security of protocol 7M. However,
M is secure against all adversaries running in time Tgy, where Tgy > ng'fﬂ and hence this is a

contradiction. This completes the proof of the lemma. O

5 Two Round Malicious Secure MPC for Input-less Functionali-
ties

Let f be any input-less functionality randomized functionalities. Consider n parties Py, ..., P, who
wish to compute f by running a secure multiparty computation(MPC) protocol. Let M be any
2 round MPC protocol for f in the plain model,that is secure against semi-malicious adversaries
corrupting upto (n—1) parties (such a protocol for general functionalities was described in [BHP17]).
In this section, we show how to generically transform 75 into a 2 round protocol 7; without setup
with super-polynomial simulation and secure against malicious adversaries that can corrupt upto
(n — 1) parties. Formally, we prove the following theorem:

Theorem 3. Assuming sub-exponentially secure:
o A, where A € {DDH, Quadratic Residuosity, N* Residuosity} AND

e 2 round MPC protocol for any functionality f that is secure against semi-malicious adver-
saries,

21

the protocol presented in Figure 4 is a 2 round MPC' protocol for any input-less randomized func-
tionality f, in the plain model with super-polynomial simulation.

We can instantiate the underlying MPC protocol with the 2 round construction of [DHRW16]
to get the following corollary:

Corollary 4. Assuming sub-exponentially secure:
o A, where A € {DDH, Quadratic Residuosity, N** Residuosity} AND
o [Indistinguishability Obfuscation,

the protocol presented in Figure 4 is a 2 round MPC protocol for any input-less randomized func-
tionality f in the plain model with super-polynomial simulation.

5.1 High-Level Overview

Before describing our protocol formally, to help the exposition, we first give a brief overview of the
construction in this subsection.

Consider n parties Pq,...,P, with no inputs who wish to run a secure MPC to compute an
input-less randomized function f. Initially, each party P; picks some randomness r; that it will use
to run the semi-malicious protocol 7°M for the same functionality f.

In the first round, each party P; sends the first round message of the protocol 7M. Then,
with every other party P;, P; initiates an execution of the SPSS.ZK argument system playing the
verifier’s role. Additionally, P; and P; also initiate two executions of a non-malleable commitment
scheme - each acting as the committer in one of them. P; commits to the randomness r; used in
the protocol 7M.

In the second round, each party P; sends the second round message of the protocol 7°M using
randomness r;. Then, P; finishes executing the non-malleable commitments (playing the commit-
ter’s role) with every other party P;, committing to rr;. Finally, with every other party P;, P;
completes the execution of the SPSS.ZK argument by sending its second message - P; proves that
the two messages sent so far using the protocol 7°M were correctly generated using the randomness
r; committed to using the non-malleable commitment.

Each party P; now computes its final output as follows. P; first verifies all the proofs it received
in the last round and sends a global abort (asking all the parties to abort) if any proof does not
verify. Then, P; computes the output using the output computation algorithm of the semi-malicious
protocol 7M. This completes the protocol description.

Security Proof: We now briefly describe how the security proof works. Let’s consider an ad-
versary A who corrupts a set of parties. Recall that the goal is to move from the real world to
the ideal world such that the outputs of the honest parties along with the view of the adversary is
indistinguishable. We do this via a sequence of computationally indistinguishable hybrids.

In the first hybrid Hyb,, we start with the real world.

Then, in Hyb,, we switch the SPSS.ZK proofs used by all honest parties in round 2 to simulated
proofs. This hybrid is computationally indistinguishable from the previous hybrid by the security
of the SPSS.ZK system.

In Hybs, we switch all the non-malleable commitments sent by honest parties to be commitments
of 0 rather than the randomness. Recall that since the proofs were simulated, this doesn’t violate
correctness. Also, this hybrid is computationally indistinguishable from the previous hybrid by the
security of the non-malleable commitment scheme.

22

Then, in Hyb,, the simulator extracts the adversary’s randomness (used in protocol FSM) by a
brute force break of the non-malleable commitment. The simulator aborts if the extracted values
don’t reconstruct the protocol messages correctly. These two hybrids are indistinguishable be-
cause from the soundness of the proof system, the extraction works correctly except with negligible
probability. One technicality here is that since we are giving simulated proofs at this point, we
cannot rely on soundness anymore. To get around this, from the very first hybrid, we maintain
the invariant that in every hybrid, the value committed by the adversary using the non-malleable
commitments can be used to reconstruct the messages used in the semi-malicious protocol. There-
fore, at this point, as in Section 4, we need the time taken to break the non-malleable commitment
scheme ngﬁn to be lesser than the time against which the zero knowledge property holds - Tzk.
We elaborate on this in the formal proof.

Then, in Hybs we run the simulator of M using the extracted values to generate the protocol
messages. This hybrid is indistinguishable from the previous one by the security of 7M. Once
again, in order to ensure correctness of the extracted values, we require the running time of the
simulator - which is TEQ:T] to be lesser than the time against which the semi-malicious protocol M
is secure. This is because, then, the simulator can continue to extract the adversary’s message and
randomness used for the protocol 7°M by breaking the semi-malicious protocol.

Finally, Hybs corresponds to the ideal world. Notice that our simulation is in fact straight-line.
There are some slight technicalities that arise and we elaborate on this in the formal proof. We
now refer the reader to the formal protocol construction.

5.2 Construction

As in Section 4, we first list some notation and the primitives used before describing the construc-
tion.

Notation:
e)\ denotes the security parameter.

e SPSS.ZK = (ZKy, ZK9, ZK3) is a two message zero knowledge argument with super polynomial
strong simulation (SPSS-ZK). The zero knowledge property holds against all adversaries
running in time Tzk. Let Sim?X denote the simulator that produces simulated ZK proofs and
let TSI denote its running time. [KS17] give a construction of an SPSS.ZK scheme satisfying
these properties that can be based on one of the following sub-exponential assumptions: 1)
DDH; 2) Quadratic Residuosity; 3) N** Residuosity.

e NMCom = (NMCom¥, NMCom3, NMCom3) is a two message concurrent non-malleable com-
mitment scheme with respect to commitment in the simultaneous message model. Here,
NMCom®, NMCom3 denote the first message of the receiver and sender respectively while
NMComg denotes the second message of the sender. It is secure against all adversaries run-
ning in time T?_‘;%, but can be broken by adversaries running in time ngl:n. Let Ext.Com
denote a brute force algorithm running in time ng'fn that can break the commitment scheme

just using the first round messages. [KS17] give a construction of an NMCom scheme satisfy-

ing these properties that can be based on one of the following sub-exponential assumptions:

1) DDH; 2) Quadratic Residuosity; 3) N** Residuosity.
M is a sub-exponentially secure 2 round MPC protocol that is secure against semi-malicious
adversaries. This protocol is secure against all adversaries running in time Tgy. Let (MSGy, MSGs)

23

denote the algorithms used by any party to compute the messages in each of the two rounds
and OUT denotes the algorithm to compute the final output. Further, let’s assume that this
protocol M runs over a broadcast channel. Let S = (S;,Ss) denote the simulator for the
protocol ™M - that is, S; is the simulator’s algorithm to compute the ¥ round messages.
Also, we make the following assumptions about the protocol structure that is satisfied by the
instantiations:

1. Since the protocol is for input-less functionalities, we assume that S; is identical to the
algorithm MSG; used by honest parties to generate their first message.

2. The algorithm MSGs doesn’t use any new randomness that was not already used in the
algorithm MSG;. This is similar to the assumption used in Section 4.

In order to realize our protocol, we require that poly(\) < T%E" < Tgffm < ng'fn < Tzk, Tsm-
The construction of the protocol is described in Figure 4. We assume broadcast channels. In

our construction, we use proofs for a some NP languages that we elaborate on below.

NP language L is characterized by the following relation R.
Statement : st = (cy, €1, C2, msg,, Msgy, T)

Witness : w = (r, rc)

R(st,w) =1 if and only if :

e & = NMCom3(r;rc) AND

e c; = NMCom3 (r,cy;r.) AND
e msg; = MSG;(L;r) AND

e msgy = MSGa(L, 7;r)

That is, the messages (c1,¢1,c2) form a non-malleable commitment of (inp,r) such that msg, is
the second round message using input inp, randomness r by running the protocol 7°M, where the
protocol transcript so far is 7.

In the protocol, let’s assume that every party has an associated identity id. For any session sid,
each parties generates its non-malleable commitment using the tag (id||sid).

The correctness of the protocol follows from the correctness of the protocol 7M., the non-
malleable commitment scheme NMCom and the zero knowledge proof system SPSS.ZK.

5.3 Security Proof

In this section, we formally prove Theorem 3.

Consider an adversary A who corrupts ¢ parties where ¢ < n. For each party P;, let’s say that the
size of randomness used in the protocol 7°M is p()\) for some polynomial p. That is, |r;| = p()\).
The strategy of the simulator Sim against a malicious adversary A is described in Figure 5.

Here, notice that since there is no input, the simulator gets the output from the ideal function-
ality - y right at the beginning. It still has to instruct the functionality to deliver output to the
honest party.

We now show that the simulation strategy described in Figure 5 is successful against all malicious
PPT adversaries. That is, the view of the adversary along with the output of the honest parties
is computationally indistinguishable in the real and ideal worlds. We will show this via a series

24

Inputs: Each party P; uses randomness r; to compute the message in each round of the protocol
7M. To make the exposition easier, we think of each party’s input as being L. We now describe
the messages sent by party P;. We will use superscripts to denote the intended recipient of the
message if it isn’t meant to be used by all parties.
1. Round 1:
P; does the following:
e Compute msgy ; <~ MSGy(L;r;).
e For each j € [n] with j # i, compute:
- éji,i — NMCom3 (r;; rz’i) using a random string réi. c{’i — NMComf(1%).
— (ver] ;,zkst] ;) «+ ZK;(1%).
e Send (msgu,é{7i,c{7i,ver{7i) for all j.
2. Round 2:
Let 71 denote the protocol transcript after round 1. P; does the following:
e Compute msgy; < MSGa (L, 71;1;).
e For each j € [n] with j # i, compute:

J

. . j
qi) using the same random string r_ ;.

— c%z- — NMComg(ri,ciLj; r
- provegﬂ. — ZKg(veri’j,sth,Wg’i) for the statement stgﬂ- = (ciLj, 6{72-, c§7i, msgy ;,
msgy ;,71) € L using witness W%’z- = (ry, "f;z)
e Send (msg,;, Cy ;, provey ;) for all j.
3. Output Computation:
Let 7 denote the protocol transcript after round 2. P; does the following:
e For each j € [n] with j # 4, do:
— Abort if ZKg(zkst{J,sté’j) # 1 where stgﬁj = (C{}i,éij,Céj,m5g17j7m5g2,j77—1)' In
particular, send a global abort signal to all parties so that everyone aborts.
e Compute output y; < OUT(L, mo;1;).

Figure 4: 2 round MPC Protocol 7; for input-less randomized functionality f.

of computationally indistinguishable hybrids where the first hybrid Hyb; corresponds to the real
world and the last hybrid Hybg corresponds to the ideal world.

1. Hyby: In this hybrid, consider a simulator Simpyy, that plays the role of the honest parties.
Simpyp runs in polynomial time.

2. Hyby: This hybrid is identical to the previous hybrid except that in Round 2, Simpy, now
computes simulated SPSSZK proofs as done in Round 2 in Figure 5. Here, Simpyp, runs in
time T%m’.

3. Hybs: This hybrid is identical to the previous hybrid except that Simpy, now computes all
the (é{z,céz) as non-malleable commitments of 0P as done in Round 2 in Figure 5. Once
again, Simpyp runs in time T%?‘.

4. Hyb,: In this hybrid, the simulator Simpyp, also runs the “Randomness Extraction” phase and

the “Special Abort” phase in steps 2 and 4 in Figure 5. Now, Simyyp, runs in time T(B:Q%.

25

1. Round 1: For each honest party P;, Sim does the following:
e Compute msg;; < MSG;(L;r;) using some random string r;. Recall that this is
identical to running the simulator Si1(1%,4). For each j € [n] with j # i, compute
& ; < NMCom? (0P™), ¢ ; «+— NMCom{(1*) and (ver] ;, zkst] ;) <= ZKy(1%).
e Send (msg, ;,¢] ;1 ;,very ;) for all j € [n].
2. Randomness Extraction: Sim does the following:
e For each honest party P; and for each j € [n] with j # 4, do:
— Compute (r;) = Ext.Com(c{’i,éil’j). That is, this is the randomness of party P;
seen by party P;. This step takes time ng':n.
e Initialize a variable correct = 1. Then, for each malicious party P;, do:
— Set correct = 0 if the set of values {ré-}, for all ¢ corresponding to honest parties P;
is not equal. Set r; = rjl- and let R denote the set of all {r;}.
— Set correct = 0 if msgy ; # MSGy(L,r;).
3. Round 2: Let 71 denote the protocol transcript after round 1. Sim does the following:
e For each honest party P;:
— If correct = 1, compute msg, ; < S2(71, R, 7).
— Else, compute msg, ; <~ MSGa(L, 71;r;) where r; was used in round 1.
e For each honest party P; and for each j € [n] with j # i, compute:

— Ch; NMCom3 (0P, ¢} ;;rl;) using a random string r’ ;.

— prove‘;i — SimZK(ver’i,j,stg’i) for st‘;i = (cij,é{’i,c%"i,msglﬂ-,msgzﬂ,ﬁ) € L. Ob-
serve that this takes time T%’Z‘.
e Send (mng’i,ch, provejzl?i) for all j € [n].
4. Special Abort Phase: For each malicious party P;:
e Output “Special Abort” if correct = 0.
e Also, output “Special Abort” if msg, ; # MSGa(L, rj, 7).
5. Output Computation: Sim does the following:
e For each honest party P; and for each j € [n] with j # 4, abort if ZKg(zkst{’i, st§7j) #1

i (i i
where st;, ; = (cLi,ch,ch, msg; j, MSgy j, T1)-

e Else, instruct the ideal functionality to deliver output to the honest parties.

Figure 5: Simulation strategy in the 2 round protocol

5. Hybs: In this hybrid, if the value of the variable correct = 1, Simpy,, now computes the second
round message of the protocol 7°M using the simulator algorithms Sy as done by Sim in the
ideal world. Simpyp also instructs the ideal functionality to deliver outputs to the honest

parties as done by Sim. This hybrid is now same as the ideal world. Once again, Simpy}, Tuns

Brk

in time TEZZ7 .

We now show that every pair of successive hybrids is computationally indistinguishable. Addition-
ally, we also prove some claims about certain hybrids that aids in the proof.
Before that, we will define the following event E that is useful in the proofs.

26

Event E: Occurs if, for any malicious party P; :

e All the SPSS.ZK proofs sent by P; in round 2 verify correctly.
(AND)

e Either of the following occur:

— The set of values {r;} that are committed to using the non-malleable commitment is not
same for every i where P; is honest. (OR)

— msg; ; # MSGi(L,r;) (OR)

— msgy; # MSGa (L, rj, 1) where 71 is the protocol transcript after round 1.

Lemma 5. Assuming soundness of the SPSS.ZK argument system, binding of the non-malleable
commitment scheme and correctness of the protocol m>M, Pr[Event E is true in Hyb;] = negl()).

Proof. Suppose the event E does occur in Hyb;. From the binding property of the commit-
ment scheme and the correctness of the protocol 7M. observe that if any of the conditions
that cause event E to occur are true, it means there exists i, j such that the statement st;j =
(c{’i,c§7j,msgld,msglj,n) ¢ L, where P; is honest and P; is malicious. However, the proof for
the statement verified correctly which means that the adversary has produced a valid proof for a
false statement. This violates the soundness property of the SPSSZK argument system which is a
contradiction. O

Lemma 6. Assuming the zero knowledge property of the SPSS.ZK argument system, Hyb, is com-
putationally indistinguishable from Hyb,.

Proof. The only difference between the two hybrids is that in Hyb;, Simpy, computes the proofs
in Rounds 2 honestly, by running the algorithm ZKs of the SPSS.ZK argument system, whereas in
Hybs, a simulated proof is used. If the adversary A can distinguish between the two hybrids, we
will use A to design an algorithm Azk that breaks the zero knowledge property of the argument
system.

Suppose the adversary can distinguish between the two hybrids with non-negligible probability
p. Then, by a simple hybrid argument, there exists hybrids Hyb, ;, and Hyb; ;. that the adversary
can distinguish with non-negligible probability p’ < p such that: the only difference between the
two hybrids is in the proof sent by an honest party P; to a (malicious) party P; in round 2.

Azk performs the role of Simpyp in its interaction with A and performs all the steps exactly
as in Hyb, ; except the proof in Round 2 sent by P; to P;. It interacts with a challenger C
of the SPSS.ZK argument system and sends the first round message ver’i’j it received from the
adversary. Az receives from C a proof that is either honestly computed or simulated. Azk sets
this received proof as its message prove] , in Round 2 of its interaction with .A. In the first case,
this exactly corresponds to Hyb,; ; while the latter exactly corresponds to Hyb, ;. Therefore, if A
can distinguish between the two hybrids, Azk can use the same distinguishing guess to distinguish
the proofs: i.e, decide whether the proofs received from C were honest or simulated. Now, notice
that Azk runs only in polynomial, while the SPSS.ZK system is secure against adversaries running
in time Tzk which is much larger. Thus, this is a contradiction and proves the lemma.]

Lemma 7. Assuming the zero knowledge property of the SPSS.ZK argument system,

|Pr[Event E is true in Hyb;] — Pr[Event E is true in Hyby|| = negl(}\).

27

Proof. Suppose the claim is not true. That is, there exists some adversary A for which the dif-
ference in the probability of the event E occurring between the two hybrids is some non-negligible
probability p. Then we will design an algorithm Azk that breaks the zero knowledge property of
the argument system.

Let’s say the number of proofs given by an honest party to a malicious party is g. Then, consider
a set of intermediate hybrids Hyb, ;,...,Hyb; , such that Hyb, , = Hyb, where the difference
between Hyb, ;,_; and Hyb, j is that we switch the k" proof alone from honest to simulated. By a
simple hybrid argument, there exists a k such that the difference in the probability of the event E
occurring between the two hybrids Hyb, ,_; and Hyb, ; is some non-negligible probability p < p.
Let the proof that is different between the two hybrids be that sent by a honest party P; to a
malicious party P;.

Azk performs the role of Simpyp in its interaction with A and performs all the steps exactly as
in Hyb; ;,_; except the proof in Round 2 sent by P; to P;. It interacts with a challenger C of the
SPSS.ZK argument system and sends the first round message veril’ ; 1t received from the adversary.
Azk receives from C a proof that is either honestly computed or simulated. Azk sets this received
proof as its message provei2 in Round 2 of its interaction with A. In the first case, this exactly
corresponds to Hyb, ;,_; while the latter exactly corresponds to Hyb, ;.

After completing the experiment, Azk runs the brute force extractor UC-Com on each of the
adversary’s messages to break the commitment. It then checks the adversary’s protocol messages
to see if the event E did occur. If the event E did occur, it outputs to the challenger C that the
proof was simulated and if the event E did not occur, it says real. Azk takes time TEC;;'fn to run.

Therefore, if A’s probability of making E occur is non-negligibly different in both the hybrids,
Azk can distinguish honest proofs from simulated ones with the same probability. Now, notice that
Azk runs only in time ngﬁn , while the SPSS.ZK system is secure against adversaries running in
time Tzk which is much larger. Thus, this is a contradiction and proves the lemma.]

Lemma 8. Pr[Event E is true in Hyb,] = negl(}).

Proof. This follows by combining Lemma 5 and Lemma 8. O

Lemma 9. Assuming the non-malleability property of the non-malleable commitment scheme NMCom,
Hyb, is computationally indistinguishable from Hybs.

Proof. The only difference between the two hybrids is that in Hyb,, for every honest party P;,
Simyyp computes the commitment messages (é{7i,cg7i) as a commitment of (r;), whereas in Hybs,
they are computed as a commitment of (Op()‘)). If the adversary A can distinguish between the two
hybrids, we will use A to design an algorithm Anmc that breaks the security of the non-malleable
commitment scheme NMCom.

Anmc acts as the man-in-the-middle adversary interacting with a challenger C. Anmc also plays
the role of Simpyy, in its interaction with the adversary A. It generates all the messages except the
messages c]“ and (é{,w Cél) exactly as done by Simyyp, in Hyby. Corresponding to each message c]“
that Anmc has to send, it receives one first round message from C (on the right side) corresponding
to the scheme NMCom. Similarly, it receives first round messages é{,i from C (on the left side).
Anmc forwards these messages to the adversary A as its first round messages (6{72-, c{z) Similarly,
for each pair of messages (éij, ciu) it receives from A as part of the first round messages of the
scheme NMCom, Anmc forwards the messages to C as its first round messages for the commitment
(to the left and right side respectively). Then, for each ¢, that Anmc is supposed to send to A, it
receives a second round commitment message from the Challenger C. In one case, all of these are
commitments to the respective (r;) values while in the second case, they are all commitments to

28

(Op(/\)). Anmc forwards these messages as its commitment messages c%z to the adversary A. Once
again, it forwards each message c’i ; 1t receives from A, as its second round commitment message
in its interaction with the challenger C. That is, these are the commitments on the right side
generated by the man-in-the-middle.

Now, we can clearly see that in the first case, when C generates commitments to r;, A’s view
corresponds to Hyb, while in the latter case, it exactly corresponds to Hybs;. However, from the
security of the non-malleable commitment scheme, the joint distribution of the value committed
to by the adversary Anmc (which is the same as A’s commitments) and its view must be indis-
tinguishable in both cases. Therefore, if A can distinguish between the two hybrids, then Anmc
can break the non-malleability property of the commitment scheme NMCom. However, Anymc only
runs in time T%iQ1 < T%‘fﬁn and hence this is a contradiction, thus proving the sub-lemma.

Also, notice that since the joint distribution of the adversary A’s committed values and his
view is indistinguishable in both hybrids, this implies that Event E still occurs only with negligible
probability in Hyb; as well. O

Lemma 10. Hyb; is statistically indistinguishable from Hyb,.

Proof. The only difference between the two hybrids is that in Hyb,, the simulator might output
“Special Abort” which doesn’t happen in Hyb;. As shown in the above proof (of Lemma 9), the
probability that Event E occurs in Hybs is negligible. Notice from the description of the simulator
in Figure 5, the output “Special Abort” occurs exactly if the event E occurs. This means that the
probability that the simulator outputs “Special Abort” in Hyb, is negligible and this completes the
proof. O

Lemma 11. Assuming the security of the protocol ™M, Hyb, is computationally indistinguishable
from Hybs.

Proof. The difference between the two hybrids is in the messages of protocol 7M. In Hyb,, Simpyp
computes the messages of protocol ™M correctly using the honest parties’ strategy. In Hybs, if
correct = 1, they are computed by running the simulator S for protocol 7°M and if correct = 0,
they are computed using the honest parties’ strategy. Therefore, the only difference is if correct = 1.
If the adversary A can distinguish between the two hybrids, we will use A to design an algorithm
Asm that can break the security of protocol 7M.

Aswm interacts with a challenger C to break the security of protocol 7M. Also, Asym performs
the role of Simpyp, in its interaction with the adversary .A. Whatever parties A wishes to corrupt,
Asm corrupts the same parties in its interaction with 7M. Similarly, whatever messages A sends
to Asm as part of the protocol 7 that correspond to 7°M messages, Agm sends the same messages
to the challenger C. Now, whatever messages C sends, Agym forwards the same to the adversary A
as its messages for the m>M protocol. Agy does everything else exactly as in Hybs.

Observe that Agpy runs in time ngﬁn. If C sends messages that are computed correctly, this
exactly corresponds to Hyb, in Agy’s interaction with A. On the other hand, if C sends simulated
messages, this exactly corresponds to Hybs. Therefore, if A can distinguish between these two
hybrids, Asm can use the same distinguishing guess to break the security of protocol 7M. However,
M ig secure against all adversaries running in time Tgp, where Tgy > ng'ﬁn and hence this is a
contradiction. This completes the proof of the lemma.

Further, since the two hybrids are indistinguishable, the probability that Simpy, outputs “Spe-
cial Abort” in hybrid 5 continues to remain negligible. O

Finally, let us discuss why the simulation strategy in fact does correspond to the ideal world.
Notice that if the value of the variable correct = 1, then the simulator forces the output correctly

29

by invoking the semi-malicious protocol’s simulator. On the other hand, if correct = 0, and the ZK
proof verifies in round 2, then the simulator outputs “Special Abort”. However, we proved that
the probability of “Special Abort” occurring is negligible. Therefore, if correct = 0, then the ZK
proof doesn’t verify correctly. As a result, the adversary causes an abort in both the real and ideal
worlds and hence the simulator’s objective is not to force any output.

6 Three Round Concurrently Secure MPC

Let f be any functionality. Consider n parties Py, ..., P, with inputs xq,...,Xx, respectively who
wish to compute f on their joint inputs by running a concurrently secure multiparty computa-
tion(MPC) protocol. Let 1M be any 3 round protocol that runs without any setup for the above
task and is secure against adversaries that can be completely malicious in the first round, semi-
malicious in the next two rounds and can corrupt upto (n — 1) parties. In this section, we show
how to generically transform 7™ into a 3 round concurrently secure protocol 7" without setup
with super-polynomial simulation that is secure against malicious adversaries which can corrupt
upto (n — 1) parties. Formally, we prove the following theorem:

Theorem 5. Assuming sub-exponentially secure:
o A, where A € {DDH, Quadratic Residuosity, N** Residuosity} AND

e 3 round MPC protocol for any functionality f that is stand-alone secure against malicious
adversaries in the first round and semi-malicious adversaries in the next two rounds,

the protocol presented in Figure 6 is a 8 round concurrently secure MPC protocol without any setup
with super-polynomial simulation for any functionality f, secure against malicious adversaries.

We can instantiate the underlying MPC protocol with the constructions of [DHRW16, BHP17]
to get the following corollary:

Corollary 6. Assuming sub-exponentially secure:
o A, where A € {DDH, Quadratic Residuosity, N** Residuosity} AND
e B, where B € {LWE, Indistinguishability Obfuscation}

the protocol presented in Figure 6 is a 8 round concurrently secure MPC protocol without any setup
with super-polynomial simulation for any functionality f, secure against malicious adversaries.

We essentially prove that the same protocol from Section 4 is also concurrently secure. The proof
is fairly simple and not too different from the proof of stand-alone security, because the simulation
strategy as well as all reductions are straight-line. The only use of rewinding occurs (implicitly)
within the proof of non-malleability, which we carefully combine with identities to ensure that the
protocol remains concurrently secure. For the sake of completeness, we write out the protocol and
the proof in their entirety. As in Section 4, we first list some notation and the primitives used
before describing the construction.

Notation:

e) denotes the security parameter.

30

e SPSS.ZK = (ZKy, ZK9, ZK3) is a two message zero knowledge argument with super polynomial
strong simulation (SPSS-ZK). The zero knowledge property holds against all adversaries
running in time Tzk. Let Sim?X denote the simulator that produces simulated ZK proofs and
let T%‘l’(’“ denote its running time. [KS17] give a construction of an SPSS.ZK scheme satisfying
these properties that can be based on one of the following sub-exponential assumptions: 1)
DDH; 2) Quadratic Residuosity; 3) N** Residuosity.

e NMCom = (NMCom% NMCom3, NMCom5) is a two message concurrent non-malleable com-
mitment scheme with respect to commitment in the simultaneous message model. Here,
NMComf, NMCom§ denote the first message of the receiver and sender respectively while
NMComg denotes the second message of the sender. It is secure against all adversaries run-
ning in time T%‘f)%, but can be broken by adversaries running in time T(B:Q:n. Let Ext.Com
denote a brute force algorithm running in time ngl:n that can break the commitment scheme.
[KS17] give a construction of an NMCom scheme satisfying these properties that can be based
on one of the following sub-exponential assumptions: 1) DDH; 2) Quadratic Residuosity; 3)

N Residuosity.

e M is a sub-exponentially secure 3 round stand-alone MPC protocol that is secure against

malicious adversaries in the first round and semi-malicious adversaries in the next two rounds.
This protocol is secure against all adversaries running in time Tgm. Let (MSGy, MSGe, MSG3)
denote the algorithms used by any party to compute the messages in each of the three rounds
and OUT denotes the algorithm to compute the final output. Further, let’s assume that
this protocol 7°M runs over a broadcast channel. Let S = (Si,Ss2,S3) denote the straight
line simulator for this protocol - that is, S; is the simulator’s algorithm to compute the it"
round messages. Also, we make the following assumptions about the protocol structure that
is satisfied by the instantiations:

1. &1 and S run without any input other than the protocol transcript so far - in particular,
they don’t need the input, randomness and output of the malicious parties. For Sy,
this must necessarily be true since the first round of 7™ is secure against malicious
adversaries. We make the assumption only on S.2

2. The algorithm MSGs doesn’t use any new input or randomness that was not already
used in the algorithms MSGy, MSGs. Looking ahead, this is used in our security proof
when we want to invoke the simulator of this protocol M, we need to be sure that we
have fed the correct input and randomness to the simulator.

In order to realize our protocol, we require that poly(\) < T%E" < T%%Cm < ng'fn < Tzk, Tsm-
The construction of the protocol is described in Figure 6. We assume broadcast channels. In

our construction, we use proofs for a some NP languages that we elaborate on below.

NP language L is characterized by the following relation R.
Statement : st = (cy, €1, Co, tag, msg;, msgy, T)

Witness : w = (inp,r,r¢)

R(st,w) =1 if and only if :

e & = NMCom3((inp, r),tag;r.) AND
e c; = NMCom3 ((inp, r), tag, c1;re) AND

2This assumption can be removed by running the commitment extractor on the first round messages itself as used
in Section 5.

31

e msg; = MSG;(inp;r) AND
e msgy = MSGy(inp, 7;r)

That is, the messages (c1,¢1,c2) form a non-malleable commitment of (inp,r) such that msg, is
the second round message using input inp, randomness r by running the protocol 7°M, where the
protocol transcript so far is 7.

NP language L; is characterized by the following relation R;.
Statement : st = (cy, ¢y, o, tag, msgs, 7)

Witness : w = (inp, r,r¢)

R(st,w) =1 if and only if :

o ¢ = NMCom%((inp7 r),tag;rc.) AND
e ¢y = NMCom3 ((inp, r), tag, c1;rc) AND
e msgs = MSGs(inp, 7;r)

That is, the messages (c1,¢1,c2) form a non-malleable commitment of (inp,r) such that msgs is
the third round message using input inp, randomness r by running the protocol m°M, where the
protocol transcript so far is 7.

In the protocol, let’s assume that every party has an associated identity id. For any session
sid, each parties generates its non-malleable commitment using the tag (id||sid). We make the tags
explicit in the protocol here to illustrate concurrency.

The correctness of the protocol follows from the correctness of the protocol 7°M, the non-
malleable commitment scheme NMCom and the zero knowledge proof system SPSS.ZK.

6.1 Security Proof

In this section, we formally prove Theorem 5.

Let the total number of sessions be m where in each session, a set of n parties take part. Note that
m is polynomial in the security parameter A. Consider an adversary .4 who corrupts several parties
in each session and can schedule the messages across various sessions arbitrarily. For any session s,
let’s say the adversary A corrupts t; parties in this session where t; < n. For each party P;, let’s
say that the size of input and randomness used in the protocol 7°M is p(A) for some polynomial
p. That is, [(x;, ;)| = p(A\). The strategy of the simulator Sim against a malicious adversary A is
described in Figure 7.

Here, in the simulation, we crucially use the two assumptions about the protocol structure. The
first one is easy to notice since the simulator Sim, in each session, has to run the semi-malicious to
produce the first and second messages before it has extracted the adversary’s input and randomness.
For the second assumption, observe that in order to run the simulator algorithm Ss, Sim has to
feed it the entire input and randomness of the adversary and so these have to be bound to by the
end of the second round.

We now show that the simulation strategy described in Figure 7 is successful against all malicious
PPT adversaries. That is, the view of the adversary along with the output of the honest parties
is computationally indistinguishable in the real and ideal worlds. We will show this via a series
of computationally indistinguishable hybrids where the first hybrid Hyb; corresponds to the real
world and the last hybrid Hybg corresponds to the ideal world.

32

Inputs: Each party P; has input x; and uses randomness r; to compute the message in each round
of the protocol 7M. We now describe the messages sent by party P;. We will use superscripts to
denote the intended recipient of the message if it isn’t meant to be used by all parties.
1. Round 1:
P; does the following:

e Compute msgy ; < MSG1(x;;r;).

e For each j € [n] with j # i, compute:
J J

- &, NMCom%((xZ-,ri),tagi,j;rz’i) using a random string rcz and c12 —
NMComit(1*).
— (ver] ;, zkst] ;) < ZKy(1*) and (ver} ;, zkst) ;) + ZKi(1%).

o Send (msg ;,¢] ;¢ ;,ver] ;, very ;) for all j.

2. Round 2:
Let 7 denote the protocol transcript after round 1. P; does the following:
e Compute msgy; < MSGa(x;, 715 1;).
e For each j € [n] with j # i, compute:
— c%z — NMCom3 ((x;, ri), tag; j, cil’j; rﬁz) using the same random string rﬁz

- prove%"i — ZKg(verZi,j,st%’i,Wévi) for thg statement st%Z = (ciLj, éjl,i’ cgji,tagm,
msgy ;, Msgy ;, 1) € L using witness wj ; = (x;, 13, r.;).
e Send (msgm,c%ﬂ», provejz-’i) for all j.
3. Round 3:
Let 7o denote the protocol transcript after round 2. P; does the following:

e Compute msgy; <~ MSG3(x;, T2;1i)-
e For each j € [n] with j # 4, do:
— Abort if ZKg(zkst{i,sth) # 1 where st} ; = (c{’i, ¢} j» Ch ;> tag; ;, Mgy ;, Mgy ;, T1).
In particular, send a global abort signal to all parties so that everyone aborts.
— prove}; — ZKy(verh j,sth;,wh;) for the statement stj, =
(ci7j,é{7i,cj27i,t§gi7j, msgs ;, o) € L1 using witness wj ; = (x;, i, ;).
e Send (msg; ;, proves ;) for all j.

4. Output Computation:
Let 73 denote the protocol transcript after round 3. P; does the following:

e For each j € [n] with j # 4, do:
— Abort if ZKg(zkst];, st ;) # 1 where st} = (c],, & ;,ch . tag; ;, msgy ;, 7). In
particular, send a global abort signal to all parties so that everyone aborts.
e Compute output y; <— OUT(x;, 73;1;).

Figure 6: 3 round concurrently secure MPC Protocol 7€°" for functionality f.

1. Hyb;: In this hybrid, consider a simulator Simyyp that plays the role of the honest parties in
each sesion. Simyyp runs in polynomial time.

2. Hyby: In this hybrid, for each session, the simulator Simpyp also runs the “Input Extraction”

33

Corresponding to every session, the simulator stores a database of the private coins and state used
in that session. After each round in the protocol for a particular session, the simulator updates the
database. For any new session s that the adversary initiates, the simulator does the following;:
1. Round 1: For each honest party P;, Sim does the following:
e Compute msg; ; < S1(1*,4). For each j € [n] with j # i, compute:
— &, NMCom3 (0PW tag, ;),] ; + NMComfi(1*).
— (ver] ;,zkst] ;) < ZK;(1*) and (ver) ;, zkst} ;) < ZK;(1%).
e Send (msgu,é{i,c{’i,ver{’i,ver%’i) for all j € [n].
Whenever the adversary schedules round 2 (or any subsequent round) for a session si, the simu-
lator, using the appropriate values in the stored database, does the following:
2. Round 2: Let 71 denote the protocol transcript after round 1. For each honest party P;,
e Compute msgy; <~ Sa(71,4). For each j € [n] with j # i, compute:
- CJQ'Z- — NMComg(Op()‘)’tagM,ciLj; rﬁl) using a random string rf:l
~ prove] ; + SimZX(ver! . st]) for st} , = (ci ., &l c] ; tag, ;, msg, ;, msgy;, 71) € L.
e Send (msg,;, cy ;, provey ;) for all j € [n].
3. Input Extraction: Sim does the following:
e For each honest party P; and for each j € [n] with j # 4, do:
— Abort if ZKg(zkst{ Z-,stéJ) # 1 where 71 is the protocol transcript after round 1
such that sth = (cjlyi,éij,clij,tagi’j, msgy ;, MSgs ;,71)
i i
AR/
ness of party P; seen by party P;. This step takes time T
e For each malicious party P;, do:

) = Ext.Com(c]Li7 éiLj, cé’j). That is, this is the input and random-

Brk
Com*

— Compute (x

— Output “Special Abort” if the set of values {(xé, ré)} computed in the last step, for
all i corresponding to honest parties P; is not equal. Set (x;,r;) = (le, rjl) Output
“Special Abort” if msg; ; # MSGy(x;,rj) and msgy ; # MSGa(x;, rj, 1)
— Send all extracted x; to the trusted functionality and receive output y.
— Let R denote the set of all {x;,r;}.
4. Round 3: Let 7 denote the protocol transcript after round 2. For each honest party P;,
compute and send msgsz; < S3(y,R,72,4) together with proveéﬂ- for j € [n],j # i where

provel ; < Sim?K(ver} ; st} ;) for the statement st} ; = (c} ;, & ;, ¢}, tag; j, msgs;, 72) € L1

Observe that this takes time T%i{{‘.
5. Special Abort Phase: Sim does the following;:

e Output “Special Abort” if for each malicious party Pj, msgs ; # MSGs(x;, rj, 72).
6. Output Computation: Sim does the following: ‘
e For each honest party P; and for each j € [n] with j # 4, abort if ZK3(zkst§’i, Sté,j) #1
where stgﬂ- = (cjlvi,éij,cévj,tagiyj, msgs j, T2).
e Else instruct the ideal functionality to deliver output to the honest parties.

Figure 7: Simulation strategy in the 3 round concurrently secure protocol

34

Brk

phase and the “Special Abort” phase in step3 and 5 in Figure 7. Simpyp runs in time TECY .

3. Hybg: This hybrid is identical to the previous hybrid except that in each session, in Rounds
2 and 3, Simpy, now computes simulated SPSSZK proofs as done in Round 2 in Figure 7.

. . . . Bl'k
Once again, Simyyp, Tuns in time TZge .

4. Hyby: This hybrid is identical to the previous hybrid except that in each session, Simpyp

now computes all the (6{;, cjzz) as non-malleable commitments of 0P() as done in Round 2 in

Brk

Figure 7. Once again, Simpyp runs in time TECf .

5. Hybs: This hybrid is identical to the previous hybrid except that in each session, in Round
3, Simpyp now computes the messages of the protocol M using the simulator algorithms
S = (81,52, 83) as done by Sim in the ideal world. Simpyp also instructs the ideal functionality
to deliver outputs to the honest parties as done by Sim session by session. This hybrid is now

same as the ideal world. Once again, Simpyp, Tuns in time ng'fn.

We now show that every pair of successive hybrids is computationally indistinguishable.

Lemma 12. Assuming soundness of the SPSS.ZK argument system, binding of the non-malleable
commitment scheme and correctness of the protocol mM, Hyb, is computationally indistinguishable
from Hyb,.

Proof. The only difference between the two hybrids is that in Hyby, Simpy, may output “Special
Abort” in some session which doesn’t happen in Hyb;. More specifically, in Hyb,, “Special Abort”
occurs in some session if event E described below is true in that session.

Event E: Is true if: For any malicious party P;

e All the SPSS.ZK proofs sent by P; in round 2 and 3 verify correctly.
(AND)

e Kither of the following occur:

— The set of values {(x;'-, rz)} that are committed to using the non-malleable commitment
is not same for every i where P; is honest. (OR)

— msgy ; # MSG; (x;,r;) (OR)

msg, ; # MSGa(x;j, rj, 71) where 71 is the protocol transcript after round 1. (OR)

— msgg ; # MSGs(x;, rj, T2) where 73 is the protocol transcript after round 2.

That is, in simpler terms, the event E occurs if for any malicious party, it gives valid ZK proofs
in round 2 and 3 but its protocol transcript is not consistent with the values it committed to.

Therefore, in order to prove the indistinguishability of the two hybrids, it is enough to prove
the lemma below.

Sub-Lemma 5. Pr[Event E is true in Hyby] = negl()).

Proof. We now prove the sub-lemma. Suppose the event E does occur with non-negligible prob-
ability p. Then there exists some session s such that the event E occurs in that session with
non-negligible probability p’ < p. Let’s focus on that session s.

From the binding property of the commitment scheme and the correctness of the protocol 75M,
observe that if any of the above conditions are true, it means there exists 4, j such that the statement
stéyj = (éij, c{7i,c§7j,tag]~,i, msgy msg27j,7'1) ¢ L, where P; is honest and P; is malicious. However,

35

the proof for the statement verified correctly which means that the adversary has produced a valid
proof for a false statement. This violates the soundness property of the SPSSZK argument system
which is a contradiction. O

O]

Lemma 13. Assuming the zero knowledge property of the SPSS.ZK argument system, Hyb, is
computationally indistinguishable from Hybs.

Proof. The only difference between the two hybrids is that in Hyby, for every session, Simpyp
computes the proofs in Rounds 2 and 3 honestly, by running the algorithm ZKs of the SPSS.ZK
argument system, whereas in Hybs, a simulated proof is used for every session. If the adversary A
can distinguish between the two hybrids, we will use A to design an algorithm Azk that breaks the
zero knowledge property of the argument system.

Suppose the adversary can distinguish between the two hybrids with non-negligible probability
p. Then, by a simple hybrid argument, there exists hybrids Hyb, ; and Hyb, ;,; that can be
distinguished by A with some non-negligible probability p’ < p where the difference between these
two hybrids is that only in session s, the proofs are computed differently.

by a simple hybrid argument, there exists some session s, an honest party P; and a (malicious)
party P; such that the adversary can distinguish the proof sent by P; to P; in one of the rounds
with non-negligible probability p’ < p. Let’s say it is the proof in round 2.

Az performs the role of Simpyp, in its interaction with A and performs all the steps exactly as
in Hyb, except the proof in Round 2 sent by P; to P; in session s. It interacts with a challenger
C of the SPSS.ZK argument system and sends the first round message verij it received from the
adversary. Azk receives from C a proof that is either honestly computed or simulated. Az sets this
received proof as its message provei2 in Round 2 of its interaction with A in session s. In the first
case, this exactly corresponds to Hyb, while the latter exactly corresponds to Hybs. Therefore, if A
can distinguish between the two hybrids, Azk can use the same distinguishing guess to distinguish
the proofs: i.e, decide whether the proofs received from C were honest or simulated. Now, notice
that Azk runs only in time T%Qﬁn (during the input extraction phase), while the SPSS.ZK system
is secure against adversaries running in time Tzk. Since Tg{)':n < Tz, this is a contradiction and
hence proves the lemma.

In particular, this also means the following: Pr[Event E is true in Hybs] = negl()). O

Lemma 14. Assuming the non-malleability property of the non-malleable commitment scheme
NMCom, Hybs is computationally indistinguishable from Hyb,.

Proof. We will prove this using a series of computationally indistinguishable intermediate hybrids
as follows.

e Hybs,: This is same as Hybs except that the simulator Simpyp, in each session, does not run
the input extraction phase apart from verifying the SPSS.ZK proofs. Also, Simpy, does not
run the special abort phase. In particular, the Ext.Com algorithm is not run and there is no

“Special Abort”. In this hybrid, Simpy, runs in time T%’g‘ which is lesser than ng'fn.
e Hyb; 5: This hybrid is identical to the previous hybrid except that in each session, in Round

J J

2, Simpyp, now computes all the messages (élyi, c27i) as non-malleable commitments of 0PV as

im

done by Sim in the ideal world. In this hybrid too, Simpyp runs in time T%K .

36

e Hybs 3: This is same as Hybs except that in each session, the simulator does run the input
extraction phase and the special abort phase. It is easy to see that Hybs 3 is the same as
Hyb,. In this hybrid, Simpy, runs in time ng'fn which is greater than T%m’.

We now prove the indistinguishability of these intermediate hybrids and this completes the proof
of the lemma.

Sub-Lemma 6. Hyb; is statistically indistinguishable from Hybsg ;.

Proof. The only difference between the two hybrids is that in Hybs, the simulator might out-
put “Special Abort” in some session which doesn’t happen in Hybs;. As shown in the proof of
Lemma 13, the probability that Event E occurs in Hybs is negligible. This means that the prob-
ability that the simulator outputs “Special Abort” in any session in Hybs is negligible and this
completes the proof.]

Sub-Lemma 7. Assuming the non-malleability property of the non-malleable commitment scheme
NMCom, Hybs ; is computationally indistinguishable from Hybs 5.

Proof. The only difference between the two hybrids is that in Hybg,, in each session, for every

honest party P;, Simpyp computes the commitment messages (& ;, ¢} ;) as a commitment of (x;,r;),

whereas in Hybs o, they are computed as a commitment of (OP(’\)). If the adversary A can distinguish
between the two hybrids, we will use A to design an algorithm Anmc that breaks the security of
the non-malleable commitment scheme NMCom.

Suppose A can distinguish between these two hybrids with some non-negligible probability
p. Then by a simple hybrid argument, there exists hybrids Hybs; ; and Hybs; ;. ; that can be
distinguished by A with some non-negligible probability p’ < p where the difference between these
two hybrids is that only in session s, the commitments are computed differently.

Anmc acts as the man-in-the-middle adversary interacting with a challenger C. Anymc also plays
the role of Simpyy, in its interaction with the adversary A. It generates all the messages except the
messages c{z and (é{’i, c%l) in session s exactly as done by Simpyp, in Hybs ; ;. Corresponding to each
message c]IZ that Anymc has to send in session s, it receives one first round message from C (on the

right side) corresponding to the scheme NMCom. Similarly, it receives first round messages é{ ; from
C (on the left side). Anmc forwards these messages to the adversary A as its first round méssages
(é{w cjll) in session s. Similarly, for each pair of messages (é’l 1 c’i’ ;) it receives from A as part of
the first round messages of the scheme NMCom in session s, Aymc forwards the messages to C as its
first round messages for the commitment (to the left and right side respectively). Then, for each cg ;
that Anmc is supposed to send to A in session s, it receives a second round commitment messagé
from the challenger C. In one case, all of these are commitments to the respective (x;,r;) values
while in the second case, they are all commitments to (Op()‘)). Anmc forwards these messages as its
commitment messages c%z to the adversary A in session s. Once again, it forwards each message C57 j
it receives from A, as its second round commitment message in its interaction with the challenger
C. That is, these are the commitments on the right side generated by the man-in-the-middle.
Now, we can clearly see that in the first case, when C generates commitments to (x;, r;) in session
s, A’s view corresponds to Hybs; ; while in the latter case, it exactly corresponds to Hybs; ;.
However, from the security of the non-malleable commitment scheme, the joint distribution of the
value committed to by the adversary Anmc (which is the same as A’s commitments) and its view
must be indistinguishable in both cases. Therefore, if A can distinguish between the two hybrids,
then Anmc can break the non-malleability property of the commitment scheme NMCom. However,

Anmc only runs in time T%’{‘ < Tgi‘;n and hence this is a contradiction, thus proving the sub-lemma.

37

Also, notice that since the joint distribution of the adversary A’s committed values and his
view is indistinguishable in both hybrids, this implies that Event E still occurs only with negligible
probability in Hybs 5 as well. O

Sub-Lemma 8. Hyb; o is statistically indistinguishable from Hybsg 5.

Proof. The only difference between the two hybrids is that in Hybs 3, the simulator might out-
put “Special Abort” in some session which doesn’t happen in Hybs 5. As shown in the proof of
Sub-Lemma 7, the probability that Event E occurs in Hybs 5 is negligible. This means that the
probability that the simulator outputs “Special Abort” in Hybs 5 is negligible and this completes
the proof. O

O

Lemma 15. Assuming the security of the protocol mM, Hyb, is computationally indistinguishable
from Hybs.

Proof. The only difference between the two hybrids is that in Hyb,, in every session, Simpy, com-
putes the messages of protocol 7°M correctly using the honest parties’ inputs, whereas in Hybs,
they are computed by running the simulator S for protocol 7M. If the adversary A can distinguish
between the two hybrids, we will use A to design an algorithm Agpm that can break the security of
protocol 7M.

Once again, suppose A can distinguish between these two hybrids with some non-negligible
probability p. Then by a simple hybrid argument, there exists hybrids Hyb, ; and Hyb, ;. that
can be distinguished by A with some non-negligible probability p’ < p where the difference between
these two hybrids is that only in session s, the protocol messages are computed differently.

Asw interacts with a challenger C to break the security of protocol 7M. Also, Asym performs
the role of Simyyp in its interaction with the adversary A exactly as in Hybs except for session s.
Whatever parties A wishes to corrupt in session s, Agy corrupts the same parties in its interaction
with 7°M. Similarly, whatever messages A sends to Agy as part of the protocol 7 in session s that
correspond to mM messages, Asm sends the same messages to the challenger C. Now, whatever
messages C sends, Ay forwards the same to the adversary A as its messages for the 7™ protocol
in session s.

Observe that Agpy runs in time ng‘jn. If C sends messages that are computed correctly, this
exactly corresponds to Hyb, ; in Asm’s interaction with A. On the other hand, if C sends simulated
messages, this exactly corresponds to Hyb, ;. Therefore, if A can distinguish between these two
hybrids, Aspm can use the same distinguishing guess to break the security of protocol 7M. However,
M is secure against all adversaries running in time Tgy, where Tgm > TE™ and hence this is a

Com
contradiction. This completes the proof of the lemma. O

7 Two Round Concurrently Secure MPC for Input-less Function-
alities

Let f be any input-less functionality randomized functionalities. Consider n parties Py, ..., P, who
wish to compute f by running a concurrently secure multiparty computation(MPC) protocol. Let
M be any 2 round protocol that runs without any setup for the above task and is secure against
semi-malicious adversaries that can corrupt upto (n — 1) parties. In this section, we show how to

generically transform 73 into a 2 round concurrently secure protocol 7r1C°”C without setup with

38

super-polynomial simulation and secure against malicious adversaries that can corrupt upto (n—1)
parties. Formally, we prove the following theorem:

Theorem 7. Assuming sub-exponentially secure:

o A, where A € {DDH, Quadratic Residuosity, N** Residuosity} AND

e 2 round MPC protocol for any functionality f that is stand-alone secure against semi-malicious
adversaries,

the protocol presented in Figure 8 is a 2 round concurrently secure MPC protocol without any
setup with super-polynomial simulation for any input-less randomized functionality f, secure against
malicious adversaries.

We can instantiate the underlying MPC protocol with the 2 round construction of [DHRW16]
to get the following corollary:

Corollary 8. Assuming sub-exponentially secure:

e A, where A € {DDH, Quadratic Residuosity, N'* Residuosity} AND
o Indistinguishability Obfuscation,

the protocol presented in Figure 8 is a 2 round concurrently secure MPC' protocol without any setup
with super-polynomial simulation for any input-less randomized functionality f.

We essentially prove that the same protocol from Section 5 is also concurrently secure. The proof
is fairly simple and not too different from the proof of stand-alone security, because the simulation
strategy as well as all reductions are straight-line. The only use of rewinding occurs (implicitly)
within the proof of non-malleability, which we carefully combine with identities to ensure that the
protocol remains concurrently secure. For the sake of completeness, we write out the protocol and
the proof in their entirety. As in Section 5, we first list some notation and the primitives used
before describing the construction.

Notation:
e)\ denotes the security parameter.

e SPSS.ZK = (ZKy, ZK9, ZK3) is a two message zero knowledge argument with super polynomial
strong simulation (SPSS-ZK). The zero knowledge property holds against all adversaries
running in time Tzk. Let Sim?X denote the simulator that produces simulated ZK proofs and
let TSI denote its running time. [KS17] give a construction of an SPSS.ZK scheme satisfying
these properties that can be based on one of the following sub-exponential assumptions: 1)
DDH; 2) Quadratic Residuosity; 3) N** Residuosity.

e NMCom = (NMCom® NMCom3, NMCom5) is a two message concurrent non-malleable com-
mitment scheme with respect to commitment in the simultaneous message model. Here,
NMComf, NMCom% denote the first message of the receiver and sender respectively while
NMComg denotes the second message of the sender. It is secure against all adversaries run-
ning in time T?ffm, but can be broken by adversaries running in time TEQ:n. Let Ext.Com
denote a brute force algorithm running in time ng'ﬁn that can break the commitment scheme
just using the first round messages. [KS17] give a construction of an NMCom scheme satisfy-
ing these properties that can be based on one of the following sub-exponential assumptions:

1) DDH; 2) Quadratic Residuosity; 3) N** Residuosity.

39

° 7I.SM

is a sub-exponentially secure 2 round MPC protocol that is secure against semi-malicious
adversaries. This protocol is secure against all adversaries running in time Tgy. Let (MSGy, MSGs)
denote the algorithms used by any party to compute the messages in each of the two rounds
and OUT denotes the algorithm to compute the final output. Further, let’s assume that this
protocol M runs over a broadcast channel. Let & = (S;,S,) denote the simulator for the
protocol 7°M - that is, S; is the simulator’s algorithm to compute the i** round messages.
Also, we make the following assumptions about the protocol structure that is satisfied by the

instantiations:

1. Since the protocol is for input-less functionalities, we assume that S; is identical to the
algorithm MSG; used by honest parties to generate their first message.

2. The algorithm MSGs doesn’t use any new randomness that was not already used in the
algorithm MSG;. This is similar to the assumption used in Section 4.

In order to realize our protocol, we require that poly(\) < T%&“ < T%icm < ng'fn < Tzk, Tsm-
The construction of the protocol is described in Figure 8. We assume broadcast channels. In

our construction, we use proofs for a some NP languages that we elaborate on below.

NP language L is characterized by the following relation R.
Statement : st = (cy, €1, Co, tag, msg;, msgy, T)

Witness : w = (r,rc)

R(st,w) =1 if and only if :

e & = NMCom3(r, tag; r.) AND

e c; = NMCom3 (r, tag, c;;rc.) AND
e msg; = MSG;(L;r) AND

e msg, = MSGa(L,7;r)

That is, the messages (c1,¢1,c2) form a non-malleable commitment of (inp,r) such that msg, is
the second round message using input inp, randomness r by running the protocol 7™, where the
protocol transcript so far is 7.

In the protocol, let’s assume that every party has an associated identity id. For any session
sid, each parties generates its non-malleable commitment using the tag (id||sid). We make the tags
explicit in the protocol here to illustrate concurrency.

The correctness of the protocol follows from the correctness of the protocol 7M. the non-
malleable commitment scheme NMCom and the zero knowledge proof system SPSS.ZK.

7.1 Security Proof

In this section, we formally prove Theorem 7.

Let the total number of sessions be m where in each session, a set of n parties take part. Note that
m is polynomial in the security parameter A\. Consider an adversary A who corrupts several parties
in each session and can schedule the messages across various sessions arbitrarily. For any session
Sk, let’s say the adversary A corrupts t; parties in this session where t; < n. For each party P;,
let’s say that the size of randomness used in the protocol 7°M is p(\) for some polynomial p. That
is, |ri] = p(\). The strategy of the simulator Sim against a malicious adversary A is described in
Figure 9.

40

Inputs: Each party P; uses randomness r; to compute the message in each round of the protocol
7M. To make the exposition easier, we think of each party’s input as being L. We now describe
the messages sent by party P;. We will use superscripts to denote the intended recipient of the
message if it isn’t meant to be used by all parties.
1. Round 1:
P; does the following:
e Compute msgy ; <~ MSGy(L;r;).
e For each j € [n] with j # 4, compute:
- éjlz — NMCom%(ri,tagW-; rf:z) using a random string ril cj1Z — NMComf(1%).
— (ver] ;,zkst] ;) < ZK;(1%).
e Send (msgu,é{7i,c{7i,ver{7i) for all j.
2. Round 2:
Let 71 denote the protocol transcript after round 1. P; does the following:
e Compute msgy; < MSGa (L, 71;1;).
e For each j € [n] with j # i, compute:
— c%z- — NMComg(ri,tagm,cﬁJ; rgz) using the same random string rgz
— provegﬂ- — ZKg(veri’j,st%"i,wg’i) for the statement stgﬂ- = (<1 6]1‘72-, c%‘ﬂ-,tagi’j,
msg ;, Msgy ;, 71) € L using witness W%’Z- = (ry, rﬂz)
e Send (msg,;, Cy ;, provey ;) for all j.
3. Output Computation:
Let 7 denote the protocol transcript after round 2. P; does the following:
e For each j € [n] with j # 4, do:
— Abort if ZKg(zkst{J,sté’j) # 1 where st} ; = (c{’i, ¢l j» Ch 4> tag; ;, Mgy ;, MSEy 5, T1).
In particular, send a global abort signal to all parties so that everyone aborts.
e Compute output y; < OUT(L, mo;1;).

Figure 8: 2 round concurrently secure MPC Protocol 7r1C°”C for input-less randomized functionality

f

Here, notice that since there is no input, the simulator gets the output from the ideal function-
ality - y right at the beginning. It still has to instruct the functionality to deliver output to the
honest party.

We now show that the simulation strategy described in Figure 9 is successful against all malicious
PPT adversaries. That is, the view of the adversary along with the output of the honest parties
is computationally indistinguishable in the real and ideal worlds. We will show this via a series
of computationally indistinguishable hybrids where the first hybrid Hyb; corresponds to the real
world and the last hybrid Hybg corresponds to the ideal world.

1. Hyb;: In this hybrid, consider a simulator Simyy, that plays the role of the honest parties.
Simpyp runs in polynomial time.

2. Hyby: This hybrid is identical to the previous hybrid except that in Round 2, Simpy, now
computes simulated SPSSZK proofs as done in Round 2 in Figure 9. Here, Simpyy, runs in

im

: S
time T3R.

41

Corresponding to every session, the simulator stores a database of the private coins and state used
in that session. After each round in the protocol for a particular session, the simulator updates the
database. For any new session s that the adversary initiates, the simulator does the following;:
1. Round 1: For each honest party P;, Sim does the following:
e Compute msg;; < MSG;(L;r;) using some random string r;. Recall that this is
identical to running the simulator S;(1*,i). For each j € [n] with j # i, compute
&+ NMCom?(Op()‘),tagm), i+ NMCom#(1*) and (very ;, zkst] ;) < ZKy(1%).
e Send (msgy ;, ¢ ;,¢c] ,,ver ;) for all j € [n].
2. Randomness Extraction: Sim does the following:
e For each honest party P; and for each j € [n] with j # 4, do:

— Compute (r;) = Ext.Com(c{’i,éiLj). That is, this is the randomness of party P;
seen by party P;. This step takes time ngl:n
e Initialize a variable correct = 1. Then, for each malicious party P;, do:
— Set correct = 0 if the set of values {r;-}, for all ¢ corresponding to honest parties P;
is not equal. Set r; = rjl- and let R denote the set of all {r;}.
— Set correct = 0 if msg ; # MSGy(L,r;).
Whenever the adversary schedules round 2 for a session sg, the simulator, using the appropriate

values in the stored database, does the following;:
2. Round 2: Let 71 denote the protocol transcript after round 1. Sim does the following:

e For each honest party P;:

— If correct = 1, compute msgy ; < Sa(71, R, 9).

— Else, compute msg, ; <~ MSGa(L, 71;r;) where r; was used in round 1.
e For each honest party P; and for each j € [n] with j # i, compute:

' S op(A i ; ; ‘
- CJQ’Z- +— NMComj (0¥),tagi,j,czlyj, riﬂ-) using a random string riji.

- prove;i +— SimZK(verij,stéi) for stg’i = (cij,éii,c%’i,tagi’j, msg; ;, msgy;, 71) € L.
Observe that this takes time T%il’(“.
e Send (msgzﬂ-,c;i, proveg’i) for all j € [n].
3. Special Abort Phase: For each malicious party P;:
e Qutput “Special Abort” if correct = 0.
e Also, output “Special Abort” if msg, ; # MSGa(L, rj, 7).
4. Output Computation: Sim does the following;:
e For each honest party P; and for each j € [n] with j # 4, abort if ZKg(zkstjl"Z-, Sté,j) #1

i (i i
where st ; = (¢ ;, €] ;,Ch ;, tag; ;, MSgy ;, MSEy ;, T1)-

e Else, instruct the ideal functionality to deliver output to the honest parties.

Figure 9: Simulation strategy in the 2 round concurrently secure protocol

3. Hybz: This hybrid is identical to the previous hybrid except that Simpy, now computes all
the (6{71, c%l) as non-malleable commitments of 0PV as done in Round 2 in Figure 9. Once

again, Simyyp runs in time T%ilz‘.

42

4. Hyb,: In this hybrid, the simulator Simpyp, also runs the “Randomness Extraction” phase and

the “Special Abort” phase in steps 2 and 4 in Figure 9. Now, Simpyp, runs in time ngjn.

5. Hybs: In this hybrid, if the value of the variable correct = 1, Simy,, now computes the second
round message of the protocol M using the simulator algorithms S, as done by Sim in the
ideal world. Simyyp also instructs the ideal functionality to deliver outputs to the honest
parties as done by Sim. This hybrid is now same as the ideal world. Once again, Simpyp, Tuns

: : Brk
in time TZZF .

We now show that every pair of successive hybrids is computationally indistinguishable. Addition-
ally, we also prove some claims about certain hybrids that aids in the proof.
Before that, we will define the following event E that is useful in the proofs.

Event E: In any given session sj, the event occurs if, for any malicious party P; :

e All the SPSS.ZK proofs sent by P; in round 2 verify correctly.
(AND)

e Either of the following occur:

— The set of values {ré} that are committed to using the non-malleable commitment is not
same for every i where P; is honest. (OR)

— msgy ; # MSG1(L,rj) (OR)

— msgy; # MSGa (L, rj, 1) where 71 is the protocol transcript after round 1.

Lemma 16. Assuming soundness of the SPSS.ZK arqument system, binding of the non-malleable
commitment scheme and correctness of the protocol M, Pr[Event E is true in Hyb;] = negl(})).

Proof. Suppose the event E does occur in Hyb; with non-negligible probability p. Then there exists
some session s such that the event E occurs in that session with non-negligible probability p’ < p.
Let’s focus on that session s.

From the binding property of the commitment scheme and the correctness of the protocol 75M,
observe that if any of the conditions that cause event E to occur are true, it means there exists
1,7 such that the statement st’é’j = (c{yi,cgyj,msgld,mngJ,Tl) ¢ L, where P; is honest and P; is
malicious. However, the proof for the statement verified correctly which means that the adversary
has produced a valid proof for a false statement. This violates the soundness property of the
SPSSZK argument system which is a contradiction. O

Lemma 17. Assuming the zero knowledge property of the SPSS.ZK argument system, Hyb; is
computationally indistinguishable from Hyb,.

Proof. The only difference between the two hybrids is that in Hyb;, Simpy, computes the proofs
in Rounds 2 honestly, by running the algorithm ZKs of the SPSS.ZK argument system, whereas in
Hybs, a simulated proof is used. If the adversary A can distinguish between the two hybrids, we
will use A to design an algorithm Az that breaks the zero knowledge property of the argument
system.

Suppose the adversary can distinguish between the two hybrids with non-negligible probability
p. Then, by a simple hybrid argument, there exists hybrids Hyb, ;, and Hyb; ;. that the adversary
can distinguish with non-negligible probability p’ < p such that: the only difference between the
two hybrids is the proof sent by an honest party P; to a (malicious) party P; in round 2 in a
particular session s.

43

Azk performs the role of Simpyp, in its interaction with A and performs all the steps exactly as
in Hyb, ;, except the proof in Round 2 sent by P; to P; in session s. It interacts with a challenger
C of the SPSS.ZK argument system and sends the first round message verij it received from the
adversary in session s. Azk receives from C a proof that is either honestly computed or simulated.
Az sets this received proof as its message prove’ 2 in Round 2 of its interaction with A in session s.
In the first case, this exactly corresponds to Hyb, ; while the latter exactly corresponds to Hyb; ;.
Therefore, if A can distinguish between the two hybrids, Azk can use the same dlstmgulshmg
guess to distinguish the proofs: i.e, decide whether the proofs received from C were honest or
simulated. Now, notice that Azk runs only in polynomial, while the SPSS.ZK system is secure
against adversaries running in time Tzk which is much larger. Thus, this is a contradiction and
proves the lemma.]

Lemma 18. Assuming the zero knowledge property of the SPSS.ZK argument system,
|Pr[Event E is true in Hyb;] — Pr[Event E is true in Hyby|| = negl(}\).

Proof. Suppose the claim is not true. That is, there exists some adversary A for which the dif-
ference in the probability of the event E occurring between the two hybrids is some non-negligible
probability p. Then we will design an algorithm Azk that breaks the zero knowledge property of
the argument system.

Let’s say the number of proofs given by an honest party to a malicious party is ¢ across all
sessions. Then, consider a set of intermediate hybrids Hyb, ;,...,Hyb, , such that Hyb, , = Hyb,
where the difference between Hyb, ;_; and Hyb, ; is that we switch the k" proof alone from
honest to simulated. By a simple hybrid argument, there exists a k£ such that the difference in
the probability of the event E occurring between the two hybrids Hyb, ;_; and Hyb, ; is some
non-negligible probability p’ < p. Let the proof that is different between the two hybrids be that
sent by a honest party P; to a malicious party P; in a session s.

Azk performs the role of Simpyp, in its interaction with A and performs all the steps exactly as
in Hyb; ;,_; except the proof in Round 2 sent by P; to P; in session s. It interacts with a challenger
C of the SPSS.ZK argument system and sends the first round message ver’id it received from the
adversary. Az receives from C a proof that is either honestly computed or simulated. Azk sets
this received proof as its message proveg’2 in Round 2 of its interaction with A in session s. In the
first case, this exactly corresponds to Hyb; j_; while the latter exactly corresponds to Hyb, j.

After completing the experiment, Azk runs the brute force extractor UC-Com on each of the
adversary’s messages to break the commitment. It then checks the adversary’s protocol messages
to see if the event E did occur. If the event E did occur, it outputs to the challenger C that the
proof was simulated and if the event E did not occur, it says real. Azk takes time ng‘ﬁn to run.

Therefore, if A’s probability of making E occur is non-negligibly different in both the hybrids,
Azk can distinguish honest proofs from simulated ones with the same probability. Now, notice that
Azk runs only in time TB™ while the SPSS.ZK system is secure against adversaries running in

Com
time Tzk which is much larger. Thus, this is a contradiction and proves the lemma. O

Lemma 19. Pr[Event E is true in Hyb,] = negl()).
Proof. This follows by combining Lemma 5 and Lemma 8. O

Lemma 20. Assuming the non-malleability property of the non-malleable commitment scheme
NMCom, Hyb, is computationally indistinguishable from Hybs.

44

Proof. The only difference between the two hybrids is that in Hyb,, for every honest party P;,
Simpyp computes the commitment messages (éjl7i,c%7i) as a commitment of (r;), whereas in Hybs,
they are computed as a commitment of (0P™). If the adversary A can distinguish between the two
hybrids, we will use A to design an algorithm Anmc that breaks the security of the non-malleable
commitment scheme NMCom.

Suppose A can distinguish between these two hybrids with some non-negligible probability p.
Then by a simple hybrid argument, there exists hybrids Hyb, ; and Hyb, ;.\, that can be distin-
guished by A with some non-negligible probability p’ < p where the difference between these two
hybrids is that only in session s, the commitments are computed differently.

Anmc acts as the man-in-the-middle adversary interacting with a challenger C. Anymc also plays
the role of SlmHyb in its interaction with the adversary A. It generates all the messages except the

messages c1 i and (c1 P ch z) in session s exactly as done by Simpyp, in Hyb, ;. Corresponding to each
message c1 ; that Anmc has to send in session s, it receives one first round message from C (on the

right side) corresponding to the scheme NMCom. Similarly, it receives first round messages 6{ ; from
C (on the left side). Anmc forwards these messages to the adversary A as its first round méssages
(é{w cjll) in session s. Similarly, for each pair of messages (¢ o c’ij ;) it receives from A as part of the
first round messages of the scheme NMCom in session s, Anxmc forwards the messages to C as its first
round messages for the commitment (to the left and right side respectively). Then, for each cg ; that
Anmc is supposed to send to A in session s, it receives a second round commitment messagé from
the challenger C. In one case, all of these are commitments to the respective (r;) values while in the
second case, they are all commitments to (0PN, Anmc forwards these messages as its commitment
messages c2’z to the adversary A in session s. Once again, it forwards each message c27 ; 1t receives
from A in session s, as its second round commitment message in its interaction with the challenger
C. That is, these are the commitments on the right side generated by the man-in-the-middle.

Now, we can clearly see that in the first case, when C generates commitments to r;, A’s view
corresponds to Hyb, ; while in the latter case, it exactly corresponds to Hyb, ... However, from
the security of the non-malleable commitment scheme, the joint distribution of the value committed
to by the adversary Anmc (which is the same as A’s commitments) and its view must be indis-
tinguishable in both cases. Therefore, if A can distinguish between the two hybrids, then Anmc
can break the non-malleability property of the commitment scheme NMCom. However, Anmc only
runs in time TS"m < T%g‘";n and hence this is a contradiction, thus proving the sub-lemma.

Also, notice that since the joint distribution of the adversary A’s committed values and his
view is indistinguishable in both hybrids, this implies that Event E still occurs only with negligible
probability in Hybs as well. O

Lemma 21. Hybs is statistically indistinguishable from Hyb,.

Proof. The only difference between the two hybrids is that in Hyb,, the simulator might output
“Special Abort” which doesn’t happen in Hyb;. As shown in the above proof (of Lemma 20), the
probability that Event E occurs in Hybs is negligible. Notice from the description of the simulator
in Figure 9, the output “Special Abort” occurs exactly if the event E occurs. This means that the
probability that the simulator outputs “Special Abort” in Hyb, is negligible and this completes the
proof. O

Lemma 22. Assuming the security of the protocol mM, Hyb, is computationally indistinguishable
from Hybs.

Proof. The difference between the two hybrids is in the messages of protocol 7M. In Hyb,, in
every session, Simpy, computes the messages of protocol M correctly using the honest parties’

45

strategy. In Hybs, in each session, if correct = 1, they are computed by running the simulator S for
protocol M and if correct = 0, they are computed using the honest parties’ strategy. Therefore,
the only difference in any session is if correct = 1. If the adversary A can distinguish between the
two hybrids, we will use A to design an algorithm Agy that can break the security of protocol 7M.

Once again, suppose A can distinguish between these two hybrids with some non-negligible
probability p. Then by a simple hybrid argument, there exists hybrids Hyb, ; and Hyb, ., that
can be distinguished by A with some non-negligible probability p’ < p where the difference between
these two hybrids is that only in session s, the protocol messages are computed differently.

Aswm interacts with a challenger C to break the security of protocol 7M. Also, Asym performs
the role of Simpyp, in its interaction with the adversary A exactly as in Hyb, , except for session s.
Whatever parties A wishes to corrupt in session s, Agym corrupts the same parties in its interaction
with 75M. Similarly, whatever messages A sends to Ay as part of the protocol 7 in session s that
correspond to mM messages, Asm sends the same messages to the challenger C. Now, whatever
messages C sends, Agy forwards the same to the adversary A as its messages for the 7™ protocol
in session S.

Observe that Agy runs in time ng‘ﬁn. If C sends messages that are computed correctly, this
exactly corresponds to Hyb, ; in Asm’s interaction with A. On the other hand, if C sends simulated
messages, this exactly corresponds to Hyb, .. Therefore, if A can distinguish between these two

hybrids, Asy can use the same distinguishing guess to break the security of protocol 7M. However,

7TSM Brk

Com and hence this is a

is secure against all adversaries running in time Tgy, where Tgy > T
contradiction. This completes the proof of the lemma.
Further, since the two hybrids are indistinguishable, the probability that Simpy, outputs “Spe-

cial Abort” in hybrid 5 continues to remain negligible. O

As in Section 5, we can see why this simulation strategy corresponds to the ideal world.

Acknowledgements: We thank Ron Rothblum for useful discussions.

References

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. CRYPTO, 2017. 3

[AJLT12] Gilad Asharov, Abhishek Jain, Adriana Lépez-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, compu-
tation and interaction via threshold FHE. In Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 483-501,
2012. 5, 52

[BGIT17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia.
Two-message witness indistinguishability and secure computation in the plain model
from new assumptions. TACR Cryptology ePrint Archive, 2017:433, 2017. 3

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure com-
putation without setup. TACR Cryptology ePrint Archive, 2017:386, 2017. 3, 4, 5, 11,
21, 30

46

[BMRY0]

[BPS06]

[BSO05]

[CLP10]

[DDNO91]

[DHRW16]

[DI05]

[DI06]

[GG14]

[GGJIS12]

[GKP17]

Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 503-513,
1990. 3

Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero
knowledge. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 345—
354, 2006. 3

Boaz Barak and Amit Sahai. How to play almost any mental game over the net - con-
current composition via super-polynomial simulation. In 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh,
PA, USA, Proceedings, pages 543-552, 2005. 3

Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In 51th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA, pages 541-550, 2010. 3, 11

Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
May 5-8, 1991, New Orleans, Louisiana, USA, pages 542-552, 1991. 10

Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryp-
tion and its applications. In Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part I1I, pages 93-122, 2016. 3, 4, 11, 12, 22, 30, 39

Ivan Damgard and Yuval Ishai. Constant-round multiparty computation using a black-
box pseudorandom generator. In Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, pages 378-394, 2005. 3

Ivan Damgard and Yuval Ishai. Scalable secure multiparty computation. In Advances in
Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2006, Proceedings, pages 501-520, 2006. 3

Sanjam Garg and Divya Gupta. Efficient round optimal blind signatures. In Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, pages 477-495, 2014. 3

Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure
computation in constant rounds. In Advances in Cryptology - EUROCRYPT 2012 -
31st Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, pages 99-116, 2012. 3, 4,
11

Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey. On the exact round complexity
of self-composable two-party computation. In Advances in Cryptology - EUROCRYPT

47

[GKS16]

[GLOV12]

[GMPP16]

[GMW37]

[Gol04]

[Goy11]

[GRS*11]

[HIKT16]

[KMO14]

[KOS03]

2017 - 36th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Paris, France, April 80 - May 4, 2017, Proceedings, Part II,
pages 194-224, 2017. 3, 4

Vipul Goyal, Dakshita Khurana, and Amit Sahai. Breaking the three round barrier for
non-malleable commitments. In FOCS, 2016. 5

Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-
malleable commitments: A black-box approach. In 58rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October
20-23, 2012, pages 51-60, 2012. 3

Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The
exact round complexity of secure computation. In Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part 11,
pages 448-476, 2016. 3

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA,
pages 218-229, 1987. 3, 5

Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004. 10, 50

Vipul Goyal. Constant round non-malleable protocols using one way functions. In
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San
Jose, CA, USA, 6-8 June 2011, pages 695-704, 2011. 3, 10

Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique Schréoder, and Dominique Un-
ruh. Round optimal blind signatures. In Advances in Cryptology - CRYPTO 2011 -
31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011.
Proceedings, pages 630—648, 2011. 3

Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark
Zhandry. How to generate and use universal samplers. In Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceed-
ings, Part II, pages 715-744, 2016. 5

Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto. Constant-round black-
box construction of composable multi-party computation protocol. In Theory of Cryp-
tography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,
February 24-26, 2014. Proceedings, pages 343-367, 2014. 4

Jonathan Katz, Rafail Ostrovsky, and Adam D. Smith. Round efficiency of multi-party
computation with a dishonest majority. In Advances in Cryptology - EUROCRYPT
2003, International Conference on the Theory and Applications of Cryptographic Tech-
niques, Warsaw, Poland, May 4-8, 2003, Proceedings, pages 578-595, 2003. 3

48

[KS17]

[LP11]

[LPS17]

[LPVO0S]

[MMY06]

[MW16]

[Pas03]

[Pas04]

[PPVO0§]

[PRO5]

[PS04]

[Sah99]

Dakshita Khurana and Amit Sahai. Two-message non-malleable commitments from
standard sub-exponential assumptions. IACR Cryptology ePrint Archive, 2017:291,
2017. 3, 5, 6, 9, 14, 23, 31, 39

Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any one-
way function. In Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 705-714, 2011. 3

Huijia Lin, Rafael Pass, and Pratik Soni. Two-round concurrent non-malleable com-
mitment from time-lock puzzles. TACR Cryptology ePrint Archive, 2017:273, 2017.
5

Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In Theory of Cryptography,
Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21,
2008., pages 571-588, 2008. 10

Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. Generalized environmental security
from number theoretic assumptions. In Theory of Cryptography, Third Theory of Cryp-
tography Conference, TCC 2006, New York, NY, USA, March /-7, 2006, Proceedings,
pages 343-359, 2006. 3

Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Aus-
tria, May 8-12, 2016, Proceedings, Part II, pages 735-763, 2016. 5, 12

Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol com-
position. In Advances in Cryptology - EUROCRYPT 2003, International Conference
on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May
4-8, 2003, Proceedings, pages 160-176, 2003. 3, 4, 5, 6

Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 232-241, 2004. 3, 9

Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way func-
tions and applications. In Advances in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008.
Proceedings, pages 57-74, 2008. 3

Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October
2005, Pittsburgh, PA, USA, Proceedings, pages 563-572, 2005. 10

Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal com-
posability without trusted setup. In Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 242-251, 2004.
3,4

Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th Annual Symposium on Foundations of Computer Science,
FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 543-553, 1999. 7

49

[Weel0] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability am-
plification. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 531-540, 2010. 3

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, 1982. 3

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, 1986. 3

A Secure Multiparty Computation

Parts of this section have been taken verbatim from [Gol04].

A multi-party protocol is cast by specifying a random process that maps pairs of inputs to pairs
of outputs (one for each party). We refer to such a process as a functionality. The security of a pro-
tocol is defined with respect to a functionality f. In particular, let n denote the number of parties.
A non-reactive n-party functionality f is a (possibly randomized) mapping of n inputs to n outputs.
A multiparty protocol with security parameter A for computing a non-reactive functionality f is
a protocol running in time poly(\) and satisfying the following correctness requirement: if parties
Py, ..., P, with inputs (x1,...,z,) respectively, all run an honest execution of the protocol, then
the joint distribution of the outputs yi,...,y, of the parties is statistically close to f(z1,...,xy).

A reactive functionality f is a sequence of non-reactive functionalities f = (fi,..., f;) computed
in a stateful fashion in a series of phases. Let x] denote the input of P; in phase j, and let s? denote
the state of the computation after phase j. Computation of f proceeds by setting 59 equal to
the empty string and then computing (y,...,yn,s7) < fi(s’ "L, 2],...) for j € [{], where y/
denotes the output of P; at the end of phase j. A multi-party protocol computing f also runs
in £ phases, at the beginning of which each party holds an input and at the end of which each
party obtains an output. (Note that parties may wait to decide on their phase-j input until the
beginning of that phase.) Parties maintain state throughout the entire execution. The correctness
requirement is that, in an honest execution of the protocol, the joint distribution of all the outputs
{vl,...,u ?:1 of all the phases is statistically close to the joint distribution of all the outputs of
all the phases in a computation of f on the same inputs used by the parties.

A.1 Defining Security.

We assume that readers are familiar with standard simulation-based definitions of secure multi-party
computation in the standalone setting. We provide a self-contained definition for completeness and
refer to [Gol04] for a more complete description. The security of a protocol (with respect to a
functionality f) is defined by comparing the real-world execution of the protocol with an ideal-
world evaluation of f by a trusted party. More concretely, it is required that for every adversary
A, which attacks the real execution of the protocol, there exist an adversary Sim, also referred to
as a simulator, which can achieve the same effect in the ideal-world. Let’s denote x = (x1,...,2y).

The real execution In the real execution of the n-party protocol 7 for computing f is executed
in the presence of an adversary A. The honest parties follow the instructions of . The adversary
A takes as input the security parameter k, the set I C [n] of corrupted parties, the inputs of the
corrupted parties, and an auxiliary input z. 4 sends all messages in place of corrupted parties and
may follow an arbitrary polynomial-time strategy.

50

The interaction of A with a protocol 7 defines a random variable REAL (. ;(k,x) whose value
is determined by the coin tosses of the adversary and the honest players. This random variable
contains the output of the adversary (which may be an arbitrary function of its view) as well
as the outputs of the uncorrupted parties. We let REAL; 4(;),; denote the distribution ensemble

{REAL: 4(2),1(k;X) }ren,(x,2)f0,1}+-

The ideal execution — security with abort . In this second variant of the ideal model, fairness
and output delivery are no longer guaranteed. This is the standard relaxation used when a strict
majority of honest parties is not assumed. In this case, an ideal execution for a function f proceeds
as follows:

e Send inputs to the trusted party: As before, the parties send their inputs to the trusted
party, and we let 2 denote the value sent by P;. Once again, for a semi-honest adversary we
require z; = x; for all i € I.

e Trusted party sends output to the adversary: The trusted party computes f(z},...,z}) =
(y1,...,yn) and sends {y; };cs to the adversary.

e Adversary instructs trust party to abort or continue: This is formalized by having
the adversary send either a continue or abort message to the trusted party. (A semi-honest
adversary never aborts.) In the latter case, the trusted party sends to each uncorrupted party
P, its output value y;. In the former case, the trusted party sends the special symbol L to
each uncorrupted party.

e Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the
values obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf 4. (k,x) as
above,and we let {IDEALy 4(.) r(k,X)}ren,(x,z)e{0,1} Where the subscript ” 1” indicates that the
adversary can abort computation of f.

Having defined the real and the ideal worlds, we now proceed to define our notion of security.

Definition 6. Let k be the security parameter. Let f be an n-party randomized functionality, and
w be an n-party protocol for n € N.

1. We say that 7 t-securely computes f in the presence of malicious (resp., semi-honest) ad-
versaries if for every PPT adversary (resp., semi-honest adversary) A there exists a PPT
adversary (resp., semi-honest adversary) Sim such that for any I C [n] with |I| < t the
following quantity is negligible:

| Pr[REAL, a2),1(k,x) = 1] — Pr(IDEALy 4(.) r(k,x) = 1]|
where x = {xi}icpy € {0,1}" and z € {0, 1}*.

2. Similarly, m t-securely computes f with abort in the presence of malicious adversaries if for
every PPT adversary A there exists a super-polynomial time adversary Sim such that for any
I C [n] with |I| <t the following quantity is negligible:

| PrREAL; 4(2).1(k,x) = 1] — Pr[IDEAL;, a1 (k,%) = 1]|.

51

A.2 Security Against Semi-Malicious Adversaries

We take this definition almost verbatim from [AJLT12]. We define a notion of a semi-malicious
adversary that is stronger than the standard notion of semi-honest adversary and formalize security
against semi-malicious adversaries. A semi-malicious adversary is modeled as an interactive Turing
machine (ITM) which, in addition to the standard tapes, has a special witness tape. In each round
of the protocol, whenever the adversary produces a new protocol message msg on behalf of some
party Py, it must also write to its special witness tape some pair (z,) of input and randomness r
that explains its behavior. More specifically, all of the protocol messages sent by the adversary on
behalf of P, up to that point, including the new message m, must exactly match the honest protocol
specification for P when executed with input x and randomness r. Note that the witnesses given
in different rounds need not be consistent. Also, we assume that the attacker is rushing and hence
may choose the message m and the witness (z,r) in each round adaptively, after seeing the protocol
messages of the honest parties in that round (and all prior rounds). Lastly, the adversary may also
choose to abort the execution on behalf of P in any step of the interaction.

Definition 7. We say that a protocol m securely realizes f for semi-malicious adversaries if it
satisfies Definition 6 when we only quantify over all semi-malicious adversaries A.

52

	Introduction
	Our Results

	Technical Overview
	Three Round MPC Without Setup
	Two Round MPC without Setup for Input-Less Randomized Functionalities

	Preliminaries
	ZK With Superpolynomial Simulation.
	ZK with Super-polynomial Strong Simulation
	Non-Malleability w.r.t. Commitment
	Secure Multiparty Computation

	Three Round Malicious Secure MPC
	High-Level Overview
	Construction
	Security Proof

	Two Round Malicious Secure MPC for Input-less Functionalities
	High-Level Overview
	Construction
	Security Proof

	Three Round Concurrently Secure MPC
	Security Proof

	Two Round Concurrently Secure MPC for Input-less Functionalities
	Security Proof

	References
	Secure Multiparty Computation
	Defining Security.
	Security Against Semi-Malicious Adversaries

