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Abstract. While succinct non-interactive zero-knowledge arguments of
knowledge (zk-SNARKs) are widely studied, the question of what hap-
pens when the CRS has been subverted has received little attention.
In ASIACRYPT 2016, Bellare, Fuchsbauer and Scafuro showed the first
negative and positive results in this direction, proving also that it is im-
possible to achieve subversion soundness and (even non-subversion) zero
knowledge at the same time. On the positive side, they constructed an
involved sound and subversion zero-knowledge argument system for NP.
We show that Groth’s zk-SNARK for Circuit-SAT from EUROCRYPT
2016 can be made computationally knowledge-sound and perfectly com-
posable Sub-ZK with minimal changes. We just require the CRS trapdoor
to be extractable and the CRS to be publicly verifiable. To achieve the
latter, we add some new elements to the CRS and construct an efficient
CRS verification algorithm. We also provide a definitional framework for
sound and Sub-ZK SNARKs and describe implementation results of the
new Sub-ZK SNARK.

Keywords: Common reference string, generic group model, non-interactive
zero knowledge, SNARK, subversion zero knowledge

1 Introduction

Combined effort of a large number of recent research papers (to only mention
a few, [26,32,22,37,33,17,27]) has made it possible to construct very efficient
succinct non-interactive zero-knowledge arguments of knowledge (zk-SNARKs)
for both the Boolean and the Arithmetic Circuit-SAT and thus for NP. The
most efficient known approach for constructing zk-SNARKs for the Arithmetic
Circuit-SAT is based on Quadratic Arithmetic Programs (QAP, [22]).

In a QAP, the prover builds a set of polynomial equations that are then
checked by the verifier by using a small number of pairings. QAP-based zk-
SNARKs have additional nice properties that make them applicable in verifiable
computation [21,22,37] where the client outsources some computation to the
server, who returns the computation result together with a succinct efficiently-
verifiable correctness argument. Especially due to this application, zk-SNARKs
? An earlier version of this paper was submitted to Crypto 2017. The current version
includes implementation data and readability improvements



have several heavily optimized implementations [37,8,9,15]. Other applications
of zk-SNARK include cryptocurrencies [5]. See, e.g., [27] for more references.

One drawback of zk-SNARKs is that they are all based on non-falsifiable as-
sumptions (like the knowledge assumptions [16], or the generic bilinear group
model, GBGM [36,40,35,13]). In fact, Gentry and Wichs [23] showed that
non-falsifiable assumptions are needed to construct zk-SNARKs for non-trivial
languages. The currently most efficient zk-SNARK for Arithmetic Circuit-
SAT was proposed by Groth (EUROCRYPT 2016, [27]) who proved it to be
knowledge-sound in the GBGM. In Groth’s zk-SNARK, the argument consists
of only 3 bilinear group elements and the verifier has to check a single pair-
ing equation, dominated by the computation of only 3 bilinear (type III [20])
pairings and m0 exponentiations, where m0 is the statement size.

After the Snowden revelations, there has been a recent surge of interest in
constructing cryptographic primitives and protocols secure against active sub-
version. In the context of zk-SNARKs, while the common reference string (CRS)
model [12] is widely accepted to be the proper model, one has to be very careful
to guarantee that the CRS has been created correctly. In [3], Bellare, Fuchs-
bauer and Scafuro tackled this problem by studying how much security one can
still achieve when the CRS generator cannot be trusted. They proved several
negative and positive results. In particular, they showed that it is impossible to
achieve subversion soundness and (even non-subversion) zero knowledge simul-
taneously, the essential reason being that the zero knowledge simulator can be
used to break subversion soundness.

In one of their positive solutions, Bellare et al. show that it is possible to
get (non-subversion) soundness and computational subversion zero knowledge
(Sub-ZK, ZK even if the the CRS is not trusted). Their main new idea is to use
a knowledge assumption in the Sub-ZK proof, so that the simulator can extract
a “trapdoor” from the untrusted CRS and then use this trapdoor to simulate
the argument. While neat, the resulting argument system is quite complicated.
Moreover, the non-interactive Sub-ZK argument system of [3] has linear com-
munication; in the case of zk-SNARKs one presumably has to employ different
techniques. We also need to take care to define and implement statistical Sub-ZK.

Our Contributions. We will take Groth’s zk-SNARK from EUROCRYPT
2016 [27] as a starting point since, as mentioned before, it is currently the
most efficient and thus the most attractive (for us) zk-SNARK. We propose
a minimal modification to Groth’s zk-SNARK that makes it computationally
knowledge-sound in what we call the “subversion generic bilinear group model”
(Sub-GBGM) and perfect composable Sub-ZK. In fact, we consider two differ-
ent versions of perfect Sub-ZK: (i) the version with an efficient subverter, where
we assume the existence of an efficient extractor and prove Sub-ZK under a
knowledge assumption, and (ii) the version with a computationally unbounded
subverter, where we assume the existence of a computationally unbounded ex-
tractor and prove Sub-ZK unconditionally.
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We change Groth’s zk-SNARK by adding extra elements to the CRS so that
the CRS will become publicly verifiable; this minimal step (clearly, some public
verifiability of the CRS is needed in the case the CRS generator cannot be
trusted) will be sufficient to obtain Sub-ZK. However, choosing which elements
to add to the CRS is not straightforward since the zk-SNARK must remain
knowledge-sound even given enlarged CRS; adding too many (or just “wrong”)
elements to the CRS can break the knowledge-soundness. On the other hand,
importantly, the prover and the verifier of the new zk-SNARK are unchanged
compared to Groth’s SNARK [27]. In the rest of the introduction, we will only
outline the novel properties of the new SNARK as compared to [27].

We start by defining perfect subversion-complete (this includes the require-
ment that an honestly generated CRS is accepted by the CRS verification),
computationally adaptively knowledge-sound, and statistically unbounded (or
composable) Sub-ZK SNARKs. These definitions are similar to but subtly dif-
ferent from the non-subversion security definitions as given in, say, [25]. First,
since one cannot check whether the subverter uses perfectly uniform coins (or,
the CRS trapdoor) to generate the CRS, we divide the CRS generation into three
different algorithms:
– generation of the CRS trapdoor tc (a probabilistic algorithm Ktc),
– creation of the CRS from tc (a deterministic algorithm Kcrs), and
– creation of the simulation trapdoor from tc (a deterministic algorithm Kts).

While we cannot check that Ktc works correctly, we will guarantee that given a
fixed tc, Kcrs has been executed on this tc. More precisely, we require that a Sub-
ZK SNARK satisfies a CRS trapdoor extractability property that allows one to
extract tc used by the subverter, s.t. if the subverted CRS crs is accepted by the
CRS verification algorithm (see below) then Ktc maps tc to crs. The extractability
requirement forces our ZK proof to use either a computationally unbounded
extractor or a knowledge assumption. While we use the Sub-ZK definition with
an efficient subverter and extractor throughout this introduction and the paper
(mainly, since it is actually more difficult to achieve), we will discuss the case of
computationally unbounded subverter and extractor in Sect. 9.

In the proof of knowledge-soundness, we use (a version of) the GBGM. Us-
ing GBGM seems to be the best we can do since Groth’s non-Sub zk-SNARK
is proven knowledge-sound in GBGM and as mentioned above, the use of a
knowledge assumption or the generic model in the knowledge-soundness proof
is necessary due to the impossibility result of Gentry and Wichs [23]. However,
following Bellare et al. [3], we weaken the usual definition of GBGM by allowing
the generic adversary to create (under realistic restrictions) random elements
in the source groups without knowing their discrete logarithms. We call the
resulting somewhat weaker model the subversion generic bilinear group model
(Sub-GBGM). Following Groth [27] (the main difference being that modeling
a more powerful generic adversary and taking into account new CRS elements
will complicate the proof somewhat), we prove that the new SNARK is (adap-
tively) knowledge-sound in the Sub-GBGM even in the case of type-I pairings.
(We emphasize once more that Groth’s zk-SNARK is proven knowledge-sound in
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the GBGM, and that Sub-GBGM is actually a weaker model than the GBGM.)
This provides a hedge against possible future cryptanalysis that finds an efficient
isomorphism between the two source groups.

Consider the case of efficient subverter. In the proof of perfect composable
Sub-ZK, we use a well-known knowledge assumption (see, e.g., [17]) that we call
BDH-KE. We argue that BDH-KE makes sense in the Sub-GBGM. The Sub-ZK
proof of the only previously known non-interactive Sub-ZK argument system
by Bellare et al. [3] also relies on knowledge assumptions. We follow the main
idea of [3] by first using BDH-KE to extract the CRS trapdoor tc from the CRS
and then construct a non-subversion simulator (that gets a part of the tc as an
input) to simulate the argument. However, since we construct a zk-SNARK, our
concrete approach is different from [3].

Also here, we rely on the existence of the efficient CRS verification algorithm
CV. We show that if CV accepts a crs, then crs has been computed correctly by
Kcrs from a tc bijectively fixed by crs. From this, it follows under the BDH-KE
assumption that for any subverter that produces a crs accepted by CV, there
exists an extractor that produces tc such that Kcrs given tc outputs crs.

We emphasize that our security proofs of knowledge-soundness and of Sub-
ZK are in incomparable models. The knowledge-soundness proof uses the full
power of Sub-GBGM in the case of any pairings (including type-I). The Sub-ZK
proof, on the other hand, uses a concrete standard-looking knowledge assumption
BDH-KE that holds in the the GBGM but does not hold in the Sub-GBGM in
the case of type-I pairings. (In the case of computationally unbounded subverter,
we even do not need BDH-KE.) This enables us to construct an efficient Sub-ZK
SNARK that uses type-III pairings, while guaranteeing its knowledge-soundness
even in the case of type-I pairings.

General Design Recommendations. We do not expect that constructing Sub-ZK
SNARKs can be done automatically, in particular since our framework points
to the necessity of making CRS publicly verifiable which means adding new
elements to the CRS. Since knowledge-soundness proofs of many SNARKs are
very subtle, it seems to be difficult to give a general “theorem” about which
SNARKs can be modified to be Sub-ZK or even whether their CRS can be made
verifiable without a major reconstruction. Whether a SNARK remains sound
after that must be proven separately in each case.

However, we can still give a few recommendations for designing a Sub-ZK
SNARK from a non subversion-secure SNARK (or from scratch) when using the
same approach as the current paper:
1. Division of duties: make sure that K can be divided into randomized Ktc,

deterministic Kts, and deterministic Kcrs.
2. CRS trapdoor extractability: for each element of tc, make sure that it can be

extracted from the CRS. For this, one can use a generic proof of knowledge, a
specific knowledge-assumption, or a computationally unbounded extractor.
A few additional properties described in Sect. 7 can also help.

3. CRS verifiability: the CRS must be publicly verifiable.
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4. Sound approach: make sure that the previous steps do not hurt the
knowledge-soundness. To achieve it, one should aim at designing a SNARK
with a very simple CRS or where CRS verifiability comes naturally. Depend-
ing on the SNARK in question, this step may be the most difficult one.

On Efficiency. Since the new zk-SNARK is closely based on the most efficient
known non-subversion zk-SNARK of Groth [27], it has comparable efficiency.
Importantly, the new CRS verification algorithm CV has to be executed only
by the prover (this is since we achieve Sub-ZK and non-subversion knowledge-
soundness). This means that it suffices for CV to have the same computational
complexity as the prover’s algorithm. The initial CV we describe in Fig. 1 is quite
inefficient. However, as we show in Sect. 8 (see App. B for more information),
by using batching techniques the CV algorithm can be sped up to be faster than
the prover’s algorithm for circuits of size 30 000 or more (at the information-
theoretical security level 2−80) and even faster at the information-theoretical
security level 2−40. We implemented the new SNARK by using the libsnark [9]
library and in App. B, we back up the last claim by concrete numbers.

An interesting open question is to minimize the computational complexity of
the CRS verification. In particular, in most of the known zero-knowledge argu-
ment systems, either the argument length is at least linear and hence the verifi-
cation algorithm takes at least linear time (e.g., the Groth-Sahai proofs [28]) or
the CRS length is at least linear and hence the CRS verification algorithm takes
at least linear time. A SNARK where both CRS and the argument are succinct is
called fully succinct. See [26,32,10,8,15] for work on zk-SNARKs with sublinear
CRS. However, existing fully succinct zk-SNARK are not really practical, see [8]
for discussions. Moreover, it is not clear a priori how to make it Sub-ZK. An
important open research topic hence is to construct an efficient fully succinct
non-interactive Sub-ZK argument system.

Related Work. Ben-Sasson et al. [7] proposed an efficient MPC approach to
achieve security in the case one can trust at least one CRS creator. We emphasize
that [3] and the current paper study the scenario where you can trust none. In
such a case, the approach of [7] still works but it is not efficient. For example,
the computational cost of CV (see Sect. 8) in the new SNARK is very small
compared to the cost of the joint CRS creation and verification protocol in [7].
Nevertheless, while the starting point of their approach is different, it actually
resulted in a somewhat similar solution. See App. A for a longer comparison,
and App. B.2 for a brief comparison of the implementation results.

2 Preliminaries

For a matrix M ∈ Zn×mp , we denote by M i the ith row of M and by M (j) the
jth column of M .

PPT stands for probabilistic polynomial-time. We write f(κ) ≈κ g(κ), if
f(κ) − g(κ) is negligible as a function of κ. For an algorithm A, let range(A)
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Algorithm 1: Computing (`i(χ))
n
i=1

1 ζ ← (χn − 1)/n; ω′ ← 1; `1(χ)← ζ/(χ− ω′);
2 for i = 2 to n do ζ ← ωζ; ω′ ← ωω′; `i(χ)← ζ/(χ− ω′) ;

be the range of A, i.e., the set of of valid outputs of A. For an algorithm A, let
RND(A) denote the random tape of A, and let r ←r RND(A) denote the random
choice of the randomizer r from RND(A). By y ← A(x; r) we denote the fact that
A, given an input x and a randomizer r, outputs y. We emphasize that when we
use this notation, then r represents the full random tape of A. For algorithms
A and XA, we write (y ‖ y′) ← (A ‖XA)(χ; r) as a shorthand for y ← A(χ; r),
y′ ← XA(χ; r). In both cases, XA and A use internally the same randomness r.

In the new argument system, we will use a small number of indeterminates,
and we assume that each indeterminate has a canonical concrete value (a uni-
formly random element of Zp or Z∗p). The canonical value of X,Xα, Xβ , Xγ , Xδ

(resp., Yi) will be χ, α, β, γ, δ (resp., υi, for i ∈ {1, 2, 3}). The canonical value
of the vector X = (X,Xα, Xβ , Xγ , Xδ) (resp., Y = (Y1, Y2, Y3)) will be
x = (χ, α, β, γ, δ) (resp., y = (υ1, υ2, υ3)).

Lemma 1 (Schwartz-Zippel [41,39]). Let f ∈ F[X1, . . . , Xn] be a non-zero
polynomial of total degree d ≥ 0 over a field F. Let S be a finite subset of F, and
let x1, . . . , xn be selected at random independently and uniformly from S. Then
Pr[f(x1, . . . , xn) = 0] ≤ d/|S|.

Interpolation. Assume n is a power of two, and let ω be the n-th primitive root
of unity modulo p. Such ω exists, given that n | (p− 1). Then,
– `(X) :=

∏n
i=1(X−ωi−1) = Xn−1 is the unique degree n monic polynomial

such that `(ωi−1) = 0 for all i ∈ [1 .. n].
– For i ∈ [1 .. n], let

`i(X) :=
`(X)

`′(ωi−1)(X − ωi−1)
=

(Xn − 1)ωi−1

n(X − ωi−1)
(1)

be the ith Lagrange basis polynomial, that is, the unique degree n− 1 poly-
nomial such that `i(ωi−1) = 1 and `i(ωj−1) = 0 for i 6= j.

Given any χ ∈ Zp, Alg. 1 (see, e.g., [6]) computes `i(χ) for i ∈ [1 .. n]. It can be
implemented by using 4n− 2 multiplications and divisions in Zp.

Clearly, La(X) :=
∑n
i=1 ai`i(X) is the interpolating polynomial of a at

points ωi−1, with La(ω
i−1) = ai, and its coefficients can thus be computed

by executing an inverse Fast Fourier Transform in time Θ(n log n). Moreover,
(`j(ω

i−1))ni=1 = ej (the jth unit vector) and (`(ωi−1))ni=1 = 0n.

Elliptic Curves and Bilinear Maps. On input 1κ, a bilinear map generator genbp
returns gk = (p,G1,G2,GT , ê, g1, g2), where G1, G2 and GT are three additive
cyclic groups of prime order p (with log p = Ω(κ)) and gz is a random generator
of Gz for z ∈ {1, 2, T}. We denote the elements of G1, G2, and GT by using
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Fraktur as in g1. Additionally, ê is an efficient bilinear map ê : G1 × G2 → GT
that satisfies in particular the following two properties: (i) ê(g1, g2) 6= 1, and
(ii) ê(ag1, bg2) = (ab)ê(g1, g2).

We give genbp another input, n (intuitively, the input length), and allow p to
depend on n. We assume that all algorithms that handle group elements verify
by default that their inputs belong to corresponding groups and reject if not.
Usually, arithmetic in (say) G1 is considerably cheaper than in G2; hence, we
count separately exponentiations in both groups.

We use the bracket notation [18]. That is, for an integer x, we denote [x]z :=
xgz even when x is unknown. We denote [x]1 • [y]2 := ê([x]1 , [y]2), hence [xy]T =
[x]1 • [y]2. We denote [a1, . . . , as]z = ([a1]z , . . . , [as]z).

The current recommendation is to use an optimal (asymmetric) Ate pair-
ing [29] over Barreto-Naehrig curves [2,38]. In that case, at security level of κ =
99, an element of G1/G2/GT can be represented in respectively 256/512/3072
bits.1 To speed up interpolation and other related computation, we will need the
existence of the n-th, where n is a power of 2, primitive root of unity modulo p.
For this, it suffices that (n+1) | (p− 1) (recall that p is the elliptic curve group
order). Fortunately, given κ and a practically relevant value of n, one can easily
find a Barreto-Naehrig curve such that (n+ 1) | (p− 1) holds [9].

Quadratic Arithmetic Programs. Quadratic Arithmetic Program (QAP) was
introduced by Gennaro et al. [22] as a language where for an input x and witness
w, (x,w) ∈ R can be verified by using a parallel quadratic check, and that has an
efficient reduction from the well-known language (either Boolean or Arithmetic)
Circuit-SAT. Hence, an efficient zk-SNARK for QAP results in an efficient
zk-SNARK for Circuit-SAT.

For an m-dimensional vector A, let aug(A) = ( 1
A ). For an n-dimensional

vectorM (0) and an n×mmatrixM over finite field F, let aug(M) := (M (0),M).
Let m0 < m be a non-negative integer. An instance Q of the QAP language is
specified by (F,m0, aug(U), aug(V ), aug(W )) where U, V,W ∈ Fn×m.

In the case of Arithmetic Circuit-SAT, n is the number of multiplication
gates and m to the number of wires in the circuit. Here, we consider arithmetic
circuits that consist only of fan-in-2 multiplication gates, but either input of each
multiplication gate can be a weighted sum of some wire values, [22].

For a fixed instance Q of QAP, define the relation R as follows:

RQ =

{
(x,w) : x = (A1, . . . , Am0

)> ∧ w = (Am0+1, . . . , Am)>∧
(aug(U) · aug(A)) ◦ (aug(V ) · aug(A)) = aug(W ) · aug(A)

}
where a ◦ b = (aibi)

n
i=1 denotes the entrywise product of vectors a and b.

In a cryptographic setting, it is more convenient to work with the following
alternative definition of QAP and of the relation RQ. (This corresponds to
1 The value κ = 99 takes account recent cryptanalysis of the Barreto-Naehrig curves
by Kim and Barbulescu [31,1]. One can use different settings for 128-bit security.
Since we use the library libsnark [9] that currently offers the mentioned security
level, we just refer the reader to [31,1] for more discussion.
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the original definition of QAP in [22].) Let F = Zp, such that ω is the n-th
primitive root of unity modulo p. (This requirement is needed for the sake of
efficiency, and we will make it implicitly throughout the current paper.) Let
Q = (Zp,m0, aug(U), aug(V ), aug(W )) be a QAP instance. For j ∈ [0 ..m],
define uj(X) := LU(j)(X), vj(X) := LV (j)(X), and wj(X) := LW (j)(X). Thus,
uj , vj , wj ∈ Z(≤n−1)

p [X].
An QAP instance Qp is specified by the so defined (Zp,m0, {uj , vj , wj}mj=0).

This instance defines the following relation, where we assume that A0 = 1:

RQp =

{
(x,w) : x = (A1, . . . , Am0)

> ∧ w = (Am0+1, . . . , Am)>∧(∑m
j=0Ajuj(X)

)(∑m
j=0Ajvj(X)

)
≡
∑m
j=0Ajwj(X) (mod `(X))

}

Alternatively, (x,w) ∈ R if there exists a (degree ≤ n− 2) polynomial h(X), s.t.(∑m
j=0Ajuj(X)

)(∑m
j=0Ajvj(X)

)
−
∑m
j=0Ajwj(X) = h(X)`(X) .

Clearly, RQ = RQp , given that Qp is constructed from Q as above.

3 Definitions: SNARKs and Subversion Zero Knowledge

Next, we define subversion zk-SNARKs and all their properties. To achieve sub-
version zero knowledge (Sub-ZK), we augment a zk-SNARK by requiring the
existence of an efficient CRS verification algorithm. As outlined in Sect. 1, we
also subdivide the CRS generation algorithm into three efficient algorithms.

Our definition of (statistical unbounded) Sub-ZK for SNARKs is motivated
by the definition of [3]. We also define statistical composable Sub-ZK. As in [25],
the definition of unbounded zero knowledge guarantees security for any (polyno-
mial) number of queries to the prover or simulator, while the definition of com-
posable zero knowledge guarantees security only in the case of a single query.
Following [25] we prove that a statistical composable Sub-ZK argument system
is also statistical unbounded Sub-ZK.

3.1 Syntax

Let R be a relation generator, such that R(1κ) returns a polynomial-time de-
cidable binary relation R = {(x,w)}. Here, x is the statement and w is the
witness. We assume that κ is explicitly deductible from the description of R.
The relation generator also outputs auxiliary information zR that will be given
to the honest parties and the adversary. As in [27, Sect. 2.3], zR will be equal to
gk ← genbp(1κ, n) for a well-defined n. Because of this, we will also give zR as
an input to the honest parties; if needed, one can include an additional auxiliary
input as an input to the adversary. We recall that the choice of p and thus of the
groups Gz depends on n. Let LR = {x : ∃w, (x,w) ∈ R} be an NP-language.

A (subversion-resistant) non-interactive zero-knowledge argument system Ψ
for R consists of seven PPT algorithms:
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CRS trapdoor generator: Ktc is a probabilistic algorithm that, given
(R, zR) ∈ range(R(1κ)), outputs a CRS trapdoor tc. Otherwise, it outputs
a special symbol ⊥.

Simulation trapdoor generator: Kts is a deterministic algorithm that, given
(R, zR, tc) where (R, zR) ∈ range(R(1κ)) and tc ∈ range(Ktc(R, zR)) \ {⊥},
outputs the simulation trapdoor ts. Otherwise, it outputs ⊥.

CRS generator: Kcrs is a deterministic algorithm that, given (R, zR, tc), where
(R, zR) ∈ range(R(1κ)) and tc ∈ range(Ktc(R, zR)) \ {⊥}, outputs crs. Oth-
erwise, it outputs ⊥. For the sake of efficiency and readability, we divide
crs into crsP (the part needed by the prover), crsV (the part needed by the
verifier), and crsCV (the part needed only by CV and not by P or V).

CRS verifier: CV is a probabilistic algorithm that, given (R, zR, crs), returns
either 0 (the CRS is incorrectly formed) or 1 (the CRS is correctly formed),

Prover: P is a probabilistic algorithm that, given (R, zR, crsP, x,w) for
CV(R, zR, crs) = 1 and (x,w) ∈ R, outputs an argument π. Otherwise, it
outputs ⊥.

Verifier: V is a probabilistic algorithm that, given (R, zR, crsV, x, π), returns
either 0 (reject) or 1 (accept).

Simulator: S is a probabilistic algorithm that, given (R, zR, crs, ts, x) where
CV(R, zR, crs) = 1, outputs an argument π.

We also define the (non-subverted) CRS generation algorithm K(R, zR) that first
sets tc← Ktc(R, zR) and then outputs (crs ‖ ts)← (Kcrs ‖Kts)(R, zR, tc).

One can remove S from the definition of Ψ , and instead require that for each
PPT verifier V∗ there exists a corresponding PPT simulator S. We follow [27] and
other SNARK literature by letting Ψ to fix S; this guarantees that there exists
a single simulator that simulates the CRS for all subverters. In the case of non
subversion-resistant QANIZKs, existence of a single simulator is required [30].
See Def. 5 and Rem. 1 for a longer discussion.

SNARKs. A non-interactive argument system is succinct if the proof size is
polynomial in κ and the verifier runs in time polynomial in κ+|x|. A succinct non-
interactive argument of knowledge is usually called SNARK. A zero knowledge
SNARK is abbreviated to zk-SNARK.

Discussions. A (non subversion-resistant) non-interactive zero-knowledge argu-
ment system is defined as a tuple (K,P,V,S), see, e.g., [27]. We will now briefly
motivate the differences compared to the established syntax of non-interactive
zero-knowledge argument systems. Sect. 3.2 will give formal security definitions
where the above syntactic definition will become an important part.

The division of K into 3 subalgorithms Ktc, Kts, and Kcrs is usually not needed,
but the K algorithm of many known non-interactive zero-knowledge argument
systems (and all SNARKs that we know) satisfies such a division. Ktc just gen-
erates all randomness (tc), needed to compute crs and ts, and then Kcrs and Kts

compute from tc deterministically crs and ts. We note that such division can be
formalized by requiring the crs to be witness-sampleable [30] that also seems to
be a reasonable requirement in the case one is interested in subversion-resistance.
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Really, an important subgoal of Sub-ZK is to guarantee that the subverted CRS
is consistent with at least some choice of tc. This means that for each tc there
must exist corresponding crs (accepted by CV) and ts (that can be used by the
simulator to simulate subverted crs corresponding to tc).

The existence of efficient CV will be crucial to obtain Sub-ZK. To guarantee
Sub-ZK, it is intuitively clear that the honest prover should at least check the
correctness of the CRS. Efficiency-wise, since the prover in known SNARK con-
structions (including say [22,27] and the current paper) takes superlinear time,
this is fine unless the CRS verification will be even slower. For the sake of clarity,
however, we do not assume that CV is a part of the P algorithm; instead we as-
sume that an honest prover first runs CV and given that it accepts, runs P. This
is since, in practice one could execute many zero-knowledge arguments by using
the same CRS; it is natural to require that the prover executes CV only once. On
the other hand, since we are not aiming to get subversion (knowledge-)soundness,
the honest verifier does not have to execute CRS verification.

Finally, crsP (resp., crsV) is the part of the CRS given to an honest prover
(resp., an honest verifier), and crsCV is the part of CRS not needed by the prover
or the verifier except to run CV. The distinction between crsP, crsV, and crsCV

is not important from the security point of view, but in many cases crsV is
significantly shorter than crsP. Keeping crsCV separate helps one to evaluate
better the additional efficiency penalty introduced by subversion security.

3.2 Security Definitions

A Sub-ZK SNARK has to satisfy various security definitions. The most impor-
tant ones are subversion-completeness (an honest prover convinces an honest
verifier, and an honestly generated CRS passes the CRS verification test), com-
putational knowledge-soundness (if a prover convinces an honest verifier, then
he knows the corresponding witness), and statistical Sub-ZK (given a possibly
subverted CRS, an argument created by the honest prover reveals no side infor-
mation). In the case of Sub-ZK, we will consider the case of an efficient subverter
and a computationally unbounded distinguisher; in Sect. 9 we will discuss the
case when also the subverter is unbounded. Next, we will give definitions of those
properties that guarantee both composability and subversion resistance.

To keep the new security definitions as close to the accepted security defini-
tions of zk-SNARKs as possible, we will start with non subversion-resistant secu-
rity definitions from [27] (that will be stated below for the sake of completeness),
albeit by using our notation, and modify them by adding elements of subversion
as in Bellare et al. [3]. To ease the reading, we will emphasize the differences
between non-subversion and subversion definitions. We use the division of CRS
generation into three different algorithms also in the non subversion-resistant
case. As motivated in Sect. 3.1, we also give zR as an input to all honest parties.
Finally, the notions of unbounded (ZK is guaranteed against an adversary who
can arbitrarily query an oracle that outputs either proofs or simulations) and
composable (ZK is guaranteed against an adversary who has to distinguish a
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single argument from a simulation) zero knowledge follow the definitions given
in [25] and are in fact equal in our case.

As [27], we define all security notions against a non-uniform adversary. How-
ever, since our security reductions are uniform, it is a simple matter to consider
only uniform adversaries, as it was done by Bellare et al. [3] (see also [24]).

Definition 1 (Perfect Completeness [27]). A non-interactive argument Ψ
is perfectly complete for R, if for all κ, all (R, zR) ∈ range(R(1κ)), tc ∈
range(Ktc(R, zR)) \ {⊥}, and (x,w) ∈ R,

Pr [crs← Kcrs(R, zR, tc) : V(R, zR, crsV, x,P(R, zR, crsP, x,w)) = 1] = 1 .

Definition 2 (Perfect Subversion-Completeness). A non-interactive ar-
gument Ψ is perfectly subversion-complete for R, if for all κ, all (R, zR) ∈
range(R(1κ)), tc ∈ range(Ktc(R, zR)) \ {⊥}, and (x,w) ∈ R,

Pr

[
crs← Kcrs(R, zR, tc) : CV(R, zR, crs) = 1∧
V(R, zR, crsV, x,P(R, zR, crsP, x,w)) = 1

]
= 1 .

Definition 3 (Computational Knowledge-Soundness [27]). Ψ is compu-
tationally (adaptively) knowledge-sound for R, if for every non-uniform PPT A,
there exists a non-uniform PPT extractor XA, s.t. for all κ,

Pr

 (R, zR)← R(1κ), (crs ‖ ts)← K(R, zR),

r ←r RND(A), ((x, π) ‖w)← (A ‖XA)(R, zR, crs; r) :

(x,w) 6∈ R ∧ V(R, zR, crsV, x, π) = 1

 ≈κ 0 .

Here, zR can be seen as a common auxiliary input to A and XA that is generated
by using a benign [11] relation generator; we recall that we just think of zR as
being the description of a secure bilinear group. A knowledge-sound argument
system is called an argument of knowledge.

Next, we define statistically unbounded ZK. Unbounded (non-Sub) ZK was
not defined in [27], presumably because it is a corollary of composable non-Sub
ZK as shown in [25]. Hence, we will first give a modified version of the definition
of non-Sub ZK from [25]; in [25], K will only output a crs and a CRS simulator
Scrs will return (crs ‖ ts). As in [27], we find it more convenient to let Scrs (whom
we call K) to generate also the honest crs.

Definition 4 (Statistically Unbounded ZK [25]). Ψ is statistically un-
bounded Sub-ZK for R, if for all κ, all (R, zR) ∈ range(R(1κ)), and all compu-
tationally unbounded A, εunb0 ≈κ εunb1 , where

εunbb = Pr[(crs ‖ ts)← K(R, zR) : AOb(·,·)(R, zR, crs) = 1] .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(R, zR, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and
otherwise it returns S(R, zR, crs, ts, x). Ψ is perfectly unbounded Sub-ZK for R
if one requires that εunb0 = εunb1 .
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The following definition of unbounded Sub-ZK differs from this as follows.
Since we allow the CRS to be subverted, the CRS is generated by a subverter
who also returns zΣ. The adversary’s access to zΣ models the possibility that
the subverter and the adversary collaborate. The extractor XΣ extracts tc from
Σ, and then tc is used to generate the simulation trapdoor ts that is then given
as an auxiliary input to the adversary and to the oracle O1. In [25], tc was not
given to the adversary because K was not required to return tc and thus was not
guaranteed to exist; adding this input to the adversary only increases the power
of the adversary. In our construction, it does not matter since a computationally
unbounded A could compute ts herself (see Alg. 5). If we allow both the subverter
and the extractor to be computationally unbounded, we would not need to rely
on a knowledge assumption; the Sub-ZK proof in Sect. 7 would also simplify.

A weaker version of Sub-ZK definition would require that the extractor only
outputs ts that is used then for simulation. We prefer the current definition since
it is stronger and allows us to prove CRS trapdoor extractability (see Def. 8).
Since we consider statistical ZK, achieving our stronger definition will concur
almost no extra cost if we also allow XΣ to be computationally unbounded.

Definition 5 (Statistically Unbounded Sub-ZK). Ψ is statistically un-
bounded Sub-ZK for R, if for any non-uniform PPT subverter Σ there exists a
non-uniform PPT XΣ, such that for all κ, all (R, zR) ∈ range(R(1κ)), and all
computationally unbounded A, εunb0 ≈κ εunb1 , where

εunbb = Pr

 r ←r RND(Σ), (crs, zΣ ‖ tc)← (Σ ‖XΣ)(R, zR; r),

ts← Kts(R, zR, tc) : CV(R, zR, crs) = 1∧
AOb(·,·)(R, zR, crs, ts, zΣ ) = 1

 .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(R, zR, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and
otherwise it returns S(R, zR, crs, ts, x). Ψ is perfectly unbounded Sub-ZK for R
if one requires that εunb0 = εunb1 .

Remark 1 (Comparison to Sub-ZK Definition of [3]). In [3], it is required that for
any (non-uniform) PPT subverter Σ there exists a (non-uniform) PPT simulator
(XΣ,S), such that for all κ, (R, zR) ∈ range(R(1κ)), all (x,w) ∈ R, and all (non-
uniform) PPT A, εbfs0 ≈κ εbfs1 , where

εbfsb = Pr

[
if b = 0 then r ←r RND(Σ), crs← Σ(R, zR; r)

else (crs, r)← XΣ(R, zR) endif : AOb(·,·)(R, zR, crs, r)

]
.

for Ob defined as before.
First, [3] defines computational Sub-ZK while we define statistical Sub-ZK.

This by itself changes several aspects of the definition. E.g., we could just let A
to compute ts and zΣ from crs instead of giving them as extra inputs to A.

Second, compared to [3], we give to A extra information, ts and zΣ. Having
access to ts means that one can implement SNARKs for different relations using
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the same CRS [25]. Really, given ts, A will be able to both form and simulate
arguments for any of the considered relations. Having access to zΣ models, as
already mentioned, the possibility that Σ and A are collaborating. (Bellare et al.
only allow the subverter to communicate r, the secret coins.) In this sense, our
definition is stronger compared to [3].

Third, Bellare et al. required that for each Σ there exists a simulator (XΣ,S).
We consider it to be more natural to think of XΣ as an extractor and allow only
XΣ to depend on Σ. In the SNARK literature, extractors usually depend on the
adversary (here, Σ) while there is a single simulator that works for all adversaries.
In particular, this is a formal requirement in the case of QANIZKs, [30]. Also
Bellare et al. used XΣ as an extractor in their construction. In this sense, our
definition is stronger compared to [3].

Fourth, we give to XΣ the same coins r as to Σ, while Bellare et al. allow
XΣ to generate its own coins, only requiring that the distribution of (crs, r) is
computationally indistinguishable from the output of Σ. Also in this sense, our
definition seems to be stronger.

Finally, we use explicitly the syntax of subversion-resistant SNARKs from
Sect. 3.1, assuming the existence of algorithms Kts and CV. While it might seem
to be restrictive, as argued in Sect. 3.1, existence of both Kts and CV seems to
be necessary for subversion-resistance. ut

In the case of composable ZK, the adversary can only see one purported (i.e.,
real or simulated) argument π, instead of being able to make many queries to a
purported prover oracle as in the case of unbounded ZK. If composable ZK is
defined carefully, it will be at least as strong as unbounded ZK while potentially
allowing for simpler ZK proofs, [25]. We will show that the same holds in the
case of Sub-ZK.

Definition 6 (Statistically Composable ZK [27]). Ψ is statistically com-
posable Sub-ZK for R, if for any non-uniform PPT subverter Σ there ex-
ists a non-uniform PPT XΣ, such that for all κ, (R, zR) ∈ range(R(1κ)), all
(x,w) ∈ R, and all computationally unbounded A, εcomp0 ≈κ εcomp1 , where

εcompb = Pr

 (crs ‖ ts)← K(R, zR),

if b = 0 then π ← P(R, zR, crsP, x,w)

else π ← S(R, zR, crs, ts, x) endif : A(R, zR, crs, ts, π) = 1

 .

Ψ is perfectly composable Sub-ZK for R if one requires that εcomp0 = εcomp1 .

Next, we define statistical composable subversion zero knowledge (Sub-ZK).
This definition is related to but crucially different from the definition of (com-
putational) composable ZK from [25]. Most importantly, [25] defines two prop-
erties, the first being reference string indistinguishability, meaning that the CRS
generated by honest K and the CRS simulated by a simulator Scrs should be
indistinguishable. We will use the CRS generated by the subverter in both the
real and the simulated case. The second property in [25] is simulation indistin-
guishability. Our definition of composable Sub-ZK is similar to the definition of
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simulation indistinguishability in [25]. However, instead of simulating the CRS,
we use crs generated by the subverter, assume that an extractor extracts tc from
crs, compute ts from tc by using Kts, and finally verify that CV accepts crs. We
also quantify over all valid (x,w) ∈ R instead of letting the adversary to choose
it; since we deal with statistical Sub-ZK this results in an equivalent definition.

Moreover, we differ from the definition of composable non-Sub ZK in [27]
as follows. The CRS is generated by Σ who also returns zΣ. A’s access to zΣ

models the possibility that Σ and A collaborate; although of course A could
just recompute it. XΣ extracts tc from Σ, and then tc is used to generate the
simulation trapdoor ts that is then given as an auxiliary input to A.

Definition 7 (Statistically Composable Sub-ZK). Ψ is statistically com-
posable Sub-ZK for R, if for any non-uniform PPT subverter Σ there exists
a non-uniform PPT XΣ, such that for all κ, all (R, zR) ∈ range(R(1κ)), all
(x,w) ∈ R, and all computationally unbounded A, εcomp0 ≈κ εcomp1 , where

εcompb = Pr



r ←r RND(Σ), (crs, zΣ ‖ tc)← (Σ ‖XΣ)(R, zR; r),

ts← Kts(R, zR, tc),

if b = 0 then π ← P(R, zR, crsP, x,w)

else π ← S(R, zR, crs, ts, x) endif :

CV(R, zR, crs) = 1∧A(R, zR, crs, ts, π , zΣ ) = 1

 .

Ψ is perfectly composable Sub-ZK for R if one requires that εcomp0 = εcomp1 .

Now, we will prove the following result that makes it possible to operate
in the rest of the paper with the simpler composable Sub-ZK definition. It is
motivated by a similar result of Groth (ASIACRYPT 2006, [25]) that considers
computational non subversion-resistant zero knowledge. As seen from below, we
can establish the same result for statistical zero knowledge, but then we have to
restrict the number of oracle calls to a polynomial number.

Theorem 1. (i) Statistical composable Sub-ZK implies statistical unbounded
Sub-ZK, assuming that A is given access to polynomially many oracle calls.
(ii) Perfect composable Sub-ZK implies perfect unbounded Sub-ZK, even if given
access to an unbounded number of oracle calls.

Proof. (i) Statistical Sub-ZK. Assume that the adversary can make up to
q(κ) oracle queries for some fixed polynomial q. We define a sequence of q(κ)+1
oracles O′0(x,w), . . . , O′q(κ)(x,w). Given the jth adversarial query (xj ,wj), the
oracle O′k(·, ·) responds with O1(xj ,wj) for j ∈ [1 .. k] and O0(xj ,wj) for j ∈
[k + 1 .. q(κ)]. Hence, O′0 = O0 and O′q(κ) = O1.

Due to the statistical composable Sub-ZK property, we get that for i ∈
[0 .. q(κ)− 1], εi ≈κ εi+1, where

εi = Pr

 r ←r RND(Σ), (crs, zΣ ‖ tc)← (Σ ‖XΣ)(R, zR; r),

ts← Kts(R, zR, tc) : CV(R, zR, crs) = 1∧

AO′
i(·,·)(R, zR, crs, ts, zΣ) = 1
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since the oracles can be efficiently implemented given crs and ts, and inserting
π as the answer to the ith query. Since ε0 = εunb0 , q is a polynomial, and εunb0 =
ε0 ≈κ · · · ≈κ εq(κ) = εunb1 , we get that εunb0 ≈κ εunb1 and hence the claim holds.

(ii) Perfect Sub-ZK. As above, but assume q is the actual (possibly un-
bounded) number of queries. We get εunb0 = ε0 = · · · = εq(κ) = εunb1 , and hence
εunb0 = εunb1 , and the claim holds. ut

In [25], composable ZK was a stronger requirement than unbounded ZK
since in the case of composable ZK, (i) the simulated CRS was required to be
indistinguishable from the real CRS, and (ii) the adversary got access to ts. In
the case of our Sub-ZK definitions, there is no such difference and it is easy to
see that composable Sub-ZK and unbounded Sub-ZK are in fact equal notions.

In the proof that the new SNARK is Sub-ZK (see Thm. 5), we require that if
Σ generates a crs accepted by CV then there exists a non-uniform PPT extractor
XΣ that generates a CRS trapdoor tc that corresponds to crs; that is, Kcrs on
input tc outputs crs. We formalize this property — that intuitively gives us a
stronger version of witness-sampleability — as follows.

Definition 8 (Statistical CRS Trapdoor Extractability). Ψ has statis-
tical CRS trapdoor extractability for R, if for any non-uniform PPT sub-
verter Σ there exists a non-uniform PPT XΣ, such that for all κ and all
(R, zR) ∈ range(R(1κ)),

Pr

[
r ←r RND(Σ), (crs, zΣ ‖ tc)← (Σ ‖XΣ)(R, zR; r) :

CV(R, zR, crs) = 1 ∧ Kcrs(R, zR, tc) 6= crs

]
≈κ 0 .

Ψ has perfect CRS trapdoor extractability for R if the same property holds but
with ≈κ changed to =.

4 GBGM And Sub-GBGM

Preliminaries: Generic Bilinear Group Model. In Sect. 6, we will prove
that the new zk-SNARK is knowledge-sound in the subversion generic bilinear
group model (Sub-GBGM). In the current subsection, we will introduce the
GBGM [36,40,35,13], by following the exposition in [35]. After that, we will
introduce the Sub-GBGM.

We start by picking a random asymmetric bilinear group gk :=
(p,G1,G2,GT , ê) ← genbp(1κ, n). Consider a black box B that can store val-
ues from additive groups G1,G2,GT in internal state variables cell1, cell2, . . . ,
where for simplicity we allow the storage space to be infinite (this only in-
creases the power of a generic adversary). The initial state consists of some
values (cell1, cell2, . . . , cell|inp|), which are set according to some probability dis-
tribution. Each state variable celli has an accompanying type typei ∈ {1, 2, T,⊥}.
We assume initially typei = ⊥ for i > |inp|. The black box allows computation
operations on internal state variables and queries about the internal state. No
other interaction with B is possible.
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Let Π be an allowed set of computation operations. A computation oper-
ation consists of selecting a (say, t-ary) operation f ∈ Π together with t + 1
indices i1, i2, . . . , it+1. Assuming inputs have the correct type, B computes
f(celli1 , . . . , cellit) and stores the result in cellit+1 . For a set Σ of relations, a
query consists of selecting a (say, t-ary) relation % ∈ Σ together with t indices
i1, i2, . . . , it. Assuming inputs have the correct type, B replies to the query with
%(celli1 , . . . , cellit). In the GBGM, we define Π = {+, ê} and Σ = {=}, where
1. On input (+, i1, i2, i3): if typei1 = typei2 6= ⊥ then set celli3 ← celli1 + celli2

and typei3 ← typei1 .
2. On input (ê, i1, i2, i3): if typei1 = 1 and typei2 = 2 then set celli3 ←
ê(celli1 , celli2) and typei3 ← T .

3. On input (=, i1, i2): if typei1 = typei2 6= ⊥ and celli1 = celli2 then return 1.
Otherwise return 0.

Since we are proving lower bounds, we will give a generic adversary A additional
power. We assume that all relation queries are for free. We also assume that A
is successful if after τ operation queries, he makes an equality query (=, i1, i2),
i1 6= i2, that returns 1; at this point A quits. Thus, if typei 6= ⊥, then celli =
Fi(cell1, . . . , cell|inp|) for a polynomial Fi known to A.

Sub-GBGM. By following Bellare et al. [3], we enhance the power of generic
bilinear group model [36,40,35,13]. Since the power of the generic adversary will
increase, security proofs in the resulting Sub-GBGM will be somewhat more
realistic than in the GBGM model.

As noted by Bellare et al. [3], it is known how to hash into elliptic curves and
thus create group elements without knowing their discrete logarithms. However,
it is not known how to create four elements [1]z, [a]z, [b]z, and [ab]z without
knowing either a or b. The corresponding assumption — that may also be true
in the case of symmetric pairings — was named DH-KE(A) in [3].

However, asymmetric pairings are much more efficient than symmetric pair-
ings. If we work in the type III pairing setting [20] where there is no efficient
isomorphism either from G1 to G2 or from G2 to G1, then clearly an adversary
cannot, given [a]z for z ∈ {1, 2} and an unknown a, compute [a]3−z. In the same
vein, it seems reasonable to make a stronger assumption (that we call BDH-KE,
a simplification of the asymmetric PKE assumption of [17]) that if an adversary
creates [a]1 and [a]2 then she knows a. Really, since there is no polynomial-time
isomorphism from G1 to G2 (or back), it seems to be natural to assume that one
does not have to worry about an adversary knowing some trapdoor that would
break the BDH-KE assumption. Since BDH-KE is not a falsifiable assumption,
this does not obviously mean that it must hold for each type III pairing. Instead,
the BDH-KE assumption can be interpreted as a stronger definition of the type
III pairing setting. We formalize the added adversarial power as follows.

We give the generic model adversary an additional power to effectively create
new indeterminates Yi in groups G1 and G2 (e.g., by hashing into elliptic curves),
without knowing their values. We note since [Y ]1 • [1]2 = [Y ]T and [1]1 • [Y ]2 =
[Y ]T , the adversary that has generated an indeterminate Y inGz can also operate
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with Y in GT . Formally, this means that Π will contain one more operation
create, with the following semantics:
4. On input (create, i, t): if typei = ⊥ and t ∈ {1, 2, T } then set celli ← Zp and

typei ← t.
The semantics of create dictates that the actual value of the indeterminate Yi is
uniformly random in Zp, that is, the adversary cannot create indeterminates for
which she does not know the discrete logarithm and that yet are not random.
This assumption is needed for the lower bound on the generic adversary’s time
to be provable in Thm. 3.

In the type III setting [20], this semantics does not allow the adversary to
create the same indeterminate Yi in both groups G1 and G2; she can only create
a representation of a known to her integer in both groups. We formalize this by
making the following Bilinear Diffie-Hellman Knowledge of Exponents (BDH-
KE ) assumption: if the adversary, given random generators g1 = [1]1 ∈ G1

and g2 = [1]2 ∈ G2, can generate elements [α1]1 ∈ G1 and [α2]2 ∈ G2, such
that [1]1 • [α2]2 = [α1]1 • [1]2, then the adversary knows the value α1 = α2. To
simplify the further use of the BDH-KE assumption in security reductions, we
give the adversary access to (R, zR) ∈ range(R(1κ)). As before, zR just contains
gk, that is, the description of the bilinear group together with [1]1 and [1]2.

Definition 9 (BDH-KE). We say that genbp is BDH-KE secure for R if for
any κ, (R, zR) ∈ range(R(1κ)), and non-uniform PPT adversary A there exists
a non-uniform PPT extractor XA, such that

Pr

[
r ←r RND(A), ([α1]1 , [α2]2 ‖ a)← (A ‖XA)(R, zR; r) :

[α1]1 • [1]2 = [1]1 • [α2]2 ∧ a 6= α1

]
≈κ 0 .

The BDH-KE assumption is a simple special case of the PKE assumption
as used in the case of asymmetric pairings say in [17]. In the PKE assumption
of [17], adversary is given as an input the tuple {(

[
χi
]
1
,
[
χi
]
2
)}ni=0 for some

n ≥ 0, and it is assumed that if an adversary outputs ([α]1 , [α]2) then she knows
(a0, a1, . . . , an), such that α =

∑n
i=0 aiχ

i. In our case, n = 0. BDH-KE can also
be seen as an asymmetric-pairing version of the original KE assumption [16].

We think that for the following reasons, the BDH-KE assumption is more
natural than the DH-KE assumption by Bellare et al. [3] which states that if the
adversary can create elements [α1]z, [α2]z and [α1α2]z of the group Gz then she
knows either α1 or α2.

First, the BDH-KE assumption is well suited to type-III pairings that are
by far the most efficient pairings. The DH-KE assumption is tailored to type-I
pairings. In the case of type-III pairings, DH-KE assumption can still be used,
but it results in inefficient protocols. For example in [3], in security proofs the
authors employs an adversary that extracts either α1 or α2. Since it is not known
a priori which value will be extracted, several elements in the argument system
have to be doubled, for the case α1 is extracted and for the case α2 is extracted.

Second, most of the efficient SNARKs are constructed to be sound and
zero-knowledge in the (most efficient) type-III setting. While the SNARK of
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Groth [27] is known to be sound in the case of both symmetric and asymmetric
pairings, in the case of symmetric pairings it will be much less efficient. To take
the advantage of already known efficient SNARKs, it is only natural to keep
the type-III setting. In the current paper, we are able to have the best of both
worlds. As in the case of [27], we construct a SNARK that uses type-III pairings.
On the one hand, we prove it to be Sub-ZK solely under the BDH-KE assump-
tion. On the other hand, we prove that it is (adaptively) knowledge-sound in
the Sub-GBGM, independently of whether one uses type-I, type-II, or type-III
pairings. This provides a partial hedge against cryptanalysis: even if one were
to later find an efficient isomorphism between G1 and G2, this would only break
the Sub-ZK of the new SNARK but leave the soundness property intact.

5 New Sub-ZK Secure SNARK

Consider a QAP instance Qp = (Zp,m0, {uj , vj , wj}mj=0). The goal of the prover
of a QAP argument of knowledge [22,27] is to show that for public (A1, . . . , Am0

)
and A0 = 1, the prover knows (Am0+1, . . . , Am) and a degree ≤ n−2 polynomial
h(X), such that

h(X) =
a(X)b(X)− c(X)

`(X)
, (2)

where a(X) =
∑m
j=0Ajuj(X), b(X) =

∑m
j=0Ajvj(X), c(X) =

∑m
j=0Ajwj(X).

5.1 Construction

Next, we describe a Sub-ZK SNARK for R that is closely based on the (non
subversion-resistant) SNARK by Groth from EUROCRYPT 2016 [27]. See Fig. 1
and Fig. 2. As always, we assume implicitly that each algorithm checks that their
inputs belong to correct groups and that (R, zR) ∈ range(R(1κ)).

This SNARK uses crucially several random variables, χ, α, β, γ, δ. As in [27],
α and β (and the inclusion of αβ in the verification equation) will guarantee
that a, b, and c are computed by using the same coefficients Ai. The role of γ
and δ is to make the three products in the verification equation “independent”
of each other. Due to the lack of space, we omit a more precise intuition behind
Groth’s SNARK and refer an interested reader to [27].

As emphasized before, the new Sub-ZK SNARK is closely based on Groth’s
zk-SNARK. In fact, the differences between the construction of the two SNARKs
can be summarized very briefly:
(i) We add to the CRS 2n+ 3 new elements (see the variable crsCV in Fig. 1)

that are needed for CV to work efficiently.
(ii) We divide the CRS generation algorithm into three algorithms, Ktc, Kts,

and Kcrs. Groth’s CRS generation algorithm returns Kcrs(R, zR,Ktc(R, zR))
(minus the mentioned crsCV part) as the CRS and Kts(R, zR,Ktc(R, zR))
as the simulation trapdoor.

(iii) We describe an efficient CRS verification algorithm CV (see Fig. 1).
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Ktc(R, zR): Generate tc = (χ, α, β, γ, δ)←r Z3
p × (Z∗p)2.

Kts(R, zR, tc): Set ts← (χ, α, β, δ).
Kcrs(R, zR, tc): Compute (`i(χ))

n
i=1 by using Alg. 1. Set uj(χ) ←

∑n
i=1 Uij`i(χ) ,

vj(χ)←
∑n
i=1 Vij`i(χ), wj(χ)←

∑n
i=1Wij`i(χ) for all j ∈ {0, . . . ,m}. Let

crsP ←


[
α, β, δ,

(
uj(χ)β+vj(χ)α+wj(χ)

δ

)m
j=m0+1

]
1

,[
(χi`(χ)/δ)n−2

i=0 , (uj(χ), vj(χ))
m
j=0

]
1
,
[
β, δ, (vj(χ))

m
j=0

]
2

 ,

crsV ←
([(

uj(χ)β+vj(χ)α+wj(χ)

γ

)m0

j=0

]
1

, [γ, δ]2 , [αβ]T

)
,

crsCV ←
( [
γ, (χi)n−1

i=1 , (`i(χ))
n
i=1

]
1
,
[
α, χ, χn−1]

2

)
.

Return crs← (crsCV, crsP, crsV).
K(R, zR): Let tc← Ktc(R, zR). Return (crs ‖ ts)← (Kcrs ‖Kts)(R, zR, tc).
CV(R, zR, crs):

1. For ι ∈ {γ, δ}: check that [ι]1 6= [0]1
2. For ι ∈ {α, β, γ, δ}: check that [ι]1 • [1]2 = [1]1 • [ι]2,
3. For i = 1 to n− 1: check that

[
χi
]
1
• [1]2 =

[
χi−1

]
1
• [χ]2,

4. Check that ([`i(χ)]1)
n
i=1 is correctly computed by using Alg. 2,

5. For j = 0 to m:
(a) Check that [uj(χ)]1 =

∑n
i=1 Uij [`i(χ)]1,

(b) Check that [vj(χ)]1 =
∑n
i=1 Vij [`i(χ)]1,

(c) Set [wj(χ)]1 ←
∑n
i=1Wij [`i(χ)]1,

(d) Check that [vj(χ)]1 • [1]2 = [1]1 • [vj(χ)]2,
6. For j = 0 to m0: check that [(uj(χ)β + vj(χ)α+ wj(χ))/γ]1 • [γ]2 = [uj(χ)]1 •

[β]2 + [vj(χ)]1 • [α]2 + [wj(χ)]1 • [1]2,
7. For j = m0 + 1 to m: check that [(uj(χ)β + vj(χ)α+ wj(χ))/δ]1 • [δ]2 =

[uj(χ)]1 • [β]2 + [vj(χ)]1 • [α]2 + [wj(χ)]1 • [1]2,
8. Check that

[
χn−1

]
1
• [1]2 = [1]1 •

[
χn−1

]
2
,

9. For i = 0 to n−2: check that
[
χi`(χ)/δ

]
1
•[δ]2 =

[
χi+1

]
1
•
[
χn−1

]
2
−
[
χi
]
1
•[1]2,

10. Check that [α]1 • [β]2 = [αβ]T .

Fig. 1. The CRS generation and verification of the Sub-ZK SNARK for R

It is straightforward to see that Groth’s original zk-SNARK does not achieve
Sub-ZK. Really, since neither [`i(χ)]1 nor

[
χi
]
1
are given to the prover, he cannot

check the correctness of [uj(χ)]1 and [vj(χ)]1. This means that a subverter can
change those values to some bogus values and due to that, the proof computed by
an honest prover and a simulated proof (that relies on the knowledge of trapdoor
elements α and β and does not use the CRS elements [uj(χ)]1 and [vj(χ)]1; see
Fig. 3) will have different distributions.

We prove the completeness of the new SNARK in the rest of this section. We
postpone the full proof of knowledge-soundness to Sect. 6 and of zero knowledge
to Sect. 7. We analyze the efficiency of this SNARK in Sect. 8.
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P(R, zR, crsP, x = (A1, . . . , Am0),w = (Am0+1, . . . , Am)):
/* After executing CV & assuming A0 = 1, the prover does: */
1. Let a†(X)←

∑m
j=0Ajuj(X), b†(X)←

∑m
j=0Ajvj(X),

2. Let c†(X)←
∑m
j=0Ajwj(X),

3. Set h(X) =
∑n−2
i=0 hiX

i ← (a†(X)b†(X)− c†(X))/`(X),
4. Set [h(χ)`(χ)/δ]1 ←

∑n−2
i=0 hi

[
χi`(χ)/δ

]
1
,

5. Set ra ←r Zp; Set a←
∑m
j=0Aj [uj(χ)]1 + [α]1 + ra [δ]1,

6. Set rb ←r Zp; Set b←
∑m
j=0Aj [vj(χ)]2 + [β]2 + rb [δ]2,

7. Set c← rba+ ra
(∑m

j=0Aj [vj(χ)]1 + [β]1

)
+∑m

j=m0+1Aj [(uj(χ)β + vj(χ)α+ wj(χ))/δ]1 + [h(χ)`(χ)/δ]1,
8. Return π ← (a, b, c).

V(R, zR, crsV, x = (A1, . . . , Am0), π = (a, b, c)): assuming A0 = 1, check that

a • b =c • [δ]2 +
(∑m0

j=0Aj
[
uj(χ)β+vj(χ)α+wj(χ)

γ

]
1

)
• [γ]2 + [αβ]T .

Fig. 2. The prover and the verifier of the Sub-ZK SNARK for R (unchanged from
Groth’s zk-SNARK)

Algorithm 2: Checking that [(`i(χ))ni=1]1 is correctly computed
Input: (

[
χn−1, (`i(χ))

n
i=1

]
1
, [1, χ]2 , [1]T )

// i = 1
1 [ζ]T ← (

[
χn−1

]
1
• [χ]2 − [1]T )/n; [ω

′]2 ← [1]2;
2 Check that [`1(χ)]1 • ([χ]2 − [ω′]2) = [ζ]T ;
3 for i = 2 to n do
4 [ζ]T ← ω [ζ]T ; [ω

′]2 ← ω [ω′]2;
5 Check that [`j(χ)]1 • ([χ]2 − [ω′]2) = [ζ]T ;

5.2 Subversion Completeness

In the proof of subversion-completeness, we need the following result that hope-
fully has independent interest.

Lemma 2. Given (
[
χn−1, (`i(χ))

n
i=1

]
1
, [1, χ]2 , [1]T ) as an input, Alg. 2 checks

that [`i(χ)]1 has been correctly computed for all i ∈ [1 .. n]. It can be implemented
by using n+ 1 pairings, n− 1 exponentiations in G2, and n− 1 exponentiations
in GT .

Proof. Recalling that `i(X) = (Xn − 1)ωi−1/(n(X − ωi−1)) are as given by
Eq. (1), the proof is straightforward. Really, by induction on i, at any concrete
value of i, ζ = (χn − 1)ωi−1/n and ω′ = ωi−1. Thus [`i(χ)]1 • ([χ]2 − [ω′]2) =[
(χ− ωi−1) · `i(χ)

]
T
= [ζ]T iff [`i(χ)]1 was correctly computed. ut

For z ∈ {1, 2}, let crsz be the subset of the (honest or subverted) crs that
consists of all elements of Gz.
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Theorem 2. The new SNARK of Sect. 5.1 is perfectly subversion-complete.

Proof. CV accepts an honestly generated CRS: this can be established
by a simple but tedious calculation. Basically, CV accepts due to the properties
of the bilinear map, and due to the definitions of `(X) and `i(X). We only prove
the correctness of two of the least obvious steps.

Step 6 of CV holds since [(uj(χ)β + vj(χ)α+ wj(χ))/γ]1 • [γ]2 = [uj(χ)]1 •
[β]2 + [vj(χ)]1 • [α]2 + [wj(χ)]1 • [1]2 iff [(uj(χ)β + vj(χ)α+ wj(χ))/γ · γ]T =
[uj(χ)β + vj(χ)α+ wj(χ)]T which is a tautology.

Similarly, Lem. 2 has established that Alg. 2 works correctly. Thus, Step 9
of CV holds since

[
χi`(χ)/δ

]
1
• [δ]2 =

[
χi+1

]
1
•
[
χn−1

]
2
−
[
χi
]
1
• [1]2 iff[

χi`(χ)/δ · δ
]
T

=
[
χi+1 · χn−1 − χi

]
T

iff
[
χi`(χ)

]
T

=
[
χi(χn − 1)

]
T
, which is

a tautology since `(χ) = χn − 1.
V accepts an honestly generated argument: In the honest case, see

Fig. 2, a = [A(x)]1, b = [B(x)]2, and c = [C(x)]1, where A(x) =
∑m
j=0Ajuj(χ)+

α+raδ, B(x) =
∑m
j=0Ajvj(χ)+β+rbδ, and C(x) = rbA(x)+ra(B(x)−rbδ)+∑m

j=m0+1(uj(χ)β + vj(χ)α+ wj(χ))/δ + h(χ)`(χ)/δ. Clearly,

A(x)B(x)−rbA(x)δ − ra(B(x)− rbδ)δ

=
(∑m

j=0Ajuj(χ) + α
)
·
(∑m

j=0Ajvj(χ) + β
)

=
(∑m

j=0Ajuj(χ)
)
·
(∑m

j=0Ajvj(χ)
)
+ α

∑m
j=0Ajvj(χ)+

β
∑m
j=0Ajuj(χ) + αβ .

Let V (x) = A(x)B(x)−C(x)δ−
∑m0

j=0Aj(uj(χ)β+vj(χ)α+wj(χ))−αβ. Hence,
V (x) = a†(χ)b†(χ)− c†(χ)−h(χ)`(χ). Due to the definition of h(X), V (x) = 0.
Thus, [V (x)]T = [0]T , which is what the verification equation ascertains. ut

6 Proof of Knowledge-Soundness

Since we are proving knowledge-soundness (and not subversion knowledge-
soundness), the following security proof is similar to the corresponding proof
in [27]. The main difference is in the need to take into account added elements
to the CRS and to incorporate new indeterminates Yi created by the adversary.
This means that the proof will be slightly (but not much) more complicated
than the proof in [27].

Next, we will prove adaptive knowledge-soundness even in the case when
one uses symmetric pairings, as it was done in [27]. The use of symmetric pair-
ings means that the generic adversary gets additional power compared to Sub-
GBGM: in particular, we do not assume that BDH-KE holds, and moreover,
in the asymmetric variant of the following theorem, the generic adversary will
be allowed to create new indeterminates Yi in both G1 and G2, without know-
ing their discrete logarithms. Since this only increases the power of the generic
adversary, it provides some hedge against future cryptanalytic attacks that say
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make it possible to compute an efficient isomorphism between G1 and G2, or at
least show that BDH-KE does not hold in the concrete groups.

Theorem 3 (Knowledge-soundness). Consider the new argument system
of Sect. 5.1. It is adaptively knowledge-sound in the Sub-GBGM even in the
case of symmetric pairings. More precisely, any generic adversary attacking the
knowledge-soundness of the new argument system in the symmetric setting re-
quires Ω(

√
p/n) computation.

Proof. Assume the symmetric setting, G1 = G2. Let X be the vector of indeter-
minates created by Ktc and Y = (Y1, . . . , Yq)

> (for a non-negative integer q) be
the vector of indeterminates created by the generic adversary.

The three elements output by a generic adversary are equal to a = [A(x,y)]1,
b = [B(x,y)]1, and c = [C(x,y)]1, where, for T ∈ {A,B,C},

T (X,Y ) =TαXα + TβXβ + TγXγ + TδXδ + Tc(X)+∑m0

j=0 Tj ·
uj(X)Xβ+vj(X)Xα+wj(X)

Xγ
+∑m

j=m0+1 Tj ·
uj(X)Xβ+vj(X)Xα+wj(X)

Xδ
+ Th(X)`(X)

Xδ
+
∑q
i=1 TyiYi .

Here, Tc(X) is a degree ≤ n − 1 and Th(X) is a degree ≤ n − 2 polynomial.
Thus, T (X,Y ) ·XγXδ is a degree (n− 2) + n− 1 + 2 = 2n− 1 polynomial.

Since the only difference compared to the knowledge-soundness proof in [27]
is in the addition of the terms

∑q
i=1 TyiYi to those three polynomials, it suffices

that we show that Tyi = 0 for T ∈ {A,B,C} and i ∈ [1 .. q]. After that, the
knowledge-soundness of the new SNARK follows from the knowledge-soundness
of Groth’s SNARK.

Motivated by the verification equation in Fig. 2, define

V (X,Y ) :=A(X,Y )B(X,Y )− C(X,Y )Xδ−∑m0

j=0Aj (uj(X)Xβ + vj(X)Xα + wj(X))−XαXβ
,

where the Laurent polynomials A(X,Y ), B(X,Y ), and C(X,Y ) are as given
before. The verification equation states that [V (x,y)]T = [0]T and hence in the
case of a generic adversary, V (X,Y ) ·X2

γX
2
δ = 0 as a polynomial or equivalently,

each of the coefficients of V (X,Y ) is 0.
First, the coefficient of X2

α in V (X,Y ) is AαBα. Thus, from V (X,Y ) = 0
it follows that AαBα = 0. Since A(X,Y ) and B(X,Y ) play dual roles in the
symmetric case, we can assume, w.l.o.g., that Bα = 0 (the same assumption was
made in [27]).

Because of Bα = 0, the following claims hold:
– from the coefficient of XαXβ , AαBβ +AβBα− 1 = 0. Thus, AαBβ = 1 (and

in particularly, neither of them is equal to 0).
– from the coefficient of XαYj , j ∈ [1 .. q], AαByj+AyjBα = 0. Thus, Byj = 0,
– from the coefficient of XβYj , j ∈ [1 .. q], AβByj+AyjBβ = 0. Thus, Ayj = 0,
– from the coefficient of XδYj , j ∈ [1 .. q], Cyj = Byjra+Ayjrb. Thus, Cyj = 0,
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Since the coefficients Ayj , Byj , and Cyj were the only coefficients that are
new compared to the knowledge-soundness proof of [27], the rest of the current
proof follows from the knowledge-soundness proof of [27].

Let us now compute a lower bound to the efficiency of a generic adver-
sary (this was not done in [27], our bound clearly also holds in the case of
Groth’s SNARK). Assume that after some τ steps, the adversary has made a
successful equality query (=, i1, i2), i.e., celli1 = celli2 for i1 6= i2. Hence, she
has found a collision D1(x,y) = D2(x,y) such that D1(X,Y ) 6= D2(X,Y ).
Redefine Dj(X,Y ) := Dj(X,Y ) · XγXδ (if typei1 ∈ {1, 2}) and Dj(X,Y ) :=
Dj(X,Y ) ·X2

γX
2
δ (if typei1 = T ) for j ∈ {1, 2}, this guarantees that Dj(X,Y )

is a polynomial. Thus,

D1(x,y)−D2(x,y) ≡ 0 (mod p) . (3)

Note that
– If typei1 = 1, then degDj(X,Y ) ≤ 2n− 1 =: d1,
– If typei1 = 2, then degDj(X,Y ) ≤ 2n− 1 =: d2, and thus
– If typei1 = T , then degDj(X,Y ) ≤ 2 · (2n− 1) = 4n− 2 =: dT .

Clearly, x = (χ, α, β, γ, δ) is chosen uniformly random from Z3
p × (Z∗p)2. Due

to the assumption that the canonical values of Yi are uniformly random in Zp,
y = (υ1, υ2, υ3) is a uniformly random value in Z3

p. Hence, due to the Schwartz-
Zippel lemma and since D1(X,Y ) 6= D2(X,Y ) as a polynomial, Eq. (3) holds
with probability at most degDj(X,Y )/(p − 1) ≤ dtypei1

/(p − 1). Clearly, an
adversary working in time τ can generate up to τ new group elements. Then
the probability that there exists a collision between any two of those group
elements is upper bounded by

(
τ
2

)
·degDj(X,Y )/(p−1) ≤

(
τ
2

)
·dtypei1

/(p−1) ≤
τ2/2 · dtypei1

/(p − 1). Thus, a successful adversary on average requires time at
least τ , where τ2 ≥ 2(p−1)/dtypei1

≥ 2(p−1)/dT = 2(p−1)/(4n−2), to produce
a collision. Simplifying, we get τ = Ω(

√
p/n). ut

7 Proof of Perfect Composable Subversion ZK

Before proving Thm. 4, we first prove the following helpful lemma that has a
simple but tedious proof.

Lemma 3. Let (R, zR) ∈ range(R(1κ)), and let crs be any CRS such that
CV(R, zR, crs) = 1. Then, with probability 1, crs = Kcrs(R, zR, tc) for a tc bi-
jectively corresponding to [χ, α, β, γ, δ]1.

Proof. In what follows, we will consider each line in the construction of CV in
Fig. 1 separately, and write down the corollary from that line. We note that
the CRS verification equations in Fig. 1 were written down as if the CRS were
already correctly formed; e.g., there we have a check that [β]1 • [1]2 = [1]1 • [β]2
which may fail (and then obviously there exists no such β). However, before these
equations are checked, it is of course not known that β in the left hand side (LHS)
and in the right hand side (RHS) are equal. Therefore, in this proof only, in each

23



Algorithm 3: Σι(R, zR; r)

1 (crs, zΣ)← Σ(R, zR; r);
2 return ([ι]1 , [ι]2);

Algorithm 4: XΣ(R, zR; r)

1 for λ ∈ {χ, α, β, γ, δ} do
2 λ← XλΣ(R, zR; r);

3 tc← (χ, α, β, γ, δ);
4 return tc;

Algorithm 5: S(R, zR, crs, ts, x)

1 σ, τ ←r Zp;
2 (a, b)← ([σ]1 , [τ ]2);
3 c← [(στ − αβ −

∑m
j=m0+1(uj(χ)β + vj(χ)α+ wj(χ)))/δ]2;

4 return π ← (a, b, c);

Fig. 3. Algorithms used in extraction and simulation, where ι ∈ {χ, α, β, γ, δ}

step below, we use D1 as the temporary name of the yet-unestablished LHS
variable and D2 as the temporary name of the yet-unestablished RHS variable.

We assume that ι in [ι]1 is already established for ι ∈ {χ, α, β, γ, δ}. (In
particular, χ is established on Step 3 when i = 1.) We can do it since [ι]1
information-theoretically fixes ι.

1. For ι ∈ {γ, δ}: after that we know that ι 6= 0, and hence there is a bijection
between a valid tc ∈ Z3

p × (Z∗p)2 and the value hidden in [χ, α, β, γ, δ]1.
2. For ι ∈ {α, β, γ, δ}: from [ι]1 • [1]2 = [1]1 • [D2]2 we get [ι]T = [D2]T . This

implies [ι−D2]T = [0]T . Since [1]T is not the unity element, [D2]2 = [ι]2.
3. For i = 1 to n− 1: we can assume by induction that we have already estab-

lished
[
χi−1

]
1
. Since [D1]T =

[
χi−1

]
1
• [χ]2, we get [D1]T =

[
χi
]
T
.

4. For i = 1 to n: ω′ = ωi−1 and ζ = (χn−1)ωi−1/n in the algorithm in Sect. 8
are computed by the CRS verifier. The equation [D1]1 • ([χ]2 − [ω′]2) = [ζ]T
implies [D1]1 = [ζ/(χ− ω′)]1 =

[
(χn − 1)ωi−1/(n(χ− ωi−1))

]
1
= [`i(χ)]1.

5. For j = 0 to m:
(a) [D1]1 =

∑n
i=1 Uij [`i(χ)]1 implies [D1]1 = [

∑n
i=1 Uij`i(χ)]1 = [uj(χ)]1.

(b) [D1]1 =
∑n
i=1 Vij [`i(χ)]1 implies [D1]1 = [

∑n
i=1 Vij`i(χ)]1 = [vj(χ)]1.

(c) Clearly, [wk(χ)]1 is computed correctly.
(d) [vj(χ)]1 • [1]2 = [1]1 • [D2]2 implies [D2]2 = [vj(χ)]2.

6. For j = 0 to m0: [D1]1 • [γ]2 = [uj(χ)]1 • [β]2+[vj(χ)]1 • [α]2+[wj(χ)]1 • [1]2
implies [D1]1 = [(uj(χ)β + vj(χ)α+ wj(χ))/γ]1.

7. For j = m0+1 tom: [D1]1•[δ]2 = [uj(χ)]1•[β]2+[vj(χ)]1•[α]2+[wj(χ)]1•[1]2
implies [D1]1 = [(uj(χ)β + vj(χ)α+ wj(χ))/δ]1.

8.
[
χn−1

]
1
• [1]2 = [1]1 • [D2]2 implies [D2]2 =

[
χn−1

]
2
,

9. For i = 0 to n − 2: [D1]1 • [δ]2 =
[
χi+1

]
1
•
[
χn−1

]
2
−
[
χi
]
1
• [1]2 implies

[D1]1 =
[
χi`(χ)/δ

]
1
.

10. [α]1 • [β]2 = [D2]T implies [D2]T = [αβ]T .
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By direct observation, it is clear that we have now established all elements of
the CRS in Fig. 1. Hence, crs = Kcrs(R, zR, tc). ut

Theorem 4. The SNARK from Sect. 5.1 has perfect CRS trapdoor extractability
under the BDH-KE assumption.

Proof. Let Σ be a subverter, and let r ←r RND(Σ). Let ι ∈ {χ, α, β, γ, δ}. Let
Σι(R, zR; r) be as in Alg. 3 in Fig. 3. Since CV(R, zR, crs) accepts, crs must con-
tain ([ι]1 , [ι]2). Hence, by the BDH-KE assumption, there exists a non-uniform
PPT extractor XιΣ, such that if CV(R, zR, crs) = 1 then ι← XιΣ(R, zR; r).

Finally, we construct the (non-uniform PPT) extractor XΣ(R, zR; r) in
Alg. 4 in Fig. 3. By the BDH-KE assumption, if CV(R, zR, crs) = 1 then
tc← XΣ(R, zR; r) satisfies tc ∈ range(Ktc(R, zR)).

To prove CRS trapdoor extractability, assume that crs is returned by Σ
and tc is returned by XΣ. In addition, assume that CV(R, zR, crs) = 1. By
CV(R, zR, crs) = 1 and Lem. 3, Kcrs(R, zR, tc) = crs. The claim follows. ut

In Thm. 5, we also need the next simple lemma.

Lemma 4. Let (R, zR) ∈ range(R(1κ)), and let crs be any CRS such that
CV(R, zR, crs) = 1. Consider any values of a, b, and (Aj)

m0
j=0. Then there exists

at most one value c, such that V(R, zR, crsP, x, (a, b, c)) = 1.

Proof. Assume that c0 and c1 are both accepted by the verifier. That means
(see Fig. 2) that ck • [δ]2 = [s]T for k ∈ {0, 1}, where s is some k-independent
value. By bilinearity, (c1 − c0) • [δ]2 = [0]T . Since δ 6= 0 (this is guaranteed by
CV accepting crs) and the pairing is non-degenerate, we have c0 = c1. ut

Theorem 5. The SNARK from Sect. 5.1 is perfectly composable Sub-ZK under
the BDH-KE assumption.

Proof. We use the same simulator S(R, zR, crs, ts, x) as defined in [27], see Alg. 5
in Fig. 3. Fix a subverter Σ, and let XΣ be as defined in Thm. 4, see Alg. 4 in
Fig. 3. Fix κ, (R, zR) ← R(1κ), (x,w) ∈ R, and an adversary A. As in Def. 7,
assume r ←r RND(Σ), (crs, zΣ) ← Σ(R, zR; r) such that CV(R, zR, crs) = 1,
tc ← XΣ(R, zR; r), ts ← Kts(R, zR, tc). Assume that π0 ← P(R, zR, crsP, x,w)
(b = 0) and π1 ← S(R, zR, crs, ts, x) (b = 1). It is sufficient to show that π0 and
π1 have the same distribution.

Case b = 0. The honest prover creates a← . . .+ ra [δ]1 and b← . . .+ rb [δ]2
for uniformly random ra and rb. Since δ 6= 0 (this is guaranteed by CV ac-
cepting crs) and the pairing is non-degenerate, a and b are uniformly ran-
dom. We know by the perfect CRS trapdoor extractability (Thm. 4) that
Kcrs(R, zR, tc) = crs. Thus, (crs, ts) are created as in the first step of the defini-
tion of perfect subversion-completeness (Def. 2). Since the new SNARK satisfies
perfect subversion-completeness (Thm. 2), we obtain V(R, zR, crsV, x, π0) = 1.
By Lem. 4, the verification equation, crs, a, and b uniquely determine the ac-
ceptable c.
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Case b = 1. Here, by the definition of the simulator, a and b are uniformly
random. Moreover, π1 is explicitly created so that V(R, zR, crsV, x, π1) = 1. Since
CV accepts then by Lem. 4, the verification equation, crs, a, and b uniquely
determine the acceptable c.

Since CV accepts crs, in both cases a and b are uniformly random and c is
uniquely determined by them, crs, and the verification equation, the real and
the simulated arguments have identical distributions. ut

The following result follows directly from Thm. 1 and Thm. 5.

Theorem 6. The SNARK from Sect. 5.1 is perfectly unbounded Sub-ZK under
the BDH-KE assumption.

8 Efficiency

CRS Length. The CRS contains gk (that includes ([1]1 , [1]2)) and a number of
additional elements. Not counting gk, the number of CRS elements in different
groups is given by the following table. Hence, the total size of the CRS is 4m+
3n+ 13 group elements.

G1 G2 GT Total

crsP 3m+ n−m0 + 4 m+ 3 0 4m+ n−m0 + 7
crsV m0 + 1 2 1 m0 + 4
crsCV 2n 3 0 2n+ 3

Total 3m+ 3n+ 5 m+ 7 1 4m+ 3n+ 13

One element (namely, [δ]2) belongs both to crsP and crsV and thus the numbers
in the “total” row are not equal to the sum of the numbers in previous rows.

In Groth’s zk-SNARK [27] the CRS consists of m+2n elements of G1 and n
elements of G2. On top of it, we added 2n+ 3 group elements to make the CRS
verification possible and also some elements to speed up the prover’s computation
and the verifier’s computation; the latter elements can alternatively be computed
from the rest of the CRS.

CRS Generation: Computational Complexity. Assume that gk has already been
computed. One can compute crs by first computing all CRS elements within
brackets, and then compute their bracketed versions. One can evaluate uj(χ),
vj(χ), and wj(χ) for each j ∈ [0 ..m] in time Θ(n) by using precomputed val-
ues `i(χ) for i ∈ [1 .. n] and the fact that the matrices U, V,W contain Θ(n)
non-zero elements. The rest of the CRS can be computed efficiently by using
straightforward algorithms.

By using Alg. 1, the whole CRS generation algorithm is dominated by 3m+
3n+5 exponentiations in G1, m+7 exponentiations in G2, and 1 exponentiation
in GT (one per CRS element) and Θ(n) multiplications/divisions in Zp.
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CV’s Computational Complexity. We assume that it is difficult to subvert gk;
this makes sense assuming that the SNARK uses well-known bilinear groups
(say, the Barreto-Naehrig curves). Consider the CRS verification algorithm in
Fig. 1. It is clear that all other steps but Step 4 are efficient (computable in
Θ(n) cryptographic operations); this follows from the fact that U , V , andW are
sparse. Computation in those steps is dominated by 6m+ 5n+ 12 pairings. On
top of it, one has to execute s(U) + s(V ) + s(W ) exponentiations in G1, where
s(M) is the number of “large” (i.e., large enough so that exponentiating with
them would be expensive) entries in the matrix M . Often, s(M) are very small.

By using Alg. 2, one can check that [`i(χ)]1 has been correctly computed for
all i ∈ [1 .. n] in n+1 pairings, n−1 exponentiations in G2 and n exponentiations
in GT . Hence, the whole CRS verification algorithm is dominated by 6m+6n+13
pairings, s(U) + s(V ) + s(W ) exponentiations in G1, n − 1 exponentiations in
G2, and n exponentiations in GT .

In addition, one can speed up CV by using batching [4]. Namely, clearly if∑s
i=1 ti([ai]1•[bi]2) = [c]T for uniformly random ti, then w.h.p., [ai]1•[bi]2 = [c]T

for each individual i ∈ [1 .. s]. The speed up follows from the use of bilinear
properties and from the fact that exponentiation is faster than pairing. Moreover,
one can further slightly optimize this by assuming ts = 1 [34,19].

Full batched version of CV is described in App. B. As we will show there, a
batched CV will be dominated by 5(m+n)+s(U)+s(V ) (mostly, short-exponent)
exponentiations in G1 and m+ s(W ) (mostly, short-exponent) exponentiations
in G2. Since an exponentiation with short exponent is significantly less costly
than a pairing, this will decrease the execution time of CV significantly. (See
App. B.2 for concrete numbers.)

We note that after taking batching into account, CV will become a prob-
abilistic algorithm, and will accept incorrect CRSs with negligible probability.
This means that one has to modify some of the previous security results. For
example, Thms. 4 and 5 will be modified as follows.

Theorem 7. After batching CV, the SNARK from Sect. 5.1 has statistical CRS
trapdoor extractability under the BDH-KE assumption.

Theorem 8. After batching CV, the SNARK from Sect. 5.1 is statistically com-
posable Sub-ZK under the BDH-KE assumption.

Prover’s Computational Complexity. As in [27], the prover’s computational
complexity is dominated by the need to compute h(X) (3 interpolations, 1
polynomial multiplication, and 1 polynomial division; in total Θ(n log n) non-
cryptographic operations in Zp), followed by (n−1)+(s(A)+1)+1+(s(A)+1)+
s(A1, . . . , Am0

) ≤ n+3s(A)+2 exponentiations in G1 and s(A)+1 exponentia-
tions in G2, where s(A) is the number of large elements in A (i.e., large enough
so that exponentiating with them would be expensive). This means that the
prover’s computation is dominated by Θ(n log n) non-cryptographic operations
and Θ(n) cryptographic operations.
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Verifier’s Computational Complexity. The verifier has to execute a single pairing
equation that is dominated by 3 pairings and m0 exponentiations in G1. The
exponentiations can be done offline since they do not depend on the argument π
but only on the common input (A1, . . . , Am0). Hence, the verifier’s computation
is dominated by Θ(m0) cryptographic operations but her online computation is
only dominated by 3 pairings.

Argument Length. The argument consists of 2 elements from G1 and 1 element
from G2.

9 The Case of Unbounded Subverter

Since we consider statistical Sub-ZK, it is natural to ask what will happen if
also the subverter is computationally unbounded. It comes out that in this case,
several definitions and proofs would actually simplify. For this reason, we decided
to first present the case of efficient subverter.

Assume now that the subverter Σ is computationally unbounded. Then we
need a computationally unbounded extractor XΣ (otherwise, it will not be able
to even execute Σ). For the sake of completeness, we will give the corresponding
version of Def. 5 with changes being emphasized .

Definition 10 (Statistically Unbounded USub-ZK). Ψ is statisti-
cally unbounded Sub-ZK with unbounded subverter (USub-ZK) for R, if for
any computationally unbounded subverter Σ there exists a computationally
unbounded XΣ, such that for all κ, all (R, zR) ∈ range(R(1κ)), and all com-
putationally unbounded A, εunb0 ≈κ εunb1 , where

εunbb = Pr

 r ←r RND(Σ), (crs, zΣ ‖ tc)← (Σ ‖XΣ)(R, zR; r),

ts← Kts(R, zR, tc) : CV(R, zR, crs) = 1∧
AOb(·,·)(R, zR, crs, ts, zΣ) = 1

 .

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and otherwise it returns
P(R, zR, crsP, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈ R, and
otherwise it returns S(R, zR, crs, ts, x). Ψ is perfectly unbounded USub-ZK for
R if one requires that εunb0 = εunb1 .

An unbounded Σ can obviously break the BDH-KE assumption by creating
elements of G1 and G2 as he wants; however, because she is unbounded, we can
of course still argue that Σ will know their discrete logarithms, or more formally,
that XΣ will be able to extract them. Since the extraction is now unconditional
(i.e., it does not depend on any assumptions), it means that XΣ can extract the
discrete logarithm of any element of Gz.

In particular, there is no need anymore to include [γ]1 to the CRS (this makes
the CRS shorter by 1 element), or handle it in CV (that is, one could remove
the check that [γ]1 • [1]2 = [1]1 • [γ]2) or in security proofs (e.g., in Lem. 3, one

28



would not have to use the equation [ι]1 • [1]2 = [1]1 • [ι]2 to establish [γ]1, or
define Σγ(R, zR; r) inside Thm. 4).

Moreover, if the CRS has the (easily satisfied) bijectivity property required
in Sect. 7 (see Lem. 3), it means that the requirement that XΣ returns tc (instead
of just returning ts) is not restrictive anymore.
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Supplementary Material
A Comparison to MPC Approach

In [7], Ben-Sasson et al. proposed a very different (at least, when compared
to the paper of Bellare et al. [3]) approach to achieve security in the case of
active CRS subversion. Their approach involves joint creation of the CRS by
multiple parties, by using a specialized and heavily optimized MPC protocol.
(See [14] for additional optimizations.) During their protocol, each party first
generates a non-zero multiplicative share of each element of the trapdoor tc,
broadcasts it, and gives a zero-knowledge proof of knowledge of the share. After
that, the parties will essentially execute a joint MPC CRS creation/verification
protocol (in particular, this approach also needs the CRS to be verifiable and thus
the CRS will have additional elements compared to a non subversion-resistant
SNARK). Intuitively, at each step of the MPC protocol (the actual protocol is
more complicated), the parties jointly generate a single new element of the CRS
by combining their multiplicative shares and giving zero-knowledge proofs that
the combining part was done correctly.

At the intuitive level, the protocol of Ben-Sasson et al. [7] achieves something
very similar to subversion-resistance (the precise term in [7] is auditable tran-
script): the CRS of their SNARK is verifiable and it also achieves, due to the
use of proofs of knowledge, the CRS trapdoor extractability property. Hence, a
scaled-down single-party version of their SNARK can be seen as getting some
version of Sub-ZK. However, [7] does not provide security definitions correspond-
ing to Sub-ZK nor consider that case.

It also only considers “duplex-pairing groups”, meaning that CRS elements
have to be doubled, i.e., to be present in both G1 or G2; by following our ap-
proach, this is only needed for exponentiated CRS trapdoor elements (even this
is only needed in the case of efficient subverter). Their initial proofs of knowledge
can be seen as an alternative approach to the use of knowledge assumptions in [3]
and in the current paper; however, without having interactive zero-knowledge
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Algorithm 6: Checking that [(`i(χ))ni=1]1 is correctly computed: batched
version

Input: (
[
χn−1, (`i(χ))

n
i=1

]
1
, [1, χ]2 , [1]T )

1 ω0 ← 1/ω;
2 [a]1 ← [0]1; [b]1 ← [0]1; c← 0;
3 for i = 1 to n do
4 ti ←r {1, . . . , 2κ}; ωi ← ωωi−1;
5 [a]1 ← [a]1 + ti [`i(χ)]1; [b]1 ← [b]1 + tiωi [`i(χ)]1; c← c+ tiωi;

6 Check that [a]1 • [χ]2 − [b]1 • [1]2 = c/n · (
[
χn−1

]
1
• [χ]2 − [1]T );

arguments or random-oracle model, the only possibility to apply proofs of knowl-
edge seems to be to use knowledge assumptions.

This curious similarity between [7] and the current paper seems to ascer-
tain that the formalism given in the current paper is correct. We will leave it
up to a further work to study how to combine the MPC approach of [7] and
the subversion-resistance approach of [3] and the current paper. For example,
knowledge assumptions can be used to replace proofs of knowledge in [7] (and
hence speed up their protocol). Most importantly, the security definitions of the
current paper and the new Sub-ZK SNARK intuitively capture (although this
still has to be studied formally) what one can achieve in the practically relevant
scenario where one wants to achieve subversion-resistance but does not have a
reason to trust any of the CRS creators.

We will provide a more specific comparison (based on actual implementa-
tions) between the speed of the CV in the new SNARK and the speed of tran-
script verification in App. B.2.

B Batching and Implementation

B.1 Batching

We used batching techniques from [4] to make the CV algorithm more ef-
ficient, see Fig. 4 for implementation details. Especially, we use a corollary
of the Schwartz-Zippel lemma stating that if

∑s−1
i=1 tiXi + Xs = 0, where

ti ←r {1, . . . , 2κ} for i < s, then Xi = 0 for each i, with probability 1−1/2κ. We
also employ the following lemma to show that randomness generated in batching
can be used multiple times. The lemma comes originally from [34,19], but it is
closely related to the small exponents test from [4].

Lemma 5. Assume 1 < t < q. Assume t is a vector chosen uniformly random
from [1 .. t]k−1×{1}, χ is a vector of integers in Zq, and fi are some polynomials
of degree poly(κ). If

∑k
i=1 fi(χ)ti·([1]1•[1]2) = [0]T , then with probability ≥ 1− 1

t ,
fi(χ)([1]1 • [1]2) = [0]T for each i ∈ [1 .. k].

In the batched CV algorithm we execute Alg. 6 instead of Alg. 2. This algo-
rithm needs 3 pairings, 2n exponentiations in G1, and 1 exponentiation in GT ),
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CV(R, zR, crs): // batched CV

1. For ι ∈ {γ, δ}: check that [ι]1 6= [0]1
/* For ι ∈ {α, β, γ, δ}: */

2. (a) Generate ti ←r {1, . . . , 2κ} for i = 1 . . . 3, then set t4 ← 1.
(b) Check that [t1α+ t2β + t3γ + δ]1 • [1]2 = [1]1 • [t1α+ t2β + t3γ + δ]2,
/* For i = 1 to n− 1: */

3. (a) Generate ti ←r {1, . . . , 2κ} for i = 1 to n− 2, then set tn−1 ← 1.
(b) Check that (

∑n−1
i=1 ti

[
χi
]
1
) • [1]2 = (

∑n−1
i=1 ti

[
χi−1

]
1
) • [χ]2

4. Check that
[
(`j(χ))

n
j=1

]
1
is correctly computed by using Alg. 6,

5. For i = 0 to m:
(a) Set [ui(χ)]1 ←

∑n
j=1 Uij [`j(χ)]1,

(b) Check that [vi(χ)]1 =
∑n
j=1 Vij [`j(χ)]1,

(c) Set [wi(χ)]1 ←
∑n
j=1Wij [`j(χ)]1,

/* For i = 0 to m: */
6. (a) Generate tk ←r {1, . . . , 2κ} for k = 0 to m− 1, then set tm ← 1.

(b) Check that (
∑m
k=0 tk [vk(χ)]1) • [1]2 = [1]1 • (

∑m
k=0 tk [vk(χ)]2),

/* For i = 0 to m0: */
7. (a) Generate ti ←r {1, . . . , 2κ} for i = 0 to m0 − 1, then set tm0 ← 1.

(b) Check that (
∑m0
i=0 ti [(ui(χ)β + vi(χ)α+ wi(χ))/γ]1) • [γ]2 =

(
∑m0
i=0 ti [ui(χ)]1)• [β]2+(

∑m0
i=0 ti [vi(χ)]1)• [α]2+(

∑m0
i=0 ti [wi(χ)]1)• [1]2,

/* For i = m0 + 1 to m: */
8. (a) Generate ti ←r {1, . . . , 2κ} for i = m0 + 1 to m− 1, then set tm ← 1.

(b) Check that (
∑m
i=m0+1 ti [(ui(χ)β + vi(χ)α+ wi(χ))/δ]1) • [δ]2 =

(
∑m
i=m0+1 ti [ui(χ)]1) • [β]2 + (

∑m
i=m0+1 ti [vi(χ)]1) • [α]2 +

(
∑m
i=m0+1 ti [wi(χ)]1) • [1]2.

9. Check that
[
χn−1

]
1
• [1]2 = [1]1 •

[
χn−1

]
2
.

/* For i = 0 to n− 2: */
10. (a) Generate ti ←r {1, . . . , 2κ} for i = 0 to n− 3, then set tn−2 ← 1.

(b) Check that (
∑n−2
i=0 ti

[
χi`(χ)/δ

]
1
) • [δ]2 = (

∑n−2
i=0 ti

[
χi+1

]
1
) •
[
χn−1

]
2
−

(
∑n−2
i=0 ti

[
χi
]
1
) • [1]2,

(c) Check that [α]1 • [β]2 = [αβ]T .

Fig. 4. Batched CV

and on top of it, 20 pairings, 5m+5n+s(U)+s(V )−12 (mostly, short-exponent)
exponentiations in G1, and m+ s(W ) + 2 (mostly, short-exponent) exponentia-
tions in G2. This makes, in total, 23 pairings, 5m+7n+s(U)+s(V )−12 (mostly,
short-exponent) exponentiations in G1, m+ s(W ) + 2 (mostly, short-exponent)
exponentiations in G2, and 1 exponentiation in GT .

B.2 Implementation

We compare the efficiency of the new subversion zk-SNARK with Groth’s non-
subversion zk-SNARK from both the theoretical (as reported in [27]) and the
implementation (as implemented in the libsnark [9] library) point of view. Sim-
ilarly to the pre-existing implementation of Groth’s zk-SNARK in libsnark, we
implemented the new SNARK in the C++ language by using low-level sub-
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Table 1. Performance of the implementations of Groth’s non-subversion zk-SNARK
and the new Sub-ZK SNARK in libsnark for different values of n and m0.

Protocol n,m0 K (s) CV (s) P (s) Online V (s)

Groth’s zk-SNARK n = 7 500, m0 = 100 1.79 — 1.74 0.017
sub zk-SNARK n = 7 500, m0 = 100 2.29 211.4 1.74 0.017
sub zk-SNARK batched n = 7 500, m0 = 100 2.29 2.13 1.74 0.017
Groth’s zk-SNARK n = 15 000, m0 = 100 3.09 — 3.04 0.017
sub zk-SNARK n = 15 000, m0 = 100 3.99 417.5 3.04 0.017
sub zk-SNARK batched n = 15 000, m0 = 100 3.99 3.41 3.04 0.017
Groth’s zk-SNARK n = 30 000, m0 = 100 5.40 — 5.57 0.017
sub zk-SNARK n = 30 000, m0 = 100 7.28 837.1 5.57 0.017
sub zk-SNARK batched n = 30 000, m0 = 100 7.28 5.34 5.57 0.017
Groth’16 SNARK n = 30 000, m0 = 1 000 5.43 — 5.57 0.070
sub-SNARK n = 30 000, m0 = 1 000 7.30 845.7 5.57 0.070
sub-SNARK batched n = 30 000, m0 = 1 000 7.30 5.43 5.57 0.070
Groth’s zk-SNARK n = 60 000, m0 = 1 000 9.83 — 10.5 0.070
sub zk-SNARK batched n = 60 000, m0 = 1 000 13.1 9.57 10.5 0.070
Groth’16 SNARK n = 120 000, m0 = 1 000 17.3 — 19.5 0.070
sub-SNARK batched n = 120 000, m0 = 1 000 22.9 17.2 19.5 0.070
Groth’s zk-SNARK n = 250 000, m0 = 1 000 32.5 — 38.0 0.070
sub zk-SNARK batched n = 250 000, m0 = 1 000 43.0 32.3 38.0 0.070
Groth’16 SNARK n = 500 000, m0 = 1 000 61.1 — 74.0 0.070
sub-SNARK batched n = 500 000, m0 = 1 000 89.9 62.8 74.0 0.070

routines of libsnark. All the following results were measured in a 64-bit Linux
Ubuntu 16.10 virtual machine inside a 64-bit Windows 8.1 Enterprise with 4GB
RAM and a single core allocated for the virtual machine. The virtual machine
was installed on a standard laptop (HP EliteBook 840), with the Intel core
i5-5200u 2.2 GHz CPU and 8GB RAM. We built the libsnark library by us-
ing the option CURVE=BN128 that provides an instantiation based on a Barreto-
Naehrig curve at 128 (or, 100 bits, according to [1]) bits of security.

Tbl. 1 compares the implementation of Groth’s zk-SNARK in libsnark
with our implementation of the new subversion-resistant zk-SNARK for sev-
eral choices of m0 and n. We report several measures including the running time
of K, CV, P, and V. All times are expressed in seconds. Fig. 5 shows how much
time the (batched) CV needs to verify the CRS.

In the case of the new Sub-ZK SNARK, we evaluated the performance of
the CV algorithm by using both the non-batched (Fig. 1) and batched (Fig. 4)
versions. In the execution of the batched CV, we first sample a vector t of random
numbers from [1 .. 280]. This vector has length m, since no verification equation
needs more than m random values. As stated in Sect. B.1, we reuse randomness,
i.e., in every verification equation we use random values from the same t. We
computed the running times as averages over 10 iterations. We emphasize that
while the non-batched CV is very slow (this is why we are not giving its timings
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Fig. 5. Batched CV efficiency

for n > 30 000), the batched CV is only about actually faster than P for n =
30 000 and larger.

As it has been already mentioned, the randomness vector t takes inputs from
[1 .. 280], this assures that the batching causes security gap that is not bigger than
2−80. This is a conservative approach. If instead the coordinates of t are chosen
from [1 .. 240] then the CV algorithm will take 1.30, 2.41, 3.75 and 3.82 seconds
for (n,m0) being equal to (7500, 100), (15000, 100), (30000, 100), (30000, 1000),
respectively. These times are about 30% smaller than in the case t←r [1 .. 2

80],
and faster than the computational cost of the prover.

Tbl. 2 summarizes the number of CRS elements in Groth’s zk-SNARK and
our new subversion zk-SNARK based on values given in [27] and libsnark im-
plementation. (Note the slight difference between CRS in the original Groth
paper and the implemented version).

Table 2. A comparison on number of crs elements in Groth’s non-subversion zk-
SNARK and new subversion zk-SNARK.

crsP crsV crsCV

SNARKs G1 G2 GT G1 G2 GT G1 G2 GT
∑

Groth’16∑ m+ 2n−m0 + 2 n+ 1 0 m0 + 1 2 1 0 0 0 m+3n+6
m+ 3n−m0 + 3 m0 + 3 0

Groth’16 imp.∑ 3m+ n−m0 + 4 m+ 1 0 m0 2 1 0 0 0
4m+ n+ 8

4m+ n−m0 + 5 m0 + 3 0
This work∑ 3m+ n−m0 + 4 m+ 3 0 m0 + 1 2 1 2n 3 0

4m+ 3n+ 14
4m+ n−m0 + 7 m0 + 4 2n+ 3

This work imp.∑ 3m+ n−m0 + 4 m+ 3 0 m0 + 1 2 1 2n+ 2 3 0
4m+ n−m0 + 7 m0 + 4 2n+ 5 4m+ 3n+ 16

One could observe that the algorithm presented in Fig. 4 can be optimized
even more. More precisely, the verification equations in steps 2, 6, and 9 can
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Table 3. Comparison between CV algorithm and transcript verification from [7].

n 7 500 15 000 30 000 60 000 120 000 250 000 500 000

This paper, CV 2.13 s 3.41 s 5.34 s 9.57 s 17.20 s 32.3 s 62.8 s
[7] transcript ver. 7.73 s 15.46 s 30.9 s 61.8 s 123.6 s 247.2 s 494.4 s

be merged to a equation. Such an operation adds 1 exponentiation in G1 and 1
exponentiation in G2 and needs 4 pairings less. Similarly, the right sides of steps
7 and 8 have the same structure, which makes possible to decrease total number
of pairings by 3 more. The verification equations [α]1 • [β]2 = [αβ]T in step 10.c
of the batched CV can be done inside step 8.b of the algorithm, which will drop
one more pairing. Thus, we need 8 pairings less and 1 extra exponentiation in
G1 and 1 extra exponentiation in G2. The batched CV could be executed in
total with 15 pairings, 5m + 7n + s(U) + s(V ) − 11 (mostly, short-exponent)
exponentiations in G1, m+ s(W ) + 3 (mostly, short-exponent) exponentiations
in G2, and 1 exponentiation in GT .

Comparison to the MPC approach. As it was mentioned before, Ben-Sasson
et al. [7] provided a method to generate the CRS in an MPC manner. Their
result can be also utilized for a single party performing all computations. In
such a case well-formedness of CRS is guaranteed by the transcript verification.
Unfortunately, in this case their protocol. Below we provide a short comparison
between our CV protocol and transcript verification from [7].

Ben-Sasson et al. stated that for a circuit C of size size(C) transcript verifica-
tion time takes 1.03 · size(C) milliseconds. (We skip here multiplier N referring
to the number of parties, since in our case N = 1.) We did not measured the
size of the circuit exactly, but we used a lower bound on it, i.e., we assumed that
the size of the circuit is at least equal to n.

Since the computational complexity in [7] was expressed in seconds, we have
to compare the computers which perform computations. Roughly speaking, while
Ben-Sasson et al. used a device with an i7, 3.4GHz CPU and 16GB of RAM,
we used an i5, 2.2GHz CPU with 4GB RAM. Nevertheless, as Tbl. 3 shows, CV
is much faster than their transcript verification.
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