
Blockcipher-based Authenticated Encryption:
How Small Can We Go? ‹

Avik Chakraborti1, Tetsu Iwata2, Kazuhiko Minematsu3, and Mridul Nandi4

1 NTT Secure Platform Laboratories, Japan, chakraborti.avik@lab.ntt.co.jp
2 Nagoya University, Japan, iwata@cse.nagoya-u.ac.jp
3 NEC Corporation, Japan, k-minematsu@ah.jp.nec.com

4 Applied Statistics Unit, Indian Statistical Institute, Kolkata,
mridul.nandi@gmail.com

Abstract. This paper presents a lightweight blockcipher based authen-
ticated encryption mode mainly focusing on minimizing the implementa-
tion size, i.e., hardware gates or working memory on software. The mode
is called COFB, for COmbined FeedBack. COFB uses an n-bit blockci-
pher as the underlying primitive, and relies on the use of a nonce for
security. In addition to the state required for executing the underlying
blockcipher, COFB needs only n{2 bits state as a mask. Till date, for all
existing constructions in which masks have been applied, at least n bit
masks have been used. Thus, we have shown the possibility of reducing
the size of a mask without degrading the security level much. Moreover,
it requires one blockcipher call to process one input block. We show
COFB is provably secure up to Op2n{2{nq queries which is almost up to
the standard birthday bound. We first present an idealized mode iCOFB
along with the details of its provable security analysis. Next, we extend
the construction to the practical mode COFB. We instantiate COFB with
two 128-bit blockciphers, AES-128 and GIFT-128, and present their im-
plementation results on FPGAs. We present two implementations, with
and without CAESAR hardware API. When instantiated with AES-128
and implemented without CAESAR hardware API, COFB achieves only
a few more than 1000 Look-Up-Tables (LUTs) while maintaining almost
the same level of provable security as standard AES-based AE, such as
GCM. When instantiated with GIFT-128, COFB performs much better in
hardware area. It consumes less than 1000 LUTs while maintaining the
same security level. However, when implemented with CAESAR hard-
ware API, there are significant overheads both in hardware area and
throughput. COFB with AES-128 achieves about 1475 LUTs. COFB with
GIFT-128 achieves a few more than 1000 LUTs. Though there are over-
heads, still both these figures show competitive implementation results
compared to other authenticated encryption constructions.

Keywords: COFB, AES, GIFT, authenticated encryption, blockcipher.

‹ A preliminary version of this paper was presented at CHES 2017 [25], and the journal
version appeared at JoC 2020 [27]. This is a corrected version of [27].

1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic primitive for
providing both confidentiality and authenticity. Due to the recent rise in com-
munication networks operated on small devices, the era of the so-called Internet
of Things, AE is expected to play a key role in securing these networks.

In this paper, we study blockcipher modes for AE with primary focus on
the hardware implementation size. Here, we consider the overhead in size, thus
the state memory size beyond the underlying blockcipher itself (including the
key schedule) is the criteria we want to minimize, which is particularly relevant
for hardware implementation. We observe this direction has not received much
attention until the launch of CAESAR competition (see below), while it would be
relevant for future communication devices requiring ultra low-power operations.

Generic Approaches. One generic approach for reducing the implementation
size of blockcipher modes is to use lightweight blockciphers. It covers a broad
area of use cases, where standard AES is not suitable due to the implementation
constraints, and one of the major criteria is area minimization. One of the most
popular lightweight blockciphers is PRESENT [20] proposed in 2007. Since then,
many have been proposed in the last decade, such as KATAN [23], LED [37],
PICCOLO [68], PRINCE [22] and TWINE [69]. SIMON and SPECK [16] are
proposed by NSA in 2014. More recent designs are SKINNY (which is a tweakable
blockcipher [17]) and GIFT [14, 15].

The other approach is to use standard AES implemented in a tiny, serialized
core [57], where the latter is shown to be effective for various schemes including
popular CCM [5] or OCB [49] modes, as shown in [21] and [13]. Still, this requires
much larger number of clock cycles for each AES encryption than the standard
round-based implementation, and hence is not desirable when speed or energy
is also a criteria in addition to size.

AE Modes with Small Memory. CAESAR [3] is a competition for AE
started in 2012. It attracted 57 AE schemes, and there are new schemes that
were designed to minimize the implementation size while designed as a blockci-
pher mode (i.e. it uses a blockcipher as a black box). Among them, JAMBU [72]
is considered to be one of the most relevant mode to our purpose, which can
be implemented with p1.5n` kq-bit state memory, using n-bit blockcipher with
k-bit key. However, the provable security result is not published for this scheme;,
and the security claim about the confidentiality in the nonce misuse scenario was
shown to be flawed [60]. We also point out that the rate of JAMBU is 1{2, i.e.,
it makes two blockcipher calls to process one input block. CLOC and SILC [41,
43] have provable security results and were designed to minimize the implemen-
tation size, however, they have p2n ` kq-bit state memory and the rate is also
1{2.

; The authenticity result was briefly presented in the latest specification [72].

2

NIST Lightweight Cryptography Project. Recently, the growing impor-
tance of lightweight applications have also been addressed by NIST’s lightweight
cryptography project [54], which recognizes the apparent lack of suitable AE
standards to be used for lightweight applications. They highlighted the require-
ments under the backdrop of several arising applications like sensor networks,
health care, distributed control systems and several others, where highly resource
constrained devices communicate among themselves.

We next summarize our contributions.

A New Type of Feedback Function. To reduce the state memory, it is natu-
ral to use feedback from the blocks involved in each blockcipher call, at the cost
of losing parallelizability. There are existing feedback modes (such as ciphertext-
feedback of CBC encryption), however, we found that none of them is enough to
fulfill our needs. We first formalize the feedback function as a linear function to
take blockcipher output (Y) and plaintext block (M) to produce the correspond-
ing ciphertext block (C) and the chain value as the next input to blockcipher
(X). This formalization covers all previous popular feedback functions. Then, we
propose a new type of feedback function, called combined feedback, where X is a
linear function (not a simple XOR) of M and Y . We show that if the above linear
function satisfies certain conditions we could build a provably-secure, small-state
AE. We first present a mode of tweakable random function which has additional
input called tweak in addition to n-bit block input, to demonstrate the effec-
tiveness of combined feedback and intuition for provable security. The proposed
scheme (iCOFB for idealized COmbined FeedBack) has a quite high provable se-
curity, comparable to ΘCB3 presented in the proof of OCB3 [49], and has small
memory (n-bit block memory plus those needed for the primitive). In addition
it needs one primitive call to process n-bit message block.

Blockcipher AE mode with Combined Feedback Function. Starting from
iCOFB, we take a further step to propose a blockcipher mode using combined
feedback. The main obstacle is the instantiation of tweakable random function
(or, equivalently tweakable blockcipher [53]) using a blockcipher. We could use
an existing tweakable blockcipher mode for this purpose, e.g. XEX [61] by Rog-
away, and thanks to the standard birthday type security of XEX, the resulting
blockcipher mode would also have standard birthday type security. However, the
implementation of XEX or similar ones needs n-bit memory used as input mask
to blockcipher, in addition to the main n-bit state block, implying p2n` kq-bit
state memory. Therefore, instead of relying on the existing tweakable blockcipher
modes, we instantiate the tweakable random function using only n{2-bit mask
and provide a dedicated security proof for our final proposal (mode), which we
call COFB. We show COFB achieves almost birthday bound security, roughly up
to Op2n{2{nq queries, based on the standard PRP assumption on the blockcipher.

COFB needs n{2-bit register for mask in addition to the registers required for
holding round keys and the internal n-bit state for the blockcipher computation.
Hence the state size of COFB is 1.5n ` k bits. The rate of COFB is 1, i.e., it

3

Table 1. Comparison of AE modes, using an n-bit blockcipher with k-bit keys. An
inverse-free mode is a mode that does not need the blockcipher inverse (decryption)
function for both encryption and decryption. For JAMBU, the authenticity bound was
briefly presented in [72]

Scheme State Size Rate Parallel Inverse-Free Sec. Proof Ref

COFB 1.5n` k 1 No Yes Yes This work

JAMBU 1.5n` k 1{2 No Yes Partial [72]

CLOC/ SILC 2n` k 1{2 No Yes Yes [41, 43]

iFEED 3n` k 1 Only for Enc Yes Flawed [67] [75]

OCB ě 3n` k 1 Yes No Yes [49, 61, 62]

makes one blockcipher call to process one input block, meaning it is as fast as
encryption-only modes. On the downside, COFB is completely serial both for
encryption and decryption, which is inherent to the use of combined feedback.
However, we argue that this is a reasonable trade-off, as tiny devices are our
primal target platform for COFB. See Table 1 for comparison of COFB with
others. The description and the security analysis of COFB in Sect. 4 and 5 have
been described at the proceedings version of our paper in CHES 2017 [25].

Instantiations and Hardware Implementations. We instantiate and im-
plement COFB with the 128-bit version of the blockcipher AES known as AES-
128. We also implement COFB with the 128-bit version of the blockcipher GIFT
(described as GIFT-128 in [14, 15]) to get an idea of the lightweight property
of the COFB mode by checking how small (hardware area) it can go with a
lightweight blockcipher. For the sake of completeness we compare our implemen-
tation figures with various schemes (not limited to blockcipher modes) listed in
the hardware benchmark framework called ATHENa [1]. The implementation
details of COFB[AES] have already been described in [25, 26]. COFB[AES] shows
the impressive performance figures of COFB both for size and speed compared
to other AES-based AE modes. Moreover, if we implement COFB with GIFT,
then it achieves much smaller area than COFB[AES] and is quite competitive to
even ad-hoc designs (see Sect. 6). The implementation details of COFB[GIFT] are
also described in Sect. 6, which is a new contribution compared to [25]. For the
sake of a fair benchmarking, we also provide CAESAR hardware API supported
hardware implementation results for both these two versions. Nevertheless, we
think this comparison implies a good performance of COFB among others even
using the standard AES-128, and implies COFB with a lightweight blockcipher
to hit the limit of blockcipher-based AE’s speed and size.

Third-Party Analysis. Since the publication of the initial version of the paper
at CHES 2017 [25] and JoC in 2020 [27], COFB attracted various third-party
analyses. We briefly summarize the results. Zong et al. [76] presented linear
cryptanalysis that recovers the key against COFB that uses a reduced-round
version of GIFT (denoted by COFB[GIFT] in this paper), where the number of
round is reduced to 15.

4

Khairallah reported various attack against COFB as a mode [47, 48], where
the block cipher is treated as a secure black box. In [47], a forgery attack in the
single key setting is shown that makes Op2n{2q encryption queries and Op2n{2q
decryption queries. Extension to the multi-key setting is also presented. In [47],
the forgery attack is improved to make Op2n{4q encryption queries and Op2n{2q
decryption queries.

In [48], forgery and confidentiality attacks with a single known-plaintext en-
cryption query and Op2n{2q decryption queries are presented. This is within the
provable security bound in [25], while this shows that the security bound pre-
sented in [27] is incorrect, and here in this version, we present a corrected security
bound and its security proof.

In [39], forgery attacks are presented that use Op2n{2q blocks in encryption
queries and single decryption query. This complements the missing parameter of
the attacks in [47, 48].

We note that a paper [24] claiming a forgery attack on COFB[GIFT] is not a
valid attack due to the author’s misunderstanding of the specification, and this
was withdrawn by the authors.

2 Preliminaries

Notation. We fix a positive integer n which is the block size in bits of the
underlying blockcipher EK . Typically, we consider n “ 128 and AES-128 [8] is
the underlying blockcipher, where K is the 128-bit AES key. The empty string is
denoted by λ. For any X P t0, 1u˚, where t0, 1u˚ is the set of all finite bit strings
(including λ), we denote the number of bits of X by |X|. Note that |λ| “ 0.
For two bit strings X and Y , X}Y denotes the concatenation of X and Y . A
bit string X is called a complete (or incomplete) block if |X| “ n (or |X| ă n
respectively). We write the set of all complete (or incomplete) blocks as B (or
Bă respectively). Let Bď “ Bă YB denote the set of all blocks. For B P Bď, we
define B as follows:

B “

$

’

&

’

%

0n if B “ λ

B}10n´1´|B| if 0 ă |B| ă n

B if |B| “ n

Given non-empty Z P t0, 1u˚, we define the parsing of Z into n-bit blocks as

pZr1s, Zr2s, . . . , Zrzsq
n
ÐÝ Z, (1)

where z “ r|Z|{ns, |Zris| “ n for all i ă z and 1 ď |Zrzs| ď n such that Z “
pZr1s }Zr2s } ¨ ¨ ¨ }Zrzsq. If Z “ λ, we let z “ 1 and Zr1s “ λ. We write ||Z|| “ z
(number of blocks present in Z). We similarly write pZr1s, Zr2s, . . . , Zrzsq

m
ÐÝ Z

to denote the parsing of the bit string Z into m-bit strings Zr1s, Zr2s, . . . , Zrz´1s
and 1 ď |Zrzs| ď m. Given any sequence Z “ pZr1s, . . . , Zrssq and 1 ď a ď b ď s,
we represent the sub sequence pZras, . . . , Zrbsq by Zra..bs. For integers a ď b,

5

we write ra..bs for the set ta, a ` 1, . . . , bu. For two bit strings X and Y with
|X| ě |Y |, we define the extended xor-operation as

X‘Y “ Xr1..|Y |s ‘ Y and

X ‘ Y “ X ‘ pY }0|X|´|Y |q,

where pXr1s, Xr2s, . . . , Xrxsq
1
ÐÝ X and thus Xr1..|Y |s denotes the first |Y | bits

of X. Also note that,
X‘Y “ pX‘Y qr1..|Y |s.

When |X| “ |Y |, both operations reduce to the standard X ‘ Y .
Let γ “ pγr1s, . . . , γrssq be a tuple of equal-length strings. We define mcollpγq “

r if there exist distinct i1, . . . , ir P r1..ss such that γri1s “ ¨ ¨ ¨ “ γrirs and r is
the maximum of such integer. We say that ti1, . . . , iru is an r-multi-collision set
for γ. Finally, we use the notation Ec to denote the complement of an event E.

Authenticated Encryption and Security Definitions. An authenticated
encryption (AE) is an integrated scheme that provides both privacy of a plaintext
M P t0, 1u˚ and authenticity of M as well as associated data A P t0, 1u˚. Taking
a nonce N (which is a value unique for each encryption) together with associated
data A and plaintext M , the encryption function of AE, EK , produces a tagged-
ciphertext pC, T q where |C| “ |M | and |T | “ t. Typically, t is fixed and we
assume n “ t throughout the paper. The corresponding decryption function, DK ,
takes pN,A,C, T q and returns a decrypted plaintext M when the verification on
pN,A,C, T q is successful, otherwise returns the atomic error symbol denoted by
K.

Privacy. Given an adversary A, we define the PRF-advantage of A against E as
Advprf

E pAq “ |PrrAEK “ 1s ´ PrrA$ “ 1s|, where $ returns a random string of
the same length as the output length of EK , by assuming that the output length
of EK is uniquely determined by the query. The PRF-advantage of E is defined
as

Advprf
E pq, σ, tq “ max

A
Advprf

E pAq ,

where the maximum is taken over all adversaries running in time t and making
q queries with the total number of blocks in all the queries being at most σ. If
EK is an encryption function of AE, we call it the privacy advantage and write
as Advpriv

E pq, σ, tq, as the maximum of all nonce-respecting adversaries (that
is, the adversary can arbitrarily choose nonces provided all nonce values in the
encryption queries are distinct).

Authenticity. We say that an adversary A forges an AE scheme pE ,Dq if A
is able to compute a tuple pN,A,C, T q satisfying DKpN,A,C, T q ‰ K, without
querying pN,A,Mq for some M to EK and receiving pC, T q, i.e. pN,A,C, T q is
a non-trivial forgery.

In general, a forger is nonce-respecting with respect to encryption queries,
but can make qf forging attempts without restriction on N in the decryption

6

queries, that is, N can be repeated in the decryption queries and an encryption
query and a decryption query can use the same N . The forging advantage for
an adversary A is written as Advauth

E pAq “ PrrAEK ,DK forgess, and we write

Advauth
E ppqe, qf q, pσe, σf q, tq “ max

A
Advauth

E pAq

to denote the maximum forging advantage for all adversaries running in time t,
making qe encryption and qf decryption queries with total number of queried
blocks being at most σe and σf , respectively.

Unified Security Notion for AE. The privacy and authenticity advantages
can be unified into a single security notion as introduced in [35, 63]. Let A be
an adversary that only makes non-repeating queries to DK . Then, we define the
AE-advantage of A against E as

AdvAE
E pAq “ |PrrAEK ,DK “ 1s ´ PrrA$,K “ 1s| ,

where the K-oracle always returns K and the $-oracle is as the privacy advantage.
We similarly define AdvAE

E ppqe, qf q, pσe, σf q, tq “ maxA AdvAE
E pAq, where the

maximum is taken over all adversaries running in time t, making qe encryption
and qf decryption queries with the total number of blocks being at most σe and
σf , respectively.

Blockcipher Security. We use a blockcipher E as the underlying primitive,
and we assume the security of E as a PRP (pseudorandom permutation). The
PRP-advantage of a blockcipher E is defined as Advprp

E pAq “ |PrrAEK “ 1s ´
PrrAP “ 1s|, where P is a random permutation uniformly distributed over all
permutations over t0, 1un. We write

Advprp
E pq, tq “ max

A
Advprp

E pAq ,

where the maximum is taken over all adversaries running in time t and making
q queries. Here, σ does not appear as each query has a fixed length.

Coefficients-H Technique. We outline the Coefficients-H technique developed
by Patarin, which serves as a convenient tool for bounding the advantage (see
[59, 70]). We will use this technique (without giving a proof) to prove our main
theorem. Consider two oracles O0 “ p$,Kq (the ideal oracle for the relaxed game)
and O1 (real, i.e. our construction in the same relaxed game). Let V denote the
set of all possible views an adversary can obtain. For any view τ P V, we will
denote the probability to realize the view as iprealpτq (or ipidealpτq) when it is in-
teracting with the real (or ideal respectively) oracle. We call these interpolation
probabilities. Without loss of generality, we assume that the adversary is deter-
ministic and fixed. Then, the probability space for the interpolation probabilities
is uniquely determined by the underlying oracle. As we deal with stateless ora-
cles, these probabilities are independent of the order of query responses in the
view. Suppose we have a set of views, Vgood Ď V, which we call good views, and
the following conditions hold:

7

X[i]
M [i]

C[i]

ρ

X[i]
M [i]

C[i]

X[i]M [i]

C[i]

X[i]

M [i]

C[i]

X[i− 1] X[i− 1] X[i− 1]

X[i− 1]

G

EK EK

EK

EK

Fig. 3.1. Different types of feedback modes. We introduce the last feedback mode
(called the combined feedback mode) in our construction

1. In the game involving the ideal oracle O0 (and the fixed adversary), the
probability of getting a view in Vgood is at least 1´ ε1.

2. For any view τ P Vgood, we have iprealpτq ě p1´ ε2q ¨ ipidealpτq.

Then we have |PrrAO0 “ 1s ´ PrrAO1 “ 1s| ď ε1 ` ε2. The proof can be found
at (say) [70].

3 Idealized Combined Feedback Mode

In this section, we introduce our idealized combined feedback mode. Let EK be
the underlying primitive, a blockcipher, with key K. Depending on how the next
input block of EK is determined from the previous output of EK , a plaintext
block, or a ciphertext block, we can categorize different types of feedback modes.
Some of the feedback modes are illustrated in Fig. 3.1. The first three modes
are known as the message feedback mode, ciphertext feedback mode, and output
feedback mode, respectively. The examples using the first three modes can be
found in the basic encryption schemes [4] or AE schemes [5, 41, 43, 75]. The
fourth mode, which uses additional (linear) operation G : B Ñ B, is new. We
call it combined feedback. In the combined feedback mode, the next input block
Xris of the underlying primitive EK depends on at least two of the following
three values: (i) previous output EKpXri ´ 1sq, (ii) plaintext M ris, and (iii)
ciphertext Cris. With an appropriate choice of G, this feedback mode turns out
to be useful for building small and efficient AE schemes. We provide a unified
presentation of all types of feedback functions below.

Definition 1 (Feedback Function). A function ρ : BˆB Ñ BˆB is called a
feedback function (for an encryption) if there exists a function ρ1 : BˆB Ñ BˆB
(used for decryption) such that

@Y,M P B, ρpY,Mq “ pX,Cq ñ ρ1pY,Cq “ pX,Mq. (2)

8

RN,A,(0,0) RN,A,(1,0) RN,A,(2,0) RN,A,(3,0) RN,A,(4,1)

0n

Y [0] Y [1] Y [2] Y [3]

Y [4]

X[1] X[2] X[3] X[4]

M [1] M [2] M [3] M [4]

C[1] C[2] C[3] C[4]

ρ ρ ρ ρ

Fig. 3.2. iCOFB: It is based on a tweakable random function RN,A,pa,bq and a feed-
back function ρ. The diagram shows how the tag and ciphertext computed for a three
complete blocks message

ρ is called a plaintext or output feedback if X depends only on M or Y , respec-
tively (e.g., the first and third mode in Fig. 3.1). Similarly, it is called ciphertext
feedback if X depends only on C in the function ρ1 (e.g., the second mode in
Fig. 3.1). All other feedback functions are called combined feedback.

The condition stated in Eq. (2) is sufficient for inverting the feedback computa-
tion from the ciphertext. Given the previous output block Y “ EKpXri´1sq and
a ciphertext block C “ Cri´ 1s, we are able to compute pX,Mq “ pXris,M risq
by using ρ1pY,Cq.

In particular, when G is not the zero function nor the identity function, the
combined feedback mode using this G is not reduced to the remaining three
modes. It can be described as ρpY,Mq “ pX,Cq “ pGpY q ‘M,Y ‘Mq.

3.1 iCOFB Construction

The idealized version of our construction is described in Fig. 3.3 and illustrated
in Fig. 3.2. Here we idealize in many ways from a real implementable AE con-
struction. This is a simple warm up for the sake of simplicity and to understand
the basic structure of our main construction. In the following construction, we
simply assume that the last message block is a complete block. In other words,

all messages are elements of B` def
“ Yiě1Bi. We denote the set of all non negative

integers as Zě0. We also consider a tweakable random function R which takes
tweak pN,A, i, jq P N ˆ t0, 1u˚ ˆ Zě0 ˆ Zě0 where N is called a nonce chosen
from a nonce space N , A is associated data, and the pair of non negative integers
pi, jq is called a position-tweak.

3.2 The feedback function ρ

It is easy to see that for a feedback function ρ, the decryption algorithm correctly
decrypts a ciphertext. If we closely look into the correctness property, what we
need that given pY,Cq, the value of M should be uniquely computable. Once M

9

Algorithm iCOFB-EpN,A,Mq

1. pM r1s,M r2s, . . . ,M rmsq
n
ÐÝM

2. tr0s Ð p0, 0q
3. Y r0s Ð RN,A,tr0sp0

n
q

4. for i “ 1 to m
5. if i ă m then tris Ð pi, 0q
6. else trms Ð pm, 1q
7. pXris, Crisq Ð ρpY ri´ 1s,M risq
8. Y ris Ð RN,A,trispXrisq
9. C Ð pCr1s, . . . , Crmsq

10. T Ð Y rms
11. return pC, T q

Algorithm iCOFB-DpN,A,C, T q

1. pCr1s, Cr2s, . . . , Crcsq
n
ÐÝ C

2. tr0s Ð p0, 0q
3. Y r0s Ð RN,A,tr0sp0

n
q

4. for i “ 1 to c
5. if i ă c then tris Ð pi, 0q
6. else trcs Ð pc, 1q
7. pXris,M risq Ð ρ1pY ri´ 1s, Crisq
8. Y ris Ð RN,A,trispXrisq
9. M Ð pM r1s, . . . ,M rcsq

10. if T “ Y rcs then return M
11. else return K

Fig. 3.3. Encryption and decryption algorithms of iCOFB AE-mode. Here M,C P B`
and ρ, ρ1 : B2

Ñ B2. The choices of these functions are described in Sect. 3.2

is computed, X can be computed by applying ρ again. In this paper, we require
very lightweight function, e.g. linear function, on the choice of ρ. If ρ is a linear
function then we can express ρ by a 2nˆ 2n binary matrix

ˆ

E1,1 E1,2

E2,1 E2,2

˙

where Ei,j ’s are nˆn binary matrices and the line 7 in the encryption algorithm
of Fig. 3.3 becomes

Xris “ E1,1 ¨ Y ri´ 1s ` E1,2 ¨M ris,

Cris “ E2,1 ¨ Y ri´ 1s ` E2,2 ¨M ris.

We have the following lemma.

Lemma 1. If ρ is a linear function satisfying Eq. (2), then E2,2 must be invert-
ible.

Proof. If not, then there exist M ‰M 1 with E2,2 ¨M “ E2,2 ¨M
1. Then, for any

Y , ρpY,Mq “ pX,Cq and ρpY,M 1q “ pX 1, Cq. However, ρ1pY,Cq cannot be both
pX,Mq and pX 1,M 1q. [\

Assuming E2,2 is invertible, let ρ be a linear feedback function satisfying
Eq. (2). Then, ρ1 can be chosen to be a linear function defined as follows:

pE1,1 ` E1,2E
´1
2,2E2,1q ¨ Y ri´ 1s ` E1,2 ¨ Cris “ Xris

E´1
2,2E2,1 ¨ Y ri´ 1s ` E´1

2,2 ¨ Cris “M ris.

We also express the above system of linear equations as

10

ˆ

D1,1 D1,2

D2,1 D2,2

˙

¨

ˆ

Y ri´ 1s
Cris

˙

“

ˆ

Xris
M ris

˙

where Di,j ’s are n ˆ n matrix determined from the above linear equations. In
particular, D1,1 “ pE1,1 ` E1,2E

´1
2,2E2,1q, D1,2 “ E1,2, D2,1 “ E´1

2,2E2,1 and

D2,2 “ E´1
2,2 .

Let I and O denote the identity matrix and zero matrix, respectively, of size
n. We have seen that in all types of feedback modes, we define the ciphertext
block C as M ‘Y . They differ how the next input block X is defined. Let ρOFB,
ρCFB, ρPFB denote the feedback functions for output, ciphertext and plaintext
feedback mode respectively. Then, we have

ρOFB “

ˆ

I O
I I

˙

, ρCFB “

ˆ

I I
I I

˙

, ρPFB “

ˆ

O I
I I

˙

.

In this paper, we consider combined feedback function. By combined feedback,
we mean that the following four matrices E1,1, E1,2, D1,1 and D1,2 are nonzero.
Note that these matrices represent the effect of output vector and plaintext or
ciphertext block to the next input block. In this paper we fix our choice of ρ
(and ρ1) as

ρ “

ˆ

G I
I I

˙

, ρ1 “

ˆ

I `G I
I I

˙

where G is an invertible matrix such that I `G is also invertible (see Fig. 3.1).
We will specify one choice of G later.

3.3 Security Analysis of the Idealized Construction

In this section we provide the security analysis of the idealized construction.
Now we prove that under a very minimal assumption on ρ, the idealized version
has perfect privacy and authenticity with negligible advantage. We say that a
linear feedback function ρ is valid § (which is true for our choice of the feedback
function) if

(P1) E2,1 is invertible, (A1) D1,2 is invertible and (A2) D1,1 is invertible,

where (P1) is needed for the privacy notion and (A1) and (A2) are needed for
the authenticity notion. We remark that the invertibility of E1,1 is not required¶.
Here, A1 implies that for any two C ‰ C 1 and for any Y , D1,1 ¨ Y `D1,2 ¨ C ‰
D1,1 ¨ Y `D1,2 ¨C

1. Note that we assume that E´1
2,2 is invertible for correctness.

§ In addition to the following points, COFB needs invertibility of E1,1’s but this is not
a mandatory option for iCOFB.

¶ While we need it for the security of COFB. This comes from the fact that the
tweakable block cipher in COFB does not have the standard birthday security against
CPAs because of its half mask.

11

Thus, A2 means that the 2nˆ2n feedback matrix for ρ is also invertible. Another
important implication of A2 is the following:

PrrY
$
Ð B : D1,1 ¨ Y `D1,2 ¨ C “ Xs “ 2´n, @pC,Xq P B2.

We have the following theorem.

Theorem 1. If ρ is valid then for adversary A making qe encryption queries
and qf forging attempts having at most `f many blocks, we have

Advpriv
iCOFBpAq “ 0, Advauth

iCOFBpAq ď
qf p`f ` 1q

2n
.

Proof. We consider an adversary A which makes qe nonce-respecting encryption
queries pAi, Ni,Miq and receives pCi, Tiq, 1 ď i ď qe, and makes qf decryption
queries pN˚i , A

˚
i , C

˚
i , T

˚
i q, 1 ď i ď qf . The intermediate variables Z appeared in

the both encryption and decryption algorithms are represented by Zirjs for the
j-th computation of the i-th query, where Z can be A,M,C,X, Y and t (recall
that t is a position-tweak, i.e., the t is a function of the indices of the current
data block). Note that Ti, T

˚
i and Ni’s are single blocks.

Perfect Privacy. We prove the perfect privacy under the assumption that E2,1

is invertible (i.e. P1). To show perfect privacy, it would be sufficient to show
that C1, . . . , Cqe are uniformly and independently distributed and this would
be true provided Y1, . . . , Yqe are uniformly and independently distributed (due
to P1 which says that keeping all other fixed, influence from Yirjs to Cirjs
is bijective). Note that Yirjs “ RNi,Ai,tirjspXirjsq. We know that a tweakable
random function returns a random string if the input concatenated with the
tweak is fresh. So it is sufficient to show that for all i, j, pNi, Ai, tirjs, Xirjsq is
fresh. But this is easy to see as A is a nonce-respecting adversary and for any i,
the values of tirjs’s are distinct and hence pNi, tirjsq’s are distinct for all pi, jq.

Authenticity Advantage. We first consider the case of single forging attempt.
Let pN˚, A˚, C˚, T˚q be the forging attempt and let m˚ be the length of C˚

in n-bit blocks. We also define p as the length of the largest common prefix of
ppCαr1s, tαr1sq, . . . , pCαrm1s, tαrm1sqq and ppC˚r1s, t˚r1sq, . . . , pC˚rm˚s, t˚rm˚sqq
if pN˚, A˚q “ pNα, Aαq for some 1 ď α ď q. Since all Nis are distinct, α is unique
if exists. We define p “ 0 if pN˚, A˚q ‰ pNi, Aiq for all 1 ď i ď q.

When p ą 0, from the definition of tweak tr¨s, it is easy to see that p ă
mintmα,m

˚u. So, we have

Yαrps “ Y ˚rps, pCαrp` 1s, tαrp` 1sq ‰ pC˚rp` 1s, t˚rp` 1sq.

Claim. pN˚, A˚, t˚rp` 1s, X˚rp` 1sq is fresh among all tweaked inputs.

Proof (of Claim). We prove this in two sub-cases. We first note that for all i ‰
p`1, tαris ‰ t˚rp`1s and so it would be sufficient to show that ptαrp`1s, Xαrp`

12

1sq ‰ pt˚rp`1s, X˚rp`1sq. If Cαrp`1s “ C˚rp`1s then Xαrp`1s “ X˚rp`1s
but tαrp`1s ‰ t˚rp`1s. Similarly, when Cαrp`1s ‰ C˚rp`1s, by A1 condition,
the next tweaked inputs are distinct. When p “ 0, N˚ ‰ Ni for all 1 ď i ď q
hence the claim holds. �

Therefore, Y ˚rp ` 1s is uniformly distributed given the values obtained so
far, including the case p “ 0. By A2 condition, the probability of the next input
also remains fresh with probability at least p1 ´ 2´nq. We can continue this
until the last tweaked input and so the last tweaked input remains fresh with
probability at least 1´ pm˚ ´ pq{2n, and if last tweaked input is fresh the n-bit
tag is completely random. Hence the forging probability is pm˚ ´ pq{2n ` 1{2n.
When p “ 0, the first tweaked input pN˚, A˚, t˚r0s, 0nq is fresh, hence the forging
probability is pm˚ ` 1q{2n. Thus, the case p “ 0 achieves the maximum forging
probability pm˚ ` 1q{2n for a single attempt.

In the case of qf ą 1 forging attempts, the success probability is at most a
multiplication of qf and the bound for the single forging attempt. Hence it is at
most qf p`f ` 1q{2n as we have m˚ ď `f from the definition. This completes the
proof. [\

Now we see that P1 and A1 are also necessary. For example, if P1 is not
satisfied then we find a nonzero block d such that, dtr ¨ E2,1 “ 0n where dtr

denotes the transposition of the vector. Then, for any Y , dtr ¨E2,2 ¨M “ dtr ¨C
where C “ E2,1 ¨ Y ` E2,2 ¨ M . This observation can be used as a privacy
distinguisher.

Similarly if A1 is not satisfied then D1,2 is not invertible. So there exists a
nonzero d such that D1,2 ¨d “ 0n. Thus, D1,1 ¨Y `D1,2 ¨C

˚ “ D1,1 ¨Y `D1,2 ¨C
where C˚ “ C ` d. This observation can be extended to an authenticity attack.

4 COFB: a Small-State, Rate-1, Inverse-Free AE Mode

In this section, we present our proposal, COFB, which has rate-1 (i.e. needs one
blockcipher call for one input block), and is inverse-free, i.e., it does not need a
blockcipher inverse (decryption). In addition to these features, this mode has a
quite small state size, namely 1.5n`k bits, in case ‘’ the underlying blockcipher
has an n-bit block and k-bit keys. We first specify the basic building blocks and
parameters used in our construction.

4.1 Specification

Key and Blockcipher. The underlying cryptographic primitive is an n-bit
blockcipher, EK . We assume that n is a multiple of 4. The key of the scheme is
the key of the blockcipher, i.e. K.

13

Y [4] Y [5] Y [6]

EK EK EK

X[4] X[6]X[5]

M [2] M [3]

mask∆(3, δA) mask∆(4, δA) mask∆(4, δA + δM)

C[2] C[3]

T

ρ

ρ1M [1]

Y [3]

C[1]

ρ ρ

A[1] A[2] A[3]

EK

0n/2 N

Y [0] Y [1] Y [2]

Y [3]ρ1

mask∆(1, 0) mask∆(2, 0) mask∆(2, δA)

EK EK EK

X[1] X[3]X[2]

ρ1 ρ1

Fig. 4.1. Encryption of COFB for 3-block associated data and plaintext

Masking Function. We define the masking function mask : t0, 1un{2 ˆ N2 Ñ

t0, 1un{2 as follows:

maskp∆, a, bq “ αa ¨ p1` αqb ¨∆ (3)

We may write mask∆pa, bq to mean maskp∆, a, bq. Here, ¨ denotes the multipli-
cation over GFp2n{2q, and α denotes the primitive element of the field. For the
primitive polynomial defining the field, we choose the lexicographically first one,
that is, ppxq “ x64 ` x4 ` x3 ` x` 1 following [6, 40]. Rogaway [61] showed that
for all pa, bq P t0, . . . , 251u ˆ t0, . . . , 210u, the values of αa ¨ p1` αqb are distinct.
If we follow the notations of [61], the right hand side of Eq. (3) could be written
as 2a3b∆. For other values of n, we need to identify the primitive element α of
the primitive polynomial and an integer L such that αa ¨ p1 ` αqb are distinct
for all pa, bq P t0, . . . , Lu ˆ t0, . . . , 4u. Then the total allowed size of a message
and associated data would be at most nL bits. We need this condition to prove
the security claim. In particular, we have the following properties of the masking
function.

14

Lemma 2. For any pa, bq ‰ pa1, b1q chosen from the set t0, . . . , Lu ˆ t0, . . . , 4u
(as described above), c P t0, 1un{2 and a random n{2 bit string ∆, we have

Prrmask∆pa, bq ‘mask∆pa
1, b1q “ cs “

1

2n{2
, and Prrmask∆pa, bq “ cs “

1

2n{2
.

Proof of the first equation trivially follows from the fact that αa ¨ p1 ` αqb

are distinct for all pa, bq P t0, . . . , Lu ˆ t0, . . . , 4u.
Similar masking functions are frequently used in other modes, such as [10,

55, 61], however, the masks are full n bits. The use of n-bit masking function
usually allows to redefine the AE scheme as a mode of XE or XEX tweakable
blockcipher [61], which significantly reduces the proof complexity. In our case,
to reduce the state size, we decided to use the n{2-bit masking function, and as
a result the proof is ad-hoc and does not rely on XE or XEX.

Feedback Function. Let Y P t0, 1un and pY r1s, Y r2s, Y r3s, Y r4sq
n{4
ÐÝÝ Y , where

Y ris P t0, 1un{4. We define G : B Ñ B as GpY q “ pY r2s, Y r3s, Y r4s, Y r4s‘Y r1sq.}

We also view G as the n ˆ n non-singular matrix, so we write GpY q and G ¨ Y
interchangeably. For M P Bď and Y P B, we define ρ1pY,Mq “ G ¨ Y ‘M . The
feedback function ρ and its corresponding ρ1 are defined as

ρpY,Mq “ pρ1pY,Mq, Y ‘Mq,

ρ1pY,Cq “ pρ1pY, Y ‘Cq, Y ‘Cq.

Note that when pX,Mq “ ρ1pY,Cq then X “ pG ‘ Iq ¨ Y‘C. Our choice of G
ensures that I ‘G is also invertible matrix. So when Y is chosen randomly for
both computations of X (through ρ and ρ1), X also behaves randomly. We need
this property when we bound probability of bad events later.

Furthermore, in order to handle the case that the last ciphertext block is
shorter than n bits, we need more conditions. That is, for the last ciphertext
block (Crms with |Crms| “ b ď n), the state S is updated by ρ as

S1 “ GpSq ` ozppmsbbpSq ` Crmsq “ GpSq ` pmsbbpSqq}0 . . . 0q ` ozppCrmsq.

To make sure that S1 is random whenever S is random (otherwise the tag may
have smaller entropy), we also need the following condition:

Condition. G ` Mmsbris is regular (i.e., binary matrix of rank n) for any
i “ 1, 2, . . . , n, where Mmsbris denotes the matrix for extracting the first i bits:
Mmsbris ¨X “ msbipXq.

Since Mmsbris “ I, this also covers the case G` I.˚˚

The matrix G of the current specification corresponds to a matrix called M14
in [42], and it fulfills the condition mentioned above.

} We updated the definition of the feedback function
˚˚ The G function in the previous version does not have the maximum rank. More

specifically, G`Mmsbr3n{4s has rank 3n{4 which is the lowest among all the cases.

15

Tweak Value for The Last Block. Given B P t0, 1u˚, we define δB P t1, 2u
as follows:

δB “

#

1 if B ‰ λ and n divides |B|

2 otherwise.
(4)

This will be used to differentiate the cases that the last block of B is n bits or
shorter, for B being associated data or plaintext or ciphertext. We also define a
formatting function Fmt for a pair of bit strings pA,Zq, where A is associated
data and Z could be either a plaintext or a ciphertext. Let pAr1s, . . . , Arasq

n
ÐÝ A

and pZr1s, . . . , Zrzsq
n
ÐÝ Z. We define tris as follows:

tris “

$

’

’

’

&

’

’

’

%

pi, 0q if i ă a

pa´ 1, δAq if i “ a

pi´ 1, δAq if a ă i ă a` z

pa` z ´ 2, δA ` δZq if i “ a` z

Now, the formatting function FmtpA,Zq returns the following sequence:
`

pAr1s, tr1sq, . . . , pAras, trasq, pZr1s, tra` 1sq, . . . , pZrzs, tra` zsq
˘

,

where the first coordinate of each pair specifies the input block to be processed,
and the second coordinate specifies the exponents of α and 1 ` α to determine
the constant over GFp2n{2q. Let Zě0 be the set of non-negative integers and X
be some non-empty set. We say that a function f : X Ñ pB ˆ Zě0 ˆ Zě0q

` is
prefix-free if for all X ‰ X 1, fpXq “ pY r1s, . . . , Y r`sq is not a prefix of fpX 1q “
pY 1r1s, . . . , Y 1r`1sq (in other words, pY r1s, . . . , Y r`sq ‰ pY 1r1s, . . . , Y 1r`sq). Here,
for a set S, S` means S Y S2 Y ¨ ¨ ¨ , and we have the following lemma.

Lemma 3. The function Fmtp¨q is prefix-free.

The proof is more or less straightforward and hence we skip it.
We present the specifications of COFB in Fig. 4.2, where α and p1 ` αq in

Eq. (3) are written as 2 and 3. See also Fig. 4.1. The encryption and decryption
algorithms are denoted by COFB-EK and COFB-DK . We remark that the nonce
length is n{2 bits, which is enough for the security up to the birthday bound.
The nonce is processed as EKp0

n{2 }Nq to yield the first internal chaining value.
The encryption algorithm takes non-empty A and non-empty M , and outputs
C and T such that |C| “ |M | and |T | “ n. The decryption algorithm takes
pN,A,C, T q with |A|, |C| ‰ 0 and outputs M or K. Note that some of building
blocks described above are not presented in Fig. 4.2, since they are introduced
for the proof. An equivalent presentation using them is presented in Fig. 5.1.

5 Security of COFB

We present the security analysis of COFB in Theorem 2. Before going to the
proof, as mentioned earlier, we would like to mention that we use the function

16

Algorithm Mask-GenpK,Nq

1. Y r0s Ð EKp0
n{2
}Nq

2. pY 1
r0s, . . . , Y 4

r0sq
n{4
ÐÝÝ Y r0s

3. ∆Ð Y 2
r0s }Y 3

r0s
4. return p∆,Y r0sq

Algorithm COFB-EKpN,A,Mq

1. p∆,Y r0sq Ð Mask-GenpK,Nq
2. pAr1s, . . . , Arasq

n
ÐÝ A

3. pM r1s, . . . ,M rmsq
n
ÐÝM

4. for i “ 1 to a´ 1
5. ∆Ð 2∆
6. Xris Ð pAris ‘G ¨ Y ri´ 1sq‘∆
7. Y ris Ð EKpXrisq
8. if |Aras| “ n then ∆Ð 3∆
9. else ∆Ð 32∆

10. Xras Ð pAras ‘G ¨ Y ra´ 1sq‘∆
11. Y ras Ð EKpXrasq
12. for i “ 1 to m´ 1
13. Xri` as Ð pM ris ‘G ¨ Y ri` a´ 1sq‘∆
14. Y ri` as Ð EKpXri` asq
15. Cris Ð Y ri` a´ 1s ‘M ris
16. if i ă m´ 1 then ∆Ð 2∆
17. if |M rms| “ n then ∆Ð 3∆
18. else ∆Ð 32∆
19. Xra`ms Ð pM rms‘G ¨Y ra`m´ 1sq‘∆
20. Crms Ð Y ra`m´ 1s‘M rms
21. T Ð EKpXra`msq
22. return pC, T q

Algorithm COFB-DKpN,A,C, T q

1. p∆,Y r0sq Ð Mask-GenpK,Nq
2. pAr1s, . . . , Arasq

n
ÐÝ A

3. pCr1s, . . . , Crcsq
n
ÐÝ C

4. for i “ 1 to a´ 1
5. ∆Ð 2∆
6. Xris Ð pAris ‘G ¨ Y ri´ 1sq‘∆
7. Y ris Ð EKpXrisq
8. if |Aras| “ n then ∆Ð 3∆
9. else ∆Ð 32∆

10. Xras Ð pAras ‘G ¨ Y ra´ 1sq‘∆
11. Y ras Ð EKpXrasq
12. for i “ 1 to c´ 1
13. Xri`as Ð pCris‘Y ri`a´1s‘G¨Y ri`a´1sq‘∆
14. M ris Ð Y ri` a´ 1s ‘ Cris
15. Y ri` as Ð EKpXri` asq
16. if i ă c´ 1 then ∆Ð 2∆
17. if |Cras| “ n then ∆Ð 3∆
18. else ∆Ð 32∆
19. Xra`cs Ð pCrcs‘Y ra`c´1s‘G ¨Y ra`c´1sq‘∆
20. M rcs Ð Y ra` c´ 1s‘Crcs
21. T 1 Ð EKpXra` csq
22. M Ð pM r1s, . . . ,M rcsq
23. if T 1 “ T then return M
24. else return K

Fig. 4.2. The encryption and decryption algorithms of COFB

Fmt and Lemma 3 in the proof to make it easy to understand. We would also
like to mention that, we instantiate iCOFB with COFB by choosing

RN,A,pi,jqpXq “

$

’

&

’

%

fpN,Aq if i “ 0, j “ 0

EKpX ‘mask∆pa` i´ 1, δAqq if i ă m, j “ 0

EKpX ‘mask∆pa`m´ 2, δA ` δM qq if i “ m, j “ 1

where fpN,Aq is the function that simulates the associated data phase and
outputs Y ras (Line 1–11, Fig. 4.2, K is implicit and chosen uniformly from the
key space and X “ 0n in this case). ∆ (computed using EK and N), a, m, δA
and δM are described as in the previous section, and we instantiate ρ by the
feedback function described in the previous section. However, the security proof
of COFB does not follow from that of iCOFB, since as a tweakable PRF, the
security of R is only guaranteed up to n{4 bits, and thus we cannot rely on the
hybrid argument to show the security of COFB. We next proceed with our proof
for our instantiation.

17

Theorem 2 (Main Theorem).

AdvAE
COFBppqe, qf q, pσe, σf q, tq ď Advprp

AESpq
1, t1q `

q12

2n`1
`

4σe
2n{2

`
nqf

2n{2`1
`
pqe ` σe ` 2σf q ¨ σf ` qf

2n
.

where q1 “ qe`qf`σe`σf , which corresponds to the total number of blockcipher
calls through the game, and t1 “ t`Opq1q. To be precise, σe is the total number
of blocks in qe encryption queries and σf is the total number blocks in the qf
decryption queries.

Proof. Fix a deterministic non-repeating query making distinguisher adv
that interacts with either the

1. Real oracle pCOFB-EKq or the
2. Ideal oracle p$q

making exactly qe encryption queries pNi, Ai,Miq, i “ 1..qe with total σe many
blocks and tries to forge with exactly qf many queries pN˚i , A

˚
i , C

˚
i , T

˚
i q, i “ 1..qf

having a total of σf many blocks. We also assume that adversary always makes
fresh forging attempt. More formally, it cannot submit pNi, Ai, Ci, Tiq for some
i, as a forging attempt.

Let Mi and Ai have mi and ai blocks respectively and C˚i and A˚i have c˚i and
a˚i blocks respectively for every i. We use X and Y to denote the intermediate
variables (blockcipher input outputs) corresponding to the encryption queries.
We also use X˚ and Y ˚ to denote the intermediate variables (blockcipher input
outputs) corresponding to the forging queries. Note that some of the inputs and
outputs for forging queries can be determined by those of encryption queries.

Without loss of generality, we can assume q1 :“ qe ` qf ` σe ` σf ď 2
n
2´1

since otherwise, the bound obviously holds as the right hand side becomes more
than one.

We use the notation X,Y etc. (mathsf notations) to denote random variables
and the capital letters X,Y etc. to denote fixed values. Note that all values
appeared in the transcript or internally are random variables due to randomness
either from the real world or the ideal world.

Hybrid Argument (Transition from COFB-EK to COFB-Rq. The first
transition we make is to use an n-bit (uniform) random permutation P instead of
EK , and then to use an n-bit (uniform) random function R instead of P. This two-
step transition requires the first two terms of our bound, from the standard PRP-
PRF switching lemma and from the computation to the information security
reduction (e.g., see [18]). Then what we need is a bound for COFB using R,
denoted by COFB-R. Let COFB´1-R be the corresponding decryption function.
So it is sufficient to prove

AdvAE
COFB-Rppqe, qf q, pσe, σf q,8q ď

4σe
2n{2

`
nqf

2n{2`1
`
pqe ` σe ` 2σf q ¨ σf ` qf

2n
.

(5)

18

Description of the Real Oracle. The Real oracle simulates COFB-R to adv
honestly. In case of qe encryption queries, for i “ 1, . . . , qe, we write pNi, Ai,Miq

and pCi, Tiq to denote the i-th encryption query and response, such that

pCi, Tiq “ COFB-RpNi, Ai,Miq.

Here,

Ai “ pAir1s, . . . , Airaisq,Mi “ pMir1s, . . . ,Mirmisq, Ci “ pCir1s, . . . , Cirmisq.

Let `i “ ai ` mi, which denotes the total input block length for the i-th en-
cryption query. We write Xirjs (resp. Yirjs) for i “ 1, . . . , qe and j “ 0, . . . , `i
to denote the j-th input (resp. output) of the internal R invoked at the i-th
encryption query, where the order of invocation follows the specification shown
in Fig. 4.2. We remark that Xir0s “ 0n{2}Ni and Yir`is “ Ti for all i “ 1, . . . , qe.

Similarly, we write ∆i to denote Y 2
i r0s}Y

3
i r0s where Y 1

i r0s} ¨ ¨ ¨ }Y
4
i r0s

n{4
ÐÝÝ Yir0s.

Note that, total number input blocks queried to the encryption oracle (corre-
sponding to the qe queries) is σe.

In case of all the qf forge queries, for i1 “ 1, . . . , qf , we write pN˚i1 , A
˚
i1 , C

˚
i1 , T

˚
i1 q

and Z˚i1 to denote the i1-th forging attempt and response, such that

Z˚i1 “ COFB´1-RpN˚i1 , A
˚
i1 , C

˚
i1 , T

˚
i1 q,

where, Z˚i1 is a valid message M˚
i1 “ pM˚

i1 r1s, . . . ,M
˚
i1 rc

˚
i1sq or K. Here, A˚i1 “

pA˚i1r1s, . . . , A
˚
i1ra

˚
i1sq and C˚i1 “ pC˚i1 r1s, . . . , C

˚
i1 rc

˚
i1sq. Let `˚i1 “ a˚i1 ` c˚i1 , which

denotes the total input block length for the i1-th forge query. We write X˚i1 rj
1s

(resp. Y ˚i1 rj
1s) for i1 “ 1, . . . , qf and j “ 0, . . . , `˚i to denote the j-th input

(resp. output) of the internal R invoked at the i-th forging attempt, where the
order of invocation follows the specification shown in Fig. 4.2.

Definition 2. For any i, let pi denote the length of the longest common prefix of
FmtpA˚i , C

˚
i q and FmtpAj , Cjq where Nj “ N˚i . Note that there cannot be more

than one j as the adversary is nonce-respecting. If there is no such j, we define
pi “ ´1.

In the above definition, it holds that pi ă mint`˚i , `ju as Fmt is prefix-free.
So, X˚i r0..pis is same as Xjr0..pis due to common prefix. Moreover, X˚i rpi`1s is
also determined as X˚i rpi` 1s “M˚

i rpi´ a
˚
i ` 1s ‘G ¨ Y ˚rpis ‘mask∆j

ptjrpisq.

Releasing more information. We release more information to the adversary,
which can only gain the advantage. First, after completing all queries and forging
attempts (i.e. decryption queries), let the adversary adv learn all the Y -values
for all encryption queries only (which also allows adversary to learn X-values
too). In addition, we also release the Y ˚-values (consequently X˚-values) for
the decryption queries (they are sampled according to the Y -values from the
encryption queries). To be precise, we sample Y ˚ by the following way. First we

19

denote the set of all prefixes of the formatted inputs for all the qe encryption
queries by Penc (see the following example). We similarly denote the set of all
formatted input prefixes for all the qf decryption queries by Pdec.

Example: Let qe “ 2 and ppN, tr1sq, pA, tr2sq, pM, tr3sqq Ð FmtpN,A,Mq and
ppN 1, t1r1sq, pA1, t1r2sq, pM 1, t1r3sqq Ð FmtpN 1, A1,M 1q with N ‰ N 1 be the two
encryption queries. Hence,

Penc “ tpN, tr1sq, pN
1, t1r1sq, ppN, tr1sq, pA, tr2sqq, ppN, tr1sq, pA, tr2sq, pM, tr3sqq,

ppN 1, t1r1sq, pA1, t1r2sqq, ppN 1, t1r1sq, pA1, t1r2sq, pM 1, t1r3sqqu. [\

Note that, |Penc| “ Σqe
i“1p`i ` 1q as nonces do not repeat. However, |Pdec| ď

Σ
qf
i“1p`

˚
i ` 1q as nonces can repeat in the decryption queries. For all x P Pdec, we

sample Zx uniformly from t0, 1un. Let

pZ˚i r1s, . . . , Z
˚
i r`

˚
i sq Ð pA˚i r1s, . . . , A

˚
i ra

˚
i s, C

˚
i r1s, . . . C

˚
i rc

˚
i sq.

Note that, the prefix set corresponding to Y ˚i rjs denoted by prefixpY ˚, i, jq is

ppN˚i , ˚q, pZ
˚
i r1s, ˚q, . . . , pZ

˚
i rjs, ˚qq,

where, ˚ denotes certain t values. Similarly, the prefix set denoted by prefixpY, i, jq
corresponding to Yirjs is

ppNi, ˚q, pZir1s, ˚q, . . . , pZirjs, ˚qq,

where

pZir1s, . . . , Zir`
˚
i sq Ð pAir1s, . . . , Aira

˚
i s,Mir1s, . . .Mirmisq.

We now sample Y ˚ values by the following way

Y˚i rjs “

#

Yi1rj
1s if j ď pi and prefixpY˚, i, jq “ prefixpY, i1, j1q

Zx if j ą pi, and prefixpY˚, i, jq “ x.

Note that, X˚s are determined from the Y˚s and C˚s.

Description of the Ideal Oracle. The original ideal oracle returns all ci-
phertext Ci and Ti randomly for encryption queries. In case of all the qf forge
queries pN˚i1 , A

˚
i1 , C

˚
i1 , T

˚
i1 q, i

1 P t1, . . . , qfu, the oracle returns K (here we assume
that the adversary makes only fresh queries). The encryption of the ideal oracle
can equivalently be sampled in the following way:

We first sample all Yirjs blocks uniformly and independently from t0, 1un,
@i P t0, . . . , qeu,@j P t0, . . . , `iu. The ciphertext blocks during the message pro-
cessing phase are computed as

Cirj ´ ais “Mirj ´ ais ‘ Yirjs,@i P t1, . . . qeu, j P tai, . . . , `i ´ 2u.

20

Note that, @i P t1, . . . , qeu, ∆i values are computed as Y 2
i r0s}Y

3
i r0s. Also, @i P

t1, . . . qeu, Cirmis is computed as

Cirmis “Mirmis‘Yir`i ´ 1s.

Note that the last message block of the ith encryption query Mirmis may not
be full (i.e, |Mirmis| ă n). The tag Ti,@i P t1, . . . , qeu is computed as

Ti “ Yir`is.

As ciphertext are computed xoring message blocks by uniformly sampled Y -
values, the equivalent ideal oracle actually samples Ci randomly. The same is
true for tag values.

Overview of Attack Transcripts. Now we redefine the transcript random
variable of an adversary. We replace ciphertext and tag by all Y-values of en-
cryption queries. Note that ciphertext and tag can be uniquely computed from
Y-values. Thus, the transcript of the adversary T :“ pTe, Tf q where,

1. Te “ pNi,Ai,Mi,Yiq, i “ 1..qe and
2. Tf “ pN˚i1 ,A˚i1 ,C˚i1 ,T˚i1 ,Z˚i1q, i1 “ 1..qf .

Here, Z˚i1 denotes the output of the decryption oracle D (it is always K when we
interact with the ideal oracle) for the i1-th decryption query pN˚i1 ,A

˚
i1 ,C

˚
i1 ,T

˚
i1q.

Note that Yi denotes pYir0s, . . . ,Yir`isq “ Yir0..`is, where `i “ ai ` mi, and
ai (resp. mi) denotes the block length of Ai (resp. Mi). Similarly we define
c˚i1 and a˚i1 for forging queries, and write `˚i1 “ a˚i1 ` c˚i1 . The values of Xi are
uniquely determined from Yi, Ai and Mi. We use T real “ pT real

e , T real
f q (or T ideal “

pT ideal
e , T ideal

f q) to denote the random variable corresponding to the transcripts
in the Real world (or in the Ideal world respectively).

Notations on Probabilities realizing Transcripts. Consider a fixed tran-
script T “ pTe, Tf q where,

1. Te “ pNi, Ai,Mi, Yiqi“1..qe and
2. Tf “ pN˚i1 , A˚i1 , C˚i1 , T˚i1 , Z˚i1 qi1“1..qf .

We use the notation PrrealrT s (or PridealrT s), to denote the probability

PrrpNi,Ai,Mi,Yiqi“1..qe “ Te ^ pN˚i1 ,A
˚
i1 ,C

˚
i1 ,T

˚
i1 ,Z

˚
i1qi1“1..qf “ Tf s,

in the real world (or in the Ideal world), where the probability is defined over
randomness of the transcript. T is called realizable in the real world (or in the
Ideal world) if PrrealrT s ą 0 or (PrIdealrT s ą 0 respectively).

21

Definition and Analysis of Bad Transcripts

Bad Views. A transcript T :“ pTe, Tf q is called “bad” if one of the following
events occurs:

B1: Lirjs “ 0n{2 for some i P r1..qes and j ą 0.

B2: Xirjs “ Xi1rj
1s for some pi, jq ‰ pi1, j1q where j, j1 ą 0.::

B3: mcollpRq ą n{2, where R is the tuple of all Rirjs values.

B4: X˚i rjs “ Xi1rj1s or X˚i rjs “ X˚i1rj
1s for some i, i1, j1, i1, j1 such that pi ă

j ď `˚i and prefixpY˚, i, jq ‰ prefixpY˚, i1, j1q (where Y˚i rjs “ RpX˚i rjsq and
Y˚i1rj

1s “ RpX˚i1rj
1sq).

B5: There exists i, such that T˚i is a correct guess of Y˚i r`
˚
i s, i.e., T˚i “ Y˚i r`

˚
i s.

B6: There exists i, such that Z˚i ‰ K. This clearly cannot happen for the ideal
oracle case.

Some Intuitions on the Bad Events. We add some intuitions on these
events.

– When B1 does not hold, then Xirjs ‰ Xi1r0s for all i, i1, and j ą 0. Hence
∆i will be completely random.

– When B2 does not hold, then all the inputs for the random function are
distinct for encryption queries, which makes the responses from encryption
oracle completely random in the Real game.

– When B3 does not hold, then at the right half of Xirjs we see at most
n{2 multi-collisions. A successful forgery is to choose one of the n{2 multi-
collision blocks and forge the left part so that the entire block collides. Forg-
ing the left part has 2´n{2 probability due to randomness of masking.

– When B4 does not hold, then the ppi`1qst to `˚i
th input for the i-th forging

attempt will be fresh with a high probability and so all the subsequent inputs
will remain fresh with a high probability. Also, it ensures that, there is no
collision between the inputs

– Finally, when B5 does not hold then the all the guesses for the tag in the
decryption queries are wrong.

If adv interacts with the real oracle we always have,

1. Xir0s “ 0n{2}Ni
2. RpXirjsq “ Yirjs, i “ 1..qe, j “ 0..`i,

where Xirjs and Yirjss are computed via ρ and ∆ values.
The following lemma bounds the probability of not realizing a good view

while interacting with a random function (this will complete the first condition
of the Coefficients-H technique).

:: The event B1 can be captured by B2 if we allow j1 to be zero. However, we do not
combine them as they need separate analysis and gives bounds of different order.
Note that B1 is an event on n{2 bits whereas B2 is on n bits.

22

Lemma 4. For any transcript T ,

Pr
ideal
rT R Vgoods ď PrrB1s ` PrrB2s ` PrrB3s ` PrrB4^B1c ^B3cs ` PrrB5s

ď
4σe
2n{2

`
nqf

2n{2`1
`
pqe ` σe ` 2σf q ¨ σf ` qf

2n
.

Proof (of Lemma 4). Throughout the proof, we assume all probability notations
are defined over the ideal game. We bound all the bad events individually and
then by using the union bound, we will obtain the final bound. We first de-

velop some more notation. Let pY1
i rjs,Y

2
i rjs,Y

3
i rjs,Y

4
i rjsq

n{4
ÐÝÝ Yirjs. Similarly,

we denote pM1
i rjs,M

2
i rjsq

n{2
ÐÝÝMirjs.

(1) PrrB1s ď σ{2n{2: We fix a pair of integers pi, jq for some i P r1..qs and
j P r1..`is. Now, Lirjs can be expressed as

pY2
i rj ´ 1s}Y3

i rj ´ 1sq ‘ pαa ¨ p1` αqb ¨∆iq ‘M
1
i rjs

for some a and b. Note that when j ą 1, ∆i and Yirj´ 1s are independently
and uniformly distributed, and hence for those j, we have PrrLirjs “ 0n{2s “
2´n{2 (apply Lemma 2 after conditioning Yirj ´ 1s). Now when j “ 1, we
have the following three possibilities: (i) Lir1s “ p1`αq ¨∆i‘Cons if ai ě 2,
(ii) Lir1s “ α ¨∆i ‘ Cons if ai “ 1 and the associated data block is full, and
(iii) Lir1s “ α2 ¨∆i‘Cons if ai “ 1 and the associated data block is not full,
for some constant Cons. In all cases by applying Lemma 2, PrrB1s ď σe{2

n{2.

(2) PrrB2s ď σe{2
n{2: For any pi, jq ‰ pi1, j1q with j, j1 ě 1, the equality event

Xirjs “ Xi1rj
1s has a probability at most 2´n since this event is a non-trivial

linear equation on Yirj´1s and Yi1rj
1´1s and they are independent to each

other. Note that σ2
e{2

n ď σe{2
n{2 as we are estimating probabilities.

(3) PrrB3s ď 2σe{2
n{2: The event B3 is a multi-collision event for randomly

chosen σ many n{2-bit strings as Y values are mapped in a regular manner
(see the feedback function) to R values. From the union bound, we have

PrrB3s ď

ˆ

σe
n{2

˙

1

2pn{2q¨ppn{2q´1q
ď

σ
n{2
e

2pn{2q¨ppn{2q´1q
ď

´ σe
2pn{2q´1

¯n{2

ď
2σe
2n{2

,

where the last inequality follows from the assumption (σe ď 2pn{2q´1).

(4) PrrB4^B1c ^B3cs ď
nqf

2n{2`1 `
pqe`σe`1.5σf q¨σf

2n :

Case (1): The first event occurs where the ppi ` 1qst input for the ith

forging attempt, i.e., X˚i rpi ` 1s is equal to Xi1rj1s for some ii and j1.
Note that, pi “ ´1 implies that the nonce N˚i is fresh (i.e., N˚i does
not appear in the encryption queries) as the left n{2 bits of all Xirjs

23

for all j ą 0 is non zero as we consider that B1 does not hold. So the
probability is zero. Now we consider pi ě 0. B3c implies that there are
at most n{2 values of pi1, j1q for which X˚i rpi ` 1s “ Xi1rj1s can hold.
Fix any such i and pi1, j1q. Now it is sufficient to bound the probability
for equality for the left n{2 bits of X. We will now use two sub cases.

‚ Subcase (1a): Consider N˚i “ Ni1 . In this case ∆˚i “ ∆i1 .
When j1 “ pi` 1. Now from the definition of pi, pC

˚
i rpi` 1s, t˚i rpi`

1sq ‰ pCi1rpi`1s, ti1rpi`1sq. If t˚i rpi`1s “ ti1rpi`1s, then with prob-
ability one, the above event does not hold. If t˚i rpi` 1s ‰ ti1rpi` 1s,
then using the entropy of ∆ii , we can upper bound the probability
by 2´n{2.

Precisely, in this case the event X˚i rpi ` 1s “ Xi1rpi ` 1s implies

G ¨ Y ˚i rpis ‘D
˚
i rpi ` 1s ‘maskp∆i1 , t

˚
i rpi ` 1sq

“ G ¨ Yi1rpis ‘Di1rpi ` 1s ‘maskp∆i1 , ti1rpi ` 1sq,

where D˚i rpi ` 1s is the ppi ` 1qth input block in the ith decryption
query (it can be either an associated data or a ciphertext block) and
Di1rpi ` 1s is the ppi ` 1qth input block in the ith1 encryption query
(it can be either associated data or Ciphertext block). This in turn
implies

maskp∆i1 , t
˚
i rpi ` 1sq ‘maskp∆i1 , ti1rpi ` 1sq “ D

, where D “ G ¨Y ˚i rpis‘D
˚
i rpi` 1s‘G ¨Yi1rpis‘Di1rpi` 1s. Thus,

∆i1 ¨ c “ D,

where, c is some non zero constant depending on t˚i rpi ` 1s and
ti1rpi ` 1s. Hence, the probability of the event can be bounded by
2´n{2 from the entropy of ∆i1 .

When j1 ‰ pi ` 1, we obtain a non-trivial linear equation in ∆i1

using Lemma 2, and the fact that G ` I is non-singular. Using the
entropy of ∆i1 , probability of the above event is 2´n{2.

Precisely, in this case the event X˚i rpi ` 1s “ Xi1rj1s implies

G ¨ Y ˚i rpis ‘D
˚
i rpi ` 1s ‘maskp∆i1 , t

˚
i rpi ` 1sq

“ G ¨ Yi1rj1 ´ 1s ‘Di1rj1s ‘maskp∆i1 , ti1rj1sq.

This in turn implies

maskp∆i1 , t
˚
i1rpi ` 1sq ‘maskp∆i1 , ti1rj1sq “ D

24

, Where D “ G ¨Y ˚i rpis‘D
˚
i rpi`1s‘G ¨Yi1rj1´1s‘Di1rj1s. Thus,

∆i1 ¨ c “ D,

where, c is some non zero constant depending on t˚i rpi`1s and ti1rj1s
(as t˚i rpi ` 1s and ti1rpi ` 1s are different). Hence, the probability of
the event can be bounded by 2´n{2.

‚ Subcase (1b): Consider N˚i ‰ Ni1 . In this case ∆˚i and ∆i1 are
independent and we can upper bound the probability by 2´n{2 in a
similar way using the entropy of the ∆ value.

Because we have at most qf ¨ n{2 chances (as for each of the qf queries,
there are at most n{2 options due to fact that B3 does not hold and
there are at most n{2 multicollisions at R. Precisely, there are qf ¨ n{2
choices of pi, pi1, j1qq), the probability for Case 1 is bounded by

nqf
2n{2`1 .

Case 2: Now consider the case where the jth input for the ith forging
attempt with j ą pi ` 1, i.e., X˚i rjs “ Xi1rj1s for some j ą pi ` 1, ii
and j1. We fix some i and want to bound the probability PrrX˚i rjs “
Xi1rj1s^B1c^B3cs for some i1, j1 and pi`1 ă j ď `˚i . We also want to
bound the overall probability PrrX˚i rjs “ X˚i1rj

1s ^B1c ^B3cs for some
i1, j1 and j and count them with Case 2. For a fixed i, the number of
bad pairs in this case is at most

pqe ` σe ` `
˚
i q ¨ `

˚
i ` σf ¨ `

˚
i ď pqe ` σe ` σf q ¨ `

˚
i ` σf ¨ `

˚
i .

Varying over i, the total number of bad pairs is

ÿ

1ďiďqf

pqe ` σe ` σf q ¨ `
˚
i ` σf ¨ `

˚
i ď pqe ` σe ` 2σf q ¨ σf .

Thus, PrrB4^B1c ^B3cs is at most
nqf

2n{2`1 +
pqe`σe`2σf q¨σf

2n .

(5) PrrB5s ď qf {2
n: The event B5 is bounded by

qf
2n since, Y ˚i r`

˚
i s is uniform

and there are total qf decryption queries

Summarizing, we have

Pr
ideal
rT R Vgoods ď PrrB1s ` PrrB2s ` PrrB3s ` PrrB4^B1c ^B3cs ` PrrB5s

ď
σe

2n{2
`

σe
2n{2

`
2σe
2n{2

`
nqf

2n{2`1

pqe ` σe ` 2σf q ¨ σf
2n

`
qf
2n

“
4σe
2n{2

`
nqf

2n{2`1
`
pqe ` σe ` 2σf q ¨ σf ` qf

2n
,

which concludes the proof. [\

25

Analysis of Good Transcripts We define a view to be good if none of the
bad events hold. Let Vgood be the set of all such good views. For any view
T P Vgood, we want to show iprealpT q ě p1´ ε2q ¨ ipidealpT q for some ε2. Hence, we
proceed by computing the ratio between iprealpT q and ipidealpT q for T P Vgood.
Note that, here iprealpT q is actually PrrealrT s and ipidealpT q is PridealrT s. We first
fix a realizable (with respect to ideal world) good view

T “ ppNi, Ai,Mi, YiqiPt1,...,qeu, pN
˚
i1 , A

˚
i1 , C

˚
i1 , T

˚
i1 , Z

˚
i1 qi1Pt1,...,qf uq,

where Z˚i1 “ K. We separate T into

Te “ pNi, Ai,Mi, YiqiPt1,...,qeu and Tf “ pN˚i1 , A˚i1 , C˚i1 , T˚i1 , Z˚i1 qi1Pt1,...,qf u,

Lemma 5. For a good and a realizable view T

Pr
ideal
rT s “ 1{2npqe`σeq.

Proof (of Lemma 5). All the qe ` σe internal Ys are chosen uniformly from
t0, 1un. Hence, it is easy to see that for a good view T , PridealrT s is equal to
1{2npqe`σeq. [\

Lemma 6. For a good and a realizable view τ

Pr
real
rT s “ Pr

ideal
rT s.

Proof (of Lemma 6). Now we consider the real case. Since B1 and B2 do not hold
with T , all inputs of the random function inside Te are distinct, which implies
that the released Y-values are independent and uniformly random. The variables
in Te are uniquely determined given these Y-values, and there are exactly qe `
σe distinct input-output of R. Therefore, PrrealrTes is exactly 2´npqe`σeq (note
that, PrrealrTes is defined exactly in the same way as PrrealrT s). We also use the
notation PrrealrTf |Tes which is defined in a similar way. We next evaluate

Pr
real
rT s “ Pr

real
rTes ¨ Pr

real
rTf |Tes “

1

2npqe`σeq
¨ Pr
real
rTf |Tes. (6)

Lower Bounding PrrealrTf |Tes. We observe that PrrealrTf |Tes is equal to
PrrealrKall|Tes, where Kall denotes the event that Z˚i “ K for all i “ 1, . . . , qf ,
as other variables in Tf are determined by Te.

Let η denote the event that, for all i “ 1, . . . , qf , X˚i rjs for pi ă j ď `˚i is not
colliding to X-values in Te and X˚i rj

1s for all j1 ‰ j. For j “ pi ` 1, the above
condition is fulfilled by B4, and thus Y˚i rpi` 1s is uniformly random, and hence
X˚i rpi ` 2s is also uniformly random, due to the property of feedback function
(here, observe that the mask addition between the chain of Y˚i rjs to X˚i rj ` 1s
does not reduce the randomness).

26

Module Mask-GenpK,Nq

1. Y r0s Ð EKp0
n{2
}Nq

2. pY 1
r0s, . . . , Y 4

r0sq
n{4
ÐÝÝ Y r0s

3. ∆Ð Y 2
r0s}Y 3

r0s
4. return p∆,Y r0sq

Algorithm COFB-EKpN,A,Mq

1. p∆,Y r0sq Ð Mask-GenpK,Nq
2. pAr1s, . . . , Arasq

n
ÐÝ A

3. pM r1s, . . . ,M rmsq
n
ÐÝM

4. `Ð a`m
5. ppBr1s, tr1sq, . . . , pBr`s, tr`sqq Ð FmtpA,Mq
6. for i “ 1 to `
7. Xris Ð pBris ‘G ¨ Y ri´ 1sq ‘ mask∆ptrisq
8. Y ris Ð EKpXrisq
9. if i ą a then

10. Cri´ as Ð Y ri´ 1s ‘ M ri´ as
11. T Ð Y r`s
12. return pC, T q

Algorithm COFB-DKpN,A,C, T q

1. p∆,Y r0sq Ð Mask-GenpK,Nq
2. pAr1s, . . . , Arasq

n
ÐÝ A

3. pCr1s, . . . , Crcsq
n
ÐÝ C

4. `Ð a` c
5. ppBr1s, tr1sq, . . . , pBr`s, tr`sqq Ð FmtpA,Cq
6. for i “ 1 to `
7. if i ď a then
8. Xris Ð pBris ‘G ¨ Y ri´ 1sq‘mask∆ptrisq
9. else Xris Ð pBris ‘ Y ri ´ 1s ‘ G ¨ Y ri ´ 1sq

‘ mask∆ptrisq
10. Y ris Ð EKpXrisq
11. for i “ 1 to c
12. M ris Ð Y ri` a´ 1s ‘ Cris
13. M Ð pM r1s, . . . ,M rcsq
14. T 1 Ð Y r`s
15. if T 1 “ T then return M
16. else return K

Fig. 5.1. A presentation of COFB using Fmt function. This is equivalent to Fig. 4.2.

Now we have

Pr
real
rKall|Tes “ 1´ Pr

real
rpKallq

c|Tes,

and we also have

Pr
real
rpKallq

c|Tes “ Pr
real
rpKallq

c, η|Tes ` Pr
real
rpKallq

c, ηc|Tes.

Here, PrrealrpKallq
c, η|Tes is the probability that at least one T˚i for some i “

1, . . . , qf is correct as a guess of Y˚i r`
˚
i s. Since, B5 does not hold with τ , the

probability PrrealrpKallq
c, η|Tes is 0.

For PrrealrpKallq
c, ηc|Tes which is at most Prrealrη

c|Tes, the above observation
suggests that this can be evaluated by counting the number of possible bad pairs
(i.e. a pair that a collision inside the pair violates η) among all the X-values in
Te and all X˚-values in Tf as well as collisions between between two X-values
among all the X-values in τf as in the same manner to the collision analysis
of e.g., CBC-MAC using R. B4 does not hold with τ , PrrealrpKallq

c, ηc|Tes is 0.
Hence PrrealrTf |Tes is,

Pr
real
rTf |Tes “ Pr

real
rKall|Tes “ 1.

Combining all, we have

iprealpτq “ Pr
real
rT s “ 1

2npqe`σeq
¨ Pr
real
rTf |Tes “ Pr

ideal
rτ s “ ipidealpτq.

[\

27

Table 2. Clock cycles per message byte for COFB[AES]

Message length (Bytes)
16 32 64 128 256 512 1024 2048 4096 16384 32768

cpb 2.93 2.22 1.86 1.68 1.59 1.54 1.52 1.51 1.50 1.50 1.50

Table 3. Clock cycles per message byte for COFB[GIFT]

Message length (Bytes)
16 32 64 128 256 512 1024 2048 4096 16384 32768

cpb 5.441 5.283 5.204 5.164 5.145 5.135 5.130 5.127 5.126 5.125 5.125

6 Hardware Implementation of COFB

6.1 Overview

COFB primarily aims to achieve a lightweight implementation on small hardware
devices. For such devices, the hardware resource for implementing memory is
often the dominant factor of the size of entire implementation, and the scalability
by parallelizing the internal components is not needed. In this respect, COFB’s
small state size and completely serial operation is quite desirable.

For implementation aspects, COFB is simple, as it consists of a blockcipher
and several basic operations (bitwise XOR, the feedback function, and the con-
stant multiplications over GFp2n{2q). Combined with the small state size, this
implies that the implementation size of COFB is largely dominated by the un-
derlying blockcipher. In this section we provide hardware implementation de-
tails of COFB using two blockciphers, AES and GIFT. Here, GIFT is a family of
lightweight blockcipher proposed by Banik et al. [14]. It employs a structure sim-
ilar to PRESENT [20] while improves efficiency by carefully choosing S-box and
the bit permutation. It has 64-bit and 128-bit block versions, both have 128-bit
key. We write GIFT-128 or simply write GIFT to denote the 128-bit-block ver-
sion. We write COFB[AES] and GIFT-128 to denote COFB using AES-128 and
COFB[GIFT] respectively.

We provide the number of clock cycles needed to process input bytes, as a
conventional way to estimate the speed. Here, COFB[AES] taking a-block AD
(associated data) and an m-block message needs 12pa`mq ` 23 cycles. Table 2
shows the number of average cycles per input message bytes, which we call cycles
per byte (cpb), assuming AD has the same length as message and the underlying
blockcipher has 128-bit block. That is, the table shows p12 ¨ 2m` 23q{16m.

Similarly, COFB[GIFT] needs 41 ¨ pa`mq ` 81 cycles for a-block AD and an
m-block message. Table 3 shows the number of average cycles per input message
bytes, which we call cycles per byte (cpb), assuming AD has the same length
as message and the underlying blockcipher has 128-bit block. That is, the table
shows p41 ¨ 2m` 81q{16m.

28

6.2 Hardware Implementation of COFB[BC] Without CAESAR
Hardware API

We describe the implementation details of both COFB[AES] and COFB[GIFT]
without the CAESAR hardware API. These are basic round based implementa-
tions without any pipelining, and employ module architecture. We primary focus
on the encryption-only circuit, however, the combined encryption and decryption
circuit should have very small amount of overhead thanks to the inverse-freeness
(i.e. no blockcipher decryption routine is needed) and simplicity of the mode.
Due to the similarity between the associated data and the message processing
phase, the same hardware modules are used in both phases. A single bit switch is
used to distinguish between the two types of input data. The main architecture
consists of the modules described below. We remark that, there is also a Finite
State Machine (FSM) which controls the flow by sending signal to these mod-
ules. The FSM has a rather simple structure, and is described below. Then, the
overall hardware architecture is described in Fig. 6.2. We would like to mention
that both the versions can be described with the same hardware architecture
as they have exactly the same interface. Hence, we often use BC instead of the
underlying blockcipher, where BC P tAES-128,GIFT-128u. We also assume that
BC comprises of r rounds.

1. State Registers. The state registers are used to store the intermediate
states after each iteration. We use a 128-bit State register to store the 128-
bit BC block state, a 64-bit ∆ register to store the 64-bit mask applied to
each BC input, and a 128-bit Key register to store the 128-bit key. The
round key of BC is stored in the additional 128-bit register (Round Key),
however, this is included in the BC module.

2. BC Round. BC round function module runs one BC round computation
and produces a 128-bit output, using two 128-bit inputs, one from the State
and the other from (internal) Round Key registers. The latter register is
initialized by loading the master key, stored in the Key register, each time
the BC function is invoked. The output of BC module is stored into the
State register, which is the input for the next round. The entire operation
is serial, while the internal round computation and the round key generation
run in parallel, and needs r ` 1 cycles to perform full BC encryption.

3. Feedback Function ρ. The ρ module is to compute the linear feedback
function ρ on the 128-bit data block and the 128-bit intermediate state value
(output from the BC computation). The output is a 128-bit ciphertext and
a 128-bit intermediate state (to be masked and stored to the State register).

4. Mask Update. uMask module updates the mask stored in ∆ register.
uMask receives the current mask value and updates it by multiplying with
α or p1` αq or p1` αq2 based on the signals generated by the FSM, where
signals are to indicate the end of the message and the completeness of the
final block process.

29

5. FSM. The control of the complete design can be described by a finite state
machine (FSM). We provide a separate and simple view of FSM in Fig. 6.1.
The FSM consists of 9 states and starts with the Reset St. This state is
idle and followed by a Load St, which initializes the BC state by load-
ing nonce (before the first BC invocation). After the initialization, FSM
enters into the BC invocation phase to encrypt the nonce. This phase con-
sists of BC Reset St to reset BC parameters, BC Start St for key whiten-
ing, BC Round St to run one BC round and BC Done St to indicate the
end of the BC invocation. Depending on whether the current blockcipher
call is final or not, the FSM either releases the tag or it enters to the
Compute ρ Add Mask St, which computes the ρ function, updates mask
and partially masks the blockcipher input. The FSM sends two additional
bits EOM to denote the end of data block and isComplete to denote the
last data block is complete or not. Next it enters the BC Reset St for
the next blockcipher invocation. After the last BC invocation it enters the
Release Tag St. Finally, the FSM enters the end state. We use a 4-bit reg-
ister to keep track of the states. It is to be noted that, in addition to the
state transition, FSM also sends the corresponding relevant signals to the
top modules.

BC
Module
FSM

Roundctr< r

Else,
EOM,

isComplete

Roundctr= r

Start Reset St Load St

BC Reset St

BC Start St

BC Round St

BC Done St

Release Tag St

End St

Compute ρ
Add Mask St

If Final
Block

Fig. 6.1. FSM for COFBrBCs Hardware Implementation

Basic Implementation. We describe a basic flow of our implementation, which
generally follows the pseudocode of Fig. 4.2. Prior to the initialization, State
register is loaded with 064 }N . Once State register is initialized, the initialization
process starts by encrypting the nonce (064 }N) with BC. Then, 64 bits of the

30

064||N

State

128

128128

128 128

128

128

128

BCr

Key

ρρ

∆

128

C

uMask

T

chop
128 64

AD/M

64

||064⊕⊕⊕

128128
64

Fig. 6.2. Hardware Circuit Diagram

encrypted nonce is chopped by the “chop” function as in Fig. 6.2, and this
chopped value is stored into the ∆ register (this is initialization of ∆). After
the initialization, 128-bit associated data blocks are fetched and sent to the ρ
module along with the previous BC output to produce a 128 bit intermediate
state. This state is partially masked with 64-bit ∆ for every BC call. After all
the associated data blocks are processed, the message blocks are processed in the
same manner, except that the ρ function produces 128-bit ciphertext blocks in
addition to the intermediate state values. Finally, after the message processing
is over, the tag is generated using an additional BC call.

Combined Encryption and Decryption. As mentioned earlier, we here fo-
cus on the encryption-only circuit. However, due to the similarity between the
encryption and the decryption modes, the combined hardware for encryption
and decryption can be built with a small increase in the area, with the same
throughput. This can be done by adding a control flow to a binary signal for
mode selection.

6.3 Implementation Results with out CAESAR Hardware API

We have implemented both COFB[AES] and COFB[GIFT] on Xilinx Virtex 6 and
Virtex 7, using VHDL and Xilinx ISE 13.4. Table 4 presents the implementation
results of COFB on Virtex 7 with the target device xc7vx330t and on Virtex 6
with the target device xc6vlx760. We employ RTL approach and a basic iterative
type architecture (128-bit round based implementation). The areas are listed in
the number of Slice Registers, Slice LUTs and Occupied Slices. We also report
frequency (MHz), Throughput (Gbps), and throughput-area efficiency. Table 4
presents the mapped hardware results of COFB[AES]. In this paper, we have
slightly optimized the implementation in [25, 26] to get a better estimate of the
number of slice registers.

31

Table 4. FPGA implementation results of COFB[AES] and COFB[GIFT]

Design (Platform)
Slice

Registers LUTs Slices

Frequency

(MHz)

Throughput

(Gbps) Mbps/LUT Mbps/Slice

COFB[AES] (Virtex 6) 594 1051 449 267.20 2.85 2.71 6.35

COFB[AES] (Virtex 7) 593 1440 564 274.84 2.93 2.03 5.19

COFB[GIFT] (Virtex 6) 342 771 355 612.91 1.91 2.48 5.51

COFB[GIFT] (Virtex 7) 342 771 316 712.99 2.23 2.89 6.62

For AES-128, we use the implementation available from Athena [1] main-
tained by George Mason University. This implementation stores all the round
subkeys in a single register to make the AES implementation faster and paralleliz-
able. However, the main motivation of COFB is to reduce hardware footprint.
Hence, we change the above implementation to a sequential one such that it
processes only one AES round in a single clock cycle. This in turn eliminates the
need to store all the round subkeys in a single register and reduces the hardware
area consumed by the AES module.

For GIFT-128, we use our own implementation in FPGA. The implementation
is round based without any pipelining. The architecture uses three registers
State, RK and Round to hold the blockcipher state, current round key and the
round counter respectively. The architecture is divided into four modules SN ,
BP , ARK and ARC, UKEY . operations. SN module applies a 4-bit sbox to
each of the 4-bit nibbles of the state. BP applies the bit permutation on the
state. ARK performs the round key addition on the state and ARC applies
round constant addition on the state. UKEY updates the round key and stores
it in RK. The architecture also uses another module EXT to extract a part of
the round key to be added to the state. The hardware implementation results in
slice registers, slice LUTs and Slices are presented in Table 4.

6.4 Hardware Flexibility of the COFB Design

COFB is itself very lightweight and it uses a few operations other than the block-
cipher computations. Below in Table 5, we present the hardware area occupied by
the blockcipher and the other modules for both COFB[AES] and COFB[GIFT] on
Vertex 6. We observe that COFB[AES] consumes low hardware footprint and the
majority of the hardware footprint is used by AES, whereas in COFB[GIFT] the
implementation size is much smaller as the underlying blockcipher GIFT is much
lighter than AES. This depicts that implementation area optimized blockcipher
will be the most efficient one.

6.5 Hardware Implementation of COFBrBCs with CAESAR
Hardware API

We implement COFBrBCs (both encryption and decryption) using the CAE-
SAR Hardware API with the motivation of a fair comparison. We would like to
mention that the architecture described in Sect. 6.2 is different from this one in

32

Table 5. COFB[AES] and COFB[GIFT]: Area utilization by modules in Virtex 6

Modules Slices LUTs

Total 449 1051

AESr 311 657

Others 138 394

Modules Slices LUTs

Total 355 771

GIFTr 155 346

Others 200 425

terms of the user interface and the design of the control unit. For example, in the
previous implementation, we assume that the nonce, the associated data blocks
and the message blocks are supplied separately to the main module. In this case,
all of them are supplied as input blocks with a corresponding data type. Also,
the previous architecture is encryption only, whereas this architecture supports
both encryption and decryption. The implementation with GMU API adds a
significant overhead on the previous result.

The top level module is AEAD, which invokes 4 low level modules PreProcessor,
PostProcessor, CMD FIFO and Cipher-Core. We primarily focus on the Cipher-core
module, as the GMU package [7] already provides codes for the other modules.
We do not need to concentrate on the internal structures of all the modules
except the Cipher-Core one. However, we just need to set certain parameters ac-
cording to our design criteria. A top level block diagram of this API is given
in [44].

Cipher-core Module. The Cipher-core module describes the core architecture
of COFB[BC]. It invokes Cipher-core-controller and Cipher-core-datapath modules.
The controller describes the finite state machine for the design and the datapath
describes the data processing flow between the internal circuit and sub-modules.
The Cipher-core-controller and the Cipher-core-datapath modules are described
below.

Cipher-core-controller Module. The Cipher-core-controller module describes
the finite state machine (FSM) for the CAESAR hardware based implementation
of COFB. At the top layer, the controller uses the standard state descriptions
provided in specification for the CAESAR hardware API [44] along with a few
extra state compatible to our design. The standard states are as mentioned below

– S RESET
– S KEY CHECK
– S NPUB READ
– S DATA LOAD
– S AD PROCESS
– S AD PROCESS LAST BLOCK
– S DATA PROCESS
– S DATA PROCESS LAST BLOCK
– S GEN V ER TAG.

33

Our design requires a few extra states

– S NONCE PROCESS
– S AES START
– S AES DONE
– S COMPUTE RHO AND TWEAK.

The internal BC module runs its own FSM with BC Reset St, BC Start St,
BC Round St and BC Done St. The FSM for the BC module follows the same
described in Sect. 6.2.

The control enters through the S RESET state and consequently passes
through S KEY CHECK and S NPUB READ states according to the spec-
ification. S NPUB READ is followed by S DATA LOAD which in turn is fol-
lowed by S NONCE PROCESS, S AD PROCESS or S DATA PROCESS
depending on the data type. If the block data input is not valid, the control re-
turns to S DATA LOAD. Otherwise, from each of these 3 states, the control en-
ters S BC START to denote aBC invocation. Note that, there are four interme-
diate states between S BC START and S BC DONE corresponding to the BC
module. After BC computation is complete (as signaled by S BC DONE), the
control goes to S COMPUTE RHO AND TWEAK. For the last input block
of a certain data type, the control enters S AD PROCESS LAST BLOCK (or
S DATA PROCESS LAST BLOCK). If it is not the last block, the control
reverts back to S AD PROCESS (or S DATA PROCESS respectively). Fi-
nally, after the message is processed the FSM enters S GEN V ER TAG, where
the tag is either generated (for encryption) or verified (for decryption).

Control Signals. The controller uses signals described in [44] as well as a few
additional signals. The controller accepts the following additional input signals:

1. bc done (to denote the completion of BC invocation) and
2. tag match (to denote verification).

It outputs the following additional output signals:

1. delta load signal (to denote whether to load the ∆ register or to update it)
2. sel ed signal (to denote whether the input to the BC module is the nonce or

the internal feedback value)
3. bc start (to denote the invocation of the blockcipher)
4. init key (to initialize the key register)

Cipher-core-datapath Module. This module accepts inputs from both the
Cipher-core and the Cipher-core-controller modules. It accepts the secret key,
nonce, message blocks, associate data blocks and several other control signals
described in the specification [44]. It also accepts additional signals delta load,
sel ed, bc start and init key generated by Cipher-core-controller. It outputs the
ciphertext block, the tag and two additional signals bc done and tag match. It
invokes internal modules for BC round functions, ρ computations and ∆ update
functions. These modules are already described in Sect. 6.2.

34

Table 6. Implementation results of COFB[AES] and COFB[GIFT] Using CAESAR
Hardware API. We denote the implementation of COFB[AES] with CAESAR API by
COFB[AES]-CAESAR-API (same for COFB[GIFT])

Platform Design
Slice

Registers LUTs Slices

Frequency

(MHz)

Throughput

(Gbps) Mbps/LUT Mbps/Slice

Virtex 6 COFB[AES]-CAESAR-API 1210 1475 584 251.848 2.686 1.823 4.360
Virtex 7 COFB[AES]-CAESAR-API 1209 1496 579 257.486 2.747 1.842 4.395

Spartan 6 COFB[AES]-CAESAR-API 1219 1544 590 141.448 1.509 0.977 2.558

Virtex 6 COFB[GIFT]-CAESAR-API 1152 1011 415 352.392 1.100 1.045 2.723
Virtex 7 COFB[GIFT]-CAESAR-API 1150 1041 355 373.002 1.164 1.172 2.604

Spartan 6 COFB[GIFT]-CAESAR-API 1156 1040 385 149.477 0.467 0.449 1.213

6.6 Implementation Results with CAESAR Hardware API

We implement both COFB[AES] and COFB[GIFT] using CAESAR hardware API
on the same platform. We also implement our design on Spartan 6 with the
target device xc6slx150t for the sake on comparison with the other results on
Spartan 6. Table 6 presents the detailed implementation results for COFB[AES]
and COFB[GIFT].

6.7 Area Overhead Due to CAESAR Hardware API

We observe from Table 4 and 6 that there are significant overheads both in
hardware area (for example, 40% increase in LUTs , 30% increase in Slices for
COFB[AES] in Virtex 6) and throughput (for example, 42% decrease in through-
put for COFB[GIFT] in Virtex 6). Though CAESAR API favors basic iterative
architecture, strict requirements of the complex control unit design and input
handling mechanism cuts the efficiency significantly.

6.8 Benchmarking with ATHENa Database

We compare implemented results of COFB[BC] with the results published in
ATHENa Database [2], taking Virtex 6 and Virtex 7 as our target platforms.
We also includes the optimized results from the paper [51] for benchmarking
only in Virtex 6 platform. In the first implementation, we ignore the overhead
to support the CAESAR API and the fact that ours is encryption-only while
the others are (to the best of our knowledge) supporting both encryption and
decryption, and the difference in the achieved security level, both quantitative
and qualitative. To provide a fair benchmarking, we also provide a CAESAR
hardware API based implementations of COFB[BC]. We found that, even if the
implementation results gains a significant overhead, still we achieve a highly
competitive result, even after adding a circuit for supporting CAESAR API and
decryption. In Table 7, we provide comparisons for Vertex 6 and in Table 8,
we provide comparisons for Vertex 7. Note that, we also add two custom API
based implementation results (for CLOC-AES-Optimized and NORX-Optimized)
provided in [51]. The other results in [51] have been collected in ASIC platform
and hence are not compatible with our figures.

35

Table 7. Comparison on Virtex 6 [2] (Results are taken by selecting
CAESAR Round 2 and Standards implemented results (following CAESAR API)
in [2]). In the “Primitive” column, SC denotes Stream cipher, (T)BC denotes (Tweak-
able) blockcipher, and BC-RF denotes the blockcipher’s round function. The results for
CLOC-AES-Optimized and NORX-Optimized implementations (based on custom API,
but not CAESAR API) have been taken from [51]. ‘-‘ implies data not available

Scheme Primitive LUT Slices T’put (Gbps) Mbps / LUT Mbps / Slice

ACORN [71] SC 455 135 3.112 6.840 23.052

AEGIS [73] BC-RF 7592 2028 70.927 9.342 34.974

AES-COPA [11] BC 7754 2358 2.500 0.322 1.060

AES-GCM [32] BC 3175 1053 3.239 1.020 3.076

AES-OTR [56] BC 5102 1385 2.741 0.537 1.979

AEZ [38] BC-RF 4597 1246 8.585 0.747 2.756

ASCON-128 [31] Sponge 1271 413 3.172 2.496 7.680

ASCON-128a [31] Sponge 1587 547 5.099 3.213 9.322

CLOC-AES [43] BC 3145 891 2.996 0.488 1.724

CLOC-TWINE [43] BC (non-AES) 1689 532 0.343 0.203 0.645

CLOC-AES-Optimized [43, 51] BC - 595 0.695 - 1.17

DEOXYS [46] TBC 3143 951 2.793 0.889 2.937

ELmD [29] BC 4302 1584 3.168 0.736 2.091

JAMBU-AES [72] BC 1836 652 1.999 1.089 3.067

JAMBU-SIMON [72] BC (non-AES) 1222 453 0.363 0.297 0.801

Joltik [45] TBC 1292 442 0.853 0.660 0.826

Ketje-Jr [19] Sponge 1236 412 2.832 2.292 6.875

Ketje-Sr [19] Sponge 1903 613 5.772 3.033 9.416

Minalpher [66] BC (non-AES) 2879 1104 1.831 0.636 1.659

NORX [12] Sponge 2964 1016 11.029 3.721 10.855

NORX-Optimized [12, 51] Sponge - 2398 40.960 - 17.09

PRIMATES-HANUMAN [9] Sponge 1012 390 0.964 0.953 2.472

OCB [50] BC 4249 1348 3.122 0.735 2.316

SCREAM [36] TBC 2052 834 1.039 0.506 1.246

SILC-AES [43] BC 3066 921 4.040 1.318 4.387

SILC-LED [43] BC (non-AES) 1685 579 0.245 0.145 0.422

SILC-PRESENT [43] BC (non-AES) 1514 548 0.407 0.269 0.743

Tiaoxin [58] BC-RF 7123 2101 52.838 7.418 25.149

TriviA-ck [28] SC 2118 687 15.374 7.259 22.378

COFB[AES] BC 1051 449 2.850 2.710 6.350

COFB[AES]-CAESAR-API BC 1475 584 2.686 1.823 4.360

COFB[GIFT] BC 771 355 1.911 2.484 5.511

COFB[GIFT]-CAESAR-API BC 1011 415 1.100 1.045 2.723

Finally, in Table 9, we provide a benchmark of COFB[BC]-CAESAR-API on
Spartan 6. We use the results in [33, 74] as well as few others (such as JAMBU-
SIMON) in [2]. We observe that, some of the implementations (like ASCON, SILC,
Ketje) in this platform supports a specialized lightweight API (also support
CAESAR API) and hence achieves better hardware area than ours (supports
standard CAESAR hardware API) following basic iterative architecture.

We also remark that it is basically hard to compare COFB using AES-128
or GIFT-128 with other non-block-cipher-based AE schemes in the right way,
because of the difference in the primitives and the types of security guarantee.
For example, ACORN is built from scratch and does not have any provable
security result, and is subjected to several cryptanalyses [30, 65, 64, 52]. Sponge
AE schemes (ASCON, Ketje, NORX, and PRIMATES-HANUMAN) use a keyless

36

Table 8. Comparison on Virtex 7 [2]

Scheme LUT Slices T’put (Gbps) Mbps / LUT Mbps / Slice

ACORN 499 155 3.437 6.888 22.174

AEGIS 7504 1983 94.208 12.554 47.508

AES-COPA 7795 2221 2.770 0.355 1.247

AES-GCM 3478 949 3.837 1.103 4.043

AES-OTR 4263 1204 3.187 0.748 2.647

AEZ 4686 1645 8.421 0.719 2.047

ASCON-128 1373 401 3.852 2.806 9.606

ASCON-128a 1836 506 5.476 2.982 10.821

CLOC-AES 3552 1087 3.252 0.478 1.561

CLOC-TWINE 1552 439 0.432 0.278 0.984

DEOXYS 3234 954 1.472 0.455 2.981

ELmD 4490 1306 4.025 0.896 3.082

JAMBU-AES 1595 457 1.824 1.144 3.991

JAMBU-SIMON 1200 419 0.368 0.307 0.878

Joltik 1261 390 0.402 0.319 1.031

Ketje-Jr 1567 518 4.080 2.604 7.876

Ketje-Sr 2592 724 6.752 2.605 9.326

Minalpher 2941 802 2.447 0.832 3.051

NORX 2881 857 10.328 3.585 12.051

PRIMATES-HANUMAN 1148 370 1.072 0.934 2.897

OCB 4269 1228 3.608 0.845 2.889

SCREAM 2315 696 1.100 0.475 1.580

SILC-AES 3040 910 4.365 1.436 4.796

SILC-LED 1682 524 0.267 0.159 0.510

SILC-PRESENT 1514 484 0.479 0.316 0.990

Tiaoxin 7556 1985 75.776 10.029 38.174

TriviA-ck 2221 684 14.852 6.687 21.713

COFB[AES] 1440 564 2.933 2.031 5.191

COFB[AES]-CAESAR-API 1496 579 2.747 1.842 4.395

COFB[GIFT] 771 316 2.230 2.892 6.623

COFB[GIFT]-CAESAR-API 1041 355 1.164 1.174 2.604

permutation of a large block size to avoid key scheduling circuit and have the
provable security relying on the random permutation model.

7 Conclusion

This paper presents COFB, a blockcipher mode for AE focusing on minimizing
the state size. When instantiated with an n-bit blockcipher, COFB operates at
rate-1, and requires state size of 1.5n bits, and is provable secure up to Op2n{2{nq
queries based on the standard PRP assumption on the blockcipher. In fact this
is the first scheme fulfilling these features at once. A key idea of COFB is a new
type of feedback function combining both plaintext and ciphertext blocks. We
first present an idealized version of COFB, named iCOFB along with its provable

37

Table 9. Comparison on Spartan 6 using results from [33, 2, 74]. ‘-’ implies data not
available

Scheme API LUT Slices T’put (Gbps) Mbps / LUT Mbps / Slice

ACORN Lightweight API 418 133 1.226 2.932 9.215

NORX Lightweight API 1424 391 2.989 2.099 7.645

CLOC-AES Lightweight API 1604 554 0.069 0.043 0.124

SILC-AES Lightweight API 1052 335 0.077 0.073 0.229

SILC-LED Lightweight API 872 235 0.015 0.017 0.064

ASCON-128 Lightweight API 684 231 0.060 0.088 0.26

ASCON-128a Lightweight API 684 231 0.119 0.174 0.52

Ketje-Sr Lightweight API 450 155 0.024 0.053 0.16

ACORN CAESAR API 1024 - 3.986 3.826 -

NORX CAESAR API 3065 - 5.125 1.672 -

CLOC-AES CAESAR API 3147 - 0.709 0.208 -

SILC-AES CAESAR API 3404 - 0.707 0.225 -

SILC-LED CAESAR API 1575 - 0.106 0.067 -

ASCON-128 CAESAR API 1401 - 1.906 1.360 -

ASCON-128a CAESAR API 1712 - 2.884 1.684 -

Ketje-Sr CAESAR API 2415 - 3.979 1.648 -

JAMBU-SIMON CAESAR API 1376 456 0.186 0.135 0.408

COFB[AES]-CAESAR-API CAESAR API 1544 590 1.509 0.977 2.558

COFB[GIFT]-CAESAR-API CAESAR API 1040 385 0.467 0.449 1.213

security analysis. We instantiate COFB with the AES-128 blockcipher. We also
present hardware implementation results for COFB with AES-128 and GIFT-128
blockcipher respectively (both with or without CAESAR Hardware API). These
two implementations demonstrate the effectiveness of our approach.

Acknowledgments. The authors thank Mustafa Khairallah for insightful dis-
cussions on the security of COFB.

References

1. ATHENa: Automated Tool for Hardware Evaluation. https://cryptography.

gmu.edu/athena/.
2. Authenticated Encryption FPGA Ranking. https://cryptography.gmu.edu/

athenadb/fpga_auth_cipher/rankings_view.
3. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and

Robustness. http://competitions.cr.yp.to/caesar.html/.
4. Recommendation for Block Cipher Modes of Operation: Methods and Techniques.

NIST Special Publication 800-38A, 2001. National Institute of Standards and
Technology.

5. Recommendation for Block Cipher Modes of Operation: The CCM Mode for Au-
thentication and Confidentiality . NIST Special Publication 800-38C, 2004. Na-
tional Institute of Standards and Technology.

6. Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
Authentication. NIST Special Publication 800-38B, 2005. National Institute of
Standards and Technology.

38

7. CAESAR Development Package. 2016. https://cryptography.gmu.edu/athena/
index.php?id=download.

8. NIST FIPS 197. Advanced Encryption Standard (AES). Federal Information
Processing Standards Publication, 197, 2001.

9. Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,
Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs
v1.02. Submission to CAESAR. 2016. https://competitions.cr.yp.to/round2/
primatesv102.pdf.

10. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. Parallelizable and Authenticated Online Ciphers. In
ASIACRYPT (1), volume 8269 of LNCS, pages 424–443. Springer, 2013.

11. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. AES-COPA v.2. Submission to CAESAR. 2015.
https://competitions.cr.yp.to/round2/aescopav2.pdf.

12. Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX v3.0. Sub-
mission to CAESAR. 2016. https://competitions.cr.yp.to/round3/norxv30.

pdf.
13. Subhadeep Banik, Andrey Bogdanov, and Kazuhiko Minematsu. Low-Area Hard-

ware Implementations of CLOC, SILC and AES-OTR. DIAC 2015.
14. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng

Sim, and Yosuke Todo. GIFT: A small present - towards reaching the limit of
lightweight encryption. In Fischer and Homma [34], pages 321–345.

15. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Siang Meng Sim, Yosuke
Todo, and Yu Sasaki. GIFT: A small present. IACR Cryptology ePrint Archive,
2017:622, 2017.

16. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK lightweight block ciphers. In Pro-
ceedings of the 52nd Annual Design Automation Conference, San Francisco, CA,
USA, June 7-11, 2015, pages 175:1–175:6. ACM, 2015.

17. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew Rob-
shaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in Computer Science,
pages 123–153. Springer, 2016.

18. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block
chaining message authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

19. Guido Bertoni, Michaël Peeters Joan Daemen, Gilles Van Assche, and Ronny Van
Keer. Ketje v2. Submission to CAESAR. 2016. https://competitions.cr.yp.

to/round3/ketjev2.pdf.
20. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel

Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In CHES 2007, pages 450–466,
2007.

21. Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent Rijmen, and
Elmar Tischhauser. ALE: AES-Based Lightweight Authenticated Encryption. In
FSE 2013, pages 447–466, 2013.

22. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneze-
vic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian

39

Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE -
A Low-Latency Block Cipher for Pervasive Computing Applications - Extended
Abstract. In ASIACRYPT 2012, pages 208–225, 2012.

23. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and
KTANTAN - A family of small and efficient hardware-oriented block ciphers. In
Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer Sci-
ence, pages 272–288. Springer, 2009.

24. Zhe Cen, Xiutao Feng, Zhangyi Wang, and Chunping Cao. Forgery attack on the
authentication encryption GIFT-COFB. IACR Cryptol. ePrint Arch., 2020:698,
2020.

25. Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In Fischer
and Homma [34], pages 277–298.

26. Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? IACR Cryp-
tology ePrint Archive, 2017:649, 2017.

27. Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? J. Cryptol.,
33(3):703–741, 2020.

28. Avik Chakraborti and Mridul Nandi. TriviA-ck-v2. Submission to CAESAR. 2015.
https://competitions.cr.yp.to/round2/triviackv2.pdf.

29. Nilanjan Datta and Mridul Nandi. Proposal of ELmD v2.1. Submission to CAE-
SAR. 2015. https://competitions.cr.yp.to/round2/elmdv21.pdf.

30. Prakash Dey, Raghvendra Singh Rohit, and Avishek Adhikari. Full key recovery
of ACORN with a single fault. J. Inf. Sec. Appl., 29:57–64, 2016.

31. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to CAESAR. 2016. https://competitions.cr.yp.to/

round3/asconv12.pdf.
32. Morris Dworkin. Recommendation for block cipher modes of operation: Ga-

lois/counter mode (GCM) and GMAC. NIST Special Publication 800-38D, 2011.
csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf.

33. Farnoud Farahmand, William Diehl, Abubakr Abdulgadir, Jens-Peter Kaps, and
Kris Gaj. Improved lightweight implementations of CAESAR authenticated ci-
phers. IACR Cryptology ePrint Archive, 2018:573, 2018.

34. Wieland Fischer and Naofumi Homma, editors. Cryptographic Hardware and Em-
bedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer
Science. Springer, 2017.

35. Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A Family of Almost
Foolproof On-Line Authenticated Encryption Schemes. In FSE 2012, pages 196–
215, 2012.

36. Vincent Grosso, Gaëtan Leurent, Francois-Xavier Standaert, Kerem Varici, An-
thony Journault, Francois Durvaux, Lubos Gaspar, and Stéphanie Kerckhof.
SCREAM Side-Channel Resistant Authenticated Encryption with Masking. Sub-
mission to CAESAR. 2015. https://competitions.cr.yp.to/round2/screamv3.
pdf.

37. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In CHES 2011, pages 326–341, 2011.

40

38. Viet Tung Hoang, Ted Krovetz, and Philip Rogaway. AEZ v4.2: Authenticated En-
cryption by Enciphering. Submission to CAESAR. 2016. https://competitions.
cr.yp.to/round3/aezv42.pdf.

39. Akiko Inoue and Kazuhiko Minematsu. GIFT-COFB is tightly birthday secure
with encryption queries. IACR Cryptol. ePrint Arch., 2021:737, 2021.

40. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In FSE, pages
129–153, 2003.

41. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Au-
thenticated Encryption for Short Input. In FSE 2014, pages 149–167, 2014.

42. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi.
CAESAR Candidate CLOC. DIAC 2014.

43. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi.
CLOC and SILC. Submission to CAESAR. 2016. https://competitions.cr.yp.
to/round3/clocsilcv3.pdf.

44. Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1.3. Submission to CAE-
SAR. 2015. https://competitions.cr.yp.to/round2/joltikv13.pdf.

45. Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1.3. Submission to CAE-
SAR. 2015. https://competitions.cr.yp.to/round2/joltikv13.pdf.

46. Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Deoxys v1.41. Submission to
CAESAR. 2016. https://competitions.cr.yp.to/round3/deoxysv141.pdf.

47. Mustafa Khairallah. Weak keys in the rekeying paradigm: Application to COMET
and mixfeed. IACR Trans. Symmetric Cryptol., 2019(4):272–289, 2019.

48. Mustafa Khairallah. Observations on the tightness of the security bounds of GIFT-
COFB and hyena. IACR Cryptol. ePrint Arch., 2020:1463, 2020.

49. Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In FSE, pages 306–327, 2011.

50. Ted Krovetz and Phillip Rogaway. OCB(v1.1). Submission to CAESAR. 2016.
https://competitions.cr.yp.to/round3/ocbv11.pdf.

51. Sachin Kumar, Jawad Haj-Yihia, Mustafa Khairallah, and Anupam Chattopad-
hyay. A comprehensive performance analysis of hardware implementations of CAE-
SAR candidates. IACR Cryptology ePrint Archive, 2017:1261, 2017.

52. Frédéric Lafitte, Liran Lerman, Olivier Markowitch, and Dirk Van Heule. SAT-
based cryptanalysis of ACORN. IACR Cryptology ePrint Archive, 2016:521, 2016.

53. Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block ciphers.
In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 18-22,
2002, Proceedings, volume 2442 of Lecture Notes in Computer Science, pages 31–46.
Springer, 2002.

54. Kerry A. McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha. Re-
port on Lightweight Cryptography. 2017. http://nvlpubs.nist.gov/nistpubs/

ir/2017/NIST.IR.8114.pdf.
55. Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseu-

dorandom Functions. In EUROCRYPT, volume 8441 of LNCS, pages 275–292.
Springer, 2014.

56. Kazuhiko Minematsu. AES-OTR v3.1. Submission to CAESAR. 2016. https:

//competitions.cr.yp.to/round3/aesotrv31.pdf.
57. Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.

Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In
EUROCRYPT 2011, pages 69–88, 2011.

58. Ivica Nikolić. Tiaoxin – 346. Submission to CAESAR. 2016. https://

competitions.cr.yp.to/round3/tiaoxinv21.pdf.

41

59. J. Patarin. Etude des Générateurs de Permutations Basés sur le Schéma du D.E.S.
Phd Thèsis de Doctorat de l’Université de Paris 6, 1991.

60. Thomas Peyrin, Siang Meng Sim, Lei Wang, and Guoyan Zhang. Cryptanalysis of
JAMBU. In FSE 2015, pages 264–281, 2015.

61. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Pil Joong Lee, editor, Advances in Cryptology -
ASIACRYPT 2004, 10th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Jeju Island, Korea, December 5-9,
2004, Proceedings, volume 3329 of Lecture Notes in Computer Science, pages 16–
31. Springer, 2004.

62. Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of
operation for efficient authenticated encryption. ACM Trans. Inf. Syst. Secur.,
6(3):365–403, 2003.

63. Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the
Key-Wrap Problem. In EUROCRYPT, pages 373–390, 2006.

64. Md. Iftekhar Salam, Harry Bartlett, Ed Dawson, Josef Pieprzyk, Leonie Simpson,
and Kenneth Koon-Ho Wong. Investigating cube attacks on the authenticated
encryption stream cipher ACORN. In ATIS 2016, pages 15–26, 2016.

65. Md. Iftekhar Salam, Kenneth Koon-Ho Wong, Harry Bartlett, Leonie Ruth Simp-
son, Ed Dawson, and Josef Pieprzyk. Finding state collisions in the authenticated
encryption stream cipher ACORN. In Proceedings of the Australasian Computer
Science Week Multiconference, page 36, 2016.

66. Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yu-
miko Murakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher v1.1. Submission
to CAESAR. 2015. https://competitions.cr.yp.to/round2/minalpherv11.

pdf.
67. Willem Schroé, Bart Mennink, Elena Andreeva, and Bart Preneel. Forgery and

Subkey Recovery on CAESAR Candidate iFeed. In SAC, volume 9566 of LNCS,
pages 197–204. Springer, 2015.

68. Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Ak-
ishita, and Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In CHES
2011, pages 342–357, 2011.

69. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE : A Lightweight Block Cipher for Multiple Platforms. In SAC 2012, pages
339–354, 2012.

70. Serge Vaudenay. Decorrelation: A Theory for Block Cipher Security. J. Cryptology,
16(4):249–286, 2003.

71. Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v3). Submission to
CAESAR. 2016. https://competitions.cr.yp.to/round3/acornv3.pdf.

72. Hongjun Wu and Tao Huang. The JAMBU Lightweight Authentication Encryption
Mode (v2.1). Submission to CAESAR. 2016. https://competitions.cr.yp.to/

round3/jambuv21.pdf.
73. Hongjun Wu and Bart Preneel. AEGIS : A Fast Authenticated Encryption Algo-

rithm (v1.1). Submission to CAESAR. 2016. https://competitions.cr.yp.to/

round3/aegisv11.pdf.
74. Panasayya Yalla and Jens-Peter Kaps. Evaluation of the CAESAR hardware API

for lightweight implementations. In International Conference on ReConFigurable
Computing and FPGAs, ReConFig 2017, Cancun, Mexico, December 4-6, 2017,
pages 1–6. IEEE, 2017.

75. Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. iFeed[AES] v1. Submission
to CAESAR. 2014. https://competitions.cr.yp.to/round1/ifeedaesv1.pdf.

42

76. Rui Zong, Xiaoyang Dong, Huaifeng Chen, Yiyuan Luo, Si Wang, and Zheng Li. To-
wards key-recovery-attack friendly distinguishers: Application to GIFT-128. IACR
Trans. Symmetric Cryptol., 2021(1):156–184, 2021.

43

