
CCA-secure Predicate Encryption from Pair Encoding in Prime Order
Groups:

Generic and Efficient

Sanjit Chatterjee, Sayantan Mukherjee, and Tapas Pandit

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore
{sanjit,sayantanm,tapas}@iisc.ac.in

Abstract. Attrapadung (Eurocrypt 2014) proposed a generic framework called pair encoding to simplify the de-
sign and proof of security of CPA-secure predicate encryption (PE) in composite order groups. Later Attrapadung
(Asiacrypt 2016) extended this idea in prime order groups. Yamada et al. (PKC 2011, PKC 2012) and Nandi
et al. (ePrint Archive: 2015/457, AAECC 2017) proposed generic conversion frameworks to achieve CCA-secure
PE from CPA-secure PE provided the encryption schemes have properties like delegation or verifiability. The
delegation property is harder to achieve and verifiability based conversion degrades the decryption performance
due to a large number of additional pairing evaluations. Blömer et al. (CT-RSA 2016) proposed a direct fully
CCA-secure predicate encryption in composite order groups but it was less efficient as it needed a large number
of pairing evaluations to check ciphertext consistency. As an alternative, Nandi et al. (ePrint Archive: 2015/955)
proposed a direct conversion technique in composite order groups. We extend the direct conversion technique of
Nandi et al. in the prime order groups on the CPA-secure PE construction by Attrapadung (Asiacrypt 2016) and
prove our scheme to be CCA-secure in a quite different manner. Our first direct CCA-secure predicate encryption
scheme requires exactly one additional ciphertext component and three additional units of pairing evaluation
during decryption. The second construction requires exactly three additional ciphertext components but needs
only one additional unit pairing evaluation during decryption. This is a significant improvement over conventional
approach for CPA-to-CCA conversion in prime order groups.

1 Introduction

Predicate encryption (PE) is a new paradigm for public-key encryption that evaluates a predicate function R : X×Y →
{0, 1} in the encrypted domain. Informally, in a PE system, a ciphertext C is associated with a data-index y ∈ Y, a
secret key K is associated with a key-index x ∈ X and the secret key K can decrypt the ciphertext C if and only if
R(x, y) = 1. The simplest example is IBE [1] where R is an equality predicate.

Waters [2] introduced the dual system technique to construct adaptively secure predicate encryption schemes. At-
trapadung [3] and Wee [4] independently observed a similarity in the structure of the proofs of dual system technique
based adaptively secure predicate encryption schemes. The notions of pair encoding [3] and predicate encoding [4] were
introduced as abstraction of complex key and ciphertext structure of available predicate encryptions. Such encodings
allowed them to construct adaptively CPA-secure predicate encryptions using dual system technique. This new ap-
proach not only allowed them to improve the performance of several available predicate encryption schemes but also
to instantiate several completely new schemes. For example, pair encoding allowed the first-ever construction of PE for
regular language, ABE with constant-size ciphertext etc. as presented in [3]. However, all these CPA-secure predicate
encryptions were constructed in composite order groups.

Later Attrapadung [5] and Chen et al. [6] constructed adaptive CPA-secure predicate encryption schemes in the
prime order groups using pair encoding and predicate encoding respectively. The construction [6] was even more
modular due to the use of dual system group (DSG) [7]. Agrawal et al. [8, 9] integrated pair encoding and dual system
group and introduced different security notions for pair encoding.

Motivation. All the aforementioned schemes aim at constructing CPA-secure predicate encryption. In various prac-
tical scenarios, however, CCA-security is assumed to be mandatory. One can use available generic techniques [10–13]

to convert CPA-secure predicate encryption into CCA-secure predicate encryption. Informally these techniques add
new components in the CPA-ciphertext that can be used later to check if the ciphertext has been tampered in the
line. They therefore face problems of two-fold – (1) increased length of key-indices and data-indices which result in
a bigger secret key and ciphertext due to index transformation [10, 12] and (2) extra cost to perform verifiability
or delegation. We consider verifiability based approach as a benchmark since delegation is not known for most of
the predicate encryptions. For example, verifiability based solution makes the decryption lot costlier than the cost
of decryption in the CPA-secure scheme in terms of the number of pairings evaluated. Blömer et al. [14] proposed a
direct CCA-secure predicate encryption from pair encodings in composite order groups. Their verifiability based check
requires additional pairing operations which is nearly same as that required in underlying CPA-decryption. As an
alternative, Nandi et al. [15] suggested a direct conversion to CCA-secure predicate encryptions from pair encodings.
Even though that conversion is efficient and generic, it works in the composite order group. Naturally one would like
to construct a direct CCA-secure predicate encryption in prime order groups from a CPA-secure predicate encryption
without compromising the performance. [16] and its descendants suggested certain frameworks to convert pairing based
cryptosystems from composite order to prime order. However, to the best of our knowledge, such frameworks are not
directly applicable for CPA to CCA conversion.

Our Contribution. In this work, we consider the pair encoding based CPA-secure predicate encryptions construction
of [3, 5]. We propose two generic constructions of direct CCA-secure PE from pair encoding based CPA-secure PE. Both
of our constructions are achieved in prime order group and neither uses the trick called index transformation [10, 12].
This results in more efficient CCA-secure PE in terms of the size of the ciphertext and number of pairing evaluations
during decryption. Roughly speaking, given a CPA-secure predicate encryption, we create a hash of CPA-ciphertext and
extend the idea of injective encoding [17] that adds a new ciphertext component as a “commitment” of CPA-ciphertext.
We call this construction as direct CCA-secure construction as we do not conform to the traditional two-step approach
of index transformation followed by delegation or verifiability.

Our first construction adds only one additional component to the ciphertext of [5] at the cost of three additional
unit pairing evaluations during decryption. The second construction however is more efficient in terms of the number
of pairing evaluations during decryption. The ciphertext in this construction adds exactly three additional components

to the ciphertext of [5] namely a (d + 1)-tuple made up of source group elements (i.e. an element of G = G
(d+1)
1),

an one-time signature (OTS) verification key and a signature. During decryption this construction needs only one
additional unit of pairing evaluation along with an OTSverification. As we can see in Table 1, our generic techniques to
construct CCA-secure predicate encryptions enjoy smaller (constant) increase in ciphertext size that naturally results
in less number of pairing evaluations during decryption.

Technique |Key| |Ciphertext| Decryption Cost

delegation-based O(|x′|) O(|yvk|)
C(Decrypt(Kxvk ,Cyvk)) C(Delegate(Kx′ , x

′, xvk))
verifiability-based C(Decrypt(Kx′ ,Cyvk)) C(Verify(Cyvk , x

′, εvk))

ΠR (Section 3.2) O(|x|) O(|y|) C(Decrypt(Kx,Cy)) 3 unit pairing

Π ′R (Section 3.4) O(|x|) O(|y|) C(Decrypt(Kx,Cy)) 1 unit pairing

Table 1. Comparative study of efficiency.1

The idea of using OTS(resp. injective encoding) to achieve CCA-secure PKE/(H)-IBE was first introduced in [18]
(resp. [17]). Our approach, while bearing some similarity, differ significantly from [18, 17] and their follow-up works
in the context of Id-based encryption. This is because, the structure of pair encoding based general PE is much
more involved than that of simpler equality predicate in IBE. The primary achievement of this paper over [15] is
amalgamation of [17] (resp. [18]) with prime-order matrix-based construction of predicate encryption [5]. Our techniques

1 For delegation/verifiability-based conversions, x′ ← T1(x), xvk ← T2(x, vk), yvk ← T3(y, vk) are transformed indices [13] and
usually quite larger than input indices (x or y). Each ciphertext or key-component is a (d + 1)-dimensional vector from

G = G
(d+1)
1 and H = G

(d+1)
2 respectively. C(·) denotes the cost function. The two-columns under “Decryption Cost” follows

the convention that the first cell is underlying CPA-Decryption cost and second cell contains additional cost to achieve
CCA-Decryption.

2

(Lemma 1, Lemma 2) demonstrate that simple primitives like [17, 18] can still be deployed to achieve CCA-security
even when the ciphertext/key is of complicated matrix structure.

Organization of the Paper. Section 2 contains necessary definitions and notations that are followed in this paper.
In Section 3 we describe two constructions to achieve CCA-secure predicate encryption. Section 4 concludes the paper.
We also recollect few standard primitives and hard problem in Appendix A. Conventional verifiability-based CPA-
to-CCA conversion is discussed in Appendix B to explain the cost of such conversion generically. The games in the
security argument that we mimic (and update to achieve CCA-security) from [5] are presented in Appendix C. We
defer the security proof of our second construction to Appendix D.

2 Preliminaries

Notations. We denote [a, b] = {i ∈ N : a ≤ i ≤ b} and [n] = [1, n]. We assume vvv is a vector having components

v1, . . . , vn. By s
$←S we denote a uniformly random choice s from set S. 1λ denotes the security parameter for λ ∈ N.

Any x ∈ Sk is a k-dimensional column vector. We use both x ∈ S1×k and x ∈
(
S
)k

to denote k-dimensional row

vectors. GLN,` is the group of non-singular matrices with dimension `× ` and the scalars are from ZN .

Predicate Family. The predicate family for an index family κ is R = {Rκ}κ∈κ , where Rκ : Xκ × Yκ → {0, 1} is a
predicate function and Xκ and Yκ are key-space and data-space respectively. We will often omit κ in the subscript for
the simplicity of representation.

2.1 Predicate Encryption

A predicate encryption (PE) scheme ΠR for predicate function R : X × Y → {0, 1} consists of following algorithms.

– Setup(1λ, κ) for the security parameter λ ∈ N generates master secret key msk and public key mpk.
– KeyGen(msk, x) generates secret key K of the given key-index x ∈ X .
– Encrypt(mpk, y,M) takes as input data-index y ∈ Y and a message M ∈M and generates ciphertext C.
– Decrypt(K,C) takes a key K corresponding to key-index x and a ciphertext C corresponding to data-index y and

outputs a message M or ⊥.

Correctness. A predicate encryption scheme is said to be correct if for all (mpk,msk)← Setup(1λ, κ), all y ∈ Y, all
M ∈M, all C← Encrypt(mpk, y,M), all x ∈ X , all K← KeyGen(msk, x),

Decrypt(K,C) =

{
M if R(x, y) = 1

⊥ if R(x, y) = 0.

Security. Chosen ciphertext security (IND-CCA) of a predicate encryption scheme ΠR can be modeled as a security
game between challenger C and adversary A.

– Setup: C gives out mpk and keeps msk as secret.
– Phase-I Query: Queries are performed to available oracles as follows.
• Key Query: Keygen oracle OK returns K← KeyGen(msk, x) for a given key-index x.
• Dec Query: Given (x,C), decryption oracle OD returns Decrypt(K,C).

– Challenge: A provides challenge data-index y∗ (such that R(x, y∗) = 0 for all key query x) and two messages

(M0,M1) of equal length. C generates C∗ ← Encrypt(mpk, y∗,Mb) for b
$←{0, 1}.

– Phase-II Query: Queries are performed to available oracles as follows.
• Key Query: Given a key-index x such that R(x, y∗) = 0, keygen oracle OK returns K← KeyGen(msk, x).
• Dec Query: Given (x,C), decryption oracle OD returns Decrypt(K,C) if the conditions R(x, y∗) = 1 and

C = C∗ are not satisfied together.

3

– Guess: A outputs its guess b′ ∈ {0, 1} and wins if b = b′.

For any adversary A the advantage is,
AdvΠRA (λ) = |Pr[b = b′]− 1/2|.

A predicate encryption scheme is said to be IND-CCA secure if for any efficient adversary A, AdvΠRA (λ) ≤ neg(λ). If
the decryption oracle is not available to the adversary, we call such security model as IND-CPA security model.

2.2 Pair Encoding Schemes

Attrapadung [3] introduced the notion of pair encoding scheme which was later [5] refined with the properties called
regularity of pair encoding. Here we recall the definition of pair encoding [3] and will discuss regular properties of pair
encoding in Section 3.1.

A Pair Encoding P for a predicate function Rκ : Xκ × Yκ → {0, 1} indexed by κ = (N ∈ N,par) consists of four
deterministic algorithms:

– Param(κ)→ n which is number of common variables w = (w1, . . . ,wn) in EncK and EncC.
– EncK(x,N)→ (k = (k1, . . . , km1

);m2) where each kι for ι ∈ [m1] is a polynomial of m2 local variables r = (r1, . . . ,
rm2

), common variables w and private variable α.

kι (α, r,w) = bια+
∑

j∈[m2]

bιjrj +
∑

j∈[m2]

k∈[n]

bιjkrjwk

where bι, bιj , bιjk ∈ ZN for all ι ∈ [m1], all j ∈ [m2] and all k ∈ [n].
– EncC(y,N) → (c = (c1, . . . , cw1);w2) where each cι̃ for ι̃ ∈ [w1] is a polynomial of (w2 + 1) local variables

s = (s0, . . . , sw2) and common variables w.

cι̃ (s,w) =
∑

j∈[0,w2]

aι̃jsj +
∑

j∈[0,w2]

k∈[n]

aι̃jksjwk

where aι̃j , aι̃jk ∈ ZN for all ι̃ ∈ [w1], all j ∈ [0, w2] and all k ∈ [n].
– Pair(x, y,N)→ E ∈ Zm1×w1

N .

Correctness. A pair encoding scheme is said to be correct if for all N ∈ N, for all y ∈ Yκ, c ← EncC(y,N), all
x ∈ Xκ, k← EncK(x,N) and E← Pair(x, y,N), kEc> = αs0 if R(x, y) = 1.

Properties of Pair Encoding Schemes. We recall two natural properties [3] of the pair encoding scheme as follows.

– Param-Vanishing: k(α,0,w) = k(α,0,0).

– Linearity:
k(α1, r1,w) + k(α2, r2,w) = k(α1 + α2, r1 + r2,w)

and
c(s1,w) + c(s2,w) = c(s1 + s2,w).

2.2.1 Security Definitions

Perfect Security. Pair Encoding P is said to be perfectly master-key hiding (aka PMH-Secure) if the following holds.
Suppose R(x, y) = 0. Let n← Param(κ), k← EncK(x,N) and c← EncC(y,N). Then the following distributions,

{c(s,w),k(0, r,w)} and {c(s,w),k(α, r,w)}

are identical where w
$←ZnN , α

$←ZN , r
$←Zm2

N and s
$←Z(w2+1)

N .

4

Computational Security. Two types of computational security notions CMH and SMH are defined in [5] for a bilinear
group generator G. We use these security notions to argue indistinguishability of type-1 and type-2 semi-functional
keys. For the sake of completeness we note these notions of security down here.

Both the security notions (CMH and SMH) are defined as the security games as follows.

ExpG,G,d,α,t1,t2(λ) : (G1, G2, GT, e,N)← G(λ); (g1, g2)
$←G1 ×G2,

α
$←ZN , n← Param(κ),w

$←ZnN ;

st← AO
1
G,d,α,w(·)

1 (g1, g2); d′ ← AO
2
G,d,α,w(·)

2 (st)

where G ∈ {CMH,SMH} and each oracle O1,O2 can be queried at most t1, t2 times respectively.

– CMH:
• O1

CMH,d,α,w(x∗): Run (k;m2)← EncK(x∗); r
$←Zm2

N ;

return V←

{
g
k(0,r,w)
2 if d = 0

g
k(α,r,w)
2 if d = 1.

• O2
CMH,d,α,w(y): If R(x∗, y) = 1, then return ⊥.

Else run (c;w2)← EncC(y); s
$←Z(w2+1)

N ;

return U← g
c(s,w)
1 .

– SMH:
• O1

SMH,d,α,w(y∗): Run (c;w2)← EncC(y∗); s
$←Z(w2+1)

N ;

return U← g
c(s,w)
1 .

• O2
SMH,d,α,w(x): If R(x, y∗) = 1, then return ⊥.

Else run (k;m2)← EncK(x); r
$←Zm2

N ;

return V←

{
g
k(0,r,w)
2 if d = 0

g
k(α,r,w)
2 if d = 1

.

Adversary A has advantage Advt1,t2,G,PA (λ) = |Pr[ExpP,G,G,0,α,t1,t2(λ) = 1] − Pr[ExpP,G,G,1,α,t1,t2(λ) = 1]| against pair

encoding P . Pair encoding P is (t1, t2)-CMH (resp. SMH) secure in G if Advt1,t2,G,PA (λ) is negligible for G = CMH (resp.
SMH). Similar to [5], we will use security notions like (1, 1)-CMH and (1, poly)-SMH security to prove the construction
secure.

3 CCA-secure Predicate Encryption from Pair Encoding

Here we present two direct constructions of CCA-secure predicate encryption scheme in prime-order groups from pair
encoding scheme.

3.1 Regular Decryption Pair Encoding

As recalled earlier, the notion of regular properties of pair encoding was introduced in [5, Definition 1]. We also note
that the decryption sufficiency property was discussed in [15, Conditions 3.1]. Here, we need the pair encoding to satisfy
both these properties. We call a pair encoding that satisfies all the above mentioned properties, regular decryption pair
encoding. The regular decryption properties of a pair encoding are listed below. The first four (precisely Properties
P1,P2,P3,P4) denote the regular properties of pair encoding. Note that, these restrictions are quite natural and are
observed in all the available pair encoding based predicate encryption constructions [3, 4, 6, 8, 5, 9].

The regular decryption properties of pair encoding are noted below:

(P1) : For ι̃ ∈ [w1], ι ∈ [m1], if ∃j′ ∈ [0, w2], k′ ∈ [n], j ∈ [m2], k ∈ [n] such that aι̃j′k′ 6= 0 and bιjk 6= 0, then Eιι̃ = 0.
(P2) : For ι ∈ [m1], if ∃j ∈ [m2], k ∈ [n] such that bιjk 6= 0 then ∃ι̂ ∈ [m1] such that kι̂ = rj .

(P3) : For ι̃ ∈ [w1], if ∃j′ ∈ [0, w2], k′ ∈ [n] such that aι̃j′k′ 6= 0 then ∃ˆ̃ι ∈ [w1] such that cˆ̃ι = sj .

5

(P4) : c1(s,w) = s0.
(P5) : For (x, y) ∈ X × Y, such that R(x, y) = 1, (k;m2) ← EncK(x,N) and E ← Pair(x, y,N) then k(α,0,0)E =

(∗, 0, . . . , 0) ∈ Zw1

N where ∗ is any non-zero entry.

Here we give some intuitive idea of regular decryption property of pair encoding. In Attrapadung’s prime-order
instantiation of pair encoding based predicate encryption schemes, a particular type of commutativity was impossible
to compute [5, Eq. (8)]. We use Property P1 to restrict such cases. This property has been used to prove the correctness
of the scheme. Property P2 and P3 ensure that if the key-encoding k (resp. c) contains hkrj (resp. hk′sj′) then rj
(resp. sj′) has to be be given explicitly. These two properties have been used in the security proof. We will see in the
coming section that we produce a commitment on the CPA-ciphertext and bind it to the randomness s0. Therefore

we fix the position of polynomial s0 in Property P4. Also to decrypt, given a secret key K ∈ (G
(d+1)
2)m1 and a pairing

matrix E ∈ Zm1×w1

N (see Section 2.2 for description), the decryptor will compute an altKey K̂ = (K̂0, K̂1, . . . , K̂w1
) ∈

(G
(d+1)
2)(w1+1). We restrict that α used in secret key (K) generation affects only K̂1 via Property P5. We will be

needing this property in the security argument.

Next we describe our first construction and prove its security. Later we describe another construction that achieves
better efficiency during decryption. Both of the constructions are developed on top of [5] as described in Remark 2.

3.2 Construction ΠR: Smaller Ciphertext

Given a pair encoding scheme P for predicate function R, a predicate encryption ΠR for the same predicate function
R is defined as following.

– Setup(1λ, N): Runs (G1, G2, GT, e, p) ← G(λ) where G is an asymmetric prime-order bilinear group generator.

Picks (g1, g2)
$←G1 × G2. Runs n ← Param(κ). Defines W = (W1, . . . ,Wn+2) where Wi

$←Z(d+1)×(d+1)
p for each

i ∈ [n + 2]. Chooses (B, D̃,ααα)
$← GLp,d+1 × GLp,d × Z(d+1)

p . Defines D =
(
D̃ 0
0 1

)
,Z = B−>D, chooses collision

resistant hash function H : {0, 1}∗ → Zp. Keeps msk = (gααα2 ,B,Z,W) to be secret and computes,

mpk =

(
g
B
(
Id
0

)
1 , g

W1B
(
Id
0

)
1 , . . . , g

Wn+2B
(
Id
0

)
1 , g

Z
(
Id
0

)
2 , g

W>
1 Z
(
Id
0

)
2 , . . . , g

W>
n+2Z

(
Id
0

)
2 , e(g1, g2)

ααα>B
(
Id
0

)
,H

)
.

– KeyGen(msk, x): Runs (k = (k1, . . . , km1);m2) ← EncK(x,N). Chooses r1, . . . , rm2

$← Zdp and defines R =((r
1
0

)
, . . . ,

(rm2
0

))
∈
(
Z(d+1)
p

)m2

. Outputs K = {gkι(ααα,R,W)
2 }ι∈[m1] ∈

(
G

(d+1)
2

)m1
where for each ι ∈ [m1],

kι(ααα,R,W) = bιααα+
∑

j∈[m2]

bιjZ
(rj

0

)
+

∑
j∈[m2]
k∈[n]

bιjkW
>
k Z
(rj

0

)
.

– Encrypt(mpk, y,M): Runs (c = (c1, . . . , cw1);w2) ← EncC(y,N). Chooses s0, . . . , sw2

$← Zdp and defines S =((
s0
0

)
, . . . ,

(sw2
0

))
∈
(
Z(d+1)
p

)(w2+1)

. Computes C = (C1, . . . ,Cw1
,Cw1+1) where for each ι̃ ∈ [w1], Cι̃ = g

cι̃(S,W)
1 ∈

G
(d+1)
1 such that

cι̃(S,W) =
∑

j∈[0,w2]

aι̃jB
(sj

0

)
+

∑
j∈[0,w2]
k∈[n]

aι̃jkWkB
(sj

0

)
for ι̃ ∈ [w1]

and Cw1+1 = M · e(g1, g2)ααα
>B
(
s0
0

)
. It outputs C = (C0,C) where ξ = H(C) and C0 = g

(ξWn+1+Wn+2)B
(
s0
0

)
1 .

– Decrypt(K,C): Given K and C corresponding to key-index x and data-index y respectively, if R(x, y) = 0, it
aborts. It then computes ξ = H(C). It aborts if Eq. (1) is not satisfied.

e(C0, g
Z
(
Id
0

)
2) = e(C1, g

(ξW>
n+1+W>

n+2)Z
(
Id
0

)
2). (1)

Then runs E← Pair(x, y,N). Given K = (K1, . . . ,Km1) and ciphertext C it computes (K̃1, . . . , K̃w1) where K̃ι̃ =∏
ι∈[m1]

(Kι)
Eιι̃ for each ι̃ ∈ [w1]. Chooses rrr

$←Zdp. Defines modified key K̂ = (K̂0, K̂1, . . . , K̂w1
) where K̂0 = g

Z
(
rrr
0

)
2 ,

6

K̂1 = Φ · K̃1 for Φ = g
(ξW>

n+1+W>
n+2)Z

(
rrr
0

)
2 and ξ = H(C) and K̂i = K̃i for i ∈ [2, w1]. Outputs M such that

M = Cw1+1 · e(C0, K̂0) ·

 ∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

−1

. (2)

3.2.1 Correctness The correctness of ΠR follows primarily from the ciphertext consistency check in Eq. (1) and
associativity property [5]. We discuss that in this section in detail.

Consistency Check in ΠR. Recall in Eq. (1), a consistency check is performed. The decryption proceeds only if this
check is successful. It is easy to see that a correct ciphertext will always satisfy the equation.

We now discuss the equation (Eq. (2) and Eq. (3)) to get back the message M . Intuitively, the correctness holds due

to the associativity property [5]. Here we compute e(C0, K̂0) ·

(∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

)−1

to show the correctness of both the

constructions.

e(C0, K̂0) = e

(
g

(ξWn+1+Wn+2)B
(
s0
0

)
1 , g

Z
(
rrr
0

)
2

)
= e

(
g
B
(
s0
0

)
1 , g

(ξW>
n+1+W>

n+2)Z
(
rrr
0

)
2

)
.

Now,
∏

ι̃∈[w1]

e(Cι̃, K̂ι̃)

= e(C1, K̂1) ·
∏

ι̃∈[2,w1]

e(Cι̃, K̂ι̃)

= e

(
g
B
(
s0
0

)
1 , Φ · K̃1

)
·
∏

ι̃∈[2,w1]

e(Cι̃, K̂ι̃) (due to Property P4 of regular decryption pair encoding)

= e

(
g
B
(
s0
0

)
1 , Φ

)
· e
(
g
B
(
s0
0

)
1 , K̃1

)
·
∏

ι̃∈[2,w1]

e(Cι̃, K̃ι̃)

= e

(
g
B
(
s0
0

)
1 , g

(ξW>
n+1+W>

n+2)Z
(
rrr
0

)
2

)
· e(C1, K̃1) ·

∏
ι̃∈[2,w1]

e(Cι̃, K̃ι̃)

= e

(
g
B
(
s0
0

)
1 , g

(ξW>
n+1+W>

n+2)Z
(
rrr
0

)
2

)
·
∏

ι̃∈[w1]

e(Cι̃, K̃ι̃)

Then e(C0, K̂0) ·

(∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

)−1

= e

(
g
B
(
s0
0

)
1 , g

(ξW>
n+1+W>

n+2)Z
(
rrr
0

)
2

)
· e
(
g
B
(
s0
0

)
1 , g

(ξW>
n+1+W>

n+2)Z
(
rrr
0

)
2

)−1

·

(∏
ι̃∈[w1]

e(Cι̃, K̃ι̃)

)−1

=

(∏
ι̃∈[w1]

e(Cι̃,
∏

ι∈[m1]

(Kι)
Eιι̃

)−1

=

 ∏
ι∈[m1]
ι̃∈[w1]

e(Cι̃,Kι)
Eιι̃


−1

7

= e(g1, g2)−ααα
>B
(
s0
0

)
(due to correctness of [5])

Then Cw1+1 · e(C0, K̂0) ·

(∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

)−1

= M .

Remark 1. Decrypt creates modified key K̂ for a given secret key K and the pairing matrix E. From now onwards,
we will use decryption key or altKey interchangeably to denote the modified key. We define AltKeyGen(C, x,msk) to

compute modified key K̂ and AltDecrypt(C, K̂) computes RHS of Eq. (2). This essentially divides the functionality of
Decrypt function as composition of these two functions and helps us to process decryption queries during the proof.

Remark 2. We have extended the CPA-secure predicate encryption construction of [5]. The common variables W, in
our construction, contain n + 2 matrices whereas in [5] it contained n matrices. These extra two common variables
Wn+1 and Wn+2 are used to compute a commitment of CPA-ciphertext C. A hash of C is computed first and is binded
to the randomness B

(
s0
0

)
using common variables Wn+1 and Wn+2. This results in an extra ciphertext component,

namely, C0. We then output C = (C0,C) as ciphertext. Notice that KeyGen algorithm is exactly the same as [5]. The

Decrypt is modified to perform cancellation of the component C0. To do that, we define altKey K̂ to contain K̂0 and
Φ. We use associativity [5, Section 4.1] to cancel the extra ciphertext component C0 using K̂0 and Φ. The cancellation
is performed by introducing an extra unit of pairing evaluation e(C0, K̂0) during decryption. Once such cancellation
is performed, the decryption happens exactly like [5].

Efficiency. We introduce an extra check in Eq. (1) to ensure C0 to have a particular structure. The check in Eq. (1)
incurs additional 2×(d+1) pairing evaluations. Therefore our construction incurs 3×(d+1) pairing evaluations during
decryption in addition to pairing evaluation involved in CPA-ciphertext decryption [5]. This is really efficient as opposed
to traditional CPA to CCA conversions by [10, 11, 13] that need roughly two times m1 × w1 × (d+ 1)× (m2 + 1)× d
many pairing evaluations. We have discussed exact cost of such conversions in Appendix B.

Remark 3. Our construction uses a structure similar to the injective encoding first introduced in [7] to achieve CCA-
secure PKE/(H)IBE from CPA-secure (H)IBE. However, the application of such a structure is far from straight forward
as the ciphertext consistency check in Eq. (1) above may result in false-positives due to the complicated matrix-based
structures in the ciphertext. We deal with this issue in Lemma 1.

3.3 Security of ΠR

To prove our predicate encryption construction (ΠR) fully CCA-secure, we extend the proof technique of Attra-
padung [5]. In dual system proof technique, one needs to add randomness to ciphertext, keys and altKeys to construct
semi-functional ciphertext, semi-functional key and semi-functional altKeys respectively. At the end, one has to show
that the randomness of semi-functional components of ciphertext and keys will blind the message completely. We use
the abbreviation ‘type’ to identify semi-functional type.

Suppose that after receiving challenge ciphertext C
∗

= (C
∗
0,C

∗), adversary modifies it to C = (C
∗′
0 ,C

∗). Lemma

1 emphasizes that such a ciphertext C can pass Equation (1) if and only if C
∗′
0 = C

∗
0 · g

B
(
0
τ

)
1 (for some τ ∈ Zp). If

adversary comes up with such C, one can devise an efficient Dd-MatDH solver (described in Footnote 3 in Lemma 2).
Therefore we can assume that the adversary always query well-formed ciphertext to decrypt oracle. This fact plays a
key role in Lemma 3.

Lemma 1. Let C = (C0,C) be a ciphertext (possibly ill-formed). Then the ciphertext C will satisfy Eq. (1) if and

only if C0 = g
(ξWn+1+Wn+2)c1+B

(
0
τ

)
1 and C1 = gc11 for any τ ∈ Zp.

Proof. The sufficiency of this lemma follows from associativity and the relation (Id 0) Z>B
(
0
1

)
= 0.

The necessary part of this lemma is given as follows. The RHS of Eq. (1) evaluates to e(g1, g2)(Id 0)Z>(ξWn+1+Wn+2)c1 .
A satisfied verification requires the LHS to evaluate the same. The exponent of the GT element computed in Eq. (1)

8

can be expressed as a system of linear equations Ax = V where A = (Id 0) Z> ∈ Zd×(d+1)
p , x ∈ Z(d+1)

p and
V = (Id 0) Z>(ξWn+1 + Wn+2)c1 ∈ Zdp. We can write V = Ax′ where x′ = (ξWn+1 + Wn+2)c1, it simply implies
that x′ is a solution of the system Ax = V.

Suppose there exists a system of linear equations Ax = V where A ∈ Zm×np , x ∈ Znp and V ∈ Zmp such that
Rank(A) = r ∈ N. We define the solution set of such linear system to be S = {x : Ax = V} and the solution
of corresponding homogeneous equations is S0 = {x : Ax = 0}. Naturally, if a solution x′ ∈ S is available, then
S = {x′ + x : x ∈ S0}. Due to rank-nullity theorem, n = Rank(A) + dim(S0). Therefore dim(S0) = n− r.

Here, in case of Eq. (1), we see that r = Rank(A) = d as A = (Id 0) Z> where Z ∈ Z(d+1)×(d+1)
p is invertible and

n = (d+1). Therefore dim(S0) = 1. That means there exists non-trivial x0 ∈ S0 and it spans the space S0 alone. Now due
to our construction, (Id 0) Z>B

(
0
1

)
= 0. Therefore x0 = B

(
0
1

)
is a solution of homogeneous equation. As dim(S0) = 1,

clearly {x0} is the basis of S0. Thus S0 =
{
B
(
0
τ

)
: τ ∈ Zp

}
. Therefore S =

{
(ξWn+1 + Wn+2)c1 + B

(
0
τ

)
: τ ∈ Zp

}
.
ut

Theorem 1. Suppose a regular decryption pair encoding scheme P for predicate R is both SMH-Secure and CMH-
Secure2 in G, and the Dd-Matrix DH Assumption holds in G. Then the scheme ΠR is fully CCA-secure encryption
scheme if H is collision resistant hash function. More precisely, for any PPT adversary A that makes at most q1 key
queries before challenge, at most q2 key queries after challenge and at most Q decryption queries throughout the game,
there exist PPT algorithms B1,B2,B3,B4 such that for any λ,

AdvΠRA (λ) ≤ (2q1 + 2Q+ 3) · AdvDd-MatDH
B1

(λ) + q1 · AdvCMH
B2

(λ) + AdvSMH
B3

(λ) +Q · AdvCRHB4
(λ).

We give a hybrid argument to prove Theorem 1. Probabilistic polynomial time adversary A is capable of making
at most q1 key queries before challenge phase, at most q2 key queries after challenge phase and at most Q decryption
queries throughout the game. Let q = q1 + q2.

Game0 is the real security game and Game4 is the game where all secret keys are type-3 semi-functional keys,
all altKeys are type-3 semi-functional altKeys and the challenge ciphertext is semi-functional ciphertext of random
message (therefore is independent of the message that is to be encrypted). The indistinguishability of Game0 and
Game4 is proven via the sequence of games of Table 2.

Games Difference from Indistinguishability from
Previous Game Previous Game

Game0 - -
Game1 challenge ciphertext is semi-functional [5]

Game2,i−1,3 all the (i− 1) secret keys are type-3 key (i ≤ q1) [5]

Game2,i,1 ith secret key is type-1 key (i ≤ q1) [5]

Game2,i,2 ith secret key is type-2 key (i ≤ q1) [5]

Game2,i,3 ith secret key is type-3 key (i ≤ q1) [5]
Game2,q1+1,1 all post-challenge secret keys are type-1 key [5]
Game2,q1+1,2 all post-challenge secret keys are type-2 key [5]
Game2,q1+1,3 all post-challenge secret keys are type-3 key [5]
Game3,i−1,3 all the (i− 1) altKeys are type-3 altKey (i ≤ Q) Lemma 2

Game3,i,1 ith altKey is type-1 altKey (i ≤ Q) Lemma 2

Game3,i,2 ith altKey is type-2 altKey (i ≤ Q) Lemma 3

Game3,i,3 ith altKey is type-3 altKey (i ≤ Q) Lemma 4
Game4 challenge ciphertext is semi-functional encryption Lemma 5

of a random message

Table 2. Outline of proof strategy

The idea is to change each game only by a small margin and prove indistinguishability of two consecutive games. First
we make the challenge ciphertext semi-functional. Then we modify each ith pre-challenge key to type-j semi-functional
key in Game2,i,j for each i ∈ [q1] and j ∈ {1, 2, 3}. Note that to answer ith pre-challenge key query, the simulator

chooses fresh βi
$← Zp. Then we modify all the post-challenge keys to type-j keys together in Game2,q1+1,j for each

i ∈ [q1 + 1, q] and j ∈ {1, 2, 3}. Here, however, the simulator uses same β
$← Zp to answer every post-challenge key

query. Then we modify each ith altKey to type-j semi-functional altKey in Game3,i,j for each i ∈ [Q] and j ∈ {1, 2, 3}.
Note that the simulator uses same η

$← Zp to compute all the altKeys. In the final game Game4, we show that the

2 Here SMH means (1, poly)-SMH and CMH means (1, 1)-CMH (see [3, 5]).

9

ciphertext is completely independent of b. Therefore the advantage of adversary A in Game4 is 0. Note that Game1

and Game2,q1+1,3 are also denoted by Game2,0,3 and Game3,0,3 respectively.

As mentioned in Table 2, we have used the proof technique of [5] to argue indistinguishability of several games.
However, the games that deal with changes in altKey and the final game are primary contributions of this work. We,
however, have included the description of games that we have mimicked (and modified for our requirement) from [5]
in the Appendix C. Here we concentrate only in Game3,i,1, Game3,i,2, Game3,i,3 for i ∈ [Q] and Game4.

Note that in Game2,q1+1,3, the challenge ciphertext is semi-functional and all the secret keys are type-3 semi-
functional. However, all the altKeys at this point are normal. We then change the altKeys to type-3 semi-functional
altKey one by one. For every i ∈ [Q], this is done via changing normal altKey to type-1 altKey first in Game3,i,1.
Subsequently we change it into type-2 altKey in Game3,i,2 and to type-3 altKey in Game3,i,3. In Game3,i,2 we introduce
the randomness η that hides the master secret key in the final game. This effectively allows us to show that in the
final game, the simulator can simulate all the secret keys and the altKeys properly and the challenge ciphertext is
semi-functional ciphertext of random message.

Note that in all of these above mentioned games, the decryption query can only be made on ciphertext C where

C0 = g
(ξWn+1+Wn+2)c1
1 and C1 = gc11 . The reason is discussed in Footnote 3 in Lemma 2.

3.3.1 Semi-functional Algorithms Following semi-functional algorithms will be used in the security proof.

– SFSetup(1λ, κ): It runs (mpk,msk) ← Setup(1λ, κ). Additionally it outputs m̂pkbase, m̂pkb and m̂pkz where

m̂pkbase = g
Z(0

1)
2 , m̂pkb =

(
e(g1, g2)ααα

>B(0
1), g

B(0
1)

1 , g
W1B(0

1)
1 , . . . , g

Wn+2B(0
1)

1

)
and

m̂pkz =

(
g
W>

1 Z(0
1)

2 , . . . , g
W>
n+2Z(0

1)
2

)
.

– SFKeyGen(x,msk, m̂pkz, m̂pkbase, type, β): Runs (k;m2)←EncK(x,N). Chooses r1, . . . , rm2

$←Zdp and r̂1, . . . , r̂m2

$←Zp. It defines R =
((

r1
0

)
, . . . ,

(rm2
0

))
∈
(
Z(d+1)
p

)m2

and R̂ =
((

0
r̂1

)
, . . . ,

(0
r̂m2

))
∈
(
Z(d+1)
p

)m2

.

Outputs the secret key

K =


g
k(ααα,R,W)+k(0,R̂,W)
2 if type = 1

g
k(ααα,R,W)+k(Z

(
0
β

)
,R̂,W)

2 if type = 2

g
k(ααα,R,W)+k(Z

(
0
β

)
,0,W)

2 if type = 3

where k(ααα,R,W) + k(Z
(
0
β

)
, R̂,W) =

{
bιααα+ bιZ

(
0
β

)
+

∑
j∈[m2]

bιjZ
(rj
r̂j

)
+

∑
j∈[m2]
k∈[n]

bιjkW
>
k Z
(

rj
r̂j

)}
ι∈[m1]

.

– SFEncrypt(y,M,mpk, m̂pkb): It runs (c;w2)←EncC(y,N). Chooses s0, . . . , sw2

$←Zdp and ŝ0, . . . , ŝw2

$←Zp. Then

it defines S =
((

s0
0

)
, . . . ,

(sw2
0

))
∈
(
Z(d+1)
p

)(w2+1)

and Ŝ =
((

0
ŝ0

)
, . . . ,

(0
ŝw2

))
∈
(
Z(d+1)
p

)(w2+1)

. It computes the

semi-functional ciphertext C = (C1, . . . ,Cw1 ,Cw1+1) where for ι̃ ∈ [w1],

Cι̃ = g
cι̃(S,W)+cι̃(Ŝ,W)
1 = g

(∑
j∈[0,w2]

aι̃jB
(sj
ŝj

)
+

∑
j∈[0,w2]
k∈[n]

aι̃jkWkB
(sj
ŝj

))
1

and Cw1+1 = M · e(g1, g2)
ααα>B

(
s0
ŝ0

)
. Then it computes ξ = H(C) and outputs C = (C0,C).

– SFAltKeyGen(C, x,msk, m̂pkz, m̂pkbase, type, η): Runs (k;m2) ← EncK(x,N) and E ← Pair(x, y,N). Chooses

r1, . . . , rm2
, rrr

$←Zdp and r̂
$←Zp. Then it defines R =

((
r1
0

)
, . . . ,

(rm2
0

))
∈
(
Z(d+1)
p

)m2

.

Then the normal key is K =
{
g
kι(ααα,R,W)
2

}
ι∈[m1]

∈
(
G

(d+1)
2

)m1
where kι(ααα,R,W) = bιααα +

∑
j∈[m2]

bιjZ
(rj

0

)
+∑

j∈[m2]
k∈[n]

bιjkW
>
k Z
(rj

0

)
for ι ∈ [m1]. Then it computes (K̃1, . . . , K̃w1

) where K̃ι̃ =
∏

ι∈[m1]

(Kι)
Eιι̃ for ι̃ ∈ [w1].

10

Defines modified key K̂ = (K̂0, Φ · K̃1, K̃2, . . . , K̃w1
) where

(K̂0, Φ) =



(
g
Z
(
rrr
r̂

)
2 , g

(ξW>
n+1+W>

n+2)Z
(
rrr
r̂

)
2

)
if type = 1(

g
Z
(
rrr
r̂

)
2 , g

Z
(

0
ηu

)
+(ξW>

n+1+W>
n+2)Z

(
rrr
r̂

)
2

)
if type = 2(

g
Z
(
rrr
0

)
2 , g

Z
(

0
ηu

)
+(ξW>

n+1+W>
n+2)Z

(
rrr
0

)
2

)
if type = 3

for u =
∑

ι∈[m1]

bιEι1 and ξ = H(C) in case of given ciphertext C = (C0,C).

3.3.2 Sequence of Games Here we present indistinguishability of Game3,i,1, Game3,i,2, Game3,i,3 and Game4 for
1 ≤ i ≤ Q of Table 2 in the following lemmas.

Lemma 2 (Game3,i−1,3 to Game3,i,1). For i ∈ [Q], for any efficient adversary A that makes at most q key queries and

at most Q decryption queries, there exists a PPT algorithm B1 such that |Adv3,i−1,3
A (λ)−Adv3,i,1

A (λ)| ≤ AdvDd-MatDH
B1

(λ).

Proof. The algorithm B1 gets input (G, gT2 , g
T
(y
ŷ

)
2) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$←Dd, y

$←Zdp.

Setup. B1 chooses B̃
$←GLp,d+1,J

$←GLp,d and sets

B = B̃

(
Id M−>c>

0 −1

)
and D =

(
MJ 0
0 1

)
where T =

(
M 0
c 1

)
due to Dd-MatDH assumption.

Then it defines

Z = B−>D = B̃−>
(

Id 0
cM−1 −1

)(
MJ 0
0 1

)
= B̃−>T

(
J 0
0 −1

)
.

It then defines Z̃ =

(
J 0
0 −1

)
so that Z = B̃−>TZ̃. B1 therefore can compute the public parameters as g

B
(
Id
0

)
1 = g

B̃
(
Id
0

)
1

and gZ2 = gB̃
−>TZ̃

2 . Then B1 chooses ααα
$←Z(d+1)

p and W = (W1, . . . ,Wn+2)
$←
(
Z(d+1)×(d+1)
p

)(n+2)

and publishes public

key mpk. Note that B1 cannot compute m̂pkb but can compute m̂pkz as it can compute m̂pkbase. It chooses β, η
$←Zp

uniformly at random.

Key Queries. On jth secret key query x (j ≤ q1), outputs type-3 secret key K← SFKeyGen(x,msk,−, m̂pkbase,
3, βj) after choosing βj

$←Zp.
Dec Queries. On jth decryption query (x,C) where C is a ciphertext on data-index y, if R(x, y) 6= 1, aborts.

Otherwise B1 computes altKey K̂ and returns AltDecrypt(C, K̂) to A. Here we emphasize that the decryption queries
will follow a certain structure given in the footnote3. We now describe the altKey generation procedure.

– If j > i, it is normal altKey. As B1 knows msk, it computes the altKey K̂← AltKeyGen(C, x,msk).

3 Suppose given ciphertext is C = (C0,C) where C0 = g1
(ξWn+1+Wn+2)c1+B

(
0
τ

)
for some τ ∈ Zp and C1 = gc11 . Note that it

satisfies the verification in Eq. (1) as can be seen in Lemma 1. However, as the simulator knows Wn+1 and Wn+2, it can

compute L = g1
(ξWn+1+Wn+2)c1 . Therefore it gets hold of g

B
(
0
τ

)
1 by computing C0/L. Since, B and Z are simulated exactly

as Lemma 2 (see the Setup of Lemma 2), and B1 implicitly sets Z̃−1
(y
ŷ

)
=
(
rrr
r̂

)
to compute ith altKey, e

(
g
B
(
0
τ

)
1 , g

Z
(
rrr
r̂

)
2

)
evaluation will allow the simulator to decide the Dd-MatDH problem instance. Thus, under Dd-MatDH assumption, the
adversary can’t make such decryption query. Therefore any decryption queryAmakes, to satisfy Eq. (1), the queried ciphertext
C must follow the relation that C0 = g1

(ξWn+1+Wn+2)c1 and C1 = gc11 where ξ = H(C).

11

– If j < i, it is type-3 semi-functional altKey. B1 computes type-3 altKey K̂← SFAltKeyGen(C, x,msk, −, m̂pkbase,
3, η).

– If j = i, it runs (k = (k1, . . . , km1
);m2)← EncK(x,N) and E←Pair(x, y,N). Chooses r1, . . . , rm2

$←Zdp and defines

R =
((

r1
0

)
, . . . ,

(rm2
0

))
. It generates normal key K = (K1, . . . ,Km1) where for each ι ∈ [m1],

Kι = g
kι(ααα,R,W)
2 = g

bιααα+
∑

j∈[m2]

bιjZ
(
rj
0

)
+

∑
j∈[m2]
k∈[n]

bιjkW
>
k Z
(
rj
0

)
2 .

It then computes (K̃1, . . . , K̃w1
) where K̃ι̃ =

∏
ι∈[m1]

(Kι)
Eιι̃ for each ι̃ ∈ [w1].

Given C = (C0,C), B1 computes ξ = H(C). To compute the altKey, it implicitly sets Z̃−1
(y
ŷ

)
=
(
rrr
r̂

)
. Therefore

g
Z
(
rrr
r̂

)
2 = g

B̃−>T
(y
ŷ

)
2 . The simulator then computes modified key K̂ = (K̂0, Φ · K̃1, K̃2, . . . , K̃w1

) where K̂0 = g
Z
(
rrr
r̂

)
2 ,

Φ = g
(ξW>

n+1+W>
n+2)Z

(
rrr
r̂

)
2 and therefore is efficiently computable. It is evident from the description that if ŷ = 0,

the key is a normal altKey whereas if ŷ
$←Zp, the key is type-1 altKey.

Challenge. On receiving the challenge (y∗,M0,M1), B1 picks b
$← {0, 1}. It runs (c = (c1, . . . , cw1);w2) ←

EncC(y∗, N). For each j ∈ [0, w2] it chooses
(s′j
ŝ′j

) $←Z(d+1)
p and implicitly sets

(sj
ŝj

)
= B−1

(s′j
ŝ′j

)
. Then B1 computes C∗

as it knows ααα, W1, . . . ,Wn+2. It evaluates ξ∗ = H(C∗) to compute C
∗

= (C
∗
0,C

∗) where C
∗
0 = g

(ξ∗Wn+1+Wn+2)
(
s′0
ŝ′0

)
1

and outputs C
∗
.

Key Queries. Same as Phase-I key queries.

Dec Queries. Same as Phase-I dec queries.

Guess. A halts with output b′. B1 outputs 1 if b′ = b and 0 otherwise. ut

Lemma 3 (Game3,i,1 to Game3,i,2). For i ∈ [Q], for all adversary A we have |Adv3,i,1
A (λ) − Adv3,i,2

A (λ)| = 0 if H is
Collision Resistant Hash Function.

To prove the indistinguishability of the two games, we use modified SFSetup namely SFSetup′ that introduces in-

dependent randomness in m̂pkb and m̂pkz by means of security property parameter-hiding [5, Lemma 2] which is
undetectable to the adversary A (see Appendix C.3 for more details). Note that this newly introduced randomness
does not affect the public key mpk. Then we show that introduction of such new randomness allows us to argue the
indistinguishability. Recall that the challenge ciphertext is semi-functional and is denoted by C

∗
, the secret keys K

are all type-3 keys and the altKey, computed to answer ith decryption query, is denoted by K̂. To prove the lemma,
note that, it is sufficient to argue that the joint distribution of semi-functional ciphertext, semi-functional secret keys
and semi-functional altKeys stays identical, independent of if the altKey is type-1 altKey or a type-2 altKey.

Precisely, here we prove that joint distribution of {K,C
∗
, K̂} if K̂ is type-1 altKey is identical to joint distribution of

{K,C
∗
, K̂} if K̂ is type-2 altKey. Note that C

∗
= (C

∗
0,C

∗) such that C
∗
0 = g

(ξ∗Wn+1+Wn+2)B
(
s0
ŝ0

)
+B
(

0
(ξ∗ŵn+1+ŵn+2)ŝ0

)
1

where ξ∗ = H(C∗). Now we prove our claim that, the joint distributions of {K,C
∗
, K̂} behaves identically for both

type-1 and type-2 altKey K̂.

Claim. The joint distribution of {K,C
∗
, K̂} if K̂ is type-1 altKey is identical to joint distribution of {K,C

∗
, K̂} if K̂

is type-2 altKey.

Proof. Note that K is type-3 key in both the distributions and can be computed by the simulator as it knows msk and

m̂pkbase. Due to linearity of pair encoding, the challenge ciphertext C
∗

and the altKey K̂ can be expressed as product
of normal component and semi-functional component. Since the simulator knows msk and can compute the normal
components, it suffices to show that the joint distributions are identical if the joint distribution of semi-functional
components of C

∗
and K̂ are identically distributed.

12

Notice that due to the introduction of ŵ (see Appendix C.3), the semi-functional ciphertext component C
∗′
0 and

the term Φ′ used in altKey, is affected. To prove our claim, it suffices to argue that the following two distributions

(C
∗′
0 , Φ

′) are identically distributed:{
g

(ξ∗Wn+1+Wn+2)B
(

0
ŝ0

)
+B
(

0
(ξ∗ŵn+1+ŵn+2)ŝ0

)
1 , g

Z
(

0
(ξŵn+1+ŵn+2)r̂

)
+(ξW>

n+1+W>
n+2)Z

(
0
r̂

)
2

}
and {

g
(ξ∗Wn+1+Wn+2)B

(
0
ŝ0

)
+B
(

0
(ξ∗ŵn+1+ŵn+2)ŝ0

)
1 , g

Z
(

0
uη

)
+Z
(

0
(ξŵn+1+ŵn+2)r̂

)
+(ξW>

n+1+W>
n+2)Z

(
0
r̂

)
2

}
.

By natural restriction C
∗ 6= C where C

∗
is challenge ciphertext and C is ciphertext provided for decryption. Therefore

(C
∗
0,C

∗) 6= (C0,C).

Then any of the following two cases can happen,

1. C
∗
0 6= C0 and C∗ = C: we show that such a case can’t happen. Since C∗ = C, ξ∗ = ξ and C1 = C∗1 = g

c∗1
1 naturally.

This implies C0 = g
(ξ∗Wn+1+Wn+2)c∗1
1 = C

∗
0 which is a contradiction.

2. C∗ 6= C: the inequality C∗ 6= C implies ξ∗ 6= ξ (due to collision resistance of H). Therefore ξ∗ŵn+1 + ŵn+2 and
ξŵn+1 + ŵn+2 are pairwise independent as ŵn+1 and ŵn+2 are chosen uniformly at random. It implies that the
semi-functional components of the ciphertext and altKey in Game3,i,1 and Game3,i,2 are identically distributed. ut

Lemma 4 (Game3,i,2 to Game3,i,3). For i ∈ [Q], for any efficient adversary A that makes at most q key queries and

at most Q decryption queries, there exists a PPT algorithm B1 such that |Adv3,i,2
A (λ)−Adv3,i,3

A (λ)| ≤ AdvDd-MatDH
B1

(λ).

Proof. The algorithm B1 gets input (G, gT2 , g
T
(y
ŷ

)
2) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$←Dd, y

$←Zdp.

The simulator description is same as Lemma 2 except while answering ith decryption query. Here the altKey

component K̂1 = Φ · K̃1 where Φ is now multiplied by g
Z
(

0
ηu

)
2 ∈ H where u =

∑
ι∈[m1]

bιEι1. As B1 knows m̂pkbase, it

chooses η
$←Zp to perform the simulation. In the similar light of Lemma 2, we see that if ŷ = 0, the altKey is a type-3

altKey whereas if ŷ
$←Zp, it is type-2 altKey. ut

Lemma 5 (Game3,Q,3 to Game4). For any adversary A, we have |Adv3,Q,3
A (λ)− Adv4

A(λ)| = 0.

Proof. As Z ∈ GLp,d+1, one can express ααα as a linear combination of column vectors of Z i.e. ααα = Z
(
δδδ
δ̂

)
for δδδ ∈ Zdp

and δ̂ ∈ Zp. In all the secret keys, δ̂ is hidden by uniformly random βi (in case of pre-challenge secret key queries)
and by uniformly random β (in case of post-challenge key queries). Note that in case of altKeys, the presence of ααα
is limited only to K̂1 due to regular decryption property of pair encoding (precisely Property P5) in the form of uααα

where u =
∑

ι∈[m1]

bιEι1. The term, uZ
(
0
η

)
, appears in the exponent of Φ of type-3 altKeys. Therefore in all altKeys, δ̂

of ααα will be is hidden by uniformly random η.

Therefore we can replace δ̂ by δ̂ + t for t
$← Zp. Notice that such a change will affect the ciphertext in only one

component namely C∗w1+1. The resultant C∗w1+1 will be Mb · e(g1, g2)
ααα>B

(
s0
ŝ0

)
= Mb · e(g1, g2)

(δδδ> δ̂+t)Z>B
(
s0
ŝ0

)
= Mb ·

e(g1, g2)
ααα>B

(
s0
ŝ0

)
·e(g1, g2)

(0 t)Z>B
(
s0
ŝ0

)
= Mb ·e(g1, g2)

ααα>B
(
s0
ŝ0

)
·e(g1, g2)tŝ0 . Therefore C∗w1+1 encrypts Mb ·e(g1, g2)tŝ0

that is an uniformly random element of GT as t
$←Zp. ut

3.4 Construction Π ′
R: More Efficient Decryption

Given a pair encoding scheme P for predicate function R, a predicate encryption Π ′R is defined as following.

13

– Setup(1λ, N): mpk and msk are same as ΠR in Section 3.2. Only difference is mpk now includes a one-time
signature scheme OTSof its choice.

– KeyGen(msk, x): Same as KeyGen of ΠR in Section 3.2.
– Encrypt(mpk, y,M): Same as Encrypt of ΠR in Section 3.2. Only difference being it runs (vk, sk)← OTS.Gen(1λ).

Then it computes ξ = H(C, vk) where C is computed exactly the same as presented in Encrypt of ΠR in Section 3.2

and outputs C = (C0,C, vk, σ) where C0 = g
(ξWn+1+Wn+2)B

(
s0
0

)
1 and σ ← OTS.Sign(sk,C0).

– Decrypt(K,C): It differs from the Decrypt of ΠR in Section 3.2. Given K and C corresponding to key-index x and
data-index y respectively, if R(x, y) = 0, it aborts. Also aborts if OTS.Verify(C0, vk, σ) evaluates to 0. Otherwise
runs E ← Pair(x, y,N). Given K = (K1, . . . ,Km1) and ciphertext C it computes (K̃1, . . . , K̃w1) where K̃ι̃ =∏
ι∈[m1]

(Kι)
Eιι̃ for each ι̃ ∈ [w1]. Chooses rrr

$←Zdp. Defines modified key K̂ = (K̂0, K̂1, . . . , K̂w1
) where K̂0 = g

Z
(
rrr
0

)
2 ,

K̂1 = Φ · K̃1 for Φ = g
(ξW>

n+1+W>
n+2)Z

(
rrr
0

)
2 and ξ = H(C, vk) and K̂i = K̃i for i ∈ [2, w1]. Outputs M such that

M = Cw1+1 · e(C0, K̂0) ·

 ∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

−1

. (3)

3.4.1 Correctness The decryption of Π ′R also computes Cw1+1 ·e(C0, K̂0) ·

(∏
ι̃∈[w1]

e(Cι̃, K̂ι̃)

)−1

to get back message

M . However, the decryption in Π ′R differs from ΠR by the technique used to check consistency of ciphertext. Therefore
it is sufficient to discuss that correctness of the consistency check in Π ′R.

Consistency Check in Π ′R. However, in case of Π ′R the consistency check is performed via the Verify of OTS. A
correct ciphertext will always pass the OTSverification.

Remark 4. This construction is quite similar to the one presented in Section 3.2. However, the ciphertext now has
extra two elements. Here, we compute the hash of (C, vk) first and bind it to the randomness B

(
s0
0

)
using common

variables Wn+1 and Wn+2 where vk is verification key for OTS. This results in an extra ciphertext component namely
C0. We then use the one-time signature OTSto compute a signature σ on C0 and output C = (C0,C, vk, σ). Use of
OTSensures integrity of C0 thereby allowing us to get rid of extra verification step (precisely Eq. (1) in Section 3.2)
that is needed to check the structure of C0.

Remark 5. Even if our construction uses OTSfor CCA-security, the technique is quite different than that of CHK [18]
and its descendants. All those schemes essentially depends on the key-delegation capability of the underlying CPA-
secure (H)IBE. Yamada et al. [10] formalized this notion as property of delegatability. We note that not all pair
encoding based predicate encryptions achieve this property (see Table 3). Even for schemes that achieve delegatability,
one needs to apply index transformers [12] on both key and data index. This often makes the resultant ciphertext and
secret key significantly large (see [12, Table 1] for details) thereby degrading the decryption performance.

Efficiency. Our construction increases the ciphertext length by exactly three components namely C0, vk and σ will

be returned along with the CPA-ciphertext C where C0 ∈ G(d+1)
1 , vk is verification key of OTSand σ is the signature

for C0 with respect to the signing key sk corresponding to vk. As we mentioned earlier, we have reused KeyGen of [5],
therefore the secret key does not change. However Decrypt has to verify the signature σ and evaluate only one additional
unit of pairing (namely e(C0, K̂0)). As both C0 and K̂0 are group elements having (d+ 1)-components, the decryption
in our construction incurs an additional cost of (d + 1) pairing evaluations only. This is more efficient than ΠR (of
Section 3.2).

3.5 Security of Π ′
R

Theorem 2. Suppose a regular decryption pair encoding scheme P for predicate R is both SMH-Secure and CMH-
Secure in G, and the Dd-Matrix DH Assumption holds in G. Then the scheme Π ′R is fully CCA-secure encryption

14

scheme if H is collision resistant hash function and OTS is strong one-time signature. More precisely, for any PPT
adversary A that makes at most q1 key queries before challenge, at most q2 key queries after challenge and at most Q
decryption queries throughout the game, there exists PPT algorithms B1,B2,B3,B4,B5 such that for any λ,

Adv
Π′R
A (λ) ≤ (2q1 + 2Q+ 3) · AdvDd-MatDH

B1
(λ) + q1 · AdvCMH

B2
(λ) + AdvSMH

B3
(λ) +Q · AdvCRHB4

(λ) +Q · AdvsUf-CMA
B5,OTS (λ).

The theorem is formally proved in Appendix D.

3.6 Performance Comparison

In this section we provide concrete comparison, outlined in Table 1, of performance between conventional conversions
[10–13] and our constructions over few examples. The table below compares delegation-based, verifiability-based and
our (direct) CCA-construction technique on pair encoding based prime-order instantiation of CP-ABE, KP-ABE [19]
and KP-FE for DFA [5].

Scheme |Key| |Ciphertext| Decryption Cost

CP-ABE 2(|A|+ 2`) + 2 2(m+ `) + 1 (I + `)[E] + (I + `+ 2)[P] (|A|+ `+ 2)[E]
[19] 2|A|+ 2 2(m+ `) + 1 I[E] + (I + 2)[P] (2I + 2`+ 1)d[P]

2|A|+ 2 2m+ 1 I[E] + (I + 2)[P]
2[E] + 3[P]
2[E] + [P]

KP-ABE NA NA NA NA
[19] 2m |A|+ `+ 1 I[E] + (I + 1)[P] (2I + 2`)d[P]

2m |A|+ 1 I[E] + (I + 1)[P]
2[E] + 3[P]
2[E] + [P]

KP-FE O((|Tr|+ |Q|+ `)(|Tr|+ d+ `))[E]
for

3(|Tr|+ `) + 5 2(|ω|+ `) + 5 (3(|ω|+ `) + 5)[P]
2(|ω|+ `)d[E]+ (3(|ω|+ `)+ 7)[P]

DFA[5]
3|Tr|+ 5 2|ω|+ 5 (5 + 3|ω|)[P]

2[E] + 3[P]
2[E] + [P]

Table 3. Concrete comparison of efficiency.4

For all the candidate schemes considered in the table, vk ∈ {0, 1}`. For CP-ABE and KP-ABE, A denotes attribute
set, Γ denotes the access structure such that I ⊂ A are the attributes that satisfy Γ and dummy attribute set W to
accommodate vk such that |W | = 2`, where Γ can be expressed as an LSSS matrix [19] of dimension m × k. In case
of KP-FE for DFA, M = (Q,Σ,Tr, q0, F) denotes the DFA and ω denotes the string. Here [E] and [P] denote number
of unit group multiplication and number of unit pairing evaluations respectively. By unit group multiplication (resp.
pairing evaluation) we mean d + 1 many group multiplication (resp. pairing evaluations) in a prime-order system of
d+ 1 dimension. For standard assumptions like SXDH and D-Linear, d is 1 and 2 respectively.

Note that in Table 3, we considered both KP-ABE and CP-ABE to be small-universe. The additional cost in CP-
ABE and KP-ABE instances mentioned there, is actually the cost of performing verifiability-1 whereas we presented
the additional cost in case of KP-FE for DFAs is a sort of public verifiability to guarantee verifiability-2 of the
underlying CPA-decrypt algorithm (see [11, 13] for these notions of verifiability). Even if, delegation-based conversions
are better than verifiability-based conversions in terms of efficiency, there are several schemes for which delegation is still
unachieved. One such example is KP-ABE construction of [19] and has been marked NA (i.e. not available) in the above
table. Both our direct constructions (ΠR and Π ′R) overcome these problems without affecting the performance. We
emphasize that even if delegation is available for some CPA-secure CP-ABE, viz, large universe CP-ABE schemes, the
delegation-based conversion is simply not applicable due to efficiency problem. For example, prime order instantiation

4 The “dark-gray” (resp. “light-gray”) has been used to denote delegation (resp. verifiability)-based construction while parame-
ters and complexity of ΠR and Π ′R (i.e. direct constructions) are kept uncolored. Precisely, ΠR is presented at the top among
the two uncolored rows for each example. Sometimes, adjacent cells have been merged if corresponding complexities are
same. The two-columns under “Decryption Cost” follows the same convention as in Table 1 where the first cell is underlying
CPA-Decryption cost and second cell contains additional cost to achieve CCA-Decryption.

15

([5]) of large universe CP-ABE schemes for [3, Pair Encoding Scheme 13] and dual of [3, Pair Encoding Scheme 4] has
transformed key-index size exponentially big due to introduction of dummy attribute W = {0, 1}`.

4 Conclusion

In this work, we presented two direct adaptive CCA-secure predicate encryption constructions to convert adaptive CPA-
secure predicate encryption of [5]. The ciphertext of our first construction contains only one additional component
than in case of adaptive CPA-secure predicate encryption of [5] and decryption needs exactly three unit (i.e. 3×(d+1))
additional pairing evaluations. The ciphertext of our second construction, on the other hand, contains exactly three

additional components (a G
(d+1)
1 element, an OTSverification key and a signature) than in case of adaptive CPA-secure

predicate encryption of [5] and decryption needs only one unit additional pairing evaluations. This is a significant
improvement over the previous generic conversion mechanisms which needed almost double of m1 × w1 × (d + 1) ×
(m2 + 1) × d many pairing evaluations. A possible future work might be instantiation of our generic CPA-to-CCA
conversion on the predicate encryption resulted from integration of dual system groups with pair encoding schemes.

References

1. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: CRYPTO. Volume 2139 of LNCS., Springer
(2001) 213–229

2. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: CRYPTO. Volume
5677 of LNCS., Springer (2009) 619–636

3. Attrapadung, N.: Dual system encryption via doubly selective security: Framework, fully secure functional encryption for
regular languages, and more. In: EUROCRYPT. Volume 8441 of LNCS., Springer (2014) 557–577

4. Wee, H.: Dual system encryption via predicate encodings. In: TCC. Volume 8349 of LNCS., Springer (2014) 455–479
5. Attrapadung, N.: Dual system encryption framework in prime-order groups. In: ASIACRYPT. Volume 10032 of LNCS.,

Springer (2016) 591–623
6. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: EUROCRYPT.

Volume 9057 of LNCS., Springer (2015) 595–624
7. Chen, J., Wee, H.: Dual system groups and its applications — compact HIBE and more. Cryptology ePrint Archive, Report

2014/265 (2014) http://eprint.iacr.org/2014/265.
8. Agrawal, S., Chase, M.: A study of pair encodings: Predicate encryption in prime order groups. In: TCC 2016-A. Volume

9563 of LNCS., Springer (2016) 259–288
9. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate encryption schemes. Cryptology ePrint

Archive, Report 2017/233 (2017) http://eprint.iacr.org/2017/233.
10. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions for chosen-ciphertext secure attribute based

encryption. In: PKC. Volume 6571 of LNCS., Springer (2011) 71–89
11. Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro, N.: Verifiable predicate encryption and

applications to CCA security and anonymous predicate authentication. In: PKC. Volume 7293 of LNCS., Springer (2012)
243–261

12. Nandi, M., Pandit, T.: Generic conversions from CPA to CCA secure functional encryption. Cryptology ePrint Archive,
Report 2015/457 (2015) http://eprint.iacr.org/.

13. Nandi, M., Pandit, T.: Verifiability-based conversion from CPA to CCA-secure predicate encryption. Journal of Applicable
Algebra in Engineering, Communication and Computing (2017) 1–26

14. Blömer, J., Liske, G.: Construction of fully CCA-secure predicate encryptions from pair encoding schemes. In: CT-RSA.
Volume 9610 of LNCS., Springer (2016) 431–447

15. Nandi, M., Pandit, T.: On the power of pair encodings: Frameworks for predicate cryptographic primitives. Cryptology
ePrint Archive, Report 2015/955 (2015) http://eprint.iacr.org/2015/955.

16. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: EURO-
CRYPT. Volume 6110 of LNCS., Springer (2010) 44–61

17. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: ACM Conference on
Computer and Communications Security. CCS ’05, ACM (2005) 320–329

18. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: EUROCRYPT. Volume
3027 of LNCS., Springer (2004) 207–222

19. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: Attribute-based
encryption and (hierarchical) inner product encryption. In: EUROCRYPT. Volume 6110 of LNCS., Springer (2010) 62–91

20. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie–Hellman assumptions. Journal of
Cryptology 30(1) (2017) 242–281

16

A Definitions

A.1 Strong One-Time Signature

Signature Scheme. A signature scheme consists of three PPTs,

– Gen outputs verification key vk and signing key sk.
– Sign computes a signature σ on the input message m.
– Verify on (m′, σ′) input it outputs 1 if σ′ is a valid signature on m′.

Security Definition. Strong One-Time Signature (OTS) model is defined by the game between challenger C and
adversary A as follows.

– Gen: C runs (vk, sk)← OTS.Gen(1λ). A is provided with vk.
– Query: A is given access to oracle OTS.Sign(sk, ·) for only one query. Let A queries with a message m and gets

back a signature σ.
– Forge: A outputs a pair (m∗, σ∗).

A wins this game if OTS.Verify(vk,m∗, σ∗) = 1 and (m,σ) 6= (m∗, σ∗). The advantage of adversary A is defined to
be the probability of its win and is denoted by AdvsUf-CMA

A,OTS (λ). We call a signature one-time secure if for any efficient

adversary A, AdvsUf-CMA
A,OTS (λ) ≤ neg(λ).

A.2 Bilinear Pairing

We consider (p,G1, G2, GT, e) ← G(λ) where G(λ) is an asymmetric prime-order bilinear group generator where e is
an admissible non-degenerate bilinear map such that g1 and g2 are arbitrary generators of G1 and G2 respectively.
We define G = Gd+1

1 , H = Gd+1
2 and the corresponding pairing operates on G and H component-wise and use e to

evaluate itself. Precisely, for ga1 ∈ G and gb2 ∈ H, e(ga1 , g
b
2) = e(g1, g2)a

>b.

A.3 Matrix Diffie-Hellman Problem

We call Dd a matrix distribution if it outputs matrices in Z(d+1)×(d+1)
p of the form T =

(
M 0
c 1

)
such that M ∈ GLp,d.

We say that Dd-Matrix Diffie-Hellman Assumption holds in G if for any PPT adversary A, the advantage,

AdvDd-MatDH
A (λ) =

∣∣∣∣Pr
[
A(G, gT1 , g

T
(
y
0

)
1) = 1

]
− Pr

[
A(G, gT1 , g

T
(y
ŷ

)
1) = 1

]∣∣∣∣ ≤ neg(λ)

where the probability is taken over (G1, G2, GT, e, p)
$←G(λ), (g1, g2)

$←G1 × G2, T
$←Dd, y

$← Zdp, ŷ
$← Zp and the

internal randomness of A such that G = (G1, G2, GT, e, p, g1, g2). It is to be noted that Matrix Diffie-Hellman Problem
is random self reducible [5, 20]. Therefore given an instance of the problem, one can construct polynomial number of

different instances of that problem without degrading the reduction i.e. given

(
gT1 , g

T
(y
ŷ

)
1

)
it is easy to construct(

gT1 , g
T
(
Y
ŷ

)
1

)
such that Y = (y1, . . . ,ym) is uniformly random in

(
Zdp
)m

, ŷ = (ŷ1, . . . , ŷm) is uniformly random in

(Zp)m for m = poly(λ).

A.4 Parameter Hiding Lemma [5, Lemma 2]

Given g1, g2, B, Z, g
WiB

(
Id
0

)
1 ∈ G(d+1)×d

1 and g
W>
i Z
(
Id
0

)
2 ∈ G(d+1)×d

2 , the (d+1, d+1)th entry of the matrix B−1WiB is

information-theoretically hidden where Wi
$←Z(d+1)×(d+1)

p , B
$←GLp,d+1, D̃

$←GLp,d and Z = B−>D for D =
(
D̃ 0
0 1

)
.

17

B CCA-secure Predicate encryption via Conventional approach

The predicate encryption schemes presented in [5] are CPA-secure. We already have pointed out one can convert
these schemes to achieve CCA-security by incorporating the generic conversion framework of [10, 11, 13]. Here we show
that pair encoding based predicate encryption schemes instantiated in prime-order groups [5] fulfills the notion of
verifiability [10]. Intuitively, a predicate encryption scheme has verifiability if there exists a procedure that confirms if
a ciphertext decrypts to same message under two different keys. Here we define the algorithm Verify as following for
C being a ciphertext corresponding to data-index y and two different key-indices x and x̃.5 Let k = (k1, . . . , km1) and
k̃ = (k̃1, . . . , k̃m̃1

) be the output of EncK on input x and x̃ respectively. We also denote corresponding secret keys by
K and K̃ respectively. Let E = Pair(x, y,N) and Ẽ = Pair(x̃, y,N).

Verify(pk,C, x, x̃) =


⊥ if R(x, y) = 0 or R(x̃, y) = 0

1 if Event

0 otherwise.

Event =



∏
ι∈[m1]
ι̃∈[w1]

e
(

Cι̃,g
kι(0,Itj ,W)

2

)Eιι̃
=1 for all t∈[d], j∈[m2] (4)

∏
ι∈[m̃1]
ι̃∈[w1]

e

(
Cι̃,g

k̃ι(0,Itj ,W)

2

)Ẽιι̃
=1 for all t∈[d], j∈[m̃2] (5)

∏
ι∈[m1]
ι̃∈[w1]

e(Cι̃,g
bι1t
2)

Eιι̃=
∏

ι∈[m̃1]
ι̃∈[w1]

e
(

Cι̃,g
b̃ι1t
2

)Ẽιι̃
=e(C1,g

1t
2) for all t∈[d]. (6)

where Itj is a sparse matrix whose (t, j)th entry alone is 1; 0 is a vector of length (d + 1) with all entries being zero
and 1t is a sparse vector of length (d+ 1) whose tth entry alone is 1.

Completeness of Verifiability. Suppose the ciphertext C is correctly generated for data-index y. We need to show
that for x, x̃ such that R(x, y) = 1 and R(x̃, y) = 1, Verify(pk,C, x, x̃) = 1. Here due to correctness of the predicate
encryption of [5], all the equations

(
namely Eq. (4), (5), (6)

)
hold true. Note that the correctness of predicate encryption

construction of [5] required only Property P1 of regular decryption properties (Sec. 3.1) of underlying pair encoding.
However, to satisfy Eq. (6), a well-formed ciphertext will also require Property P4 of regular decryption properties of
underlying pair encoding.

Soundness of Verifiability. Assume for x, x̃ and y, R(x, y) = 1 and R(x̃, y) = 1. If Verify(pk,C, x, x̃) = 1, we show
that Decrypt(pk,C,K) and Decrypt(pk,C, K̃) outputs the same. Let ∆ = Decrypt(pk,C,K).

By the definition of pair encoding,

kι(ααα,O,W) = bιααα =
∑

t∈[d+1]

αt(bι1t), (7)

kι(0,R,W) =
∑
t∈[d]
j∈[m2]

rtjkι(0, Itj ,W). (8)

Then ∆ = Decrypt(pk,C,K) = Cw1+1/
∏

ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
kι(ααα,R,W)
2

)Eιι̃
.

We define, � =
∏

ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
kι(ααα,R,W)
2

)Eιι̃
5 In conventional approach, one runs Encrypt and KeyGen on the indexes after running necessary index-transformation on them.

So here we assume that all the indexes are already transformed accordingly.

18

=
∏

ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
kι(ααα,O,W)+kι(0,R,W)
2

)Eιι̃
(by linearity)

=
∏

ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
kι(ααα,O,W)
2

)Eιι̃
·
∏

ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
kι(0,R,W)
2

)Eιι̃
= A ·B

where A =
∏

ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
kι(ααα,O,W)
2

)Eιι̃
and B =

∏
ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
kι(0,R,W)
2

)Eιι̃
.

Now A =
∏

ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
kι(ααα,O,W)
2

)Eιι̃

=
∏

ι∈[m1]
ι̃∈[w1]

e

(
Cι̃, g

∑
t∈[d+1]

αt(bι1t)

2

)Eιι̃

(by Eq. (7))

=
∏

t∈[d+1]

 ∏
ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
αt(bι1t)
2

)Eιι̃

=
∏

t∈[d+1]

 ∏
ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
bι1t
2

)Eιι̃
αt

=
∏

t∈[d+1]

(
e(C1, g

1t
2)
)αt

(by Eq. (6))

= e(C1, g
ααα
2).

And B =
∏

ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
kι(0,R,W)
2

)Eιι̃

=
∏

ι∈[m1]
ι̃∈[w1]

e

Cι̃, g

∑
t∈[d]
j∈[m2]

rtjkι(0,Itj ,W)

2


Eιι̃

(by Eq. (8))

=
∏
t∈[d]
j∈[m2]

 ∏
ι∈[m1]
ι̃∈[w1]

e
(

Cι̃, g
kι(0,Itj ,W)
2

)Eιι̃
rtj

=
∏
t∈[d]
j∈[m2]

(1)
rtj = 1. (by Eq. (4))

As � = A ·B = e(C1, g
ααα
2), ∆ = Cw1+1/� = Cw1+1/e(C1, g

ααα
2).

Since x is arbitrary, similarly we have Decrypt(pk, C, K̃) = Cw1+1/e(C1, g
ααα
2).

Hence we note that [5] schemes achieves verifiability and can be converted generically to achieve CCA-security [10, 11,
13]. We also note that (m1 × w1 × (d+ 1)× (m2 + 1)× d) + (m̃1 × w1 × (d+ 1)× (m̃2 + 1)× d) + (d+ 1)× d many
additional pairing computations were needed to verify the well-formedness of the queried ciphertext.

19

Remark 6. This count actually is loose upper bound as the matrix E and Ẽ are usually sparse. The actual number of
additional pairing to be evaluated is

(
I × (m2 + 1) +Ĩ × (m̃2 + 1) + 1

)
× d× (d+ 1) where I and Ĩ are the numbers of

non-zero entries in E and Ẽ respectively. Note that this is still quite a large number as opposed to our achievement of
3(d+ 1) (ΠR in Section 3.2) and (d+ 1) (Π ′R in Section 3.4) additional pairings only.

C Rest of Proof of Theorem 1

Here we recall the indistinguishability of games that we mimic from [5] after appropriate modification. Note that, here
we discuss these games for the proof of Theorem 1. All the games discussed in this section, can be easily ported for
the proof of Theorem 2.

C.1 Normal to Semi-functional Ciphertext

Lemma 6 (Game0 to Game1). For any efficient adversary A that makes at most q1 pre-challenge key queries, at
most q2 post-challenge key queries and at most Q decryption queries, there exists a PPT algorithm B1 such that
|Adv0

A(λ)− Adv1
A(λ)| ≤ AdvDd-MatDH

B1
(λ).

Proof. The algorithm B1 gets input (G, gT1 , g
T
(y
ŷ

)
1) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$←Dd, y

$←Zdp.

Setup. B1 chooses B̃
$←GLp,d+1,J

$←GLp,d and implicitly sets B = B̃T and Z = B̃−>
(

J −M−>c>

0 1

)
such that

D = B>Z =
(
T> B̃>

)(
B̃−>

(
J −M−>c>

0 1

))
=

(
M> c>

0 1

)(
J −M−>c>

0 1

)
=

(
M>J 0

0 1

)
.

B1 can compute gB1 = gB̃T
1 and g

Z
(
Id
0

)
2 = g

B̃−>
(
J
0

)
2 . Therefore it can easily compute mpk, msk by choosing the

parameters ααα,W1, . . . ,Wn+2 itself.

Key Queries. On secret key query x, outputs secret key K← KeyGen(x,msk).

Dec Queries. On decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is not

verified or if R(x, y) 6= 1, aborts. Otherwise B1 computes normal altKey K̂ ← AltKeyGen(C, x,msk) and returns

AltDecrypt(C, K̂) to A.

Challenge. On receiving the challenge (y∗,M0,M1), B1 picks b
$←{0, 1}. Let (c = (c1, . . . , cw1

);w2)← EncC(y∗, N).

It uses random self-reducibility of Matrix-DH assumption to obtain (G, gT1 , g
T
(
Y
ŷ

)
1). The decision problem is now to

find if ŷ = 0 or ŷ
$← (Zp)(w2+1)

where T
$←Dd and Y

$←
(
Zdp
)(w2+1)

. B1 implicitly sets
(
Y
ŷ

)
= S + Ŝ =

(
s0 · · · sw2

ŝ0 · · · ŝw2

)
.

As B1 has g
T
(
Y
ŷ

)
1 , it can compute g

B
(sj
ŝj

)
1 = g

B̃T
(sj
ŝj

)
1 = g

B̃T
(yj
ŷj

)
1 for j ∈ [0, w2]. As B1 knows ααα, W1, . . . ,Wn+2, it

can compute all components of ciphertext.

Then B1 computes C∗ as it knows ααα, W1, . . . ,Wn+2. Then it evaluates ξ∗ = H(C∗) to compute C
∗

= (C
∗
0,C

∗)

where C
∗
0 = g

(ξ∗Wn+1+Wn+2)B
(
s0
ŝ0

)
1 . It outputs C

∗
.

Key Queries. Same as Phase-I secret key queries.

Dec Queries. Same as Phase-I decryption queries.

Guess. A halts with output b′. B1 outputs 1 if b′ = b and 0 otherwise.

20

C.2 Normal to Type-1 Key in Phase-I

Lemma 7 (Game2,i−1,3 to Game2,i,1). For i = 1, . . . , q1, for any efficient adversary A that makes at most q1 pre-
challenge key queries, at most q2 post-challenge key queries and at most Q decryption queries, there exists a PPT
algorithm B1 such that |Adv2,i−1,3

A (λ)− Adv2,i,1
A (λ)| ≤ AdvDd-MatDH

B1
(λ).

Proof. The algorithm B1 gets as input (G, gT2 , g
T
(y
ŷ

)
2) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$←Dd, y

$←Zdp.

Setup. B1 chooses B̃
$←GLp,d+1,J

$←GLp,d and sets

B = B̃

(
Id M−>c>

0 −1

)
and D =

(
MJ 0
0 1

)
where T =

(
M 0
c 1

)
due to Dd-MatDH assumption.

Then it defines

Z = B−>D = B̃−>
(

Id 0
cM−1 −1

)(
MJ 0
0 1

)
= B̃−>T

(
J 0
0 −1

)
.

Then define Z̃ =

(
J 0
0 −1

)
so that Z = B̃−>TZ̃. B1 therefore can compute the public parameters as g

B
(
Id
0

)
1 = g

B̃
(
Id
0

)
1

and gZ2 = gB̃
−>TZ̃

2 . Then B1 chooses ααα
$← Z(d+1)

p and W = (W1, . . . ,Wn+2)
$←
(
Z(d+1)×(d+1)
p

)(n+2)

and publishes

public key mpk. Note that B1 cannot compute m̂pkb but can compute m̂pkz as it can compute m̂pkbase.

Key Queries. On jth secret key query x (j ≤ q1), outputs secret key K as follows.

– If j > i, B1 generates normal key KeyGen(x,msk).

– If j < i, B1 generates type-3 key SFKeyGen(x,msk,−, m̂pkbase, 3, βj) for βj
$←Zp.

– If j = i, B1 runs (k = (k1, . . . , km1
);m2)← EncK(x,N). It uses random self-reducibility of Matrix-DH assumption

to obtain (G, gT2 , g
T
(
Y
ŷ

)
2). The decision problem is now to find if ŷ = 0 or ŷ

$← (Zp)m2 where T
$← Dd and

Y
$←
(
Zdp
)m2

. B1 implicitly sets Z̃−1
(
Y
ŷ

)
= R + R̂ =

(
r1 · · · rm2

r̂1 · · · r̂m2

)
. Therefore g

Z
(rj
r̂j

)
2 = g

(
B̃−>TZ̃

)(
Z̃−1
(yj
ŷj

))
2 . As

B1 has g
T
(
Y
ŷ

)
2 , ααα, B̃, W1, . . . ,Wn+2, it can compute all components of secret key. It is evident from the description

that if ŷ = 0, the key is a normal key whereas if ŷ
$←(Zp)m2 , the key is type-1 key.

Dec Queries. On decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is not

verified or if R(x, y) 6= 1, aborts. Otherwise B1 computes normal altKey K̂ ← AltKeyGen(C, x,msk) and returns

SFAltDecrypt(C, K̂) to A.

Challenge. On receiving the challenge (y∗,M0,M1), B1 picks b
$← {0, 1}. It runs (c = (c1, . . . , cw1

);w2) ←
EncC(y∗, N) and for j ∈ [0, w2] chooses

(s′j
ŝ′j

) $←Z(d+1)
p and implicitly sets

(sj
ŝj

)
= B−1

(s′j
ŝ′j

)
.

Then B1 computes C∗ as it knows ααα, W1, . . . ,Wn+2. Then it evaluates ξ∗ = H(C∗) to compute C
∗

= (C
∗
0,C

∗)

where C
∗
0 = g

(ξ∗Wn+1+Wn+2)
(
s′0
ŝ′0

)
1 . It outputs C

∗
.

Key Queries. On jth secret key query x (j ∈ [q1 + 1, q]), B1 generates normal key KeyGen(x,msk).

Dec Queries. Same as Phase-I decryption queries.

Guess. A halts with output b′. B1 outputs 1 if b′ = b and 0 otherwise.

21

C.3 Randomizing via Parameter Hiding

Here we modify SFSetup to define setup algorithm SFSetup′ to introduce some extra randomness in the semi-functional

components of m̂pkb and m̂pkz. We also describe the consequence of such newly introduced randomness in the outputs
of SFEncrypt, SFKeyGen and SFAltKeyGen.

– SFSetup′(1λ, κ): It outputs mpk,msk, m̂pkbase in exactly the same way. It additionally chooses ŵ = (ŵ1, . . . , ŵn+2)

$←Zn+2
p and computes m̂pkb =

(
e(g1, g2)ααα

>B
(
0
1

)
, g

B
(
0
1

)
1 , g

W1B
(
0
1

)
+B
(

0
ŵ1

)
1 , . . . , g

Wn+2B
(
0
1

)
+B
(

0
ŵn+2

)
1

)

and m̂pkz =

(
g
W>

1 Z
(
0
1

)
+Z
(

0
ŵ1

)
2 , . . . , g

W>
n+2Z

(
0
1

)
+Z
(

0
ŵn+2

)
2

)
.

– SFKeyGen(x,msk, m̂pkz, m̂pkbase, type, β): Runs (k;m2)← EncK(x,N). Chooses r1, . . . , rm2

$←Zdp and r̂1, . . . , r̂m2

$←Zp. Then it defines R =
((

r1
0

)
, . . . ,

(rm2
0

))
∈
(
Z(d+1)
p

)m2

and R̂ =
((

0
r̂1

)
, . . . ,

(0
r̂m2

))
∈
(
Z(d+1)
p

)m2

.

Outputs the secret key

K =


g
k(ααα,R,W)+k(0,R̂,W,ŵ)
2 if type = 1

g
k(ααα,R,W)+k

(
Z
(
0
β

)
,R̂,W,ŵ

)
2 if type = 2

where k(ααα,R,W) + k(Z
(
0
β

)
, R̂,W, ŵ) =bιααα+ bιZ
(
0
β

)
+

∑
j∈[m2]

bιjZ
(rj
r̂j

)
+

∑
j∈[m2]
k∈[n]

bιjk

(
W>

k Z
(rj
r̂j

)
+ Z

(
0

ŵk r̂j

))
ι∈[m1]

.

– SFEncrypt(y,M,mpk, m̂pkb): It runs (c;w2) ← EncC(y,N). Chooses s0, . . . , sw2

$← Zdp and ŝ0, . . . , ŝw2

$← Zp. It

defines S =
((

s0
0

)
, . . . ,

(sw2
0

))
∈
(
Z(d+1)
p

)(w2+1)

and Ŝ =
((

0
ŝ0

)
, . . . ,

(0
ŝw2

))
∈
(
Z(d+1)
p

)(w2+1)

. Computes semi-

functional ciphertext C = (C1, . . . ,Cw1
,Cw1+1) where for ι̃ ∈ [w1] each

Cι̃ = g
cι̃(S,W)+cι̃(Ŝ,W,ŵ)
1 = g

 ∑
j∈[0,w2]

aι̃jB
(sj
ŝj

)
+

∑
j∈[0,w2]
k∈[n]

aι̃jk

(
WkB

(sj
ŝj

)
+B
(

0
ŵk ŝj

))
1

and Cw1+1 =M ·e(g1, g2)
ααα>B

(
s0
ŝ0

)
. Outputs C = (C0,C, vk, σ) where C0 =g

(ξWn+1+Wn+2)B
(
s0
ŝ0

)
+B
(

0
(ξŵn+1+ŵn+2)ŝ0

)
1

such that ξ = H(C, vk) and σ = OTS.Sign(sk,C0) for (vk, sk)← OTS.Gen(1λ).

– SFAltKeyGen(C, x,msk, m̂pkz, m̂pkbase, type, η): Runs (k;m2)← EncK(x,N) and E← Pair(x, y). Chooses r1, . . . ,

rm2
, rrr

$←Zdp and r̂
$←Zp. Then it defines R =

((
r1
0

)
, . . . ,

(rm2
0

))
∈
(
Z(d+1)
p

)(m2+1)

.

Then the normal key K =
{
g
kι(ααα,R,W)
2

}
ι∈[m1]

∈
(
G

(d+1)
2

)m1 where each

kι(ααα,R,W) = bιααα+
∑

j∈[m2]

bιjZ
(rj

0

)
+

∑
j∈[m2]
k∈[n]

bιjkW
>
k Z
(rj

0

)
for ι ∈ [m1].

Then it computes (K̃1, . . . , K̃w1) where K̃ι̃ =
∏

ι∈[m1]

(Kι)
Eιι̃ for each ι̃ ∈ [w1].

Defines modified key K̂ = (K̂0, Φ · K̃1, K̃2, . . . , K̃w1
) where

(K̂0, Φ) =



(
g
Z
(
rrr
r̂

)
2 , g

(ξW>
n+1+W>

n+2)Z
(
rrr
r̂

)
+Z
(

0
(ξŵn+1+ŵn+2)r̂

)
2

)
if type = 1,(

g
Z
(
rrr
r̂

)
2 , g

Z
(

0
ηu

)
+(ξW>

n+1+W>
n+2)Z

(
rrr
r̂

)
+Z
(

0
(ξŵn+1+ŵn+2)r̂

)
2

)
if type = 2,

22

u =
∑

ι∈[m1]

bιEι1and ξ = H(C) for the given C = (C0,C).

We here show that outputs of SFSetup and SFSetup′ are identically distributed. This allows us to replace SFSetup by
SFSetup′ and run SFKeyGen, SFEncrypt and SFAltKeyGen to generate the secret keys, the challenge ciphertext and the
altKeys containing the randomness newly introduced via ŵ. This result will be used in arguing indistinguishibility of
type-1 and type-2 keys of both secret keys and altKeys (Lemma 3, Lemma 8 and Lemma 11).

Claim. The outputs of SFSetup and SFSetup′ are identically distributed.

Proof. Due to parameter-hiding lemma in Section A.4, Wi
$←Z(d+1)×(d+1)

p , B
$←GLp,d+1 and ŵi

$←Zp, both RWi,ŵi

and Wi are identically distributed where RWi,ŵi = Wi + B

(
0 0
0 ŵi

)
B−1 for i ∈ [n+ 2]. It can easily be verified that

for each i ∈ [n + 2], RWi,ŵiB
(
Id
0

)
= WiB

(
Id
0

)
, R>Wi,ŵi

Z
(
Id
0

)
= W>

i Z
(
Id
0

)
, RWi,ŵiB

(
0
1

)
= WiB

(
0
1

)
+ B

(
0
ŵi

)
and

R>Wi,ŵi
Z
(
0
1

)
= W>

i Z
(
0
1

)
+ Z

(
0
ŵi

)
. Note that this replacement doesn’t change mpk and is therefore oblivious to any

adversary. Only the description of m̂pkb and m̂pkz of SFSetup′ gets modified. It is evident that this change does not
affect neither the normal nor the type-3 semi-functional forms of secret keys and altKeys.

C.4 Type-1 to Type-2 Key in Phase-I

Lemma 8 (Game2,i,1 to Game2,i,2). For i = 1, . . . , q1, for any efficient adversary A that makes at most q1 pre-
challenge key queries, at most q2 post-challenge key queries and at most Q decryption queries, there exists a PPT
algorithm B2 such that |Adv2,i,1

A (λ)− Adv2,i,2
A (λ)| ≤ AdvCMH

B2
(λ).

Proof. In this co-selective security game of pair encoding scheme, the algorithm B2 gets as input the group description
G1, G2, GT, g1 ∈ G1 and g2 ∈ G2.

Setup. B2 chooses ααα
$←Z(d+1)

p , W = (W1, . . . ,Wn+2)
$←
(
Z(d+1)×(d+1)
p

)(n+2)

, B
$←Z(d+1)×(d+1)

p , D̃
$←GLp,d and

defines D =

(
D̃ 0
0 1

)
and Z = B−>D. It computes mpk, m̂pkbase and msk. We note that these elements are distributed

as if they are output of SFSetup′.

Key Queries. On jth secret key query x (j ≤ q1), outputs secret key K as follows.

– If j > i, B2 generates normal key KeyGen(x,msk).

– If j < i, B2 generates type-3 key SFKeyGen(x,msk,−, m̂pkbase, 3, βj) after choosing βj
$←Zp.

– If j = i, B2 forwards x as the challenge query to the challenger to receive V = g
k(β,r̂,ŵ)
2 where (k = (k1, . . . , km1

);

m2) ← EncK(x,N). B2 has to decide if β = 0 or β
$← Zp. It is to be noted that r̂ and ŵ are chosen by the

challenger of CMH-Security game, unknown to B2. Now B2 computes the normal part of the key by computing{
g
kι(ααα,R,W)
2

}
ι∈[m1]

for R =
((r

1
0

)
, . . . ,

(rm2
0

))
such that r1, . . . , rm2

$←Zdp. To compute the semi-functional part,

that contains ŵ which is unknown to B2, it implicitly sets R̂ =
((0

r̂1

)
, . . . ,

(0
r̂m2

))
where r̂ = (r̂1, . . . , r̂m2). Then

the semi-functional component of the key is

g
k′(βi,R̂,W,ŵ)
2 =

gZ
(

0
kι(β,r̂,ŵ)

)
2

∏
j∈[m2]
k∈[n]

g
bιjkW

>
k Z
(

0
r̂j

)
2


ι∈[m1]

.

Notice that B2 implicitly sets βi to be β that is actually set by the challenger of CMH-Security game and unknown
to B2. Since B2 already have received V = (V1, . . . , Vm1

) from the challenger of CMH-Security game, it uses Vι to

compute the first component of the right hand side of the above equation i.e. g
Z
(

0
kι(β,r̂,ŵ)

)
2 = V

Z
(
0
1

)
ι for ι ∈ [m1].

23

However to compute the second component

 ∏
j∈[m2]
k∈[n]

g
bιjkW

>
k Z
(

0
r̂j

)
2

 of the semi-functional part of the secret key,

B2 needs to know r̂ = (r̂1, . . . , r̂m2
). For each of j ∈ [m2], two cases can happen.

• Either there is ι′ ∈ [m1] such that kι′(β, r̂, ŵ) = r̂j , that lets B2 to know r̂j .

• Or there is no such ι′ ∈ [m1] for which kι′(β, r̂, ŵ) = r̂j . Then due to regular decryption properties of pair
encoding (precisely Property P2), bι′′jk = 0 for all ι′′ ∈ [m1], k ∈ [n].

B2 uses the normal part of the key and the semi-functional part of the key to generate the secret key and hands
it over to A.

Dec Queries. On decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is not

verified or if R(x, y) 6= 1, aborts. Otherwise B2 computes normal altKey K̂ ← AltKeyGen(C, x,msk) and returns

AltDecrypt(C, K̂) to A.

Challenge. On receiving the challenge (y∗,M0,M1), B2 picks b
$←{0, 1}. It makes the ciphertext query on y∗ to

the challenger of CMH-Security game. It is possible to make such a challenge query as R(x, y∗) = 0 for all key queries.

B2 receives U← g
c(ŝ,ŵ)
1 .

B2 first computes the normal part of the ciphertext by computing g
cι̃(S,W)
1 for S =

((s
0
0

)
, . . . ,

(sw2
0

))
such that

s0, . . . , sw2

$←Zdp.

To compute the semi-functional part, that contains ŵ which is unknown to B2, it implicitly sets Ŝ =
((

0
ŝ0

)
, . . . ,(0

ŝw2

))
where ŝ = (ŝ0, . . . , ŝw2). Then it computes the semi-functional component of the ciphertext as

g
c′(Ŝ,W,ŵ)
1 =

gB
(

0
cι̃(ŝ,ŵ)

)
1

∏
j∈[0,w2]
k∈[n]

g
aι̃jkWkB

(
0
ŝj

)
1


ι̃∈[w1]

.

Since B2 already have received U = (U1, . . . , Uw1
) from the challenger of CMH-Security game, it uses Uι̃ to compute

the first component of the right hand side of the above equation i.e. g
B
(

0
cι̃(ŝ,ŵ)

)
1 = U

B
(
0
1

)
ι̃ .

However to compute the second component

 ∏
j∈[0,w2]
k∈[n]

g
aι̃jkWkB

(
0
ŝj

)
1

 of the semi-functional part of the ciphertext,

B2 needs to know ŝ = (ŝ0, . . . , ŝw2
). For each of j ∈ [0, w2], two cases can happen.

– Either there is ι̃′ ∈ [w1] such that cι̃′(ŝ, ŵ) = ŝj , that lets B2 to know ŝj .

– Or there is no such ι̃′ ∈ [w1] for which cι̃′(ŝ, ŵ) = ŝj . Then due to regular decryption properties of pair encoding
(precisely Property P3), aι̃′′jk = 0 for all ι̃′′ ∈ [w1], k ∈ [n].

Due to regular decryption properties of pair encoding (precisely Property P4), B2 also can compute the semi-

functional component of the blinding factor e(g
ααα>B

(
0
ŝ0

)
1 , g2) as gŝ01 is available in U.

B2 uses the normal part of the ciphertext and the semi-functional part of the ciphertext to generate the C∗. Then
it evaluates ξ∗ = H(C∗) to compute C

∗
0 and defines C

∗
= (C

∗
0,C

∗). It outputs C
∗
.

Key Queries. On jth secret key query x (j ∈ [q1 + 1, q]), B2 generates secret key K← KeyGen(x,msk).

Dec Queries. Same as Phase-I decryption queries.

Guess. A halts with output b′. B2 outputs 1 if b′ = b and 0 otherwise.

24

C.5 Type-2 to Type-3 Key in Phase-I

Lemma 9 (Game2,i,2 to Game2,i,3). For i = 1, . . . , q1, for any efficient adversary A that makes at most q1 pre-
challenge key queries, at most q2 post-challenge key queries and at most Q decryption queries, there exists a PPT
algorithm B1 such that |Adv2,i,2

A (λ)− Adv2,i,3
A (λ)| ≤ AdvDd-MatDH

B1
(λ).

Proof. The algorithm B1 gets as input (G, gT2 , g
T
(y
ŷ

)
2) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$←Dd, y

$←Zdp.

The simulator description is same as Lemma 7 except while answering ith query. For ι ∈ [m2], each ιth component

of secret key of ith key query is now multiplied by g
kι(Z

(
0
βi

)
,0,W)

2 ∈ G(d+1)
2 . As B1 knows m̂pkbase, it chooses βi

$←Zp
to perform the simulation. In the similar light of Lemma 7, we see that if ŷ = 0, the key is a type-3 key whereas if

ŷ
$←(Zp)m2 , the key is type-2 key.

C.6 Normal to Type-1 Key in Phase-II

Lemma 10 (Game2,q1,3 to Game2,q1+1,1). For any efficient adversary A that makes at most q1 pre-challenge key
queries, at most q2 post-challenge key queries and at most Q decryption queries, there exists a PPT algorithm B1 such
that |Adv2,q1,3

A (λ)− Adv2,q1+1,1
A (λ)| ≤ AdvDd-MatDH

B1
(λ).

Proof. The algorithm B1 gets as input (G, gT2 , g
T
(y
ŷ

)
2) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$←Dd, y

$←Zdp.
The simulator description is same as Lemma 7 except the simulator has to generate all post-challenge keys at once.

Here the simulator again uses random self-reducibility property of Matrix-DH problem to create q2m2 many instance
of the given problem. It uses first m2 instances to answer (q1 + 1)th key query, next m2 instances to answer (q1 + 2)th

key query, and so on. Similar to the proof of Lemma 7, we see that if ŷ = 0, the key is a normal key whereas if

ŷ
$←(Zp)m2 , the key is type-1 key.

C.7 Type-1 to Type-2 Key in Phase-II

Lemma 11 (Game2,q1+1,1 to Game2,q1+1,2). For any efficient adversary A that makes at most q1 pre-challenge key
queries, at most q2 post-challenge key queries and at most Q decryption queries, there exists a PPT algorithm B3 such
that |Adv2,q1+1,1

A (λ)− Adv2,q1+1,2
A (λ)| ≤ AdvSMH

B3
(λ).

Proof. In this selective security game of pair encoding scheme, the algorithm B3 gets as input the group description
G1, G2, GT, g1 ∈ G1 and g2 ∈ G2.

Setup. B3 chooses ααα
$←Z(d+1)

p and W = (W1, . . . ,Wn+2)
$←
(
Z(d+1)×(d+1)
p

)(n+2)

, B
$←Z(d+1)×(d+1)

p , D̃
$←GLp,d

and defines D =

(
D̃ 0
0 1

)
and Z = B−>D. It computes mpk and msk and gives mpk to A.

Key Queries. On jth secret key query x (j ≤ q1), B3 generates type-3 secret key K ← SFKeyGen(x,msk,

−, m̂pkbase, 3, βj) after choosing βj
$←Zp.

Dec Queries. On decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is not

verified or if R(x, y) 6= 1, aborts. Otherwise B3 computes normal altKey K̂ ← AltKeyGen(C, x,msk) and returns

AltDecrypt(C, K̂) to A.

Challenge. On receiving the challenge (y∗,M0,M1), B3 picks b
$←{0, 1}. It makes the challenge query on y∗ to

the challenger of SMH-Security game. It is possible to make such a challenge query as R(x, y∗) = 0 for all key queries.

B3 receives U← g
c(ŝ,ŵ)
1 .

25

B3 first computes the normal part of the ciphertext by computing g
cι̃(S,W)
1 for S =

((s
0
0

)
, . . . ,

(sw2
0

))
such that

s0, . . . , sw2

$←Zdp.

To compute the semi-functional part, that contains ŵ which is unknown to B3, it implicitly sets Ŝ =
((

0
ŝ0

)
, . . . ,(0

ŝw2

))
where ŝ = (ŝ0, . . . , ŝw2

). Then it computes the semi-functional component of the ciphertext as

g
c′(Ŝ,W,ŵ)
1 =

gB
(

0
cι̃(ŝ,ŵ)

)
1

∏
j∈[0,w2]
k∈[n]

g
aι̃jkWkB

(
0
ŝj

)
1


ι̃∈[w1]

.

Since B3 already has received U = (U1, . . . , Uw1
) from the challenger of SMH-Security game, it uses Uι̃ to compute

the first component of the right hand side of the above equation i.e. g
B
(

0
cι̃(ŝ,ŵ)

)
1 = U

B
(
0
1

)
ι̃ .

However to compute the second component

 ∏
j∈[0,w2]
k∈[n]

g
aι̃jkWkB

(
0
ŝj

)
1

 of the semi-functional part of the challenge

ciphertext, B3 needs to know ŝ = (ŝ0, . . . , ŝw2). For each of j ∈ [0, w2], two cases can happen.

– Either there is ι̃′ ∈ [w1] such that cι̃′(ŝ, ŵ) = ŝj , that lets B3 to know such an ŝj .
– Or there is no such ι̃′ ∈ [w1] for which cι̃′(ŝ, ŵ) = ŝj . Then due to regular decryption properties of pair encoding

(precisely Property P3), aι̃′′jk = 0 for all ι̃′′ ∈ [w1], k ∈ [n].

Due to regular decryption properties of pair encoding (precisely Property P4), B2 also can compute the semi-

functional component of the blinding factor e(g
ααα>B

(
0
ŝ0

)
1 , g2) as gŝ01 is available in U.

B3 uses the normal part of the ciphertext and the semi-functional part of the ciphertext to generate the C∗. Then
it evaluates ξ∗ = H(C∗) to compute C

∗
0 and defines C

∗
= (C

∗
0,C

∗). It outputs C
∗
.

Key Queries. On jth secret key query xj (j ∈ [q1 +1, q]) B3 forwards xj as a key-query to the challenger to receive

V = g
k(β,r̂,ŵ)
2 where (k = (k1, . . . , km1

);m2)← EncK(xj , N). B3 has to decide if β = 0 or β
$←Zp. It is to be noted that

r̂ and ŵ are chosen by the challenger of SMH-Security game, unknown to B3. So B3 computes the normal part of the

key by computing g
kι(ααα,R,W)
2 for R =

((r
1
0

)
, . . . ,

(rm2
0

))
such that r1, . . . , rm2

$←Zdp. To compute the semi-functional

part, that contains ŵ which is unknown to B3, it implicitly sets R̂ =
((

0
r̂1

)
, . . . ,

(0
r̂m2

))
where r̂ = (r̂1, . . . , r̂m2

). Then

it computes the semi-functional component of the key as following.

g
k′(β,R̂,W,ŵ)
2 =

gZ
(

0
kι(β,r̂,ŵ)

)
2

∏
j∈[m2]
k∈[n]

g
bιjkW

>
k Z
(

0
r̂j

)
2


ι∈[m1]

.

Since B3 already has received V = (V1, . . . , Vm1
) from the challenger of SMH-Security game, it uses Vι to compute

the first component of the right hand side of the above equation i.e. g
Z
(

0
kι(β,r̂,ŵ)

)
2 = V

Z
(
0
1

)
ι .

However to compute the second component

 ∏
j∈[m2]
k∈[n]

g
bιjkW

>
k Z
(

0
r̂j

)
2

 of the semi-functional part of the secret key,

B3 needs to know r̂ = (r̂1, . . . , r̂m2). For each of j ∈ [m2], two cases can happen.

– Either there is ι′ ∈ [m1] such that kι′(β, r̂, ŵ) = r̂j , that lets B3 to know r̂j .
– Or there is no such ι′ ∈ [m1] for which kι′(β, r̂, ŵ) = r̂j . Then due to regular decryption properties of pair encoding

(precisely Property P2), bι′′jk = 0 for all ι′′ ∈ [m1], k ∈ [n].

B3 uses the normal part of the key and the semi-functional part of the key to generate the secret key and hands it
over to A.

26

Dec Queries. Same as Phase-I decryption queries.

Guess. A halts with output b′. B3 outputs 1 if b′ = b and 0 otherwise.

C.8 Type-2 to Type-3 Key in Phase-II

Lemma 12 (Game2,q1+1,2 to Game2,q1+1,3). For any efficient adversary A that makes at most q1 pre-challenge key
queries, at most q2 post-challenge key queries and at most Q decryption queries, there exists a PPT algorithm B1 such
that |Adv2,q1+1,2

A (λ)− Adv2,q1+1,3
A (λ)| ≤ AdvDd-MatDH

B1
(λ).

Proof. The algorithm B1 gets as input (G, gT2 , g
T
(y
ŷ

)
2) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$←Dd, y

$←Zdp.
The simulator description is same as Lemma 9 except the simulator has to generate all post-challenge keys at

once. Here the simulator again uses random self-reducibility property of Matrix-DH problem to create q2m2 many
instance of the given problem. It uses first m2 instances to answer (q1 + 1)th key query, next m2 instances to answer
(q1 + 2)th key query, and so on. For ι ∈ [m2], each ιth component of secret key of ith key query is now multiplied by

g
kι(Z

(
0
β

)
,0,W)

2 ∈ G(d+1)
2 . As B1 knows m̂pkbase, it chooses only one β

$←Zp to perform the simulation. Similar to the

proof of Lemma 7, we see that if ŷ = 0, the key is a type-3 key whereas if ŷ
$←(Zp)m2 , the key is type-2 key.

D Security of Construction Π ′
R

D.1 Security Argument

Here we give hybrid security argument to prove the security of predicate encryption scheme Π ′R. We follow the same
sequence of games described in Section 3.3. Intuitively, the collision resistance ofH neither allows the adversary to come
up with a different C nor allows the adversary to change vk that results in the same commitment ξ. The adversary,

after receiving challenge C
∗

= (C
∗
0,C

∗, vk∗, σ∗), can however keep the same C∗ and construct some different C
′
0 and

produce C = (C
′
0,C

∗, vk∗, σ∗) as decryption query. Such a scenario allows the simulator to forge the underlying one-
time signature. Therefore during the security game, what the adversary can do is to come up with random ciphertext
C for decryption. With all but negligible probability, x used in decryption query (x,C) will not satisfy y which is
implicit data-index of C. This way we are ultimately stopping the adversary to gather any non-trivial information.

D.2 Semi-functional Algorithms

– SFEncrypt: Same as SFEncrypt in Section 3.3.1 with the exception that it runs (vk, sk)← OTS.Gen(1λ). Then it com-

putes ξ = H(C, vk) and outputs C = (C0,C, vk, σ) where C0 = g
(ξWn+1+Wn+2)B

(
s0
ŝ0

)
1 and σ ← OTS.Sign(sk,C0).

– SFAltKeyGen: Same as SFAltKeyGen in Section 3.3.1 with the exception that here the ciphertext given for decryption
is of the form C = (C0,C, vk, σ) where the commitment of C is computed as ξ = H(C, vk).

D.3 Sequence of Games

Here we present indistinguishability of Game3,i,1, Game3,i,2, Game3,i,3 for 1 ≤ i ≤ Q of Table 2 in the following lemmas.

Lemma 13 (Game3,i−1,3 to Game3,i,1). For i = 1, . . . , Q, for any efficient adversary A that makes at most q key

queries and at most Q decryption queries, there exists a PPT algorithm B1 such that |Adv3,i−1,3
A (λ) − Adv3,i,1

A (λ)| ≤
AdvDd-MatDH

B1
(λ).

27

Proof. The algorithm B1 gets input (G, gT2 , g
T
(y
ŷ

)
2) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$←Dd, y

$←Zdp.
Setup. Same as Lemma 2. Only difference is here it chooses OTS.

Key Queries. Same as Lemma 2.

Dec Queries. On jth decryption query (x,C) where C is a ciphertext on data-index y, if the signature σ is

not verified or if R(x, y) 6= 1, aborts. Otherwise B1 computes altKey K̂ and returns AltDecrypt(C, K̂) to A. We now
describe the altKey generation procedure.

– If j > i, it is normal altKey. As B1 knows msk, it computes the altKey K̂← AltKeyGen(C, x,msk).

– If j < i, it is type-3 semi-functional altKey. Computes type-3 altKey K̂←SFAltKeyGen(C, x,msk,−, m̂pkbase, 3, η).

– If j = i, it runs (k = (k1, . . . , km1);m2) ← EncK(x,N) and E ← Pair(x, y,N). Chooses r1, . . . , rm2

$← Zdp and

defines R =
((

r1
0

)
, . . . ,

(rm2
0

))
. It generates normal key K = (K1, . . . ,Km1

) where for each ι ∈ [m1], Kι =

g
kι(ααα,R,W)
2 = g

bιααα+
∑

j∈[m2]

bιjZ
(
rj
0

)
+

∑
j∈[m2]
k∈[n]

bιjkW
>
k Z
(
rj
0

)
2 . It then computes (K̃1, . . . , K̃w1

) where K̃ι̃ =
∏

ι∈[m1]

(Kι)
Eιι̃

for each ι̃ ∈ [w1].
Given C = (C0,C, vk, σ) it computes ξ = H(C, vk). To compute the altKey, it implicitly sets Z̃−1

(y
ŷ

)
=
(
rrr
r̂

)
.

Therefore g
Z
(
rrr
r̂

)
2 = g

B̃−>T
(y
ŷ

)
2 . Then the modified key is K̂ = (K̂0, Φ · K̃1, K̃2, . . . , K̃w1

) where K̂0 = g
Z
(
rrr
r̂

)
2 ,

Φ = g
(ξW>

n+1+W>
n+2)Z

(
rrr
r̂

)
2 and therefore is efficiently computable. It is evident from the description that if ŷ = 0,

the key is a normal altKey whereas if ŷ
$←Zp, the key is type-1 altKey.

Challenge. Same as Lemma 2. However, here, it runs (vk∗, sk∗) ← OTS.Gen(1λ). Then it evaluates ξ∗ =

H(C∗, vk∗) to compute C
∗

= (C
∗
0, C∗, vk∗, σ∗) where C

∗
0 = g

(ξ∗Wn+1+Wn+2)B
(
s0
ŝ0

)
1 and σ∗ ← OTS.Sign(sk∗,C

∗
0).

It outputs C
∗
.

Key Queries. On secret key query x, outputs type-3 secret key K← SFKeyGen(x,msk,−, m̂pkbase, 3, β).

Dec Queries. Same as Phase-I decryption query.

Guess. A halts with output b′. B1 outputs 1 if b′ = b and 0 otherwise.

Lemma 14 (Game3,i,1 to Game3,i,2). For i ∈ [Q], for all adversary A we have |Adv3,i,1
A (λ) − Adv3,i,2

A (λ)| = 0 if H is
Collision Resistant Hash Function.

To prove the indistinguishability of the two games, we use the modified SFSetup namely SFSetup′ (see Appendix C.3)
that was used to prove indistinguishability of Lemma 8 and Lemma 11. Intuitively, to argue the indistinguishability,
we introduce new randomness using SFSetup′. Note that this newly introduced randomness does not affect the public
key mpk. Then we show that introduction of such new randomness allows us to argue the indistinguishability. Recall
that the challenge ciphertext is semi-functional and is denoted by C

∗
, the secret keys K are all type-3 keys and the

altKey resulted from ith decryption query is denoted by K̂.

Here we prove that joint distribution of {K,C
∗
, K̂} if K̂ is type-1 altKey is identical to joint distribution of {K,C

∗
, K̂}

if K̂ is type-2 altKey. Note that C
∗

= (C
∗
0,C

∗, vk∗, σ∗) such that C
∗
0 = g

(ξ∗Wn+1+Wn+2)B
(
s0
ŝ0

)
+B
(

0
(ξ∗ŵn+1+ŵn+2)ŝ0

)
1

where ξ∗ = H(C∗, vk∗) and σ∗ ← OTS.Sign(sk∗,C
∗
0) for (vk∗, sk∗)← OTS.Gen(1λ). Now we prove our claim that, the

joint distributions of {K,C
∗
, K̂} behaves identically for both type-1 and type-2 altKey K̂.

Claim. The joint distribution of {K,C
∗
, K̂} if K̂ is type-1 altKey is identical to joint distribution of {K,C

∗
, K̂} if K̂

is type-2 altKey.

28

Proof. Note that K is type-3 key in both the distributions and can be computed by the simulator as it knows msk

and m̂pkbase. Due to linearity of pair encoding, the challenge ciphertext C
∗

and the altKey K̂ can be expressed as
product of normal component and semi-functional component. Since the simulator knows msk and can compute the
normal components, it suffices to show that the joint distributions are identical if the semi-functional components of
C
∗

and K̂ are jointly identically distributed.

Notice that due to the introduction of ŵ (see Appendix C.3), the semi-functional ciphertext component C
∗′
0 and

the term Φ′ used in altKey, is affected. To prove our claim, it suffices to argue that the following two distributions

(C
∗′
0 , Φ

′) are identically distributed:{
g
(ξ∗Wn+1+Wn+2)B

(
0
ŝ0

)
+B

(
0

(ξ∗ŵn+1+ŵn+2)ŝ0

)
1 , g

Z

(
0

(ξŵn+1+ŵn+2)r̂

)
+(ξW>n+1+W>n+2)Z

(
0
r̂

)
2

}
and {

g
(ξ∗Wn+1+Wn+2)B

(
0
ŝ0

)
+B

(
0

(ξ∗ŵn+1+ŵn+2)ŝ0

)
1 , g

Z

(
0
uη

)
+Z

(
0

(ξŵn+1+ŵn+2)r̂

)
+(ξW>n+1+W>n+2)Z

(
0
r̂

)
2

}
.

By natural restriction C
∗ 6= C where C

∗
is challenge ciphertext and C is ciphertext on which decryption query is

made. Therefore (C
∗
0,C

∗, vk∗, σ∗) 6= (C0,C, vk, σ).

Then any of the following two cases can happen,

1. If (C∗, vk∗) = (C, vk), then we have found a forgery of the OTSnamely (C0, σ) 6= (C
∗
0, σ
∗).

2. If (C∗, vk∗) 6= (C, vk), then ξ∗ = H(C∗, vk∗) and ξ = H(C, vk) are unequal due to collision resistance of H.
Therefore (ξ∗ŵn+1 + ŵn+2) and (ξŵn+1 + ŵn+2) are pairwise independent as ŵn+1 and ŵn+2 are chosen uniformly
at random. It implies that the semi-functional components of the ciphertext and altKey in Game3,i,1 and Game3,i,2

are identically distributed.

Lemma 15 (Game3,i,2 to Game3,i,3). For i = 1, . . . , Q, for any efficient adversary A that makes at most q key

queries and at most Q decryption queries, there exists a PPT algorithm B1 such that |Adv3,i,2
A (λ) − Adv3,i,3

A (λ)| ≤
AdvDd-MatDH

B1
(λ).

Proof. The algorithm B1 gets input (G, gT2 , g
T
(y
ŷ

)
2) as Dd-MatDH problem instance where ŷ = 0 or ŷ

$← Zp and

T
$←Dd, y

$←Zdp.

The simulator description is same as Lemma 13 except while answering ith decryption query. Here the altKey

component K̂1 = Φ · K̃1 where Φ is now multiplied by g
Z
(

0
ηu

)
2 ∈ H where u =

∑
ι∈[m1]

bιEι1. As B1 knows m̂pkbase, it

chooses η
$←Zp to perform the simulation. In the similar light of Lemma 13, we see that if ŷ = 0, the altKey is a type-3

altKey whereas if ŷ
$←Zp, it is type-2 altKey.

29

