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Abstract. Decentralized ledger-based cryptocurrencies like Bitcoin present
a way to construct payment systems without trusted banks. However, the
anonymity of Bitcoin is fragile. Many altcoins and protocols are designed
to improve Bitcoin on this issue, among which Zerocash is the first full-
fledged anonymous ledger-based currency, using zero-knowledge proof,
specifically zk-SNARK, to protect privacy. However, Zerocash suffers two
problems: poor scalability and low efficiency. In this paper, we address
the above issues by constructing a micropayment system in Zerocash
called Z-Channel. First, we improve Zerocash to support multisignature
and time lock functionalities, and prove that the reconstructed scheme
is secure. Then we construct Z-Channel based on the improved Zero-
cash scheme. Our experiments demonstrate that Z-Channel significantly
improves the scalability and reduces the confirmation time for Zerocash
payments.

Keywords: Cryptocurrency, Blockchain, Zerocash, Privacy, Instant pay-
ment

1 Introduction

Decentralized ledger-based cryptocurrencies like Bitcoin [1] present a way to
construct payment systems without trusted banks. After Bitcoin, many digital
currencies try to improve it in different aspects, including functionality [2–5],
consensus scheme [6, 3], scalability and efficiency [7, 2], and privacy [8, 9], etc.

Privacy protection in ledger-based digital currencies has attracted tremen-
dous attention [10]. Bitcoin has been thoroughly analyzed and its privacy is
deemed fragile [11]. Analyzing the transaction graph, values and dates in the
ledger possibly link Bitcoin addresses with real world identities. Mixes are de-
signed to break the linkability in Bitcoin system. A mix is a trusted party who
mixes coins from many users and gives different coins back to them. However,
coin mixing is time-consuming and centralized, so a mix is required to be trust-
worthy. Therefore, decentralized mixes are constructed like TumbleBit [12], Coin-
Swap [13], CoinParty [14], CoinShuffle[15] and CoinJoin [16], and altcoins such
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as Zerocoin [17], BlindCoin [8], Mixcoin [18] and Pinocchio coin [19], etc. How-
ever, these solutions still suffer drawbacks: 1) Insufficient performance. Most of
them require more than one round of interactions between many parties. 2) Lack
of functionality. They allows “washing” coins from time to time, but fail to hide
everyday transactions.

In comparison, Zerocash [20] completely conceals the user identity and amount
of payment in each and every transaction. Zerocash uses zero-knowledge proof,
specifically zero-knowledge Succinct Non-interactive ARguments of Knowledge
(zk-SNARKs) [21, 22], to protect privacy. However, zero-knowledge proof wors-
ens the scalability and efficiency problems which are already serious in ledger-
based currencies. In fact, Zerocash transactions are even larger than those of
Bitcoin, and verifying zk-SNARK proof takes longer than verifying a Bitcoin
transaction.

For other ledger-based digital currencies, works have been trying to solve the
scalability and efficiency issues. Changing the blocksize [23] straightforwardly
increases the scalability, while compromising efficiency by higher network latency
and longer verification time. The block merging proposed in MimbleWimble
[24] requires a special structure for the blocks and transactions, sacrificing a
majority of the digital currency functionalities. Currently, micropayment channel
[25] is the most promising solution to both scalability and efficiency problems.
Micropayment channel enables Bitcoin users to conduct payments securely off-
chain, promising to support billions of users. However, nobody has proposed to
construct a micropayment system on Zerocash 7.

1.1 Our contribution

In this work we address the above problems by the following contributions:
We develop a micropayment scheme over Zerocash, Z-Channel. Z-Channel al-

lows numerous users to perform high-frequency transactions off-chain in day-to-
day routine, conducting payments nearly instantly. Meanwhile, the Z-Channels
are established and terminated with strong privacy guarantee.

To implement Z-Channel on Zerocash, we improve the Distributed Anony-
mous Payment (DAP) scheme of Zerocash and propose a new scheme called DAP
Plus (DAP+ for short). DAP+ enriches DAP with multisignature and time lock
features needed by Z-Channel. We give the formal definition of the security of
DAP+ scheme based on the original DAP scheme. We prove that DAP+ scheme
is secure under this definition.

Moreover, we implement the zk-SNARK for the new NP statement, based
on the code of ZCash, and instantiate the Z-Channel protocol. We benchmark
the zero-knowledge proofs and the procedures in Z-Channel protocol. In our
experiment, a payment can be issued within 3 milliseconds, which is significantly

7 The work of BOLT (Blind Off-chain Lightweight Transactions) [26] mentions Zero-
cash, claiming that if a BOLT is built on Zerocash, it would provide better channel
privacy than built on other currencies. However, BOLT focuses on solving the linka-
bility issue in channels, and does not specify the concrete construction over Zerocash.
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faster than the original Zerocash payment, which requires several minutes for
generating zero-knowledge proof, and dozens of minutes for ledger confirmation.

1.2 Paper organization

The remainder of the paper is organized as follows. Section 2 introduces the pre-
liminaries needed for understanding our work. Section 3 presents DAP+ scheme.
In Section 4, we describe the construction of Z-Channel. Section 5 analyzes the
performance of Z-Channel. Section 6 concludes this paper.

2 Preliminaries

2.1 Background on zk-SNARKs

The zero-knowledge proving scheme in Zerocash is zk-SNARK (Succinct Non-
interactive ARguments of Knowledge) [22]. Suppose Alice has an NP problem
instance x and its witness w. She is proving to Bob that x is a valid instance,
without revealing w to Bob. She inputs x and w in zk-SNARK to generate a
proof π, and sends π instead of w to Bob. Bob then inputs x and π in zk-SNARK
and is told if π is a valid proof of x. Let C be a circuit verifying an NP language
LC . C takes as input an instance x and witness w, and outputs b indicating if
w is a valid witness for x.

A zk-SNARK is a triple of algorithms (KeyGen, Prove, Verify) fulfilling the
above procedure. The algorithm KeyGen(C) outputs a proving key pk and a
verification key vk. The algorithm Prove takes as input an instance x, a witness
w, and pk, and generates a non-interactive proof π for the statement x ∈ LC .
The algorithm Verify takes as input the instance x, the proof π, and vk, and
outputs b indicating if he is convinced that x ∈ LC .

A zk-SNARK has the property of

1. Correctness. If the honest prover can convince the verifier;
2. Proof-of-knowledge. If the verifier accepting a proof implies the prover

knowing the witness;
3. Perfect zero-knowledge. If there exists a simulator which can always gen-

erate the same results for any instance x ∈ LC without knowing witness w.

The work of Zerocash is based on the zk-SNARK implementation proposed
in [27].

2.2 The Zerocash Scheme

Zerocash is constructed by overlaying a Decentralized Anonymous Payment
(DAP) scheme over Bitcoin or any other ledger-based cryptocurrencies, which
we call the basecoin.

DAP introduces a new kind of coin called shielded coin (by contrast, we call
the unspent outputs in basecoin transparent coins), denoted by c = (cm, v, ρ, apk, r, s),
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where cm is an information-hiding trapdoor commitment, ρ is a random string
for generating the unique serial number sn for this coin. ρ together with the
denomination v and shielded address apk of the owner are concealed in cm. r and
s are the trapdoors used in commitment.

DAP introduces two types of transactions to handle shielded coins: a mint
transaction txMint transforms transparent coins into a shielded coin, and a pour
transaction txPour conducts payments between shielded coins. txPour could also
transform part of the input shielded coins back to transparent coins.

A mint transaction txMint = (cm, v, k, s) takes transparent coins as input, and
produces one shielded coin c = (cm, v, apk, r, s)

8. The commitment is conducted
in two steps: all the data except v are committed into an intermediary commit-
ment k (with trapdoor r), which is then committed together with v to obtain
cm (with trapdoor s). The second commitment is opened, i.e. k, s and v are
appended in txMint for others to verify v, while other information are concealed
in k.

A pour transaction txPour = (snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, πPOUR, ∗) takes
two shielded coins cold1 and cold2 as input, and produces two newly generated
shielded coins cnew1 and cnew2 , and a (possibly zero-value) transparent coin of
value vpub. txPour reveals the commitments to new shielded coins, i.e. cmnew

1 and
cmnew

2 , and the serial numbers of the old coins to prevent trying to spend them
again. The validity of txPour is proved by zero-knowledge proof πPOUR for the
following statement: snold1 and snold2 are valid serial numbers whose ρoldi are re-
spectively committed in cmold

1 and cmold
2 that exist on the ledger, and I can open

the commitments; I can open cmnew
1 and cmnew

2 ; the input and the output are
balanced, i.e. vold1 + vold2 = vnew1 + vnew2 + vpub; I am owner of the input coins,
i.e. for each i ∈ {1, 2}, I know secret key aoldsk,i corresponding to the address aoldpk,i

committed in coldi .
Above are the main ideas of Zerocash. [20] mentions and solves many other

issues in implementing Zerocash, we only provide a brief description due to space
limitation.

1. To prove the existence of a coin commitment cm on the ledger, all commit-
ments are maintained in a Merkle-tree with root rt.

2. To protect all the public information in txPour (for example, the address of
vpub) from forgery, txPour is protected by a signature σ, whose verification
key pksig is generated on the fly, and protected by zero-knowledge proof.

Finally, the formal definition of DAP scheme consists of algorithms (Setup,
CreateAddress,Mint, Pour, Verify, Receive). The Setup algorithm initializes a DAP
instance by invoking the initializers in all the cryptographic building blocks (for
example, KeyGen in zk-SNARK); the CreateAddress algorithm is executed by
each user to generate a shielded address and its key (apk, ask); the Mint algorithm
outputs a mint transaction and the resulting shielded coin; the Pour algorithm
outputs a pour transaction and the new shielded coins; the Verify algorithm

8 We neglect the transaction fees.



Z-Channel: Scalable and Efficient Scheme in Zerocash 5

checks the validity of a mint or pour transaction; finally, the Receive algorithm
scans a ledger and outputs all the shielded coins belonging to a given shielded
address.

2.3 Micropayment Channel

Micropayment channel [25] allows two parties to make payments to each other
without publishing transactions on the ledger. A basic micropayment channel
scheme consists of three protocols: establish channel, update channel, and close
channel. For convenience, we use Alice and Bob in the following description of a
complete execution of a micropayment channel. We use A and B in the subscript
for a coin of address Alice or Bob (AB for a coin in shared address). We use α
and β to differentiate different versions of the same transaction, i.e. symmetric
up to Alice and Bob.

Next, we present the execution procedure of a micropayment channel.

1. Establish channel.

(a) Alice and Bob agree on (vA, vB), the currency they are willing to devote
into the channel, and a shared address addrshr.

(b) They agree on a sharing transaction txshr, which transforms values vA
and vB from Alice and Bob, to a coin cshrAB in address addrshr of value
vA + vB .

(c) Alice signs a closing transaction txclsβ for Bob, and Bob signs txclsα for

Alice. txclsα transforms cshrAB to two coins cclsα,A and cclsα,B of value vA and

vB to Alice and Bob respectively. txclsβ transforms cshrAB to two coins cclsβ,A
and cclsβ,B in the same way.

(d) Finally, they publish txshr, and the channel is established. The balance
of a new channel is (vA, vB).

Remarks:

- In case they do not have coins of the exact value before creating txshr, they
can optionally conduct a funding procedure to prepare the coins. In this
case, the input coins to txshr are called funding coins, denoted by cfundA and
cfundB respectively.

- They sign txcls before txshr, so that neither of them can lock the other’s
currency in the shared address forever.

- The implementation of shared address varies for different cryptocurren-
cies. For Bitcoin, this is implemented by paying to multiple addresses. For
Zerocash, however, this functionality is not implemented, and is what our
work aims to provide.

2. Update channel. If Alice pays Bob by ∆, the balance of the channel should
be updated to (vA −∆, vB +∆). This procedure is executed without inter-
acting with the ledger.
(a) Alice signs a new closing transaction txcls

′

β for Bob, and Bob signs txcls
′

α

for Alice. txcls
′

α transforms cshrAB to two coins ccls
′

α,A and ccls
′

α,B of value vA−∆
and vB +∆ to Alice and Bob respectively; similar for txcls

′

β .
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(b) Alice signs a revoking transaction txrevB for Bob, and Bob signs txrevA for
Alice. txrevB transforms cclsα,A to a coin crevB for Bob; txrevA transforms cclsβ,B
to a coin crevA for Alice.

Remarks:

- Each update is associated with a sequence number which increases by one
with each update. And the sequence number of the transactions in each
update are identical to that of the update.

- After an update, the previous closing transactions are rendered obsolete.
The revoking transactions prevents any of the parties from publishing ob-
solete closing transaction, by giving all his/her coin in the channel to the
other party.

- To prevent the revoking transaction from being surpassed by a transaction
immediately following the obsolete closing transaction, the coin cclsα,A is

locked by time T after txclsα is published, while txrevB overrides the time
lock. Implementation of such fine access control over a coin is left to the
cryptocurrencies. For Bitcoin, the pay-to-script feature suffices to do the
job. For Zerocash, the current scheme cannot accomplish this, which is
another issue solved in our work.

3. Close channel. Either Alice or Bob can close the channel any time after
the channel is established, without interacting with the other party. To close
the channel, Alice or Bob publishes his/her own (alpha or beta) version of
the most updated closing transaction, and waits for time T before redeem-
ing his/her closing coin. The transactions taking the closing coin are called
redeem transactions.

Fig.1 presents an example of execution of micropayment channel.
The establish and closing of a channel involves interaction with the ledger.

They are comparably slow but conducted only once in the lifetime of a channel.
Meanwhile, the update procedure is executed each time a payment is made, and
it can be executed with high frequency.

2.4 Distributed Signature Generation Scheme

The naive implementation of multisignature scheme in Bitcoin, i.e. counting the
number of signatures, reveals some data which compromises the privacy if used
in Zerocash. We implement the multisignature feature in an alternative way,
namely the distributed signature generation scheme [28]. Specifically, we require
the scheme to support the following operations:

1. Distributed key generation. Multiple parties cooperate to generate a pair
of public/private keys pk and sk. After the protocol is done, pk is known by
all the parties, while sk is invisible to every one. Each party holds a share
ski of the private key.

2. Distributed signature generation. Given a message M , the parties hold-
ing the pieces ski of the private key cooperate to generate a signature σ on
M . Specifically, each party generates a share σi of the signature alone and
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Fig. 1. Transactions and coins in a closed micropayment channel. The transactions
that are finally confirmed on the ledger are represented in solid. This figure presents
two examples: 1) (Blue) Bob publishes the latest beta version ending the channel in
legal way or 2) (Red) Alice publishes an outdated alpha version, and Bob taking away
all the coins for punishment.

broadcasts it to other parties. Anyone obtaining all the shares can recover
the complete signature σ. This signature can be verified by pk and is indis-
tinguishable from the signatures directly signed by sk.

3 DAP Plus: Improved Decentralized Anonymous
Payment Scheme

Our construction of Z-Channel relies on two functionalities: multisignature and
time lock. However, they are not provided by the original Zerocash scheme, i.e.
DAP scheme. To solve this issue, we present DAP Plus, which is an improvement
to the DAP scheme, with support to multisignature and time lock features.

3.1 Main Idea of DAP Plus Scheme

In this subsection, we present the improvements of DAP+ compared to the
original DAP scheme. For convenience, we assume that the involved parties are
Alice and Bob, and Alice is trying to send a coin to Bob.

Commit to a public key lock in the coin. In Zerocash, a shielded coin c
consists of a commitment cm and some secret data necessary for opening cm. The
commitment involves the following data: the shielded address apk owned by Bob,
the denomination v and a random string ρ (used for generating serial number
sn). In DAP+, we require Alice to additionally commit a public key lock pklk
into cm. pklk is a properly encoded public key of some public signature scheme.
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For implementing multisignature functionality, we suggest that it is a distributed
signature generation scheme described in last section, to enable multiple users
to share a public key which is indistinguishable from a public key generated by a
single user. For now we simply assume that Bob generates a pair of keys locally
and sends the public key pklk to Alice for her to commit into cm. To fix the
length of the committed data in cm, Alice commits the hash of pklk, denoted by
pkh = Hash(pklk) instead of pklk. When Bob tries to spend this coin, he has to
append to the transaction a signature σ which is verified by pklk. We denote the
data protected by this signature (for example, the entire transaction, or a short
fixed string) by a function ToBeLocked(), and leave it to be determined by the
application that builds on top of DAP+ scheme.

To allow other parties to verify the signature, pklk should be disclosed as the
coin is spent. The anonymity of Bob against Alice is thus compromised, since
Alice would immediately perceive when Bob spends the coin, by identifying pklk
published in the transaction. To solve this problem, we let Bob commit pkh into
a commitment pkcm, with his secret key ask as trapdoor, and sends pkcm to
Alice. Therefore, Alice does not know either pklk or its hash pkh, but she is still
able to commit pkh into cm in an indirect way, i.e. committing pkcm into cm. We
modify the zero-knowledge NP statement POUR in [20] for the pour transaction
so that Alice only needs to prove that she knows pkcm for the new coins. When
Bob spends his coin, however, he has to prove that the revealed pkh is correctly
committed in the coins to spend, with his knowledge of ask.

Commit a time lock in coin. Next, we commit a time lock tlk into the
coin. To avoid the clock synchronizing issue, we use the block height as the clock.
For simplicity, we denote the height of the block containing a coin commitment
cm by BH(cm). We then require that Alice appends a minimum block height
MBH in the pour transaction. A transaction is considered invalid if its MBH is
larger than the height of the block containing it, thus cannot get on the ledger
until the block height reaches MBH. For each input coin, Alice should prove that
BH(cm) + tlk < MBH in zero-knowledge.

There is, however, a tricky issue about BH(cm), since it is somehow indepen-
dent from cm, i.e. there is no computational relationship between them. There-
fore, it is hard to prove in zero-knowledge that Alice has input the correct BH(cm)
as a secret input to the zk-SNARK prover. In the meantime, BH(cm) cannot be
disclosed, as this would compromise the privacy of Alice.

We solve this issue by noting that Alice does not have to prove that BH(cm)+
tlk < MBH, but BH(?)+tlk < MBH where BH(?) is the block height of something
that is guaranteed to be later than cm on the ledger and safe to be disclosed.
The best candidate for this is the Merkle-tree root rt, which is used to prove the
existence of the input coin commitment. Each time when a new coin commitment
is appended on a ledger, the root is updated to a new one, thus there is a one-
to-one correspondence between the list of commitments and the history of roots.
We then naturally define the block height of a Merkle-root rt as that of the
corresponding commitment and denote it by BH(rt).
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Logical relationship between public key lock and time lock. If a coin
commits a public key lock pklk and time lock tlk, we say the coin is locked by
pklk with tlk blocks. If tlk is set to the maximum time lock MTL, then we say
the coin is locked by pklk forever. We denote a pair of public key commitment
and time lock by lock = (pkcm, tlk), and a pair of public key lock and signature
by unlock = (pklk, σ). We say unlock unlocks a lock if pklk is a correct opening
of pkcm and the contained signature is valid.

We decide to take the “OR” relationship between the public key lock and
the time lock. That is to say, the transaction is valid either when the time lock
expires or a valid unlock is provided. To say it in another way, a coin is locked
by tlk blocks unless overridden by the signature.

We accomplish this by adding a overriding boolean flag ovd as a public input
to zk-SNARK, which is true if and only if a valid unlock is appended in the
transaction. Then, Alice only has to prove in zero-knowledge that ovd||(BH(rt)+
tlk < MBH) is true, where || means logical OR.

Note that this logic can be easily modified, without modifying the NP state-
ment POUR. For example, by always setting ovd to false and requiring a valid
unlock, the logic between the locks then becomes “AND”. Similarly, always set-
ting ovd to true totally neglects the time lock. We will use a slightly modified
version of logic in Z-Channel, but for simplicity, we only describe constructing
with basic OR logic in this section.

3.2 Construction of DAP Plus Scheme

ADAP Plus scheme is a tuple of polynomial-time algorithms (Setup, CreateAddress,
CreatePKCM, MintPlus, PourPlus, VerifyPlus, ReceivePlus). Apart from the im-
provements mentioned in the previous subsection, the definition and construction
of the algorithms in the DAP+ scheme are similar to the original DAP scheme
in [20]. To save space, we only present the differences in the construction of these
algorithms compared to the corresponding ones in the original DAP scheme. For
interested readers we refer the complete construction to Appendix A and [20].

We first present the cryptographic building blocks mentioned subsequently.

- Information hiding trapdoor commitment COMM.

- Collision resistance and flexible-input-length hash function Hash.
- Distributed public signature scheme (Gdst,Kdst,Sdst,Vdst), where Gdst is for gen-
erating global public parameter ppdst, Kdst is the key generation algorithm, Sdst
is the signing algorithm and Vdst is the verification algorithm.

Next, we present the detailed difference in the construction of the algorithms
in DAP+ scheme compared to those in DAP scheme. For simplicity, we use
subscript 1..2 to represent a pair each with subscript 1 and 2. For example, cold1..2

represents cold1 , cold2 .

System setup. Given security parameter λ, the algorithm Setup generates
a set of public parameters pp. It is executed by a trusted party only once at
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the startup of the ledger, and made public to all parties. Afterwards, no trusted
party is needed.

Apart from the executions mentioned in the original Setup algorithm in DAP
scheme, in DAP+ this algorithm does the following:

1. Compute ppdst = Gdst().
2. Add ppdst to pp.

Create address. Given public parameter pp, the algorithm CreateAddress
outputs a new shielded address and its secret key in a pair (apk, ask). The con-
struction of CreateAddress in DAP+ is exactly the same to that in DAP.

Create public key commitment. Given public parameter pp and address
secret key addrsk, the algorithm CreatePKCM generates a key pair for the dis-
tributed signature scheme, and a commitment for the public key.

This algorithm is new in DAP+ scheme, so we present the complete con-
struction as follows:

1. Compute (pkdst, skdst) = Kdst(ppdst).
2. Compute pkh := Hash(pkdst).
3. Parse addrsk as (ask, skenc), compute pkcm := COMMask

(pkh).
4. Output pkdst, skdst, pkcm.

For complete anonymity, each time Alice tries to generate a coin (viaMintPlus
or PourPlus algorithm introduced later) for Bob, Bob invokes CreatePKCM al-
gorithm to generate a fresh public key commitment pkcm and sends the pkcm
to Alice. For privacy, each generated pkcm must be used only once. It is recom-
mended that a user stores the output tuples in the wallet, and whenever a new
coin is received, mark the tuple containing the corresponding pkcm as already
used. A coin that uses a pkcm already used should be considered invalid.

Mint coin. The MintPlus algorithm outputs a shielded coin and a mint
transaction, which transforms some transparent coins into shielded coins with
equal value.

Compared to the Mint algorithm in DAP scheme, the MintPlus algorithm
behaves differently in the following respects.

1. Additionally take as input a lock lock.
2. Additionally commit lock into the intermediary coin commitment, i.e. com-

pute
k := COMMr(apk, ρ, lock).

3. Add lock to the output coin c.

Pour algorithm. The PourPlus algorithm outputs two shielded coins and a
pour transaction, which transfers values from two input shielded coins into two
new shielded coins, and optionally transfers part of the input value back to a
transparent coin.

Compared to the Pour algorithm in DAP scheme, the PourPlus algorithm
makes the following modifications.
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- Input:
1. Additionally take as input the minimal block height MBH.
2. Input two Merkle-roots rt1..2 instead of one rt, i.e. use separate roots for

two old coins.
3. For each new coin cnewi additionally input a lock locknewi .
4. Each old coin coldi additionally contains a lock lockoldi .
5. For each old coin coldi additionally input a (possibly empty) secret key skdst,i.

- Procedure:
1. Replace the part of generating new coin with the procedure of MintPlus.
2. Replace the zero-knowledge proof with one of the new statement (see para-

graph “NP statement”).
3. In the part of preventing forgery, add the following to the message to be

protected: MBH, pklkold1..2.
4. Add the unlock procedure:

i. Compute msg := ToBeLocked().
ii. Let ovdi := BH(rti) + tlkoldi ≥ MBH.
iii. Compute9 σi := Sdst(skdst,i,msg) if ovdi, or let σi :=⊥ if not ovdi.

iv. Let unlocki := (pklkoldi , σi).
- Output:
1. In each output coin cnewi , add the lock locknewi .
2. Add to the pour transaction MBH, unlock1..2.

Verify Transactions. Given public parameters pp, a transaction tx and a
ledger L, the VerifyPlus algorithm outputs a bit b indicating if a given transaction
is valid on a ledger.

If tx is a mint transaction, VerifyPlus behaves exactly as the Verify algorithm
in DAP scheme.

If tx is a pour transaction, VerifyPlus behaves differently in the following
respects.

1. Check the minimum block height MBH, if it is larger than the current block
height, output b := 0 and exit.

2. In the part of preventing forgery, add the following to the message against
which the signature is verified: MBH and pklkold1..2.

3. Check the validity of unlock:
(a) If the signature σi in unlocki is empty, set ovdi to false, for i = 1, 2.
(b) If the signature σi in unlocki is not empty, compute msg = ToBeLocked()

and check Vdst(pklki,msg, σi) for i = 1, 2. If any check fails, output b := 0
and exit.

4. Check the zero-knowledge proof according to the new NP statement.

Receive coins. Given public parameter pp, a shielded address and its key
(apk, ask), and a ledger L, the ReceivePlus algorithm scans the ledger and outputs
coins on the ledger belonging to a given shielded address.

9 This procedure may be executed distributedly, where the input skdst,i is shared by
more than one parties, and σi is synthesized from the shared signatures.
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Compared to the Receive algorithm in DAP scheme, after finding out a coin
belonging to the given address, the ReceivePlus algorithm additionally checks the
pkcm in the coin to make sure that it is in the wallet and not marked as already
used.

NP statement. We modify the NP statement POUR as follows:

- Public input:
1. Use two Merkle-roots rt1..2 instead of one rt.
2. Add minimum block height MBH.
3. For each old coin, add pkholdi = Hash(pklkoldi ) and ovdi computed as in

PourPlus and VerifyPlus algorithm.
- Private input: add the locks lockoldi and locknewi in the corresponding coins.
- Statement:
1. For each new coin, replace the commitment validity check with the following

equation

cmnew
i = COMMsnewi

(vnewi ,COMMrnewi
(anewpk,i, ρ

new
i , locknewi )).

2. For each old coin, replace the commitment validity check with the following
equation

cmold
i = COMMsoldi

(voldi ,COMMroldi
(aoldpk,i, ρ

old
i ,COMMaold

sk,i
(pkholdi ), tlkoldi )).

3. For each old coin, the time lock either expires or is overridden, i.e.

ovdi||(BH(rti) + tlkoldi < MBH)

3.3 Security of DAP Plus Scheme

The security of DAP+ scheme is defined in a similar way as that of DAP scheme.
We refer to Appendix C for the complete security definition and Appendix D
for the security proof.

4 Z-Channel

We present the micropayment system over Zerocash, which we call Z-Channel.
Z-Channel follows the structure of micropayment channel presented in Section
2.3. We first give the main idea of Z-Channel, then present the complete protocol.

4.1 Main Idea of Z-Channel

In the micropayment scheme, the parties generate many transactions during each
update. In Zerocash, due to zero-knowledge proof, this will be slow. We consider
letting the parties hold a summary of the transaction instead of a complete one.
Define the note of a pour transaction to be the tuple (snold1 , snold2 , cmnew

1 , cmnew
2 , ∗),
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where ∗ is data of the public output10. The note specifies the behavior of the
pour transaction. Recall that we left the ToBeLocked() function in DAP+ scheme
to be defined by the application. We let this function to return the note of the
pour transaction.

Context of a Z-Channel. If Alice and Bob negotiate the random data
(namely r, s, ρ, (ask, apk)) needed in every coin in the channel, the communication
cost is tremendous. We consider letting them negotiate a random string seed,
and generate all random data with a pseudorandom function. We assign a unique
tag to each random string for distinction. We use the superscripts and subscripts
of the coin to denote the tag, for example, tagclsβ,A denotes the tag of cclsβ,A.

In the protocol, only a limited number of transactions (six, to be specific)
will be published on the ledger, a limited number of public keys suffice to ensure
the uniqueness of public key locks in each published transaction. They can be
determined at the start of the protocol. We define the context of a Z-Channel
ctx to be a tuple of seed and all the public key locks. Given the context and the
denomination, each coin in the Z-Channel is completely determined, i.e. we can
define the procedure c := GetCoin(ctx, v, tag) where tag specifies which coin to
compute.

Relationship between time lock and public key lock. The closing
coins cclsα,A and cclsβ,B are locked by T blocks, by the default specification of
DAP+ scheme, the coin is spendable when either lock is resolved, so both Al-
ice and Bob can spend the coins after T blocks. We have to modify the logic
relationship between time lock and public key lock. We define two functions
ToBeLockedS() := 0∥ToBeLocked() and ToBeLockedW() := 1∥ToBeLocked(). We
require that a valid pour transaction contains a signature verified by the public
key lock on either ToBeLockedS() or ToBeLockedW(). Furthermore, if the signa-
ture is verified on ToBeLockedS(), we call it a strong signature, otherwise it is
weak ; we specify that only a strong signature can override the time lock.

When Alice signs txclsβ for Bob, she simultaneously signs txrdmB which sends

cclsβ,B to crdmB owned by Bob, with a weak signature. Denote the procedure of
signing the notes for the other party in the update of sequence number seq with
balance (vA, vB) by (σ1, σ2) := SignNote(vA, vB , seq). When Bob signs txrevA for
Alice, which sends cclsβ,B to crevA , he signs with strong signature. Therefore, if

the closing coin is not revoked, after publishing txclsβ , Bob can wait T blocks

before publishing txrdmB and get his coin back, while Alice can never get cclsβ,B . If

a revoked txclsβ is published, Alice publishes txrevA which immediately takes cclsβ,B
away. Table 1 summarizes all the public keys and time locks of each coin.

4.2 Construction of Z-Channel Protocol

A Z-Channel Protocol ZCP is a tuple of subprotocols (Establish, Update, Close).
We present the construction of the subprotocols in Algorithms 1,2 and 3. In
Algorithm 1 and Algorithm 2 we divide (by horizontal rule) the procedures into

10 In Z-Channel, the public output is always zero, so we neglect it in the sequel
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c pklk tlk c pklk tlk c pklk tlk c pklk tlk

cfundA pkfundA MTL cfundB pkfundB MTL cshr pkshrAB MTL

cclsα,A,i pkclsAB T cclsβ,A,i pkclsA MTL cclsβ,B,i pk
cls
AB T cclsα,B,i pkclsB MTL

crdmA pkrdmA MTL crdmB pkrdmB MTL crevA pkrevA MTL crevB pkrevB MTL

Table 1. Coin lock specifications in Z-Channel. The public keys with single subscript
are generated by the corresponding parties locally and sent to the other. Those with
double subscripts are generated in distributed way. MTL is the maximum time lock.

groups. In each group the procedures are executed regardless of the presented
order, while different groups should be finished in sequence. For clarity, we omit
the description of sending data to the other party, or checking the correctness,
etc. In each group, if they fall into dispute, any of them can immediately abort
the protocol11.

Establish the channel. Alice and Bob agree on the context (seed and all
public keys) of a Z-Channel. After that, they publish the funding coins and the
share coin. This protocol is formalized in Algorithm 1.

Algorithm 1: Establish Protocol

Alice and Bob agree on seed, vA and vB ;

Alice and Bob distributedly generate pkshrAB and pkclsAB ;

Alice generates pkfundA , pkclsA , pkrdmA , pkrevA ;

Bob generates pkfundB , pkclsB , pkrdmB , pkrevB ;

Let ctx := (seed, pkfundA , pkclsA , pkrdmA , pkrevA , pkfundB , pkclsB , pkrdmB , pkrevB , pkshrAB , pk
cls
AB);

Alice computes SignNote(vB , vA, 0);
Bob computes SignNote(vA, vB , 0);

Alice signs (snfundA , snfundB , cmshr, cmdmy);

Bob signs (snfundA , snfundB , cmshr, cmdmy);

Alice publishes cfundA := GetCoin(ctx, vA, tag
fund
A )

Bob publishes cfundB := GetCoin(ctx, vB , tag
fund
B )

Alice/Bob publishes cshr;

11 When the channel is already established, to abort means executing the Close proto-
col.
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Update the state of channel. To update the channel, Alice and Bob
sign notes for new closing transactions for each other. After that, they sign
revocations for each other to revoke the old version of closing transactions. This
protocol is formalized in Algorithm 2.

Algorithm 2: Update Protocol

Alice and Bob agree on vA,i and vB,i;

Alice computes SignNote(vB,i, vA,i, i);
Bob computes SignNote(vA,i, vB,i, i);

Alice signs (snclsα,A,i, sn
dmy, cmrev

B , cmdmy);

Bob signs (snclsβ,B,i, sn
dmy, cmrev

A , cmdmy);

Close the channel. Let Alice be the party that actively closes the chan-
nel. Alice publishes the most updated closing transaction. Then they publish
redeeming transactions to take away their coins. Alice waits for T blocks before
publishing the redeeming transaction. This protocol is formalized in Algorithm 3.

Algorithm 3: Close Protocol

Alice publishes cclsα ;

Bob publishes crdmB ;

Alice waits T blocks and publishes crdmA ;

4.3 Security of Z-Channel Protocol

Due to space limitation, we refer to Appendix B for the security definition and
proof.

5 Performance Analysis

We measure the performance of DAP+ scheme and Z-Channel. For the DAP+
scheme, we construct new circuit based on that of ZCash and benchmark the
performance of zk-SNARK on key generation, proving and verification. For com-
parison, we also benchmark the performance of the original DAP scheme with
the same environment. The result shows that the modification introduced in
DAP+ slightly increases the key sizes and running times.

For Z-Channel, we implement the protocol and benchmark the computation
time. The result shows that Z-Channel increases the ledger scalability and re-
duces the payment confirmation time significantly.
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5.1 Instantiation of DAP Plus and Z-Channel

Instantiation of DAP Plus. Our implementation of DAP+ is based on that
of ZCash [29], which is the most popular implementation of DAP scheme. ZCash
follows the idea of DAP scheme, but modifies the algorithms and data structures
dramatically. Despite that, our improvements in DAP+ can be applied directly
to ZCash. For details of ZCash we refer interested readers to [29].

We implement the distributed signature generation scheme with EC-Schnorr
signature [28]. We take SHA256 as the public key hash function Hash. We com-
pute pkcm with trapdoor ask (which is 252-bit string in ZCash), by taking the
SHA256 compression of their concatenation ask∥pkh prefixed by four zero-bits.
The time lock is set as a 64-bit integer. As in ZCash, we abandon the trapdoor
s and compute the coin commitment as the SHA256 of the concatenation of all
the coin data.

Instantiation of Z-Channel. For the distributed generation of Schnorr
keys and signature, we take the following simple procedures:

1. For key generation, Alice generates random big integer a and computes A =
aG locally, where G is the generator of the elliptic curve group used in
the EC-Schnorr signature scheme, and Bob generates b and B = bG; Alice
commits A to Bob, Bob sends B to Alice, and Alice sends A to Bob; finally,
the shared public key is A+B, and the shared secret key is a+ b.

2. For signature generation, they first run a key generation procedure to agree
on K = k1G+ k2G, and Alice computes signature share by e = H(xK∥M),
s1 = k1−ae, σ1 = (e, s1), where H is hash function and M is the message to
sign; Bob computes σ2 similarly; the complete signature is σ = (e, s1 + s2).

For the consensus of secret seed, assume Alice and Bob have a secure commu-
nication channel. Alice and Bob generate random 256-bit strings a and b; Alice
commits a to Bob, Bob sends b to Alice, and Alice sends a to Bob; the seed is
seed = a⊕ b.

5.2 Performance of Zero-Knowledge Proof in DAP Plus

We construct the circuit of the new NP statement for zk-SNARK based on the
code of ZCash. Table 2 shows the performance of the zero-knowledge proof pro-
cedures, in comparison with that of the original DAP scheme. The modifications
introduced in DAP+ scheme slightly (around 0.1% to 8%) increase the key sizes
and the time consumption, as expected.

5.3 Performance of Z-Channel Protocol Between Single Pairs

In testing performance of a single Z-Channel, we run the Z-Channel clients on
localhost to minimize the effect of real network latency, and simulate different
network latencies. The time for updating the channel is the key in improving
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#Repeat Mean Std Max Min

Platform
Ubuntu 16.04 LTS 64 bit on Intel Core
i7-5500U @ 2.40 GHz 7.7 GB Memory

DAP PK size 465 MB
DAP+ PK size 516 MB

DAP KeyGen Time 5 340.44s 6.2270s 348.15s 333.38s DAP VK size 773 B
DAP+ KeyGen Time 5 367.48s 4.3756s 372.48s 362.76s DAP+ VK size 932 B

Platform
Ubuntu 17.04 64 bit on Intel Core i5-4590

@ 3.30 GHz 3.6 GB Memory

DAP Prove Time 15 98.06s 0.4914s 99.490s 97.558s
DAP+ Prove Time 15 101.22s 2.5206s 107.52s 98.089s

DAP Verify Time 1500 23.43ms 0.509ms 25.4ms 23.3ms
DAP+ Verify Time 1500 23.46ms 0.128ms 26.3ms 23.4ms

Table 2. Performance of Zero-Knowledge Proof

the payment efficiency of Zerocash. As for the establishment and closure pro-
cedures, the time is dominated by the ledger confirmation time, which on av-
erage is several minutes for Zerocash. Since we have already benchmarked the
zero-knowledge procedures, here we only benchmark the computation needed in
Z-Channel protocol, to make sure their time consumption is negligible compared
to that of zero-knowledge procedure and ledger confirmation. Table 3 shows the
result.

#Repeat Mean Std Max Min

Platform
Ubuntu 17.04 64 bit on Intel Core i5-4590

@ 3.30 GHz 3.6 GB Memory
Establish Time 26.59ms

Update Time 1000 3.778ms 1.238ms 22.5ms 3.467ms Close Time 0.3749ms
Table 3. Performance of Z-Channel

6 Conclusion

We develop Z-Channel, a micropayment channel scheme over Zerocash. In par-
ticular, we improve the original DAP scheme of Zerocash and propose DAP Plus,
which supports multisignature and time lock functionalities that are essential in
implementing micropayment channels. We then construct the Z-Channel pro-
tocol, which allows numerous payments conducted and confirmed off-chain in
short periods of time. The privacy protection provided by Z-Channel ensures
that the identities of the parties and the balances of the channels and even the
existence of the channel are kept secret. Finally, we implement Z-Channel pro-
tocol, and our experiments demonstrate that Z-Channel significantly improves
the scalability and reduces the average payment time of Zerocash.
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A Construction of DAP Plus Scheme

We present the full construction of DAP+ here for completeness (the modifica-
tion is shown in bold font).

ADAP Plus scheme is a tuple of polynomial-time algorithms (Setup, CreateAddress,
CreatePKCM, MintPlus, PourPlus, VerifyPlus, ReceivePlus).

We first present the cryptographic building blocks.

- Keyed pseudorandom functions PRFaddr for generating addresses, PRFsn for
serial numbers and PRFpk for binding public keys with addresses.

- Information hiding trapdoor commitment COMM.
- Fixed-input-length collision resistant hash function CRH and flexible-input-
length hash function Hash.

- Zero-knowledge module zk-SNARK (KeyGen, Prove, Verify), where KeyGen
generates a pair of proving key pkPOUR and verification key vkPOUR, Prove gen-
erates a zero-knowledge proof πPOUR for an NP statement and Verify checks if
a zero-knowledge proof is correct.

- Public signature scheme (Gsig,Ksig,Ssig,Vsig), where Gsig is for generating global
public parameter ppsig, Ksig is the key generation algorithm, Ssig is the signing
algorithm and Vsig is the verification algorithm.
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- Distributed public signature scheme (Gdst,Kdst,Sdst,Vdst) is defined similar to
above, but the algorithms can be executed distributedly by more than one
parties.

- Public encryption scheme (Genc,Kenc, Eenc,Denc), where Genc is for public pa-
rameter generation, Kenc is the key generation algorithm, Eenc is the encryption
algorithm and Denc is the decryption algorithm.

We then present the detailed description of the algorithms. For simplicity, we
use subscript 1..2 to represent a pair each with subscript 1 and 2. For example,
cold1..2 represents cold1 , cold2 .

System setup. The algorithm Setup generates a set of public parameters. It
is executed by a trusted party only once at the startup of the ledger, and made
public to all parties. Afterwards, no trusted party is needed.

- Input: security parameter λ
- Output: public parameters pp

To generate the public parameters, first invoke KeyGen algorithm to generate
(pkPOUR, vkPOUR), then invoke algorithms Gsig, Genc and Gdst to obtain the public
parameters for the public signature schemes and the public encryption scheme.

Create address. The algorithm CreateAddress generates a new pair of shielded
address/key pair. Each user may execute CreateAddress algorithm arbitrary num-
ber of times. The shielded address addrpk is used by other parties to send him
coins.

- Input: public parameters pp
- Output: shielded address/key pair (addrpk, addrsk)

To generate the key pair, first sample a random string ask and compute apk =

PRFaddr
ask

(0). Then, invoke Kenc algorithm to generate a pair of public/private key
pairs (pkenc, skenc). Finally, output addrpk = (apk, pkenc) and addrsk = (ask, skenc).

Create public key commitment. The algorithm CreatePKCM generates
a commitment for a public key lock pklk. For complete anonymity, each time
Alice tries to generate a coin (with MintPlus or PourPlus algorithm introduced
later) for Bob, Bob invokes CreatePKCM algorithm to generate a fresh public
key commitment pkcm and sends the pkcm to Alice.

- Input:
- public parameters pp
- address key addrsk

- Output:
- a pair of public/private keys
- tuple (pklk, pkcm)

To generate pkcm, invoke Kdst algorithm to generate and output a pair of
public/private keys pkdst, skdst. Set pklk = pkdst and compute pkh := Hash(pklk).
Parse addrsk as (ask, skenc), compute pkcm := COMMask

(pkh). Output the tuple
(pklk, pkcm).
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For privacy, each generated pkcm must be used only once. It is recommended
that a user stores the output tuples (pklk, pkcm) in a table PKCM. When receiving
a coin from the ledger (as described in ReceivePlus algorithm), check that the
pkcm is in table PKCM, and delete it from the table after the coin using this
pkcm is spent.

Mint coin. The MintPlus algorithm generates a coin and a mint transaction.

- Input:

- public parameter pp
- coin value v
- destination address addrpk
- a lock lock

- Output:

- coin c
- mint transaction txMint

The Mint algorithm in Zerocash is invoked to generate a Mint transaction
which spends unspent output in basecoin and outputs a coin commitment.
MintPlus modifies the original algorithm, by additionally committing a public
key commitment pkcm and a time lock tlk. The other parts of the algorithm are
left unmodified. The details of the MintPlus algorithm are presented in Alg.4.

Algorithm 4: MintPlus Algorithm

Parse addrpk as (apk, pkenc);
Randomly sample a PRFsn seed ρ;
Randomly sample the COMM trapdoors r, s;
Compute m := COMMr(apk, ρ, lock);
Compute cm := COMMs(v,m);
Set n := (v, ρ, r, s, lock);
Set c := (apk, cm,n);
Set txMint := (cm, v,m, s);
Output c and txMint.

Pour algorithm. The PourPlus algorithm transfers values from two input
coins into two new coins, and optionally transfer part of the input value back to
the basecoin. Pouring allows parties to subdivide coins, merge coins or transfer
ownership. PourPlus generates two coins and a pour transaction.

The inputs to the PourPlus algorithm can be roughly categorized into two
groups. One group consists of the witnesses for validating the input coins. Specif-
ically, we define a CoinWitness to be an assemble of the following information:

- A coin c and the address key addrsk bound to it; and
- witnesses for existence of c on the ledger, i.e. a Merkle root rt and path path;
and
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- locks introduced in DAP+, i.e. pklk, sk where sk is private key of pklk and
COMMask

(pklk) is contained in c.

Another group of inputs consists of the specifications for generating the new
coins. In fact, the specifications for each coin are exactly the same to the inputs
of the MintPlus algorithm. We define MintSpec to be a tuple (addrpk, v, lock).

The inputs and outputs of PourPlus algorithm are summarized as follows:

- Input:
- public parameter pp
- public value vpub
- minimum block height MBH
- old coin witnesses {CoinWitnessi =
(coldi , addroldsk,i, rti, pathi, pklk

old
i , ski)}2i=1

- new coin specifications {MintSpeci =
(addrnewpk,i, v

new
i , locknewi )}2i=1

- Output:
- coins c1, c2
- pour transaction txPour

PourPlus algorithm modifies the original Pour algorithm, by publishing the
public key lock pklkoldi previously committed in each input coin. For each pklkoldi

append the corresponding signature if needed. The details of the PourPlus algo-
rithm are presented in Alg.5.

Verify Transaction Algorithm. The VerifyPlus algorithm outputs a bit b
indicating if a given transaction is valid on a ledger.

- Input:
- public parameters pp
- mint/pour transaction tx
- ledger L

- Output: bit b indicating if the transaction is valid

VerifyPlus modifies the original Verify algorithm, by additionally verifying the
signatures of the public key locks if needed. The public inputs to the zk-SNARK
module are also changed accordingly. The details of VerifyPlus algorithm are
presented in Alg.6.

Receive Algorithm. The ReceivePlus algorithm scans the ledger and out-
puts coins on the ledger belonging to a given shielded address.

- Input:
- public parameters pp
- recipient shielded address/key pair (addrpk, addrsk)
- public key commitment set PKCM
- ledger L

12 This procedure may be executed distributedly, where the input ski is shared by more
than one parties, and σi is synthesized from the shared signatures.
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Algorithm 5: PourPlus Algorithm

Algorithm PourPlus()

MintNewcoin();
PubkeyMac();
ZKprove();
PreventForgery();
Unlock();
Output();

Procedure MintNewcoin()

for i ∈ {1, 2} do
Compute cnewi := MintPlus(MintSpeci);
Parse cnewi as (anew

pk,i, cm
new
i ,nnew

i );
Set Ci := Eenc(pk

new
enc,i,n

new
i );

end

Procedure PubkeyMac()

Generate (pksig, sksig) := Ksig(ppsig);

Compute hsig := CRH(pksig);

for i ∈ {1, 2} do

Parse addroldsk,i as (a
old
sk,i, sk

old
enc,i);

Compute hi := PRFpk

aold
sk,i

((i− 1)∥hsig);

end

Procedure ZKprove()

for i ∈ {1, 2} do

Parse coldi as (aold
pk,i, cm

old
i ,nold

i );

Parse nold
i as (voldi , ρoldi , roldi , soldi , lockoldi );

Compute snoldi := PRFsn
aold
sk,i

(ρoldi );

Compute pkholdi := Hash(pklkoldi );

Compute ovdi := BH(rti) + tlkoldi ≥ MBH;

end

Set x := (rt1..2, sn
old
1..2, pkh

old
1..2, cm

new
1..2, vpub, hsig, h1..2, MBH, ovd1..2);

Set a := (path1..2, a
old
sk,1..2, c

old
1..2, c

new
1..2);

Compute πPOUR := Prove(pkPOUR,x,a);

Procedure PreventForgery()

Set M := (x, πPOUR, MBH, C1..2, pklk
old
1..2);

Compute σ := Ssig(sksig,M);

Procedure Unlock()

Set msg := ToBeLocked();
for i ∈ {1, 2} do

if ovdi then
Compute12 σi = Sdst(ski,msg);

else
Set σi =⊥;

end

Set unlocki = (pklkoldi , σi);

end

Procedure Output()

Set txPour := (rt1..2, sn
old
1..2, cm

new
1..2, vpub, MBH, ∗), where ∗ := (pksig, h1..2,

πPOUR, C1..2, σ, unlock1..2);
Output cnew1..2, txPour;
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Algorithm 6: VerifyPlus Algorithm

if tx is of type txMint then
Parse txMint as (cm, v,m, s);
Set cm′ := COMMs(v,m);
Output b := 1 if cm = cm′, else output b := 0.

else

Parse txPour as (rt1..2, sn
old
1..2, cm

new
1..2, vpub,MBH, ∗) and ∗ as (pksig, h1..2, πPOUR,

C1..2, σ, unlock1..2);

If snold1 or snold2 appears on L or snold1 = snold2 , output b := 0 and exit;
If the Merkle tree root rt1 or rt2 does not appear on L, output b := 0 and
exit;

Compute hsig := CRH(pksig);

for i ∈ {1, 2} do
Parse unlocki as (pklki, σi);

Compute pkholdi := Hash(pklki);
Set ovdi := (σi ̸=⊥);
if ovdi and Vdst(pklki,msg, σi) = 0 then

output b := 0 and exit
end

end

Set x := (rt1..2, sn
old
1..2, pkh

old
1..2, cm

new
1..2, vpub, hsig, h1..2, MBH, ovd1..2);

Set M := (x, πPOUR, MBH, C1..2, pklk
old
1 , pklkold2 );

If Vsig(pksig,M, σ) = 0 output b := 0 and exit;

If Verify(vkPOUR,x, πPOUR) = 0 output b := 0 and exit;
Set msg := ToBeLocked();
Output b := 1;

end
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- Output: set of received coins

ReceivePlus modifies the original Receive algorithm, by additionally checking
that the public key commitment pkcm is previously generated by CreatePKCM
and never used before. The details of the ReceivePlus algorithm are presented in
Alg.7.

Algorithm 7: ReceivePlus Algorithm

Parse addrpk as (apk, pkenc), addrsk as (ask, skenc);
for each Pour transaction txPour on L do

Parse txPour as (rt1..2, sn1..2, cm1..2, vpub, MBH, ∗);
for each i ∈ {1, 2} do

Compute (v, ρ, r, s, lock) := Denc(skenc,Ci);
if Denc does not output ⊥ then

Verify that cmi = COMMs(v,COMMr(apk, ρ, lock));
Parse lock as (pkcm, tlk);
Check that pkcm is in PKCM and never appears in other
coins, if so, output c := (apk, cmi,n) where n = (v, ρ, r, s, lock);

end

end

end

The NP Statement. Finally, we modify the NP statement POUR for the zk-
SNARK module to add a claim that the public key lock pklk and the time locks
tlk have been correctly committed, and that the time locks are either expired or
overridden. Following is the detail of the modified NP statement POUR for the
zero-knowledge proof.
Given

x = (rt1..2, sn
old
1..2, pkh

old
1..2, cm

new
1..2, vpub, hsig, h1..2,MBH, ovd1..2),

where pkholdi = Hash(pklkoldi ), for i ∈ {1, 2}, I know

a = (path1..2, a
old
sk,1..2, c

old
1..2, c

new
1..2),

such that:

- For each i ∈ {1, 2}:
- The pathi is a valid authentication path for leaf cmold

i with respect to root
rti, in a CRH-based Merkle tree.

- The private key aoldsk,i matches the public address of aoldpk,i.

- The serial number snoldi is computed correctly, i.e. snoldi = PRFsn
aold
sk,i

(ρoldi ).

- The coin coldi is well formed, i.e.
cmold

i = COMMsoldi
(voldi ,COMMroldi

(aoldpk,i, ρ
old
i ,COMMaold

sk,i
(pkholdi ), tlkoldi )).
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- The coin cnewi is well formed, i.e.
cmnew

i = COMMsnewi
(vnewi ,COMMrnewi

(anewpk,i, ρ
new
i , locknewi )).

- The address secret key ties hsig to hi, i.e. hi = PRFpk
aold
sk,i

((i− 1)∥hsig).

- The time lock expires or is overridden, i.e. ovdi||(BH(rti)+ tlkoldi [ki] <
MBH).

- Balance is preserved: vnew1 + vnew2 + vpub = vold1 + vold2

B Completeness and Security of Z-Channel Protocol

We define the completeness and security of Z-Channel protocol in Definition 1
and 2.

Definition 1. A Z-Channel Protocol ZCP is said to be complete if the transac-
tions made in Z-Channel transfer correct value of currencies between the parties
when it is closed.

Definition 2. A Z-Channel Protocol ZCP is said to be secure if it satisfies the
properties of currency security and channel privacy.

The completeness property follows directly from the design of the Z-Channel
protocol. The analysis is omitted, since the description of the protocol is self-
explanatory. We claim that the completeness of DAP+ scheme implies the com-
pleteness of Z-Channel. The completeness of DAP+ is discusses later in section
C. The definitions of the two properties currency security and channel privacy
are presented in subsection B.1 and B.2.

Our main theorem claims that the construction of Z-Channel Protocol in
section 4 is secure.

Theorem 1. The protocols presented in Alg.1, Alg.2 and Alg.3 form a secure
Z-Channel Protocol.

Proof: By Lemma 1, the protocols satisfy currency security. By Lemma 2, the
protocols satisfy channel privacy. Thus concludes the proof.

In the next subsections, we will discuss the two properties of our construction
of Z-Channel based on the following assumption: Alice and Bob always have
a secure communication channel established between them whenever needed.
Specifically, we require that the channel is secure against eavesdropping and
man-in-the-middle attacks.

B.1 Currency Security

Definition 3. A Z-Channel Protocol ZCP is said to satisfy currency security
if for any adversary A, the probability for him to win the Z-Channel Currency
game ZCC is negligible.
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The game ZCC is conducted as follows: a challenger C maintains a DAP+
oracle ODAP+, which maintains a DAP+ scheme on a ledger L (the detailed
description of ODAP+ is presented in section C). C also maintains a sequence
number i which is initially set to 0. The game takes as parameter a list of balances
vs = {(vA,i, vB,i)}ni=0 specifying the number of updates and the balances of each
update.

At the beginning, C executes Setup algorithm to initialize the ledger and
sends the resulting public parameter pp to A. Then C and A each executes
CreateAddress algorithm to generate a shielded address, and sends the address
to each other. Denote the address for A by addrpk,A and that of C by addrpk,B .
C queries ODAP+ to mint two coins for each address with value vA,0 and vB,0

respectively.

Then they conduct the ZCP protocol by querying ODAP+ to insert the trans-
actions and updating the balances as specified by vs. A can send C any data at
any time, and if it is a pour transaction, C directly passes it to ODAP+. After
each insertion, C presents A the resulting ledger. C aborts and outputs 0 when-
ever ODAP+ aborts due to an invalid transaction inserted to ledger. After each
update, C updates sequence number i := i+ 1.

C starts the closing subprotocol when i = n or anytime when A sends a
closing transaction or any unexpected data. After the closing subprotocol is
started, C stops receiving data from A, except the transactions, which he still
has to pass to ODAP+. C outputs 1 if A successfully inserts a transaction to
the ledger which transfers value v to addrpk,A, which is larger than both vA,i

and vA,i+1
13. Else, if C successfully closes the channel in expected manner, he

outputs 0. A wins ZCC if C outputs 1.

The following lemma claims that our construction of ZCP satisfies currency
security.

Lemma 1. The protocols presented in Alg.1, Alg.2 and Alg.3 form a Z-Channel
Protocol that satisfies currency security.

Sketch of Proof: If A only issues transactions permitted by the protocol, the
analysis in Section 4 for the design of the subprotocols already covers all the cases
where A may cheat. Therefore, the probability that A wins the game is bound
by the probability that A breaks the non-malleability and balance property of
DAP Plus (see section C), which is negligible by Theorem 2.

13 We do not consider the loss of the denomination of a single payment a serious issue.
Due to the fact that the actions of paying and receiving service is not atomic, the
problem of fair exchange exists ubiquitously, and not just in ledger-based digital
currencies. The common solutions to this problem such as trusted third party or
smart contract are beyond the discussion of this paper. Therefore, we simply assume
that loss of the amount of a single payment is tolerable.
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B.2 Channel Privacy

Definition 4. A Z-Channel Protocol ZCP is said to satisfy channel privacy
property if for any adversary A, the probability for him to win the Channel
Privacy game CP is negligible.

The game CP is conducted as follows: a challenger C maintains two DAP+
oracles ODAP+

0 and ODAP+
1 , each of which maintains a ledger L1 and L2 re-

spectively. At the beginning of this game, C randomly samples a bit b. Then A
sends C a list of balances vs = {(vA,i, vB,i)}ni=0 and all the details to specify an
execution of a ZCP, i.e. the version of the closing transaction to publish and
the times for the executions of all the subprotocols, etc. C executes ZCP locally
and inserts pour transactions to ODAP+

0 . Each time C inserts a transaction to
ODAP+

0 , he simultaneously inserts a randomly generated pour transaction to
ODAP+

1 , which is publicly consistent to the one inserted to ODAP+
1 . Finally, C

presents Lleft := Lb and Lright := L1−b to A, and A outputs a bit b′. A wins CP
if b′ = b.

The following lemma claims that our construction of ZCP satisfies channel
privacy property.

Lemma 2. The protocols presented in Alg.1, Alg.2 and Alg.3 form a Z-Channel
Protocol that satisfies channel privacy property.

Sketch of Proof: We claim that A perceives less information in CP game
than in L− IND game (which is used to define the ledger-indistinguishability
of DAP+, see section C). As a result, the probability that A wins this game
is bound by the probability that A wins L− IND game which is negligible by
Theorem 2.

Now we can safely conclude that the completeness and security of Z-Channel
are based on those of DAP+ scheme, which we discuss in the next section.

C Completeness and Security of DAP+ Scheme

In this section, we present the formal definition of the completeness and security
of DAP+ scheme.

The completeness and security of DAP+ are defined similar to those of DAP
scheme in [20]. The completeness of DAP is defined by INCOMP experiment. The
security of DAP+ consists of the properties of ledger indistinguishability, trans-
action non-malleability and balance, which are defined by experiments L− IND,
TR− NM and BAL respectively. We use a modified version of the above men-
tioned experiments to define the completeness and security for DAP+ scheme.

Definition 5. We say that a DAP Plus scheme Π = (Setup, CreatePKCM,
CreateAddress, MintPlus, PourPlus, VerifyPlus, ReceivePlus) is complete, if no
polynomial-size adversary A wins INCOMP with more than negligible probability.

Definition 6. We say that a DAP Plus scheme Π = (Setup, CreatePKCM,
CreateAddress, MintPlus, PourPlus, VerifyPlus, ReceivePlus) is secure, if it is se-
cure under experiment L− IND, TR− NM and BAL.
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In the INCOMP experiment, an adversary A sends C a ledger L and two
coins cold1 , cold2 , and parameters needed to spend the coins. C tries to spend the
two coins and gets a pour transaction txPour. A wins if the L is a valid ledger,
the parameters are valid with respect to L, the transaction txPour is consistent
to the parameters, but txPour cannot be verified on the ledger. The completeness
requires that A wins with negligible probability.

In the L− IND experiment, C samples a random bit b establishes two oracles
ODAP+

0 and ODAP+
1 , each of which maintains a DAP Plus scheme on a ledger L0

and L1 respectively. In each step A is presented with the two ledgers Lb and Lb−1

and issues a pair of queries (Q,Q′) to C, which will be forwarded to the oracles
ODAP+

0 andODAP+
1 respectively. The queriesQ andQ′ satisfy public consistency

that they matches in type and reveals the same information to A. Finally, A
outputs a guess b′ and wins when b′ = b. The ledger indistinguishability requires
that the advantage of A is negligible.

In the TR− NM experiment, A interacts with one DAP Plus scheme oracle
and then outputs a pour transaction tx′Pour, and wins if there is a pour transaction
txPour ̸= tx′Pour on the ledger such that txPour reveals the same serial number of
tx′Pour and that if tx′Pour takes the place of txPour the ledger is still valid. The
transaction non-malleability requires that A wins with negligible probability.

In the BAL experiment, A interacts with one DAP Plus scheme oracle and
wins the game if the total value he can spend or has spent is greater than the
value he has minted or received. The balance requires that A wins with negligible
probability.

Regarding the experiments L− IND, TR− NM and BAL, we design them
similarly to those in [20], and the major modifications are listed below.

Assume that ODAP+ maintains two tables PKCM, OLDPKCM (in addition
to the tables mentioned in the original version). We add a new kind of query
CreatePKCM as follows:

- Q = (CreatePKCM,K)

(a) Invoke CreatePKCM(pp) to obtain the tuple (sk, pklk, pkcm).
(b) Store (sk, pklk, pkcm) in table PKCM.
(c) Output pkcm.

We modify the queries Mint, Pour as follows:

- For each addroldpk,i, A provides boolean flag ovdi to indicate whether to override
the time lock by unlocking public key lock.

- The flag ovdi in Q and Q′ must be the same for each input coin, and if ovdi is
false, the selected time lock must be expired.

- For addrpk in Mint query or each addrnewpk,i in Pour query, A provides a public
key commitment pkcmnew

i and a time lock tlknewi .
- If the address is in ADDR, ODAP+ checks that pkcmnew

i is in PKCM and not
in OLDPKCM, and aborts if the check fails.

- If the address is not in ADDR, ODAP+ checks that pkcmnew
i is not in either

PKCM or OLDPKCM, and aborts if the check fails.
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- If the Mint or Pour query is successful, ODAP+ removes all pkcmnew mentioned
from PKCM and stores the tuple (addrpk, sk, pklk, pkcm) in OLDPKCM.

- For Pour query, O looks up the table OLDPKCM to find the tuple (addroldpk,i,

skoldi , pklkoldi , pkcmold
i ) for each addroldpk,i, include pklkoldi in the pour transaction

txPour. If ovdi is false, O checks that tlkoldi is less than current time, aborts
if check fails. If ovdi is true, O signs the transaction with the corresponding
secret key of pklkoldi and include the signature in txPour.

We remove the Receive query in the original definition of ODAP+ for the
following reasons:

- The Receive query does not model a proper attacking scenario in real life. In
fact, this query allows A to identify the coins belonging to an address for which
A does not hold the secret key, which is unreasonable in real life.

- The Receive query compromises the ledger indistinguishability. We devise the
following attack to the L− IND game making use of the information provided
by Receive query. First, A issues two pairs of CreateAddress queries to receive
two address public keys, for simplicity we denote the two addresses by Alice
and Bob respectively. Then, A issues a pair of Mint queries to generate a coin
for Alice in both ledgers. Next, A issues a pair of Pour queries (Q,Q′) to C. In
Q A specifies that Alice pays her coin to Bob, while in Q′ Alice pays the coin
to herself. Finally, A issues a pair of Receive queries on Alice, and obtains the
lists of coin commitments for the ledgers respectively. The oracle that returns
an empty commitment list is the one maintaining ledger L0. Thus A wins
L− IND game with 100 percent probability.

- We considered keeping this query to keep the consistency between the queries
and the algorithms. However, if we modify the receiving query to output the
coins belonging to an address of A, it would be redundant since A can simply
execute the ReceivePlus algorithm on the ledgers locally. If we modify the
query to simply tell ODAP+ to execute ReceivePlus algorithm on an address in
ADDR but do not output the result, this query is also redundant since ODAP+

is already specified to execute ReceivePlus after each Mint, Pour and Insert
query.

We modify the Insert query as follows: for each output coin, check that the
pkcm in the coin is stored in PKCM, abort if not so; remove the corresponding
tuple from PKCM and add to OLDPKCM.

The following theorem claims that our construction of DAP Plus scheme is
complete and secure under the above definitions.

Theorem 2. The tuple (Setup, CreatePKCM, CreateAddress, MintPlus, PourPlus,
VerifyPlus, ReceivePlus) is a complete and secure DAP Plus scheme.

The proof is similar to that of Theorem 4.1 in [20]. Here we only present the
modifications to the original one.
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Modify the simulation experiment The simulated experiment ⅁sim proceed as in
[20], except for the following modification:

1. Answering CreatePKCM queries. To answer Q, C behaves as in L− IND,
except for the following modification: after obtaining (sk, pklk, pkcm), C re-
places pkcm with a random string of the appropriate length; then, C stores
the tuple in PKCM and returns pkcm to A. Afterwards, C does the same for
Q′.

2. Answering Mint queries. Compute m = COMMr(τ) for a random string τ
of the suitable length, instead of m = COMMr(apk, ρ, pkcm, tlk). Afterwards,
C does the same for Q′.

Remark 1. There is no need to modify the Pour queries except for the mod-
ifications mentioned in [20], which already discard the information of pkcm
and tlk in the commitment cmnew

i and ciphertext Cnew
i . For each addroldpk,i the

simulated oracle puts the original pklk looked up from OLDPKCM in txPour.
It makes no difference to replace it by a newly generated one, since the one
stored in the table is independent from the random string replacing pkcmold

i .

Difference between ⅁sim and hybrid experiment ⅁3 Let qCP be the total number
of CreatePKCM queries issued by A. In addition to those described in [20] ap-
pendix D.1, we additionally let the experiment ⅁sim modifies ⅁3 in the following
ways:

1. Each time A issues a CreatePKCM query, the commitment pkcm is substi-
tuted with a random string of suitable length.

2. Each time A issues a Mint query, the commitment k in txMint is substituted
with a commitment to a random input.

Then we modify the Lemma D.3 in [20] appendix D.1 as follows:∣∣∣Adv⅁sim −Adv⅁3

∣∣∣ ≤ (qM + 4 · qP + qCP) ·AdvCOMM

We define the completeness, ledger indistinguishability, transaction non-malleability
and balance in a way similar to definitions B.1, C.1 C.2 and C.3 in [20].

Definition 7. We say that a DAP+ scheme Π = (Setup, CreatePKCM, CreateAddress,
MintPlus, PourPlus, VerifyPlus, ReceivePlus) is complete, if for every poly(λ)-size
adversary A and sufficiently large λ, AdvINCOMP

Π,A (λ) < negl(λ), where AdvINCOMP
Π,A (λ)

:= 2· Pr[INCOMP (Π,A, λ) = 1] − 1 is A’s advantage in the INCOMP experi-
ment.

Definition 8. We say that a DAP+ scheme Π = (Setup, CreatePKCM, CreateAddress,
MintPlus, PourPlus, VerifyPlus, ReceivePlus) is L− IND secure, if for every poly(λ)-
size adversary A and sufficiently large λ, AdvL−IND

Π,A (λ) < negl(λ), where AdvL−IND
Π,A (λ) :=

2 · Pr[L− IND( Π,A, λ) = 1]− 1 is A’s advantage in the L− IND experiment.
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Definition 9. We say that a DAP+ scheme Π = (Setup, CreatePKCM, CreateAddress,
MintPlus, PourPlus, VerifyPlus, ReceivePlus) is TR− NM secure, if for every
poly(λ)-size adversary A and sufficiently large λ, AdvTR−NM

Π,A (λ) < negl(λ),

where AdvTR−NM
Π,A (λ) := 2 · Pr[TR− NM (Π,A, λ) = 1] − 1 is A’s advantage

in the TR− NM experiment.

Definition 10. We say that a DAP+ scheme Π = (Setup, CreatePKCM, CreateAddress,
MintPlus, PourPlus, VerifyPlus, ReceivePlus) is BAL secure, if for every poly(λ)-
size adversary A and sufficiently large λ, AdvBAL

Π,A(λ) < negl(λ), where AdvBAL
Π,A(λ) :=

2 · Pr[BAL (Π,A, λ) = 1]− 1 is A’s advantage in the BAL experiment.

In each of the experiments, one or more oracles of the DAP scheme ODAP+

receives queries and output answers. A challenger C interacts with an adversary
A, forwards the queries from A to ODAP+ and the answers back to A, and
performs sanity checks. We modify the mechanism of the original ODAP+ in
[20] to suit our new DAP+ scheme. Below, we first describe how this new oracle
ODAP+ works.

The oracle ODAP+ is initialized by a list of public parameters pp and main-
tains state. Internally, ODAP+ stores the following:

(i) L, a ledger;
(ii) ADDR, a set of address key pairs;
(iii) COIN, a set of coins;
(iv) PKCM, a set of tuples of (sk, pklk, pkcm);
(v) OLDPKCM, a set of tuples of (addrpk, pkcm, pklk).

Initially, L, ADDR, COIN, PKCM, OLDPKCM start out empty. The oracle
ODAP+ accepts various types of queries, and each type of query modifes L,
ADDR, COIN, PKCM, OLDPKCM in different ways and outputs differently. We
now describe each type of query Q.

Q = (CreateAddress)

1. Compute (addrpk, addrsk) := CreateAddress(pp).
2. Add the address key pair (addrpk, addrsk) to ADDR.
3. Output the address public key addrpk.

Other internal storages apart from ADDR stay unchanged.
Q = (CreatePKCM,addrpk,K)

1. Randomly sample u.
2. Randomly sample a public key list pklk (with secret key list being sklist) of

size K.
3. Compute pkcm = COMMu(Hash(pklk)).
4. Store (sk, pklk, pkcm) in table PKCM.
5. Output pkcm.

Other internal storages apart from PKCM stay unchanged.
Q = (Mint, v, addrpk, pkcm, tlk)
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1. Compute (c, txMint) := Mint(pp, v, addrpk, tlk).
2. Add the coin c to COIN.
3. If addrpk is in ADDR, find tuple (sk, pklk, pkcm) in table PKCM, aborts if can-

not find, then removes the tuple from PKCM and stores (addrpk, sk, pklk, pkcm)
in OLDPKCM;

4. If addrpk is not in ADDR, but pkcm can be found in PKCM or OLDPKCM,
aborts;

5. Add the mint transaction txMint to L.
6. Output ⊥.

The internal storage ADDR stay unchanged.
Q = (Pour, idxold1..2, addr

old
pk,1..2, ovd1..2, v

new
1..2, addr

new
pk,1..2, lock

new
1..2, vpub)

1. Let MBH be the current block height.
2. For each i ∈ {1, 2}:

(a) Let cmold
i be the idxoldi -th coin commitment in L.

(b) Let txi be the mint/pour transaction in L that contains cmold
i .

(c) Let coldi be the first coin in COIN with coin commitment cmold
i .

(d) Let pkcmold
i be the public key commitment stored in coldi .

(e) Let (addroldpk,i, ski, pklk
old
i , pkcmold

i ) be the first tuple in OLDPKCM with

public key commitment pkcmold
i .

(f) Let (addroldpk,i,addr
old
sk,i) be the first key pair in ADDR with addroldpk,i being

coldi ’s address.
(g) Let tlki be the time lock stored in coldi .
(h) If ovdi is false, let rti be the a randomly selected root in the Merkle tree

root history later than cmold
i in L such that BH(rti) + tlki < MBH.

(i) If ovdi is true, let rti be the a randomly selected root in the Merkle tree
root history.

(j) Compute pathi, the authentication path from cmold
i to rti.

(k) If addrnewpk,i is in ADDR, checks that pkcmnew
i is in PKCM and not in

OLDPKCM, and aborts if the check fails. Let (pklknewi , unew
i , pkcmnew

i )
be the tuple found in PKCM. Remove pkcmnew

i from PKCM and stores
(addrnewpk,i, ski, pklk

new
i , pkcmnew

i ) in OLDPKCM.
(l) If addrnewpk,i is not in ADDR, checks that pkcmnew

i is not in either PKCM or
OLDPKCM, and aborts if the check fails.

3. Compute (cnew1 , cnew2 , txPour) := Pour(pp, vpub, c
old
1..2, addr

old
sk,1..2, rt1..2, path1..2,

pklkold1..2, sk1..2, addr
new
pk,1..2, v

new
1..2, lock

new
1..2).

4. Verify that Verify(pp, txPour, L) outputs 1.
5. Add the coins cnew1..2 to COIN.
6. Add the pour transaction txPour to L.
7. Output ⊥.

If any of the above operations fail, the output is ⊥ (and L, ADDR, COIN,
PKCM, OLDPKCM remain unchanged).

Q = (Insert, tx)

1. Verify that Verify(pp, tx, L) outputs 1. (Else, abort.)
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2. Add the mint/pour transaction tx to L.
3. Run ReceivePlus for all addresses addrpk in ADDR;
4. For each output coin from ReceivePlus

(a) Let pkcm be the public key commitment stored in it.
(b) Let (sk, pklk, pkcm) be the first tuple in PKCM with the public key com-

mitment pkcm (if not exists, aborts).
(c) Remove this tuple from PKCM;
(d) Add (addrpk, sk, pklk, pkcm) to OLDPKCM.

5. Output ⊥.

The address set ADDR stays unchanged.
With the above described oracle ODAP+, the definitions of ledger indistin-

guishability, transaction non-malleability and balance are defined by three games
respectively: L− IND, TR− NM and BAL. We now describe the above mentioned
L− IND experiment. The other experiments TR− NM and BAL are similar to
the original ones, refer to [20] for the details.

Given a DAP+ scheme Π, adversary A, and security parameter λ, the (prob-
abilistic) experiment L− IND(Π,A, λ) consists of a series of interactions between
A and a challenger C. At the end of this experiment, C outputs a bit in {0, 1}
indicating whether A succeeds.

At the start of the experiment, C samples b ∈ {0, 1} at random, samples
pp ←Setup(1λ), and sends pp to A; using pp, C initializes two DAP+ oracles
ODAP+

0 and ODAP+
1 .

Now A and C start interaction in steps. In each step, C provides to A two
ledgers (Lleft, Lright), where Lleft := Lb is the current ledger in ODAP+

b and

Lright := L1−b the ledger in ODAP+
1−b ; then A sends to C a pair of queries (Q, Q′),

which must be of the same type of query. C acts differently on differnt types of
queries, as follows:

1. If the query is of type Insert, C forwards Q to ODAP+
b , and Q′ to ODAP+

1−b .
If the inserted query is a Pour query with one of the target address addrpk
in ADDR, the public key commitment pkcm committed in the coin must not
be one generated by CreatePKCM previously.

2. For the other query types, C ensures that Q, Q′ are publicly consistent, and
then forwards Q to ODAP+

0 , and Q′ to ODAP+
1 ; assume the two oracle answer

(a0, a1), C forwards to A (ab, a1−b).

At the end, A sends C a guess b′ ∈ {0, 1}. If b = b′, C outputs 1; else, C outputs
0.

Public consistency. As mentioned above, the pairs of queries A sends C
must be of the same type and publicly consistent. We now define the public
consistency. If Q, Q′ are of type CreateAddress, the queries are automatically
public consistent; further more, we require that in this case the address generated
in both oracles are identity. If they are of type CreatePKCM, the queries are
automatically public consistent. If they are of type Mint, then the minted value
v in Q must equal the value in Q′. Finally, if they are Pour query, we require the
following restrictions.

First, each of Q, Q′ must be well-formed:
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(i) the coins cold1 , cold2 corresponding to the coin commitments (reference by the
two indices idxold1 , idxold2 ) in Q must appear in the coin table COIN, similar
requirement for Q′;

(ii) the coins cold1 , cold2 referenced in Q must be unspent, similar requirement
for Q′;

(iii) the address public keys addrpk,1 and addrpk,2 in Q must match those in cold1

, cold2 , similar requirement for Q′;
(iv) the balance equations must hold;
(v) the time locks of the old coins must be up, if not overriden;
(vi) the public key commitments pkcmi must be one generated by PKCM previ-

ously and never used in previous queries and each must be unique in these
queries Q and Q′.

Furthermore, Q, Q′ must be consistent with respect to public information
and A’s view:

(i) the public values in Q and Q′ must equal;
(ii) for each i ∈ {1, 2}, if the i-th recipient addresses in Q is not in ADDR, then

vnewi in Q and Q′ must equal (vice versa for Q′);
(iii) for each i ∈ {1, 2}, the i-th overriding flag ovdi in Q must equal the corre-

sponding flag in Q′;
(iv) for each i ∈ {1, 2}, if the i-th index in Q references a coin commitment in a

transaction from a previously posted Insert query, then the corresponding
index in Q′ must also reference a coin commitment in a transaction posted
in Insert query; additionally, voldi in Q and Q′ must equal (vice versa for
Q′).

D Proof of Security

Here we present the complete proof of Theorem 2. The proofs to transaction
non-malleability and balance are trivially similar to the ones in [20], we omit
them here. For proof of ledger indistingsuishability, we construct a simulation
⅁sim in which the adversary A interacts with a challenger C, as in the L− IND
experiment. However ⅁sim modifies the L− IND experiment in a critical way: all
answers sent by C to A are independent from the bit b, so the advantage of A’s
in ⅁sim is 0. Then we show that AdvL−IND

Π,A (λ) is only negligibly larger than A’s
advantage in ⅁sim.

The simulation experiment. The simulation ⅁sim works as follows. First,
C samples b ∈ {0, 1} and pp ← Setup(1λ), with the following modifications:
the zk-SNARK keys are generated by (pkPOUR, vkPOUR, trap)← Sim(1λ, CPOUR),
instead of the usual way. Then, C sends pp to A, and initializes two DAP+
oracles ODAP+

0 and ODAP+
1 .

Afterwards, ⅁sim proceeds in steps and at each step C present A two ledgers
(Lleft, Lright), where Lleft := Lb is the current ledger in ODAP+

b and Lright := L1−b

the ledger in ODAP+
1−b ; then A sends to C a message (Q, Q′), which consist of two

queries of the same type. The requirement to these two queries is the same to
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that in L− IND. The reaction of challenger C is different from that in L− IND,
as described as follows:

1. Answering CreateAddress queries. In this case, Q = Q′ = CreateAddress.
To answer Q, C behaves as in L− IND, except for the following modification:
after obtaining (addrpk, addrsk)←CreateAddress(pp), C replaces apk in addrpk
with a random string of the appropriate length; then, C stores (addrpk,addrsk)
in ADDR and returns addrpk to A. Afterwards, C does the same for Q′.

2. Answering CreatePKCM queries. In this case, Q = Q′ = CreatePKCM. To
answer Q, C behaves as in L− IND, except for the following modification:
after obtaining (sk, pklk, pkcm), C replaces pkcm with a random string of the
appropriate length; then, C stores the tuple in PKCM and returns pkcm to
A. Afterwards, C does the same for Q′.

3. Answering Mint queries. In this case, Q = (Mint, v, addrpk) and Q′ =
(Mint, v, addr′pk). To answer Q, C behaves as in L− IND, except for the
following modification: Compute m = COMMr(τ) for a random string τ of
the suitable length, instead of m = COMMr(apk, ρ, pklk, tlk). Afterwards, C
does the same for Q′.

4. Answering Pour queries. In this case, Q and Q′ both have the form (Pour,
idxold1..2, addr

old
pk,1..2, ovd1..2, v

new
1..2, addr

new
pk,1..2, lock

new
1..2, vpub). To answer Q, C

modifies in the following ways:
(a) For each j ∈ {1, 2}:

i. Uniformly sample random snoldj .
ii. Randomly sample a list of pairs of public/private keys pklkj , compute

pkholdj := Hash(pklkj).
iii. If addrnewpk,j is in ADDR:

A. sample a coin commitment cmnew
j on a random input;

B. runKenc(ppenc)→ (pkenc, skenc) and computeCnew
j := Eenc(pkenc, r)

for a random r of suitable length.
iv. Otherwise, calculate (cmnew

j , Cnew
j ) as in the Pour algorithm.

(b) Set h1 and h2 to be random strings of suitable length.
(c) Compute all other values as in the Pour algorithm.
(d) The pour proof is computed as πPOUR:=Sim(trap, x), where x := (rt1..2,

snold1..2, pkh
old
1..2, cm

new
1..2, vpub, hsig, h1..2, MBH, ovd1..2).

Afterwards, C does the same for Q′.
5. Answering Insert queries. In this case, Q = (Insert, tx) and Q = (Insert, tx′).

The answer to each query proceeds as in the L− IND experiment.

In each of the above cases, the response toA is computed independently of the
bit b. Thus, when A outputs a guess b′, it must be the case that Pr[b = b′] = 1/2,
i.e., A’s advantage in ⅁sim is 0.

Indistinguishability from Real Experiment.
We construct a sequence of hybrid experiments (⅁real, ⅁1, ⅁2, ⅁3, ⅁sim), in

each of these experiments a challenger C conducts a different modification of the
L− IND experiment. We define ⅁real to be the original L− IND experiment, and
⅁sim to be the simulation described above. Given experiment ⅁, we define Adv⅁
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to be the absolute value of the difference between the L− IND advantage of A
in ⅁ and that in ⅁real. Also, let

1. qCA be the number of CreateAddress queries issued by A,
2. qCP be the number of CreatePKCM queries issued by A.
3. qP be the number of Pour queries issued by A,
4. qM be the number of Mint queries issued by A,

Finally, define AdvEnc to be A’s advantage in Enc’s IND-CCA and IK-CCA
experiments, AdvPRF to be A’s advantage in distinguishing the pseudorandom
function PRF from a random one, and AdvCOMM to be A’s advantage against
the hiding property of COMM.

We now describe each of the hybrid experiments.

1. Experiment ⅁1. The experiment ⅁1 modifies ⅁real by simulating the zk-
SNARKs. More precisely, we modify ⅁real so that C simulates each zk-
SNARK proof, as follows. At the beginning of the experiment, instead of
invoking KeyGen(1λ, CPOUR), C invokes Sim(1λ, CPOUR) and obtains (pkPOUR,
vkPOUR, trap). At each subsequent invocation of the Pour algorithm, C com-
putes πPOUR ←Sim(trap, x), without using any witnesses, instead of using
Prove. Since the zk-SNARK system is perfect zero knowledge, the distribu-
tion of the simulated πPOUR is identical to that of the proofs computed in
⅁real. Hence Adv⅁1 = 0.

2. Experiment ⅁2. The experiment ⅁2 modifies ⅁1 by replacing the ciphertexts
in a pour transaction by encryptions of random strings. Each time A issues
a Pour query where one of (addrnewpk,1, addr

new
pk,2) is in ADDR, the ciphertexts

Cnew
1 , Cnew

2 are generated as follows:
(a) (pknewenc , sk

new
enc )← Kenc(ppenc);

(b) for each j ∈ {1, 2}, Cnew
j := Eenc(pknewenc , j, r) where r is a message ran-

domly and uniformly sampled from plaintext space.

By Lemma 3,
∣∣∣Adv⅁2 −Adv⅁1

∣∣∣ ≤ 4 · qP ·AdvEnc.

3. Experiment ⅁3. The experiment ⅁3 modifies ⅁2 by replacing all PRF-generated
values with random strings:
(a) each time A issues a CreateAddress query, the value apk within the re-

turned addrpk is substituted with a random string of the same length;
(b) each time A issues a Pour query, each of the serial numbers snold1 , snold2

in txPour is substituted with a random string of the same length, and h1

and h2 with random strings of the same length.

By Lemma 4,
∣∣∣Adv⅁3 −Adv⅁2

∣∣∣ ≤ qCA ·AdvPRF

4. Experiment ⅁sim. The experiment ⅁sim is already described above. For com-
parison, we explain how it differs from ⅁3: all the commitments are replaced
with commitments to random inputs:
(a) each time A issues a CreatePKCM query, the commitment pkcm is sub-

stituted with a random string of suitable length; and
(b) each time A issues a Mint query, the coin commitment cm in txMint is

substituted with a commitment to a random input; and
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(c) each time A issues a Pour query, for each j ∈ {1, 2}, if the output address
addrnewpk,j is in ADDR, cmnew

j is substituted with a commitment to a random
input.

By Lemma 5,
∣∣∣Adv⅁sim −Adv⅁3

∣∣∣ ≤ (qM + 4 · qP + qCP) ·AdvCOMM

By summing over A’s advantages in the hybrid experiments, we can bound
A’s advantage in ⅁real by

AdvL−IND
Π,A (λ) ≤ 4 · qP ·AdvEnc + qCA ·AdvPRF +

(qM + 4 · qP + qCP) ·AdvCOMM

which is negligible in λ. This concludes the proof of ledger indistinguishability.

Below, we sketch proofs for the lemmas used above.

Lemma 3. Let AdvEnc be the maximum of: A’s advantage in the IND-CCA ex-
periment against the encryption scheme Enc, and A’s advantage in the IK-CCA
experiment against the encryption scheme Enc. Then after qP Pour queries,∣∣∣Adv⅁2 −Adv⅁1

∣∣∣ ≤ 4 · qP ·AdvEnc.

The proof of Lemma 3 is exactly the same to the proof of Lemma D.1 in [20],
so we omit it here.

Lemma 4. Let AdvPRF be A’s advantage in distinguishing the pseudorandom
function PRF from a random function. Then, after qCA CreateAddress queries,∣∣∣Adv⅁3 −Adv⅁2

∣∣∣ ≤ qCA ·AdvPRF.

Proof sketch. We first constuct a hybrid H, intermediate between ⅁2 and
⅁3, in which we replace all values computed by the first oracle-generated key
ask with random strings. On receiving A’s first CreateAddress query, replace the
public address addrpk = (apk, pkenc) with addrpk = (τ , pkenc) where τ is a random
string of the appropriate length. On each subsequent Pour query txPour, for each
i ∈ 1, 2, if addroldpk,i = addrpk then:

1. replace snoldi with a random string of appropriate length;

2. replace each of h1, h2 with a random string of appropriate length;

3. simulate the zk-SNARK proof πPOUR.

We now argue that A’s advantage in H is at most AdvPRF more than in ⅁2.
Let ask be the secret key generated by the oracle in the first CreateAddress query.
In ⅁2 (as in ⅁real):

1. apk := PRFaddr
ask

(0);

2. for each i ∈ {1, 2}, sni := PRFsn
ask
ρ) for a random ρ;

3. for each i ∈ {1, 2}, hi := PRFpk
ask
(i∥hsig) and hsig is unique.
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Now let O be an oracle that implements either PRFask
or a random function.

We show that if A distinguishes H from ⅁2 with probability ϵ, we can construct
a distinguisher for the two implementations of O. In fact, when O implements
PRFask

, the distribution of the experiment is identical to that of ⅁2; when O is
a random function, the distribution is identical to H. Therefore, A’s advantage
is at most AdvPRF.

Finally, by the hybrid argument, we extend to all qCA oracle-generated ad-
dresses; then, A’s advantage gain from ⅁2 to ⅁3 is at most qCA ·AdvPRF. The

final hybrid is equal to ⅁3, we obtain that
∣∣∣Adv⅁3 −Adv⅁2

∣∣∣ ≤ qCA ·AdvPRF.

Lemma 5. Let AdvCOMM be A’s advantage against the hiding property of COMM.

After qM Mint queries, qP Pour queries and qCP CreatePKCM queries,
∣∣∣Adv⅁sim −Adv⅁3

∣∣∣
≤ (qM + 4 · qP + qCP) ·AdvCOMM.

Proof sketch. We only provide a short sketch, because the structure of the
argument is similar to the one used to prove Lemma 4 above.

For the first Mint or Pour query, replace the “internal” commitment m :=
COMMr(apk, ρ, pklk, tlk) with a COMMr(τ) where τ is a random string of appro-
priate length. Since ρ is random, A’s advantage in distinguishing this modified
experiment from ⅁2 is at most AdvCOMM. Then, if we modify all qM Mint queries
and all qP Pour queries, by replacing the qM +2 · qP internal commitments with
random strings, we can bound A’s advantage by (qM + 2 · qP) ·AdvCOMM.

Next, similarly, replace the coin commitment in the first Pour with a com-
mitment to a random value, then A’s advantage in distinguishing this modified
experiment from the above one is at most AdvCOMM. Then, we modify all qP
Pour queries, by replacing the 2 · qP output coin commitments with random
strings, we can update the bound to A’s advantage to (qM +2 · qP) ·AdvCOMM.

Finally, we modify the qCP CreatePKCM commitments to replace the result-
ing qCP public key commitments by a random string of appropriate length, we

obtain the experiment ⅁sim and get that
∣∣∣Adv⅁sim −Adv⅁3

∣∣∣ ≤ (qM + 4 · qP +

qCP) ·AdvCOMM.


