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Abstract. Given a well-chosen additively homomorphic cryptosystem and a Σ protocol with a linear
answer, Damg̊ard, Fazio, and Nicolosi proposed a non-interactive designated-verifier zero knowledge
argument in the registered public key model that is sound under non-standard complexity-leveraging
assumptions. In 2015, Chaidos and Groth showed how to achieve the weaker yet reasonable culpable
soundness notion under standard assumptions but only if the plaintext space order is prime. It makes
use of Σ protocols that satisfy what we call the optimal culpable soundness. Unfortunately, most of the
known additively homomorphic cryptosystems (like the Paillier Elgamal cryptosystem that is secure
under the standard Decisional Composite Residuosity Assumption) have composite-order plaintext
space. We construct optimally culpable sound Σ protocols and thus culpably sound non-interactive
designated-verifier zero knowledge protocols for NP under standard assumptions given that the least
prime divisor of the plaintext space order is large.
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1 Introduction

Non-interactive zero knowledge (NIZK, [BFM88]) proof system enable the prover to convince the verifier in
the truth of a statement without revealing any side information. Unfortunately, it is well known that NIZK
proof systems are not secure in the standard model. Usually, this means that one uses the random oracle
model [BR93] or the common reference string (CRS, [BFM88]) model. In particular, Σ protocols [CDS94] can
be efficiently transformed into NIZK proof systems in the random oracle model by using the Fiat-Shamir
heuristic [FS86]. However, the random oracle model (and this concrete transformation) is questionable,
since there exist protocols secure in the random oracle model that are not instantiable with any func-
tion [CGH98,GK03]. While newer transformations make less use of the random oracle (for example, by
relying on non-programmable random oracles [Lin15,CPSV16]), it is commonly felt that the random oracle
model is at best a heuristic.

On the other hand, using the CRS model results often — though, not always, one notable exception
being zk-SNARKs [Gro10,Lip12,GGPR13] — in less efficient protocols; moreover, also the CRS model
is quite strong and requires significant amount of trust in the creator of the CRS. See [BCNP04] for
some of the critique; although one can partially decrease the required trust by using multi-party com-
putation to generate the CRS [BCG+15,BGG17] and verify the correctness of the CRS (subversion zero-
knowledge, [BFS16,ABLZ17,Fuc17]). Still, it is desirable to construct NIZK proof systems based on a less
demanding trust model.

Moreover, NIZK proof systems in the CRS model are not always perfect approximations of interactive
zero knowledge proof systems [JSI96,BCNP04,DFN06].

First, interactive zero knowledge provides undeniability: since the verifier can simulate the proof, she
cannot convince third parties that she received a ZK proof from the specific prover. Undeniability is important
in many applications where it provides a certain amount of protection against third parties (for example,
coercers, see [JSI96] for more motivation).

To provide undeniability also in the case of NIZK, Jakobsson et al. [JSI96] introduced the notion of
designated verifier proof systems. A designated verifier NIZK (NIDVZK) proof system is of type “either the
statement is true or I am the intended verifier (i.e., I know some witness wV associated with the verifier)”.
Hence, the designated verifier is convinced that the claim is true, while for everybody else it could look like



this proof came from the verifier instead of the prover and thus they will not be convinced in the veracity
of the claim. While NIDVZK proofs are verifiable only by (the prover and) the designated verifier, one can
argue that an NIDVZK proof system provides a good approximation of interactive zero knowledge proof
systems since neither is transferable [JSI96].

Second, one can rewind interactive zero knowledge proofs of knowledge to extract the prover’s witness.
This guarantees that an accepted prover also knows the witness. Such extraction is impossible, for example,
in the case of some Groth-Sahai proof systems [GS08]. To “emulate” extractability, Groth et al. [GOS12]
introduced the notion of culpable soundness. In a nutshell, culpable soundness means that it should be
difficult to break the soundness of a zero knowledge proof system while knowing a witness wguilt that the
input does not belong to the input language. Culpable soundness has been successfully used in applications
like shuffling [GL07,FL16]; see [GOS12] for other applications. Moreover, culpable soundness is also sometimes
the most one can get since there exist no computationally (non-culpably) sound statistical NIZK argument
systems for non-trivial languages under standard assumptions [AF07].

Closer to the current work, Damg̊ard, Fazio, and Nicolosi [DFN06] constructed what we will call the
DFN transformation from an optimally sound [MP03]1 and specially honest-verifier zero knowledge Σ-
protocol [CDS94] with a linear answer to an NIDVZK argument system (i.e., a computationally sound
NIDVZK proof system) under a complexity leveraging assumption. Recall that a Σ protocol for language L
is optimally sound if the following holds: if the common input x is not in L, then for every a there exists
at most one good e for which there exists a z, such that (x, a, e, z) is an accepting view of the Σ protocol.
Optimal soundness is a potentially weaker requirement than special soundness.

Importantly, the DFN transformation results in an NIDVZK argument system that is secure in the
registered-public key (RPK, [BCNP04]) model that is considered to be significantly weaker than the CRS
model. Moreover, the resulting NIDVZK argument systems are almost as efficient as the original Σ-protocols.
While the DFN transformation can be only applied to optimally sound Σ-protocols with a linear answer, most
of the knownΣ-protocols in the discrete-logarithm based setting have those properties. In particular, [DFN06]
constructed an NIDVZK argument system in the RPK model for the NP-complete language Circuit-SAT.

As argued before, the designated verifier property of the DFN transformation is very useful in certain
applications. Hence, the DFN transformation results in efficient argument systems, secure in a weaker trust
model (the RPK model) that better approximate security properties of interactive zero knowledge proof
systems than say the Groth-Sahai proof system. However, it also has weaknesses. In particular, the original
DFN transform from [DFN06] is only secure under non-standard complexity leveraging assumptions.

Ventre and Visconti [VV09] modified the DFN transformation to work under standard (non-leveraged)
assumptions, but their NIDVZK argument system only achieves weak culpable soundness (called weak co-
soundness in [VV09]).2 As we argued before, culpable soundness approximates interactive zero knowledge.
However, weak culpable soundness seems to be too restrictive, and results in undesirable overhead. We omit
discussion due to space limits and refer to [CG15].

Recently, Chaidos and Groth [CG15] further modified the DFN transformation so that the resulting
NIDVZK argument systems are culpably sound under standard assumptions. However, for this they assumed
that the plaintext space of the underlying strongly additively homomorphic cryptosystem (see [CG15] for
the definition of such cryptosystems), about which the Σ-protocols are, has a prime order p. Under this
assumption, they showed that several known efficient Σ protocols have the optimal culpable soundness
property.

However, the restriction that p is prime can be a problem in many applications, since only some cryp-
tosystems with required properties (like the Okamoto-Uchiyama cryptosystem [OU98]) are known. Moreover,
in the Okamoto-Uchiyama cryptosystem, p must stay secret; this complicates the design of many common

1 This property is also known under the name of relaxed special soundness [DFN06]
2 Briefly, weak culpable soundness means that it is intractable to cheat while knowing a witness assessing the fact

that you are cheating, and also know that your cheating succeeds (i.e., know a witness that certifies that the
verification equations hold). In the case of culpable soundness [GOS12], the latter is not needed. See [VV09] for
more details.
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protocols where one needs to know the order of the plaintext space. Currently, the fact that one would like
to have efficient Σ-protocols excludes known lattice-based cryptosystems with prime-order plaintext space.

Our Contributions. We construct a DFN-transform under standard assumption for additively homomor-
phic cryptosystems where the plaintext space has a composite order N , such that it is solely required that
the least prime factor of N is sufficiently large. While all our examples are about the DCRA-based Paillier
Elgamal cryptosystem [DJ03,BCP03], it is clear that they can modified to work with other suitable cryp-
tosystems. The main novelty of our work is proving that several known Σ protocols over composite order
plaintext spaces are optimally culpably sound. We postpone the construction of culpably sound NIDVZK
argument systems to the appendix. Because of the lack of space, the construction of culpably sound NIDVZK
argument system is available from the full version [Lip17].

More precisely, an optimally sound Σ protocol is optimally culpable sound3 if the following property
holds: a successful cheating prover A who knows that she cheats (e.g., she knows the secret key of the public
key cryptosystem Π) can efficiently recover the good e. That is, there exists an efficient extractor S.EX that
extracts good e (if it exists), given the common input, the first message of the Σ protocol (e.g., a tuple of
ciphertexts) output by A, and the guilt witness (e.g., the secret key of Π). We emphasize that the optimal
culpable soundness is a stronger notion of security compared to the optimal soundness.

The main technical contribution of the current paper is the construction of an efficient S.EX for several
(known) Σ protocols about the plaintexts of the Paillier Elgamal cryptosystem. By using S.EX, we prove
optimal culpable soundness of corresponding Σ protocols without relying on the Strong RSA or any other
computational assumption. Importantly, the proofs of optimal culpable soundness are simpler than the special
soundness proofs — that we also reproduce for the sake of completeness — for the same Σ protocols.

For the constructed extractors to be successful, it is only required that the least prime factor of N is large
enough. This means that one can use essentially any known additively homomorphic public-key cryptosystem
that has a large plaintext space. On the other hand, Chaidos and Groth [CG15] constructed S.EX only in
the case of prime-order plaintext space (with the Okamoto-Uchiyama cryptosystem being the sole mentioned
candidate cryptosystem in [CG15]).

Before we give more details about the new Σ protocols, let us recall that the Paillier Elgamal cryptosystem
has several other interesting properties:

1. First, it is double trapdoor [BCP03]: it has two statistically independent trapdoors, the prime factor-
ization skfact of an RSA modulus N , and an Elgamal-like secret key skdl. Decryption is possible, given
either of the two trapdoors. Hence, given that N is securely generated, many different parties can operate
with plaintexts and ciphertexts modulo the same N ; this simplifies the design of threshold encryption
schemes, [DJ03].

2. Second, many of the standard Σ protocols, see [Jur03], working on top of the Paillier Elgamal cryptosys-
tem satisfy special soundness only under the Strong RSA assumption [BP97].

In the case of the Paillier Elgamal cryptosystem, S.EX only needs to use the second trapdoor skdl. Hence,
if a cheating prover manages to make the verifier to accept, the extractor who knows skdl can extract the
good challenge, given that it exists. On top of it, the extractor may also extract a non-trivial factor of N ,
which means that he will break the factoring assumption. In practice, this fact is relevant in the case of
threshold encryption, where such a factor can be recovered only when a majority of the key generating
parties collaborate, while extraction is possible by every single party who knows the key skdl.

However, the extractor does not need factoring to be hard to be successful, i.e., extraction is uncondi-
tionally successful. Thus, while some Σ protocols about the plaintexts of the Paillier Elgamal cryptosystem
are specially sound only under the Strong RSA assumption, their optimal culpable soundness (and hence,
also optimal soundness) is unconditional. Up to our knowledge, this separation has not been noticed before.
We leave it as in interesting question whether such a phenomenon is widespread.

The modified DFN-transform achieves culpable soundness in the sense that soundness is guaranteed
against adversaries that return together with the accepting view also the secret key of the prover (but no

3 Chaidos and Groth called it soundness with the unique identifiable challenge.
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other secret value). If the verifiers gives to the authority a zero knowledge proof of knowledge of her secret
key sk, we can construct an adversary that retrieves sk from the registration process, and thus achieves the
standard (not culpable) notion of soundness.

2 Preliminaries

For a predicate P , let [P (x)] be 1 iff P (x) is true, and 0 otherwise. We denote uniform distribution on set
S by U(S), and let a ←r S to denote choosing a from U(S). The statistical distance between two sets
S1, S2 ⊆ Ω is SD(U(S1), U(S2)) = 1

2

∑
x∈Ω |Pr[x ∈ S2] − Pr[x ∈ S1]|. We will implicitly use the following

lemma.

Lemma 1. Let S1 and S2 be two finite sets. If S1 ⊆ S2, we have SD(U(S1), U(S2)) = 1 − |S1|/|S2|. In
particular, if |S2| = (1 + 1/t) · |S1| for some positive integer t, then SD(U(S1), U(S2)) = 1/(t+ 1).

Proof. SD(U(S1), U(S2)) = 1
2 (|S2 \ S1|/|S2|+ |S1| · (1/|S1| − 1/|S2|)) = 1− |S1|/|S2|. ut

For a positive integer N , let lpf(N) be its least prime factor. Let ϕ(N) be the Euler totient function.
Given that gcd(a, b) = γ, the Extended Euclidean Algorithm returns integers α and β, such that αa+βb = γ.

For any integer a and an odd prime p, the Legendre symbol
(
a
p

)
is defined as

(
a
p

)
= 0, if a ≡ 0 (mod p),(

a
p

)
= +1, if a 6≡ 0 (mod p) and for some integer x, a ≡ x2 (mod p), and

(
a
p

)
= −1, if there is no such

x. For any integer a and any positive odd integer N , the Jacobi symbol is defined as the product of the

Legendre symbols corresponding to the prime factors of N :
(
a
N

)
=
∏t
i=1

(
a
pi

)αi
, where N =

∏t
i=1 p

αi
i for

different primes pi. Let JN = {a ∈ ZN :
(
a
N

)
= 1}; clearly JN E Z∗N (i.e., JN is a subgroup of Z∗N ). Let

QN E JN be the subgroup of quadratic residues in ZN . The Jacobi symbol can be computed in polynomial
time, given only a and N .

2.1 Cryptographic Assumptions

Within this paper, κ is an exponential (e.g., κ ≈ 128) security parameter. We denote f(κ) ≈κ f ′(κ), if
|f(κ) − f ′(κ)| = κ−ω(1). A function f(κ) is negligible, if f(κ) ≈κ 0. For any κ, we assume that factoring
τ(κ)-bit integers is intractable.

Strong RSA. We say that the Strong RSA assumption [BP97] holds, if given a product N = pq of two
randomly chosen τ(κ)/2-bit safe primes p = 2p′ + 1 and q = 2q′ + 1, and y ←r Z∗N , it is computationally
difficult to output (x, e), such that e > 1 and y ≡ xe mod N .

DCR [Pai99,CS02]. Let N = pq be a product of two τ(κ)/2-bit random safe primes p = 2p′ + 1 and
q = 2q′ + 1. Let N ′ = p′q′. Let s ≥ 1. Write G := Z∗Ns+1

∼= GNs ⊕ GN ′ ⊕ G2 ⊕ T , where ∼= indicates
group isomomorphism, ⊕ is the direct sum or Cartesian product, Gi are cyclic groups of order i, and
T is the order-2 cyclic group generated by −1 mod Ns+1. Let X := P := JNs+1

∼= GNs ⊕ GN ′ ⊕ T ,
X′ := P′ := QNs+1

∼= GNs ⊕GN ′ , and L ∼= GN ′ be multiplicative groups.
Let g be a random generator of L; g can be thought of as a random 2Ns-th residue. It can be computed

by choosing a random µ←r ZNs+1 and then setting g ← µ2Ns mod Ns+1.
A witness w ∈ W := Z for x ∈ L is such that x ≡ gw (mod Ns+1). Finally, let g⊥ be an arbitrary

generator of the cyclic group GNs (for example g⊥ = 1 +N ∈ ZNs+1). We set Λ = (N, s, g, g⊥).
The Decisional Composite Residuosity (DCR, [Pai99]) assumption says that it is difficult to distinguish

random elements of L from random elements of X.
We remark that we cannot sample uniform witnesses as W = Z is infinite. From a mathematical stand-

point, we could have set W = ZN ′ , but we cannot do that here, as computing N ′ from Λ requires to factorize
N . Instead, we sample witnesses uniformly from W∗N := ZbN/4c. This is satistically close to uniform over
ZN ′ as: SD(U(ZN ′), U(W∗N )) = 1 − p′q′/(pq/4) = (2p′ + 2q′ + 1)/(pq) < 2(p + q)/(pq) < 4/ lpf(N). From
this distribution over W, we can derive a statistically uniform distribution over L.
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2.2 Paillier Elgamal Cryptosystem

We use the following CPA-secure double-trapdoor cryptosystem Π = (K,VK,E,D) that is based on a pro-
jective hash proof system from [CS02]. We make it proof-friendly by using ideas from [DJ03] and augment
it with the VK procedure needed to get optimal culpable soundness. Following say [MTY11], we call this
cryptosystem Paillier Elgamal. See, e.g., [DJ03,BCP03] for variants of this cryptosystem.

Let Λ = (N = pq, s, g, g⊥) and (p = 2p′ + 1, q = 2q′ + 1) be chosen as in Sect. 2.1, with N ′ = p′q′. Set
skfact ← (p, q) and skdl ←r W∗N . Let h ← gskdl mod Ns+1. Hence, g, h ∈ P = JNs+1 . The key generator
Π.K(Λ) returns the public key pk := (Λ, h) and the secret key sk := (skfact, skdl). The message space is
equal to Mpk := ZNs , the ciphertext space is equal to Cpk := P2, and the randomizer space is equal to
Rpk := W∗N × Z2 × Z2.

Define VK(skdl, pk) = 1 iff skdl is the secret key, corresponding to the public key pk. In the case of the
Paillier Elgamal, VK can be evaluated efficiently by checking whether h ≡ gskdl (mod Ns+1). Define

Espk(m; r, t0, t1) := ((−1)t0gr, (N + 1)m(−1)t1hr) mod Ns+1 .

Here, t0 and t1 are only needed for the sake of constructing zero knowledge proofs, to obtain soundness also
in the case when g 6∈ QNs+1 or h 6∈ QNs+1 . By default, one just sets t0 = t1 = 0.

Given a ciphertext C = (C1, C2), the decryption algorithm Dsskdl(C) checks that C1, C2 ∈ P = JNs+1 and

rejects otherwise. Second, it computes (N + 1)2m = (C2/C
skdl
1 )2 mod Ns+1, and then retrieves m from this

by using the algorithm described in [DJ01]. Π is IND-CPA secure under the DCR assumption, [CS02].
The Paillier Elgamal cryptosystem is additively homomorphic, since Espk(m1; r1, t01, t11) ·

Espk(m2; r2, t02, t12) = Espk(m1 + m2; r1 + r2, t01 ⊕ t11, t02 ⊕ t12). Moreover, it is blindable, since for
r′ ←r W∗N , tb0 ←r Z2 and tb1 ←r Z2, Espk(m; r, t0, t1) · Espk(0; r′; tb0, tb1) = Espk(m; r + r′, t0 + tb0
mod 2, t1 + tb1 mod 2) is a (close to uniformly) random encryption of m.

This cryptosystem has two statistically independent trapdoors, skfact = (p, q) and skdl. To decrypt
(C1, C2), it suffices to have either. However, in some applications N can be generated in a highly secure
environment so that its factorization is not known to anybody. Alternatively, one can create a huge N
randomly, so that with a high probability it is guaranteed that N has large factors, [San99]. Many different
parties can then have N as a part of their public key (without knowing the factorization), and generate their
own trapdoor skdl. A natural application is threshold encryption, where the factorization of N is only known
by a threshold of the parties, while each party has their own skdl; see [DJ03].

2.3 Σ Protocols

Let R = {(x,w)} be a polynomial-time verifiable relation, and let LR = {x : (∃w)(x,w) ∈ R}, where w has
polynomial length.

A Σ-protocol [CDS94] S is a three-message protocol between the prover S.P and the verifier S.V, where
the first and the third messages are send by the prover, and the second message is a uniformly random
message e ←r Z2κ chosen by the verifier. The prover S.P and the verifier S.V are two efficient algorithms
that have a common input x. Additionally, the prover knows a secret witness w. At the end of the Σ protocol,
the verifier either accepts (x ∈ LR) or rejects (x 6∈ LR). We will implicitly assume that the three messages
of S belong to some sets whose memberships can be efficiently tested.

In addition, we require the Σ protocol to have a linear answer [DFN06].

Definition 1. A Σ protocol with a linear answer for an NP-relation R that consists of three messages and
of the verifier’s decision algorithm defined by a pair (S.P,S.V) of efficient algorithms as follows:
1. (ca, z1, z2) ← S.P(x;w), where z1 and z2 are two m-dimensional vectors for some m. Here, ca is the

first message sent by the prover to the verifier.
2. The second message is e←r Z2κ , chosen by the verifier randomly, and sent to the prover.
3. The third message is z ← ez1 + z2, sent by the prover to the verifier.
4. Finally, the verifier outputs S.V(x; ca, e,z) ∈ {0, 1}, that is, the verifier either accepts or rejects.
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Here, (x, ca, e,z) is called the (real) view of the Σ protocol. Thus, the verifier either rejects or accepts the
view. In the latter case, the view is said to be accepting (for S).

A Σ protocol S with a linear answer for relation R is perfectly complete, if for every (x,w) ∈ R and every
(ca, z1, z2) ∈ S.P(x;w) and e ∈ {0, 1}κ, it holds that S.V(x; ca, e, ez1 + z2) = 1.

A Σ protocol S with a linear answer for relation R is perfectly (resp., statistically) special honest-verifier
zero knowledge [CDS94], if there exists an efficient simulator S.sim that inputs x and e ∈ {0, 1}κ, and outputs
(ca, z), such that (x, ca, e,z) is accepting, and moreover, if e is a uniform random element of {0, 1}κ, then
(x, ca, e,z) has the same (resp., is negligibly different from the) distribution as the real view of S.

A Σ protocol S with a linear answer is specially sound [CDS94] for R if, given two accepting views
(x, ca, e,z) and (x, ca, e

′, z′) with the same (x, ca) but with e 6= e′, one can efficiently recover a witness w,
such that (x,w) ∈ R. A Σ protocol is computationally specially sound for R if it is specially sound for R
under a computational assumption.

Consider any input x (possibly x 6∈ LR) and any ca. Then e ∈ {0, 1}κ is a good challenge [DFN06] for a
Σ protocol S, if there exists a z such that (x, ca, e,z) is an accepting view for S.

Definition 2 (Optimal Soundness). A Σ protocol S is optimally sound [MP03] (also known as relaxed
specially sound [DFN06]) for R, if for any x 6∈ LR and any purported first message ca, there exists at most
one good e ∈ {0, 1}κ for S.

We note that in some Σ protocols it will be important not to allow e to fall outside of {0, 1}κ. For example,
it can be the case that if e is good, then also e+ p is good, where p > 2κ is a non-trivial factor of N . There
will be at most one good e < 2κ under the assumption that lpf(N) > 2κ.

To make the definition of optimal soundness compatible with culpable soundness, Chaidos and
Groth [CG15] modified it as follows. (In [CG15] , this property was called soundness with uniquely identifi-
able challenge using relation Rguilt.) We note that differently from [CG15], we only require the extractor to
return e, if it exists; as we will show, there are cases where such e is not available.

Definition 3 (Optimal culpable soundness). For a relation R, let Rguilt = {(x,w)} be a polynomial-
time verifiable relation, where it is required that x 6∈ LR if (x,w) ∈ Rguilt for some w. A Σ protocol S has
optimal culpable soundness using relation Rguilt for R, if (i) it is optimally sound for R, and (ii) there
exists an efficient algorithm S.EX, such that if (x,wguilt) ∈ Rguilt then S.EXwguilt(x, ca) returns the unique
good e where ca is a first message returned by S.P.

It is claimed in [DFN06] that every specially sound Σ protocol is optimally sound. As we will show in
Sect. 2.3, an even stronger claim holds: there exist cases where the Σ protocol is computationally specially
sound (for example, one needs to rely on the Strong RSA assumption [BP97]) and unconditionally optimally
culpably sound and thus also unconditionally optimally sound.

3 New Optimally Culpably Sound Σ-Protocols

Let Π = (K,VK,E,D) be the double-trapdoor additively homomorphic cryptosystem from Sect. 2.2. We next
describe two simple Σ protocols about the plaintext of a Π ciphertext that both satisfy optimal culpable
soundness using a naturally defined relation Rguilt where the witness is just the secret key skdl of Π. Close
variants of these Σ-protocols also work with the DCR-based cryptosystems from [DJ01,DJ03,BCP03]; see,
e.g., [Jur03]. Basing the Σ protocols on Π (and not, say, on the cryptosystem from [DJ01]) makes it easier
to pinpoint some differences between the special soundness and the optimal culpable soundness.

3.1 Σ-Protocol for Zero

Consider the following Σ protocol, see Fig. 1, with a linear answer for the relation

RZero = {((pk,C), (r, b0, b1)) : C = Espk(0; r, b0, b1)} .

That is, a honest verifier accepts iff C encrypts to 0.
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1. S.P(pk,C; (r ∈ ZbN/4c, b0 ∈ Z2, b1 ∈ Z2)) does the following:
(a) Set ra ←r Z22κbN/4c, t0 ←r Z2, t1 ←r Z2,
(b) Set ca ← Espk(0; ra, t0, t1),
(c) Return (ca,z1 ← (r, b0, b1),z2 ← (ra, t0, t1)).
The prover’s first message is ca.

2. The verifier’s second message is e←r Z2κ .
3. The prover sets rb ← er + ra, tb0 ← eb0 + t0 mod 2, tb1 ← eb1 + t1 mod 2, and outputs z ← (rb, tb0, tb1) as

the third message.
4. The verifier S.V(pk,C; ca, e, z) checks that

(a) C, ca ∈ P2 = J2
Ns+1 ,

(b) z = (rb, tb0, tb1), where rb ∈ Z(22κ+2κ−1)bN/4c−2κ+1, tb0 ∈ Z2, tb1 ∈ Z2,
(c) the following holds:

(Ceca · Espk(0; rb, 0, 0)−1)2 ≡ 1 (mod Ns+1) . (1)

Fig. 1. Σ protocol for Zero

Theorem 1. Let Π be the Paillier Elgamal cryptosystem. The Σ protocol of Fig. 1 has a linear answer, is
perfectly complete, and statistically special HVZK. Assume pk is a valid public key. Then this Σ protocol is
computationally specially sound for R under the Strong RSA assumption [BP97].

Proof. First, clearly, rb ≤ (22κ + 2κ − 1) bN/4c − 2κ.
Linear answer: straightforward.
Perfect completeness: straightforward. If the prover is honest, we have (Ceca · Espk(0; rb, 0, 0)−1)2 ≡

Espk(0; er + ra − (er + ra), eb0 + t0 mod 2, eb1 + t1 mod 2))2 ≡ Espk(0; 0, 0, 0) = 1 (mod Ns+1).
Statistical special HVZK: the simulator S.sim(x, e) first sets z ← Z22κbN/4c, t0 ←r Z2, t1 ←r Z2,

and then ca ← Espk(0; z, t0, t1)/Ce. Clearly, if e ←r Z2κ , then due to the choice of ra, z is statistically close
to z in the real protocol. Moreover, in both real and simulated protocols, ca is defined by ((pk,C), e, z) and
the verification equation.

Computational special soundness: From two accepting views (ca, e,z = (rb, tb0, tb1)) and
(ca, e

′, z′ = (r′b, t
′
b0, t

′
b1)) with e 6= e′ and Eq. (1), we get that

C2(e−e′) ≡Espk(0; 2(rb − r′b), 0, 0) ≡ (g2(rb−r
′
b), h2(rb−r

′
b)) (mod Ns+1) . (2)

To recover from this the witness r = (rb − r′b)/(e − e′) mod ϕ(N), we have to compute (rb − r′b)/(e − e′)
modulo ϕ(N), without knowing ϕ(N). We show that one can either recover r, or break the Strong RSA
assumption.

First, if (e−e′) | (rb−r′b) over Z, then we set r ← (rb−r′b)/(e−e′), and we are done: C2 = Espk(0; 2r, 0, 0)
and thus C = Espk(0; r, b0, b1) for efficiently recoverable b0 and b1.

Second, assume (e−e′) - (rb−r′b) over Z. In this case, let γ ← gcd(2(e−e′), 2(rb−r′b)), ye ←r 2(e−e′)/γ,

and yb ← 2(rb − r′b)/γ. According to Eq. (2), C
2(e−e′)
1 ≡ g2(rb−r

′
b) (mod Ns+1), and thus (−1)t0Cye1 ≡ gyb

(mod Ns+1) for efficiently computable t0 ∈ Z2. Since gcd(yb, ye) = 1, we can use the extended Euclidean
algorithm to compute integers τb and τe, s.t. τbyb + τeye = 1. Thus,

g =gτbyb+τeye = gτbybgτeye ≡ (−1)τbt0Cτbye1 gτeye

=(−1)τbt0(Cτb1 g
τe)ye (mod Ns+1) .

Since ye > 1, then this means that we have found a non-trivial root (Cτb1 g
τe mod Ns+1, ye) of (−1)τbt0g

modulo Ns+1, and thus also modulo N , and thus broken the Strong RSA assumption. ut

Next, we will show that the same Σ-protocol from Fig. 1 has optimal culpable soundness using the
relation

RguiltZero =

{
((pk,C), skdl) : C ∈ P2 ∧ Dsskdl(C) 6= 0∧

VK(skdl, pk) = 1

}
(3)
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S.EXsskdl((pk,C), ca) :
1. If C 6∈ P2 or ca 6∈ P2: return “reject”;
2. If VK(skdl, pk) = 0: return “reject”;
3. Let m← Dsskdl(C); Let ma ← Dsskdl(ca);
4. If m ≡ 0 (mod Ns): return “accept”; /* prover was honest */
5. Let γ ← gcd(m,Ns);
6. Let m̄← m/γ; Let m̄a ← ma/γ; Let N̄s ← Ns/γ;
7. e← −m̄a/m̄ mod N̄s;
8. If e < 2κ: return e;
9. else: return “no accepted challenges”;

Fig. 2. Extractor from Thm. 2 for the Σ protocol from Fig. 1 for RguiltZero

without relying on any computational assumptions. Here, wguilt is equal to skdl; hence, the extractor S.EX
gets skdl as the secret input.

Theorem 2. Let Π be the Paillier Elgamal cryptosystem. Assume that lpf(N) > 2κ. Then the Σ protocol

S from Fig. 1 has optimal culpable soundness using RguiltZero.

Proof. Consider the extractor in Fig. 2 that either returns “reject” (if C is not a valid ciphertext or
VK(skdl, pk) does not hold; in such cases S.V also rejects), “accept” (the prover was honest), or the good
challenge (if it exists) together with a non-trivial factor of N .

We will now argue that this extractor functions as claimed. First, from the Eq. (1) of the Σ protocol in
Fig. 1 it follows that

2(em+ma) ≡ 0 (mod Ns) , (4)

where m is the plaintext in C and ma is the plaintext in ca. Since the verification accepts and N is odd,
em ≡ −ma (mod Ns).

If m ≡ 0 (mod Ns), then the prover is honest. Otherwise, setting γ ← gcd(m,Ns), we can retrieve an
e that satisfies Eq. (4), given such an e exists. Really, if a good e exists then 2(em + ma) ≡ 0 (mod Ns),
and thus em+ma ≡ 0 (mod Ns). Hence, m̄e+ m̄a ≡ 0 (mod N̄s), and thus e ≡ −m̄a/m̄ (mod N̄s). Since
a good challenge is smaller than 2κ, it is also smaller than N̄s, and thus computing e modulo N̄s = Ns/γ
does not throw away any information. Since em̄γ +ma ≡ 0 (mod Ns) and γ | Ns, we get ma ≡ 0 (mod γ)
and thus γ | ma. ut

3.2 Σ Protocol for Boolean

Consider the following Σ protocol, see Fig. 3, with a linear answer for the relation

RBoolean = {((pk,C), (m, r)) : C = Espk(m; r, b0, b1) ∧m ∈ {0, 1}} .

I.e., a honest verifier accepts iff C encrypts to either 0 or 1. This Σ protocol is derived from the Σ protocol
from [CG15] where it was stated for prime modulus.

Theorem 3. The Σ protocol (Boolean Proof) of Fig. 3 has a linear answer, and it is perfectly complete and
statistically special HVZK. Assume that the Strong RSA assumption [BP97] holds, pk is a valid public key,
and lpf(Ns) > 2κ. Then this Σ protocol is computationally specially sound.

Proof. Clearly, in the honest case, zb = r(zm − e) + rb. The choice of ma guarantees that zb ≥ 0. Now,

zm =em+ma ≤ (2κ − 1) + (22κ+1 + 22κ − 1) = 3 · 22κ + 2κ − 2 ,

za =er + ra ≤ (2κ − 1)(bN/4c − 1) + (22κ bN/4c − 1)

=(22κ + 2κ − 1) bN/4c − 2κ ,
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1. S.P(pk,C;m ∈ Z2, (r ∈ ZbN/4c, b0 ∈ Z2, b1 ∈ Z2)) does the following:
(a) Let ma ← 22κ+1 + U(Z22κ), ra ←r Z22κbN/4c, rb ←r Z23κbN/4c;
(b) Let ta0, ta1, tb0, tb1, tc0, tc1 ←r Z2;
(c) Let ca ← Espk(ma; ra, ta0, ta1), cb ← Espk(−mma; rb, tb0, tb1);
(d) Return ((ca, cb),z1 = (m, r, r(m− 1), b0, b1),z2 = (ma, ra, rma + rb), tc0, tc1).
The prover’s first message is (ca, cb).

2. The verifier’s second message is e←r Z2κ ,
3. The prover’s third message is z = (zm, za, zb, td0, td1), where zm ← em+ma, za ← er + ra, zb ← er(m− 1) +

rma + rb, td0 ← eb0 + tc0 mod 2, td1 ← eb1 + tc1 mod 2.
4. The verifier checks that

(a) C, ca, cb ∈ P2 = J2
Ns+1 ,

(b) zm ∈ Z3·22κ+2κ−1, za ∈ Z(22κ+2κ−1)bN/4c−2κ+1,
(c) zb ∈ Z(23κ+3·22κ−1)·bN/4c−3·22κ+1, td0 ∈ Z2, td1 ∈ Z2,

(d) the following holds:

(Ceca · Espk(zm; za, 0, 0)−1)2 ≡1 (mod Ns+1) ,

(Czm−ecb · Espk(0; zb, 0, 0)−1)2 ≡1 (mod Ns+1) . (5)

Fig. 3. Σ protocol for Boolean

and (here we need that ma > e)

zb =er(m− 1) + rma + rb

≤(2κ − 1)(bN/4c − 1) · 0 + (bN/4c − 1)(22κ+1 + 22κ − 1) + (23κ bN/4c − 1)

=
(
23κ + 3 · 22κ − 1

)
· bN/4c − 3 · 22κ .

Linear answer: straightforward. Completeness: let tei = bi(ma+e(m−1))+tbi for i ∈ {0, 1}. Eq. (5)
holds since

Czm−ecb ≡Espk((em+ma − e)m−mma; r(zm − e) + rb, te0, te1)

≡Espk(e(m− 1)m; zb, te0, te1) ≡ Espk(0; zb, te0, te1) ,

if m ∈ {0, 1}. Thus, C2(zm−e)c2b ≡ Espk(0; 2zb, 0, 0) if m ∈ {0, 1}. Other verifications are straightforward.

Statistical special HVZK: Given e ∈ Z2κ , the simulator generates zm ←r 22κ+1 + U(Z22κ),
za ←r Z22κbN/4c, zb ←r Z23κbN/4c, and ta0, ta1, tb0, tb1, td0, td1 ←r Z2. He sets z ← (zm, za, zb, td0, td1),
ca ← Espk(zm; za, ta0, ta1)/Ce mod Ns+1 and cb ← Espk(0; zb, tb0, tb1)/Czm−e mod Ns+1, and returns
(pk,C; (ca, cb), e,z) as the view. Clearly, both in the real and simulated proof, ca and cb are fixed by
(pk,C; e, z) and the verification equations. Moreover, given that e ←r Z2κ , the simulated zm, za, zb, td0, td1
are statistically close to the values in the real proof.

Special Soundness: Assume that the verifier accepts two views (pk,C; ca, cb, e,z) and
(pk,C; ca, cb, e

′, z′) for e 6= e′. From the first equality in Eq. (5) we get that

C2(e−e′) ≡ Epk(2(zm − z′m); 2(za − z′a), 0, 0) . (6)

Hence,C encrypts m := (zm−z′m)/(e−e′) mod Ns. (Here, we use the fact that e, e′ ∈ Z2κ < lpf(Ns), e 6= e′,
and thus e− e′ is invertible.) To recover the randomizer used in encrypting C, we use the same technique as
in the proof of Thm. 1: we either obtain that (e−e′) | (za−z′a) (in this case, we set r ← (za−z′a)/(e−e′)), or
we break the Strong RSA assumption. Similarly, we obtain the randomizers b0 and b1 that were used when
computing C.

From the second equality in Eq. (5) holds, we get that

C2(zm−z′m)−2(e−e′) ≡Espk(0; 2(zb − z′b), 0, 0) (mod Ns+1) ,
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and thus, when combining it with Eq. (6),

Espk(2(zm − z′m)m; 2(zm − z′m)r, 0, 0)

≡Espk(2(zm − z′m); 2(za − z′a + zb − z′b), 0, 0) (mod Ns+1) ,

Since zm − z′m ≡ (e− e′)m (mod Ns), we get after decrypting that

2(e− e′)m2 ≡ 2(e− e′)m (mod Ns) .

Since gcd(e− e′, Ns) = 1, m mod Ns ∈ {0, 1}. ut

Next, we show that this Σ protocol has optimal culpable soudness using the guilt relation

RguiltBoolean =

{
((pk,C), skdl) : C ∈ P2 ∧ Dsskdl(C) 6∈ {0, 1}∧

VK(skdl, pk) = 1

}
. (7)

Theorem 4. Let Π be the Paillier Elgamal cryptosystem, and let lpf(N) > 2κ (thus also 2 - N). Then the

Σ protocol of Fig. 3 has optimal culpable soundness using RguiltBoolean.

Proof. We prove the optimal culpable soundness as in Thm. 2. The main new complication is that there
can now be two strategies of cheating: it can be that either gcd(m,Ns) > 1 or gcd(m − 1, Ns) > 1, so the
extractor has to test for both. We thus construct the following extractor, see Fig. 4.

S.EXskdl(C, ca, cb):
1. If C 6∈ P2 or ca 6∈ P2 or cb 6∈ P2: return “reject”;
2. If VK(skdl, pk) = 0: return “reject”;
3. Let m← Dsskdl(C);
4. Let ma ← Dsskdl(ca), mb ← Dsskdl(cb);
5. Let m∗ ← (m− 1)m mod Ns;
6. If m∗ ≡ 0 (mod Ns): return “accept”;
7. else if m∗ ∈ Z∗Ns : let e← −(mma +mb)/m

∗ mod Ns;
8. else if gcd(m,Ns) > 1:

(a) Let γ ← gcd(m,Ns);
(b) Let m̄← m/γ; m̄b ← mb/γ, m̄∗ ← m∗/γ; N̄s ← Ns/γ;
(c) Let e←r −(mam̄+ m̄b)/m̄

∗ mod N̄s;
9. else: /* gcd(m− 1, Ns) > 1 */

(a) Let γ ← gcd(m− 1, Ns);
(b) Let m̄1 ← (m− 1)/γ, m̄ab ← (ma +mb)/γ, m̄∗ ← m∗/γ, N̄s ← Ns/γ;
(c) Let e←r −(mam̄1 + m̄ab)/m̄

∗ mod N̄s;
10. If e < 2κ: return e;
11. else: return “no accepted challenges”;

Fig. 4. Extractor in Thm. 4 for RguiltBoolean

Let m∗ := (m − 1)m mod Ns. From the verification equalities in Eq. (5) we get that zm ≡ em + ma

(mod Ns) and (zm − e)m+mb ≡ 0 (mod Ns), thus (em+ma − e)m+mb ≡ 0 (mod Ns), and thus

em∗ ≡ −(mam+mb) (mod Ns) . (8)

Clearly, the constructed extractor works correctly. If m∗ ≡ 0 (mod Ns) or m∗ ≡ 1 (mod Ns), then the
prover was honest. Otherwise, if m∗ ∈ Z∗Ns , then one can recover e from Eq. (8) efficiently. Otherwise, if
gcd(m∗, Ns) > 1, we have either gcd(m,Ns) > 1 or gcd(m−1, Ns) > 1. Those two possibilities are mutually
exclusive, since gcd(m,m− 1) = 1.
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In the case γ = gcd(m,Ns) > 1, we can divide the left hand side and right hand side of Eq. (8) by γ,
and obtain e mod (Ns/γ) as in Fig. 4, line 8c. This is possible since in this case, from Eq. (8) we get that
e(m − 1)m̄γ ≡ −(mam̄γ + mb) (mod Ns) and hence mb ≡ 0 (mod γ) and γ | mb. Since e < 2κ < lpf(N),
we have obtained e.

In the case γ = gcd(m − 1, Ns) > 1, we can divide the left hand side and right hand side of Eq. (8) by
γ, and obtain e mod (Ns/γ) as in Fig. 4, line 9c.. This is possible since in this case, we can rewrite Eq. (8)
as e(m− 1)m ≡ −(ma(m− 1) +ma +mb) (mod Ns). Thus, we get that em̄1γm ≡ −(mam̄1γ +ma +mb)
(mod Ns) and hence ma +mb ≡ 0 (mod γ) and γ | (ma +mb). Since e < 2κ < lpf(N), we have obtained e.

This finishes the proof. ut

3.3 Σ Protocol for Circuit-SAT

To construct a Σ protocol for the NP-complete language Circuit-SAT, it suffices to construct a Σ protocol
for Boolean [CG15]. Really, each circuit can be represented only by using NAND gates, and a NAND b = c
iff a+ b+ 2c− 2 ∈ {0, 1} [GOS12].

One hence just has to prove that (i) each input and wire value is Boolean, and (ii) each gate is correctly
evaluated. According to [DFGK14], each test in step ii can be reformulated as a Boolean test. Hence, it is
sufficient to run m+n Σ protocols for Boolean in parallel, where m is the summatory number of the inputs
and the wires, and n is the number of gates. See [CG15] for more information.

3.4 General Idea

In both covered cases (Zero and Boolean), we constructed Σ protocols that were specially sound and
HVZK, and then applied the following idea to obtain optimal culpable soundness. We expect the same idea
to work also in general.

Let L ⊂ Cnpk be a language about the ciphertexts of Π that naturally defines a language LM ⊂ Mn
pk

about the plaintexts. For example, in the case L = Zero, LM = {0}. Let R = {(x,w) : x ∈ L} and, for
some n,

Rguilt =

{
(x = (pk,C, skdl) : C ∈ Cnpk ∧ (Ci)

n
i=1 6∈ LR∧

VK(skdl, pk) = 1

}
. (9)

The general idea is to construct a Σ-protocol with the following property. If the prover is cheating, then for
each first message ca there is at most one good e. Moreover, this e can be computed as e = e1/e2, where
either e2 is invertible modulo Ns or e2/γ is invertible modulo Ns/γ, where γ is the greatest common divisor
of Ns and some function f(m) of m 6∈ LM such that f(m) 6= 0.
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A Preliminaries: DFN

A.1 RPK Model

In the registered public key (RPK, [BCNP04]) model, we assume that everybody has an access to a key
registration functionality Fkr. A party (say, Alice) generates her public and secret key pair, and then sends
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both (together with used random coins) to Fkr, who verifies that the keys were created correctly (this means
that to register her public key, Alice must know the corresponding private key), and then stores the public
key together with Alice’s identity in a repository.

Later, Bob (for this, it is not necessary for Bob to register his public key) can query Fkr and then retrieve
the public key of Alice together with a corresponding certificate. On the other hand, in security proofs, we
may give an adversary control over Fkr, enabling access not only to the public but also to the secret key of
Alice. While every party can use a different Fkr, all parties need to trust Fkr of other parties in the following
sense. Fkr guarantees that

(i) the public keys of uncorrupted parties are safe (the corresponding secret key is chosen randomly, and
kept secret from the adversary), and

(ii) the public keys of corrupted parties are well-formed (the functionality has seen the corresponding secret
key).

Hence, Alice must trust her Fkr to do key registration correctly, and Bob must trust that Alice’s Fkr has
verified that Alice knows the corresponding secret key.

As noted in [BCNP04,DFN06], one can make this model more realistic by letting Alice to send her public
key to Fkr and then give an interactive zero knowledge proof that she knows the corresponding private key.
In the security proof, we can then construct an adversary who rewinds Alice to extract her private key.

A.2 NIDVZK Argument Systems

In a non-interactive designated verifier zero knowledge (NIDVZK, [CG15]) argument system in the RPK
model, the verifier has a public key Z.pk and a corresponding secret key Z.sk specific to this argument
system, that she has set up by using a trusted functionality Fkr. An NIDVZK argument system Z consists
of the following three efficient algorithms:
Z.G(1κ): generates, registers (by using Fkr), and then returns a key pair (Z.sk,Z.pk).
Z.P(Z.pk, x, w): given a public key Z.pk obtained from Fkr, an input x and a witness w, returns a proof π.
Z.V(Z.sk, x, π): given a secret key, an input x, and a proof π, returns either 1 (accept) or 0 (reject).

Next, Z = (Z.G,Z.P,Z.V) is an NIDVZK argument system4 for R with culpable soundness for Rguilt, if
it is perfectly complete, culpably sound [GOS12] forRguilt, and statistically (or computationally) composable
zero knowledge, given that the parties have access to the certified public key of the verifier. More precise
definitions follow.

Let `x(κ) be a polynomial, such that (common) inputs of length `x(κ) correspond to security parameter
κ. Then let Rκ = {(x,w) : bitlength(x) = `x(κ)} and LR,κ = {x : (∃w)(x,w) ∈ Rκ}, where again w has
polynomial length.
Z is perfectly complete, if for all κ ∈ N, all (x,w) ∈ Rκ, and all (Z.sk,Z.pk) ∈ Z.G(1κ),

Z.V(Z.sk, x,Z.P(Z.pk, x, w)) = 1.
In our constructions we will get zero-knowledge even if the adversary knows the secret verification key.

This strong type of zero-knowledge is called composable zero-knowledge in [Gro06] due to it making compo-
sition of zero-knowledge arguments easier. More precisely, it is required that even an adversary who knows
the secret key (or trapdoor, in the CRS model) cannot distinguish between the real and the simulated
argument, [Gro06].

Definition 4. Z is computationally composable zero-knowledge if there exists an efficient simulator Z.sim,
such that for all probabilistic polynomial-time stateful adversaries A,

Pr


(Z.sk,Z.pk)← Z.G(1κ),

(x,w)← A(Z.sk,Z.pk),

π ← Z.P(Z.pk, x, w) :

(x,w) ∈ R ∧A(π) = 1

 ≈κ Pr


(Z.sk,Z.pk)← Z.G(1κ),

(x,w)← A(Z.sk,Z.pk),

π ← Z.sim(Z.sk, x) :

(x,w) ∈ R ∧A(π) = 1

 .

4 We recall that an argument system is a proof system where soundness only holds against efficient adversaries.
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Z is statistically composable zero-knowledge if this holds for all (not necessarily efficient) adversaries A. A
statistically composable zero-knowledge argument system is perfectly composable, if ≈κ can be replaced with
= (i.e., the above two probabilities are in fact equal).

In the case of culpable soundness [GOS12], we only consider false statements from some language Lguilt ⊆
L characterized by a relation Rguilt. We require a successfully cheating prover to output, together with an
input x and a successful argument π, also a guilt witness wguilt such that (x,wguilt) ∈ Rguilt. That is, we
require a successful cheater to be aware of the fact that she cheated.

Formally, Z is (non-adaptively) culpably sound for Rguilt, if for all probabilistic polynomial-time adver-
saries A,

Pr

[
(Z.sk,Z.pk)← Z.G(1κ), (x, π, wguilt)← A(Z.pk) :

(x,wguilt) ∈ Rguilt ∧ Z.V(Z.sk, x, π) = 1

]
≈κ 0 .

Note that culpable soundness is implicitly computational (defined only w.r.t. to an efficient adversary), thus
a culpably sound proof system is always an argument system.

In our applications, wguilt will be the secret key of the cryptosystem, about which the NIDVZK arguments
are about. For example, in an NIDVZK argument that the plaintext is 0 (or Boolean), wguilt is equal to the
secret key that enables to decrypt the ciphertext. Such culpable soundness is fine in many applications, as
we will discuss at the end of the current subsection.

Finally, for some % = %(κ), Z is %-adaptively culpably sound for Rguilt, if for all probabilistic polynomial-
time adversaries A,

Pr

[
(Z.sk,Z.pk)← Z.G(1κ), (x, π, wguilt)← AZ.V(Z.sk,·,·)(Z.pk) :

(x,wguilt) ∈ Rguilt ∧ Z.V(Z.sk, x, π) = 1

]
≈κ 0 .

Here, the adversary is allowed to make up to % queries to the oracle Z.V.
As shown in [DFN06], one can handle cases where the adversary has an access to a logarithmic number of

queries, simulating their answers by guessing their answers; this still guarantees that her success probability
is inverse polynomial.

On Culpable Soundness. We will prove culpable soundness [GOS12] of argument systems about the plaintexts
of a cryptosystem by showing that if an adversary outputs an accepting argument and the secret key sk,
then she has broken an underlying assumption. This version of culpable soundness is acceptable since in
protocols that we are interested in, there always exists a party (namely, the verifier) who knows sk. Hence,
the cheating adversary together with the verifier can break the (non-culpable) soundness of the argument
system.

Thus, such culpable soundness is very natural the RPK model, especially if we assume that the verifier
has provided an interactive zero knowledge proof of knowledge of sk while registering it with the authority.
Then, in the soundness proof, we can just construct an adversary who first retrieves sk from the latter zero
knowledge proof, and then uses the culpable soundness adversary whom we already have.

A.3 DFN Transform for the Paillier Elgamal Cryptosystem

Consider the DFN [DFN06] transformation, given the Paillier Elgamal cryptosystem Π = (Π.K,VK,E,D)
where the plaintext space is ZNs for some reasonably large s. W.l.o.g., we assume that the same cryptosystem
is used to encrypt the challenge e and the witness plaintexts and the same value of s, but by using the different
secret and public keys where one secret key ske is known by the verifier and another secret key sk is (possibly)
known by the prover. For the sake of efficiency, one could use different cryptosystems or at least different
values of s but we will avoid the general case not to clutter the notation.

This transformation assumes that the original Σ-protocol S is has a linear answer and optimal culpable
soundness using some relation Rguilt, see Sect. 2.3. More precisely, we assume that Rguilt is as defined by
Eq. (9).
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Z.G(1κ)

(ske, pke)← Π.K(1κ)
re ←r U(W∗N )
e←r Z2κ

ce ←r E
s
pke

(e; re)
Z.pk← (pke, ce)
Z.sk← (ske, e)
Return (Z.sk,Z.pk)

Z.P(Z.pk;C;m, r, b0, b1)

// Ci = Espk(mi; ri, b0i, b1i)
(ca,z1,z2)←

S.P(pk,C;m, r, b0, b1)
For i = 1 to n:

ri ←W∗N
czi ← cz1ie · Espke(z2i; ri, b0i, b1i)

Return π ← (ca, cz)

Z.V(Z.sk;C, π)

Parse π = (ca, cz)
For i = 1 to n:

zi ← Dsske(czi)
Return S.V(C; ca, e, z)

Fig. 5. The DFN transform for the Paillier Elgamal cryptosystem. Here we assume s = maxidlogN (z2i + 1)e is fixed
by the description of S.P and thus known to the verifier

The description of the DFN transform is given in Fig. 5. The following theorem and its proof fol-
lows [DFN06,CG15] in its structure. The part of using the extractor to achieve culpable soundness is
from [CG15] while the idea of letting the constructed adversary Aπ answer randomly to oracle queries
goes back to [DFN06,CG15]. The latter means that we only get O(log κ)-adaptive soundness.

Theorem 5. Assume that S is a complete and computationally (resp., statistically) special HVZK Σ protocol
with a linear answer for R that is optimally culpably sound for Rguilt. Let Π = (K,VK,E,D) be the Paillier
Elgamal cryptosystem. Then the NIDVZK argument system for R of Fig. 5 is %-adaptively computationally
culpably sound for Rguilt of Eq. (9) for % = O(log κ), and computationally (resp., statistically) composable
zero knowledge for R.

Proof. Adaptive culpable Soundness. We show that if a cheating prover Azk returns a good challenge
e′ for the NIDVZK argument system with some probability ε = δ, then we can break the message recovery
security of Π with probability επ = 1/(%2%)δ.

For this, we note that Azk gets information about e from two sources, from ce and from the response
of the verifier to different queries. We now construct an adversary Aπ that, given access to Azk, breaks the
message recovery security of Π (where the public key Z.pk includes ce). It uses the extractor S.EX, who —
given that the prover is dishonest and such a challenge exists — returns the good challenge e′.

First, the challenger uses Z.G(1κ) to generate a secret key Z.sk = (ske, e) and a public key Z.pk =

(pke, ce), and sends Z.pk toAπ.Aπ then runsAZ.V(Z.sk;·,·)zk (Z.pk). AssumeAzk replies with a tuple (xi, πi, wi).
Since Azk is successful, Aπ emulates the verifier by replying with a random bit b. Once Azk stops (say after
% = Θ(log κ) steps), Aπ chooses uniformly one tuple (xi0 , πi0 , wi0), and then runs the extractor with the input
(xi0 , wi0), and obtains either “accept”, or a candidate challenge e′. Then, Aπ outputs what the extractor
outputs.

With probability 2−% = 2−Θ(log κ) = κ−Θ(1), all bits that Aπ chose are equal to the bits that the verifier
would have sent. Since Azk is successful, then with a non-negligible probability, one of the input/argument
tuples, say (xi1 , πi1 , wi1), is such that (xi1 , wi1) ∈ Rguilt but the verifier accepts. With probability 1/% =
Θ(1/ log κ), i0 = i1. Thus, with probability επ = δ

%2% = κ−Θ(1), Aπ has given to the extractor an input

(xi0 , wi0) ∈ Rguilt such that there exists πi0 such that the verifier accepts (xi0 , πi0 , wi0). With such inputs,
since the verifier accepts, there exists a good challenge e′, and the extractor outputs it. In this case, Aπ has
returned a good e′.

Finally, if the verifier accepts then due to the optimal culpable soundness, the value e′ returned by the
extractor must be equal to the value e that has been encrypted by ce. Since the only information that Aπ
has about e is given in ce (since Aπ’s random answers do not reveal anything), this means that Aπ has
returned the plaintext of ce with non-negligible probability, and thus break the message recovery security of
Π.

Composable Zero Knowledge. Assume that (Z.sk,Z.pk) ← Z.G(1κ), and (x,w) ← A(Z.sk,Z.pk).
The simulator Z.sim(Z.sk, x) can obtain e from ce by decrypting it. Given e, he runs S.sim(x, e) to obtain
an accepting view (ca, e,z). He then computes cz ← Epke(z) and returns π ← (ca, cz).
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We now show that the transcript comes from a distribution that is indistinguishable from that of the real
view. Cnsider the following hybrid simulator Z.simw that gets the witness w as part of the input. Z.simw

does the following:
1. Create (ca, z1, z2)← S.P(x,w) and the Σ protocol transcript (ca, e,z), z ← ez1 + z2, by following the
Σ-protocol.

2. Encrypt z component-wise to get cz.
3. Return π ← (ca, cz)

Since the encryption scheme is blindable, such a hybrid argument is perfectly indistinguishable from the
real argument. Since the Σ-protocol is specially HVZK, hybrid arguments and simulated arguments are
computationally indistinguishable. If the Σ-protocol is statistically specially HVZK, then hybrid arguments
and simulated arguments (and thus also real arguments and simulated arguments) are statistically indistin-
guishable.

ut
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