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Abstract

In anonymous identity-based encryption (IBE), ciphertexts not only hide their corresponding
messages, but also their target identity. We construct an anonymous IBE scheme based on the
Computational Diffie-Hellman (CDH) assumption in general groups (and thus, as a special case,
based on the hardness of factoring Blum integers).

Our approach extends and refines the recent tree-based approach of Cho et al. (CRYPTO ’17)
and Döttling and Garg (CRYPTO ’17). Whereas the tools underlying their approach do not
seem to provide any form of anonymity, we introduce two new building blocks which we utilize for
achieving anonymity: blind garbled circuits (which we construct based on any one-way function),
and blind batch encryption (which we construct based on CDH).

We then further demonstrate the applicability of our newly-developed tools by showing that
batch encryption implies a public-key encryption scheme that is both resilient to leakage of a
(1 − o(1))-fraction of its secret key, and KDM secure (or circular secure) with respect to all
linear functions of its secret key (which, in turn, is known to imply KDM security for bounded-
size circuits). These yield the first high-rate leakage-resilient encryption scheme and the first
KDM-secure encryption scheme based on the CDH or Factoring assumptions.

Finally, relying on our techniques we also construct a batch encryption scheme based on the
hardness of the Learning Parity with Noise (LPN) problem, albeit with very small noise rate
Ω(log2(n)/n). Although this batch encryption scheme is not blind, we show that it still implies
standard (i.e., non-anonymous) IBE, leakage resilience and KDM security. IBE and high-rate
leakage resilience were not previously known from LPN, even with extremely low noise.
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1 Introduction

Identity Based Encryption (IBE) is a form of public key encryption where a user’s public key is just
his name. Specifically, an authority holding a master secret key msk can generate individual secret
keys for users skid according to their identity id, and encryption is performed using a master public
key (mpk) and the identity of the recipient. The notion of IBE was proposed by Shamir [Sha84]
but first realized only over 15 years later [BF03, Coc01]. Aside from the obvious utility of using
IBE for the purpose for which it was intended, it has also proved to be a useful building block
to achieve other cryptographic tasks (e.g. chosen-ciphertext secure encryption [BCHK07]) as well
as an inspiration for defining more expressive forms of encryption schemes with access control.
Most generally, the latter refers to schemes where multiple secret keys can be generated, but each
key can only recover encrypted information if some predefined condition holds. The most natural
generalization is to attribute based encryption (ABE) [SW05, GPSW06] where secret keys skf
correspond to policies f , and encryptions are with respect to attributes x, so that the message is
decryptable only if f(x) = 1. IBE is a special case where f is a point function (i.e. fa(x) = 1 if and
only if x = a).

Very recently, a beautiful work of Garg and Döttling [DG17a] proposed a new tree based ap-
proach for IBE and showed that it implies a candidate IBE scheme from the computational Diffie-
Hellman assumption (CDH), which was previously unknown. Their main building blocks were
garbled circuits and a special form of encryption called Chameleon Encryption. In a follow-up
work [DG17b] they showed that tree based constructions can also be used to amplify the properties
of IBE schemes.

An important variant of IBE is one where it is also required that a ciphertext for recipient id
does not expose id to an unauthorized decryptor. This property is called anonymity. Anonymous
IBE is quite useful, e.g. for searchable encryption [BCOP04], and analogously to the connection
between IBE and ABE, anonymous IBE is a special case of attribute hiding ABE (e.g., as in
[KSW08]). The latter has raised much interest recently in the cryptographic literature due to
its connection to functional encryption schemes. Anonymous IBE schemes can be constructed
from pairings [BCOP04,ABC+08,BW06,Gen06], lattices [GPV08,ABB10,CHKP12] and quadratic
residuosity [BGH07] (the last one in the random oracle model).

The [DG17a, DG17b] constructions are not anonymous for a fundamental reason. Their con-
struction is based on an implicit exponential-size prefix tree representing the entire space of identi-
ties. The encryption operation considers a path from the root to the leaf representing the target id
and constructs a sequence of garbled circuits, each respective to a node along this path. At decryp-
tion time, the garbled circuits are evaluated from root to leaf, where the output of each garbled
circuit is used to generate the input labels for the next garbled circuit along the path. Therefore,
if one tries to decrypt a ciphertext intended for id using a key for id′, the decryption process will
succeed up to the node of divergence between sk and sk′, at which point the skid′ decryptor will
not be able to decode the labels that correspond to the next garbled circuit. Thus, this process
necessarily reveals the common prefix of id and (a known) id′.

1.1 Our Results

In this work, we present new primitives and techniques showing how to get significantly more
mileage out of the tree-based approach. First and most importantly, we build on the tree-based
approach using new tools that we call blind batch encryption and blind garbled circuits to construct
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anonymous IBE schemes. Secondly, we show that our building blocks can be constructed from
assumptions not previously known to imply IBE at all, in particular, the learning parity with noise
(LPN) assumption with extremely small noise. Finally, we show that our building blocks can be
used to achieve cryptographic capabilities that are apparently unrelated to IBE, namely leakage
resilience and KDM security. We elaborate on all of these contributions below.

Batch Encryption and New Constructions of IBE. The recent work of Döttling and Garg
[DG17b] show an amplification between notions of identity based encryption. Namely, they show
how to go from any selective IBE scheme to a fully secure IBE scheme. We notice that their
construction can be repurposed to do something very different. Namely, we show how to start from
an IBE scheme which only supports polynomially many identities but with short master public
key, and construct a full-fledged IBE scheme. In particular, the scheme should support T = T (λ)
identities with a master public key of size S = S(λ) = T 1−ε · poly(λ) for some constant ε > 0 and
a fixed polynomial poly; we call this a weakly compact IBE scheme. We remind the reader that
non-compact IBE schemes, namely ones that support T identities and have a master public key
that grows linearly with T , in fact follow quite easily from any public-key encryption scheme (see,
e.g., [DKXY02]).

Weakly compact IBE turns out to be easier to construct using the techniques of [DG17a], and
in particular it does not require the full power of their Chameleon Encryption. We show that it
is sufficient to start from a building block that we call batch encryption. In particular, whereas
Chameleon Encryption is required to have a trapdoor, a batch encryption scheme has no trapdoors.
Indeed, looking ahead, we remark that this feature of requiring no trapdoors is what enables our
IBE construction from the extremely-low-noise LPN assumption. The batch encryption definition
takes after the laconic oblivious transfer primitive presented by Cho, Döttling, Garg, Gupta, Miao
and Polychroniadou [CDG+17] (a definition that preceded Chameleon Encryption).

A batch encryption scheme is a public key encryption scheme in which key generation is a
projection (i.e. the key generation algorithm takes the secret key as input and outputs a shorter
string as the public key). For secret keys of length n, a batch encryption scheme encrypts an array
of n × 2 messages at a time. At decryption, only one out of each pair of messages is recovered,
depending on the value of the respective secret key bit. We require that we can instantiate the
scheme for any n without increasing the length of the public key. Indeed, batch encryption is very
similar to laconic oblivious transfer [CDG+17] and the two are essentially existentially equivalent.
The formal definition varies slightly in that laconic OT can more efficiently handle situations where
only a subset of the n message pairs are encrypted. Another formal difference is that the laconic
OT formulation allows for a randomized receiver message, however since receiver privacy is not a
requirement for this primitive this is not actually needed and therefore the analogous component
in batch encryption is deterministic. The formulation of batch encryption is more useful for our
applications, but our constructions can be seen as simply constructing laconic OT.

We show that batch encryption implies weakly compact IBE (as defined above) and that weakly
compact IBE can be bootstrapped to a full-fledged IBE scheme.

Batch Encryption from CDH and Extremely-Low-Noise LPN. Batch encryption can be
constructed from CDH, using the methods of [DG17a]; it can also be constructed from the Learning
with Errors (LWE) assumption in a straightforward manner without using lattice trapdoors. Thus
we observe that LWE-based IBE does not require lattice trapdoors, even though they are used
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by all previous constructions. We note that the resulting IBE scheme is greatly inefficient, quite
probably much less efficient than a trapdoor based construction, however the conceptual difference
here could be of interest.

We take an additional step forward and show that even the learning parity with noise (LPN)
assumption is sufficient to instantiate batch encryption, although we must rely on LPN with very
extreme parameters. The LPN assumption with a constant noise rate implies one-way functions;
with a noise rate of 1/

√
n (where n is the dimension of the LPN secret), it implies public-key encryp-

tion [Ale11]; and with the extremely low noise rate of log2 n/n, it implies collision-resistant hash
functions [BLVW17]. The latter parameter setting is insecure against quasi-polynomial adversaries,
but given the state of the art in algorithms for LPN, presumably secure against polynomial-time
adversaries. Indeed, it is ill advised to base cryptographic hardness on the gap between polyno-
mial time adversaries and quasi-polynomial time hardness and we see this result mainly as proof
of concept showing that batch encryption can be based on structures that were not considered to
imply IBE so far.

The Blinding Technique and Anonymous IBE. Our main contribution is a construction of
anonymous IBE from the CDH assumption.

To construct anonymous IBE we present techniques that allow us to walk down the identity-
space tree at decryption time blindly. Namely, in a way that does not reveal to the decryptor
whether they are on the correct path until the very end of the process. This allows us to overcome
the aforementioned basic obstacle. We present a variety of blind primitives that help us in achieving
this goal.

The first building block we introduce is blind garbled circuits. Recall that a standard circuit
garbling scheme takes a circuit C as input, and outputs a garbled version of the circuit Ĉ together
with pairs of labels labi,b for the input wires. Given Ĉ, labi,xi , the value C(x) can be computed.
For security, there is a simulator that takes y = C(x) and produces a garbled circuit and a set
of input labels that are indistinguishable from the original. We augment this definition with a
blindness property, requiring that the simulated garbled circuit and labels are completely uniform
when starting with a completely uniform y that is unknown to the distinguisher (indeed, the latter
condition is necessary since an attempt to evaluate the simulated garbled circuit should output y).
We show that blind garbled circuits can be constructed by properly instantiating the “point-and-
permute” construction [BMR90,Rog91], based on any one way function. Interestingly, as far as we
know, the point-and-permute construction has been used to achieve more efficient garbled circuits,
but has never been used to acheive stronger security properties.

We then introduce blind batch encryption, which is the blind version of the aforementioned
batch encryption primitive. The use of batch encryption in IBE constructions is as a way to
encrypt labels for a garbled circuit so that only one label per input wire can be decrypted (i.e.
the one corresponding to the batch encryption secret key). Blind batch encryption is a “blindness
preserving” counterpart for blind garbled circuits as follows. We require that if a random message is
encrypted using a blind batch encryption scheme, then the resulting ciphertext is completely random
as well.1 This combines very naturally with a blind garbling scheme: if we batch encrypt labels to
a blind garbled circuit with a random output, then by simulation security this is indistinguishable
from encrypting random labels that are independent of the garbled circuit. Therefore, we are
guaranteed that the batch ciphertext itself is random as well. At a very high level, this will allow

1We actually allow a slight relaxation of this condition.
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us to propagate the randomness (blindness) property along the leaf-root path in the tree, and avoid
revealing any information via partial decryption.

We show that blind batch encryption can be constructed based on CDH by introducing a
modification to the CDH based Chameleon Encryption construction from [DG17a]. Unfortunately,
our construction based on extremely low noise LPN is not blind.

We apply these building blocks to anonymize the aforementioned IBE construction from batch
encryption. We present a blindness property for IBE that is analogous to the one for batch en-
cryption, requiring that an encryption of random message is indistinguishable from random even
to a user who is permitted to decrypt it. We show that this notion implies anonymous IBE, and
furthermore, the construction of full-fledged IBE from a weakly compact scheme, and a construc-
tion of the weakly compact scheme from a batch encrytion scheme both preserve blindness (if we
use blind garbled circuits). In fact, formally, to avoid redundancy we only present the reduction in
the blind setting, and the non-blind variant follows as a special case.

We find it intriguing that even though we only require anonymous IBE at the end, we have to
go through the (apparently stronger) primitive of blind IBE. Roughly speaking, the difference is
that anonymous IBE only requires hiding of the identities in settings where the adversary cannot
decrypt (namely, he only obtains secret keys for identities id different from either of the challenge
identities id0 and id1) while blind IBE requires hiding of the identities even in settings where the
adversary can decrypt. Morally, we think of this as the difference between weak attribute-hiding
and strong attribute-hiding in predicate encryption (although the details are somewhat different).
We also note that weakly compact anonymous IBE can be constructed generically from any weakly
compact IBE scheme. Thus, had we been able to bootstrap from a weakly compact anonymous
IBE scheme into a full-fledged anonymous IBE, we would have a generic construction of anonymous
IBE scheme from any IBE scheme.

Batch Encryption Implies Leakage Resilience and KDM Security. We show that the
utility of batch encryption schemes go beyond IBE, thus expanding [CDG+17] who showed a variety
of applications of laconic OT, mostly in the context of multi-party computation. We show that
batch encryption naturally gives rise to a public key encryption scheme with desirable properties
such as resilience to high rate (1− o(1)) key leakage [AGV09,NS12] and security for key dependent
messages [BRS02] (KDM, also known as circular security). This allows us to present constructions
from assumptions such as CDH, Factoring and extremely-low-noise LPN that were not known
before [AGV09, NS12, BHHO08, ACPS09, BG10, HLWW16]. Note that from [CDG+17] it was not
even clear that the (nearly) equivalent notion of laconic OT even implies plain public key encryption
(without assuming “receiver privacy”; with receiver privacy, we know that any 2 message OT implies
PKE). This further strengthens our impression that batch encryption is a notion worthy of further
exploration.

The basic idea is quite straightforward. Recall that a batch encryption scheme encrypts an
array of n × 2 bits, and decryption only recovers one out of two pairs. Therefore, if the secret
key is x ∈ {0, 1}n and the encrypted message is M ∈ {0, 1}n×2, then the decrypted message is
equal to m =

∑
i(Mi,0(1 ⊕ xi) ⊕Mi,1xi) =

∑
iMi,0 ⊕

∑
i(Mi,1 ⊕Mi,0)xi. Denote α0 =

∑
iMi,0,

αi = Mi,1⊕Mi,0. Note that it is sufficient that one out of each pair Mi,0,Mi,1 is random to make all
{αi}i>0 completely random, this property will be useful for us. To encrypt, we will n-out-of-n secret
share our message m =

∑
i µi and set Mi,0 = Mi,1 = µi. Decryption follows by decrypting the batch

ciphertext and reconstructing m. For security, we notice that the batch security means that we can
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convert one out of each pair Mi,0,Mi,1 to random (this will be unnoticed even to a distinguisher
who has the key x). At this point, we recall that x is in fact information theoretically unknown
to the adversary who only sees the projected public key (recall that the projection key generation
function is shrinking). Thus the value

∑
i αixi extracts from the remaining entropy in x and is

statistically close to uniform (indeed one has to prove that there is no additional usable information
in the ciphertext other than the output message m). This argument naturally extends to leakage
resilience, since we can allow additional leakage on x so long as sufficient information remains to
allow for extraction. It appears that security against computationally (sub-exponentially) hard to
invert unbounded length leakage (“auxiliary input resilience” [DGK+10]) should follow in a similar
manner, however we do not provide a proof.

For KDM security, we notice that for any linear function of x of the form α0 ⊕
∑

i αixi the
above shows how to simulate a ciphertext that decrypts to this message (in fact, how to sample a
random such ciphertext). Indeed this ciphertext is not honestly generated but we can show that
it is indistinguishable from one. This is the basis for KDM security. We recall that as shown
in [BHHI10, App11], KDM security with respect to linear functions can be amplified to KDM
security for bounded polynomial functions of the key. Interestingly, this amplification approach
also involves batch encrypting labels for a garbled circuit.

1.2 Our Techniques

The rest of the paper is organized as follows. In Section 3, we define the notion of (blind) batch
encryption and construct it from the CDH assumption. We also provide a construction of the
(non-blind) batch encryption from the extremely low noise LPN assumption. We then introduce
the notion of blind garbled circuits and construct it in Section 4. Then, in Section 5, we show how
to use (blind) batch encryption to construct a weakly compact (blind) IBE scheme. In Section 6, we
bootstrap the weakly compact (blind) IBE scheme into a full-fledged (blind) IBE scheme. Finally,
in Section 7, we construct from (blind) batch encryption a (blind) public key encryption scheme
satisfying (high leakage rate) leakage resilience and KDM security with respect to affine functions
of the secret key.

We first provide an overview of the last step of our anonymous IBE construction, namely our
bootstrapping theorem for blind IBE, and then the construction of weakly compact IBE from batch
encryption.

Bootstrapping Blind IBE. We start with bootstrapping a regular IBE scheme, and then de-
scribe the additional techniques required to handle blindness.

Suppose we have a blind IBE scheme WIBE that supports T = T (λ) identities and has a
master public key whose size is S = S(λ) = T 1−ε ·p(λ) for some absolute constant ε > 0 and a fixed
polynomial p. To keep our exposition simple, assume that the ciphertexts in this scheme are truly
pseudorandom. We remark that without the restriction on the master public key length, there
are generic ways of constructing such schemes from any public-key encryption scheme, resulting in
master public key of length O(T · λ); see, e.g., [DKXY02]. The key leverage we have in WIBE is
that the master public key grows sublinearly with the number of identities the scheme supports.

We will show how to construct another (blind) IBE scheme WIBE ′ that supports 2T identities
without growing the master public key at all. This will not be enough by itself to prove the full
bootstrapping theorem by induction because the ciphertext and secret key sizes grow significantly
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in the transformation. Nevertheless, all of the necessary ideas for the full bootstrapping theorem
are in this toy example already.

We start by picking T to be sufficiently large so that the size of the master public key T 1−ε ·p(λ)
is at most T/4. The master public key of WIBE ′ is a single master public key of WIBE ; we will
denote it by mpk(ε) and associate it with the root of a depth-2 tree with branching factor 2 in the
first level and T in the second. We will also pick two other master public keys mpk(0) and mpk(1),
but will not publish it as part of the WIBE ′ master public key. The master secret key in WIBE ′
will, however, include msk(ε) as well as mpk(i),msk(i).

The two questions we address next is (a) how to encrypt a message m for an identity id||id′
where id ∈ {0, 1} and id′ ∈ {0, . . . , T − 1} and (b) how to generate identity secret keys.

Let us address the question of secret keys first. The secret key for an identity id||id′ where

id ∈ {0, 1} and id′ ∈ {0, . . . , T − 1} will include as part of it sk
(id)

id′
, namely the secret key for the

identity id′ generated with respect to the master public key mpk(id). Thus, it makes sense to encrypt
a message m under the identity id||id′ by encrypting it with respect to the identity id′ under the
master public key mpk(id). If the encryptor could do this, decryption indeed works and we are done!
However, the big problem here is that the encryptor does not know mpk(0) or mpk(1). How can the
encryptor generate a ciphertext without knowing the master public key?

It is here that we use the technique of deferred encryption similarly to [GKW16] and the
aforementioned [DG17a]. That is, instead of having to generate an encryption of m under an
unknown master public key, the encryptor simply constructs a circuit C[m, id′] which has the
message m and the identity id′ hardcoded. The circuit C[m, id′], on input an mpk, produces an
encryption of m under mpk with identity id′. (The circuit also has the encryption randomness r
hardcoded).

The encryptor now does two things. It first garbles this circuit to produce Ĉ, the garbled
circuit, together with 2S labels labi,b for i ∈ [S] and b ∈ {0, 1}. It then encrypts each label labi,b
using the identity (id, i, b) under the master public key mpk(ε). It is here that we use compactness
of WIBE in a crucial way: since WIBE can support T > 4S identities, it can indeed be used to
encrypt these labels.

The identity secret key for id||id′ now contains two things. As before, it contains the secret key
for the identity id′ under the master public key mpk(id). It also contains the secret keys for the S
identities (id, i,mpk(id)[i]) under the master public key mpk(ε).

Decryption proceeds by first using the secret keys for the S identities to unlock half the labels
for the garbled circuit Ĉ, namely, the labels corresponding to the input mpk(id). It then decodes
the garbled circuit to produce an encryption of m with identity id′ under the master public key
mpk(id). The first part of the secret key is now precisely what is necessary to decrypt and obtain
the message m.

We first argue semantic security (IND-ID-CPA security), then show the barriers to achieving
blindness/anonymity and how our new techniques overcome them. Let the challenge identity be
id||id′. A ciphertext of a message m under id||id′ contains the garbled circuit Ĉ and encryptions of
the labels Li,b under identities (id, i, b) with respect to the master public key mpk(ε). Notice first
that secret keys for identities that begin with the bit (1 − id) are completely useless in unlocking
any of the labels of the garbled circuit. Only secret keys for identities that begin with the bit id are
useful. Even they can only ever unlock half the labels of the garbled circuit. Indeed, this is crucial
since otherwise we will not be able to invoke the security of the garbled circuit at all!

The secret keys for identities that begin with the (matching) bit id unlock the garbled labels
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corresponding to the input mpk(id). One now invokes the security of the garbled circuit which says
that the only thing revealed by these labels together with the garbled circuit is the encryption of
m under the identity id′ generated with the master public key mpk(id). Now, since the adversary
never obtains the secret key for the challenge identity, she never gets the secret key for id′ under
mpk(id). Thus, the semantic security of WIBE tells us that the message m remains hidden.

As described in the introduction, this construction does not lead to an anonymous IBE scheme.
Indeed, given a ciphertext with respect to the identity id1||id′1 and a secret key for id2||id′2 6= id1||id′1,
one can easily tell if id1 = id2 or not, simply by seeing if the first decryption step succeeds. Worse,
it is unclear if the anonymity of the underlying WIBE scheme helps here at all. If id1 = id2, the
secret keys are authorized to decrypt half the encrypted labels (“first level ciphertexts”), and if
id1 6= id2, the secret keys do not decrypt any of them. Thus, it seems at first glance that we are
doomed: one can seemingly always recover the first bit of the identity in any tree-based scheme.

Our key observation is that even in the “partly-authorized case”, the ciphertexts are encryptions
of fresh random labels. (In reality, these labels do appear again in the garbled circuits; in the
proof, this is handled by doing the hybrids in the reverse order from the current presentation
where pseudorandomness at the leaves comes from the adversary not having the final secret key
corresponding to the target identity.) Thus, if the WIBE scheme is blind, the adversary can still
not tell the difference between whether she had an authorized key or not. In both cases, the output
of the decryption is a bunch of uniformly random strings! Our troubles, unfortunately, do not
stop there. The next line of defense, the garbled circuit, could also help the adversary distinguish
whether she obtained the right labels in the first step or just random strings. Blindness again comes
to the rescue: this time, we use our blind garbled circuits in conjunction with the fact that the
output of the circuit we are garbling is actually pseudorandom.

This concludes a sketch of our toy construction and its security proof.
Of course, there was no reason a-priori to have only one level of garbled circuits. One can

garble the “innerWIBE” encryptions and do so for every level in the tree. The inputs to each such
garbled circuit is a single master public key, so the input labels to this new garbled circuit will be
no larger than the previous level’s input labels. We can thus build an IBE scheme corresponding
to a tree of any poly(λ) depth, allowing us to support exponentially many identities: a full IBE
scheme. Of course, we cannot generate exponentially manyWIBE master public keys (one for each
node of the tree), but we can implicitly generate them using a PRF.

For full details on our bootstrapping theorem, see Section 6.

From Batch Encryption to Weakly Compact IBE. We now provide a high level overview
of how to construct weakly compact IBE from batch encryption. Formally, we construct a scheme
that supports any polynomial number T of identities with public key size λ. We focus on the
vanilla (non-blind) variant as the blind one follows via a similar construction. We note that batch
encryption schemes go hand-in-hand with garbled circuits (a connection that is extensively used
in [CDG+17,DG17a]). Consider a batch encryption scheme with secret key x of length n� λ and
public key length λ. Then we can encrypt an array of n × 2 elements, specifically we can encrypt
labels for an n-input garbled circuit. The holder of the secret key will be able to evaluate said
garbled circuit on the labels that correspond to his secret key. In other words, batch encryption
allows us to specify a circuit C : {0, 1}n → {0, 1}m and generate a ciphertext that will reveal only
C(x), even to an adversary that holds the secret key.

Recall that the only requirement we want from the resulting IBE is short master public key. All
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other parameters can depend polynomially on the size of the identity space. We will therefore gener-
ate a sequence of T key pairs for a standard public key encryption scheme (pke.pk1, pke.sk1), . . . , (pke.pkT , pke.skT ).
For simplicity assume |pke.pki| = λ. Then we instantiate the batch encryption scheme with n = T ·λ
and generate a batch public key, a projection of x = pke.pk1‖ · · · ‖pke.pkT . The batch public key
will serve as mpk of the weakly compact IBE scheme, and indeed its length is λ, independent of T .

To encrypt a ciphertext to target identity id ∈ [T ], we generate a garbled circuit that expects as
input a sequence of T public keys, and takes the id-th of them and uses it to encrypt the message.
The IBE secret key for identity id will contain the entire sequence x = pke.pk1‖ · · · ‖pke.pkT , indeed
in this case the batch encryption secret key is not secret at all! In addition, the IBE secret key
for id will contain pke.skid. Given a ciphertext, a decryptor will first use x to evaluate the garbled
circuit and recover C(x), which in this case is just a public-key encryption ciphertext with respect
to pke.pkid. The next step is to just use pke.skid to decrypt this ciphertext and recover the message.

Security follows from the security of batch encryption (which conveniently applies also when
the batch secret key x is known) and the security of the public key encryption scheme.

2 Preliminaries and Definitions

2.1 (Anonymous) Identity-Based Encryption

Definition 2.1 (Identity Based Encryption). An identity based encryption (IBE) scheme consists
of five PPT algorithms (Params,Setup,Keygen,Enc,Dec) with the following syntax.

1. Params(1λ, 1t) takes as input the security parameter 1λ and an identity length 1t. It returns
public parameters pp (which can be reused to generate multiple master public key/master
secret key pairs).

2. Setup(pp) takes as input public parameters pp and returns a master public key mpk and master
secret key msk.

3. Keygen(pp,msk, id) takes as input public parameters pp and the master secret key msk. It
outputs a secret key skid associated to id

4. Enc(pp,mpk, id,m) encrypts a message m to a specified identity id. It outputs a ciphertext ct.

5. Dec(pp, sk, ct) decrypts a ciphertext ct with secret key sk, outputting a plaintext message m′.

We require that an IBE scheme satisfy the following two properties.

• Correctness: with probability 1 over the randomness of (Params, Setup,Keygen,Enc,Dec), we
have that Dec(pp, skid,Enc(pp,mpk, id,m)) = m where (mpk,msk) ← Setup(pp) and skid ←
Keygen(msk, id).

• IND-ID-CPA Security: a PPT adversary A cannot win the following security game with
probability greater than 1

2 + negl(λ):

1. pp← Params(1λ, 1t)

2. (mpk,msk)← Setup(pp)

3. (id∗,m0,m1, st)← AKeygen(pp,msk,·)(mpk)
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4. b
$← {0, 1}

5. ct← Enc(pp,mpk, id∗,mb)

6. b′ ← AKeygen(pp,msk,·)(st, ct)

7. A wins if and only if b′ = b and id∗ was never queried by A to its Keygen oracle.

Definition 2.2 (Anonymous IBE). An anonymous IBE scheme also has the syntax (Params, Setup,
Keygen, Enc, Dec) of an IBE scheme. It satisfies the same correctness property as IBE, and has
the following stronger notion of security:

• IND-ANON-ID-CPA Security: A PPT adversary A cannot with the following security game
with probability greater than 1

2 + negl(λ):

1. pp← Params(1λ, 1t)

2. (mpk,msk)← Setup(pp)

3. (id0, id1,m0,m1, st)← AKeygen(pp,msk,·)(mpk)

4. b
$← {0, 1}

5. ct← Enc(pp,mpk, idb,mb)

6. b′ ← AKeygen(pp,msk,·)(st, ct)

7. A wins if and only if b′ = b and id0, id1 were never queried by A to its Keygen oracle.

2.2 Computational Diffie-Hellman (CDH)

Let g be an element of some group G. We say that q is a ε-randomizer for g if the statistical
distance between ga for a ← Zq and h ← 〈g〉 is at most ε. We note that any q ≥ ord(g) · d1/εe is
an ε-randomizer, so it is sufficient to have an upper bound on the order of g in order to compute a
randomizer for any ε.

A (possibly randomized) group sampler is a ppt algorithm G that on input the security parameter
outputs a tuple (G, g, q) ← G(1λ) which defines a G by providing a poly(λ)-bit representation for
group elements, and a polynomial time algorithm for computing the group operation and inversion
(and thus also exponentiation), together with an element g ∈ G and a negl(λ)-randomizer q for 〈g〉.

The Computational Diffie-Hellman (CDH) assumption w.r.t G, denoted CDHG , is that for every
ppt algorithm A it holds that

AdvCDHG [A](λ) = Pr
(G,g,q)←G(1λ)
a1,a2←Zq

[A(1λ, (G, g, q), ga1 , ga2) = ga1a2 ] = negl(λ) .

We sometimes omit the indication of G when it is clear from the context.
We note that there exists a randomized group sampler such that the hardness of factoring Blum

integers reduces to the hardness of the CDH problem [Shm85,McC88,BBR99].
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2.3 Learning Parity with Noise (LPN)

For all n ∈ N, row vector s ∈ {0, 1}n and real value ε ∈ [0, 1/2], define a randomized oracle As,ε to
be s.t. for every call to As,ε, the oracle samples a ← {0, 1}n, e ← Berε (where Ber is the Bernoulli
distribution), and outputs (a, s ·a+e) where arithmetics are over the binary field. Note that As,1/2

outputs completely uniform entries for every call.
The Learning Parity with Noise assumption LPNn,ε, for a polynomial function n : N → N and

a function ε : N→ [0, 1/2] is that for every ppt oracle algorithm A it holds that

AdvLPNn,ε [A](λ) =

∣∣∣∣ Pr
s←{0,1}n

[AAs,ε(1λ)]− Pr[AA0,1/2(1λ)]

∣∣∣∣ = negl(λ) ,

where n = n(λ), ε = ε(λ).
We note that if ε = log n/n then LPN is solvable in polynomial time, but no polynomial time

algorithm is known for ε = Ω(log2 n/n).

The Collision Resistant Hash Family of [BLVW17]. It is shown in [BLVW17] how to
create Collision Resistant Hash functions based on the hardness of LPNn,ε for any polynomial
n, ε = Ω(log2 n/n). Since this construction is the basis for our LPN-based batch encryption
construction, let us elaborate a little on it here.

The key to the hash function is a random matrix A ∈ {0, 1}n×(2n2/ logn). To apply the hash
function on an input x ∈ {0, 1}2n, they first preprocess it as follows. Interpret x as a collection of
2n/ log n blocks, each containing log n bits. Then interpret each block as a number in {1, . . . , n}
using the usual mapping, so x ∈ [n]2n/ logn. Then define a vector x̂ ∈ {0, 1}2n2/ logn as a concatena-
tion of 2n/ log n blocks of n-bits, such that each block is a {0, 1}n indicator vector of the respective
entry in x (i.e. have a single bit equal 1 in the location corresponding to the value of the entry in x).
Finally output Ax̂. This is shrinking from 2n to n bits, and CRH follows since a collision implies
a low norm vector v s.t. Av = 0. The argument of security for our batch encryption scheme is
similar to their proof of security of CRH, however we do not use it as black box.

2.4 One-Time Encryption Using Goldreich-Levin Hard-Core Bit

We show the following one time encryption scheme based on the Goldreich-Levin hard-core bit
[GL89].

Definition 2.3. Define gl-enc(x, µ) as a randomized function that on input x ∈ {0, 1}`, µ ∈ {0, 1}
samples α ∈ {0, 1}` and outputs (α, 〈α, x〉 ⊕ µ), where the inner product is over the binary field.
Define gl-dec(x, (α, σ)) be the function that takes x ∈ {0, 1}` and (α, σ) ∈ {0, 1}`+1 and outputs
σ ⊕ 〈α, x〉.

By definition, for all x, µ it holds that gl-dec(x, gl-enc(x, µ)) = µ with probability 1. Further-
more, the Goldreich-Levin Theorem asserts that given an ensemble of joint distributions {(Xλ, Zλ)}λ
s.t. for any polynomial time Pr(x,z)←(X,Z),A[A(1λ, z) = x] = negl(λ), then (z, gl-enc(x, µ)) is com-
putationally indistinguishable from (z, U`+1) for any µ (possibly dependent on z). We furthermore
note that if µ is random and unknown to the distinguisher then gl-enc(x, µ) is uniformly random
regardless of x.
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3 Blind Batch Encryption and Instantiations

3.1 Defining Batch Encryption

A Batch Encryption scheme is an encryption scheme whose key generation is a projection function
(or a hash function) taking as input a string x to be used as secret key, and outputting a hash value
h to be used as public key. The batch encryption scheme is parameterized by a block size B. The
aforementioned string x should be parsed as x ∈ [B]n. Batch encryption uses the public key h to
encrypt an n × B matrix M such that a decryptor with secret key x can obtain exactly Mi,xi for
all i ∈ [n]; that is, exactly one matrix element from each row of M. Note that when B = 2 we can
think of x as a bit vector x ∈ {0, 1}n with the natural translation between {0, 1} and {1, 2}.

In more detail, the syntax of the batch encryption scheme is as follows, where we think of the
function B = B(λ, n) as a global parameter of the construction.

1. Setup(1λ, 1n). Takes as input the security parameter λ and key length n, and outputs a
common reference string crs.

2. Gen(crs, x). Using the common reference string, project the secret key x ∈ [B]n to a public
key h.

3. Enc(crs, h,M). Takes as input a common reference string crs, the public key h, and a matrix
M ∈ {0, 1}n×B and outputs a ciphertext ct. For the purpose of defining the blinding property
below, the ciphertext ct can be written as a concatenation of two parts ct = (subct1, subct2).

4. Dec(crs, x, ct). Given a ciphertext ct, output a message vector m.

Additionally, a batch encryption scheme supports two optional functions.

5. SingleEnc(crs, h, i,m). Takes as input a common reference string crs, the public key h, an index
i ∈ [n], and a message m ∈ {0, 1}B and outputs a ciphertext ct. As above, the ciphertext ct
can be written as a concatenation of two parts ct = (subct1, subct2) for blindness purposes to
be defined below.

6. SingleDec(crs, x, i, cti). Takes as input a common reference string crs, the secret key x, an
index i ∈ [n], and a ciphertext cti and outputs a message m ∈ {0, 1}.

Whenever SingleEnc and SingleDec are defined, we require that Enc(crs, h,M) = (cti)i∈[n] for cti ←
SingleEnc(crs, h, i,mi), where mi denotes the ith row of M. Similarly, we require that for ct =
(cti)i∈[n], the decryption algorithm computes mi ← SingleDec(crs, x, i, cti) for all i ∈ [n] and outputs
their concatenation.

Correctness of Batch Encryption. We define two notions of correctness of a batch encryption
scheme, the first stronger than the second.

Definition 3.1 (Batch Correctness). Letting crs = Setup(1λ, 1n), then for all x,M, it holds that
taking h = Gen(crs, x), ct = Enc(crs, h,M), m′ = Dec(crs, x, ct), it holds that m′i = Mi,xi for all i
with probability at least 1− 2λ over the randomness of Enc.
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Definition 3.2 (δ-Pointwise-Correctness (for SingleEnc)). Letting crs = Setup(1λ, 1n), then for all
x, i,m, it holds that taking h = Gen(crs, x), cti = SingleEnc(crs, h, i,m), m′ = SingleDec(crs, x, i, cti),
it holds that m′ = mxi with probability at least 1/2 + δ over the randomness of SingleEnc.

Note that 1/poly(λ)-pointwise-correctness implies batch correctness via repetition.

Succinctness of Batch Encryption.

Definition 3.3. A batch encryption scheme is α-succinct if letting crs = Setup(1λ, 1n), h =
Gen(crs, x) for some x ∈ [B]n, it holds that |h| ≤ αn logB.

Definition 3.4. A batch encryption scheme is fully succinct if letting crs = Setup(1λ, 1n), h =
Gen(crs, x) for some x ∈ [B]n, it holds that |h| ≤ p(λ) for some fixed polynomial p(λ).

Semantic Security of Batch Encryption.

Definition 3.5 (Batch Encryption Security). The security of a batch encryption scheme is defined
using the following game between a challenger and adversary.

1. The adversary takes 1λ as input, and sends 1n, x ∈ [B]n to the challenger.

2. The challenger generates crs = Setup(1λ, 1n) and sends crs to the adversary.

3. The adversary generates M(0),M(1) ∈ {0, 1}n×B such that M
(0)
i,xi

= M
(1)
i,xi

for all i ∈ [n] and
sends them to the challenger.

4. The challenger computes h = Gen(crs, x) and encrypts ct = Enc(crs, h,M (β)) for a random bit
β ∈ {0, 1}. It sends ct to the adversary.

5. The adversary outputs a bit β′ and wins if β′ = β.

The batch encryption scheme is secure if no polynomial time adversary can win the above game
with probability ≥ 1/2 + 1/poly(λ).

By a standard hybrid argument, the above definition is implied by the following security property
for SingleEnc.

Definition 3.6 (SingleEnc Security). We say that a batch encryption scheme satisfies SingleEnc-
security if no polynomial time adversary can win the following game with probability ≥ 1/2 +
1/poly(λ):

1. The adversary takes 1λ as input, and sends 1n, x ∈ [B]n, i ∈ [n] to the challenger.

2. The challenger generates crs = Setup(1λ, 1n) and sends crs to the adversary.

3. The adversary generates m(0),m(1) ∈ {0, 1}B s.t. m
(0)
xi = m

(1)
xi and sends them to the chal-

lenger.

4. The challenger computes h = Gen(crs, x) and encrypts ct = SingleEnc(crs, h, i,m(β)) for a
random bit β ∈ {0, 1}. It sends ct to the adversary.

5. The adversary outputs a bit β′ and it wins if β′ = β.
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Relation to Chameleon Encryption and Laconic Oblivious Transfer. For readers familiar
with the notions of chameleon encryption [DG17a] and laconic oblivious transfer [CDG+17], we
compare the notion of batch encryption to these objects.

First, we note that the notion of batch encryption is a significant weakening of the notion of
a chameleon encryption scheme defined in [DG17a] in the following two ways. Most significantly,
we do not require a trapdoor which supports finding collisions (namely, the “chameleon” part of
chameleon encryption); this is crucial because our construction from LPN does not seem to have an
associated trapdoor. Nevertheless, we show that batch encryption is sufficient to construct IBE. As
well, our security definition is selective in the input x rather than adaptive (that is, the adversary
picks x before seeing the crs), which means that batch encryption does not obviously imply collision
resistant hash functions (CRHF), but rather only target collision-resistance. In contrast, the hash
function implicit in chameleon encryption is a CRHF).

On the other hand, batch encryption is essentially equivalent to laconic oblivious transfer as
defined in [CDG+17], as long as you restrict the first message of the OT protocol to be a determin-
istic function of the crs and database D (however, since receiver privacy is not required for laconic
OT, any laconic OT scheme can be modified to have this property). Our transformations show
that batch encryption (or laconic OT) is the right primitive from which to bootstrap and obtain
IBE. Additionally, our new blindness property also has an interpretation in the language of laconic
OT.

3.2 Defining Blind Batch Encryption

Next, we define the additional blindness property of a batch encryption scheme, which asserts
that when encrypting a random message that is not known to the distinguisher, the ciphertext is
“essentially” indistinguishable from uniform. More specifically, we allow a part of the ciphertext
to not be indistinguishable from uniform so long as it does not reveal any information on h or on
the encrypted message.

Definition 3.7 (Blindness). Let BBENC = (Setup,Gen,Enc,Dec) be a batch encryption scheme.
Furthermore, suppose that Enc(crs, h,M; r) = E1(crs, h,M; r)||E2(crs, h,M; r) is some decomposi-
tion of Enc(·) into two parts. We say that BBENC is blind if (1) the function E1(crs, h,M; r) =
E1(crs; r) does not depend on the public key h or message M, and (2) no polynomial time adversary
can win the following game with probability ≥ 1

2 + 1/poly(λ).

1. The adversary takes 1λ as input, and sends 1n, x ∈ [B]n to the challenger.

2. The challenger generates crs = Setup(1λ, 1n) and computes h = Gen(crs, x). It samples a ran-
dom β ← {0, 1}, a random message matrix M← {0, 1}n×B, and encrypts (subct1, subct2)←
Enc(crs, h,M). It then generates ct as follows.

• If β = 0 then ct = (subct1, subct2).

• If β = 1 then sample a random bit string subct′2 of the same length as subct2. Set
ct = (subct1, subct

′
2).

The challenger sends crs, ct to the adversary (note that M is not sent to the adversary).

3. The adversary outputs a bit β′ and it wins if β′ = β.
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Again, the above definition of blindness is implied by an analogous blindness property for
SingleEnc via a standard hybrid argument. If BBENC is a blind batch encryption scheme, we call
Enc = E1||E2 the blind decomposition of Enc and adopt the notation that outputs of E1 are denoted
by subct1 and outputs of E2 are denoted by subct2.

From block size B to block size 2. Although our construction of batch encryption itself from
LPN constructs a scheme with large block size, the lemma below shows that we can work with
block size 2, without loss of generality. The proof of the lemma is in Appendix A.1.

Lemma 3.1. Suppose that there is an α-succinct (blind) batch encryption scheme with block size
B. Then, there is an α-succinct (blind) batch encryption scheme with block size 2.

From α-Succinct to Fully Succinct (Blind) Batch Encryption. We show that fully succinct
(blind) batch encryption can be built from 1/2-succinct (blind) batch encryption. The construction
and proof are similar to the laconic OT bootstrapping theorem of Cho et al. [CDG+17]. However,
to preserve blindness, we make use of blind garbled circuits (defined in Section 4), similar to its
use in Section 5 and Section 6. We state the lemma below and provide the proof in Appendix A.2.

Lemma 3.2. Suppose that there is a 1/2-succinct (blind) batch encryption scheme with block size
B = 2 and a (blind) garbling scheme. Then, there is a fully succinct (blind) batch encryption
scheme with block size B = 2.

3.3 Blind Batch Encryption from CDH

In this section, we construct blind batch encryption from the CDH assumption. The scheme has
perfect correctness, is fully succinct, and has block size B = 2. This construction is inspired by the
Chameleon Encryption construction in [DG17a] but does not require a trapdoor. Let G be a group
sampler as described in Section 2.2. Recall the Goldreich-Levin encoding/decoding procedure as
per Section 2.4. The blind batch encryption scheme is as follows.

1. CDH-BE.Setup(1λ, 1n). Sample (G, g, q) ← G(1λ). Sample αi,b ← Zq for i ∈ [n], b ∈ {0, 1}.
Define gi,b = gαi,b . Output crs = ((G, g, q), {gi,b}i,b).

2. CDH-BE.Gen(crs, x). Output h =
∏
i gi,xi .

3. CDH-BE.SingleEnc(crs, h, i,m). Sample r ← Zq. For all j 6= i and for all b ∈ {0, 1}
compute: ĝj,b = grj,b. Compute ĝi,b = hrg−ri,b , and let µi,b = gl-enc(ĝi,b,mb). Output

ct =
(
subct1 = {ĝj,b}j 6=i,b∈{0,1}, subct2 = {µi,b}b∈{0,1}

)
.

4. CDH-BE.SingleDec(crs, x, i, ct). Given ct =
(
{ĝj,b}j 6=i,b∈{0,1}, {µi,b}b∈{0,1}

)
. Compute ĝi,xi =∏

j 6=i = ĝi,xi . Output m = gl-dec(ĝi,xi , µi,xi).

Correctness follows immediately by definition. Moreover, note that this scheme is fully succinct
(see Definition 3.4; note that h ∈ G has a fixed poly(λ) size representation by assumption).

Lemma 3.3. The scheme CDH-BE is secure under the CDHG assumption.

Proof. Consider the following game between a challenger and an adversary.
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1. The adversary takes 1λ as input, and sends 1n, x ∈ {0, 1}n, i ∈ [n], to the challenger.

2. The challenger generates crs = CDH-BE.Setup(1λ, 1n), i.e. a group (G, g, q) and collection of
gj,b. It computes h = CDH-BE.Gen(x). It then samples r ← Zq and computes ĝj,b = grj,b for

all j 6= i, b ∈ {0, 1}, as well as ĝi,xi = hrg−ri,xi . It sends crs and the computed ĝ values to the
adversary.

3. The adversary returns g′.

4. The challenger declares that the adversary wins if g′ = hrg−ri,1−xi .

We will prove that all polynomial time adversaries have negligible advantage in the above game.
By the Goldreich-Levin theorem (see Section 2.4), this implies the security of the scheme as per
Definition 3.6.

To see that the above holds, an adversary against the above game, and consider an input to the
CDHG problem consisting of (G, g, q), ga1 , ga2 . We will show how to produce a challenger for the
above game, so that when the adversary succeeds, the value ga1a2 can be computed. The challenger,
upon receiving 1n, x, i will do the following. Generate αj,b ← Zq for all j 6= i, b ∈ {0, 1}, and also
αi,1−xi . Conceptually, we will associate a1 with the value r to be generated by the challenger, and
a2 with the difference (αi,xi − αi,1−xi).2

Following this intuition, the challenger will generate gi,b = gαj,b for all j 6= i, b ∈ {0, 1} as
well as for (j, b) = (i, 1 − xi). Then generate gi,xi = gi,1−xi · ga2 . Generate ĝj,b = (ga1)αj,b for all
j 6= i, b ∈ {0, 1}. We are left with generating ĝi,xi = hrg−ri,xi =

∏
j 6=i g

r
j,xj

=
∏
j 6=i ĝj,xj , which can

be derived from previously computed values. Note that the computed values are within negligible
statistical distance of their distribution in the real experiment. If the adversary manages to compute

g′ = hrg−ri,1−xi =
(∏

j 6=i ĝj,xj

)
· (gi,xi/gi,1−xi)r =

(∏
j 6=i ĝj,xj

)
·ga1a2 , then the product

∏
j 6=i ĝj,xj can

be canceled out and a solution to CDHG is achieved.

Lemma 3.4. The scheme CDH-BE is blind under the CDHG assumption.

Proof. Consider the game in Definition 3.7. We first of all note that in our scheme, subct1 is
independent of h,m and therefore the marginal distribution of subct1 is identical regardless of the
value of β. From the properties of gl-enc (see Section 2.4), if m is uniform then the µi,b values are
uniformly distributed. It follows that any adversary will have exactly 1/2 probability to win the
blindness game.

3.4 Batch Encryption from LPN

In this section we present a candidate construction from LPN with noise rate Ω(log2(n)/n). Specif-
ically, we will show an LPN based construction which has δ-pointwise correctness for δ = 1/poly(n),
is 1

2 -succinct, and has block size B = n. Our construction is based on a collision resistant hash
function construction of [BLVW17]. See Section 2.3 for details about the assumption and the CRH
candidate. Unfortunately, we are unable to prove blindness for this candidate. As explained above,
the δ point-wise correctness can be amplified, however this amplification does not preserve the

2In fact, this correspondence only needs to hold in the exponent. Specifically, note that both g(αi,xi
−αi,1−xi

) and
ga2 are statistically indistinguishable from uniform in 〈g〉 and therefore from each other.
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blindness property. Therefore, even though our δ-point-wise correct candidate is blind, we cannot
amplify it to have batch correctness without giving up blindness.

We introduce the following notation. For any number j ∈ [B] we define ind(j) ∈ {0, 1}B to be
the vector with 1 in the j-th coordinate and 0 in all other coordinates. Note that for a matrix
A ∈ {0, 1}k×B (for arbitrary k) it holds that A · ind(j) is exactly the j-th column of A.

1. LPN-BE.Setup(1λ, 1n). Recall that B = n, and assume w.l.o.g that λ ≤ n (otherwise redefine
n = λ and proceed with the new value, which only strengthens the constructed object).
We define ñ = n logB

2 = n logn
2 and a parameter ε = log n/n = Ω(log2(ñ)/ñ) to be used

below. Sample A1, . . . ,An ← {0, 1}ñ×B (we will also denote A = [A1‖ · · · ‖An]). Output
crs = {Ai}i∈[n].

2. LPN-BE.Gen(crs, x). Output h =
∑

i∈[n] Ai · ind(xi).

3. LPN-BE.SingleEnc(crs,h, i,m). Define A−i = [A1‖ · · · ‖Ai−1‖Ai+1‖ · · · ‖An]. For all j ∈ [B]

sample s(j) ← {0, 1}ñ and e(j) ← Ber
(n−1)B+1
ε . Compute

v(j) = s(j)[A−i‖Ai · ind(j)− h] + e(j) + [0, . . . , 0,mj ] .

Output ct = subct2 = {v(j)}j∈[B].

4. LPN-BE.SingleDec(crs, x, i, ct). Given ct = {v(j)}j∈[B], define

x̂−i = [ind(x1)‖ · · · ‖ind(xi−1)‖ind(xi+1)‖ · · · ‖ind(xn)‖1]† ,

where † represents vector transpose. Output m = v(xi) · x̂−i.

Lemma 3.5. The scheme LPN-BE is 1/poly(n)-pointwise correct.

Proof. Let crs, x, i, m be arbitrary, and consider computing h = Gen(crs, x), ct = SingleEnc(crs, h, i,m)
and m′ = SingleDec(crs, x, i, ct), then by definition

m′ =
(
s(j)[A−i‖Ai · ind(xi)− h] + e(xi) + [0, . . . , 0,mj ]

)
x̂−i

= mj + e(xi) · x̂−i ,

but since e(xi) is Bernoulli with parameter ε, and the hamming weight of x̂−i is exactly n by
definition, then e(xi) · x̂−i is Bernoulli with parameter ε′ ≤ 1/2 − e−2εn. Since we set ε = log n/n,
pointwise correctness follows.

Lemma 3.6. The scheme LPN-BE is secure under the LPNñ,ε assumption (we recall that ε =
Ω(log2(ñ)/ñ)).

Proof. We consider the SingleEnc security game in Definition 3.6 (recall that this is sufficient for full
batch security). We will prove that the view of the adversary is computationally indistinguishable
from one where all v(j) are uniformly random for all j 6= xi. Security will follow.

Consider a challenger that receives an LPN challenge of the form A′1, . . . ,A
′
n ∈ {0, 1}ñ×B,

{bj,k}j∈[B]\{xi},k∈[n]], where bj,k are either all uniform or are of the form bj,k = s(j)A′k+ej,k. (Note
that the challenge does not actually depend on xi, we can just take j ∈ [B− 1] and map the values
to [B] \ {xi} after the fact.)
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Upon receiving x, i from the adversary, the challenger computes h =
∑

i∈[n] A
′
i · ind(xi). Then,

for all k 6= i it sets Ak = A′k, and then sets Ai as follows. Set Ai · ind(xi) = A′i · ind(xi) (recall that
multiplying by ind(j) is equivalent to selecting the j-th column), and for all j 6= xi set Ai · ind(j) =
A′i · ind(j) + h. Note that since Ai · ind(xi) = A′i · ind(xi) it holds that h =

∑
i∈[n] Ai · ind(xi), and

indeed crs = {A1, . . . ,An},h, x, i are distributed identically to the original game.
The challenger sends crs,h to the adversary and receives the message vectors. It then samples

s(xi), e(xi) itself and generates v(xi) properly. For all j 6= xi generate

v(j) = [bj,[n]\{i}‖bj,i · ind(j)] + [0, . . . , 0,mj ] ,

where bj,[n]\{i} is the concatenation of all bj,k for k 6= i in order. We notice that if the vectors

{bj,k} were generated from an LPN distribution, then v(j) has the correct distribution. This is
because we defined Ai · ind(j)− h = A′i · ind(j). On the other hand, if {bj,k} are uniform then all
v(j), j 6= xi are uniform. Security thus follows.

4 Blind Garbled Circuits

In this section, we define the notion of a blind garbled circuit and show a construction assuming only
one-way functions. Indeed, we observe that the widely used “point-and-permute” garbled circuit
construction [BMR90, Rog91] is in fact blind. We start with the definition of standard garbled
circuits and proceed to define and construct blind garbled circuits.

4.1 Definitions

Definition 4.1 (Garbled Circuits). A garbling scheme consists of three algorithms (Garble,Eval, Sim)
where:

1. Garble(1λ, 1n, 1m, C) is a PPT algorithm that takes as input the security parameter λ and
a circuit C : {0, 1}n → {0, 1}m, and outputs a garbled circuit Ĉ along with input labels
(labi,b)i∈[n],b∈{0,1} where each label labi,b ∈ {0, 1}λ.

2. Eval(1λ, Ĉ, L̂) is a deterministic algorithm that takes as input a garbled circuit Ĉ along with
a set of n labels L̂ = (labi)i∈[n], and outputs a string y ∈ {0, 1}m.

3. Sim(1λ, 1|C|, 1n, y) is a PPT algorithm that takes as input the security parameter, the descrip-
tion length of C, an input length n and a string y ∈ {0, 1}m, and outputs a simulated garbled
circuit C̃ and labels L̃.

We often omit the first input to these algorithms (namely, 1λ) when it is clear from the context.
We require that the garbling scheme satisfies two properties:

1. Correctness: For all circuits C, inputs x, and all (Ĉ, (labi,b)i,b) ← Garble(C, x) and L̂ =

(labi,xi)i∈[n], we have that Eval(Ĉ, L̂) = C(x).

2. Simulation Security: for all circuits C : {0, 1}n → {0, 1}m and all inputs x ∈ {0, 1}n, the
following two distributions are computationally indistinguishable:{

(Ĉ, L̂) : (Ĉ, labi,b)i,b)← Garble(C, x), L̂ = (labi,xi)i∈[n]
}

≈c
{

(C̃, L̃) : (C̃, L̃)← Sim(1λ, 1|C|, 1n, C(x))
}
.

17



The traditional notion of security of a garbled circuit requires that the garbling Ĉ of a circuit
C and the garbled labels L̂ corresponding to an input x together reveal C(x) and nothing more
(except the size of the circuit C and the input x). Formally, this is captured by a simulation
definition which requires that a simulator who is given only C(x) can faithfully simulate the joint
distribution of Ĉ and L̂. Blindness requires that the simulator’s output is uniformly random. Of
course, this is simply unachievable if the distinguisher is given the circuit C and the input x, or
if the distribution of C(x) is not uniformly random. However, blindness only refers to the setting
where the distribution of C(x) is uniformly random.

Definition 4.2 (Blind Garbled Circuits). A garbling scheme (Garble,Eval, Sim) is called blind if the
distribution Sim(1λ, 1c, 1n, Um), representing the output of the simulator on a completely uniform
output, is indistinguishable from a completely uniform bit string. (Note that the distinguisher must
not know the random output value that was used for the simulation.)

4.2 A Blind Garbled Circuit Construction from Any PRG

Our blind garbled circuits are essentially identical to the point-and-permute garbled circuits of
[BMR90, Rog91]. The details of the construction will be important for our purposes so we state
them explicitly. We note that without loss of generality we can garble a universal circuit U :
{0, 1}n → {0, 1}m of the appropriate size.

As a building block we use a family of pseudorandom functions PRF with uniform seeds in
{0, 1}λ. The input space we will use is actually only polynomial (proportional to the size of the
circuit being garbled) so in fact a full blown PRF is not required and a PRG would suffice, however
it would be more convenient to present the garbled circuit construction using the PRF notation.
The output space we use is {0, 1}λ+1.

1. BGC.Garble(1λ,U). For every wire w in U , sample two PRF seeds sw,b ← {0, 1}λ for b ∈ {0, 1},
as well as a permutation bit αw ∈ {0, 1}.
Let fg : {0, 1}2 → {0, 1} be the function computed by the Boolean gate g. For every β1, β2 ∈
{0, 1}, let β3 := fg(α1⊕β1, α2⊕β2)⊕α3. For every gate g with input wires w1, w2 and output
wire w3, and for all β1, β2 ∈ {0, 1}, we compute the table entry

T (β1,β2)
g = (sw3,α3⊕β3‖β3) ⊕ PRFsw1,α1⊕β1

(g‖β1‖β2) ⊕ PRFsw2,α2⊕β2
(g‖β1‖β2).

Let in1, . . . , inn denote the input wires, and out1, . . . , outm denote the output wires. Then,

the garbled circuit Ĉ contains all table entries T = {T (β1,β2)
g }g∈U ,β1,β2∈{0,1} as well as all

values A = {αoutj}j∈[m]. The input labels are labi,b = (sini,b‖b ⊕ αini). This is equivalent to
computing β = b⊕ αini and then setting labi,b = (s′ini,β‖β).

2. BGC.Eval(1λ, Ĉ, L̂). Given a garbled circuit Ĉ = (T,A) together with a set of labels L̂ =
{labi}i∈[n], do the following. Parse labi as (s′ini‖βini). For every gate g in topological order,
let w1, w2 be its input wires and let w3 be its output wire. Then given (s′w1

‖βw1), (s′w2
‖βw2),

compute

(s′w3
‖βw3) = T

(βw1 ,βw2 )
g ⊕ PRFs′w1,βw1

(g‖βw1‖βw2)⊕ PRFs′w2,βw2

(g‖βw1‖βw2) .

Finally, upon obtaining βoutj for all j, output outj = βoutj ⊕ αoutj for all j ∈ [m].
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3. BGC.Sim(1λ, 1|U|, 1n, y). For every wire w in the universal circuit U sample random val-

ues β∗w ← {0, 1} and s′w,β∗w ← {0, 1}
λ. Generate the table entries T

(βw1 ,βw2 )
g as follows. If

(βw1 , βw2) 6= (β∗w1
, β∗w2

), then set T
(βw1 ,βw2 )
g to a completely uniform string. Otherwise set

T
(β∗1 ,β

∗
2 )

g = (s′w3,β∗3
‖β∗3)⊕ PRFs′

w1,β
∗
1

(g‖β∗1‖β∗2)⊕ PRFs′
w2,β

∗
2

(g‖β∗1‖β∗2) .

Finally set αoutj = β∗outj ⊕ yj . Let C̃ be the resulting (T,A), and let labi = (s′ini,β∗ini
‖β∗ini).

Since our construction is an instantiation of the point-and-permute construction, its correctness
and simulation security have already been established in previous works [BMR90,Rog91]. We will
prove blindness next.

Lemma 4.1. The garbling scheme BGC is blind.

Proof. We prove that if use a random y ← Um then the output of the simulator is perfectly
uniformly random. Consider a random y and let (C̃, L̃) = Sim(1λ, 1c, 1n, y). Recall that in our
construction C̃ = (T,A) with structure as described in the construction. We notice that if y is
uniformly random, then A is uniformly random and independent of T . It is therefore only left to
look at the marginal distribution of T and prove that it is uniform.

We again recall that T is a collection of gate table entries T
(β1,β2)
g and furthermore, by the

definition of the simulator algorithm, each wire w is associated with β∗w and it holds that for all

g with inputs w1, w2 and output w3, all entries T
(β1,β2)
g except T

(β∗w1
,β∗w2

)
g are already uniform and

independent of all other values in C̃. We recall that the value T
(β∗w1

,β∗w2
)

g contains an XOR with
(s′w3,β∗w3

‖β∗w3
).

Now we consider scanning the gates of U in a reverse topological order, and show that all gates

we encounter in the scan, the value T
(β∗w1

,β∗w2
)

g is uniform and independent of all other values. We
maintain the invariant that if our scan is currently at gate g with inputs w1, w2 and output w3 then
(s′w3,β∗w3

‖β∗w3
) are uniform and independent of all gate tables we scanned so far. Clearly this holds

for output gates at the beginning of the scan, since we randomized A. If this invariant holds, then

(s′w3,β∗w3
‖β∗w3

) is uniform and therefore completely randomizes T
(β∗w1

,β∗w2
)

g . Furthermore, this value

now becomes independent of (s′w1,β∗w1
‖β∗w1

) and (s′w2,β∗w2
‖β∗w2

). It follows that the invariant is thus

maintained since the output of the next gate in the reverse topological order can only be an input
to gates that were already scanned and therefore its (s′w,β∗w‖β

∗
w) value is uniform and independent

of the table entries of all scanned gates. Propagating this invariant all the way to the input wires,
the blindness property follows.

5 Weakly Compact Blind IBE

5.1 Defining Weakly Compact Blind IBE

We now begin our construction of anonymous IBE from blind batch encryption and blind garbled
circuits; along the way, we will also construct IBE from batch encryption. As noted earlier, we
construct anonymous IBE as a consequence of building a stronger object which we call blind IBE.
Similar in nature to the blindness property of batch encryption (Definition 3.7), we say that an IBE
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scheme is blind if, when encrypting (under some identity id∗) a random message that is not known
to the distinguisher, the ciphertext is “essentially” indistinguishable from uniform, even given any
polynomial number of secret keys {skid} possibly including skid∗ .

Definition 5.1 (Blind IBE). An IBE scheme satisfies IND-BLIND-ID-CPA security if (1) it satis-
fies IND-ID-CPA security and (2) the function Enc(pp,mpk, id,m; r) can be expressed as a concate-
nation E1(pp; r)||E2(pp,mpk, id,m; r) such that no PPT adversary A can win the following game
with probability greater than 1

2 + negl(λ):

1. pp← Params(1λ||1t)

2. (mpk,msk)← Setup(pp)

3. (id∗, st)← AKeygen(pp,msk,·)(mpk)

4. m
$←M

5. (subct1, subct2)← Enc(pp,mpk, id∗,m) = (E1(pp; r), E2(pp,mpk, id∗,m; r))

6. β
$← {0, 1}. If β = 1, subct2

$← {0, 1}|subct2|.

7. β′ ← AKeygen(pp,msk,·)(st, (subct1, subct2))

8. A wins if and only if β′ = β.

We call Enc = E1||E2 the blind decomposition of Enc.

Lemma 5.1. Any blind IBE scheme is also an anonymous IBE scheme.

Proof. Consider an adversary A playing the IND-ANON-ID-CPA security game; A is eventually
given a challenge ct ← Enc(pp,mpk, idb,mb) where (id0,m0) and (id1,m1) are the challenge id-
message pairs chosen by A. For each b ∈ {0, 1}, it is certainly the case that A cannot distinguish

whether it was given ctidb,mb ← Enc(pp,mpk, idb,mb) or ctidb,m ← Enc(pp,mpk, idb,m) where m
$←

M is a uniformly random message; this follows from ordinary IBE security. Additionally, by blind
IBE security, A also cannot distinguish whether it is given ctidb,m as above or c̃tidb,m ← E1(pp; r)||C
for C

$← {0, 1}|E2(pp,mpk,idb,m;r)|. But c̃tid0,m and c̃tid1,m are drawn from identical distributions, so
we conclude that A cannot distinguish whether it was given ctid0,m0 or ctid1,m1 , as desired.

Our overall goal is to construct (blind) IBE from (blind) batch encryption; this will be done
in two steps. In this section, we construct what we call weakly compact (blind) IBE, which is
intuitively an IBE scheme for any T = poly(λ) identities which is at least slightly more efficient
than the trivial “IBE scheme” consisting of T independent PKE schemes (one for each identity),
which has |mpk| = T · poly(λ). Indeed, all we require is that |mpk| grows sublinearly with T . In
Section 6, we show that full (blind) IBE can be bootstrapped from weakly compact (blind) IBE.

Definition 5.2 (Weakly Compact IBE). A weakly compact IBE scheme consists of five PPT al-
gorithms (Params,Setup,Keygen,Enc,Dec) with the same syntax as an IBE scheme. What distin-
guishes a weakly compact IBE scheme from a full IBE scheme is the following weakened efficiency
requirements:
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• Params now takes as input 1λ||1T where T = 2t is the number of identities. This means that
all five algorithms now run in time poly(T, λ) rather than poly(log T, λ).3

• Weak Compactness: we require that |mpk| = O(T 1−εpoly(λ)) for some ε > 0.

• Security still holds with respect to adversaries running in time poly(λ), not poly(λ, T ).3

Definition 5.3. A weakly compact blind IBE scheme is a weakly compact IBE scheme satisfying
IND-BLIND-ID-CPA security.

We will construct weakly compact (blind) IBE from the following building blocks: (1) (blind)
batch encryption, (2) (blind) garbled circuits, and (3) (blind) public key encryption, where blind
PKE is defined as follows.

Definition 5.4 (Blind Public Key Encryption). An blind public key encryption scheme (with public
parameters) is a public key encryption scheme (Params,Gen,Enc,Dec) which is IND-CPA secure and
satisfies the following additional security property: the function Enc(pp, pk,m; r) can be expressed as
a concatenation E1(pp; r)||E2(pp, pk,m; r) such that the distribution {pp← Params(1λ), (pk, sk)←
Gen(pp),m

$← {0, 1}n : (pp, pk, sk,Enc(pp, pk,m))} is computationally indistinguishable from the

distribution {pp ← Params(1λ), (pk, sk) ← Gen(pp),m
$← M, L = |E2(pp, pk,m; r)|, subct2

$←
{0, 1}L : (pp, pk, sk, E1(pp; r)||subct2)}. That is, encryptions of random messages are pseudorandom
(along with some function independent of the public key) even given the secret key.

We note here that blind public key encryption can be constructed generically from blind batch
encryption; indeed, blind batch encryption can be used to build a blind PKE scheme satisfying
stronger security notions such as leakage resilience and key-dependent message (KDM) security
(see Section 7).

5.2 The Construction

The construction of our weakly compact blind IBE scheme WBIBE uses three ingredients:

• A blind public-key encryption scheme

BPKE = (BPKE.Params,BPKE.Gen,BPKE.Enc,BPKE.Dec)

where the encryption algorithm can be decomposed into BPKE.E1 and BPKE.E2 as in Defi-
nition 5.4;

• A blind garbling scheme

BGBL = (BGC.Garble,BGC.Eval,BGC.Sim); and

• A blind batch encryption scheme

BBENC = (Batch.Setup,Batch.Gen,Batch.Enc,Batch.Dec)

where the encryption algorithm can be decomposed into Batch.E1 and Batch.E2 as in Defini-
tion 3.7. Moreover, we assume that BBENC is fully succinct.

3This is only a technical difference, since we only consider weakly compact IBE schemes with T = poly(λ)
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The construction works as follows.

1. WBIBE.Params(1T ): Given a bound T on the number of identities, the parameter gen-
eration algorithm Params first obtains blind public-key encryption parameters bpke.pp ←
BPKE.Params(1λ). Letting n be the length of the public keys generated by BPKE.Gen, it then
obtains a common reference string batch.crs← Batch.Setup(1λ, 1nT ). The output is

wbibe.pp = (bpke.pp, batch.crs)

2. WBIBE.Setup(wbibe.pp): On input the public parameters, the setup algorithm first obtains
T key pairs (bpke.pki, bpke.ski)← BPKE.Gen(bpke.pp). Secondly, it compresses the sequence
of BPKE public keys into a BBENC public key:

h← Batch.Gen(batch.crs, (bpke.pk0, bpke.pk1, . . . , bpke.pkT−1)).

The output is the pair (wbibe.mpk,wbibe.msk) where

wbibe.mpk = h and

wbibe.msk = (bpke.pk0, . . . , bpke.pkT−1, bpke.sk0, . . . , bpke.skT−1)

3. WBIBE.Keygen(wbibe.pp,wbibe.msk, id): On input the public parameters, the master secret
key and an identity id ∈ {0, 1, . . . , T − 1}, the key generation algorithm outputs

wbibe.skid = (id, bpke.pk0, bpke.pk1, . . . , bpke.pkT−1, bpke.skid).

4. WBIBE.Enc(wbibe.pp,wbibe.mpk, id,m): On input the public parameters, master public key,
an identity id and a message m, the encryption algorithm does the following.

First, sample a uniformly random string r and compute

ct0 = BPKE.E1(bpke.pp; r) .

Secondly, let C[bpke.pp,m, r] be a circuit with blind public parameters bpke.pp (contained as
part of wbibe.pp), the message m and the random string r hardcoded. C takes as input a
blind public key and outputs the encryption of m under the public key using randomness r.
That is,

C[bpke.pp,m, r](bpke.pk) = BPKE.E2(bpke.pp, bpke.pk,m; r)

Compute (
Ĉ, lab

)
← BGC.Garble(1λ, 1n, 1`, C[bpke.pp,m, r])

where lab ∈ ({0, 1}λ)n×2 and ` is defined to be the ouput length of C. Set ct1 := Ĉ.

Finally, let M ∈ ({0, 1}λ)nT×2 be a uniformly random nT -by-2 matrix and then redefine
M[id · n+ j, b] = lab[j, b] for all 1 ≤ j ≤ n, b ∈ {0, 1}. Compute

(ct2, ct
′
2)← Batch.Enc(batch.crs, h,M) .

Output the ciphertext wbibe.ct = (ct0, ct1, ct2, ct
′
2).
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5. WBIBE.Dec(wbibe.pp,wbibe.sk,wbibe.ct): On input the public parameters, a secret key and
a ciphertext, the decryption algorithm parses the secret key as wbibe.sk = (id, bpke.pk0, . . . ,
bpke.pkT−1, bpke.skid), and parses the ciphertext as wbibe.ct = (ct0, ct1, ct2, ct

′
2). It then does

three things.

First, it computes

m← Batch.Dec(batch.crs, (bpke.pk0, bpke.pk1, . . . , bpke.pkT−1), ct2||ct′2),

Secondly, it defines L̂ = (Lj)j∈[n] ∈ ({0, 1}λ)n by Lj = m[id · n + j] and computes ct′0 ←
BGC.Eval(ct1, L̂). Finally, it computes and outputs

m← BPKE.Dec(bpke.pp, bpke.skid, ct0||ct′0) .

We now show that this scheme is a weakly compact blind IBE scheme.

Theorem 5.2. Suppose that BPKE is a blind public-key encryption scheme, BBENC is a blind
batched encryption scheme, and BGBL is a blind garbling scheme. Then, WBIBE is a weakly
compact blind IBE scheme.

We first show in Section 5.3 that the scheme is correct and weakly compact. The proof of
IND-ID-CPA security is in Section 5.4 and the proof of blindness is in Section 5.5.

5.3 Correctness and Compactness

Correctness ofWBIBE is shown by the following sequence of steps. First, we note that WBIBE.Dec
computes a vector m and labels Lj which, by the correctness of the batch encryption algorithm
and the definition of M, satisfies

Lj := m[id · n+ j] = lab[j, bpke.pkid[j]]

That is, the vector L̂ contains precisely the garbled circuit labels corresponding to the input
bpke.pkid. Next, the second step runs BGC.Eval(Ĉ, L̂) and computes ct′0 := BPKE.E2(bpke.pp, bpke.pkid,m; r)
by the correctness of BGBL. Since ct0 is by definition BPKE.E1(bpke.pp; r), their concatenation
ct0||ct′0 is a blind public-key encryption of the message m under the public key bpke.pkid. Thus,
the final step decrypts this using bpke.skid and recovers the message m.

Weak compactness follows from the fact that the master public key of WBIBE is simply the
output h of Batch.Gen and therefore has length poly(λ) (independent of T ) by the succinctness of
BBENC. (Recall that weak compactness refers to the size of the master public key alone, and not
the other objects such as the secret key or the ciphertext).

The blind decomposition of the encryption algorithm WBIBE.Enc is defined as follows. WBIBE.E1

consists of ct0 as well as ct2 = Batch.E1(batch.crs;R), and WBIBE.E2 consists of ct1 as well as
ct′2 = Batch.E2(batch.crs, h,M;R), for a uniformly random string R.

5.4 Semantic Security

We first prove IND-ID-CPA security of our scheme. In fact, this part of the proof only requires
that BPKE is a semantically secure PKE scheme, BBENC is a secure batch encryption scheme,
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and BGBL is a secure garbling scheme (i.e. no blindness is required).4 As a corollary, we therefore
obtain a construction of weakly compact IBE from batch encryption.

Suppose that A is an efficient adversary playing the IND-ID-CPA security game (as in Defini-
tion 2.1), and let H0 denote the probability space underlying the IND-ID-CPA security game. We
now define the hybrids H1, H2, and H ′2, which denote probability spaces underlying altered security
games in which the challenge ciphertext (computed on challenge (id,mβ)) is modified in various
ways.

• In hybridH1, the pair (Ĉ, lab)← BGC.Garble(1λ, 1n, 1`, C[bpke.pp,mβ, r]) is computed as orig-
inally, but after choosing a uniformly random matrix M ∈ ({0, 1}λ)nT×2 we instead redefine
M[id ·n+j, bpke.pkid[j]] = labj,bpke.pkid[j] for all j ∈ [n] and output wbibe.ct = (ct0, ct1, ct2, ct

′
2)

for ct0 = BPKE.E1(bpke.pp, r), ct1 = Ĉ, and (ct2, ct
′
2) = Batch.Enc(batch.crs, h,M). That is,

we now ignore the labels labj,1−bpke.pkid[j]

• In hybrid H2, the challenge ciphertext is computed in the following steps. First, com-
pute a BPKE ciphertext ct′0 = BPKE.E2(bpke.pp, bpke.pkid,mβ; r) and compute a simu-

lated garbled circuit (C̃, L̃) ← BGC.Sim(1λ, 1|C[bpke.pp,mβ ,r]|, 1n, ct′0). Then, choose a ran-

dom matrix M as before, redefine M[id · n + j, bpke.pkid[j]] = L̃j for all j ∈ [n] and out-

put wbibe.ct = (ct0, ct1, ct2, ct
′
2) for ct0 = BPKE.E1(bpke.pp; r), ct1 = C̃, and (ct2, ct

′
2) =

Batch.Enc(batch.crs, h,M).

• In hybrid H ′2, we replace the challenge message mβ with a uniformly random message m (and
keep the rest as in H2).

Clearly PrH′2 [A wins] = 1
2 , as the challenge ciphertext received by the adversary is independent

of the bit b. Thus, it suffices to prove that A’s views in H0, H1, H2, and H ′2 are computationally
indistinguishable, which we denote by the shorthand H0 ≈c H1 ≈c H2 ≈c H ′2.

Claim 5.3. H0 ≈c H1.

Proof. This follows from the security of BBENC. More formally, consider the following adver-
sary A′ which plays the batch encryption security game: it obtains bpke.pp ← BPKE.Params(1λ),
calls BPKE.Gen(bpke.pp) T times to obtain (bpke.pki, bpke.ski) as in the WBIBE.Setup algorithm
(without knowing the batch encryption CRS), and chooses a batch encryption secret key x =
bpke.pk0||bpke.pk1|| . . . ||bpke.pkT−1. Then, after obtainining batch.crs, A′ computes h = Batch.Gen(batch.crs, x)
and runs the algorithmA with public parameters wbibe.pp = bpke.pp||batch.crs and keys (wbibe.mpk,wbibe.msk) =
(h, bpke.pk0|| . . . ||bpke.pkT−1||bpke.sk0|| . . . ||bpke.skT−1).
A′ can clearly answer A’s secret key queries because A′ has the entire master secret key

wbibe.msk. The main detail of this A-simulation is how A′ computes a challenge ciphertext for

A. When A issues a challenge (id,m0,m1), A′ chooses a random β
$← {0, 1}, computes (Ĉ, lab)←

BGC.Garble(1λ, 1n, 1`, C[bpke.pp,mβ, r]), and picks a uniformly random matrix M ∈ ({0, 1}λ)nT×2.
Then, it issues (M(0),M(1)) as its batch encryption challenge, where M(0) is constructed from

(M, lab) as in H0, and M(1) is constructed from (M, lab) as in H1. Note that M
(0)
j,xj

= M
(1)
j,xj

for

all j ∈ [nT ], where again x = bpke.pk0|| . . . ||bpke.pkT−1. Upon receiving its challenge ciphertext

batch.ct, A′ sends ct0||ct1||batch.ct to A, where ct0 = BPKE.E1(bpke.pp; r) and ct1 = Ĉ.

4For non-blind schemes, we use the convention that a decomposition Enc = E1||E2 is by default the trivial
decomposition E1 ≡ 0, E2 = Enc.
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After running its A-simulation, A′ obtains a bit β′ and outputs 1 if and only if β′ = β. By
construction, when A′ receives a batch encryption of M(0) its output distribution is exactly drawn
according to H0, while when A′ receives a batch encryption of M(1) its output distribution is exactly
drawn according to H1. Thus, by the security BBENC, we conclude that H0 ≈c H1, as desired.

Claim 5.4. H1 ≈c H2.

Proof. This follows directly from the simulation security of BGBL. Namely, an adversary A which
distinguishes between H1 and H2 can be used to break the simulation security of BGBL in the
following way: run the H1-security game in its entirety (choosing all of the WBIBE parameters)

until A returns a challenge (id,m0,m1). Then, choose a random β
$← {0, 1}, build the circuit

C = C[bpke.pp,mβ, r], and query (C, bpke.pkid) to the BGBL security game. Upon obtaining

(Ĉ, L̂) (either real or simulated), complete the construction of the challenge ciphertext wbibe.ct
according to H1/H2 (the steps are the same), and output 1 if and only if A (given wbibe.ct) returns
β′ = β. Distinguishing between H1 and H2 then corresponds exactly to distinguishing between a
real pair (Ĉ, L̂) and a simulated pair (C̃, L̃), where the key detail is that only labels Lj,bpke.pkid[j] are
used in the remainder of the experiment, so we conclude that H1 ≈c H2 by the simulation secruity
of BGBL.

Claim 5.5. H2 ≈c H ′2.

Proof. This follows from the semantic security of BPKE . More formally, an adversary A′ given
public parameters bpke.pp and a public key bpke.pk but not the corresponding secret key bpke.sk
can simulate A playing the H2/H

′
2 security games, respectively, in the following way. First, A′

chooses an identity id∗ at random, sets bpke.pkid∗ = bpke.pk, and chooses (bpke.pkid, bpke.skid) ←
BPKE.Gen(bpke.pp) (for all id 6= id∗) and batch.crs← Batch.Setup(1λ, 1n·T ) itself. A′ then runs A;
by construction, A′ can answer any secret key query for id 6= id∗. If A′ ever receives an id∗ query,
it returns a uniformly random bit as output for the entire BPKE security game. A will eventually
issue a challenge (id,m0,m1); if id 6= id∗, A′ again returns a uniformly random bit for the BPKE
security game. Otherwise, A′ issues a challenge ciphertext to A by appropriately choosing challenge
messages (one equal to mβ for random β, and the other a uniformly random message m) for
its BPKE challenger, setting (ct0, ct

′
0) = (bpke.subct1, bpke.subct2) (where A′’s received challenge

ciphertext is (bpke.subct1, bpke.subct2)), and then computing the resulting challenge ciphertext for
A as in H2/H

′
2 (the steps are the same). By outputting 1 if and only if its A-simulation wins the

hybrid security game (i.e. β′ = β), A′ distinguishes which BPKE challenge message was encrypted
if and only if A distinguishes between H2 and H ′2 (losing a factor of 1

T in the advantage because
we conditioned on the event id = id∗, which is fine since T is polynomial in λ). Thus, we see that
H2 ≈c H ′2 by the semantic security of BPKE .

5.5 Blindness

Next, we show thatWBIBE is blind assuming that BBENC,BPKE , and BGBL are all blind. Note
that syntatically, WBIBE.E1 does not depend on mpk, id, or m, as desired.

Suppose thatA is an efficient adversary playing the blind-ID security game (as in Definition 5.1),
and let H0 denote the probability space underlying the blind-ID security game. We define the
hybrids H1 and H2 completely analogously as in Section 5.4 (although there is no mβ; only a
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random message m chosen by the challenger), so that H0 ≈c H1 ≈c H2 (by the same proof). We
additionally define hybrids H3, H4, H5, which again denote probability spaces underlying altered
security games in which the challenge ciphertext has been modified.

• In hybridH3, as compared toH2, we replace the BPKE ciphertext ct′0 = BPKE.E2(bpke.pp, bpke.pkid,m; r)
with a uniformly random ciphertext ct′0 of length |ct′0| = |BPKE.E2(bpke.pp, bpke.pkid,m; r)|.
The hybrid (WBIBE) challenge ciphertext is then computed as in H2.

• In hybridH4, as compared toH3, we replace the pair (C̃, L̃)← BGC.Sim(1λ, 1|C[bpke.pp,m,r]|, 1n, ct′0)

by a uniformly random string (C̃, L̃) of length |(C̃, L̃)| = |BGC.Sim(1λ, 1|C[bpke.pp,m,r]|, 1n, ct′0)|.

• In hybrid H5, as compared to H4, we replace (ct2, ct
′
2) = Batch.Enc(batch.crs, h,M;R)) with

(ct2, ct
′
2) = (Batch.E1(batch.crs;R), R′), where R′ is a uniformly random string of length

|Batch.E2(batch.crs, h,M;R)|.

It is clear that PrH5 [A wins] = 1
2 , as in H5 the challenge ciphertext received by A no longer

depends on the value of β (in fact, its distribution matches the original (blind) challenge ciphertext
distribution in β = 1 mode). Thus, it suffices to show that H2 ≈c H3 ≈c H4 ≈c H5.

Claim 5.6. H2 ≈c H3

Proof. This follows from the blindness of BPKE by a similar proof as that of Claim 5.5. More
formally, an adversary A′ given (bpke.pp, bpke.pk, bpke.sk, bpke.subct1||bpke.subct2) as in the blind-
ID security game can simulate A playing the H2/H3 security games, respectively, by choos-
ing an identity id∗ at random, setting (bpke.pkid∗ , bpke.skid∗) = (bpke.pk, bpke.sk), and choosing
(bpke.pkid, bpke.skid)← BPKE.Gen(bpke.pp) (for all id 6= id∗) and batch.crs← Batch.Setup(1λ, 1n·T )
itself. A′ then runs A; by construction, A′ can answer any secret key query, as it has the entire
master secret key wbibe.msk. A will eventually issue a challenge identity id; if id 6= id∗, A′ returns
a uniformly random bit as output for the entire BPKE security game. Otherwise, A′ issues a
challenge ciphertext to A by setting (ct0, ct

′
0) = (bpke.subct1, bpke.subct2), and then computing the

resulting challenge ciphertext for A as in H2/H3 (the steps are the same). By outputting 1 if and
only if its A-simulation wins the hybrid security game (i.e. β′ = β), A′ distinguishes a real BPKE
challenge ciphertext from a real bpke.subct1 and random bpke.subct2 if and only if A distinguishes
between H2 and H3 (losing a factor of 1

T in the advantage again, which is fine since T is polynomial
in λ). Thus, we see that H2 ≈c H3 by the blindness of BPKE .

Claim 5.7. H3 ≈c H4

Proof. This follows from the blindness of BGBL, because the “circuit output” ct′0 plugged into
BGC.Sim in hybrid H3 is uniformly random and independent of all other parameters. Namely, an
adversary A which distinguishes between H3 and H4 can be used to break the blindness property
of BGBL in the following way: run the H3-security game in its entirety (choosing all of theWBIBE
parameters) until A returns a challenge identity id. Then, generate ct0 as in H3, build the circuit
C = C[bpke.pp,m, r] (for, say, a random message m; we only care about the size of C), and query
(1|C|, 1n, 1c) to the garbled circuit blindness security game (which only involves BGC.Sim; here c
is the ouptput length of C). Upon obtaining (C̃, L̃) (either uniformly random or simulated from
a random ct′0), complete the construction of the challenge ciphertext wbibe.ct according to H3/H4

(the steps are the same and, crucially, independent of ct′0). By outputting 1 if and only if A wins
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its security game (i.e. β′ = β), A distinguishing between H3 and H4 then corresponds exactly to
this algorithm distinguishing between a simulated pair (C̃, L̃) and a random string (C̃, L̃), so we
conclude that H3 ≈c H4 by the blindness of BGBL.

Claim 5.8. H4 ≈c H5

This follows from the blindness of BBENC, because the matrix M batch encrypted in hybrid H4

is a uniformly random matrix. The reduction proceeds analogously to the reduction in Claim 5.3
(although here A′ does not have to choose a challenge message because we are simulating the
blindness security game).

Having proved the above claims, we have completed the proof of Theorem 5.2.

6 Bootstrapping (Blind) IBE

Our bootstrapping theorem converting a weakly compact (blind) IBE scheme into a full-fledged
(blind) IBE scheme follows the ideas of [DG17a,DG17b] and is essentially a way to achieve domain
extension of the space of identities. The bootstrapping scheme is described in Section 6.1 and
analyzed in Sections 6.2, 6.3, and 6.4. Recall that a high level overview was provided in the
introduction (Section 1.2).

6.1 The Bootstrapping Theorem

Let WBIBE denote a weakly compact blind IBE scheme supporting T = T (λ) identities with
a master public key of size S = S(λ) bits. By compactness, we may choose T = poly(λ) large
enough so that S < T/4. Additionally, let BGBL = (BGC.Garble,BGC.Eval,BGC.Sim) denote a
blind garbling scheme. We construct a full-fledged blind IBE scheme BIBE as follows.

• BIBE.Params(1λ, 1n): On input the length n of the identities supported by the system, the
parameter generation algorithm generates parameter wbibe.pp←WBIBE.Params(1λ, 1T ) and
outputs bibe.pp = (1n,wbibe.pp).

• BIBE.Setup(bibe.pp): On input the public parameters, the setup algorithm chooses a seed s
for a PRF family fs : {0, 1}≤n → {0, 1}r where r is the number of random bits used by the
Setup algorithm of WBIBE . BIBE.Setup then obtains

(wbibe.mpk(ε),wbibe.msk(ε))←WBIBE.Setup(wbibe.pp; fs(ε))

where ε denotes the empty string. The output is

bibe.mpk = wbibe.mpk(ε) and bibe.msk = s .

• BIBE.Keygen(bibe.pp, bibe.msk, id): On input the public parameters, the master secret key
and an n-bit identity id = id1||id2||...idn, the key generation algorithm does the following.

First, for each prefix id[≤ i] = id1||id2|| . . . ||idi ∈ {0, 1}i, compute the master public key
wbibe.mpk(≤i) and the master secret key wbibe.msk(≤i):

(wbibe.mpk(≤i),wbibe.msk(≤i))←WBIBE.Setup(wbibe.pp; fs(id[≤ i])).
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(By convention, id[≤ 0] = ε)

For each 0 ≤ i ≤ n− 1 and j ∈ [S], define id′i,j := idi+1||j||bi+1,j ∈ {0, 1}× [S]×{0, 1}, where

bi+1,j := wbibe.mpk(≤i+1)[j]. Compute

ski,j ←WBIBE.Keygen(wbibe.pp,wbibe.msk(≤i), id′i,j).

Finally, compute

skleaf ←WBIBE.Keygen(wbibe.pp,wbibe.msk(≤n), idnull),

where idnull = 0T is a default identity, and output

bibe.skid =
((

wbibe.mpk(≤i)
)
0≤i≤n,

(
ski,j

)
j∈[S],0≤i≤n−1, skleaf

)
.

• BIBE.Enc(bibe.pp, bibe.mpk, id,m): On input the public parameters, the master public key,
an n-bit identity id, and a message m, the encryption algorithm does the following.

Let C[wbibe.pp, η, lab, r] be a circuit that computes the function

C[wbibe.pp, η, lab, r] (wbibe.mpk) =
(
WBIBE.E2(wbibe.pp,wbibe.mpk, η||j||b, labj,b; rj,b)

)
j∈[S],b∈{0,1}

where r is the collection of all rj,b and lab is the collection of all labj,b. Let C ′[wbibe.pp,m, r]
be a circuit that computes the function

C ′[wbibe.pp,m, r](wbibe.mpk) = WBIBE.E2(wbibe.pp,wbibe.mpk, idnull,m; r) .

Choose random strings r, r(1), . . . , r(n).

Compute (Ĉn, lab
(n)

)← BGC.Garble
(
C ′[wbibe.pp,m, r]

)
. For i = n− 1 to 0, compute

(Ĉi, lab
(i)

)← BGC.Garble
(
C[wbibe.pp, idi+1, lab

(i+1)
, r(i+1)]

)
Compute ctn+1 ←WBIBE.E1(wbibe.pp; r), and for i = 1 to n, compute

cti,j,b ←WBIBE.E1(wbibe.pp; r
(i)
j,b),

and let cti := (cti,j,b)j,b.

Output the following as the ciphertext:

bibe.ct =
(
Ĉ0, . . . , Ĉn−1, Ĉn, ct1, . . . , ctn, ctn+1, lab

(0)
[wbibe.mpk(ε)]

)
,

where lab
(0)

[wbibe.mpk(ε)] is short-hand for (lab
(0)
j,b0,j

)j∈[S].

• BIBE.Dec(bibe.pp, bibe.skid, bibe.ct): On input the public parameters, an identity secret key
and a ciphertext, the decryption algorithm does the following.

Let L̂(0) :=
(
lab

(0)
j,b0,j

)
j∈[S]. For 1 ≤ i ≤ n, do the following steps one after the other.
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– Compute ct′i ← Eval(Ĉi−1, L̂
(i−1)) which itself consists of ciphertexts ct′i,j,b for j ∈ [S]

and b ∈ {0, 1}.

– Compute L
(i)
j ← WBIBE.Dec(wbibe.pp, ski,j , cti,j,bi,j ||ct′i,j,bi,j ) for all j ∈ [S] and bi,j =

wbibe.mpk(≤i)[j]. Let L̂(i) denote the collection of all L
(i)
j .

Finally, compute ct′n+1 ← Eval(Ĉn, L̂
(n)) and output

m′ ←WBIBE.Dec(wbibe.pp, skleaf, ctn+1||ct′n+1) .

• The blind decomposition of BIBE.Enc is as follows: BIBE.E1(bibe.pp; R) is defined to be the
collection (ct1, ct2, . . . , ctn+1), while BIBE.E2(bibe.pp, bibe.mpk, id,m; R) is defined to be the

collection
(
Ĉ0, ..., Ĉn, lab

(0)[bibe.mpk]
)

.

Theorem 6.1. Suppose that WBIBE is a weakly compact blind IBE scheme and that BGBL is a
blind garbling scheme. Then, BIBE is a blind IBE scheme. Additionally, even without the blindness
assumptions, BIBE is an IBE scheme.

Remark 6.1. In our discussion of the above construction and its proof of security, we will refer
to a tree of depth n in which each node of the tree is labelled by a string v ∈ {0, 1}≤n and is
assigned (wbibe.mpk(v),wbibe.msk(v)), a specific WBIBE scheme to be executed “locally at node
v”. In this language, an encryption BIBE.Enc(wbibe.pp,wbibe.mpk(ε), id,m) computes a garbled cir-

cuit (Gi, lab
(i)

) for each node id[≤ i] = id1|| . . . ||idi corresponding to a prefix of id in the sense
that an honest decryptor will end up evaluting Gi using the input labels for wbibe.mpk(≤i) =
wbibe.mpk(id[≤i]). We will also maintain the notation wbibe.mpk(≤i) = (bi,j)j∈[S].

We first show in Section 6.2 that BIBE satisfies correctness of an IBE scheme. The proof of
IND-ID-CPA security is in Section 6.3 and the proof of blindness is in Section 6.4.

6.2 Proof of Correctness

Correctness crucially uses the fact that S ≤ T
4 , so that WBIBE supports identities of the form

idi||j||b ∈ {0, 1}× [S]×{0, 1} (as j here is referring to the jth bit of a master public key). Given this
fact, we see by an inductive argument that if we are given bibe.ct← BIBE.Enc(bibe.pp, bibe.mpk, id,m),
then for each step 1 ≤ i ≤ n of the decryption process (when decrypting bibe.ct),

ct′i,j,b = WBIBE.E2(wbibe.pp,wbibe.mpk(≤i−1), idi||j||b, lab(i)j,b; r
(i)
j,b)

by the correctness of BGBL, and so

L
(i)
j = lab

(i)
j,bi,j

for each j by the correctness of WBIBE . Thus, after step n+ 1, we also have that

ct′n+1 = WBIBE.E2(wbibe.pp,wbibe.mpk(≤n), idnull,m; r)

by the correctness of BGBL, so that m′ = m as desired.
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6.3 Semantic Security

We first prove IND-ID-CPA security of our scheme, which only requires that WBIBE is a secure
(weakly compact) IBE scheme and BGBL is a secure garbling scheme (i.e. no blindness is required).

Suppose that A is an efficient adversary playing the IND-ID-CPA security game (as defined in
Definition 2.1), let Q = Q(n, λ) be a (polynomial) bound on the runtime of A, and let H̃0 denote the
probability space underlying the IND-ID-CPA security game. We first define the hybrid security
game H0 = H0,0, in which all invocations of the PRF fs(x) (made by the challenger) are replaced
by the values F (x) of a truly random function F : {0, 1}≤n → {0, 1}r. Moreover, we have that
H̃0 ≈c H0 (or more precisely that PrH̃0

[A wins] = PrH0 [A wins] + negl(λ)) by the security of the
PRF family {fs}. We now define the hybrids Hi,1 and Hi+1,0 for all 0 ≤ i ≤ n − 1, which denote
probability spaces underlying altered security games in which the challenge ciphertext is modified
in various ways.

• In hybrid Hi,1, as compared to Hi,0, we compute (for each j ∈ [S], b ∈ {0, 1})

ct′i+1,j,b = WBIBE.E2

(
wbibe.pp,wbibe.mpk(≤i), idi+1||j||b, lab(i+1)

j,b ; r
(i+1)
j,b

)
and replace the honestly generated garbled circuit (Ĉi, L̂

(i)) with a simulated garbled circuit

(C̃i, L̃
(i))← BGC.Sim

(
1λ, 1|Ci|, 1S , ct′i+1

)
for |Ci| =

∣∣∣C[wbibe.pp, idi+1, lab
(i+1)

, r(i+1)]
∣∣∣. By induction, we maintain the invariant that

by hybrid Hi,0, only the labels L
(i)
j = lab

(i)
j,bi,j

are used in the modified challenge ciphertext.

• In hybrid Hi+1,0, as compared to Hi,1, we remove half of the labels lab
(i+1)
j,b ; that is, we redefine

ct′i+1,j,1−bi+1,j
= WBIBE.E2

(
wbibe.pp,wbibe.mpk(≤i), idi+1||j||(1− bi+1,j), R

(i+1)
j,1−bi+1,j

; r
(i+1)
j,1−bi+1,j

)
,

where each R
(i+1)
j,b ∈ {0, 1}λ is a uniformly random string.

Finally, we define hybrid game Hn,1, in which compared to Hn,0, we first compute

ct′n+1 = WBIBE.E2

(
wbibe.pp,wbibe.mpk(≤n), idnull,mβ; r

)
and then replace the honestly generated garbled circuit (Ĉn, L̂

(n)) with a simulated garbled circuit

(C̃n, L̃
(n))← BGC.Sim

(
1λ, 1|Cn=C

′|, 1S , ct′n+1

)
.

We also define hybrid game H̃ = Hn+1,0, in which we replace ctn+1||ct′n+1 with an encryption

ctn+1||ct′n+1 = WBIBE.Enc
(
wbibe.pp,wbibe.mpk(≤n), idnull,m; r

)
of a uniformly random message

m
$←M.
Clearly PrH̃ [A wins] = 1

2 , as the challenge ciphertext received by the adversary is independent
of the bit β. Thus, it suffices to prove that A’s views in Hi,0 and Hi,1 are computationally indistin-
guishable (for each i) and that A’s views in Hi,1 and Hi+1,0 are computationally indistinguishable
(for each i).
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Claim 6.2. Hi,0 ≈c Hi,1 for all 0 ≤ i ≤ n− 1.

This follows directly from the simulation security of BGBL, crucially using the fact that only

the labels lab
(i)
j,bi,j

are used in Hi,0. The proof is very similar to that of Claim 5.4.

Claim 6.3. Hi,1 ≈c Hi+1,0 for all 0 ≤ i ≤ n− 1.

Proof. This follows from the security ofWBIBE ; in particular, the security ofWBIBE with public
key wbibe.mpk(≤i). For simplicity we will work with a “multiple challenge identities/messages”
variant of IBE security (forWBIBE) which follows from the definition of IBE security by a standard
hybrid argument.

More formally, consider the following adversary A′ which plays theWBIBE security game: it is
given wbibe.pp←WBIBE.Params(1λ, 1S) along with wbibe.mpk∗ as generated by WBIBE.Setup(wbibe.pp).
A′ then chooses a timestep 1 ≤ q ≤ Q at random and runs the algorithmA, generating (wbibe.mpk,wbibe.msk)
pairs in lazy fashion as they become necessary in A’s secret key id queries (i.e. whenever a new node
in the tree is traversed, generate a new (wbibe.mpk,wbibe.msk) pair for this node). However, when
the qth unique node vq ∈ {0, 1}≤n of the tree is first accessed, A′ sets wbibe.mpk(vq) := wbibe.mpk∗

instead of generating a fresh (wbibe.mpk,wbibe.msk) pair; then, in order to answer secret key queries
corresponding to paths including the node vq, A′ makes the appropriate secret key queries to its own
WBIBE.Keygen oracle. Finally, when A sends a challenge (id,m0,m1), A′ checks if id[≤ i] = vq;
if not, A′ immediately returns a uniformly random bit (as the result of the entire IBE security

game). If vq = id[≤ i], A′ chooses a random β
$← {0, 1} and executes steps n, n − 1, ..., i + 1

of the BIBE.Enc(bibe.pp, bibe.mpk, id,mβ) algorithm, yielding (Ĉi+1, lab
(i+1)

). Then, A′ issues the
following challenge messages/identities to its WBIBE challenger: A′ requests that it either be given

encryptions of lab
(i+1)
j,1−bi+1,j

under identity idi+1||j||(1− bi+1,j) for each 1 ≤ j ≤ S, or that it be given

encryptions of R
(i+1)
j,1−bi+1,j

under identity idi+1||j||(1 − bi+1,j) for each 1 ≤ j ≤ S. Upon receiving

its challenge ciphertexts (cti+1,j,1−bi+1,j
, ct′i+1,j,1−bi+1,j

)1≤j≤S , A′ completes the modified encryption

algorithm using these ciphertexts (plugging them into the simulator, etc.) as described in hybrid
Hi+1,0. It returns the resulting “ciphertext” to its A-simulation.

After running its A-simulation, A′ obtains a bit β′ and outputs 1 if and only if β′ = β. By con-
struction, conditioned on the event that id[≤ i] = vq, we see that when A′ receives challenge cipher-

texts of the form WBIBE.Enc
(
wbibe.pp,wbibe.mpk(≤i), idi+1||j||(1− bi+1,j), lab

(i+1)
j,1−bi+1,j

)
(for all 1 ≤

j ≤ S), A′’s output matches the condition that β′ = β when A plays hybrid game Hi,1, while when

A′ receives challenge ciphertexts of the form WBIBE.Enc
(
wbibe.pp,wbibe.mpk(≤i), idi+1||j||(1− bi+1,j),

R
(i+1)
j,1−bi+1,j

)
(for all 1 ≤ j ≤ S), A′’s output distribution matches the condition that β′ = β when A

plays hybrid game Hi+1,0. Moreover, no matter what queries A makes, A′ never makes any invalid
queries (that is, a query for identity idi+1||j||(1− bi+1,j) in the WBIBE scheme at node vq) in the
above experiment, because BIBE secret keys never include these WBIBE secret keys. Thus, we
conclude that by the IND-ID-CPA security of WBIBE , hybrids Hi,1 and Hi+1,0 are computation-
ally indistinguishable, incurring a loss in distinguishing advantage of 1

Q (which is fine because Q is
polynomial in (n, λ)).

Claim 6.4. Hn,0 ≈c Hn,1.

This also follows from the simulation security of BGBL, just as in Claim 6.2.
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Claim 6.5. Hn,1 ≈c Hn+1,0.

This also follows from the security ofWBIBE . The reduction is very similar to that of Claim 6.3,
although in this step, we make use of the fact that whenever A does not make an invalid secret
key query (that is, the challenge identity id) in hybrid Hn,1 (respectively, Hn+1,0), the constructed
adversary A′ will not make a secret key query for idnull in the WBIBE scheme at node v = id (if A
does make an invalid query, then so will A′).

This completes the proof of semantic security.

6.4 Blindness

Next, we show that our IBE scheme is blind assuming that the underlying weakly compact IBE
scheme is blind. Note that syntatically, BIBE.E1 does not depend on bibe.mpk, id, or m, as desired.

Suppose that A is an efficient adversary playing the blind-ID security game (as defined in
Definition 5.1), and let H̃0 denote the probability space underlying the blind-ID security game. We
again define the hybrids H0 = H0,0, Hi,1, and Hi+1,0 for 0 ≤ i ≤ n − 1 analogously to Section 6.3
(along with Hn,1), so that H̃0 ≈c H0,0 ≈c H0,1 ≈c H1,0 ≈c . . . ≈c Hn,0 ≈c Hn,1 (by the same proof).
Next, we additionally define hybrids Hi,2, Hi,3 for each n ≥ i ≥ 0:

• In hybrid Hn,2, as compared to Hn,1, we replace ct′n+1 = WBIBE.E2(wbibe.pp,wbibe.mpk(≤n),
idnull,m; r) with a uniformly random string ct′n+1 of length

|ct′n+1| =
∣∣∣WBIBE.E2(wbibe.pp,wbibe.mpk(≤n), idnull,m; r)

∣∣∣ .
• In hybrid Hi,3 for all n ≥ i ≥ 0, as compared to Hi,2, we replace the simulated pair (C̃i, L̃

(i))←

BGC.Sim
(
1λ, 1|Ci|, 1S , ct′i+1

)
by a uniformly random string

(
C̃i,
(
R

(i)
j,bi,j

)
j∈[S]

)
of the same

length.

• In hybrid Hi,2 for all n−1 ≥ i ≥ 0, as compared to Hi+1,3, we replace (for each b ∈ {0, 1}, j ∈
[S]) the ciphertexts ct′i+1,j,b = WBIBE.E2

(
wbibe.pp,wbibe.mpk(≤i), idi+1||j||b, R(i+1)

j,b ; r
(i+1)
j,b

)
with uniformly random strings ct′i+1,j,b of the same length.

It is clear that PrH0,3 [A wins] = 1
2 , as in H0,3 the challenge ciphertext recieved by A no longer

depends on the value of β (in fact, it is always the original challenge ciphertext in β = 1 mode).
Thus, it suffices to show that all adjacent hybrids as defined above are computationally indistin-
guishable.

Claim 6.6. Hn,1 ≈c Hn,2

This follows from the blindness of WBIBE , crucially using the fact that the message m being
encrypted (to create (ctn+1, ct

′
n+1)) in Hn,1 is uniformly random. The proof is similar to that of

Claim 6.8 below.

Claim 6.7. Hi,2 ≈c Hi,3 for all n ≥ i ≥ 0.

This follows from the blindness of BGBL, crucially using the fact that ct′i+1, the input to
BGC.Sim in hybrid Hi,2, is a uniformly random string independent of the rest of the BIBE experi-
ment. The proof is very similar to that of Claim 5.7.
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Claim 6.8. Hi+1,3 ≈c Hi,2 for all n− 1 ≥ i ≥ 1.

Proof. This follows from the blindness ofWBIBE , crucially using the fact that the message matrix
R(i+1) being encrypted in Hybrid Hi+1,3 is a uniformly random matrix independent of the rest of
the BIBE experiment. Again, we will reduce to a “multiple challenge identities” variant of blindness
for WBIBE which follows immediately from Definitition 5.1 by a standard hybrid argument. The
following proof is fairly similar to that of Claim 6.3.

Consider the following adversary A′ which plays the WBIBE blindness game: it is given
wbibe.pp←WBIBE.Params(1λ, 1S) along with wbibe.mpk∗ as generated by WBIBE.Setup(wbibe.pp).
A′ then chooses a timestep 1 ≤ q ≤ Q at random and runs the algorithmA, generating (wbibe.mpk,wbibe.msk)
pairs in lazy fashion as they become necessary in A’s secret key id queries (i.e. whenever a new node
in the tree is traversed, generate a new (wbibe.mpk,wbibe.msk) pair for this node). However, when
the qth unique node vq ∈ {0, 1}≤n of the tree is first accessed, A′ sets wbibe.mpk(vq) := wbibe.mpk∗

instead of generating a fresh (wbibe.mpk,wbibe.msk) pair; then, in order to answer secret key queries
corresponding to paths including the node vq, A′ makes the appropriate secret key queries to its
own WBIBE.Keygen oracle.

Finally, when A chooses a challenge identity id, A′ checks if id[≤ i] = vq; if not, A′ imme-
diately returns a uniformly random bit (as the result of the entire blind IBE security game). If

vq = id[≤ i], A′ computes ctn+1 = WBIBE.E1(wbibe.pp; r), ct`,j,b = WBIBE.E1(wbibe.pp; r
(`)
j,b ) for

all ` ≥ i + 1, and issues the following challenge identities to its WBIBE challenger: A′ requests
that it either be given encryptions (wbibe.subct1,j,b,wbibe.subct2,j,b) of (unknown to A′) uniformly

random strings R
(i+1)
j,b under identity idi+1||j||b for each 1 ≤ j ≤ S, b ∈ {0, 1}, or that it be given

(wbibe.subct1,j,b,wbibe.subct2,j,b) for uniformly random wbibe.subct2,j,b under identity idi+1||j||b for
each (j, b). Upon receiving its challenge ciphertexts (subct1,j,b, subct2,j,b)j,b, A′ completes the mod-
ified encryption algorithm, using cti,j,b = subct1,j,b and ct′i,j,b = subct2,j,b, as described in hybrid

Hi+1,3. It then picks β
$← {0, 1} as in the BIBE blindness game and returns the resulting “cipher-

text” (depending on the value of β) to its A-simulation.
After running its A-simulation, A′ obtains a bit β′ and outputs 1 if and only if β′ = β. By

construction, conditioned on the event that id[≤ i] = vq, we see that when A′ receives challenge

ciphertexts of the form WBIBE.Enc
(
wbibe.pp,wbibe.mpk(≤i), idi+1||j||b, R(i+1)

j,b

)
(for all 1 ≤ j ≤

S, b ∈ {0, 1}), A′’s output matches the condition that β′ = β when A plays hybrid game Hi+1,3,
while when A′ instead receives ciphertexts with each wbibe.subct2,j,b replaced by a random string,
A′’s output distribution matches the condition that β′ = β when A plays hybrid game Hi,2. There
is no issue of invalid identity queries, because all queries are valid in the blindness security games
for WBIBE and BIBE . Thus, we conclude that by the blindness of WBIBE , hybrids Hi+1,3 and
Hi,2 are computationally indistinguishable, incurring a loss in distinguishing advantage of 1

Q (which
is fine because Q is polynomial in (n, λ)).

Having proved the above claims, we have completed the proof of Theorem 6.1.

7 Leakage Resilient and KDM Secure Public Key Encryption from
Batch Encryption

In this section, we construct a public key encryption scheme PKE generically from a batch en-
cryption scheme BENC. Moreover, the public key encryption scheme PKE simultaneously satisfies
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many special properties: it is secure against leakage of 1− o(1) bits of the secret key pke.sk, and it
satisfies key-dependent message (KDM) security with respect to affine functions of the secret key.
By prior works [BHHI10, App11], PKE can additionally be used to build a public key encryption
scheme satisfying KDM security with respect to arbitrary, a priori bounded size functions of the
secret key.

In Section 7.1 we recall the relevant definitions. The construction of the scheme PKE is in
Section 7.2, and its proofs of security are in Sections 7.3 and 7.4. Finally, in Section 7.5, we show
that if BENC is furthermore a blind batch encryption scheme, then PKE is a blind public key
encryption scheme. This is used in Section 5 to prove that blind batch encryption (existentially)
implies weakly compact blind IBE.

7.1 Definitions

A leakage resilient public key encryption scheme PKE satisfies a security property capturing the
intuition that an adversary should not be able to break the semantic security of PKE even if given
a bounded amount of information about the secret key sk. The formal definition is stated below.

Definition 7.1 (Leakage Resilient Public Key Encryption). A public key encryption scheme PKE =
(Params,Gen,Enc,Dec) satisfies L(·) leakage CPA-security if no polynomial time adversary A can
win the following game with probability greater than 1

2 + negl(λ):

1. pp← Params(1λ)

2. (pk, sk)← Gen(pp)

3. (f, st1)← A(pp, pk), where f : {0, 1}|sk| → {0, 1}L(|sk|).

4. m0,m1, st2 ← A(st1, f(sk))

5. β
$← {0, 1}

6. ct← Enc(pp, pk,mβ)

7. β′ ← A(st2, ct)

8. A wins if β′ = β.

Meanwhile, a KDM secure public key encryption scheme satisfies the security property that an
adversary should not be able to distinguish encryptions of 0 from encryptions of specified functions
(chosen by the adversary) of the secret key. This strictly subsumes semantic security because the
adversary can query the constant “1” function as part of the security game. The formal definition
is below.

Definition 7.2 (KDM Secure Public Key Encryption). A public key encryption scheme PKE =
(Params,Gen,Enc,Dec) satisfies (bounded function size) KDM security if no PPT adversary A can
win the following game with probability greater than 1

2 + negl(λ).

1. pp← Params(1λ).

2. (pk, sk)← Gen(pp||1S), where S is a bound on the size of circuits to be queried by A.
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3. β
$← {0, 1}.

4. st0 = pk

5. Iterate the following many times

(a) (fi, st
′
i)← A(sti), where fi is a circuit of size ≤ S computing a function from {0, 1}|sk| →

{0, 1}.
(b) If β = 0, ct← Enc(pk, 0). If β = 1, ct← Enc(pk, fi(sk)).

(c) sti+1 ← A(st′i, ct)

6. β′ ← A(stfinal)

7. A wins if β′ = β.

We say that PKE is KDM-secure with respect to affine functions of the secret key if no PPT
adversary can win (with probability greater than 1

2 + negl(n)) the security game above where the
functions fi are required to be affine (over F2).5

7.2 The Leakage-Resilient KDM-Secure Encryption Scheme

Suppose that BENC = (Batch.Setup,Batch.Gen,Batch.Enc,Batch.Dec) is a (fully succinct) batch en-
cryption scheme, which without loss of generality has public keys of size |h| = λ. We then construct,
for any polynomial function n = n(λ), a public key encryption scheme PKE = (PKE.Params,PKE.Gen,
PKE.Enc,PKE.Dec), defined as follows.

1. PKE.Params(1λ) outputs pp = crs← Batch.Setup(1λ||1n).

2. PKE.Gen(pp) interprets pp = crs as a BENC common reference string, chooses x
$← {0, 1}n

and computes h = Batch.Gen(pp, x). It then outputs (pk, sk) = (h, x).

3. PKE.Enc(pp, pk,m) first computes an XOR secret sharing m =
⊕n

i=1 ri, sets Mi,b = ri for
each b ∈ {0, 1}, and outputs ct = Batch.Enc(pp, pk,M).

4. PKE.Dec(pp, sk, ct) computes r′ = Batch.Dec(pp, x, ct) (for x = sk) and outputs m′ = ⊕ir′i.

Theorem 7.1. For any n = poly(λ) > (1+ε)λ, the scheme PKE is (1) a leakage-resilient public key
encryption scheme with leakage rate (1− 2λ

n ) and (2) KDM-secure with respect to affine functions of
the secret key. In particular, if n = ω(λ) then this scheme achieves leakage resilience with leakage
rate 1− o(1).

Correctness of the encryption scheme is clear; namely, for any vector r such that
⊕n

i=1 ri = m,
if we set Mi,b = ri for each (i, b), then by the correctness of BENC, we have that

Batch.Dec(pp, sk = x,Batch.Enc(pp, pk = h,M)) = (Mi,xi)i∈[n] = (ri)i∈[n],

so that PKE.Dec(pp, sk,PKE.Enc(pp, pk,m)) =
⊕n

i=1 ri = m, as desired.

5Note that in this case, the circuit size bound S can be eliminated, and we will think of function queries as instead
vector queries representing an affine function.
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7.3 Proof of Leakage Resilience

We want to show that the scheme PKE above is (1− 2λ
n )-leakage resilient.

Let A be an efficient adversary playing the (1− 2λ
n ) leakage-resilience game (as in Definition 7.1),

and let H0 denote the probability space underlying this leakage resilience game. Let us recall
what a challenge ciphertext ct = PKE.Enc(pp, pk,mb) looks like: for (pp, pk, sk) = (crs, h, x) as
obtained from BENC, ct is a batch encryption Batch.Enc(crs, h,M) where Mi,b = ri (for all i, b)
and

⊕
i ri = mb is an additive secret sharing of mb. We now define the hybrids H1 and H2, which

denote probability spaces underlying two modified security games in which the challenge ciphertext
ct has been changed.

• In hybrid H1, the challenger instead sends ct = Batch.Enc(crs, h,M), where M is a uniformly
random matrix subject to the condition that

⊕
i Mi,xi = mβ; in other words, we have changed

the entries Mi,1−xi to be independent uniformly random bits, with Mi,xi = ri as before.

• In hybrid H2, the challenger instead sends ct = Batch.Enc(k, h,M), where M is a uniformly
random n× 2 matrix.

Clearly PrH2 [A wins] = 1
2 , as A’s view in the game H2 is independent of the bit β. Thus, it suffices

to show that A’s views in games H0, H1, and H2 are computationally indistinguishable, which we
denote by the shorthand H0 ≈c H1 ≈c H2.

Claim 7.2. H0 ≈c H1

Proof. This follows from the security of BENC. Since the difference between H0 and H1 consists
of changing M at entries Mi,1−xi , this should be the case even if the adversary A knows the entire
secret key sk = x. The reduction goes as follows: consider the following adversary A′ playing the
BENC batch encryption security game.

1. A′ chooses a uniformly random x
$← {0, 1}n and sends it to the challenger.

2. A′ obtains the public parameters crs← Batch.Setup(1n||1λ).

3. A′ runs the adversary A with inputs (pp, pk) = (crs, h = Batch.Gen(crs, x)).

4. On query function f : {0, 1}n → {0, 1}L(n), A′ computes f(x) and returns the value to A.

5. On challenge messages m0,m1 provided by A, A′ chooses a random bit β, computes a secret
sharingmβ =

⊕
i ri, and then chooses its own challenge matrices M(0),M(1) to be the matrices

used in hybrids H0 and H1 respectively. Note that M(0) and M(1) differ only in (i, 1 − xi)
entries.

6. Upon receiving a challenge ciphertext ct from its own challenger, A′ runs A on challenge
ciphertext ct and returns 1 if and only if β′ = β (that is, if and only if A wins its game).

By construction, the output distribution of A′ when it is sent an encryption of M(0) is drawn
exactly according to H0, while the output distribution of A′ when it is sent an encryption of M(1)

is drawn exactly according to H1. Therefore, by the security of BENC, we conclude that H0 ≈c H1,
as desired.

36



On the other hand, we will show that H1 is statistically indistinguishable from H2.

Claim 7.3. H1 ≈s H2

Proof. This claim follows from the average min-entropy variant of the leftover hash lemma. For any
fixed message m, consider the distribution of matrices M as used in hybrid H1: the entries Mi,b

are drawn independently and uniformly at random subject to the condition that
⊕n

i=1 Mi,xi = m.
This is equivalent to the condition that⊕

i

((1− xi)Mi,0 ⊕ xiMi,1) = m,

or that

Mn,0 = m⊕

(⊕
i<n

Mi,0

)
⊕

(⊕
i

xi(Mi,0 ⊕Mi,1)

)
.

To be done, we simply have to show that the distribution of Mn,0 is statistically close to uniform
given Mi,b for all (i, b) 6= (n, 0) along with the triple (crs, h, f(x)). This follows directly from the
leftover hash lemma: the conditional distribution x | crs, h, f(x) has average min-entropy at least
n− λ− (n− 2λ)) = λ, so by the leftover hash lemma, the distribution

{crs← PKE.Params(1λ), x
$← {0, 1}n, (Si := Mi,0 ⊕Mi,1)i

$← {0, 1}n : (S,
⊕
i

xiSi, crs, h, f(x))}

is statistically indistinguishable from

{crs← PKE.Params(1λ), x
$← {0, 1}n, (Si := Mi,0⊕Mi,1)i

$← {0, 1}n, b $← {0, 1} : (S, b, crs, h, f(x))},

so the matrix distribution M as used in H1 is statistically indistinguishable from a uniformly
random {0, 1}-matrix, even given (crs, h, f(x)). Thus, H1 ≈s H2, proving the claim.

Since we showed that H0 ≈c H1 ≈s H2 and PrH2 [A wins] = 1
2 , we conclude that PrH0 [A wins] <

1
2 + negl(λ), completing the proof of leakage resilience.

7.4 Proof of KDM Security

Finally, we show that our scheme PKE is KDM-secure with respect to affine functions of the secret
key.

First, note that the work in Section 7.3 already implies that our scheme is secure with re-
spect to a one query KDM security game. To see this, suppose that pp ← PKE.Params(1λ),
(pk, sk) ← PKE.Gen(pp), and an efficient adversary A(pp, pk) produces a vector a ∈ {0, 1}n+1. An
encryption of 〈a, sk||1〉 = 〈a, x||1〉 is a batch encryption Batch.Enc(pp, pk,M), where Mi,b = ri for
each (i, b) and

⊕
i ri = 〈a, x||1〉 is a linear secret sharing of 〈a, x||1〉. Just as in Claim 7.2, this is

computationally indistinguishable (even if A fully knew the secret key x) from a batch encryption
Batch.Enc(pp, pk,M) where M is a uniformly random matrix subject to the condition that⊕

i

Mi,xi = 〈a, x||1〉,
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or equivalently,

Mn,0 = 〈a, x||1〉 ⊕

(⊕
i<n

Mi,0

)
⊕

(⊕
i

xi(Mi,0 ⊕Mi,1)

)
.

Again, the rightmost term
⊕

i xi(Mi,0 ⊕Mi,1) is statistically close to a uniformly random bit
independent of ((Si = Mi,0 ⊕Mi,1)i, pp = crs, pk = h) because x | crs, h has average min-entropy
at least n− λ, so we conclude that M is statistically close to a uniformly random matrix.

In fact, the above argument does not rely on the function f(x) = 〈a, x||1〉 being affine; we
could have used any function at all. However, we cannot proceed with a standard hybrid argument
for the following reason: in the statistical step above, we rely on the secret key x having high
average min-entropy in the adversary’s view. However, if the adversary has access to an additional
poly(λ) encryptions of functions of the secret key, it may be the case that x has no entropy in the
adversary’s view; it may be information-theoretically determined.

To circumvent this, we prove that encryptions of affine functions 〈a, x||1〉 can be efficiently
simulated without knowledge of the secret key x, where simulation security holds even with respect
to an adversary who knows x.

Lemma 7.4. There is an efficient simulator PKE.Sim(pp = crs, pk = h, a ∈ {0, 1}n+1) such
that for any a ∈ {0, 1}n+1, the distribution {crs ← PKE.Params(1λ), (h, x) ← PKE.Gen(crs) :
(crs, h, x,PKE.Enc(crs, h, x, 〈a, x||1〉))} is computationally indistinguishable from the distribution
{crs← PKE.Params(1λ), (h, x)← PKE.Gen(crs) : (crs, h, x,PKE.Sim(pp, h, a))}.

Proof. The simulator PKE.Sim(crs, h, a) computes an additive secret sharing
⊕n

i=1 ri = 0 of 0,
defines

Mi,b = ri ⊕ bai
for all i < n, and defines Mn,b = rn ⊕ ban ⊕ an+1. It then outputs ct = Batch.Enc(crs, h,M).

It follows that PKE.Sim(crs, h, a) ≈c PKE.Enc(crs, h, 〈a, x||1〉) given crs, h, and x (for every a) by
the security of BENC. In particular, the marginal distributions of (Mi,xi)i∈[n] are identical in the
real and simulated cases (they are both an additive secret sharing of 〈a, x||1〉), so security follows
by a completely analogous reduction as in Claim 7.2.

We are now ready to fully prove KDM-security by combining our simulator Sim with the ideas
of Section 7.3.

Let A be an efficient adversary playing the KDM-security game (as defined in Definition 7.2),
and letH0 denote the probability space underlying this security game. Additionally, letQ = poly(λ)
be a bound on the number of encryption queries that Amakes (at least with 1−negl(λ) probability).
We now define the hybrids {H0,i, 0 ≤ i ≤ Q}, {H1,i, 0 ≤ i ≤ Q}, which denote various modified
security games:

• In hybrid H0,i (for 0 ≤ i ≤ Q), the challenger’s responses to the adversary’s first i queries
{aj ∈ {0, 1}n+1, 1 ≤ j ≤ i} have been changed. For these i queries, the challenger does as
follows: if β = 0, send an encryption PKE.Enc(pp, pk, 0) as before; if β = 1, send a simulated
ciphertext ct = PKE.Sim(pp, pk, a).

• In hybrid H1,0 = H0,Q, all KDM ciphertexts PKE.Enc(pp, pk, 〈aj , x||1〉) have been replaced
by simulated ciphertexts PKE.Sim(pp, pk, aj).
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• In hybrid H1,i (for 0 ≤ i ≤ Q), the challenger’s responses to the adversary’s first i queries
{aj ∈ {0, 1}n+1} encryption queries have been changed as compared to H1,0. For these i
queries, the challenger always sends ct← PKE.Enc(pp, pk, 0), an encryption of 0.

Clearly PrH1,Q
[A wins] = 1

2 , as A’s view in this game is independent of the bit β. Thus, it suffices
to show that H0,i ≈c H0,i+1 for all 0 ≤ i ≤ Q− 1 and H1,i ≈c H1,i+1 for all 0 ≤ i ≤ Q− 1.

Claim 7.5. H0,i ≈c H0,i+1 for all 0 ≤ i ≤ Q− 1

Proof. This follows from the simulation security of PKE.Sim as proved in Lemma 7.4. That is,
an adversary A′ given (crs, h, x, a), and either a ciphertext ct = ct1 ← PKE.Enc(crs, h, 〈a, x||1〉) or
a simulated ciphertext ct = ct2 ← PKE.Sim(crs, h, a) can run A, answering A’s first i queries by
generating simulated ciphertexts itself, answering A’s i+1th query with ct (if β = 1 in A’s security
game), and answering A’s later queries by generating KDM ciphertexts itself (since A′ knows x).
A′ then returns 1 if and only if β′ = β. It is clear that A′’s output distribution follows A’s win
distribution in H0,i when A′ is given ct1 while A′’s output distribution follows A’s win distribution
in H0,i+1 when A′ is given ct2. By Lemma 7.4, we know that A′ cannot distinguish between the
cases ct = ct1 and ct = ct2, so we conclude that H0,i ≈c H0,i+1, as desired.

Claim 7.6. H1,i ≈c H1,i+1 for all 0 ≤ i ≤ Q− 1.

Proof. This is equivalent to the one query KDM-security proved at the beginning of this subsection.
More explicitly, we define one further hybrid H ′1,i in which the response to A’s i+ 1th query ai+1 is
changed from Batch.Enc(crs, h,M) with honestly generated Mi,b = ri to Batch.Enc(crs, h,M) with
M a uniformly random matrix subject to

⊕
j Mj,xj = 〈ai+1, x||1〉.

As before, we then show that H1,i ≈c H ′1,i ≈s H1,i+1. The fact that H1,i ≈c H ′1,i follows from
an analogous argument to Claim 7.2, while the fact that H ′1,i ≈s H1,i+1 follows from an analogous
argument to Claim 7.3 because all auxiliary ciphertexts PKE.Enc(crs, h, 0) and simulated ciphertexts
PKE.Sim(crs, h, a) are (randomized) functions of (crs, h) and do not depend on x.

7.5 Blind PKE from Blind Batch Encryption

Theorem 7.7. Suppose that the underlying batch encryption scheme BENC (which we will now
rename to BBENC) in Theorem 7.1 is blind. Then, again for any n > (1 + ε)λ, the public key
encryption scheme PKE defined in Section 7.2 is a blind PKE scheme.

Proof. We already showed in Theorem 7.1 that the scheme is a correct, CPA-secure PKE scheme, so
all we have to show is blindness. The blind decomposition of our encryption scheme is as follows: we
define PKE.E1(crs; r) := Batch.E1(crs; r) and PKE.E2(crs, h,m; r) = Batch.E2(crs, h,M; r), where
Mi,b = ri is as in the Section 7.2 construction (surpressing the additional randomness of choosing
r). To prove that this is a valid blind PKE scheme, consider the distribution

{pp = crs← PKE.Params(1λ), (h, x)← PKE.Gen(pp),m
$← {0, 1} :

(crs, h, x,PKE.Enc(crs, h,m; r))}.

This distribution is computationally indistinguishable from the distribution

{pp = crs← PKE.Params(1λ), (h, x)← PKE.Gen(pp),M
$← {0, 1}n×2 :

(crs, h, x,Batch.E1(crs; r)||Batch.E2(crs, h,M; r))}

39



by the semantic security of BBENC (see Claim 7.2; in particular, the indistinguishability result held
even if the adversary knows x). But this distribution is in turn computationally indistinguishable
from the distribution

{pp = crs← PKE.Params(1λ), (h, x)← PKE.Gen(pp),M
$← {0, 1}n×2,

ct
$← {0, 1}|Batch.E2(crs,h,M;r)| : (crs, h, x,Batch.E1(crs; r)||ct)}

by the blindness of BBENC. This proves the desired blindness property of our PKE scheme.
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[HLWW16] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs, Leakage-resilient
cryptography from minimal assumptions, J. Cryptology 29 (2016), no. 3, 514–551.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters, Predicate encryption supporting dis-
junctions, polynomial equations, and inner products, Advances in Cryptology - EURO-
CRYPT 2008, 27th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, 2008,
pp. 146–162.

[McC88] Kevin S. McCurley, A key distribution system equivalent to factoring, J. Cryptology 1
(1988), no. 2, 95–105.

[NS12] Moni Naor and Gil Segev, Public-key cryptosystems resilient to key leakage, SIAM J.
Comput. 41 (2012), no. 4, 772–814.

[Rog91] Philip Rogaway, The round-complexity of secure protocols, Ph.D. thesis, MIT, 1991.

[Sha84] Adi Shamir, Identity-based cryptosystems and signature schemes, Advances in Cryp-
tology, Proceedings of CRYPTO ’84, Santa Barbara, California, USA, August 19-22,
1984, Proceedings, 1984, pp. 47–53.

[Shm85] Zahava Shmuely, Composite diffie-hellman public-key generating systems are hard to
break, Technion Technical Report, 1985, http://www.cs.technion.ac.il/users/

wwwb/cgi-bin/tr-get.cgi/1985/CS/CS0356.pdf.

[SW05] Amit Sahai and Brent Waters, Fuzzy identity-based encryption, Advances in Cryp-
tology - EUROCRYPT 2005, 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings, 2005, pp. 457–473.

43

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1985/CS/CS0356.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/1985/CS/CS0356.pdf


A Blind Batch Encryption: Missing Proofs

A.1 Proof of Lemma 3.1

Let BBENC = (Setup,Gen,Enc,Dec) be a batch encryption scheme with block size B and succinct-
ness α, and let Enc = E1||E2 be a decomposition such that E1(crs; r) does not depend on M or h.6

We then construct a batch encryption scheme BBENC′ = (Setup′,Gen′,Enc′,Dec′) as follows.

1. Setup′(1λ, 1nt) calls Setup(1λ, 1n), outputting a common reference string crs used for hashing
strings of length nt, where t = log(B).

2. Gen′crs = Gencrs : {0, 1}nt → {0, 1}αnt is the same as before. We will interpret inputs x ∈
{0, 1}nt ' [B]n so that xi ∈ [B] for each i ∈ [n].

3. Enc′(crs, h,A), to batch encrypt an nt× 2 matrix A, defines the following n×B matrix M:

Mi,b = (Ai||j,bj )j∈[t] for all i ∈ [n],b ∈ [B] = {0, 1}t.

It then outputs Enc(crs, h,M).

4. The function Dec′(crs, x, ct) computes

m′ = Dec(crs, x, ct) ∈ ({0, 1}t)n,

and outputs m′, interpreted as a vector in {0, 1}nt.

We want to prove the following two results: (1) BBENC′ is a secure batch encryption scheme
with block size 2 and succinctness α, and (2) If BBENC is blind then so is BBENC′, with blind
decomposition inherited from BBENC.

Proof. If BBENC satisfies batch correctness, then with probability 1−negl(λ), we have that for all
i ∈ [n],

m′i = Mi,xi = (Ai||j,(xi)j )j∈[t],

where x ∈ {0, 1}nt is arbitrary, crs ← Setup(1λ, 1n), M is constructed from A as described in
Enc′(crs, h,A), and m′ = Dec′(ct) for ct ← Enc′(crs, h,A). This is exactly the batch correctness
condition we wanted for BBENC′.

Security of BBENC′ is inherited directly from the security of BBENC. This is because for any

pair of matrices A(0),A(1) ∈ {0, 1}nt×2 such that A
(0)
i||j,(xi)j = A

(1)
i||j,(xi)j for all (i, j) ∈ [n] × [t], the

matrices M(0),M(1) ∈ ({0, 1}t)n×B constructed from A(0) and A(1) respectively have the property

that M
(0)
i,xi

= M
(1)
i,xi

for all i ∈ [n]. Thus, any adversary breaking the batch encryption security of
BBENC′ can clearly be used to break the (many message) batch encryption security of BBENC as
well.

To see that blindness is preserved, note that if A is a uniformly random nt×2 matrix, then the
matrix M constructed from A has the property that for any x ∈ {0, 1}nt, the marginal distribution
on (Mi,xi)i∈[n] is the uniform distribution on ({0, 1}t)n. Thus, by ordinary batch encryption security,
we have that E′2(crs, h,A; r) = E2(crs, h,M; r) is computationally indistinguishable (within the

6Note that the trivial decomposition E1 ≡ 0, E2 = Enc satisfies this property.
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batch encryption security game) from E2(crs, h,M
′; r) for a uniformly random matrix M′. Blindness

now follows from the blindness of the original scheme.
The fact that BBENC and BBENC′ have the same succinctness follows from the fact that the

key generation algorithms Gen′ and Gen are identical.

A.2 Proof of Lemma 3.2

Let BBENC = (Setup,Gen,Enc,Dec) denote a batch encryption scheme with block size 2 and
succinctness 1

2 , and let Enc = E1||E2 be a decomposition such that E1(crs; r) does not depend on
M or h. Additionally, let BGBL = (BGC.Garble,BGC.Eval,BGC.Sim) be a blind garbling scheme.
We then construct a batch encryption scheme BBENC′ = (Setup′,Gen′,Enc′,Dec′) as follows.

1. Setup′(1λ, 1n) calls Setup(1λ, 12λ) d = log(nλ ) times, obtaining and outputting crs′ = (crs0, crs1,
. . . , crsd−1). Note that each crsi supports key generation from {0, 1}2λ → {0, 1}λ.

2. Gen′(crs′, x ∈ {0, 1}n = ({0, 1}λ)D) breaks x = (y0, ..., yD−1) into blocks of size D = n
λ = 2d,

so that (yi)j = xiλ+j . Then, it defines a hash tree of depth d in the following way: each node
v ∈ {0, 1}≤d is labelled by a string hv ∈ {0, 1}λ such that hv = yv for all v ∈ {0, 1}d and for
all v ∈ {0, 1}i (for i < d), we have

hv = Gen(crsi, hv||0||hv||1).

Finally, Gen′ outputs hε, where ε denotes the empty string.

3. Enc′(crs′, hε,M), where M ∈ {0, 1}n×2, defines for each v ∈ {0, 1}≤d−1 a circuit C[crsi,A, r
(v)]

with the following hardwired parameters: crsi is the common reference string with index i =
|v|, A denotes an arbitrary (hardwired) matrix in Σ2λ×2 (for some alphabet Σ = {0, 1}poly(λ)),
and r(v) denotes fresh encryption randomness. The circuit C[crsi,A, r

(v)](h) takes in a public
key h ∈ {0, 1}λ and outputs E2(crsi, h,A; r(v)). Then, Enc′ outputs(

(ctv)v∈{0,1}≤d−1 , (Ĉv)v∈{0,1}≤d−1 , (lab
(ε)
j,(hε)j

)j∈[λ]

)
,

where

• For every v such that |v| = d− 1, (Ĉv, lab
(v)

)← BGC.Garble(1λ, C[crsd−1,M[v], r(v)]) for
fresh encryption randomness r(v) and M[v] defined to be the 2λ × 2 submatrix of M
consisting of all rows of M in the range [2vλ, (2v + 2)λ− 1]

• For every v ∈ {0, 1}i and i < d − 1, (Ĉv, lab
(v)

) ← BGC.Garble(1λ, C[crsi,A
(v), r(v)]),

where A(v) :=

[
lab

(v||0)

lab
(v||1)

]
denotes the 2λ × 2 matrix written as the concatenation of

lab
(v||0)

and lab
(v||1) ∈ ({0, 1}λ)(λ×2).

• For every v ∈ {0, 1}≤d−1, ctv = E1(crsi; r
(v)) for i = |v|.

4. Dec′(crs′, x, ct) parses ct = ((ctv)v∈{0,1}≤d−1 , (Ĉv)v∈{0,1}≤d−1 , L̂(ε)) and does the following:

• For each v ∈ {0, 1}<d−1 (in order from shortest to longest string), compute ct′v =
BGC.Eval(Ĉv, L̂

(v)). Then, compute (L̂(v||0), L̂(v||1)) = Dec(crsi, hv||0||hv||1, ctv||ct′v), where
i = |v|.
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• For each v ∈ {0, 1}d−1, compute ct′v = BGC.Eval(Ĉv, L̂
(v)). Then, compute m′(v) =

Dec(crsd−1, hv||0||hv||1, ctv||ct′v).

• Finally, output (m′(v))v∈{0,1}d−1 .

We want to prove the following two results: (1) BBENC′ is a secure, fully succinct batch encryption
scheme with block size 2, and (2) if BBENC is blind, then BBENC′ is blind with decomposition
E′1(crs

′, r) = (ctv)v∈{0,1}(≤d−1) and E′2(crs
′, hε,M, r) = (Ĉv)v∈{0,1}≤d−1 ||L̂(ε).

Proof of Correctness, Efficiency, and Succinctness. We prove correctness by an inductive
argument: if we are given ct ← Enc′(crs′, hε,M) for some M, then for each step of the decryption
process corresponding to v ∈ {0, 1}<d−1 (when decrypting ct),

ct′v = E2

(
crsi, hv,

[
lab

(v||0)

lab
(v||1)

]
; r(v)

)
by the correctness of BGBL (for i = |v|), so

L
(v||0)
j = lab

(v||0)
j,(hv||0)j

and L
(v||1)
j = lab

(v||1)
j,(hv||1)j

for each j by the correctness of BBENC. Thus, we also have that for each v ∈ {0, 1}d−1,

ct′v = E2(crsd−1, hv,M[v]; r(v))

by the correctness of BGBL, so that (m′(v))j = (M[v])j,(yv)j for every j, as desired.

Efficiency of encryption follows from the fact that we execute D−1 = 2d−1 garbling operations
on circuits of some bounded poly(λ) size, while we execute (D− 1) E1 operations on matrices with
at most λ-bit entries. Thus, the entire encryption operation takes poly(D,λ) = poly(n, λ) time.
Efficiency of decryption follows similarly.

Full succinctness follows from the fact that a public key hε assigned to x under crs′ is a single
BBENC public key with size λ.

Proof of Batch Encryption Security. As stated before, this part of the proof only requires
that BBENC is a secure batch encryption scheme and BGBL is a secure garbling scheme (i.e. no
blindness is required).

Suppose that A is an efficient adversary playing the batch encryption security game (as defined
in Definition 3.5), and let H0 = Hε,0 denote the probability space underlying the batch encryption
security game. We now define the hybrids Hv,1 and Hvnext,0 for all v ∈ {0, 1}≤d−1, where vnext ∈
{0, 1}≤d is defined to be v+ 1 if v 6= 1i for some i, and vnext := 0i+1 if v = 1i. These hybrids denote
probability spaces underlying altered security games in which the challenge ciphertext is modified
in various ways.

• For all v ∈ {0, 1}<d−1 with i = |v|, hybrid Hv,1 is obtained by modifying how (Ĉv, L̂
(v)) is

computed as compared to Hv,0. Instead of honestly computing (Ĉv, lab
(v)

)← BGC.Garble(1λ,

C[crsi,A
(v); r(v)]) and setting L

(v)
j = lab

(v)
j,(hv)j

, we compute ct′v = E2(crsi, hv,A
(v); r(v))), and

then compute (using the simulator) (C̃v, L̃
(v)) ← BGC.Sim(1λ, 1|C[crsi,A(v),r(v)]|, 1λ, ct′v). By

induction, we maintain the invariant that in Hv,0 only L̂(v) (that is, the collection of labels

lab
(v)
j,(hv)j

) is used in any futher computation.
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• For all v ∈ {0, 1}<d−1, hybrid Hvnext,0 is obtained by modifying the matrix A(v) as compared

to Hv,1. Instead of setting A(v) =

[
lab

(v||0)

lab
(v||1)

]
as in Hv,1, we construct the matrix A(v) by

defining A(v) =

[
Ã(v||0)

Ã(v||1)

]
, where Ã

(w)
j,hwj

= lab
(w)
j,(hw)j

and Ã
(v)
j,1−(hw)j = R

(v)
j+aλ,1−(hw)j for all

j ∈ [λ], b ∈ {0, 1}, a ∈ {0, 1}, w = v||a. Here, each R
(v)
j+aλ,b denotes an independent uniformly

random string.

• For all v ∈ {0, 1}d−1, hybrid Hv,1 is obtained by modifying how (Ĉv, L̂
(v)) is computed as com-

pared toHv,0. Instead of honestly computing (Ĉv, lab
(v)

)← BGC.Garble(1λ, C[crsd−1,M
(β)[v], r(v)])

(where β is the challenger’s random bit) and setting L
(v)
j = lab

(v)
j,(hv)j

, we compute the cipher-

text ct′v = E2(crsd−1, hv,M
(β)[v]; r(v)), and then compute (using the simulator) (C̃v, L̃

(v))←
BGC.Sim(1λ, 1|C[crsd−1,M

(β)[v],r(v)]|, 1λ, ct′v).

• For all v ∈ {0, 1}d−1, hybrid Hvnext,0 is obtained from Hv,1 by replacing M(β)[v] by M(c)[v]

for an independent uniformly random bit c
$← {0, 1}.

Clearly PrH̃ [A wins] = 1
2 for H̃ := H0d,0, as in this hybrid the challenge ciphertext received by the

adversary is independent of the bit β. Thus, it suffices to prove that A’s views in Hv,0, Hv,1, and
Hvnext,0 are computationally indistinguishable for every v ∈ {0, 1}≤d−1, which we denote by the
shorthand Hv,0 ≈c Hv,1 ≈c Hvnext,0.

Claim A.1. For every v ∈ {0, 1}≤d−1, Hv,0 ≈c Hv,1.

This follows directly from the simulation security BGBL, crucially using the fact that only labels

lab
(v)
j,(hv)j

are used in Hv,0.

Claim A.2. For every v ∈ {0, 1}<d−1, Hv,1 ≈c Hvnext,0.

This follows from the security of BBENC, crucially using the fact A
(v)
j+aλ,(hv||a)j

= Ã
(v||a)
j,(hv||a)j

for

each j ∈ [λ], a ∈ {0, 1}.

Claim A.3. For every v ∈ {0, 1}d−1, Hv,1 ≈c Hvnext,0.

This also follows from the security of BBENC, crucially using the fact that M(0)[x] = M(1)[x].

Proof of Blindness. Next, we show that BBENC′ is blind assuming that BBENC and BGBL
are blind. Note that syntatically, E′1 does not depend on hε or M, as desired.

Suppose that A is an efficient adversary playing the blind batch encryption security game
(as described in Definition 3.7), and let H0 = Hε,0 denote the probability space underling the
blind batch encryption security game. We define the hybrids Hv,1, Hvnext,0 (for all v ∈ {0, 1}<d−1)
analogously as in the batch encryption security proof, so that Hε,0 ≈c Hε,1 ≈c . . . ≈c H1d−2,1 ≈c
H0d−1,0 (by the same proof). We additionally define hybrids Hv,0 for each v ∈ {0, 1}d−1 similarly to
the previous security proof, although we skip the step that changes M to a random matrix (in the
blind batch encryption security game, M is already random). That is, now Hvnext,0 is just obtained
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from Hv,0 by replacing (Ĉv, L̂
(v)) with its simulated version. We then have that Hv,0 ≈c Hvnext,0

for all v ∈ {0, 1}d−1 (by the same reduction to garbled circuit security).
Next, we additionally define hybrids Hv,2 and Hv,3 for all v ∈ {0, 1}≤d−1; the hybrids are defined

in reverse order from before.

• Hybrid H1d−1,2 = H1d−1,0 by definition.

• For every v ∈ {0, 1}d−1, hybrid Hv,3 is obtained by modifying how ct′v is computed as
compared to Hv,2. Instead of setting ct′v := E2(crsd−1, hv,M[v]; r(v)), we compute ev =
E2(crsd−1, hv,M[v], r(v)) and set ct′v to be a random ciphertext length |ev|.

• For every v ∈ {0, 1}≤d−1, hybrid Hvprev,2 is obtained by modifying how (C̃v, L̃
(v)) is computed

as compared to Hv,3. The simulator output (C̃v, L̃
(v))← BGC.Sim(1λ, 1|C[crsi,A(v),r(v)]|, 1λ, ct′v)

(as in Hv,3) is replaced with a random pair (C̃v, L̃
(v)) of length |BGC.Sim(1λ, 1|C[crsi,A(v),r(v)]|,

1λ, ct′v)|.

• For every v ∈ {0, 1}<d−1, hybrid Hv,3 is obtained by modifying how ct′v is computed as com-
pared to Hv,2. Instead of setting ct′v := E2(crsi, hv,A

(v); r(v)), we compute ev = E2(crsi, hv,
A(v); r(v)) and set ct′v to be a uniformly random ciphertext of length |ev|.

It is clear that for H̃ = Hε,3, PrH̃ [A wins] = 1
2 , as in H̃ the challenge ciphertext recieved by

A no longer depends on the value of β (in fact, it is always the original challenge ciphertext in
β = 1 mode). Thus, it suffices to show that all adjacent hybrids defined above are computationally
indistinguishable.

Claim A.4. Hv,2 ≈c Hv,3 for all v ∈ {0, 1}d−1.

This follows from the blindness of BBENC, crucially using the fact that M is uniformly random
and independent of the rest of the BBENC′ security experiment.

Claim A.5. Hv,2 ≈c Hv,3 for all v ∈ {0, 1}<d−1

This also follows from the blindness of BBENC, crucially using the fact that in Hv,3, the matrix
A(v) is uniformly random and independent of the rest of the BBENC′ experiment.

Claim A.6. Hv,3 ≈c Hvprev,2 for all v ∈ {0, 1}≤d−1

This follows from the blindness of BGBL, crucially using the fact that the ciphertext ct′v plugged
into BGC.Sim in hybrid Hv,3 is uniformly random.

This completes the proof of Lemma 3.2.
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