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Abstract. In this paper, quantum attacks against symmetric-key schemes
are presented in which adversaries only make classical queries but use
quantum computers for offline computations. Our attacks are not as effi-
cient as polynomial-time attacks making quantum superposition queries,
while our attacks use the realistic model and overwhelmingly improve
the classical attacks. Our attacks convert a type of classical meet-in-
the-middle attacks into quantum ones. The attack cost depends on the
number of available qubits and the way to realize the quantum hard-
ware. The tradeoffs between data complexity D and time complexity T
against the problem of cardinality N are D2 · T 2 = N and D · T 6 = N3

in the best and worst case scenarios to the adversary respectively, while
the classic attack requires D · T = N . This improvement is meaning-
ful from an engineering aspect because several existing schemes claim
beyond-birthday-bound security for T by limiting the maximum D to be
below 2n/2 according to the classical tradeoff D · T = N . Those schemes
are broken when quantum computations are available to the adversaries.
The attack can be applied to many schemes such as a tweakable block-
cipher construction TDR, a dedicated MAC scheme Chaskey, an on-line
authenticated encryption scheme McOE-X, a hash function based MAC
H2-MAC and a permutation based MAC keyed-sponge. The idea is then
applied to the FX-construction to discover new tradeoffs in the classical
query model.

keywords: post-quantum cryptography, classical query model, meet-in-
the-middle, tradeoff, Chaskey, TDR, keyed sponge, KMAC, FX

1 Introduction

Recent advancement of the development of quantum computers arises a lot of
security concerns in cryptography. It is well-known that factoring can be solved
with quantum computers much faster than classical computers, thus security of
RSA cryptosystems significantly drops against quantum computers. The similar
issue occurs in many other cryptosystems and post-quantum security is of great
interest in the current cryptographic community.



Algorithmic speed-up using quantum computers can be applied to symmetric-
key schemes as well. For example, Grover’s seminal result [Gro96] recovers the
k-bit key K only with O(2k/2) quantum computations and finds preimages of an
n-bit output of cryptographic hash function H only with O(2n/2) quantum com-
putations. Moreover, Brassard et al. [BHT97] showed the algorithm to generate
collision of H only with O(2n/3) quantum computations1.

Besides the above improvements on generic attacks, quantum attacks against
particular modes, constructions and primitives have been studied. Kuwakado and
Morii proposed a distinguishing attack against 3-round Feistel cipher [KM10]
and a key recovery attack against Even-Mansour construction [KM12]. Kaplan et
al. proposed forgery attacks on various CBC-like MACs [KLLN16a] and proposed
differential cryptanalysis in the quantum setting [KLLN16b]. Liu and Liu pointed
out that existential forgery attacks in [KLLN16a] can be universal forgery attacks
[LL17b] and proposed key recovery attacks against full keyed-sponge construc-
tion [LL17a]. Most of the attacks assume that all communications are done in
superposition, and the attacker is allowed to make superposition queries. Al-
though the assumption of quantum queries is strong, the attacks work only with
O(n) queries and computational complexities where n is the size of the function
output, say the size of the ciphertext block or the tag length.

As those attacks showed, security against quantum computations in symmetric-
key schemes heavily depends on the construction. For example, the Even-Mansour
construction can be attacked in polynomial-time in the quantum query model
whereas block-ciphers resist attacks up to O(2k/2) quantum computations even
with quantum queries. Similarly, CBC-like MACs can be attacked in polynomial-
time in the quantum query model where HMAC resist attacks up to O(2k/2)
quantum computations even with quantum queries. Those motivate researchers
to classify various constructions depending on their post-quantum security. In-
deed, the recent standardization activity for lightweight cryptosystems by NIST
[MBTM17] explicitly mentions that the post-quantum security is taken into ac-
count during the selection process.

While the polynomial-time attacks in quantum query model are efficient,
the model that requires all the users to implement quantum computers and
data in the network is communicated in the form of superposition is strong.
Of course, such environment may be feasible in future, and thus researchers
should not stop researches in the quantum query model. However its strong
assumption motivates us to investigate the security of symmetric-key schemes
against attackers who make queries only in the classical manner and performs
offline computations by using quantum computers. Many generic attacks e.g. key
recovery attack with Grover’s algorithm, work in this model, while only a limited
number of results are known for dedicated schemes e.g. the key recovery attack
against Even-Mansour construction [KM12], which recovers the key only with
O(2n/3) classical queries and O(2n/3) quantum computations.

1 While several concerns have been pointed out recently [Ber09,BB17], those works
surely took important roles to the progress of this research topic in an early stage.
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Fig. 1. Classification of Problems Attacked in Quantum Adversaries. Primitives colored
in red are attacked in this paper.

Our Contributions. We present quantum attacks against symmetric-key schemes
in which adversaries make queries only in the classical manner but use quantum
computers for offline computations.

We first observe that many of previous quantum attacks can be classified
into two classes; polynomial-time complexity in the quantum query model and
exponential-time complexity (but significantly improves classical attacks) in the
classical query model. We call the former class ClassQ2Poly and the latter class

ClassQ1Exp. Most of the previous work focused on ClassQ2Poly, yet [KM12] showed

that attacks in ClassQ2Poly may also belong to ClassQ1Exp. The current community

pays much attention to ClassQ2Poly, while ClassQ1Exp receives less attention. This

motivates us to search for attacks in ClassQ1Exp where the query model is more real-

istic. We will show many problems that belong to ClassQ1Exp but not to ClassQ2Poly.

If researchers only focus on ClassQ2Poly, those problems will be overlooked. The
two classes and problems in each class are shown in Fig. 1.

Our attack converts a type of the classical meet-in-the-middle (MitM) at-
tacks into quantum ones. In details, if the classical MitM attacks make D online
queries and T offline computations such that D ·T = N , we replace the classical
offline computations with quantum ones, while the classical online queries stay
unchanged. Hence, we call the attack online-offline MitM attack.2

There are two issues about the evaluation of the cost of quantum computa-
tions. 1) Grover and Rudolph [GR04] pointed out that the equivalence between
having Q quantum memory and Q quantum processors, which may affect the
best choice of the quantum computations for offline computations. 2) Bern-
stein [Ber09] argued that quantum hardware architecture significantly impacts
to the cost of the quantum computation. In this paper, the attacks are evaluated
by taking into account those observations. As a result, the classical tradeoff of

2 Kaplan [Kap14] proposed another type of quantum MitM attack for multiple en-
cryptions. It computes two independent parts offline, thus is different from ours.
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D · T = N can be improved to D2 · T 2 = N , D3/2 · T 2 = N , D4 · T 6 = N3, or
D · T 6 = N3, depending on the assumption of the models.

This improvement is meaningful because several existing schemes claim beyond-
birthday-bound (BBB) security for T by limiting the maximum D to be below
2n/2 by following the classical tradeoff of D · T = N . Those schemes are broken
by our attacks. For example, a tweakable block-cipher (TBC) construction tweak
dependent rekey (TDR) proposed by Minematsu [Min09] and a dedicated MAC
scheme Chaskey [Mou15,MMH+14] are AES-based 128-bit output schemes. TDR
and Chaskey claim 86-bit security and 80-bit security for T by limiting the max-
imum D to be 242 and 248, respectively. Our attacks can break those schemes
with T = D = 232 using 232 qubits or with D = 257, T = 242 using only 128 · c
qubits where c is a small constant. Our attacks have more applications such
as an on-line authenticated encryption scheme McOE-X [FFL12], a hash based
MAC H2 -MAC [Yas09], a permutation based MAC keyed-sponge [BDPA08] thus
KMAC [NIS16] standardized by NIST.

We also discuss a tradeoff of the quantum attacks against the FX-construction
proposed by Leander and May [LM17] in the classical query model, in which only
the quantum query model is discussed in [LM17]. The attack is further extended
to three constructions: 2-key variants of LRW, XE, and XEX constructions.

Paper Outline. The remaining part of this paper is organized as follows. Sec-
tion 2 introduces quantum attack models and previous work. Section 3 gives
general description of the quantum online-offline MitM attacks. Section 4 ap-
plies our attack to various schemes. Section 5 discusses the attack against the
FX construction. Section 6 finally concludes the paper.

2 Preliminaries

We explain the models to evaluate cost of quantum computations in Sect. 2.1. We
then summarize the cost of quantum multi-target preimage search in Sect. 2.2.
Previous quantum attacks are reviewed in Sect. 2.3. As for attack model, we
received several comments from other researchers, which can be found in the
appendix.

2.1 Attack Models for Quantum Computations

Cost of Quantum Computation. Two important quantities to evaluate the
cost of quantum computations are time complexity and number of qubits.

The complexity of qubits is measured by the quantum register size of a quan-
tum computer. Although memory is cheaper than processor in the classical set-
ting, they are physically equivalent in the quantum setting. As pointed out by
Grover and Rudolph [GR04], executing an algorithm using Q quantum memory
and parallelly processing Q threads of 1-qubit processor are equally difficult.

As for time complexity, we regard that the time required to operate en-
cryption once as unit time, and also regard that time required for elementary
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operations (memory look-up, XOR, and so on) is negligibly small compared to
the time required for encryption once. If an encryption algorithm is implemented
on both of classical and quantum circuits, we assume that running time of these
circuits differ by a constant factor. Bernstein [Ber09] pointed out that the way of
realizing quantum hardware significantly impacts to running time of algorithms.
We consider the following two models by following the terminology in [Ber09].

Free communication model. A quantum hardware can operate elementary
quantum gates, e.g. Toffoli gates, on an arbitrary tuple of small (constant)
number of qubits.

Realistic communication model. Qubits in a quantum hardware are arranged
in a square, and elementary operations can only be applied to the pair of
qubits within a constant distance.

When the size of the qubits is only polynomial to the size of the problem to solve,
restrictions from the hardware architecture has negligible impact in the evalua-
tion of asymptotic time complexity. For example, suppose that a quantum hard-
ware in realistic communication model with O(n)-qubits is available to solve the
problem of size O(2n). Then, it can emulate a quantum hardware in free commu-
nication model with O(n)-qubits, only with time overhead of O(n)(see [BBG+13]
for details). Similarly, even if the size of qubits is exponential, the evaluation of
asymptotic time complexity is not significantly affected by the communication
model if the hardware is composed of small (i.e. only polynomially many qubits)
independent quantum processors which do not communicate with each other.

Query Model. In the classical setting, an adversary is given an oracle that
is usually a black box to her and the oracle runs a keyed operation such as
encryption, decryption, or MAC. There are two quantum attack models that
naturally extend the classical attack models, which are called Q1 model and
Q2 model in [KLLN16b].

Q1 model: The adversary is allowed to make classical online queries, similarly
as in the classical settings.

Q2 model: The adversary is allowed to make quantum superposition online
queries. That is, oracles allow queries in quantum superposition states and
return the results as quantum superposition states.

Q2 model implicitly requires that all the data on the network must be commu-
nicated as quantum superposition states. Q1 model is relatively more realistic.

2.2 Quantum Multi-target Preimage Search

Basics. Grover’s algorithm [Gro96] is a quantum algorithm for unstructured
database search problem, which is mathematically modeled as follows:

Problem 2.1. Let f : {0, 1}n → {0, 1} be a binary function on the set of n-bit
strings. The problem is to find an element x ∈ {0, 1}n such that f(x) = 1.
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Given f as a quantum circuit or a quantum oracle, and with the promise
|f−1(1)| = 1, the original algorithm [Gro96] solves this problem with O(2n/2)
evaluations of f . The algorithm was later generalized by Boyer et al. [BBHT98] to

solve the problem without promise, and it can solve the problem withO
(√

2n/`
)

evaluations of f , here ` = |f−1(1)|. Hereafter, we also call this generalized version
Grover’s algorithm.

Proposition 2.1 ([BBHT98] Theorem 3). Let ` = |f−1(1)|. There is a
quantum algorithm that can solve Problem 2.1 with an expected number of
O(
√

2n/`) evaluations of f . If ` = 0, then this algorithm will never abort.

Quantum Multi-target Preimage Search. Let us consider to solve the fol-
lowing problem using quantum algorithms.

Problem 2.2. Fix a parameter t < n/2. Let H : {0, 1}n → {0, 1}n be a random
function, and L ⊆ {0, 1}n be a subset of size 2t that is chosen uniformly at
random. Given the list L and access to quantum oracle H, find x ∈ {0, 1}n such
that H(x) ∈ L.

Naive Algorithm. Naive way to solve the above problem is to apply Grover’s
algorithm as follows. Let us consider free communication model. First, we sort
the list L. This requires O(t2t) classical computations. Let f : {0, 1}n → {0, 1}
be a function such that f(x) = 1 if and only if H(x) ∈ L. Since H is a random
function and L is chosen randomly, |f−1(1)| ≈ |L| = 2t. Thus, using Grover’s
algorithm, we can find x ∈ {0, 1}n such that f(x) = 1, which is equivalent to
H(x) ∈ L, with O(2(n−t)/2) evaluation of f . One evaluation of f requires O(1)
evaluations of H, and a search in the list L, which can be done in time O(t).
Therefore the total computational time is O(t2(n−t)/2). We need O(2t) qubits
because L should be embedded to the quantum circuit of f . Eventually we obtain
the following proposition.

Proposition 2.2. In the free communication model, there is a quantum algo-
rithm that can solve Problem 2.2 in time Õ(2(n−t)/2), using O(2t) qubits.

Combination of Grover’s Algorithm with Parallel Rho Method. Bane-
gas and Bernstein [BB17] presented a parallelized quantum multi-target preim-
age search that combines Grover’s algorithm with a parallel rho method [VOW94].
The paper has two results, which takes into account the ways of realizing quan-
tum hardware.

One result is that, in the free communication model, there exists a quantum
algorithm that solves Problem 2.1 in time Õ(

√
2n/p2t) using Õ(p) qubits, where

p ≥ 2t. Another result is that, in the realistic communication model, there exists
a quantum algorithm that solves Problem 2.1 in time Õ(

√
2n/p2t/2) using Õ(p)

qubits, where p ≥ 2t.
This paper assumes that the number of qubits available is at most the size

of L, which is 2t. By setting p = 2t, their results are summarized as follows.
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Proposition 2.3 ([BB17]). In the free communication model, there exists a
quantum algorithm that solves Problem 2.1 in time Õ(

√
2n/22t), using Õ(2t)

qubits. In the realistic communication model, there exists a quantum algorithm
that solves Problem 2.1 in time Õ(

√
2n/23t/2), using Õ(2t) qubits.

Algorithm with Small Number of Qubits. Even if the number of available
qubits is limited to polynomial in n, we can use the algorithm by Chailoux et
al. [CNPS17]. Note that as discussed in Section 2.1, quantum hardware archi-
tecture does not impact to its complexity.

Proposition 2.4 ([CNPS17], Theorem 3). Assume that t < 3n
7 holds. Then,

there exists a quantum algorithm that can solve Problem 2.2 in time Õ(2n/2−t/6),
using O(n) qubits and Õ(2t/3) classical memory.

Parallelized Algorithm with Small Independent Processors. The above
algorithm which uses only polynomially many qubits can be parallelized [CNPS17]
with small independent quantum processors without communication. As de-
scribed before, even if the size of qubits is exponential, the evaluation of asymp-
totic time complexity is not significantly affected by the communication model
if the hardware is composed of small (i.e. only polynomially many qubits) inde-
pendent quantum processors which do not communicate with each other.

Proposition 2.5 ([CNPS17], Theorem 5). Assume that 2s small quantum
processors are available and t < 3n+3t

7 holds. Then, there exists a quantum al-

gorithm that can solve Problem 2.2 in time Õ(2n/2−t/6−s/2), using O(2s) qubits
and Õ(2t/3) classical memory.

2.3 Previous Quantum Attacks

Q2 Model. There are many works on polynomial-time quantum attacks against
symmetric-key schemes [Bon17,HA17,KM10,KM12,KLLN16a,KLLN16b,LL17b].
Those obtain exponential speed-up but requires Q2 model to adopt Simon’s al-

gorithm [Sim97]. In short, Simon’s algorithm can find the secret period of a
periodic function f : {0, 1}n → {0, 1}n with time complexity of polynomial in n.

Q1 Model. To avoid relying on strong Q2 model, several previous researches
discussed quantum attacks in Q1 model, i.e. adversaries only can make classi-
cal queries [KM12,KLLN16b,Kap14,MS17]. This kind of attacks has been less
focused compared to the attacks in Q2 model.

3 General Framework

In this section, we present a general framework of the quantum online-offline
MitM attack in Q1 model. We review the classical online-offline MitM attack in
Sect 3.1. We then introduce quantum online-offline MitM attack in Q1 model in
Sect 3.2. The impact of new tradeoffs is discussed in Sect. 3.3.
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Fig. 2. General Settings for Online-Offline MitM

Algorithm 1 Classical Online-Offline MitM Attack

Classical Online Queries
1: for i← 1, 2, . . . , D do
2: Choose distinct input xi.
3: Query xi to f , and store the corresponding zi in the classical memory L.
4: end for

Classical Offline Computations
5: for j ← 1, 2, . . . , 2n

D
do

6: Guess internal state value yj

7: Compute zj ← fp(yj) offline and check a match between zj and L.
8: end for

3.1 Classical Online-Offline MitM Attack

Let fs : {0, 1}∗ 7→ {0, 1}n and fp : {0, 1}n 7→ {0, 1}n be a secret and public
functions in which the attacker wants to find a collision between fs and fp
(Fig. 2, left). This often occurs when the attack target f : {0, 1}∗ 7→ {0, 1}n is
a composition fs followed by fp, namely f = fp ◦ fs (Fig. 2, right). Here, the
input, the internal state and the output are denoted by x, y and z, respectively.

The online-offline MitM attack is a type of the MitM attack, in which the
adversary first makes D online queries to collect D output values with random-
ized n-bit internal state, and then makes 2n/D random guesses of the internal
state and computes fp offline. The match of the n-bit output suggests the correct
value of the n-bit internal state. The attack is described in Algorithm 1.

The number of possible pairs from online and offline phases is 2n, thus a match
of the n-bit value is expected with a reasonably high probability. The classical
online-offline MitM attack provides the tradeoff of

D · T = N, (1)

where D and T are balanced when D = T = N1/2.
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3.2 Quantum Online-Offline MitM Attack

We now introduce the quantum online-offline MitM attack in Q1 model. Queries
can only be made in the classical manner. Hence, the online phase in Algorithm 1
stays unchanged, and we replace the offline phase with quantum computations.

Insufficiency of Multi-target Preimage Search. The simplest way is apply-
ing the naive multi-target preimage search in section 2.2 instead of the random
guess in Algorithm 1. When D targets are available in the quantum list, as
in Proposition 2.1, the multi-target preimage search runs with T = O(

√
N/D)

quantum computations. Hence, the tradeoff becomes D ·T 2 = N , in which T and
D are balanced when T = D = N1/3. This achieves a good improvement over
the classical setting. However, this method has the crucial drawback; D = N1/3

qubits are exploited only for storing the data. If we apply Grover’s algorithm (for
key search) in parallel with N1/3 qubits, the offline phase for D = 1 can finish
in O(N1/3), which is better than applying the multi-target preimage search in
terms of the data complexity.

Case Analysis Depending on Quantum Hardware. Let Q be the number
of qubits available to the attacker. We use those Q qubits to process quantum
operations rather than to store the data. Here, the time complexity of quantum
algorithms relies on Q. Hence we do the case analysis; the first case assumes that
Q is an exponential size, while the second case assumes that Q is a limited size.

Bernstein [Ber09], and also Banegas and Bernstein [BB17], pointed out that
the hardware architecture, i.e. how to positioning qubits in quantum hardware,
significantly impacts to the computational cost of quantum algorithms. As dis-
cussed in Sect 2.1, we consider the free and realistic communication models. The
former allows any qubit to interact with any other qubit. The latter assumes
that each qubits is arranged in a square and the range to interact is limited. The
gap between two models is big when Q is an exponential size. While for a suffi-
ciently small Q, say polynomial in logN , the way of realizing hardware does not
significantly effect on the time complexity. Similarly, even if Q is an exponential
size, the evaluation of asymptotic time complexity is not significantly affected by
communication model if the hardware is composed of small (i.e. only polynomi-
ally many qubits) independent quantum processors which do not communicate
with each other. In summary, we analyze the following four cases.

1. Q is exponential (more advantageous to the attacker).

(a) free communication model
(b) realistic communication model
(c) independent small processors without communication

2. Q is not exponential (more challenging to the attacker).

In the following case analysis, we assume that the classical online queries
collect D targets and those are stored in the classical memory M .
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Tradeoff for Case 1a. It assumes that Q qubits are available in the free-
communication model, where O(Q) ≥ D. Banegas and Bernstein [BB17] showed
that the computational cost T of the multi-target preimage search in the free

communication model is T = Õ
(√

N
Q·D

)
. By setting Q = D, the tradeoff for

Case 1a becomes

D2 · T 2 = N, (2)

where D and T are balanced when D = T = N1/4. Q and M are also N1/4.

Tradeoff for Case 1b. It assumes that Q qubits are available in the realistic-
communication model, where O(Q) ≥ D. Banegas and Bernstein [BB17] showed
that the computational cost T of the multi-target preimage search in the realistic

communication model is T = Õ
(√

N
Q·D1/2

)
. By setting Q = D, the tradeoff for

Case 1b becomes

D3/2 · T 2 = N, (3)

where D and T are balanced when D = T = Q = M = N2/7.

Tradeoff for Case 1c. It assumes that Q qubits are divided to Q inde-
pendent small quantum processors. Chailoux et al. [CNPS17] showed that the
computational cost T of the multi-target preimage search with Q qubits is

T = Õ
(√

N
Q·D1/3

)
. By setting Q = D, the tradeoff for Case 1b becomes

D4 · T 6 = N3, (4)

where D and T are balanced when D = T = Q = M = N3/10.

Tradeoff for Case 2. It assumes that Q = O(logN) qubits are available. Chail-
loux et al. [CNPS17] showed that T of the multi-target preimage search with

O(logN) qubits is T = Õ
(
N1/2

D1/6

)
for D < N3/7, using D1/3 classical memory.

The tradeoff for D < N3/7 in Case 2 becomes

D · T 6 = N3, (5)

where D and T are balanced when D = T = N3/7. Note that T = N3/7 even
with D > N3/7. The number of qubits Q = O(logN) is sufficiently small when
N in practical functions are considered. For example, N = 2128, D = 242, and
Q = 128 · c for a small constant c in an example discussed in Sect. 4.
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Table 1. Tradeoff of Online-Offline MitM Attack in Various Models

reference Sect. 3.1 Case 1a Case 1b Case 1c Case 2

query model classic classic classic classic classic
num of qubits 0 O(D) O(D) O(D) O(logN)
comm model - free realistic any any

algorithm Algorithm 1 [BB17] [BB17] [CNPS17] [CNPS17]

tradeoff D · T = N D2 · T 2 = N D3/2 · T 2 = N D4 · T 6 = N3 D · T 6 = N3

min{D,T} N1/2 N1/4 N2/7 N3/10 N3/7

𝑇

𝑁

𝑁1/2

𝐷
𝑁𝑁1/2

𝐷 ⋅ 𝑇 = 𝑁

𝐷2 ⋅ 𝑇2 = 𝑁

𝐷3/2 ⋅ 𝑇2 = 𝑁

𝑁3/7

𝑁3/7

𝑁2/3

𝑁4/7

𝐷4 ⋅ 𝑇6 = 𝑁3

𝑁3/4

𝐷 ⋅ 𝑇6 = 𝑁3

Fig. 3. Illustration of Tradeoff Curves (plotted in logarithmic scale)

3.3 Impact

The tradeoffs of the online-offline MitM attacks are compared in Table 1. The
tradeoff curves are plotted in Fig. 3. As long as Q is an exponential size, the
complexities of the quantum attacks are exponentially smaller than ones in the
classical online-offline MitM. When Q is O(logN), the quantum attack improves
T as long as D ≤ N4/7.

As we later discuss in Sect. 4, several existing schemes claim BBB security
by setting the number of maximum queries to be less than N1/2 to ensure the
minimum number of computational cost is more than N1/2 according to the
classic tradeoff in Eq (1). Such security claims collapse against attackers with
quantum computers even in Q1 model.

4 Applications of Online-Offline MitM Attacks

In this section, we discuss that the online-offline MitM attack can be applied to
a lot of existing symmetric-key schemes. Section 4.1 focuses on the two schemes
that claim BBB security by limiting the maximum number of queries per key.
Section 4.2 shows a few more applications.
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Fig. 5. Online-Offline MitM Attack
against Chaskey

4.1 Applications to Schemes with Beyond-Birthday-Bound Security

Chaskey. Chaskey [Mou15,MMH+14] is a light-weight MAC scheme. The con-
struction follows CBC-MAC but the n-bit block cipher in CBC-MAC is replaced
with Even-Mansour construction with a public n-bit permutation.

It uses an n-bit key K, and generates the second key K1 by K1 ← 2 · K,
where ‘·’ is a multiplication over a finite field. Suppose that the size of the input
message M is a multiple of n. M is then divided into n-bit blocks such that
M1‖M2‖ · · · ‖M` ←M . Let π be an n-bit public permutation. Then, a tag Z for
M is computed as follows, which is illustrated in Fig. 4.

1. State← K

2. State← π(State⊕Mi) for i = 1, 2, · · · , `− 1.

3. State← π(State⊕M` ⊕K1)

4. Z ← State⊕K1.

Security of Chaskey is the same level as the Even-Mansour construction.
Indeed, when the input message length is 1-block, the construction becomes
Even-Mansour construction with the first key K⊕K1 and the second key K1. It
is known that, even by the classical adversaries, Even-Mansour construction can
be attacked with D queries and T offline computations satisfying D · T = 2n.

The size of π is 128 bits. Hence it can be attacked with D = T = 264 by the
classical adversaries, while 64-bit security is sometimes too small. To avoid this
problem, the number of MACs generated under a single key is limited to 248.
Then, it offers 80-bit security against offline computations.

Attack Procedure. The online-offline MitM attack can be directly applied to
Chaskey. The attack in [KM12] targets the two-key Even-Mansour construc-
tion, hence the attack uses two pairs of ciphertexts and takes their difference
to eliminate the impact of the second key K2. In our 1-block attack in Chaskey
illustrated in Fig. 5, K1 is linearly derived from K. Hence, we make a small
optimization for Chaskey to improve the constant factor of 2.

We first revisit the attack in the classical model. The adversary chooses D
distinct messages M (i) and obtains the corresponding tag Z(i) via encryption
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queries. In the offline phase, the adversary makes T guesses x(j) of the input
value to π and calculates its output y(j) offline. Here, we have

M (i) ⊕ x(j) ⊕ y(j) ⊕ Z(i) = K, K1 = y(j) ⊕ Z(i) = 2 ·K.

Hence, 2 ·(M (i)⊕x(j)⊕y(j)⊕Z(i)) = y(j)⊕Z(i), which is converted to the match
between values computed online and offline: 2 ·M (i)⊕ 3 ·Z(i) = 2 · x(j)⊕ 3 · y(j).
The match suggests the key K. Hence, with DT = 2n, the key is recovered. In
other words, we simply run Algorithm 1 by defining f and fp as

f(m) : {0, 1}n 7→ {0, 1}n , 2 ·m⊕ 3 · Chaskey(m),

fp(x) : {0, 1}n 7→ {0, 1}n , 2 · x⊕ 3 · π(x).

As discussed in Sect 3.2, the complexity of the quantum algorithm depends
on the assumptions of the quantum hardware architecture.

Case 1a (exponential qubits, free communication). The internal state (and
then both keys) are recovered at the balanced point of the tradeoff curve, in
which D = T = Q = M = 2128/4 = 232.

Case 1b (exponential qubits, realistic communication). The attack is per-
formed at the balanced point; D = T = Q = M = 22·128/7 ≈ 236.6.

Case 1c (exponential qubits, any communication). The attack is performed
at the balanced point; D = T = Q = M = 23·128/10 ≈ 238.4.

Case 2 (non-exponential qubits). The balanced point 23·128/7 ≈ 254.9 can-
not be reached due to the limitation of the number of queries. When D = 248,
Q is O(logN) = 128 · c for a small constant c and M = D1/3 = 216. The
tradeoff curve becomes 248 · T 6 = 23·128, which leads to T = 256.

In any case, T is overwhelmingly smaller than 280 of the classical attack.

Remarks on Chaskey-B. The original paper of Chaskey [MMH+14] proposes
a block-cipher variant of Chaskey, called Chaskey-B. Roughly speaking, it re-
places a public permutation π of Chaskey with block-cipher Ek, which makes
the construction identical with a standard CBC-MAC.

As shown by Kaplan et al. [KLLN16a] and Liu and Liu [LL17b], (universal)
forgery can be applied in Q2 model, while no method is known to break birth-
day bound in Q1 model. This indicates that Chaskey and Chaskey-B have very
different security level against quantum adversaries in Q1 model.

Tweak-Dependent Rekeying (TDR). Minematsu proposed a block cipher
mode called tweak-dependent rekeying (TDR), which constructs a TBC with
BBB security [Min09]. Let EK be a block cipher of which both the block size
and key size are n bits. Let EwK be a construction in which the first n − w bits
of the plaintext for EK are fixed to 0, which reduces the plaintext space from
n bits to w bits. TDR builds a TBC (using w-bit tweak) with two EK calls;
K ′ ← EwK(W ) then C ← EK′(P ). The construction is illustrated in Fig. 6.
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Minematsu proved that TDR achieves the security curve D · T = 2n against
classical adversaries. This bound is tight. The online-offline MitM attack in Al-
gorithm 1 can be applied by fixing P to an arbitrary value, defining f as a oracle
query to TDR and defining fp as the offline computation of EK′ with guessing
K ′. The attack reveals K ′. Although K is not recovered, knowledge of K ′ allows
the adversary to convert any P to C or C to P , thus confidentially is broken.

AES is considered as an underlying cipher, thus n = 128. When w < n/2,
BBB security is proved against the offline computational cost. Minematsu rec-
ommended w = n/3 to ensure 2n/3-bit security. For the AES instantiation, w is
set to 42 bits, thus security for the offline computation is up to 86 bits.

Similarly to Chaskey, the quantum online-offline MitM can directly be applied
with about 232, 236.6 and 238.4 complexities for Case 1a, Case 1b, and Case 1c,
respectively. For Case 2, D = 242, Q = 128 · c qubits for a small constant c,
M = 214 classical memory, and T = 257.

Comparison with other TBC constructions is of interest. On one hand, some
TBC constructions such as LRW and XEX can be broken with O(n) complex-
ity in Q2 model [KLLN16a], while no attack is known in Q1 model (though
we will propose another type of tradeoff for 2-key variants in Sect. 5). On the
other hand TDR resists O(n) attack in Q2 model, while security in Q1 model
is worse than LRW and XEX. As shown in Fig. 1, those TBC constructions
essentially belong to different classes. We again believe that such knowledge will
help cryptographers to design new schemes with post-quantum security.

4.2 Application to Other Schemes

We show more applications that online-offline MitM attack in Q1 model can be
applied while the attack with O(n) complexity in Q2 model cannot be applied.

McOE-X. Fleischmann et al. proposed the McOE family of online authenti-
cated encryption schemes [FFL12]. Their idea is to use a TBC to process each
message block, where the tweak is an XOR of plaintext and ciphertext in the
previous block. Let EK,W be a TBC under a key K and a tweak W . Then, the
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ciphertext Ci of the i-th message block Pi is computed by

Wi ← Pi−1 ⊕ Ci−1, Ci ← EK,Wi
(Pi).

Among several instances to compute EK,W , McOE-X defines that EK,W =
EK⊕W . The construction is illustrated in Fig. 7.

Mendel et al. [MMRT12] showed that the key of McOE-X can be recovered
with D · T = N , by applying the meet-in-the-middle attack. According to the
framework in Algorithm 1, we fix P1 to arbitrary chosen one, define f as the
query of P0‖P1 and define fp as the second block with guessing the key input.

By replacing the classical offline computation in Algorithm 1 with quantum
one, the attack complexity is significantly improved as discussed in Sect 3.

Keyed Sponge. The sponge construction and its application to keyed us-
ages were introduced by Bertoni et al. [BDPA08]. It is based on a permu-
tation π : {0, 1}b 7→ {0, 1}b and has two parameters; rate r and c, where
r + c = b. The keyed sponge construction takes as input a key K ∈ {0, 1}k
where k < c and an arbitrary length message M to produce an n-bit tag Z.
The b-bit state S is initialized to 0b−k‖K. The message M is separated into
r-bit blocks as M1‖M2‖ · · · ‖M` and is absorbed to the state block-by-block by
S ← π(S ⊕ Mi‖0c) for i = 1, 2, · · · , `. After all M` is absorbed, it starts to
squeeze the output by r bits from each state. Let truncr denote a truncation of
r bits. When n is a multiple of r, Z is generated by Zi ← truncr(S), S ← π(S)
for i = 1, 2, 3, · · · , until the size of Z = Z1‖Z2‖Z3‖ · · · reaches n bits. See Fig. 8.

Liu and Liu [LL17a] found that the full-state keyed sponge (c = 0 during
the absorption) can be attacked with O(c) in Q2 model by applying Simon’s
algorithm. This paper analyzes more popular case; attacks in Q1 model on ordi-
nary keyed sponge in Fig. 8. For example, KMAC standardized by NIST [NIS16]
adopts the keyed sponge in a slightly different way; first initializes the state to
a constant and processes K‖M . This difference does not impact to our attack.

With the classical environment, key recovery attack with a complexity 2c/2

is known that works as follows. Here, we assume that the tag size n is 1-block.
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1. Iterate the following two steps D times.
(a) Choose a random 1-block message M and query it to obtain Z1.
(b) Query a 2-block message M ′ = M‖Z1 to obtain Z ′, and store it in L.

2. Make 2c/D guesses of c-bit capacity and compute S ← π(0r‖c) offline. Check
whether truncr(S) matches one of the values in L.

Step 1b ensures that the rate of the state after Z0 is 0. Hence, L collects
tag values for D randomly generated capacity values while the rate is 0. Step 2
corresponds to fp in Algorithm 1. The match recovers the entire state value,
thus key K can be recovered by backtracking the computation with π−1.

As the procedure clearly suggests, this is an offline-online MitM and thus by
replacing Step 2 with quantum algorithm, the keyed sponge construction can be
attacked in Q1 model with complexity discussed in Sect 3.

H2-MAC. H2-MAC, a variant of HMAC without second key, was proposed
by Yasuda [Yas09] with birth-bound security proved. It takes a key K and a
message M = M1‖M2‖ . . . ‖M` as input and computes an n-bit MAC tag. Let
h : {0, 1}b+n 7→ {0, 1}n be a compression function. Let also IV and Hi be
an n-bit constant and n-bit variable, respectively. The scheme first computes
H1 ← h(IV,K), then iteratively process message blocks by Hi+1 ← h(Hi,Mi)
for i = 1, 2, · · · , `. Finally, the tag Z is computed by Z ← h(IV, pad(H`+1)) with
a proper padding scheme “pad.” See Fig. 9 for its illustration.

The forgery attack in the classical setting was proposed by Liu et al. [LXS11]
by online-offline MitM, which runs Algorithm 1 by defining f as the entire query
and fp as the offline computation from the second block with guessing H2. As
discussed in Sect 3, the quantum offline computation can be applied in Q1 model.

We stress that the same attack can be applied to other secret-prefix MACs
[Tsu92], for example, LPMAC attacked by Sasaki [Sas12].

5 Attacks on the FX Construction in Q1 Model

This section, inspired by the Q2-model attack by Leander and May [LM17], gives
a Q1-model attack on the FX construction by applying our general framework.
The FX construction proposed by Killian and Rogaway [KR96,KR01] is a block
cipher adopting a similar structure as the Even-Mansour construction, where its
public random permutation is replaced with a block cipher. Let E be an n-bit
block cipher with m-bit key. Then the FX construction using E is an n-bit block
cipher with m+ 2n-bit key, of which encryption of M is defined as

FXE
k0,k1,k2(M) = Ek0(M ⊕ k1)⊕ k2.

Since k0 is secret, the quantum key recovery attack against the Even-Mansour
construction in [KM12] can no longer be used.

Leander and May cleverly combined Grover’s algorithm and Simon’s algo-
rithm to make a quantum key recovery attack on the FX construction [LM17].
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Their attack requires Q2 model. In short, it runs Simon’s algorithm in parallel
to recover k1 and runs Grover’s algorithm to guess k0, The time complexity is
Õ(2m/2) by using O(m + n2) qubits. Although the attack requires strong Q2
model, it costs exponential time owing to Grover’s algorithm.

Here, we describe a classical key recovery attack against the FX construction
with a cost of D queries and T computations satisfying D · T = 2m+n. Set
α := dmn e. Let H : {0, 1}m × {0, 1}n → {0, 1}(α+1)n be a function defined by

H(k, x) := Ek(x)⊕ Ek(x⊕ 1)‖ · · · ‖Ek(x)⊕ Ek(x⊕ (α+ 1)).

1. Choose D distinct values of message M (i), query M (i),M (i) ⊕ 1, . . . ,M (i) ⊕
(α + 1) to the encryption oracle, and obtain the corresponding ciphertexts

C
(i)
0 , C

(i)
1 , . . . , C

(i)
α+1. Store M (i) in a table L along with C

(i)
0 ⊕C

(i)
1 ‖ · · · ‖C

(i)
0 ⊕

C
(i)
α+1. (Note that C

(i)
0 ⊕ C

(i)
1 ‖ · · · ‖C

(i)
0 ⊕ C

(i)
α+1 = H(k0,M

(i) ⊕ k1) holds.)
2. Make exhaustive 2m guesses of k0, denoted by k′, T guesses of M ⊕ k1, and

compute H(k′,M ⊕ k1). Check for a match of the value H(k′,M ⊕ k1) =
C0 ⊕ C1‖ · · · ‖C0 ⊕ Cα+1 with L.

The above attack succeeds with high probability, since H is an almost random
function, and H(k, x) = H(k′, y)⇔ (k, x) = (k′, y) with high probability.

From a different point of view, the above attack procedure is essentially equal
to running Algorithm 1 for N = 2m+n by defining f and fp as

f(M) : {0, 1}n 7→ {0, 1}n , H(k0,M ⊕ k1),

fp(k, x) : {0, 1}m × {0, 1}n 7→ {0, 1}n , H(k, x).

While the strategy of attacks in Sect. 4 is simply to find a collision of two
functions f and fp, here we additionally need to guess m-bit key k0. Moreover,
there is a limitation that D ≤ N/2m since D cannot exceed 2n.

Next, we convert the above classical attack to a quantum attack only with
classical online queries. We again consider three cases. Due to the condition
D ≤ N/2m, we set upper limit of m for each case.

Case 1a (exponential qubits, free-communication). Assumem ≤ 3n. The

attack is performed at the balanced point; D = T = Q = M = 2
(m+n)

4 .
Case 1b (exponential qubits, realistic-communication). Assumem ≤ 5n/2.

The attack is performed at the balanced point; D = T = Q = M = 2
2(m+n)

7 .
Case 1c (exponential qubits, any communication). Assume m ≤ 7n/3.

The attack is performed at the balanced point; D = T = Q = M = 2
3(m+n)

10 .
Case 2 (non-exponential qubits). Assume m ≤ 4n/3. The attack is per-

formed at the balanced point; D = T = 2
3(m+n)

7 , using O(n) qubits and

M = Õ(2
m+n

7 ) classical memory.

Applications to Two-Key Variants of LRW, XEX and XE. The LRW
construction [LRW11] is a TBC construction based on a block cipher proposed
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by Liskov et al. It replaces whitening keys k1, k2 of the FX construction with a
single value h(w), where w is a tweak and h is a secret function: LRWE

k0,w
(M) =

Ek0(M ⊕ h(w)) ⊕ h(w). Kaplan et al. [KLLN16a] proposed polynomial-time
attacks in Q2 model against LRW, XEX and XE constructions.

Typically, h is dependent on the secret key k0, though it may be of interest
to consider a two-key variant of these constructions, i.e. h is independent from
k0. For the two-key variant, the structure becomes essentially the same as the
FX construction, and thus we can apply the above attack in Q1 model with the
same complexities.

6 Concluding Remarks

We presented quantum attacks against symmetric-key schemes in Q1 model, that
has not received much attention. We converted the classical online-offline MitM
attacks into quantum ones in Q1 model. The complexity depends on the number
of qubits available and communication models. We derived the new tradeoff in
four models. Some existing schemes claim BBB security on T by limiting the
maximum number of D by following the classical tradeoff D ·T = N . Such claims
are broken if adversary can access to quantum computers.

Efficiency of the quantum attacks depend on the constructions. Possible fu-
ture directions are looking for more instances of ClassQ1Exp and ClassQ2Poly, or
searching for a class of schemes with different cryptanalysis approaches.

A Further Discussion on Quantum Computation Models

Regarding attack models for quantum computations, we received several com-
ments from other researchers. Below we introduce two issues which are pointed
out by them.

A.1 Flying Qubits

As discussed in [BGG+13], if each qubit (or each small quantum processor)
in a quantum hardware of size O(2n) can communicate with O(n) qubits (or
small quantum processors), then the hardware can simulate a hardware in free
communicational model with the time overhead O(n2). Thus, if we can mod-
ify a quantum hardware in realistic communication model so that each qubit
in the hardware can communicate with a little more qubits (which is called
“flying qubits” in [BBG+13]), then the hardware can simulate free communica-
tion model with a small overhead. However, realization of “flying qubits” fully
depends on future development of quantum hardware, and here we give no ar-
gument about realizability of it.
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A.2 Feasibility of Q2 Model

Q1 model is more realistic than Q2 model, though Q2 model should not be re-
garded as “non-realistic model.” In the main body of this paper, we described
that Q2 model assumes that all the users implement algorithms on quantum
computers and the network is communicated in the form of superposition. How-
ever, if an adversary attacks some kind of cryptosystems like “disk encryption”
which is implemented on a quantum computer, then the notion of network be-
comes abstract. In addition, if white-box encryption algorithm is implemented
on a quantum computer, then network becomes irrelevant.

Q2 model is simple and non-trivial. It ensures security in any intermediate
scenario including hybrid ones like classical machines with quantum modules,
where Q1 model could not really apply. We do not know how fast technologies
on quantum computation and communication will develop, and using primitives
not known to be secure in Q2 model would be challenging in the future.

References

[BB17] Gustavo Banegas and Daniel J. Bernstein. Low-communication parallel
quantum multi-target preimage search. Cryptology ePrint Archive, Report
2017/789, 2017. To appear at SAC2017.

[BBG+13] Robert Beals, Stephen Brierley, Oliver Gray, Aram W. Harrow, Samuel
Kutin, Noah Linden, Dan Shepherd, and Mark Stather. Efficient distributed
quantum computing. In Proceedings of the Royal Society A, volume 469,
page 20120686. The Royal Society, 2013.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight
bounds on quantum searching. Fortsch. Phys., 46(4-5):493–505, June 1998.
https://arxiv.org/abs/quant-ph/9605034.

[BDPA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
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Plasencia. Quantum differential and linear cryptanalysis. IACR Trans.
Symmetric Cryptol., 2016(1):71–94, 2016.

[KM10] Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between
the 3-round Feistel cipher and the random permutation. In ISIT 2010,
pages 2682–2685. IEEE, 2010.

[KM12] Hidenori Kuwakado and Masakatu Morii. Security on the quantum-type
Even-Mansour cipher. In ISITA 2012, pages 312–316. IEEE, 2012.

[KR96] Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive
key search. In Neal Koblitz, editor, CRYPTO’96, pages 252–267. Springer,
1996.

[KR01] Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive
key search (an analysis of DESX). J. Cryptology, 14:17–35, 2001.

[LL17a] Fanbao Liu and Fengmei Liu. Universal forgery and key recovery attacks:
Application to FKS, FKD and Keyak. Cryptology ePrint Archive, Report
2017/691, 2017.

[LL17b] Fanbao Liu and Fengmei Liu. Universal forgery with birthday paradox: Ap-
plication to blockcipher-based message authentication codes and authenti-
cated encryptions. Cryptology ePrint Archive, Report 2017/653, 2017.

[LM17] Gregor Leander and Alexander May. Grover meets Simon - quantumly at-
tacking the FX-construction. Cryptology ePrint Archive, Report 2017/427,
2017. To appear at Asiacrypt 2017.

[LRW11] Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block
ciphers. J. Cryptology, 24(3):588–613, 2011.

[LXS11] Fanbao Liu, Tao Xie, and Changxiang Shen. Breaking H2-MAC using
birthday paradox. Cryptology ePrint Archive, Report 2011/647, 2011.

[MBTM17] Kerry A. McKay, Larry Bassham, Meltem Snmez Turan, and Nicky
Mouha. NISTIR 8114 Report on Lightweight Cryptography. Technical re-
port, U.S. Department of Commerce, National Institute of Standards and
Technology, 2017. https://doi.org/10.6028/NIST.IR.8114.

[Min09] Kazuhiko Minematsu. Beyond-birthday-bound security based on tweakable
block cipher. In Orr Dunkelman, editor, FSE 2009, volume 5665 of LNCS,
pages 308–326. Springer, 2009.

[MMH+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe,
Bart Preneel, and Ingrid Verbauwhede. Chaskey: An efficient MAC algo-
rithm for 32-bit microcontrollers. In Antoine Joux and Amr M. Youssef,
editors, SAC 2014, volume 8781 of LNCS, pages 306–323. Springer, 2014.

20



[MMRT12] Florian Mendel, Bart Mennink, Vincent Rijmen, and Elmar Tischhauser.
A simple key-recovery attack on McOE-X. In Josef Pieprzyk, Ahmad-Reza
Sadeghi, and Mark Manulis, editors, CANS 2012, volume 7712 of LNCS,
pages 23–31. Springer, 2012.

[Mou15] Nicky Mouha. Chaskey: a MAC algorithm for microcontrollers – status
update and proposal of Chaskey-12 –. Cryptology ePrint Archive, Report
2015/1182, 2015.

[MS17] Bart Mennink and Alan Szepieniec. XOR of PRPs in a quantum world. In
Tanja Lange and Tsuyoshi Takagi, editors, PQCrypto 2017, volume 10346
of LNCS, pages 367–383. Springer, 2017.

[NIS16] NIST. SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and Par-
allelHash. Technical report, U.S. Department of Commerce, National In-
stitute of Standards and Technology, 2016. NIST Special Publication (SP)
800-185.

[Sas12] Yu Sasaki. Cryptanalyses on a merkle-damg̊ard based MAC - almost univer-
sal forgery and distinguishing-h attacks. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 411–
427. Springer, 2012.

[Sim97] Daniel R Simon. On the power of quantum computation. SIAM journal
on computing, 26(5):1474–1483, 1997.

[Tsu92] Gene Tsudik. Message authentication with one-way hash functions. In
ACM SIGCOMM Computer Communication Review, volume 22(5), pages
29–38. ACM, 1992.

[VOW94] Paul C Van Oorschot and Michael J Wiener. Parallel collision search with
application to hash functions and discrete logarithms. In CCS’94, pages
210–218. ACM, 1994.

[Yas09] Kan Yasuda. HMAC without the ”second” key. In Pierangela Samarati,
Moti Yung, Fabio Martinelli, and Claudio Agostino Ardagna, editors, ISC
2009, volume 5735 of LNCS, pages 443–458. Springer, 2009.

21


