Consolidating Inner Product Masking

Josep Balasch!, Sebastian Faust??, Benedikt Gierlichs!,
Clara Paglialonga?3, Francois-Xavier Standaert*

! imec-COSIC KU Leuven, Belgium
2 Ruhr-Universitat Bochum, Germany
3 Technische Universitiat Darmstadt, Germany
“Universit catholique de Louvain, ICTEAM/ELEN/Crypto CGroup, Belgium
{josep.balasch,benedikt.gierlichs}@esat.kuleuven.be,
{sebastian.faust,clara.paglialonga}@rub.de
fstandae@uclouvain.be

Abstract. Masking schemes are a prominent countermeasure to defeat
power analysis attacks. One of their core ingredient is the encoding func-
tion. Due to its simplicity and comparably low complexity overheads,
many masking schemes are based on a Boolean encoding. Yet, several
recent works have proposed masking schemes that are based on alterna-
tive encoding functions. One such example is the inner product masking
scheme that has been brought towards practice by recent research. In this
work, we improve the practicality of the inner product masking scheme
on multiple frontiers. On the conceptual level, we propose new algo-
rithms that are significantly more efficient and have reduced randomness
requirements, but remain secure in the t-probing model of Ishai, Sahai
and Wagner (CRYPTO’03). On the practical level, we provide new imple-
mentation results. By exploiting several engineering tricks and combining
them with our more efficient algorithms, we are able to reduce execution
time by nearly 60% compared to earlier works. We complete our study by
providing novel insights into the strength of the inner product masking
using both the information theoretic evaluation framework of Standaert,
Malkin and Yung (EUROCRYPT’09) and experimental analyses with an
ARM microcontroller.

1 Introduction

Physical side-channel attacks where the adversary exploits, e.g., the power con-
sumption [35] or the running time [34] of a cryptographic device are one of the
most powerful cyberattacks. Researchers have shown that they can extract se-
cret keys from small embedded devices such as smart cards [23,35], and recent
reports illustrate that also larger devices such as smart phones and computers
can be attacked [4,25]. Given the great threat potential of side-channel attacks
there has naturally been a large body of work proposing countermeasures to de-
feat them [36]. One of the most well-studied countermeasure against side-channel
attacks — and in particular, against power analysis — are masking schemes [12,
30]. The basic idea of a masking scheme is simple. Since side-channel attacks

attempt to learn information about the intermediate values that are produced
by a cryptographic algorithm during its evaluation, a masking scheme conceals
these values by hiding them with randomness.

Masking schemes have two important ingredients: a randomized encoding
function and a method to securely compute with these encodings without re-
vealing sensitive information. The most common masking scheme is Boolean
masking [12, 33], which uses a very simple additive n-out-of-n secret sharing as
its encoding function. More concretely, to encode a bit b we sample uniformly
at random bits (b1,...,b,) such that). b; = b (where the sum is in the binary
field). The basic security property that is guaranteed by the encoding function
is that if the adversary only learns up to n — 1 of the shares then nothing is
revealed about the secret b. The main challenge in developing secure masking
schemes has been in lifting the security properties guaranteed by the encoding
function to the level of the entire masked computation. To this end, we usually
define masked operations for field addition and field multiplication, and show
ways to compose them securely.

The most standard security property that we want from a masking scheme
is to resist t-probing attacks. To analyze whether a masking scheme is secure
against t-probing attacks we can carry out a security analysis in the so-called
t-probing model — introduced in the seminal work of Ishai, Sahai and Wag-
ner [33]. In the t-probing model the adversary is allowed to learn up to ¢ inter-
mediate values of the computation, which shall not reveal anything about the
sensitive information, and in particular nothing about the secret key used by a
masked cryptographic algorithm. In the last years, there has been a flourishing
literature surrounding the topic of designing better masking schemes, including
many exciting works on efficiency improvements [11, 14, 16, 38, 43], stronger se-
curity guarantees [18, 22,40, 42] and even fully automated verification of masking
schemes [5, 6] — to just name a few.

As mentioned previously, the core ingredient of any masking scheme is its
encoding function. We can only hope to design secure masking schemes if we start
with a strong encoding function at first place. Hence, it is natural to ask what
security guarantees can be offered by our encoding functions and to what extent
these security properties can be lifted to the level of the masked computation.
Besides the Boolean masking which is secure in the ¢-probing model, several other
encoding functions which can be used for masking schemes have been introduced
in the past. This includes besides Boolean masking, the affine masking [24], the
polynomial masking [29,41] and the inner product masking [20,2,1]. Each of
these masking functions offers different trade-offs in terms of efficiency and what
security guarantees it can offer.

The goal of this work, is to provide novel insights into the inner product
masking scheme originally introduced by Faust and Dziembowski [20] and Gold-
wasser and Rothblum [26], and later studied in practice by Balasch et al. [2,
1]. Our main contribution is to consolidate the work on inner product masking
thereby improving the existing works of Balasch et al. [2, 1] on multiple frontiers

and providing several novel insights. Our contributions can be summarized as
follows.

New algorithms with t—=SNI security property. On a conceptual level we pro-
pose simplified algorithms for the multiplication operation protected with inner
product masking. In contrast to the schemes from [2, 1] they are resembling the
schemes originally proposed by Ishai et al. [33] (and hence more efficient and
easier to implement than the schemes in [1]), but work with the inner product
encoding function. We prove that our new algorithms satisfy the property of
t-strong non-interference (—SNI) introduced by Barthe et al. [6,5], and hence
can safely be used for larger composed computation. An additional contribution
is that we provide a new secure multiplication algorithm — we call it IPMultf)
shown in Algorithm 7 — that can result in better efficiency when composed with
certain other masked operations. Concretely, when we want to compose a linear
function g() with a multiplication, then either we can use IPMult(Ll) and require
an additional refreshing operation at the output of g(), or we use our new algo-

rithm IPMultg) that eliminates the need for the additional refreshing. This can
save at least O(n?) in randomness.

New implementation results. We leverage on the proposed algorithms for the
multiplication operation to build new software implementations of AES-128 for
embedded AVR architectures. Compared to earlier works [1], we are able to
reduce the execution times by nearly a factor 60% (for 2 shares) and 55% (for
3 shares). The improvements stem not only from a decrease in complexity of
the new algorithms, but also from an observation that enables the tabulation of
the AES affine transformation. We additionally provide various flavors of AES-
128 implementations protected with Boolean masking, using different addition
chains that have been proposed to compute the field inversion. Our performance
evaluation allow us to quantify the current gap between Boolean and IP masking
schemes in terms of execution time as well as non-volatile storage.

Information theoretic evaluation. We continue our investigations with a com-
prehensive information theoretic evaluation of the inner product encoding. Com-
pared to the previous works of Balasch et al., we consider the mutual information
between a sensitive variable and the leakage of its inner product shares for an
extended range of noises, for linear and non-linear leakage functions and for dif-
ferent values of the public vector of the encoding. Thanks to these evaluations,
we refine the understanding of the theoretical pros and cons of such masking
schemes compared to the mainstream Boolean masking. In particular, we put
forward interesting properties of inner product masking regarding “security or-
der amplification” in the spirit of [9, 32, 10] and security against transition-based
leakages [15,3]. We also highlight that these interesting properties are quite
highly implementation-dependent.

Ezperimental evaluation. Eventually, we confront our new algorithms and their
theoretical analyses with practice. In particular, we apply leakage detection

techniques on measurements collected from protected AES-128 routines run-
ning on an ARM Cortex-M4 processor. Our results reveal the unequivocal pres-
ence of leakage (univariate, first-order) in the first-order Boolean masked im-
plementation. In contrast the first-order inner product masked implementation
shows significantly less evidence of leakage (with the same number of measure-
ments). Combined with the previous proofs and performance evaluations, these
results therefore establish inner product masking as an interesting alternative
to Boolean masking, with good properties for composability, slight performance
overheads and significantly less evidence of leakage.

2 Notation

In the following we denote by K a field of characteristic 2. We denote with upper-
case letters the elements of the field K and with bold notation that one in the
K-vector spaces. The field multiplication is represented by the dot - while the
standard inner product over K is denoted as (X,Y) = >, X;-Y;, where X; and
Y, are the components of the vectors X and Y.

The symbol §; ; corresponds to the element 0 when ¢ = j and 1 otherwise.

3 New Algorithm

Our new multiplication scheme is based on the inner product construction of
Dziembowski and Faust [21] and constitute an improvement to the works [2]
and [1]. The encoding of a variable S € K consists of a vector § € K™ such
that S = (L, S), where L is a fixed but random non-zero parameter with first
component Iy =1 .

The algorithms for initialization and masking are depicted in the IPSetup and
IPMask procedures. The subroutine rand(K) samples an element uniformly at
random from the field K. The algorithms for addition and refreshing are kept

Algorithm 1 Setup the masking scheme: L < IPSetup, (K)

Input: field description K
Output: random vector L
L1 = 1;
for i =2 ton do
L; < rand(K \ {0});
end for

the same as in [1], while a new multiplication scheme IPMult(") is proposed in
Algorithm 3. The schemes achieves security order ¢ = n — 1 in the ¢-probing
model.

Our starting point for the Algorithm 3 is the multiplication scheme from [33].
We reuse the idea of summing the matrix of the inner products of the inputs

Algorithm 2 Masking a variable: S « IPMaskp,(S)
Input: variable S €
Output: vector S such that S = (L, S)
for i =2 ton do
S; « rand(K);
end for
S =5+ Z?:Q L;-S;;

with a symmetric matrix of random elements, in order to compute the shares of
the output in a secure way. In particular we design these two matrices (T" and
U’ in the algorithm) to be consistent with our different masking model.

Algorithm 3 Multiply masked values: C' <+ IPMult(Ll)(A, B)

Input: vectors A and B of length n
Output: vector C such that (L,C) = (L, A)-(L, B)
> Computation of the matrix T
for i =1ton do
for j =1tondo
end for
end for
> Computation of the matrices U and U’
for i =1ton do
Uz’z = 0;
for j =1tondo
if i < j then
U; ; < rand(K);
end if
if i > j then
Uil,j = *Ugl',z‘%
end if
Uij =Uj;8isLi
end for
end for
> Computation of the matrix V'
V=T+U;
> Computation of the output vector C
for i =1 ton do
Ci = Zj Vijs

end for

The correctness of the scheme is proved in the following lemma.

Lemma 1. For any L,A,B € K" and C = IPMultg)(A,B), we have
(L,C)=(L,A)-(L,B).

Proof. Tt holds:
(L,C)=>"Li-Ci=> LY Vij=> LY (Ti; +Ui,)
i i J i J
i j i J ,J
= ZLZAZZBJLJ = <L7A><L7B>

J

3.1 Security proof

We analyze the security of our new multiplication scheme in the t-probing model,
introduced in the seminal work of Ishai et al. [33], in which the adversary is
allowed to learn up to ¢ intermediate values that are produced during the com-
putation. In particular we prove our algorithm to be secure also when composed
with other gadgets in more complex circuits, by proving the stronger property
of t-Strong Non-Interference (t-SNI) defined by Barthe et al. in [5] and recalled
in the following.

Definition 1 (¢t—Strong Non-Interferent). An algorithm A is t—Strong Non-
Interferent (t—SNI) if and only if for any set of t1 probes on intermediate vari-
ables and every set of to probes on output shares such that t1 +ty < t, the totality
of the probes can be simulated by only t1 shares of each input.

In a few words the property requires not only that an adversary can simulate
d < t probes with d inputs, like in the classical ¢-probing model, but also that
the number of input shares needed in the simulation are independent from the
number of probes on the output shares.

The following lemma shows the t—SNI security of IPMult(Ll).

Lemma 2. The algorithm IPMult(Ll) is t=SNI with t =n — 1.

Proof. Let 2 = (Z, O) be a set of t observations respectively on the internal and
on the output wires, where |Z| = ¢; and in particular t; + |O| < ¢. We construct
a perfect simulator of the adversary’s probes, which makes use of at most t;
shares of the secrets A and B.

Let wq,...,w; be the probed wires. We classify the internal wires in the
following groups:
(1) Ai; Bia
(2) Ui, Uj

(3) Ai- By, T;;,Vij,

(4) C; ;, which represents the value of C; at iteration ¢, j of the last for loop.

We define two sets of indices I and J such that |I| < ¢q, |J| < t; and the values
of the wires w;, with h = 1,...,t can be perfectly simulated given only the
knowledge of (A;);cr and (B;);cs. The sets are constructed as follows.

— Initially I and J are empty.
— For every wire as in the groups (1), (2) and (4), add i to I and to J.
— For every wire as in the group (3) ifi ¢ I add i to [and if j ¢ J add j to J.

Since the adversary is allowed to make at most t¢; internal probes, we have
[I| <t and |J| < t;.

We now show how the simulator behaves, by starting to consider the internal
observed wires.

1. For each observation as in the group (1), by definition of I and J the simu-
lator has access to A;, B; and then the values are perfectly simulated.
2. For each observation as in the group (2), we distinguish two possible cases:

—Ifiel,Jand j ¢ J, the simulator assigns a random and independent
value to UZ-'J-: if ¢ < j this is what would happen in the real algorithm,
otherwise since j ¢ J the element U] ; will never enter into the compu-
tation of any wy, (otherwise j would be in J).

—1Ifi e l,J and j € J, the values U; ; and U, can be computed as in
the actual circuit: one of them (say Uj ;) is assigned to a random and
independent value and the other U; ; to —Uj ;.

The value U ; is computed using the simulated U; ; and the public value L;.

3. For each observation as in the group (3), by definition of the sets I and J
and for the previous points, the simulator has access to A;, A;, B;, Bj, to the
public value L; and U; ;,U; ; can be simulated. Therefore A; - B;,T; ; and
Vi ; can be computed as in the real algorithm.

4. For each observation as in the group (4), by definition ¢ € I, J. At first we
assign a random value to every summand Vi, with & < j and k ¢ J, entering
in the computation of any observed C; ;. Then if one of the addends Vj;, with
k < j composing C; ; has been probed, since by definition £ € J, we can
simulate it as in Step 3. Otherwise V;; has been previously assigned at the
beginning of the current Step 4.

We now simulate the output wires C;. We have to take into account the following
cases.

1. If the attacker has already observed some intermediate values of the output
share C;, we note that each C; depends on the random values in the " row of
the matrix U’, i.e. U], for | <iand Uj, for I > i. In particular each of the U},
appears a second time in one of the remaining C1,--- ,Ci_1,Cit1,- -+ ,Ch,
as shown in the following matrix.

0 U{’Q U{73 U{,n —— Cl
—U{’Q 0 Ué’3 000 Ué,n — CQ
U, ~Uss O ... Uj,

_U{,n _Ué,n _Ué,n s 0 ——0Cn

Since each C; depends on n — 1 random values and the adversary may have
probed at most n—2 of that, then independently of the intermediate elements
probed, at least one of the U], doesn’t enter into the computation of C; ;
and so C; can be simulated as a random value.

2. If all the partial sums have been observed, we can use the values previously
simulated and add them according to the algorithm. Finally it remains to
simulate a C; when no partial sum Cj ; has been observed. By definition, at
least one of the U/, involved in the computation of C; is not used in any
other observed wire. Therefore we can assign a random value to C;.

O

4 Application to AES Sbox

Since IPMultS-j) is proved to be t—SNI, it can be securely composed with other
t—SNI or affine gadgets. In the following we analyze more in detail the algo-
rithm for the exponentiation to the power 254 in GF(2%), which constitutes
the non-linear part of the AES Sbox. We consider Rivain and Prouff’s algo-
rithm from [43, 17]. We recall the squaring routine IPSquare; and the refreshing
scheme from [1]. We give in particular a t-~SNI refreshing SecIPRefreshy,, which
essentially consists in the execution of IPRefreshy, n times. In [1] the authors
already remarked that such a scheme ensures security even if composed with
other gadgets, but no formal proof was provided. In the following we formally
analyze the security of the algorithm, by giving the proof of ¢-SNI.

Algorithm 4 Square masked variable: Y < IPSquare (X)

Input: vector X
Output: vector Y such that (L,Y) = (L, X)-(L, X)
for i =1ton do
Y; ¢ (Xi)* - Li;
end for

Algorithm 5 Refresh vector: X’ + IPRefreshy (X)
Input: vector X
Output: vector X’ such that (L, X) = (L, X')

(As,- -+ Ap) < rand(K™™1)

A+ Z?ZQ A; - Ls;

X' =X+ A;

Algorithm 6 Refresh vector: Y <— SecIPRefreshr (X)
Input: vector X
Output: vector Y such that (L, X) = (L,Y)

Y() = X;

for i =1 ton do

Y ; = IPRefreshy (Y ;-1);
end for
Y =Y,;

Lemma 3. The algorithm SecIPRefreshy, is t—SNI with t =n — 1.

Proof. Let 2 = (Z,0) be a set of t observations respectively on the internal and
on the output wires, where |Z| = ¢; and in particular ¢; + |O| < t. We point out
the existence of a perfect simulator of the adversary’s probes, which makes use
of at most ¢; shares of the secret X.

The internal wires wy, are classified as follows:

(1) X;
(2) Ajj, which is the component i of the vector A in the 4t IPRefreshy,
(3) Yi; = X;+ > 7_; Aik, which is the component i of Y in the j'" IPRefreshy,

We define a set of indices I such that |I| < t; as follows: for every observation
as in the group (1), (2) or (3) add 7 to I.
Now we construct a simulator that makes use only of (X;)e;r.

— For each observation as in the group (1), ¢ € I and then by definition of T
the simulator has access to the value of Xj.

— For each observation as in the group (2), A;; can be sample uniformly at
random. Indeed, this is what happens in the real execution of the algorithm
for the shares A; ; with ¢ = 2,...,n. Otherwise, since we have at most n —1
probes, the adversary’s view of A; ; is also uniformly random.

— For each observation as in the group (3), X; can be perfectly simulated, A4; ;
can be sampled as in the real execution of the algorithm, and then all the
partial sums Y; ; can be computed.

As for the output wires, we distinguish two cases. If some partial sum has already
been observed, we remark that each output share Y; ;, involves the computation
of n — 1 random bits A;1,...,A;,—1. The situation can be better understood
from the following matrix, which shows the use of the random bits for each
output share.

Aip A2 ... Ao (2:;;11A1,kLz‘)L;1H
Az Aso ... Agn—1 (ZZ;%AU@Li)LZIH

Yln

’

Y2 n

s

An,l An,2 An,nfl (22;11 Al,kLi)L:Ll Hiyn,n

Now, since the adversary can have just other n — 2 observations, there exists
at least one non-observed random bit and we can simulate Y;, as a uniform
and independent random value. Moreover, if all the partial sums have been
observed, we can use the values previously simulated and add them according to
the algorithm. Otherwise, if no partial sum has been probed, since the random

values involved in the computation of i »,,...,Y;—1n,Yit1in,..., Yn n are picked
at random independently from that one of Y; ,,, we can again simulate Y; ,, as a
uniform and independent random value, completing the proof. a

Now, considering that the multiplication gadget IPMult(Ll) and the refreshing

SecIPRefreshy, are both t-SNI and since the exponentiations .2,.% and .16 are
linear functions in GF(2%), we can claim that the entire algorithm for the com-

putation of .2%4 is +~SNI, according to the arguments in [5].

4.1 A more efficient scheme

We underline that for achieving (n — 1)*"-order security the masked inputs A
and B of IPMultS:l) must be mutually independent. If this is not the case, a
refreshing of one of the factors is needed before processing the multiplication.

In this section we present an extended multiplication scheme IPMultf), il-
lustrated in Algorithm 7, which can securely receive in input two values of the
form A and g(A), where g is a linear function. Thanks to this property, in case
of mutual dependence of the inputs the refreshing is no longer needed and we
can save on the number of random bits. The main idea of the new algorithm is
to introduce a vector u sampled at random at the beginning of the execution
and used to internally refresh the shares of the secrets.

The correctness of IPMult(LQ) is again quite simple and we leave it to the
reader.

Lemma 4. For any L,A € K" and C = IPMult(LQ)(A7g(A)), we have
(L,C) = (L, A) - (L, g(A)).

Lemma 5 provides the security analysis of IPMult(LQ).

Lemma 5. Let g be a linear function over K. The algorithm IPMult(LQ)(A,g(A))
18 t=SNI, with t = n — 1.

Algorithm 7 Multiply dependent masked values: C < IPMult(LQ)(A,g(A))

Input: vector A of length n
Output: vector C satisfying (L,C) = (L,A) - (L,g(A)), for g linear func-
tion

> Sampling at random of the vector u
for i =1 ton do

u; +— rand(K);
end for
> Computation of the matrix A’
for i =1 ton do

for j =1tondo

Aij = Ai + 0 jug;

end for
end for
> Computation of the vector B’
for i =1 ton do

Bi = g(Ai) - ui - Li;
end for
> Computation of the matrix T
for i =1 ton do

for j =1tondo

Tij = Aij - 9(A;) - Ly

end for
end for
> Computation of the matrices U and U’
for i =1 ton do

for j =1tondo

if ¢ < j then
U; ; < rand(K);
end if
if ¢ > j then
Ui/,j = _Ujl'i;
end if
Ui =Ui;-0iiL7Y
end for
end for

> Computation of the matrix V'
for i =1 ton do

for j =1tondo

Vi = (Ti; + Ui) — 6i,5Bj;

end for
end for
> Computation of the output vector C
for i =1 ton do

Ci = Zj Vi
end for

Proof. Let 2 = (Z,O) be a set of t observations respectively on the internal and
on the output wires, where |Z| = ¢; and in particular ¢; + |O| < t. We point out
the existence of a perfect simulator of the adversary’s probes, which makes use
of at most ¢; shares of the secret A.

Let wq,...,w; be the probed wires. We classify the internal wires in the
following groups:

ij
Ai i 9(A45). Ty Tig + Uiy, Vi

)

)

) A;JW
)

We now define the set of indices I with |I| < ¢; such that the wires wy, can
be perfectly simulated given only the knowledge of (A;);cr. The procedure for
constructing the set is the following:

— Initially I is empty.
— For every wire as in the groups (1), (2) and (4), add i to 1.
— For every wire as in the group (3),if ¢ ¢ I add i to I and if i € I add j to I.

Since the adversary is allowed to make at most ¢; internal probes, we have
that |I] < #;.

In the simulation phase, at first we assign a random value to every u; entering
in the computation of any observed wy. Then the simulation for any internal
wires wy, proceeds as follows.

1. For each observation in category (1), then ¢ € I and by definition we can
directly compute from A;, u; and the public value L;.

2. For each observation in category (2), then i € I and we distinguish two
possible cases:

— If j ¢ I, then we can assign a random and independent value to Ui’,j.
Indeed if i < j this is what would happen in the real execution of the
algorithm and if i > j, since j ¢ I, U] ; will never be used in the com-
putation of other observed values. We compute U; ; using U] ; and the
public value L;.

— If j € I, the values U;; and U}, can be computed as in the actual
circuit: we assign one of them (say Uj ;) to a random and independent
value and the other U; ; to —U] ;. We compute U; ; using U] ; and the
public value L;.

3. For each observation in category (3), then ¢ € I and we distinguish two
possible cases:

— If j ¢ I, then we can assign a random and independent value to wy,. In-
deed, since j ¢ I, one of the values composing wy, has not been observed
(otherwise by construction j would be in I) and for the same reason also
any of the wy does not enter in the expression of any other observed
wire.

— If j € I, the value wy, can be perfectly simulated by using the accessible
values A;, g(A;), i, uj, Li, L;j and the values U; ;, U] ; assigned in Step 2.

4. For each observation as in the group (4), by definition ¢ € I. At first we assign
a random value to every summand Vi, with & < j and k ¢ I, entering in
the computation of any observed C; ;. Then if one of the addends Vj;, with
k < j composing C; ; has been probed, since by definition k£ € I, we can
simulate it as in Step 3. Otherwise V;; has been previously assigned at the
beginning of the current Step 4.

As for the probed output wires, we distinguish the following cases.

1. If the attacker has already observed some intermediate values of C;, using a
similar argument to the one in the proof of Lemma 2, we point out that C;
can be simulated as a random value.

2. If all the partial sums have been observed, we can use the values previously
simulated and add them according to the algorithm. Finally, when no partial
sum C; ; has been observed, again as before, by definition at least one of the
Ui” ; involved in the computation of C; is not used in any other observed wire
and then we can assign to C; a random value.

O

We can now exploit this new scheme in the .2°* algorithm, by eliminating
the first two refreshing and substituting the first two multiplications with our
1PMult'? (-, 2) and TPMult?(-,-4), while using in the rest the IPMult'’. In
particular, according to the squaring routine in Algorithm 4, we point out that
in IPMult(I?)(-, 2) the shares g(A;) correspond to the products A? - L; and in
IPMult(I?) (-, %) the shares g(A;) correspond to the products A} - L;- L; - L;. The
implementation of the gadget .2°* is depicted in Figure 1 and in Lemma 6 we
prove that it is t+~SNI, using the techniques presented in [5].

Gﬁ Gil GZ
5 2 3, S3
S remus?)(., -4)
Gl
P Sl
TPl (-, 2) 1Pl (V2
GJ
et —2
1
S

Fig. 1. Gadget .?** which makes use of IPMult(Ll) and IPMult(LQ)

t 254

Lemma 6. Gadge , shown in Figure 1, is t—SNI.

Proof. Let 2 = (Uz:1 Tt 0) a set of t observations respectively on the internal
and output wires. In particular Z* are the observations on the gadget G* and

23:1 |Z| 4 |O| < t. In the following we construct a simulator which makes use
of at most 2:21 |Z%| shares of the secret, by simulating each gadget in turn.

Gadget G' Since IPMult(Ll) is +-SNI and |Z' U O| < ¢, then there exist
two sets of indices S, S3 such that |Si| < |Z1, |S3] < |7 and the gadget can
be perfectly simulated from its input shares corresponding to the indices in S
and S3.

Gadget G? Since IPMult(Ll) is t-SNI and |Z? U 82| < |Z1] + |Z?| < ¢, then
there exist two sets of indices S7,S7 such that |S?| < |Z2|, |S3| < |Z?| and the
gadget can be perfectly simulated from its input shares corresponding to the
indices in 87 and S3.

Gadget G® Since .10 is affine, there exists a set of indices S? such that
|S3| < |Z3| + |S3| and the gadget can be perfectly simulated from its input
shares corresponding to the indices in S3.

Gadget G* Since .* is affine, there exists a set of indices S* such that
|S*| < |Z*| + |S?| and the gadget can be perfectly simulated from its input
shares corresponding to the indices in S*.

Gadget G° Since IPMult(LZ) is t-SNI and |Z° US3| < |Z°] + |Z3| + |Z?| < ¢,
then there exists a set of indices S® such that |S®| < |Z°| and the gadget can be
perfectly simulated from its input shares corresponding to the indices in S°.

Gadget G° Since IPMult(LQ) is t-SNI and |Z® U 8%| < |Z%] + |Z°| < t, then
there exists a set of indices S® such that |S%| < |Z®| and the gadget can be
perfectly simulated from its input shares corresponding to the indices in S°.

Gadget G Since .2 is affine, there exists a set of indices S7 such that
|ST| < |Z7] + |8t < |Z7] + |Z%| and the gadget can be perfectly simulated from
its input shares corresponding to the indices in S7.

Each of the previous steps guarantee the existence of a simulator for the
respective gadgets. The composition of them allows us to construct a simulator
of the entire circuit which uses S® U 87 shares of the input. Since |S6 U S7| <
|Z7| + |Z'| + |28 < S°7_, |Z¢| we can conclude that the gadget .2%* is ¢-SNI.

O

The advantage of the use of IPMult(LQ) mostly consists in amortizing the ran-

domness complexity. Indeed the new scheme requires only n (for the vector
u) plus @ (for the matrix U) random bits, while the previous one uses a
larger amount of randomness, corresponding to n? (for the SecIPRefreshy,) plus
@ (for the IPMult(Ll)) bits. We summarize in Table 1 the complexities of the
two schemes. The issue of providing a secure multiplication of two dependent
operands was first addressed by Coron et al. in [17]. In their work the authors
proposed a new algorithm which requires n(n—1) random bits and that has later
been proved to be t~SNI in [5]. By analyzing the amount of random generations
and comparing with IPMultg), we can see that our scheme is more efficient
whenever n > 3, while it requires the same amount of randomness for n = 3
and more random bits for n < 3. On the other hand, from a complexity point
of view the scheme in [17] is better optimized in terms of field multiplications
since it makes use of look-up tables.

#additions # multiplications #random bits

IPMult|” 2n? 3n? rln-l)
IPMultl 4n? 3n® + 2n zlntl)

SecIPRefreshr, m? —n 2n n’

[€D)
[PMult, an? —n 3n? 4+ 2n 77“3271)
and SecIPRefreshry,
Algorithm 5 in [17] dn(n —1) — n(n —1)
T

. . B 7(n—=1)(Tn+3) (n odd) B

Algorithm 3 in [8] 4dn(n — 1) Ln(7n — 6) (n even) n(n —1)

Table 1. Complexity of IPMult(Ll) and IPMult(L2> and comparison with the multiplica-
tion algorithms of [17] and [8]

A more detailed performance analysis is provided in the next section.

5 Performance evaluations

In this section we analyze the performance of our improved IP masking construc-
tion. Following the lines in [2, 1], we opt to protect a software implementation
of AES-128 encryption for AVR architectures. We develop protected implemen-

tations using either our new multiplication algorithm IPMult(Ll) alone, or in

combination with IPMultf). In order to compare performances, we also develop
protected instances of AES-128 with Boolean masking. All our implementations
have a constant-flow of operations and share the same underlying blocks. In
particular, we use log-alog tables for field multiplication and look-up tables to
implement raisings to a power. The most challenging operation to protect is the
nonlinear SubBytes transformation, which is also the bottleneck of our imple-
mentations. Similar to earlier work, we take advantage of the algebraic structure
of the AES and compute SubBytes as the composition of a power function 2254
and an affine transformation. The remaining operations are straightforward to
protect and are thus omitted in what follows.

Implementation of the power function. Rivain and Prouff proposed in [43]
an algorithm to compute the inversion in F§ as 22°* using an addition chain
with only 4 multiplications. We select this algorithm for our implementations
protected with TP masking. Recall that to ensure ¢t—SNI it is necessary to exe-
cute the SecIPRefreshyp algorithm when using only IPMult(Ll), but this can be
omitted when using also IPMult(f) as depicted in Figure 1.

The same technique is used in our Boolean masking implementations, only in
this case we employ the mask refreshing algorithm proposed by Duc et al. [18].
Additionally, we provide a faster implementation using the addition chain pro-
posed by Grosso et al. [31], which leverages on the algorithm introduced by Coron
et al. [17] to securely evaluate functions of the form z - g(x), where g is a linear
function. This approach demands only 1 multiplication and 3 secure evaluations,

and thus achieves significant performance gains. Note that further optimizations
are possible by combining [31] with recent techniques, e.g. the common shares
approach proposed by Coron et al. [16] or the multiplication gadget put forward
by Belaid et al. [8]. We expect however the gains to be relatively small (see re-
sults in [16]), and therefore have a limited impact for the purposes of comparison.

Implementation of the affine transformation. Securing the affine transfor-
mation using Boolean masking can be done in a highly efficient way by applying
it to every input share separately, that is, by computing Az, + ...+ Az, + b.
Hence, each share x; of = is only involved in one matrix-vector multiplication,
which in practice can be tabulated. Unfortunately, such an approach is not di-
rectly applicable to IP masking, since the sharing of z consists of two vectors L
and R with each n elements in F§. The affine transformation can be computed
through a polynomial evaluation over F§, which is known to perform rather
poorly when compared to Boolean masking (see [2,1]).

In this work we note that since L is fixed it is possible to change the represen-
tation of A depending on the values L;. More precisely, we define n matrices A;
and compute the affine transformation as Ayz; + ...+ A,x, + b. The matrices
A; need only to be pre-computed once, at initialization time. Given L; € F§ we
first construct an 8 x 8 matrix M; over Z,. Notice that L; is represented by a
polynomial ag+ay-z+...4+a7 27, where {1,,..., 27} form the basis of F§ . The
j-th column of M; corresponds to the coefficients of the polynomial L; x 27!,
Given the matrix M; as described above, we can then compute A; = A x M;
by simple matrix multiplication, and take advantage of tabulation in the imple-
mentation. In contrast to Boolean masking, the memory requirements of this
tabulation increase linearly with the number of shares. However, the overheads
remain reasonable for practical values of n.

Implementation results. We have developed assembly implementations for
n = 2, 3 shares tailored to the target AVR architecture and optimized for speed.
Results are summarized in Table 5. The implementation protected by IP masking
using only IPMult(Ll) requires roughly 157 k cycles and 372 k cycles for security
levels n = 2 and n = 3, respectively. This represents a significant improvement
over earlier work [1] which demanded 375 k and 815 k cycles to protect instances
of AES-128 for the same security levels. The implementation protected by IP
masking using IPMult(L2) in conjunction with IPMult(Ll) performs slightly poorer
in terms of cycles but, as mentioned earlier, has the advantage of demanding less
randomness. The results for Boolean masking with the same number of secret
shares are 110 k and 230 k, respectively. The timing gap with respect to IP
masking stems exclusively from the computation of 2?4, as the rest of AES
operations execute in a similar number of cycles. The reason why IP masking
is slower is mainly due to the extra operations in the multiplication gadgets.
Note that since L is fixed, it is possible to tabulate the field multiplications
with elements L; and L; ! given that the number of shares n is small. We
have performed this optimization which allows to reduce the cycle count at the

cost of more non-volatile storage. Thanks to this, we are able to decrease the gap
between Boolean and IP masking implementations to slightly more than a factor
2. Our results also verify that the addition chain from [31] is currently the fastest
method to protect AES implementations with higher-order Boolean masking. We
leave as open work whether a similar algorithm as in [17] to efficiently evaluate
functions of the form « - g(x) can be devised for IP masking.

MASKING TIMINGS MEMORY
2> AES-128

IP masking n=2 | 709 157196 2816
(only TPMult'") n=3 | 1752 372225 3328
IP masking n=2 | 763 167996 2816
(1PMult(" and TPMu1t(?) [n=3 | 1766 375025 3328
Boolean masking n=2 | 459 110569 2048
(addition chain [43]) n=3 | 1043 230221 2048
Boolean masking n=2 | 275 73769 1792
(addition chain [31]) n=3 | 676 160357 1792

Table 2. Performance evaluation of protected AES-128 implementations on AVR archi-
tectures (optimized in assembly code). Timings in clock cycles, memory requirements
in bytes.

Lastly, we illustrate in Figure 2 the performance trend of our implementations
for larger values of n. Cycle counts correspond in this case to a single SBox
operation. Note that the results for n = 2,3 are significantly higher than those
provided in Table 5, the reason being that the implementations are now written
in C language (and are thus less optimized than their assembly counterparts).
Note also that the gap between Boolean and IP masking protected versions
increases almost to a factor 4. This is because we do not take advantage of
the tabulation of the field multiplications with elements L; and L; !, since the
memory requirements would grow considerably for non-small values of n. In spite
of this, we observe that the performance gap between Boolean and IP masking
protected implementations remains constant as the number of shares increases.

6 Information theoretic evaluation

As a complement to the previous proofs and performance evaluations, we now
provide results regarding the information theoretic analysis of inner product
masking. As first motivated in [45], the mutual information between a secret
variable and its corresponding leakages can serve as a figure of merit for side-
channel security, since it is proportional to the success rate of a (worst-case)
Bayesian adversary exploiting these leakages (see [19] for a recent discussion).
Such a metric has been used already for the evaluation of Boolean masking [46],
affine masking [24], polynomial masking [41,29] and inner product masking [1,

x 10°
4 T T T
—6— Boolean masking: addition chain [43]

35 —— Boolean masking: additk%n chain [31]
IP masking: only IPMuItL

w
T

IP masking: IPMuItI(_l) and IPMuIt(Lz)

I
o1
T

Cycle count
=
Ll (] N
T T T

o
n

T 1 1 1 1
2 4 6 8 10 12 14
Number of shares

Fig. 2. Performance evaluation of protected AES Sbox implementations on AVR ar-
chitectures (in C code) for increasing number of shares.

2]. In this respect, and despite the encoding of our consolidated inner product
masking schemes has not changed compared to the latter two references, we aim
to improve their results in three important directions:

— FEzxtended noise range. In [1, 2], the mutual information of the inner product
encoding was evaluated for a Hamming weight leakage function and noise
variances up to 4. While this is sufficient to discuss the positive impact of
the increased algebraic complexity of inner product masking for low noise
levels, it is not sufficient to exhibit the security order (which corresponds
to the lowest key-dependent statistical moment of the leakage distribution
minus one [7], and is reflected by the slope of the information theoretic
curves for high noise levels). Therefore, we generalize the improved numerical
integration techniques from [19] to inner product encodings and compute the
mutual information metric for noise variances up to 1000 (which allows us
to exhibit and discuss security orders).

— Other (public) L values. In [1,2], the inner product encoding was evaluated
based on a single value of the public L. However, it was recently shown
in [47] that for linear leakage functions (such as the Hamming weight leakage
function), an appropriate choice of L may improve the security order of an
implementation. In other words, it was shown that security in the bounded
moment model (as recently formalized in [7]) can be higher than the probing
security order in this case. Therefore, we evaluate the mutual information for
different L vectors for our 8-bit targets (rather than 4-bit S-boxes in [47],
which is again made possible by our exploitation of improved numerical
integration techniques).

— Non-linear leakage functions. Since the previous security order amplification
is highly dependent on the fact that the leakage function is linear, we finally

complement our results by evaluating the information leakage of the inner
product encoding for non-linear leakage functions.

Building on our experimental observations, we also highlight other interesting
implementation properties of the inner product encoding (regarding the risk of
transition-based leakages [15, 3]) in Section 6.3. And we conclude the section by
discussing general (theoretical) limitations of both the security order amplifica-
tion and these implementation properties.

6.1 Linear (e.g., Hamming weight) leakages

We first analyze the information leakage of the inner product encoding of Algo-
rithm 2 for n = 2 shares and a Hamming weight leakage function. More precisely,
we consider a target intermediate secret variable A € GF(2%) that is encoded
as A = Ay + Ly - Ay such that A = [A, A2]. The adversary is given the leak-
age (next denoted with the variable O for observation, to avoid confusion with
the L values) corresponding to these two shares. That is, O = [0y, O3] with
01 = HW(A;) B Ny, Oy = HW(A3) B No, HW the Hamming weight function,
Ni, Ny two normally distributed (independent) noise random variables and H
the addition in the reals (in contrast with the group addition +). The mutual
information between A and the observation O is expressed as:

MI(A;0) = H[A]B) Prfa] x > Prlas] x Y _ flola] x log, Pr[alo], (1)

acA az€A oc0?

where f[o|a] is the conditional Probability Density Function (PDF) of the obser-
vation o given the secret a, which is computed as a sum of normal PDF's (denoted
as N) evaluated for all the (unknown) random shares: flola] = 3, _ 4 N[o|a, as]-
Pr[az]. The conditional probability Pr[a|o] is obtained via Bayes’ law: Pr[a|o] =
flola
Ea*e[,A‘f[]ola*]

The result of our information theoretic analysis for Hamming weight leak-
ages, for vectors Ly = 17,5, 7 and noise variances between 10~2 and 10 is given
in Figure 3, where we additionally report the leakage of an unprotected A (i.e.,
for which the adversary can observe O = HW(A) B N) and of a Boolan encod-
ing (which is a special case of inner product encoding such that Ly = Ly = 1)
for illustration. For low noise levels, we reach the same conclusions as previous
works [1,2]. Namely, the increased algebraic complexity of inner product mask-
ing allows significantly lower leakages than Boolean masking. Intuitively, this is
simply explained by the fact that knowing one bit of each share directly leads
to one bit of secret in Boolean masking, while it only leads to a (smaller) bias
on the secret variable distribution in inner product masking.

For large noise levels, and as expected, we now clearly observe the security
order (in the bounded moment model) of the masking schemes based on the slope
of the information theoretic curves, which moves from —1 for an unprotected
implementation to —2 for Boolean masking (the latter therefore corresponds to
a security order 1 in the bounded moment model). Interestingly, our results also

where the a* notation is used for the secret a candidates.

Hamming weight leakage function

= unprotected
=== Boolean masking
-5 —— |P masking, L=17

log, (mutual information)

—6 = = = IP masking, L,=5

“““ IP masking, L=7

Ql L L | ~ L LN)
-2 -1 0 1 2 3
log, .(noise variance)
Fig. 3. Information theoretic evaluation of an inner product encoding.

show that by tuning the public Ly value of the inner product encoding, we can
reach much better results. Namely, the slope of the information theoretic curves
can be reduced to —3 (which corresponds to a security order 2 in the bounded
moment model) and even —4 (which corresponds to a security order 3 in the
bounded moment model), despite the first-order security of this encoding in the
probing model (proved in Section 3.1) has not changed.

The reason for this phenomenon has been given in a recent CARDIS 2016
paper [47] and is simply summarized by observing that the multiplication in
GF(2®) that is performed by the inner product encoding can be represented as
a multiplication with an 8 x 8 matrix in GF(2). Roughly, depending on the num-
ber of linearly independent lines in this matrix, and assuming that the leakage
function will only mix the bits of the encoding linearly (which is the case for
the Hamming weight leakage function), the multiplication will XOR more shares
together, implying a higher security order in the bounded moment model. And
this “security order amplification” is limited to a slope of —4 (which corresponds
to the attack exploiting the multiplication of the squares of all the shares).

6.2 Non-linear (e.g., random) leakages

In view of the previous positive observations obtained for the inner product
encoding in the context of linear (e.g., Hamming weight) leakages, a natural
next step is to investigate the consequences of a deviation from this assumption.
For this purpose, we study an alternative scenario where the Hamming weight
leakages are replaced by a random leakage function G with similar output range
{0,1,...,8}, such that the adversary now observes O; = G(A4;) B N; and O, =
G(Az) B N,. Note that the choice of an output range similar to the Hamming
weight function allows the two types of leakages to provide signals of similar
amplitude to the adversary (which makes them directly comparable).

The result of our information theoretic analysis for random leakages, vectors
Ly = 17,5,7 and noise variances between 1072 and 103 is given in Figure 3,
where we again report the leakage of an unprotected A and a Boolean encod-
ing. Our observations are twofold. First, for large noise levels the security order

random leakage function, |L|=9

= -1
ie]
g -2
S
£ -3
®
2 -4 |= unprotected
>
£ === Boolean masking
S ~5 | —— IP masking, L =17
=] 2
— -6~ | === IP masking, L2=5
7k [IP masking, L=7
8 L L L L I}
-2 -1 0 1 2 3

Ioglo(noise variance)
Fig. 4. Information theoretic evaluation of an inner product encoding.

amplification vanishes and all the information theoretic curves corresponding to
d = 2 shares have slope —2, as predicted by the proofs in the probing model. This
is expected in view of the explanation based on the 8 x 8 matrix in GF(2) given in
the previous section and actually corresponds to conclusions made in [32] for low
entropy masking schemes. That is, because of the non-linear leakage function,
the GF(2) shares that are mixed thanks to the inner product encoding are ac-
tually recombined which reduces the security order. So as in this previous work,
the reduction of the security order actually depends on the degree of the leakage
function. But in contrast with low entropy masking schemes, the security cannot
collapse below what is guaranteed by the security order in the probing model.

Second and more surprisingly, we see that a non-linear leakage function also
has a negative impact for the interest of the inner product encoding in the low
noise region. This is explained by the fact that by making the leakage function
non-linear, we compensate the low algebraic complexity of the Boolean encoding
(so the distance between Boolean and inner product encodings vanishes).

From these experiments, we conclude that the security order amplification
of inner product masking is highly implementation-dependent. We will further
discuss the impact of this observation and the general limitations of the secu-
rity order amplification in Sections 6.4 and 7, but start by exhibiting another
interesting property of the inner product encoding.

6.3 Transition-based leakages

In general, any masking scheme provides security guarantees under the condi-
tion that the leakages of each share are sufficiently noisy and independent. Yet,
ensuring the independence condition usually turns out to be very challenging
both in hardware and software implementations. In particular in the latter case,
so-called transition-based leakages can be devastating. For illustration, let us
consider a Boolean encoding such that A = A; + As. In case of transition-based
leakages, the adversary will not only receive noisy versions of A; and A5 but also
of their distance. For example, in the quite standard case of Hamming distance
leakages, the adversary will receive HW([A4;] + [A2]) B N = HW(A) B N, which
annihilates the impact of the the secret sharing. Such transition-based leakages
frequently happen in microcontrollers when the same register is used to consec-
utively store two shares of the same sensitive variable (which typically causes a
reduction of the security order by a factor 2 [3]).

Interestingly, we can easily show that inner product masking provides im-
proved tolerance against transition-based leakages. Taking again the example of
an encoding A = Ay + Ly - Ay, the Hamming distance between the two shares
A1 and A2 (Where A1 =A + L2 . AQ) equals HW([A + LQ . Ag] + [AQD Since
for uniformly distributed Ay and any Lo # 1, we have that As + Ay - Lo is
also uniformly distributed, this distance does not leak any information on A. Of
course, and as in the previous section, this nice property only holds for certain
combinations of shares (such as the group operation + in our example).

6.4 Limitations: a negative result

The previous sections showed that the inner product encodings offer interesting
features for security order amplification and security against transition-based
leakages in case the physical leakages are “kind” (e.g., linear functions, transi-
tions based on a group operation). Independent of whether this condition holds
in practice, which we discuss in the next section, one may first wonder whether
these properties are maintained beyond the inner product encoding. Unfortu-
nately, we answer to this question negatively. More precisely, we show that when-
ever non-linear operations are performed (such as multiplications), the security
order of the inner product encoding gets back to the one of Boolean masking
(and therefore is also divided by two in case transitions are observed).

Concretely, and assuming we want to multiply two shared secrets A =
Ay + Ly - Ay and B = By + Lo - B3, a minimum requirement is to compute
the cross products A; - B;. So for example, an adversary can observe the pair
of leakages (Aj, Ay - By) which depends on A. Defining a function Fp,(As) =
As - By, and assuming a (linear) Hamming weight leakage function HW, we
see that the adversary obtains two leakage samples O; = HW(A;) B N7 and
Os = HW(Fp,(A3)) B Na. In other words, it is in fact the composition of the
functions Fp, and HW that is subject to noise, the latter being non-linear and
informative (because of the standard “zero issue” in multiplicative masking [27]).

So whenever the implementation has to perform secure multiplications with inner
product masking, we are in fact in a situation similar to the non-linear leakages
of Section 6.2. A similar observation holds for the result of Section 6.3 regarding
transition-based leakages. Taking exactly the previous example, observing the
Hamming distance between A; and Fp,(As) directly halves the security order,
just as for the Boolean encodings in [3].

One natural scope for further research is to look for new solutions in order
to maintain the security order guarantees even for non-linear operations (e.g.,
thanks to a different sequence of operations or additional refreshings). Never-
theless, even with the current algorithm and non perfectly linear leakages, inner
product masking should reduce the number and informativeness of the key-
dependent tuples of leakage samples in a protected implementation, which is not
captured by the notion of (probing or bounded moment) security order. So over-
all, the improved theoretical understanding allowed by our investigations calls
for a the concrete evaluation of an inner product masked AES. The next section
makes a step in this direction, and discusses how these potential advantages
translate into practice for a 32-bit ARM microcontroller.

7 Empirical Side-Channel Leakage Evaluation

In order to further complement the analysis we provide concrete results of empir-
ical side-channel leakage evaluations for both Boolean masking with two shares
and TP masking with n = 2 (L; = 1, Ly = 7). Security proofs are valid only
for the assumed and possibly idealized (e.g. simplified) leakage model, but real
device leakage behaviour can be complex and hard to model. For instance, tran-
sition leakages are known to be difficult to deal with when moving from theory
to practice. Similarly, the information theoretic analysis based on simulations is
of course valid only for the simulated leakage behavior, and its results strongly
vary for different leakage behaviours as we have shown, and it is limited to the
encoding function.

We therefore assess and compare the leakage behavior of our implementations
in practice with real measurements of our code running on a physical platform
to round off our analysis. This evaluation allows us to reason about the leakage
under typical conditions and without making modeling assumptions. Note also
that this practical evaluation covers both the encoding as well as computation
in the masked domain.

We use generic code that follows the guidelines of the masking algorithms pro-
vided in this paper but leave freedom to the compiler to perform register /memory
allocations, optimizations, etc. The implementations are hence neither hand-
optimized for the target platform nor adapted to its specific leakage behavior.
The security of the implementations therefore depends in part on the compiler
tool-chain.

Our target platform is an STM32 Nucleo board equipped with an ARM
Cortex-M4 processor core. The processor runs at 168 MHz and features a built-
in RNG capable of generating 32-bit random numbers every 40 clock cycles.

The presence of the RNG is the main motivation for using this platform rather
than an AVR. We have ported our generic (coded in C language) protected im-
plementations of AES-128 using the addition chain from [43] to this platform
using arm-none-eabi-gee (v4.8.4) and verified that they run in constant time
independent of the input values. Power measurements are obtained in a contact-
less fashion by placing a Langer RF-B 3-2 h-field (magnetic field) probe over a
decoupling capacitor near the chip package, similar to [4]. The antenna output
signal is amplified with a Langer PA-303 30 dB amplifier before we sample it
with a Tektronix DPO 7254c¢ oscilloscope and transfer it to a computer for anal-
ysis. We use a trigger signal generated from within the Nucleo board prior to
each encryption routine to synchronize the power measurements.

Each power measurement comprises 500 000 samples that cover a time win-
dow of 4 ms. During this time the Boolean masked implementation executes
slightly more than eight rounds of AES while the IP masking protected imple-
mentation executes about 2.5 rounds of AES.The timing difference of roughly a
factor of four is in line with the data shown in Figure 2. The time period covered
by the measurements is a tradeoff between the amount of measurement data we
need to handle on the one hand (shorter measurements give less data) and the
complexity of the executed code on the other hand (we do not want to use a too
simple toy example; two rounds of AES give full diffusion).

We use state-of-the-art leakage assessment techniques [28, 13, 37] to evaluate
the leakage behavior of our masked implementations. Note that such an evalu-
ation is independent of any adversarial strategy and hence it is not a security
evaluation, i.e. it is not about testing resistance to certain attacks. Leakage as-
sessment is a convenient tool to assess leakage regardless whether it is exploitable
by a certain adversary.

In practice the most widely used methodology in the literature is Test Vector
Leakage Assessment, first introduced in [28], and in particular the non-specific
fixed versus random test. See for instance [44] for details. In brief, this particular
test checks if the distribution of the measured side-channel leakage depends on
the data processed by the device. If not, we can strongly ascertain that no
adversary will be able to exploit the measurements to recover secret data.

To perform the test we collect two sets of measurements. For the first set we
used a fixed input plaintext and we denote this set Sy;zeq. For the second set the
input plaintexts are drawn at random from uniform. We denote this set S;qndom -
Note that we obtain the measurements for both sets randomly interleaved (by
flipping a coin before each measurement) to avoid time-dependent external and
internal influences on the test result. The AES encryption key is fixed for all
measurements.

We then compute Welch’s (two-tailed) t-test:

M(Sfized) - ;U/(Sﬂlndﬂm)

)
a2 (Sf7’”’d) Uz(sv‘andom)
#Sfized #Srandom

t=

(2)

(where p is the sample mean, o2 is the sample variance and # denotes the
sample size) to determine if the samples in both sets were drawn from the same

population (or from populations with the same mean). The null hypothesis is that
the samples in both sets were drawn from populations with the same mean. In
our context, this means that the masking is effective. The alternative hypothesis
is that the samples in both sets were drawn from populations with different
means. In our context, this means that the masking is not effective. A threshold
for the t-score of +4.5 is typically applied in the literature (corresponding roughly
to a 99.999% confidence) to determine if the null hypothesis is rejected and the
implementation is considered to leak. However, our primary intention is a relative
comparison of the leakage of the different masked implementations.

7.1 RNG deactivated

We first evaluate both implementations with the RNG deactivated (all random
numbers are zero).

100
o
8 o
Q
-100
0 1000 2000 3000 4000
Time [ps]
50 -
o
g8 o
P
-50 : : - g
0 1000 2000 3000 4000
Time [us]

Fig. 5. t-test results for Boolean masking (top) and IP masking (bottom) with RNG
deactivated; each based on 10000 measurements. The red lines mark the 4.5 thresh-
old.

In this scenario we expect both implementations to leak and we can use it
to verify our measurement setup, analysis scripts, etc. We take 10000 measure-
ments from each implementation. Figure 5 shows plots of the t-scores for Boolean
masking (top) and IP masking (bottom) in gray. The red lines mark the +4.5
threshold.

As expected both implementations leak significantly. The repetitive patterns
in the plots of the t-scores allow to recognize the rounds of AES as areas with
high t-scores, interleaved by the key scheduling which does not leak in this test
because the key is fixed. However, already in this scenario with deactivated RNG
we can observe that the implementation protected with IP masking shows less
evidence of leakage (lower t-scores).

7.2 RNG activated

Next we repeat the evaluation with activated RNG.

500 -
9
8 o
l{)
-500 . . : g
0 1000 2000 3000 4000
Time [us]
10 -
5
o
8 o0
Q
-5
-10 . . : g
0 1000 2000 3000 4000
Time [us]

Fig. 6. t-test results for Boolean masking (top) and IP masking (bottom) with RNG
activated; each based on 1 million measurements. The red lines mark the £4.5 thresh-
old.

In this scenario we expect both implementations to leak less and we take
more measurements (1 million from each implementation). Figure 6 shows the
results for Boolean masking (top) and IP masking (bottom).

In this scenario we can observe a striking difference between the test results.
The implementation protected with Boolean masking leaks. The t-scores are even
higher than in the scenario with deactivated RNG, but this is due to the much
larger number of measurements, which appears as sample size in the denominator
of Eq. 2. The IP masking protected implementation on the other hand shows
significantly less evidence of leakage than the implementation protected with

Boolean masking, and is not deemed to leak for this number of measurements
(a few t-scores slightly exceed the threshold but this is expected given that we
have 500000 t-scores and 99.999% confidence).

So based on these experiments and results, we can conclude that as expected
from our theoretical investigations, IP masking allows reducing both the number
of leaking samples in the implementation (which is assumably due to the better
resistance to transition-based leakages) and the informativeness of these leaking
samples (which is assumably due to the quite linear nature of our target leakage
function). We insist that we make no claims on the fact that our IP masking im-
plementation is first-order secure. We only conclude that it shows significantly
less evidence of leakage than our Boolean masking implementation. (Admit-
tedly, first-order information should theoretically appear with larger number of
measurements). So these results at least show that the more complex algebraic
structure of the inner product encoding brings an interesting alternative (trade-
off) to Boolean masking with slight performance overheads compensated by less
evidence of leakage in practice. We leave the careful investigation of the concrete
leakages of the IP masking with advanced statistical tools (e.g., higher-order and
multivariate attacks) as an interesting scope for further research.

8 Conclusions

Overall, the results in this paper complete the theoretical and practical under-
standing of inner product masking. First, we proposed new (simplified) mul-
tiplication algorithms that are conceptually close to the standard proposal of
Ishai et al. [33], and have good properties for composability. Second we showed
that these simplified algorithms allow better performance than reported in the
previous works on inner product masking of the AES [1,2]. Third, we extended
previous information theoretic evaluations in order to discuss the pros and cons
of inner product masking in idealized implementations, and confronted these
evaluations with first empirical experiments.

Acknowledgments. Benedikt Gierlichs is a Postdoctoral Fellow of the Fund for
Scientific Research - Flanders (FWO). Sebastian Faust and Clara Paglialonga
are partially funded by the Emmy Noether Program FA 1320/1-1 of the German
Research Foundation (DFG). Franois-Xavier Standaert is a senior research asso-
ciate of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has
been funded in parts by the European Commission through the CHIST-ERA
project SECODE and the ERC project 724725 (acronym SWORD) and by the
Research Council KU Leuven: C16/15/058 and Cathedral ERC Advanced Grant
695305.

References
1. Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. Inner product masking

revisited. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 486—510. Springer, 2015.

10.

11.

12.

13.

14.

15.

16.

. Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede. The-

ory and practice of a leakage resilient masking scheme. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 758—
775. Springer, 2012.

Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and Francois-
Xavier Standaert. On the cost of lazy engineering for masked software implemen-
tations. In Marc Joye and Amir Moradi, editors, CARDIS 201/, volume 8968 of
LNCS, pages 64-81. Springer, 2014.

Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede. DPA,
Bitslicing and Masking at 1 GHz. In CHES 2015, pages 599-619, 2015.

Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque, and Ben-
jamin Grégoire. Compositional verification of higher-order masking: Application
to a verifying masking compiler. JACR Cryptology ePrint Archive, 2015:506, 2015.
Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. In
EUROCRYPT 2015, pages 457-485, 2015.

Gilles Barthe, Francois Dupressoir, Sebastian Faust, Benjamin Grégoire, Francois-
Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of masking
schemes and the bounded moment leakage model. Cryptology ePrint Archive,
Report 2016/912, 2016. http://eprint.iacr.org/2016/912.

Sonia Belaid, Fabrice Benhamouda, Alain Passelegue, Emmanuel Prouff, Adrian
Thillard, and Damien Vergnaud. Randomness complexity of private circuits for
multiplication. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT
2016, volume 9666 of LNCS, pages 616—-648. Springer, 2016.

Claude Carlet, Jean-Luc Danger, Sylvain Guilley, and Houssem Maghrebi. Leak-
age squeezing of order two. In Steven D. Galbraith and Mridul Nandi, editors,
INDOCRYPT 2012, volume 7668 of LNCS, pages 120-139. Springer, 2012.
Claude Carlet, Jean-Luc Danger, Sylvain Guilley, and Houssem Maghrebi. Leak-
age squeezing: Optimal implementation and security evaluation. J. Mathematical
Cryptology, 8(3):249-295, 2014.

Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Algebraic
decomposition for probing security. In CRYPTO 2015, pages 742—763, 2015.
Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In CRYPTO0’99, pages
398-412, 1999.

Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary Ken-
worthy, and Pankaj Rohatgi. Test Vector Leakage Assessment (TVLA)
methodology in practice. International Cryptographic Module Confer-
ence, 2013. http://icmc-2013.org/wp/wp-content/uploads/2013/09/
goodwillkenworthtestvector.pdf.

Jean-Sébastien Coron. Higher order masking of look-up tables. In EUROCRYPT
2014, pages 441-458, 2014.

Jean-Sébastien Coron, Christophe Giraud, Emmanuel Prouff, Soline Renner,
Matthieu Rivain, and Praveen Kumar Vadnala. Conversion of security proofs
from one leakage model to another: A new issue. In Werner Schindler and Sorin A.
Huss, editors, COSADE 2012, volume 7275 of LNCS, pages 69-81. Springer, 2012.
Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff, and Rina Zeitoun.
Faster evaluation of sboxes via common shares. In CHES 2016, pages 498-514,
2016.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In Shiho Moriai, editor,
FSE 2013, volume 8424 of LNCS, pages 410-424. Springer, 2013.

Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage mod-
els: From probing attacks to noisy leakage. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 423—440. Springer,
2014.

Alexandre Duc, Sebastian Faust, and Francois-Xavier Standaert. Making masking
security proofs concrete - or how to evaluate the security of any leaking device.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Proceedings,
Part I, volume 9056 of LNCS, pages 401-429. Springer, 2015.

Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without com-
putational assumptions. In TCC 2012, pages 230-247, 2012.

Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without com-
putational assumptions. In Theory of Cryptography Conference, pages 230-247.
Springer, 2012.

Stefan Dziembowski, Sebastian Faust, and Maciej Skorski. Noisy leakage revisited.
In EUROCRYPT 2015, pages 159-188, 2015.

Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud Salma-
sizadeh, and Mohammad T. Manzuri Shalmani. On the power of power analysis in
the real world: A complete break of the keeloqcode hopping scheme. In CRYPTO
2008, pages 203—220, 2008.

Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain.
Affine masking against higher-order side channel analysis. In Alex Biryukov, Guang
Gong, and Douglas R. Stinson, editors, SAC 2010, volume 6544 of LNCS, pages
262-280. Springer, 2010.

Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off my lap-
top: physical side-channel key-extraction attacks on pcs - extended version. J.
Cryptographic Engineering, 5(2):95-112, 2015.

Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of
leakage. In FOCS 2012, pages 31-40, 2012.

Jovan Dj. Golic and Christophe Tymen. Multiplicative masking and power analysis
of AES. In Burton S. Kaliski Jr., Cetin Kaya Kog, and Christof Paar, editors, CHES
2002, volume 2523 of LNCS, pages 198-212. Springer, 2002.

Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A
testing methodology for side channel resistance validation. NIST non-
invasive attack testing workshop, 2011. http://csrc.nist.gov/news_events/
non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf.

Louis Goubin and Ange Martinelli. Protecting AES with shamir’s secret sharing
scheme. In Preneel and Takagi [39], pages 79-94.

Louis Goubin and Jacques Patarin. DES and differential power analysis (the ”du-
plication” method). In CHES’99, pages 158-172, 1999.

Vincent Grosso, Emmanuel Prouff, and Francois-Xavier Standaert. Efficient
masked s-boxes processing - A step forward -. In David Pointcheval and Damien
Vergnaud, editors, AFRICACRYPT 2014, volume 8469 of LNCS, pages 251-266.
Springer, 2014.

Vincent Grosso, Frangois-Xavier Standaert, and Emmanuel Prouff. Low entropy
masking schemes, revisited. In Aurélien Francillon and Pankaj Rohatgi, editors,
CARDIS 2013, volume 8419 of LNCS, pages 33-43. Springer, 2013.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 463—-481. Springer, 2003.

Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In CRYPTO’96, pages 104113, 1996.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
CRYPTO’99, pages 388-397, 1999.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards (Advances in Information Security). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007.

Luke Mather, Elisabeth Oswald, Joe Bandenburg, and Marcin Wéjcik. Does My
Device Leak Information? An a priori Statistical Power Analysis of Leakage Detec-
tion Tests. In Kazue Sako and Palash Sarkar, editors, ASTACRYPT 2013, volume
8269 of LNCS, pages 486-505. Springer, 2013.

Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implemen-
tations against side-channel attacks and glitches. In ICICS 2006, pages 529-545,
2006.

Bart Preneel and Tsuyoshi Takagi, editors. CHES 2011, volume 6917 of LNCS.
Springer, 2011.

Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks: A
formal security proof. In EUROCRYPT 2013, pages 142-159, 2013.

Emmanuel Prouff and Thomas Roche. Higher-order glitches free implementation
of the AES using secure multi-party computation protocols. In Preneel and Takagi
[39], pages 63-78.

Oscar Reparaz, Begiil Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Consolidating masking schemes. In CRYPTO 2015, pages 764-783,
2015.

Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Stefan Mangard and Francois-Xavier Standaert, editors, CHES 2010,
volume 6225 of LNCS, pages 413-427. Springer, 2010.

Tobias Schneider and Amir Moradi. Leakage assessment methodology - A clear
roadmap for side-channel evaluations. In Tim Giineysu and Helena Handschuh,
editors, CHES 2015, volume 9293 of LNCS, pages 495-513. Springer, 2015.
Frangois-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for
the analysis of side-channel key recovery attacks. In Antoine Joux, editor, FURO-
CRYPT 2009, volume 5479 of LNCS, pages 443-461. Springer, 2009.
Frangois-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt
Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The world is
not enough: Another look on second-order DPA. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 112-129. Springer, 2010.

Weijia Wang, Frangois-Xavier Standaert, Yu Yu, Sihang Pu, Liu Junrong, Zheng
Guo, and Dawu Gu. Inner product masking for bitslice ciphers and security order
amplification for linear leakages. CARDIS 2016.

