
µchain: How to Forget without Hard Forks
Ivan Puddu
ETH Zurich

ivan.puddu@inf.ethz.ch

Alexandra Dmitrienko
ETH Zurich

alexandra.dmitrienko@inf.ethz.ch

Srdjan Capkun
ETH Zurich

srdjan.capkun@inf.ethz.ch

Abstract—In this paper, we explore an idea of making
(proof-of-work) blockchains mutable. We propose and imple-
ment µchain, a mutable blockchain, that enables modifications
of blockchain history. Blockchains are, by common definition,
distributed and immutable data structures that store a history of
events, such as transactions in a digital currency system. While
the very idea of mutable event history may seem controversial at
a first glance, we show that µchain does not undermine security
guarantees provided by immutable blockchains. In particular,
all mutations in our system are controlled by fiat, enforced
by consensus and are verifiable in the same way as regular
transactions. At the same time, µchain provides a solution
to a number of challenging problems, such as the patching
of vulnerable smart contracts and removal of abusive content
from blockchain history. It also gives rise to new blockchain
applications that were not possible with immutable blockchains.
For instance, governments and companies could now maintain
registers of citizens and customers, while preserving their legis-
lated rights to be forgotten. Banks could consider consolidation
of cryptocurrency with traditional payments, which is hard to
achieve without the ability to revert transactions. To further
illustrate the power of µchain on more concrete examples, we
present two new applications, the collaborative recommendation
system with the ability to censor inappropriate content, and
a time-lock encryption mechanism that provides a method to
decrypt messages after a certain deadline has passed.

I. INTRODUCTION

Blockchain is an emerging technology underpinning digital
currencies like bitcoin. The success of Bitcoin1 [1] has created
interest in other applications that could benefit from decentral-
ization and elimination of trusted third parties (TTPs). As a re-
sult, new innovative applications using blockchain technology
emerged, such as decentralized time-stamping services [2], [3],
distributed file storage [4], identity management solutions [5],
[6], and smart financial contracts [7], [8], to name just a few.
A number of open source projects associated with blockchain
appeared [9], [10], [11], [7], [12], [13], [14], and a billion
dollars in venture capital has led to more than 140 blockchain-
related startups [15].

Blockchains are append-only distributed and replicated
databases, which maintain an ever-growing list of immutable
and tamper-resistant data records (e.g., financial transac-
tions and account balances). In contrast to regular databases,
blockchains do not rely on centralized trusted third parties,
but rather leverage a network of participants (or validators)
who replicate the database and use a group consensus protocol
in order to synchronize the ledger. Blockchain validators
integrate data records into blocks and chain them together in an

1As usual, we use capitalized names to denote system and lower case to
refer to monetary currency.

append-only manner. The more blocks have been subsequently
appended to the data record in question, the harder it gets to
remove or modify the record, and not only for an attacker,
but also for the legitimate network. This is especially true
for blockchains powered by Proof-of-Work (PoW) consensus
algorithms [16], which require validators to invest substantial
amount of computational power when building a blockchain
in a process called mining.

Immutability and tamper-resistance of blockchains stem
from their append-only property and are paramount to security
of blockchain applications. In a context of digital currency
and payments, these properties ensure that all the parties have
access to a single history of payment transactions and that
such a history cannot be modified. In smart contract systems
that additionally store executable code on a blockchain, the
underlying blockchain can guarantee that conditions recorded
in a smart contract are not to be modified since have been writ-
ten and published. In other use cases, immutable blockchains
could serve as an official registry for official documents
such as diplomas, certificates and qualifications; business and
governmental registries could log information about customers
and citizens and physical and digital assets owned by them
(land titles, vehicles, intellectual property rights); while in-
dividuals could build trustworthy user profiles which would
include true facts from their biography such as birthday, date
of marriage and graduation, working experience, etc.

While immutability and tamper-resistance of blockchains
are essential to provide important security guarantees, the
very same properties can hinder future of the technology.
For instance, blockchains don’t operate in isolation and some-
times external events will aim to annul existing contracts and
transactions that exist on the chain. Furthermore, the data
stored on the chain might be such that its distribution is
illegal. For instance, Bitcoin blockchain is already hosting
child sexual abuse images [17] and other content, such as
wikileaks files and leaked cryptographic keys [18]. Moreover,
smart contracts may have vulnerabilities and flaws in the
same way as any other software programs [19], however
their immutability prohibits vulnerability patching. In practice,
this led to severe consequences for Ethereum network and
DAO [20] – the contract that was exploited in June 2016.
Attackers have stolen 3,641,694 Ether worth of about 79
million of US dollars [21]. Remarkably, it was neither possible
to stop the attacker from draining DAO accounts even after the
attack had been discovered, nor to protect remaining funds
by any other means, e.g., by transferring them to a safer
place. The problem was ”solved” by deploying a hard fork – a

1

manual intervention of blockchain operation orchestrated by a
notable minority, the team of Ethereum core developers. Such
a solution undermined essential trust assumptions, resulted in
splitting of Ethereum into two blockchains (ETH/ETC) and
brought the entire future of Ethereum into a question.

Even if used as a database, blockchains often need the
mutability property. In particular, governmental databases may
need to be mutable in order to remove records about citizens
being convicted of a crime in order to preserve their legislated
rights to be forgotten [22], or to change information regarding
witnesses involved into a witness protection program. In a use
case of trustworthy user profiles we mentioned above, users
may want to selectively show and hide information, e.g., to
display their graduation certificates when applying for a job,
while hiding them when creating an airbnb2 profile. While
such modifications can easily be introduced into centralized
systems by their (trusted) administrators, they are impossible
with blockchain-based counterparts. As a matter of fact, state-
of-the-art blockchains do not provide any mechanisms for
removal or modification of data records, which, we believe,
hinders further technology progress.

In our work, we aim to overcome limitations of immutable
blockchains and explore an idea of a blockchain that can
forget without hard forks. In particular, our contributions are
as follows.

Contributions We present µchain, the mutable blockchain,
which incorporates mechanisms for removal of records from
the blockchain and their modifications. An important property
of µchain is that it provides the same tamper resistance guaran-
tees as immutable blockchains, and specifically in blockchains
powered by PoW consensus. In µchain, all mutations are
controlled by fiat, enforced by consensus and are verifiable in
the same way as regular transactions. Hence, any unauthorized
modifications are as hard to apply to the history of records
as in immutable blockchains. We use the hack of the DAO
smart contract as our motivation example and show, how
its vulnerability could be patched without hard forks and
without any disruption of blockchain operation. We further
show how to deal with challenges associated with transaction
mutations, such as negative account balances which can occur
due to transaction reversions, as well as with the problem of
unexpected currency withdrawal. To illustrate the power of
µchain on concrete examples, we present two applications
for µchain, which leverage its mutability properties: (i) a
collaborative recommendation system with censorship, and
(ii) a time-lock encryption mechanism. We prototyped µchain
using Hyperledger open source project. The code is open
sourced and is available at

https://github.com/dn0sar/muchain-fabric

Outline The remainder of the paper is structured as follows.
We begin by providing background information on blockchain

2https://www.airbnb.com/

technology in Section II. Next, in Section III we present our
core contribution, the mutable blockchain. Further, in Sec-
tion IV we discuss associated challenges and propose solutions
to identified problems. Following, in Section V, we outline the
complexity and describe optimizations for specific configura-
tions of µchain. In Section VI, we introduce our applications,
the collaborative recommendation system with censorship and
the time-lock encryption. In Section VII, we describe in details
our prototype implementation. In Section VIII we overview the
related work, and then conclude the paper in Section IX.

II. BACKGROUND

In this section we present a generic blockchain architecture
and describe actors, operational modes and core blockchain
components. In the following sections we will rely on this
background information and show how µchain design affects
these generic building blocks.

A. Actors

We distinguish two different types of actors in the
blockchain ecosystem: Regular users3 and validators. Valida-
tors are also often referred as miners in blockchains powered
by Proof-of-Work consensus algorithms, however we will
always use term validators throughout the paper for consis-
tency reasons. Actors own accounts, which are represented
as public key pairs identifiable via hashes of corresponding
public keys, referred as account addresses. Accounts of regular
users are managed by individuals or business entities or can
even be managed by computer programs. Validators are system
administrators responsible for maintaining a blockchain, who
can sometimes also act as regular users, however, regular users
do not typically play the role of validators.

B. Blockchain

The blockchain is a data structure which serves as a
distributed ledger and records information in a network-wide
agreed sequence. Information may include data records of
different types, such as cryptocurrency transactions, smart
contracts and account balances. In the following, we discuss
different types of data records in more details.

1) Transactions: Transactions transfer assets between ac-
counts. While most often used to transfer digital currency,
transactions are not limited to financial transfers, but in a
general case may also represent the creation or transfer of
physical assets, shareholdings, certifications, digital rights,
intellectual property or even votes. Normally, transactions can
transfer assets between several accounts at once, i.e., one
transaction can involve several sender and destination account
addresses.

3One can further distinguish various types of regular user accounts, e.g.,
Ripple [12] differentiates users who make/receive payments and market
makers – entities providing trading services.

2

https://github.com/dn0sar/muchain-fabric
https://www.airbnb.com/

Regular
Users

Transactions

Smart Contracts

Actors Blockchain

Account Balances

Validators/
Miners

Consensus Protocol

Permissioned vs.
Permissionless

Re
gu

la
r O

pe
ra

tio
n

M
an

ag
em

en
t

Bl
oc

ks

Figure 1: Generic Blockchain Architecture. Dashed lines in-
dicate that the component is optional

2) Smart Contracts: Smart contracts are computer pro-
grams that have been previously created by regular users
(or other smart contracts) and stored in a blockchain. They
typically include code written in a some high-level language
(e.g., Solidity [23] for Ethereum and Go [24] for Hyper-
ledger) and data on which smart contracts operate. They can
themselves act as regular users: Own regular user accounts
holding cryptocurrency, send and receive transactions, or even
control other smart contracts. Smart contracts are executed by
validators – the distributed network of computing nodes – in a
replicated manner, which ensures that an agreement encoded
in a contract will be enforced when predetermined conditions
are met.

While smart contracts are supported by some blockchains
(e.g., Ethereum [7] and Hyperledger [10]), they may be absent
in others (e.g., Bitcoin [1]), which we show by dashed lines
in Figure 1.

3) Account Balances: Account balances indicate how much
cryptocurrency is held within the given account. This informa-
tion can be either included explicitly by integrating the balance
of every account into blockchain’s state (e.g., in Ethereum
and Hyperledger), or be present implicitly (e.g., in Bitcoin).
Implicit account balances are not explicitly recorded in the
blockchain, however their integrity can always be verified by
following the sequence of transactions from the very first block
in the blockchain, the genesis block. To reflect this, we indicate
account balances as optional in Figure 1.

Account
Root

Consensus	
Data

Timestamp

Transaction	
Root

Previous
Hash

Block	Header	i

Smart	
Contract	Root

Account
RootNonce

Timestamp

Transaction	
Root

Previous
Hash

Block	Header	i-1

Smart	
Contract	Root

Account
RootNonce

Timestamp

Transaction	
Root

Previous
Hash

Block	Header	i+1

Smart	
Contract	Root

Figure 2: Blockchain Structure

hash01

hash0 hash1

hash23

hash2 hash3

Transaction
Root

Figure 3: Transaction Merkle Tree

4) Blocks: Information in a blockchain is divided into
blocks, where each block is typically associated with a fixed
time window. Each block consists of data records (e.g., trans-
actions and account balances) and block headers. Blocks are
chained together by referencing previous blocks via inclusion
of the hash of the previous block header into the header of
the current block (cf. Figure 2). Additionally, block headers
include a timestamp which corresponds to the time window
of the current block, and integrity measurements of all data
structures included into the block. Integrity measurements are
typically constructed by using a Merkle tree [25] – a data
structure that organizes data records in a tree, such that all
the leaf nodes contain the hash of a different data record and
all the other nodes of the tree contain the hash of the two
nodes below them. The Merkle root can then be used to verify
integrity of the data records, as it changes if any of the data
records included into the tree change.

We depict an example of a transaction Merkle tree in
Figure 3. Similar roots are generated for data structures of
other types, such as account balances and smart contracts.
Alternatively, different data types can be mixed in a single
Merkle tree4. Another important value which is included into
the block is a consensus data, which is typically a nonce for
PoW consensus algorithms, or could be a signature when other
forms of consensus are used. We will explain the role of this
field in more detail in Section II-D.

C. Regular Operation vs. Management

Generally, actors can interact with a blockchain in two
modes: Regular operation and management. When compared
to databases, the regular mode is equivalent to read/write
operations performed by database users. In this mode, regular
users and smart contracts can send transactions, which is
equivalent to write operation, and query the blockchain, which
corresponds to read operation. In a management mode, which
can be seen as an equivalent of database administration, the
validators integrate transactions sent by regular users and smart
contracts into the blockchain.

4For instance, Ethereum blockchain integrates information about smart
contracts and account balances in a single tree which root is referred as state
root.

3

D. Consensus Protocol
Consensus protocol is a mechanism that governs blockchain

management. It is executed by validators and allows them to
achieve an agreement on a single history of a blockchain.
There are two major classes of consensus protocols in use:
Based on Proof-of-work (PoW) and Proof-of-stake (PoS).

a) Proof-of-work (PoW): Proof of work algorithms are
based on cryptographic puzzles which require significant
amount of work to find a solution. Once found, the solution can
easily be verified by other parties. While different PoW func-
tions can be used to build such a cryptographic puzzle [26],
the most common function used in blockchains is a partial
hash inversion which requires to brute-force a nonce which,
when hashed together with the block, would result in a value
lower than a given threshold (referred as a target value). The
target value is a security parameter which regulates difficulty
of solving the puzzle.

When applied in a context of blockchain, PoW makes the
process of appending a block to the blockchain extremely
difficult. For instance, at the current hashrate of the Bitcon
network of 1,592,411,223 GH/s, it takes on average 266 hashes
to find a valid nonce. Such a nonce is then written in the
consensus data field of the block header, so that anyone can
verify the solution to the PoW puzzle. The more follow-up
blocks are appended to the block, the harder it gets to modify
it, as it requires redoing the work for finding the current and
all the subsequent blocks.

While in a collaborative effort of finding valid blocks a
race condition may happen resulting in blockchain forks, these
forks are resolved over time, as all the validators work on a
longest chain and discard the others. Hence, it may be said that
all the validators vote with their computing power to recognize
the longest chain and consider its history of data records as
valid.

b) Proof-of-stake (PoS): While Proof-of-Work
algorithms require validators to provide a proof of
computational resources spent to ’mint’ a next block
of a blockchain, proof-of-stake asks validators to prove
ownership of a certain amount of currency (their ”stake” in
the currency). The more currency is owned by the validator,
the higher is the probability for him to be selected to mint
the next block. Some systems also extend the selection
algorithm with the concept of ”coin age”, meaning that
the longer period of time the stake have been held by the
stakeholder, the higher is the probability to be chosen. Each
PoS block must be signed by its creator. The signature of
the block represents consensus data stored in the block header.

There are also hybrid designs which combine both ap-
proaches, the proof of work and proof of stake, to get the best
of the two worlds. For instance, PPcoin [27] uses PoW to solve
a cryptographic puzzle over limited search space combined
with PoS-based checkpoint mechanism which is applied a
few times daily. Moreover, Bysantine Fault Tolerance (BFT)
protocols [28] were reconsidered in the context of blockchain
consensus, which promise better scalability.

E. Permissioned vs. Permissionless blockchains

An important aspect of blockchain systems is the na-
ture of participation. Here, one can distinguish permissioned
and permissionless blockchains. Permissionless systems have
open participation and allow anyone to become a validator
or send transactions without any restrictions. Examples are
Bitcoin and Ethereum blockchains. In contrast, permissioned
blockchains are operated by vetted players whose identity need
to be verified by an identity service, which binds information
about business entities to cryptographic keys. For instance,
BankCoin blockchain [29] is operated by banks and ensures
that only the banks and the official authorities have access to
it.

III. MUTABLE BLOCKCHAIN

In this section, we present our core contribution, the mutable
blockchain µchain. We first provide a high-level overview of
our solution, then present a motivating example followed by
detailed design description.

A. High-level Overview

Major properties of µchain are its ability to maintain
alternative versions of data records, use consensus to agree
upon a (currently) valid history, and its capability to hide
alternative history versions. The first property is achieved
through introduction of mutable transactions, which are rep-
resented as transaction sets containing possible transaction
versions. In a transaction set, only one of the transactions is
specified as active, while all the others are inactive alternatives.
Transaction sets can be extended at a later time to add new
transaction versions. Furthermore, every mutable transaction
set includes the so-called nope transaction, which is equivalent
to ”no operation” action that does not modify the state of
the blockchian. Once selected as active, a nope transaction
effectively removes a mutable transaction from the history.

Blockchain history can be extended and modified by is-
suing transactions of special type, meta-transactions, which
can introduce additional versions of data records and trigger
mutations. Meta-transactions are treated in the same way as
regular ones – they are issued by users or smart contracts,
verified by validators, and once accepted, they are recorded
in the history of the blockchain and can be verified by third
parties. All mutations in µchain are subject to access control
policies, which are specified by transaction senders and are
attached to mutable transactions. These policies can define
who and in which context is allowed to trigger mutations or
add additional versions of data records, and their conditions are
verified by validators when meta-transactions are processed.

Certain use cases which we aim to address may require
confidentiality of alternative data records. For instance, when
aiming to prevent distribution of child pornography and other
illegal content via the blockchain, it is necessary to prevent
access of users to the affected records. To hide alternative
history versions, µchain encrypts all the possible history
versions, and makes decryption keys available only for ac-
tive records. It supports two key management schemes that

4

achieve confidentiality towards regular users only or towards
both, regular users and validators. Once the active transaction
becomes inactive due to mutation, its decryption key is not
served anymore by validators. While local copies of keys
for inactive transactions might be stored locally by clients,
it is not a concern in the context of use cases which we
aim to address, e.g., as long as distribution of illegal content
through the blockchain is prevented. Other use cases, such
as patching vulnerabilities of smart contracts, may not at all
require confidentiality of alternative data records, and, hence,
can be instantiated without using encryption.

B. Motivating Example

We consider the vulnerability in the DAO contract, that
resulted in a loss of a few million dollars worth of cryptocur-
rency, as our motivating example.

The DAO takes its name from a distributed autonomous
organization. It was designed to receive investments from
the participants, and to distribute the cryptocurrency to other
Ethereum-based startups and projects. Participants in return
for supporting the project receive dividends. The DAO decides
which projects will actually get funded using a voting proce-
dure. Voting rights are given to DAO participants by means
of a digital token, which is issued in return to an investment
made.

The DAO has a built-in update mechanism called ”new-
Contract” [30]. In a nutshell, the proposal to upgrade to a
new version of DAO is treated in the same way as any other
DAO contract proposal – DAO token holders need to vote
whether to approve the upgrade or not, and 53 % of votes
is needed for the update to succeed. However, it appeared
that by using this mechanism it was not possible to recover
the internal state of the DAO in the new contract instance –
in particular, an account balance called the ”extraBalance” of
a few millions worth would be lost if such an upgrade was
performed [31]. It explains why the DAO was not updated
using its ”newContract” feature, although the recursive call
bug that was exploited by an attacker was known to the
community before the attack has happened [32].

In the following, we will introduce the key components of
µchain design, and then show how they can be used to build
a solution for patching the DAO vulnerability.

C. Mutable Transactions

Mutable transactions in µchain are represented as triplets
(T , a, P), where T is a transaction set, a identifies an active
transaction, and P specifies a mutability policy.

Transaction set A transaction set includes plurality of trans-
actions, where each transaction in the set corresponds to one
possible transaction version. In particular, a transaction set is
defined as T = (τ1, . . . , τk), where any transaction τi ∈ T
may have three different types:

• Classical (C): these are traditional transactions signed by
a specific sender S addressed to a given recipient R,

transferring a certain amount of cryptocurrency from S
to R and optionally including a data field.

• Deploying (D): transactions of this type are used to
deploy smart contracts on a blockchain. They are signed
by their sender S and are addressed to all the validators.
In their data field they include the code to be deployed.

• Nope (N): these are transactions with no sender, no
recipient and an empty data field.

Any mutable transaction must include at least one trans-
action of either classical or deploying type and a nope
transaction in its set. Further, all the transactions of classical
and deploying type in the same transaction set must have the
same sender S and the same recipient R5. Hence, it may be
said that S is the sender of T and R is its recipient.

Active transaction The sender S specifies a default active
transaction τa in the transaction set T by identifying an index
a ∈ {1, ..., k}.

Mutability policy The transaction set is accompanied by a
policy P which defines conditions for changing an active
transaction. In particular, it specifies a party that is allowed
to mutate the active transaction, which could be the sender S
of the transaction set T , its recipient R, or any other regular
user or smart contract (or plurality of them). Furthermore,
it may specify that the transaction set is extendable in the
future, and to define who is allowed to add new transaction
versions. Finally, the policy may specify a time window ∆t
within which the transaction remains mutable or extendable
and becomes immutable/non-extendable afterwards.

Potentially6, mutable transactions can co-exist with regular
(legacy) transactions, which do not specify alternative trans-
actions and do not include policies. To distinguish regular and
mutable transactions, we denote them T and T̂ , respectively.

D. Modifying Transaction History

A default active transaction τa can be replaced at a later
time with any τa′ ∈ T by issuing a transaction of special
type, so-called mutant transaction.

• Mutant (M): This is a new type of transaction that
has a sender, but no specific recipient – similarly to
deploying transactions, it is implicitly addressed to all
the validators in the blockchain. The mutant transaction
references the transaction to be mutated T̂ and defines
a new active transaction τa′ by specifying a new index
a′ = {1, . . . , k}, a′ ∕= a. The mutant transaction needs
to be signed by its sender and can only be sent by a
legitimate party specified in the transaction policy P .

We denote mutant transactions as T ′ = (refT̂ , a
′). In order

to integrate a mutant transaction into µchain, validators ensure
that the transaction policy P ∈ T̂ is fulfilled and that the

5This implies that classical and deploying transactions cannot appear in the
same set, as they have different recipients.

6However, when aiming to prevent distribution of illegal content, all the
transactions should be made mutable to nope transactions.

5

Validators/Miners

Recipient R

Mutator M
Sender S

1. 3.

2. 4.

Figure 4: Transaction Mutation

new active transaction is different from the previous one (i.e.,
a′ ∕= a).

Note that the new active transaction defined with a mutant
transaction might not be final. As long as it is allowed by
the policies one can issue several mutant transactions for the
same T̂ and the last one will determine the value of the current
active transaction of T̂ .

The mutation does not happen in the blockchain itself, but
rather changes the view the validators have on the transactions
recorded in the blockchain. Meaning: It does not change the
content of the block containing the mutated transaction. It does
not change that or other blocks’ hash. It does not break the
integrity of the chain and, as a consequence, does not require
to perform again the PoW7 for any block, no matter how many
blocks where added on top of the one containing the mutated
transaction.

Mutations in µchain are retroactive, therefore once a trans-
action has been mutated, validators read it as it always was
in this state. This has implications on how the state of the
system is calculated. Once mutated, the previous version of a
transaction is as good as it never existed, and effects of the
the new version will manifest in the most recent state of the
blockchain.

In Figure 4 we illustrate how a mutable transaction T̂ can
be issued, mutated and received by the recipient. In step 1, the
sender S sends the mutable transaction T̂ , which defines τa as
an active transaction and specifies that it may be mutated by
the mutator M within the time window ∆t. Once accepted,
the active transaction τa becomes available to regular users as
well as to its recipient R. In step 3, the mutator M sends the
mutant transaction T ′ to mutate the state of T̂ to τa′ . If sent
within ∆t time window, it will take effect and replace τa with
τa′ in the mutable transaction T̂ , so that the recipient would
now receive τa′ instead of τa (step 4).

E. Transaction Set Extensions

A mutable transaction T̂ may be extended at a later time by
an extender E by sending the transaction of a special type, a
so-called extending transaction.

7Or any other consensus mechanism used

hash01

hash0 hash1

hash23

hash2 hash3

Transaction
Root

…

…

hash …

…

hash	 	 hasha,P

Root Root

hash hashhash

0 1

Figure 5: µchain transaction tree structure. The depicted
example illustrates integration of four transactions: a mutable
transaction T̂ , a regular transactions T , a mutant transaction
T ′ and an extending transaction T̃ .

• Extending (X): This is a new type of a transaction, which
has a sender, but no specific recipient, similar to deploy-
ing transactions. The extending transaction references
the mutable transaction T̂ and specifies an extension
set Tx = {τk+1, . . . , τm}, which includes m − k new
transaction alternatives. The extending transaction needs
to be signed by its sender and can only be sent by a
legitimate extender specified in the transaction policy
P ∈ T̂ . Furthermore, all the transactions τi, k < i ≤ m
must have the same sender S and the same recipient R
as those of T̂ .

We denote an extending transaction as T̃ = (refT̂ , Tx).
Note that T̃ does not have its own policy – once accepted, it
will be a subject to policy conditions specified in the original
mutable transaction T̂ . Furthermore, it does not specify any
active transactions in Tx, because all of them will be inactive
by default, but could be activated afterwards by mutating T̂ .

F. µchain Blocks

The structure of the µchain blocks is along the lines with the
generic structure depicted in Figure 2: It includes such values
as a hash of a previous block, consensus data, time stamp, and
roots of data structures storing transactions, account balances
and smart contracts. Our changes affect data structures for
storing transactions. Further, we introduce a new data structure
which we call µchain version. Its purpose is to manage the
history of the blockchain by recording last active transactions
within transaction sets.

Transaction Data Structure New transaction types are in-
tegrated into the Merkle transaction tree along with regular
transactions. The updated structure of the transaction tree
is depicted in Figure 5, which shows an example where
one immutable, one mutable, one mutant and one extending

6

transaction are integrated into the Merkle tree. In particular, the
mutant transactions (which are immutable) get integrated into
the tree in the same way as regular transactions. In contrast,
mutable and extending transactions are first compressed in
their own tree structures, and their root values are then
integrated into the transaction tree of the block along with
regular transactions and mutant transactions.

Blockchain Version Data Structure To keep track of
active transactions within transaction sets, we introduce a
new data structure which contains information about mutable
transactions and stores the last active value for each of them.
To keep this information, we use a trie data structure8, where
each (key, value) pair is a node that can be addressed by its
hash.

Account Balances As we already mentioned in Section II,
account balances can either be explicitly written to the
blockchain, or be inferred implicitly by following the sequence
of transactions from the genesis block. In case of µchain,
it is more reasonable to follow implicit approach due to
the fact that mutant transactions may modify amount of
cryptocurrency transferred between accounts. If account bal-
ances would be written explicitly, transaction mutations could
invalidate account states stored in past blocks. Furthermore,
such invalidated account balances can leak information about
mutated transactions. For instance, it would be possible to
figure out the amount of cryptocurrency previously transferred
by a deactivated transaction by comparing the implicit state
with the explicitly written (and already invalidated) account
balance. All these drawbacks can be eliminated by using an
implicit approach, which is also used by Bitcoin.

G. Hiding Alternative Data Records

To hide alternative data records, all the transactions in mu-
table transaction sets are encrypted using transaction-specific
keys. We have chosen not to encrypt nope transactions, be-
cause every transaction set must include one nope transaction,
and, hence, its encryption would not hide the very fact of
its existence. Moreover, nope transactions do not transfer
any cryptocurrency and do not include any data, hence, their
encryption does not seem to have any benefit, but would
result in additional keys to manage. Furthermore, if the nope
transaction was encrypted, more often than not, validators
would have no way to check whether or not the set includes
it.

For the sake of simplicity, we also opted not to encrypt
code deploying transactions, as we do not see any use case
at the moment where this would be useful. However, if such
a use case is to be discovered in the future, our design can
be trivially adjusted to additionally encrypt code deployment
transactions.

8Trie is a term used in the Ethereum community [33] to refer to a
combination of a Radix tree data structure, also known as Patricia tree [34],
and a Merkle tree.

For the key management, we propose two design options:
(i) simple encryption, and (ii) encryption with secret sharing.

1) Simple Encryption: In the simple encryption approach,
we encrypt all the transactions of classical type in mutable
transaction sets with transaction-specific keys. Network valida-
tors are then responsible to reveal decryption keys for active
transactions, while keeping keys for inactive transactions in
secret. This approach is more suitable for use cases where
it is reasonable to assume that validators would not reveal
keys for inactive transactions on purpose. For instance, such
an assumption is quite reasonable for private blockchains or
for the recommendation system with censorship, which we
describe in Section VI-A.

2) Encryption with Secret Sharing (ESS): In our second
approach, the transaction-specific keys are split into shares
using a secret sharing scheme [35]. The resulting shares
are then distributed among the validators, which can only
reconstruct the entire key if a sufficient number of shares
(supplied by honest validators) is collected. Throughout the
rest of the paper we refer to this configuration as ESS. The
ESS option does not put any additional trust assumptions on
validators beyond assumptions typically made for blockchain
ecosystems. However, the price to pay is more significant
performance and communication overhead. In Section V we
formalize the ESS protocol and provide solutions for improv-
ing its communication complexity and storage requirements,
so to make this key management feasible regardless of the
number of validators securing the blockchain.

Note that Proactive Secret Sharing schemes [36], [37] can
deal with proactive adversaries that can corrupt all the involved
parties over a long period of time, but no more than a threshold
t during a certain time window (called the refresh period).
Furthermore, Dynamic Proactive Secret Sharing (DPSS) [38]
schemes provide similar properties for dynamic groups, where
the number of parties can vary during the course of the
execution. Using a DPSS scheme in ESS allows us not only
to support a dynamic number of validators, but also makes
it sufficient for transaction senders to distribute key shares to
a limited number of directly reachable validators, which then
can, in turn, re-share the keys among all the online validators.

The main point in favor of using ESS is that regular
users and validators alike would not be able to read inactive
transactions. While necessary in some settings, this property
can be a liability to the enforcement of some transaction set
properties. For instance, as described in the previous sections,
all the transactions in a set must have the same sender and
recipient. This clearly cannot be checked if validators do not
have access to all the transactions in a set. As a consequence,
it is impossible to enforce it before the transaction set is
included in the blockchain. Therefore checks depended on
hidden transactions are to be performed at mutation time.

H. Patching Vulnerability of the DAO using µchain

By now we introduced all the building blocks necessary for
showing how µchain could be used to patch the vulnerability

7

DAO	Token	holders

The	DAO	Smart	Contract	(DAO)

Distribute	
DAO	tokens

2.								participants	become
DAO	token	holders

4.						DAO	token	holders
vote	to	update

Token	holders	
vote	to	update

1b.	Deploy

5.	Mutate						using	

Developer	

1a.	Deploy	The	DAO	using

3.		Deploy	new	DAO	using

Validators/Miners

Figure 6: Patching the vulnerability of the DAO Smart Contract

of the DAO smart contract. In Figure 6, we demonstrate the
necessary steps that need to be performed.

First of all, the DAO developer needs to deploy the DAO
code on the blockchain using the mutable transaction T̂ (step
1a). Its transaction set T includes two transactions, τ1 and τ2,
where the first transaction is a code deploying transaction of
type (D) and includes the DAO code. The second transaction
τ2 is a nope transaction that is always included into mutable
transaction sets. τ1 is selected as an active transaction (a = 1),
and the policy P states that the transaction can be extended by
the DAO developer and mutated by the DAO contract within
unlimited time window. Once the code deployment transaction
T̂ is processed by the validators, the DAO smart contract is
deployed on a blockchain (step 1b).

While operating, the contract enrolls n DAO token holders
(step 2). Whenever a vulnerability is discovered in the smart
contract and the patch is issued, the developer extends the
mutable transaction T̂ (issued at step 1a) by using extending
transaction T̃ (step 3). T̃ includes the reference refT̂ to the
original code deploying transaction and carries out a single
transaction τ3 of type (D), which includes the patched code of
the DAO contract in its data field. Once the new code becomes
available on the blockchain, the DAO token holders can vote
to accept or reject the update (step 4). Whenever t votes are
collected, the DAO contract issues the mutant transaction T ′

(step 5), which makes the code deploying transaction τ3 with
the patched code active.

The validators will accept the mutant transaction, as long
as it is issued by the legitimate mutator, the DAO contract.
As a result, all the transactions which have been ever received
by the DAO contract will be re-processed using the new code,
resulting in all the stolen funds being returned to the contract.

Note that, in contrast to the ”newContract” feature of the
DAO, our approach does not require migration of the contract
state to a new instance. Instead, the code of the old instance is

replaced with the patched code – an approach which eliminates
possible errors during state migration. Furthermore, using our
approach it is possible to patch the vulnerability even after the
attack has happened. When patched, the contract internal state
would return to the state as if the attack had never happened.

IV. CHALLENGES AND SOLUTIONS

In this section we discuss a number of challenges which
need to be tackled before taking advantage of the mutable
blockchain becomes possible, and propose solutions to iden-
tified problems.

A. Problem of Negative Account Balances

Recall that, as explained in Section III-D, mutations are
retroactive. Therefore, some transactions that were valid before
a mutation, could now move more money than available in the
balance of their sender at the moment of their emission, and as
a consequence become invalid. We refer to these transactions
as dependent transactions. In other words, mutable transactions
may result in negative account balances, once the incoming
transaction is replaced with the nope transaction at the time
when the account does not have sufficient funds (which might
happen if, e.g., the received funds were already spent). We
illustrate this situation in Figure 7. In the depicted example,
we have accounts A, B and C with account balances of 10,
10 and 0, respectively. In a first step, A sends 10 units of
cryptocurrency to B in a mutable transaction. As a result, the
account balance of A changes from 10 to 0. In a second step,
B sends 15 units to C. Third, the first transaction is mutated
by replacing the first transaction with nope transaction. As a
result, the account balance of B becomes −5. This final state
is a problem especially for permissionless blockchains where
accounts are operated anonymously, and hence there is no way
to force any entity to compensate the missing funds.

8

Figure 7: Problem of negative account balances

To address this challenge we suggest to compensate the
missing amount by cancelling transactions that spent insuf-
ficient funds. When a transaction is mutated, dependent trans-
actions are also mutated to compensate the missing amount of
cryptocurrency in the account. In particular, we mutate them
to nope as a side effect of the first mutation. This process
ensures that only valid transactions are left in the blockchain
after a mutation. Further, this implies that a balance can never
go below zero, not even if there exist another subsequent
transaction that causes the balance to be restored.

In general the mechanism we described can be enforced
only if transactions always have a time window (cf. Sec-
tion III-C) that makes them immutable at the same time or
after the transactions they depend on. If this was not the case
we could be in the situation where a transaction is mutated
to nope, but its depended transactions are already immutable
and therefore cannot be reverted. In blockchains that follow
an implicit approach (cf. Section II-B3), the relevant time
window for transactions can be trivially obtained. In such
blockchains usually each transaction is characterized by some
“input” transactions and some “output” transactions, with the
condition that the output transactions cannot transfer more
cryptocurrency than the amount provided with the input trans-
actions. To avoid negative balances, validators must check if
all the output transactions have a time window in their policies
that makes them immutable at the same time or after all the
input transactions they depend on.

In blockchains that follow an explicit approach solving
this problem is more involved since balances are simply an
aggregate of the money they contain at any given moment.
However to enforce our solution, for each balance we would
need to keep track of each incoming transaction and relate
each outgoing transaction to them, therefore losing the ef-
ficiency gained by aggregating the transactions in the first
place. In such systems we suggest to split account balances
into mutable and immutable parts. Both balances can be
spent using mutable transactions, but only immutable balances
can be spent using immutable transactions. Any amount of
cryptocurrency contained in the mutable balance can be moved
in the immutable balance as soon as it becomes immutable (as
specified in the transaction policy). Note that validators still
need to make sure that transactions issued from the mutable

balance do not become immutable too early.
Figure 8 illustrates how such a mechanism helps to avoid

negative balances by applying it to the example shown in
Figure 7 and to a blockchain that explicitly stores account
balances. The first step stays the same, namely A uses a
mutable transaction to send 10 units of cryptocurrency to B.
However, in Figure 8, B cannot spend 15 units in step 2 using
an immutable transaction, because it does not have sufficient
funds in its immutable balance. Hence, it splits its transaction
into two, one mutable and one immutable, which send 5 and
10 units, respectively (denoted 2a and 2b in the figure). When
the third step occurs, i.e., the transaction previously sent from
A to B is mutated, this event also automatically triggers the
mutation of transaction 2a to return missing (and mutable)
funds from C to B.

B. Problem of Unexpected Currency Withdrawal
Now, when µchain has the ability to recursively withdraw

the money from mutable accounts, the possibility of unex-
pected currency withdrawal may have negative impact on
applications. To solve this problem, we propose a mechanism
which enables account owners to define account policies which
specify conditions for incoming transactions. For instance, the
account holder C on Figure 8 could specify that his account
only receives immutable transactions, or transactions which
can be mutated within a specified period of time.

Given such account policies in place, the blockchain val-
idators will reject transactions if the policy of a destination
account is not fulfilled. For instance, if the owner of the ac-
count C specified that his account can receive only immutable
transactions, the transaction sent from B to C at step 2a would
be rejected.

C. Code Patching by Validators
In Section III we showed how µchain could help to patch

the vulnerability of the DAO contract. The shown approach
relies on the DAO token holders to make a decision if the
new code version is to be accepted or not. In a more generic
scenario, however, there might be no community similar to
DAO holders which could be made responsible for making
such a decision. Hence, the question remains how to patch
vulnerabilities in contracts, which do not have stakeholders
similar to the DAO.

9

5
2a	Mutable

Immutable	balance
10 → 0 → 0 → 101 2 3

10
2b	Immutable

5

10
1	Mutable

10

0 → 0 → 0 → 0
Mutable	balance

1 2 3

A

Immutable	balance
1 2b 3

0 → 10 → 5 → 0
Mutable	balance

1 2a 3

B

10 → 10 → 0 → 0
Immutable	balance
0 → 0 → 10 → 101 2b 3

0 → 0 → 5→ 0
Mutable	balance

1 2a 3

C

Figure 8: Solving the problem of negative account balances

We believe, that similar to legal contracts, in many cases
smart contracts could be made overwritable by legal authorities
like courts and alternative dispute resolution (ADR) authori-
ties. In the same way as one would specify, e.g., an ADR
authority for dispute resolution in a legal contract, smart con-
tract creators could define similar parties as possible contract
extenders and mutators at the time of contract deployment.

Alternatively, one could think of relying on validators
for voting and making a decision instead of stakeholders.
While straightforwardly achievable in the case of permissioned
blockchains, where validators are vetted and typically own
some sort of identity, this cannot be easily adapted to per-
missionless blockchains. Voting in permissionless blockchains
is known as challenging problem [39], because validators
there have no inherent identities or external PKI of trust. A
malicious validator can therefore create a large set of Sybil
identities [40] and vote multiple times in order to manipulate
voting results.

To tackle this challenge, we outline a solution which enables
validators in PoW blockchains to vote with their mining power.
In particular, we can introduce a new sort of meta-transactions,
which would originate from validators rather than from the
specific sender S. Because validators (as a group) do not have
any particular sender address and, hence, no corresponding
signing key, technically such transactions could be realized in
the same way as coinbase transactions9 in Bitcoin, which do
not have any senders. Once issued, these transactions are to be
processed by all the validators, who then need to individually
decide if they would accept or reject them. Depending on
their decision, these transactions would either be included
or excluded into the blockchain they are working on. The
blockchain which accumulates more computing power will
eventually win, thus recording the positive voting result in
the blockchain history. Note that similar approach could be
used to mutate otherwise immutable transactions, or overrule
mutation policies attached to mutable transaction sets.

As of today, such a validator-based voting could be applied
only in exceptional cases, because the decision to make (to
vote or not to vote) would require some sort of manual
input – a solution which cannot be applied on a regular basis.

9Coinbase transactions collect and spend any transaction fees paid by
transactions included into the block

Furthermore, there is a potential for a denial of service attack,
in which an attacker could issue bogus code extending and
mutant transactions, forcing the validations to spend manual
effort in order to decide if the proposal needs to be accepted or
rejected. However, we see a potential of solving this obstacle
in the future – there are already first efforts [41] in automated
bug identification in smart contracts. We believe, this line
of research could be further extended to identify methods to
automatically issue vulnerability patches. Such solutions could
then facilitate decision logic during voting process. While
beyond the scope of this paper, we would like to investigate
this approach in our future work.

V. COMPLEXITY ANALYSIS AND OPTIMIZATIONS

In this section we present an enhanced version of the ESS
protocol (cf. Section III-G2) called Enhanced-ESS or EESS
for short, which is optimized in terms of communication com-
plexity. We first provide background information on Dynamic
Proactive Secret Sharing (DPSS) and then use the introduced
primitives to formalize ESS. We then present details of the
EESS protocol and compare the asymptotic communication
complexity of the two protocols.

A. Background information on DPSS

As briefly introduced in Section III-G2, a Dynamic Proac-
tive Secret Sharing (DPSS) scheme is the most suitable choice
when dealing with secret shared keys in a permissionless
blockchain, mostly because it allows to keep a secret con-
fidential even if the set of parties holding its shares changes
over time.

A DPSS scheme [38] generally consists of three protocols:
Share, Redistribute, and Open. In the following we describe
them in more details and report their associated complexity.

• Share allows a dealer10 to share a secret, s, among n
parties such that the secret remains secure against an
adversary that controls up to t parties, whilst allowing
any group of at least t + 1 or parties to reconstruct
the secret. The current most efficient implementation
of this protocol is RobustShare from [42] which can
share O(n) secrets in the same “batch” to n parties with

10A dealer is a party that posses some input to be fed to the protocol. In
our case it would be a transaction sender.

10

O(n) communication complexity, hence achieving O(1)
amortized communication complexity per secret.

• Redistribute allows transferring the set of secrets from
one group of parties to another and change the threshold.
This protocol also allows to “proactivize” the shares, as
shares gathered before and after this protocol takes place
cannot be used together to reconstruct the secret. Cur-
rently the most efficient implementation is Redistribute
from [38], which, in a synchronous network, achieves
O(1) per secret amortized communication complexity.

• Open allows to reveal a secret that was previously secret
shared. Reco from [42] is the current most efficient
instantiation of Open, it lets a set of parties reconstruct
a secret toward a specific party with constant amortized
communication complexity per secret. The same protocol
can be used to reconstruct towards all parties at the same
time and with the same communication complexity by
broadcasting every value rather than sending it to only a
specifc party.

Regarding the threshold t, current cutting edge DPSS [38]
offer different values depending on the security guarantees
desired. If one expects around half of the validators to be
malicious, then the DPSS scheme can tolerate t < n

2 − ε
malicious parties, with statistical security. This means that
t parties might still be able to break the protocol with a
probability dependent on ε, the bigger ε is, the smaller the
probability is they can break the scheme. On the other hand
the scheme can be made perfectly secure if one is willing to
tolerate t < n

3 − ε corrupted parties. Various proactive secret
sharing schemes provide different tolerance threshold [43], and
some of them may even provide security against dishonest ma-
jority [44], however these schemes have complexities that are
not even close to the asymptotic communication complexity
offered by [38].

When a secret is shared using a secret sharing scheme, it
gets embedded at a point x of a polynomial h of degree d. The
shares of the secret that the validators hold are simply values of
h at points different from x. Open works by obtaining enough
(i.e. at least d + 1) points to interpolate h and then returns
the value of h(x), while Redistribute works by changing the
polynomial that embeds the secret.

The communication complexity of the current state of the
art protocols can be amortized per-secret, because, among
other mechanisms, secrets can be packed together and, as
a consequence, each subprotocol of a SS scheme can be
performed with a multitude of secrets at the same time. This
technique has been introduced by Franklin and Yung in [45]
and works by embedding different secrets at different points of
the same polynomial. From this follows that by giving shares
of a single polynomial one is actually sharing multiple secrets
at the same time, and in general any operation performed
to the sharing polynomial affects all the secrets it contains.
However, this also means that all the secrets are necessarily
opened together.

Further observe that the more secrets one adds to the same
polynomial, the greater the degree, d, of the polynomial must

necessarily be. This has implications on t, as the bigger the
degree is, the more honest parties are needed to correctly
reconstruct the polynomial and thus the secrets embedded
therein. In the current state of the art schemes [42] the
maximum number of secrets that can be shared in a single
batch is ℓ = n − 3t for a perfectly secure DPSS scheme,
which, as mentioned above, has threshold of t < n

3 − ε. For a
statistically secure DPSS scheme on the other hand we have
ℓ = 2⌊log2

n
4 ⌋.

B. Complexity Optimizations

Note that the DPSS schemes discussed above are efficient
only if one can actually pack secrets together, as sharing a
secret alone has the same complexity of sharing ℓ secrets at
the same time, which is O(n). However we observe that it is
not trivial to take advantage of the amortized communication
complexity offered by the DPSS schemes to implement the
ESS protocol (cf. SectionIII-G2). This primarily follows from
the fact that senders only have a couple of secrets to share at
the same time – namely the keys related to the transactions
in the set they are about to send – which, in most µchain use
cases, we don’t expect to be large enough to influence the
complexity of the sharing schemes. Moreover, as pointed out
in Section V-A, when multiple secrets are shared together, they
are also opened together, which negates the only advantage of
using the ESS configuration over the simple key encryption
(cf. Section III-G1), that is to hide inactive transactions not
only from regular users, but also from validators.

The previous limitations could be almost completely cir-
cumvented if one was able to “pack” and “unpack” secrets
when necessary, and if one would pack secrets per block
rather than per transaction set. In more detail, given these two
primitives, one could pack all the keys related to a µchain
block after those keys have been, one at a time, shared by
the users. Since blocks should contain a significant number of
transactions, this process would allow to take advantage of the
amortization offered by the DPSS scheme, while still leaving
the flexibility to open a single secret by unpacking it when
necessary. The techniques to pack and unpack already shared
secrets are presented among other considerations in [45] where
it is shown how to join several “singly-shared” secrets into one
polynomial and how to split “multi-shared” secrets into several
polynomials. This two operations are what we refer to with
subprotocols MergeShares and DivideShares respectively.
Both algorithms have a communication complexity11 of O(n).

Protocol 1, which we name Enhanced-ESS or EESS for
short, shows how key management can be done by leveraging a
packed DPSS scheme in conjunction with MergeShares and
DivideShares. The correct execution of the protocol by more

11In more detail, as mentioned in [45], MergeShares and DivideShares
have the same communication complexity of a “2-ary multiplication” of a
MPC protocol. Note that the DPSS scheme that we described in Section V-A
is used in [38] to construct a Dynamic Proactive MPC scheme whose 2-ary
multiplication has linear, in the number of parties, communication complexity.
Hence, for what concerns our setting, both MergeShares and DivideShares
can be instantiated with O(n) communication complexity.

11

Protocol 1 Enhanced-ESS Key Management

Input: The decryption key of each encrypted transaction in
the transaction set T of a mutable transaction T̂

Output: The key of the active transaction ka of T̂ .
1: The sender S of T̂ broadcasts ka, the key of the default

active transaction of T̂ to the validators.
2: S shares in the same batch each decryption key related to

T̂ to validators it can contact directly, by running Share.
3: If the validators reject the first active transaction of T̂ , they

discard every share related to T̂ and the protocol aborts.
Otherwise it continues.

4: The set of validators, who received their shares from S
directly, execute Redistribute to re-share each key related
to T̂ with every online validator.

5: As soon as a new block, B, is confirmed, each validator
runs MergeShares to merge every share of the keys
of every mutable transaction issued in B. Let m be
the number of decryption keys related to transactions
in B, validators repeat MergeShares ⌈m

ℓ ⌉ times, with
ℓ different keys in each iteration (padding with random
values as neccesary).

6: At fixed time intervals the validators redistribute the shares
merged at step 5 by running Redistribute for each batch
of secrets in their possession.

7: Whenever a mutant transaction is issued regarding T̂ , the
validators extract the shares of ka′ from the batch where
it was shared using DivideShares.

8: Each validator uses the shares obtained with Di-
videShares to run, toward every validator, Open on ka′ .
As a result, each validator knows the new ka′ .

9: Each validator deletes all the shares obtained with Di-
videShares at step 7.

10: If the new active transaction of T̂ does not execute
successfully then each validator discards the ka′ for T̂ ,
otherwise each validator discards ka by assigning the new
value to it, which is ka = ka′ .

than t honest validators12 ensures that each honest validator
always knows the key necessary to decrypt the current active
transaction of every transaction set. At the beginning of
the protocol, the sender S of a mutable transaction T̂ with
associated transaction set T holds the keys to decrypt the
encrypted transactions in T . The protocol is initiated by S,
who broadcasts ka – the decryption key of the default active
transaction of T̂ (step 1). Subsequently S secret shares all the
decryption keys of T̂ in the same batch to the validators it can
contact directly (step 2). At the same time validators decrypt
the default active transaction of T̂ with the key received from
step 1 and start executing it. If the transaction is rejected,
every information related to T̂ is deleted and validators abort
the protocol, since managing keys for that mutable transaction
is no longer necessary (step 3).

12t is the maximum number of allowed malicious parties for a DPSS scheme
as defined in Section V-A

In case T̂ has been accepted, the shares received directly by
validators from the sender are re-shared with all the validators
(currently online) using the Redistribute protocol of the DPSS
scheme (step 4). Next, validators wait until the block, B, of
µchain containing T̂ is included in the blockchain with high
certainty13. Then they execute MergeShares to merge all the
shares of the keys related to mutable transactions contained
in B into as few polynomials as possible (step 5). Note that
they may need to be merged into several polynomials because,
as explained before, there is a maximum number of secrets,
ℓ, that can be packed together in the same batch. Validators
re-share the merged secrets by executing Redistribute at fixed
time intervals (step 6). This step is intended to provide to all
the validators shares of secrets issued while they were offline,
and to increase the resilience of the system against a mobile
adversary. If, for instance, this step is performed once per
day, all the shares the attacker managed to gather yesterday
become useless, provided that they were less than t+1 shares.
Note that similar remarks apply also to step 4, although, rather
than to refresh the secrets, it is performed mainly to increase
the corruption threshold t. Since t is directly proportional to
the number of validators, by redistributing the secret from a
small set of validators to every online validator, not only we
make the leak of the secrets more difficult – as more validators
would need to be compromised or collude in order to obtain
it – but we also increase their resilience to failures, as more
validators would need to fail simultaneously in order to render
the secrets unrecoverable14.

All the validators keep ka, the decryption key of the current
active transaction of a mutable transaction, in their local
memory for as long as the transaction related to that key is
active. Once a mutant transaction T ′ is issued changing the
state of a transaction set T̂ , the validators begin to compute the
key of the new active transaction. They first run DivideShares
to obtain shares of a polynomial that only contains the key of
the new active transaction of T̂ (step 7). They then open the
new key ka′ to each other in step 8 and, at step 9, they discard
all the shares obtained in step 7. As soon as validators get to
know ka′ , they start executing its related transaction. If the
new active transaction is rejected, validators keep the old ka
and discard ka′ , otherwise they store ka′ in place of ka.

Note that protocol 1 can be used, with minor changes,
also to manage keys of transaction extensions. In particular,
extensions are treated as normal transactions by the protocol,
except that, since every transaction they introduce is inactive,
step 3 is not performed for them.

C. Complexity Analysis

In the following we are going to compare the difference in
complexity communication between the protocol presented in
Section V-B and the ESS protocol. In order to do so we first
formalize the latter in protocol 2 using the concepts presented
in Section V-A.

13In Bitcoin, for instance, by convention this happens as soon as at least
six blocks have been appended to it.

14If t or less shares remain in the network, the secrets are practically lost

12

Protocol 2 ESS Key Management

Input: The decryption key of each encrypted transaction in
the transaction set T of a mutable transaction T̂

Output: The key of the active transaction ka of T̂ .
1: The sender S of T̂ broadcasts ka, the key of the default

active transaction of T̂ to the validators.
2: For each encrypted transaction τi ∈ T , S runs Share(ki)

toward the validators it can contact directly.
3: If the validators reject the first active transaction of T̂ , they

discard every share related to T̂ and the protocol aborts.
Otherwise it continues.

4: The set of validators, who received their shares from S
directly, execute Redistribute to re-share each key related
to T̂ with every online validator.

5: At fixed time intervals each validator runs Redistribute
for each secret in its possession.

6: Whenever a mutant transaction is issued regarding T̂ , the
validators run, toward every validator, Open on ka′ . As a
result each validator knows the new ka′ .

7: If the new active transaction of T̂ does not execute
successfully then each validator discards the ka′ for T̂ ,
otherwise each validator discards ka by assigning the new
value to it, which is ka = ka′ .

To analyze the difference in complexity between the two
protocols it is helpful to split them into three phases:

1) In the first phase the sender sends the keys of a new
transaction set to the validators. This includes steps 1
to 5 for protocol EESS and steps 1 to 4 for protcol ESS.

2) In the middle phase secrets are refreshed at fixed inter-
vals. This is performed with step 6 in protocol EESS and
with step 5 in protocol ESS.

3) The last phase captures the diffusion of an updated key
as a consequence of a mutation. It happens from step 7
to 10 in protocol EESS and from step 6 to 7 in protocol
ESS.

The complexity of the first phase of the ESS protocol is
dominated by step 4. It has a communication complexity of
O(xn), where x is the number of encrypted transactions in
the transaction set, whose keys have been shared, one by
one, during step 2. Note that, as already mentioned, in most
use cases we expect x to be negligible in respect to n, in
these cases then the asymptotic communication complexity
of this phase can be approximated to O(n). Similarly the
complexity of this phase for protocol EESS is dominated by
step 4 and step 5. Step 4 has a complexity of O(n), while
step 5 has complexity O(mℓ · n), where ℓ is the maximum
number of secrets allowed in the same batch, while m is the
number of decryption keys related to transactions contained in
a given µchain block. The given complexity follows from the
fact that step 5 executes MergeShares ⌈m

ℓ ⌉ times and each
execution takes O(n) communication complexity. From these
considerations we can conclude that the complexity of the first
phase of protocol EESS is O(mn

ℓ).

The middle phase depends, for both protocols, on Redis-
tribute. Protocol ESS runs it once for every key the validators
are supposed to hold. This number is roughly the sum of
the number of different versions possible for each mutable
transaction in µchain, let us name it v. The total complexity
for the middle phase of protocol ESS can then be expressed as
O(vn). For what concerns protocol EESS, each key is merged
in as few batches as possible during the first phase, and, since
batches are what ultimately gets redistributed, its complexity
on this phase is O(vℓ · n). The middle phase depends, for
both protocols, on Redistribute. Protocol ESS runs it once for
every key the validators are supposed to hold. This number is
roughly the sum of the number of different versions possible
for each mutable transaction in µchain, let us name it v.
The total complexity for the middle phase of protocol ESS
can then be expressed as O(vn). For what concerns protocol
EESS, each key is merged in as few batches as possible during
the first phase, and, since batches are what ultimately gets
redistributed, its complexity on this phase is O(vℓ · n).

The last phase of protocol ESS can be seen to have
communication complexity O(n), as the only communication
happens with the broadcasts performed to run Open at step 6.
For analogous reasons the last phase of protocol EESS is
influenced solely by step 7 and 8. Both steps have complexity
O(n) therefore making it also the complexity of the phase at
which they belong to.

To summarize, the last phase in both protocols has the same
complexity. It does not favor one over the other and, hence, can
be put aside. For what concerns the first phase, it is O(xn) for
protocol ESS, while it is O(mℓ ·n) for protocol EESS. However
this comparison is not entirely fair, as protocol ESS requires
several iterations of its first phase to reach the same result as
the one achieved by protocol EESS with its first phase. This
is because the first phase of protocol EESS actually handles
all the keys related to transactions belonging to a block of
µchain, while the first phase of protocol ESS only considers
the keys of a single mutable transaction. If we repeat the
first phase of protocol ESS for each transaction in a block,
the complexity is then O(mn). Therefore, in aggregate, the
first phase is more expensive to be performed with protocol
ESS than with protocol EESS. Finally the middle phase of
the protocol EESS is more efficient than that of ESS, having
complexity O(vℓ · n), as opposed to O(vn).

To conclude, protocol EESS outperforms the protocol ESS
by a factor of ℓ. Remember that, based on the security
guarantees desired, ℓ can either be n− 3t or ≤ n

4 , either way
we have O(ℓ) = O(n). By using this fact we can express the
complexity of the first phase of protocol EESS as O(m) and
the second phase as O(v), meaning that we actually achieve
linear amortized communication complexity per key shared.
This result is asymptotically optimal, and makes the optimized
protocol, contrary to the trivial protocol, a feasible alternative
for permissioned as well as permissionless blockchains of any
size. Note however that the third phase, the one that produces
a new key after a mutation, remains relatively expensive in
both protocols, as each of them requires O(n) communication

13

complexity. We leave the optimization of the last phase of
the key management protocol for future work, but as of now
this just adds itself to the list of reasons for which mutations
should be used only if strictly necessary in open blockchains.

VI. APPLICATIONS ON TOP OF µCHAIN

The mutable blockchain, whose design we presented in pre-
vious sections, gives rise to new blockchain applications that
were not possible with immutable blockchains. To illustrate
flexibility of µchain as an application platform, we present a
collaborative recommendation system with censorship and a
time-lock encryption application.

A. Collaborative Recommendation System with Censorship

The recommendation system is a key component of many
today’s online services, such as online market places and
hotel booking web-sites. They help customers to get the best
product or service for the lowest price and enable service
providers to get recognition for good services. As of today,
such recommendation systems are typically implemented us-
ing a centralized trusted party, that is trusted not to unfairly
push their favored products at the top of the recommendation
lists. However, given a strong inclination among customers
towards considering the best-rated offers, there is a clear
monetary incentive to sellers, and in turn to service providers,
to manipulate recommendations.

Using µchain, it is possible to realize a blockchain-based
collaborative recommendation system, which can be used by
service providers like hotels, restaurants and online market
places and replace systems like Tripadvisor [46], HRS [47],
Yelp [48] and Amazon [49], traditionally managed by trusted
third parties. Recommendation systems are typically censored
in order to clean up reviews containing inappropriate content,
like rude expressions, or inappropriate statements about groups
based on race, gender, or religion. This, in turn, requires the
majority being able to remove information (to be censored)
from the blockchain history, which is impossible with im-
mutable blockchains, but becomes possible with µchain.

Entities We name our recommendation system Justice, as it
is designed to fairly treat all the involved parties. The system
model of Justice includes two types of users: (i) Clients
and (ii) Endorsers. Clients are regular users of the recom-
mendation system who write and read reviews. Hence, we
may also distinguish them as readers and writers. In contrast,
endorsers are service providers, who collaboratively maintain
the recommendation system for rating their services. They
are responsible for censoring reviews and filtering out only
inappropriate content. Endorsers may be blockchain validators
– the approach that is more suitable for private permissioned
blockchains, or be just regular blockchain users. Both, the
clients and the endorsers own regular user accounts on the
blockchain and, hence, are capable of sending and receiving
transactions.

We denote a group of n endorsers as E . Furthermore, we
denote readers and writers as R and W , respectively.

Validators/Miners

Endorsers

Justice Smart Contract (JSC)

Add/remove endorsers

reviews
Add

review

4. Extending transaction

6. Query

Review voting

Read
reviews

(add hash of the review)

2. Mutable
transaction

1. endorsers
register

3. endorsers
vote

Reader RWriter W

5. Mutant transaction
(censor review)

Figure 9: Justice review system with censorship: Architecture

Architecture The architecture of Justice system is depicted
in Figure 9. Its core functionality is realized by means of a
Justice smart contract (JSC) that is hosted by µchain. The
smart contract implements a number of functions that can be
invoked by means of transactions or queries15. It includes a
database of user reviews, which can be written using mutable
transactions and read by querying the contract. Further, the
smart contract itself is able to mutate mutable transactions,
whenever the state of the review need to be changed from
published to unpublished and vice versa.

After the first deployment, the Justice smart contract needs
to enroll n endorsers to the system (step 1 in Figure 9).
We do not specify any exact conditions which need to be
fulfilled by regular users to become endorsers, as those may
vary in different applications. For instance, in case if µchain is
instantiated as permissioned, the smart contract could validate
user permissions. In permissionless blockchains it might be
more reasonable to keep registration open to any parties who
would pay a participation fee (or, a stake).

Once the contract has enough endorsers in the system, it
can accept transactions from review writers. Hence, the writer
W sends a mutable transaction T̂ with the review to the
smart contract (step 2). We recall that mutable transactions
have the following structure: T̂ = {T , a, P}, where T is a
transaction set, a specifies active transaction and P defines
mutability conditions. In this particular case, T consists of
two transactions {τ1, τ2}, where τ1 is of classical (C) type
and includes the review m in the data field, while τ2 is of
type nope, as required by µchain design (cf. Section III-C).
The writer W also defines the transaction τ1 as an active
transaction by specifying a = 1. Furthermore, the policy P
states that T̂ is extendable and mutable by JSC contract and
within unlimited period of time.

15In contrast to transactions, queries do not change the state of the
blockchain.

14

Once the transaction T̂ is received by the smart contract,
the review is added to the reviews’ database. From now
on, endorsers E may vote to censor the review, if they find
its content inappropriate (step 3). Whenever the votes by
endorsers reach the threshold t, the smart contract issues an
extending transaction T̃ to extend T̂ with a new transaction
τ3, which includes the hash of the review in its data field (step
4). Next, it mutates the state of the mutable transaction T̂ by
issuing a mutant transaction T ′ and specifying τ3 as active
(step 5). This action results in a full review being substituted
with its hash value, therefore hiding the review itself16.

To read the reviews, the reader R sends a query request to
the smart contract (step 6). The smart contract returns the data
stored in its review database, including full reviews and hashes
of censored reviews. Note that the writer W can also play a
role of a reader R and query the smart contract. By observing
the hash value instead of a review, W can infer information
that the review was received by the system, however it does
not appear online due to censoring.

Additional considerations If the system requires support for
review withdrawals by their writers, such a functionality can
be realized by adding a policy rule into P of T̂ to allow
the original writer W to activate nope transaction. This will
allow W to issue a mutant transaction and activate τ2 in the
transaction set of T̂ .

For backward compatibility reasons, it is beneficial to
realize communication between clients and the smart contract
using a web-server as a proxy. This would enable clients to
use their regular web-browsers for the communication with the
recommendation system. On another hand, if compromised,
such a server could manipulate real reviews of clients, e.g.,
substitute them with bogus ones. However, such attacks are
detectable, e.g., clients may independently verify if there is a
hash of their review in the smart contract in case they do not
see their review online. Furthermore, although a proxy web-
server is capable of writing and publishing arbitrary bogus
reviews, it is equivalent to becoming a review writer who
can always write arbitrary reviews. This attack vector, in turn,
can be mitigated, e.g., as suggested by Kerschbaum [50], by
accepting reviews only from clients who can prove they have
paid for the service they are going to review, and only can
write one review per payment.

B. Time-lock Encryption

Our second application provides functionality of the time-
lock encryption. The concept of time-lock encryption [51]
enables decryption of a message or a file at some point in
the future – the primitive which is useful in a number of
real-world applications such as electronic auctions, scheduled
payment methods, sealed-bid auctions, and lotteries.

In the following, we show how it is possible to achieve
time-lock encryption functionality using µchain.

16Because the review messages (and especially insulting words) may have
low entropy, it is advisable to use a hash function salted with a random value

Validators/Miners

Time Lock
Smart Contract (TLSC)

4. Mutant transaction

3. Immutable
transactionUnlock key

(change state of)

1. Mutable
transaction

Decryptor DAlice A

2. ID of transaction (out of band)

Query keyStored keys

Register key

5. Query

Figure 10: Time Lock Encryption: Architecture

Use Case Scenario We borrow a scenario from Liu et al.
[52] who considered a use case very relevant to the research
community. Assume that Alice would like to publish a paper
disclosing a security vulnerability, however the vendor of the
product tries to inhibit her. Instead, Alice can publish an
encrypted version of her paper using a time-release encryption
scheme. Her paper will only be decrypted when the deadline
passes. During this waiting period, Alice cannot change her
paper and the vendor cannot force her to change it, either.

Entities Our solution is realized by means of Time Lock Smart
Contract (TLSC) that is residing within the µchain and can
receive transactions and queries from regular blockchain users.
We assume that there are two parties communicating with
the contract: Alice A and the decryptor D. Alice encrypted
her paper with the decryption key and would like to turn her
key into the time-locked key. Decryptor is any other user of
the µchain. For instance, he could be a program committee
member of a conference where Alice submitted her paper, a
conference participant, or even the product vendor.

Architecture The system architecture is depicted in Figure 10.
To turn her decryption key K into the time-locked key, Alice
sends the mutable transaction T̂ to the Time Lock Smart
Contract (step 1). The structure of the transaction is as follows:
T̂ = {T , a, P}, where T is a transaction set, a specifies
active transaction and P defines mutability conditions. Here, T
consists of three transactions{τ1, τ2, τ3}, where τ1 and τ2 are
of classical (C) type and τ3 is a nope transaction. τ1 includes
time t of key unlock in its data field, while the data field of τ2
is populated by the decryption key K. Alice selects τ1 as an
active transaction by specifying a = 1. In the policy, she states
that the transaction may be mutated by the TLSC contract,
and the mutation is possible at any time after the deadline t.
When processed by the contract’s function that registers keys,
transaction’s identifier and the deadline t are recorded in the
database of stored keys.

15

In a second step, Alice informs the public that the document
she encrypted can be decrypted with the time-locked key.
She also tells how to identify her key within the TLSC
contract, by providing the key’s identifier (or, more precisely,
the identifier of the transaction set associated with the key).
This information can be made public in the same way as her
encrypted paper.

In a third step, decryptor D sends a regular (immutable)
transaction T to the smart contract, which triggers a function
to check if the deadline t has passed. If positive, the contract
will issue a mutant transaction T ′ to mutate the active
state of T̂ to a = 2 (step 4). This effectively replaces the
deadline t stored in contract’s key database with the actual
decryption key K. Since now on, decryptor D can query the
key database to receive the actual key (step 5). Note, that if
D would query the contract before the deadline t passes, he
would receive the deadline t instead.

In the use case above, we demonstrated how µchain can
be used to achieve typical time-locking functionality, e.g.,
to make a decryption key available after a certain deadline.
Beyond that, our system can provide more advanced features,
e.g., make the decryption key available only if requested within
a certain time window, or enforce additional access control
upon unlocking keys.

VII. IMPLEMENTATION

We developed a proof of concept of µchain using the
Hyperledger Fabric [10], version 0.6.0-preview. The Hyper-
ledger Fabric is an open source project, mainly written in the
Go programming language [24], that implements blockchain
technology in a modular manner. Various modules can be
combined in a lego style to achieve different properties of
the blockchain, which gives the opportunity to blockchain
deployers to select the configuration that matches their needs,
e.g., to choose various plugins for consensus protocol or decide
if the blockchain needs to be permissioned or permissionless.
Also, it can be easily extended with new modules, which can
originate from Hyperledger developers or be developed by
third parties. Note however that Hyperledger Fabric does not
have any associated cryptocurrency and the only transactions
it natively supports are from users to smart contracts. Never-
theless its modularity and extendability made Hyperledger a
very attractive platform for our prototype.

In the following, we first present details of our implemen-
tation and then discuss selected implementation aspects which
needed special consideration during implementation.

A. Implementation Details

In figure 11 we show the overall architecture of Hyper-
ledger Fabric (as presented by the Hyperledger project [53])
and highlight in orange17 modules which were extended or
modified in our implementation. Our implementation consists
of 9066 lines of code, which extends the overall codebase of

17Or in gray, when the paper is printed as grayscale.

Services

API,	SDKs,	CLI

MEMBERSHIP BLOCKCHAIN TRANSACTION CHAINCODE

Blockchain Services

Consensus
Manager

Distributed
Ledger

P2P
Protocol

Ledger
Storage

Chaincode
Services

Secure
Container

Secure
Registry

Membership	
Services

Registration

Identity	
Management

Auditability

Event	Stream

Figure 11: Modular breakdown of the Hyperledger Fabric,
credit: [53]. The components affected by the implementation
of µchain have been marked in orange17.

Hyperledger by 1.54%. Below we explain our modifications
in more details.

Transaction The Transaction module was modified to in-
troduce the notions of transaction sets and mutant transac-
tions. In particular, two new transaction data structures have
been defined for µchain: TransactionSet and Mutant,
where TransactionSet has a type associated with it that
could either be Creation or Extension. Since various
interfaces of Hyperledger require a single type of trans-
action to be given as input, another data structure called
InBlockTransaction was created to group all the possi-
ble transaction types. We do not specify a dedicated type for
legacy (immutable) transactions. However, they can be issued
by encapsulating them into a TransactionSet that only
contains one transaction.

Chaincode Chaincode is the synonym used for “Smart
Contract” in Hyperledger. Transaction mutations have been
made possible by changing the exectransaction.go
file in the chaincode module. We added two new func-
tions called GetAffectedTxs and ApplyMutations.
GetAffectedTxs returns the list of dependent transactions
that are affected by the mutated transaction and, hence, need
to be re-processed. ApplyMutations gets such a list as
an input and starting from the oldest affected transaction,
processes them again in their respective blocks, updating the
state of each affected block as the execution goes on. The
Hyperledger’s ExecuteTransactions function is usually
called to process a batch of transactions. We modified it in such
a way that it first selects and executes all the mutant transac-
tions from the given batch, and then calls ApplyMutations
to bring into play their changes. Finally, it executes all the
other transactions from the batch.

In Hyperledger, smart contracts are run by validators in

16

a docker18 virtualized environment. Potentially they can be
written in any language as long as for that language there exists
a layer that allows it to be interfaced with the blockchain.
The operations that chaincode can perform on the blockchain
are defined in the ChaincodeStubInterface. We added
several new functions to this interface: GetCurrentTxID,
GetTransactionByID, Mutate and Extend.
GetCurrentTxID allows smart contracts to obtain
the ID of the transaction that resulted in their invocation.
This is useful as, at some later point, contracts might want
to mutate (extend) one of the transactions they received: this
can be done by calling Mutate (Extend) and providing the
ID of the transaction to mutate (extend) as input. Similarly,
GetTransactionByID is intended to allow chaincode
to get information about transactions related to other smart
contracts that they wish to mutate or extend.

Hyperledger Fabric allows to deploy a so called “System
Chaincode” which is a smart contract designed to perform
blockchain management operations. In our implementation
we leveraged this type of smart contract to allow entities to
associate an account policy Pa (cf. Section IV-B) to their
address. Whenever a transaction set is to be executed, first the
relevant access rights are checked in the system chaincode.
Note that in Hyperledger only smart contracts can be at
the receiving end of transactions. Hence, what we store in
the system chaincode is just a policy and a mapping to a
smart contract identifier. The System Chaincode can express
conditions at the granularity of smart contract functions, so
that it is possible to, e.g., specify that one function of the smart
contract accepts mutable transactions, while another one only
deals with immutable ones.

Event Stream The event stream component is responsible for
the communication between various modules. We modified
event stream to add new types of messages by modifying
the definition of the ChaincodeMessage message type.
This message is exchanged between the chaincode and the
ledger storage. For instance it can be used in order to
modify the ledger or get some information from it. The
new types we introduced in ChaincodeMessage are:
MUTATE, EXTEND and OBTAIN_TRANSACTION, which are
related to the new functionalities Mutate, Extend, and
GetTransactionByID, respectively, that we introduced
in the chaincode module. Note that it was not necessary
to define a new event for GetCurrentTxID function, as
the transaction ID of the current transaction can be directly
obtained by the chaincode from the chaincode stub.

Ledger Storage The ledger storage was extended to store
information about current active transactions. For each mutable
transaction issued we keep track of the current active index
and at which block every mutant transaction was created and
extended. This information forms the state of the blockchain
version, this data structure is stored separately from the

18https://www.docker.com/

chaincode state and its hash is included into the block header.
To manage operations related to the blockchain version state,
we created an interface called HashableTxSetState, with
similar properties to the Hyperledger’s HashableState.
The HashableState interface is implemented by vari-
ous Hyperledger’s packages that take care of organizing the
State of the chaincode into the database. The new packages
that implement the HashableTxSetState interface man-
age the µchain version deltas and allow the ledger to persist
the changes to the validator’s database.

Because µchain needs to work with current active trans-
actions, we added a new method GetCurrentDefault in
the Ledger class to retrieve the current active transaction
of a transaction set. The method works by first querying the
µchain version to acquire the active index of a transaction
set, then fetches the correct transaction from the blockchain
and returns a decrypted copy of it. Almost every part of the
Fabric codebase that was previously dealing with transactions
now handles transaction sets and has been modified to first
get the current active transaction from the Ledger and then
perform its operations using the active transaction.

To assist the ApplyMutations function, which we in-
troduced in the chaincode module, the ledger storage pro-
vides new methods to enter in what we call reset mode.
ApplyMutations can request the ledger to start resetting.
When this happens, the ledger reverts the current blockchain
state to a given block. ApplyMutations then can execute
transactions from the current resetting block and when it
finishes it can instruct the ledger to apply the changes from
all the other transactions in that block. This process continues
until ApplyMutations has re-executed all the affected
transactions. Note that before the reset starts the ledger makes
a snapshot of the current state of the blockchain, so that, if any
irreversible error occurs while the mutations are being applied,
the state of the blockchain can be easily rolled-back to the last
valid state.

Blockchain In Hyperledger, every transaction is indexed so
that it can be easily retrieved by querying it by its ID. In
particular, a record is kept that maps transactions to their
position in their issuing block. However in µchain sets can
be extended, and as a consequence it could happen that
transactions at different blocks belong to the same transac-
tion set. Therefore, we modified the information stored by
addIndexDataForPersistence in order to maintain,
for every transaction set ID, a list of blocks that include
extending transactions and their position within blocks.

The ledger class interfaces itself with the blockchain for
multiple operations. Particularly, it can query transactions from
it, or retrieve the current height of the blockchain. Some of
the behaviors of the blockchain class had to be modified to
account for the reset mode of the ledger. The height of the
blockchain used to simply be the length of the current chain,
in µchain on the other hand its behavior is different when
mutations are being applied. This is necessary since some
parts of Hyperledger need to know the current height of the

17

https://www.docker.com/

chain. When resetting, in order to compute the right value,
they should operate as if the blockchain is currently as long
as the last mutated block, rather than the real length of the
chain. For this purpose whenever the ledger is in reset mode,
it communicates with the blockchain to let it be aware of the
current reset status so that the blockchain can always provide
the correct value.

Crypto The crypto module is not depicted in the Hyperledger
architecture in Figure 11, yet it is present in its implementation
as a separate module. We extended it to provide new functions
in order to encrypt each transaction of a transaction set as
discussed in Section III. We encrypt transactions by first
serializing them and then encrypting the resulting bytes using
AES in CBC mode and PKCS7 padding with a 256 bits
long key. This process is done client-side for each transaction
belonging to a set. Subsequently the transaction set is sent to
the validators together with its accompanying keys.

We did not yet implement secret sharing in the crypto
module, therefore currently our implementation only allows
simple key management.

B. Special Aspects of Implementation

In this subsection we discuss special aspects of implemen-
tation, and in particular some problems which arose during
implementation and our approach to tackle them.

a) Mutations and Verifiability: The first problem is re-
lated to the scenario where smart contracts mutate themselves
(e.g., in vulnerability patching scenario), which, as we explain,
may cause problems with the verifiability of the blockchain.

Mutations caused by smart contracts might yield an invalid
µchain version state for clients, in the sense that they might
end up with a different view of it from the validators. As an
example, consider a smart contract A that upon receiving a
transaction T̂ induces a chain of transactions and invocations
that ultimately causes the deployment transaction of A to be
changed into the nope transaction. Clients that try to parse the
blockchain in the future have no way to verify that the current
active transaction of the deployment transaction of A should
be the nope transaction because to do so they would need to
execute T̂ in A, but A does not exist anymore.

This is just a sample of a bigger problem: similar compli-
cations ensue whenever a smart contract tries to modify itself,
in total or in part. Note that solving this by just forbidding
smart contracts to modify themselves is not desirable. Fur-
thermore, determining whether a mutation issued by a smart
contract causes changes to the smart contract itself might not
be possible a priori. Resources would need to be invested
in executing the transaction just to determine whether or
not it violates the rule, drastically diminishing the potential
throughput of transactions as a consequence. In addition, this
might limit the expressiveness of mutations performed through
smart contracts.

To tackle this problem, we decided to record all the
mutations caused by smart contracts in the block where they
are originated, without applying them. Afterwards mutations

queued in a block are applied at their succeeding block,
before the execution of any other transaction starts. In this
way clients parsing µchain can know what the current µchain
version is, since they can always observe the changes made
to the blockchain version state.

b) Recursive Mutations: The second problem, which we
would like to highlight, is related to the situation where mutant
transactions issued by a smart contract may lead to recursive
mutations resulting in endless loops of re-execution.

To explain how a cycle of mutations can form, assume
that A receives a mutant transaction T̂ receiving 5 units of
cryptocurrency. At some later point in time, it checks the
balance, and if it equals or larger than 3, it mutates T̂ to
alternative version, which modifies the amount of received
cryptocurrency to 5. Making such a mutation would lead to
a new mutant transaction issued by the contract which would
mutate T̂ to an alternative version (so that the amount of the
received cryptocurrency is 3 again), because the condition that
the balance is equal or larger than 3 would still be satisfied. In
this way, mutation would trigger the execution of an endless
loop while in reset mode.

To avoid such loops, we prevent any mutations from taking
effect while the system is in the reset mode. This counter-
measure guarantees that execution will always end and the a
definite blockchain version will always be reached. Moreover
it does not hinder the flexibility of mutations, as they can
always be triggered from the current state in order to reach
the desired version.

VIII. RELATED WORK

The idea of untraceable digital payments was first intro-
duced by the seminal work of Chaum [54], which proposed
to realize electronic cash using blind signatures. This crypto-
graphic primitive would allow a bank to keep account balances
of clients without being able to trace their money flow. Follow
up works improved the system, allowing clients of different
banks to interchange money, while keeping both the sender and
its bank concealed from the recipient [55], efficiently divide
anonymized coins [56], [57], and working even if the bank
is offline at various points of the protocol [58], [59], and
optimizing the overall complexity of the scheme [60], [61].
While presenting many improvements, all these schemes share
a common drawback, a central point of trust which is necessary
to guarantee that the blinded coins are not double spent: the
bank. Moreover, none of these cryptocurrencies were ever able
to reach a significant user base.

The most notable breakthrough in this regard was the
introduction of Bitcoin [1]. Bitcoin relies neither on banks
nor on any other central authority and seems to be the most
successful cryptocurrency that is used for real world payments.
It solves the problem of having a central book-keeper by
broadcasting every transaction to every participant of a peer-
to-peer network. Since everyone knows every transaction,
it can be immediately verified whether a given “coin” has
been already spent. Within a short time Bitcoin has been

18

thoroughly analyzed with regards to security [62], [63], [64],
privacy issues [65], [66], [67] as well as economic aspects
[68], [69]. Moreover, a number of alternative cryptocurrencies
(altcoins) were proposed that have made substantial changes
to initial Bitcoin design with different goals. For instance,
Zerocoin [70], Zerocash [71], CryptoNote [72] and Pinnochio-
Coin [73] aim at providing advanced anonymity, Litecoin [74]
and Dogecoin [75] use ”memory-hard” puzzles that prevent
specialized hardware to give an edge over general purpose
hardware in the mining process, moreover they tweak other
parameters to influence the emission rate of new cryptocur-
rency, Primecoin [76] puts the massive amount of resources
used to secure the blockchain to scientific use, as the same
effort spent on securing the cryptocurrency also produces
a sequence of large prime numbers as a side effect, while
Ethereum [7] extends Bitcoin’s transaction semantics to enable
support for smart contracts. Enigma [77] builds upon Ethereum
and provides confidentiality of smart contract’s data through
the application of Multi Party Computation (MPC).

However, none of the blockchains mentioned above provide
any means to modify history of the blockchain or revert
transactions. The only altcoin that makes an attempt to revert
transactions is Reversecoin [78]. It works by setting accounts
with two keys: one of these keys allows to issue regular
transactions, that are revertible within a fixed amount of
time from their emission with the use of the other key. This
mechanism is merely intended to return cryptocurrency stolen
by, e.g., malware targeting bitcoin wallets, but not to modify
the blockchain history. All the reverted transactions remain
untouched in the blockchain history and can be publicly
viewed.

Möser et al. [79] implement “covenants” in Bitcoin, that is
transactions that are able to pose limitations on the output of
transactions that try to spend them. They use said mechanism
to simulate the “reversion” of transactions by third parties,
through what they call poisonous transactions. In analogy to
the mechanics of Reversecoin, poisonous transactions work
by locking the funds for a predefined time window. Therefore
they do not modify the transaction history, but simply allow
any third party to cancel transactions while they are locked.

Mutable Blockchains Parallel to our work, Ateniese et al. [80]
presented a concept of redactable blockchain (RB) – the
blockchain which can be modified by a trusted (potentially
distributed) third party (TTP), which knows the secret key. To
achieve this goal, RB uses a chameleon hash function during
block mining – the crypto primitive which enables a party
with the knowledge of the trapdoor key to efficiently calculate
hash collisions. The chameleon hash function is applied to
chain blocks together, which means that the TTP has the
ability to arbitrarily modify the blockchain in non-accountable
manner. In contrast, in µchain any blockchain mutation is
governed “by fiat”, which makes any mutation controllable
(e.g., access control can be enforced) and also verifiable by
the network. Further, RB strongly relies on confidentiality of
a single trapdoor key, while our solution uses per-transaction

keys and, hence, has better resilience to key compromise. We,
however, believe that µchain could also benefit from using
the chameleon hash crypto primitive when using it to hash
transactions before they are compressed into the Merkle tree.
We plan to explore this design option in our future work.

Blockchain-based recommendation systems Several previ-
ous works [81], [82], [83] proposed to instantiate recommen-
dation systems using blockchain technology. Such systems
distribute trust among service providers and give guarantees
that all the reviews written by customers become public, so
that it is not possible to, e.g., hide negative reviews. How-
ever, at the same time, reputation systems typically require
some sort of censorship to hide inappropriate content like
swearwords and inappropriate expressions. In contrast to these
works, our system can provide censorship functions and even
allow service providers to censor reviews published in the past.

Time-lock encryption From the very beginning, there were
two lines of research aiming to solve the problem of time-
lock encryption: one based on the computational complexity
approach [84], [85], [52] and another one relying on trusted
agents [84], [86], [87]. Both of them, however, have limita-
tions. Using trusted agents has the obvious problem of ensur-
ing that the agents are trustworthy, while in a computational
approach the obstacle is that the CPU time required to recover
a decryption key is typically dependent on the hardware.
Therefore, it is challenging to reliably estimate the decryption
time.

Recently, several works [88], [52] explored the idea of time-
lock encryption using Bitcoin blockchain. Liu et al. [52],
as opposed to Jager [88] provide an, albeit inefficient, im-
plementation of their work, while Jager [88] gives formal
security definitions and hence makes more rigorous security
claims. They show a construction based on witness encryption
scheme [89] that makes it possible to leverage the mining
power of Bitcoin to compute the decryption key. Because
the difficulty of Bitcoin computational puzzles is adjusted
to available computational power in the network, it becomes
possible to correctly estimate the time at which the decryption
key will be generated. However, the current instantiations of
witness encryption are far from being practical. While more
efficient witness schemes can be discovered in the future,
the current time for encryption and decryption is said to be
astronomical [52]. Similarly to these works, our time-lock
encryption solution can be used to release the decryption key
in pre-defined time and without any assumptions made on
computational power available in the underlying network. Fur-
thermore, our scheme is efficient, as encryption and decryption
can be done using efficient cyphers like Advanced Encryption
Standard (AES).

IX. CONCLUSION

In this paper, we investigated the idea of making blockchain
history mutable. In particular, we proposed the design and

19

implementation of µchain, a mutable blockchain, which inte-
grates new mechanisms enabling the removal and modification
of blockchain data records. All modifications in µchain are
performed using transactions of a special type, meta trans-
actions, so that unauthorized modifications are rejected in
the same way as invalid transactions, while legitimate mod-
ifications are verifiable by blockchain operators and regular
users. The µchain design yields alternative version histories
that are recorded in the blockchain and ensures that only an
active history, agreed upon by a consensus, is accessible by
users. To hide alternative histories, µchain relies on encryption
and supports two variants of key management that achieve
confidentiality towards regular users only, or towards both
regular users and blockchain operators.

We prototyped µchain using the Hyperledger Fabric open
source project (powered by the Linux foundation) and pre-
sented details of our implementation. We further showed
how µchain could be used to patch vulnerabilities in smart
contracts without imposing hard forks and without disrupting
of blockchain operations. To demonstrate µchain’s flexibility
as a platform for blockchain applications, we designed a
collaborative recommendation system with censorship and
a time-lock encryption – applications which could not be
instantiated using immutable blockchains.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Technical Report, 2008, http://www.vsewiki.cz/images/archive/8/89/
20110124151146!Bitcoin.pdf.

[2] M. Araoz, “Proof of existence,” https://www.proofofexistence.com/.
[3] B. Gipp, N. Meuschke, and A. Gernandti, “Decentralized trusted times-

tamping using the crypto currency Bitcoin,” in iConference 2015, 2015.
[4] “Storj. Decentralized cloud storage,” https://storj.io/.
[5] “Blockstack. The blockchain application stack,” https://blockstack.org/.
[6] “Keybase. Public key crypto for everyone, publicly auditable proofs of

identity,” https://keybase.io/.
[7] V. Buterin, “A next-generation smart contract and decentralized

application platform,” http://www.the-blockchain.com/docs/Ethereum
white paper-a next generation smart contract and decentralized app
lication platform-vitalik-buterin.pdf, 2014.

[8] “Rootstock. Smarter Bitcoin,” http://www.rsk.co/.
[9] “Multichain. Open source private blockchain platform,” http://www.mu

ltichain.com/.
[10] “Hyperledger project,” https://www.hyperledger.org/.
[11] “ERIS: The smart contract application platform,” https://erisindustries.c

om/.
[12] “Ripple. Join the global settlement network,” https://ripple.com/.
[13] A. Lebo, “Implementation of a decentralized, transferable, and open

software license system using the Bitcoin protocol,” in Github project,
2014.

[14] J. Herbert and A. Litchfield, “A novel method for decentralised peer-
to-peer software license validation using cryptocurrency blockchain
technology,” in Australasian Computer Science Conference, 2015.

[15] C. Thompson, “The top 10 blockchain startups to watch in 2016: The
leaders who are changing the game,” https://medium.com/the-intrepid-
review/the-top-10-blockchain-startups-to-watch-in-2016-the-leaders-
who-are-changing-the-game-6195606b0d70#.kqqetdcmp, 2016.

[16] M. Jakobsson and A. Juels, “Proofs of work and bread pudding
protocols,” in IFIP TC6/TC11 Joint Working Conference on Secure
Information Networks: Communications and Multimedia Security, 1999.

[17] J. Mathew, “Bitcoin: Blockchain could become ’safe haven’ for hosting
child sexual abuse images,” http://www.dailydot.com/business/bitcoin-
child-porn-transaction-code/, 2015.

[18] K. Shirriff, “Hidden surprises in the bitcoin blockchain and how
they are stored: Nelson mandela, wikileaks, photos, and python soft-
ware,” http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photog
raphs.html, 2014.

[19] V. Buterin, “Thinking about smart contract security,” https://blog.ether
eum.org/2016/06/19/thinking-smart-contract-security/.

[20] C. Jentzsch, “Decentralized autonomous organization to automate gov-
ernance,” https://download.slock.it/public/DAO/WhitePaper.pdf.

[21] J. I. Wong, “A $79 million cryptocurrency heist just
happened, and it’s threatening the future of blockchains,”
http://qz.com/710126/a-massive-79-million-heist-just-happened-
and-its-threatening-the-future-of-blockchains/.

[22] “The EU general data protection regulation,” 2016, http:
//www.allenovery.com/SiteCollectionDocuments/Radical%20chang
es%20to%20European%20data%20protection%20legislation.pdf.

[23] “Solidity smart-contract language,” https://solidity.readthedocs.io/.
[24] “The Go programming language,” https://golang.org/.
[25] R. C. Merkle, “A certified digital signature,” in Advances in Cryptology

- CRYPTO. Annual International Cryptology Conference, 1989.
[26] C. Dwork and M. Naor, “Pricing via processing or combatting junk

mail,” in Advances in Cryptology - CRYPTO. Annual International
Cryptology Conference, 1993.

[27] S. King and S. Nadal, “PPCoin: Peer-to-peer crypto-currency with Proof-
of-Stake (white paper),” https://peercoin.net/assets/paper/peercoin-paper.
pdf, 2012.

[28] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Sym-
posium on Operating Systems Design and Implementation. USENIX
Association, 1999.

[29] A. Batlin, H. Jaffrey, C. Murphy, A. Przewloka, and S. Williams,
“Building the trust engine. how the blockchain could transform
finance (and the world),” https://www.ubs.com/microsites/blockchain-
report/en/home/ jcr content/mainpar/gridcontrol 3/col2/actionbutt
on 769218921.828358967.file/bGluay9wYXRoPS9jb250ZW50L2R
hbS91YnMvbWljcm9zaXRlcy9ibG9ja2NoYWluL3doaXRlcGFwZ
XItMTkwNTE2LnBkZg==/whitepaper-190516.pdf, A UBS Group
Technology, Tech. Rep., 2016.

[30] S. Tual, “Upgrading The DAO to framework 1.1: a step by
step guide,” https://blog.slock.it/upgrading-the-dao-to-framework-1-1-
a-step-by-step-guide-547a58e00137#.vsk8fim4c.

[31] E. G. Sirer, “Thoughts on The DAO hack,” http://hackingdistributed.c
om/2016/06/17/thoughts-on-the-dao-hack/.

[32] S. Tual, “No DAO funds at risk following the Ethereum smart
contract ‘recursive call’ bug discovery,” https://blog.slock.it/no-dao-
funds-at-risk-following-the-ethereum-smart-contract-recursive-call-
bug-discovery-29f482d348b#.d6kxxza9i.

[33] “Merkle - Patricia tree description,” https://github.com/ethereum/wiki/w
iki/Patricia-Tree.

[34] D. R. Morrison, “PATRICIA – Practical Algorithm To Retrieve Infor-
mation Coded in Alphanumeric,” J. ACM, vol. 15, no. 4, 1968.

[35] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, 1979.

[36] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks
(extended abstract),” in Proceedings of the Tenth Annual ACM
Symposium on Principles of Distributed Computing, ser. PODC ’91.
New York, NY, USA: ACM, 1991, pp. 51–59. [Online]. Available:
http://doi.acm.org/10.1145/112600.112605

[37] J. Baron, K. E. Defrawy, J. Lampkins, and R. Ostrovsky, “How to
withstand mobile virus attacks, revisited,” Cryptology ePrint Archive,
Report 2013/529, 2013, http://eprint.iacr.org/2013/529.

[38] ——, “Communication-optimal proactive secret sharing for dynamic
groups,” Cryptology ePrint Archive, Report 2015/304, 2015, http://ep
rint.iacr.org/2015/304.

[39] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in ACM Conference
on Computer and Communications Security. ACM, 2016.

[40] J. R. Douceur, “The sybil attack,” in Revised Papers from the First
International Workshop on Peer-to-Peer Systems. Springer-Verlag,
2002.

[41] Z. A. Wen and A. Miller, “Scanning live Ethereum contracts for the
”unchecked-send” bug,” http://hackingdistributed.com/2016/06/16/scan
ning-live-ethereum-contracts-for-bugs/.

[42] I. Damgård, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith, Scalable
Multiparty Computation with Nearly Optimal Work and Resilience.

20

https://www.proofofexistence.com/
https://storj.io/
https://blockstack.org/
https://keybase.io/
http://www.the-blockchain.com/docs/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://www.rsk.co/
http://www.multichain.com/
https://www.hyperledger.org/
https://erisindustries.com/
https://ripple.com/
https://medium.com/the-intrepid-review/the-top-10-blockchain-startups-to-watch-in-2016-the-leaders-who-are-changing-the-game-6195606b0d70#.kqqetdcmp
http://www.dailydot.com/business/bitcoin-child-porn-transaction-code/
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://download.slock.it/public/DAO/WhitePaper.pdf
http://qz.com/710126/a-massive-79-million-heist-just-happened-and-its-threatening-the-future-of-blockchains/
http://www.allenovery.com/SiteCollectionDocuments/Radical%20changes%20to%20European%20data%20protection%20legislation.pdf
https://solidity.readthedocs.io/
https://golang.org/
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://www.ubs.com/microsites/blockchain-report/en/home/_jcr_content/mainpar/gridcontrol_3/col2/actionbutton_769218921.828358967.file/bGluay9wYXRoPS9jb250ZW50L2RhbS91YnMvbWljcm9zaXRlcy9ibG9ja2NoYWluL3doaXRlcGFwZXItMTkwNTE2LnBkZg==/whitepaper-190516.pdf
https://blog.slock.it/upgrading-the-dao-to-framework-1-1-a-step-by-step-guide-547a58e00137#.vsk8fim4c
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/
https://blog.slock.it/no-dao-funds-at-risk-following-the-ethereum-smart-contract-recursive-call-bug-discovery-29f482d348b#.d6kxxza9i
https://github.com/ethereum/wiki/wiki/Patricia-Tree
http://doi.acm.org/10.1145/112600.112605
http://eprint.iacr.org/2013/529
http://eprint.iacr.org/2015/304
http://hackingdistributed.com/2016/06/16/scanning-live-ethereum-contracts-for-bugs/

Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 241–261.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-85174-5 14

[43] A. Beimel, “Secret-sharing schemes: A survey,” in International Con-
ference on Coding and Cryptology, 2011.

[44] S. Dolev, K. ElDefrawy, J. Lampkins, R. Ostrovsky, and M. Yung,
“Proactive secret sharing with a dishonest majority,” in Conference on
Security and Cryptography for Networks, 2016.

[45] M. Franklin and M. Yung, “Communication complexity of secure
computation (extended abstract),” in ACM Symposium on Theory of
Computing. ACM, 1992.

[46] “Tripadvisor: Read reveiws, compare & book,” https://www.tripadvisor.
com/.

[47] “HRS – hotel reservation service,” https://www.hrs.com/web.
[48] “Yelp – user reviews and recommendations of top restaurants, shopping,

nightlife, entertainment, services and more,” https://www.yelp.com/.
[49] “Amazon – electronic commerce and cloud computing,” https://www.am

azon.com.
[50] F. Kerschbaum, “A verifiable, centralized, coercion-free reputation sys-

tem,” in ACM Workshop on Privacy in the Electronic Society. ACM,
2009.

[51] T. May, “Time-release crypto. Manuscript,” 1993, https://www.gwern.ne
t/Self-decrypting%20files.

[52] J. Liu, S. A. Kakvi, and B. Warinschai, “Extractable witness encryption
and timed-release encryption from Bitcoin,” Cryptology ePrint Archive,
Report 2015/482, 2015, https://eprint.iacr.org/2015/482.pdf.

[53] “Hyperledger fabric. Protocol specification, architecture,” http://hyperl
edger-fabric.readthedocs.io/en/latest/protocol-spec/#21-architecture.

[54] D. Chaum, “Blind signatures for untraceable payments,” in Advances
in Cryptology - CRYPTO. Annual International Cryptology Conference.
Springer US, 1983.

[55] A. Lysyanskaya and Z. Ramzan, Group blind digital signatures: A
scalable solution to electronic cash. Springer Berlin Heidelberg, 1998.

[56] T. Nakanishi and Y. Sugiyama, Unlinkable Divisible Electronic Cash.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 121–134.
[Online]. Available: http://dx.doi.org/10.1007/3-540-44456-4 10

[57] T. Okamoto and K. Ohta, “Universal electronic cash,” in Advances in
Cryptology - CRYPTO. Annual International Cryptology Conference,
J. Feigenbaum, Ed. Springer Berlin Heidelberg, 1992.

[58] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash,” in
Proceedings on Advances in cryptology. Springer-Verlag New York,
Inc., 1990, pp. 319–327.

[59] A. de Solages and J. Traoré, “An efficient fair off-line electronic
cash system with extensions to checks and wallets with observers,” in
Financial Cryptography and Data Security, 1998.

[60] S. A. Brands, “An efficient off-line electronic cash system based on the
representation problem.” CWI (Centre for Mathematics and Computer
Science), Amsterdam, The Netherlands, Tech. Rep., 1993.

[61] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact e-cash,”
in Advances in Cryptology - EUROCRYPT. International Conference on
the Theory and Applications of Cryptographic Techniques, 2005.

[62] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending attacks
on fast payments in Bitcoin,” ACM Conference on Computer and
Communications Security, 2012.

[63] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to better – how to
make Bitcoin a better currency,” in Financial Cryptography and Data
Security, 2012.

[64] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in Financial Cryptography and Data Security, 2014.

[65] E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in Bitcoin,” in Financial Cryptography and
Data Security, 2013.

[66] D. Ron and A. Shamir, “Quantitative analysis of the full Bitcoin
transaction graph,” Financial Cryptography and Data Security, 2012.

[67] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of Bitcoins: Characterizing payments
among men with no names,” in Conference on Internet Measurement
Conference, 2013.

[68] M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar, “On Bitcoin and red
balloons,” in ACM Conference on Electronic Commerce, 2012.

[69] J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of Bitcoin
mining or, bitcoin in the presence of adversaries,” Workshop on the
Economics of Information Security, 2013.

[70] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from Bitcoin,” in 2013 IEEE Symposium on Security
and Privacy, 2013.

[71] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from Bitcoin,”
in IEEE Symposium on Security and Privacy, 2014.

[72] N. van Saberhagen, “Cryptonote v 2. 0 (white paper),” https://cryptono
te.org/whitepaper.pdf, 2013.

[73] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “PinocchioCoin:
building Zerocoin from a succinct pairing-based proof system,” in
PETShop, 2013.

[74] “C. Lee, Litecoin,” https://litecoin.org/.
[75] P. Jackson and N. Shibetoshi, “Dogecoin,” http://dogecoin.com/.
[76] S. King, “Primecoin: Cryptocurrency with prime number proof-of-

work,” 2013, http://academictorrents.com/details/d0f9accaec8ac9d538f
df9d675105ae1392ea32b.

[77] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized com-
putation platform with guaranteed privacy,” CoRR, vol. abs/1506.03471,
2015.

[78] O. Challa, “Reversecoin: Worlds first cryptocurrency with reversible
transactions (white paper),” https://docs.google.com/document/d/1hMC
kEQUYm9oFCQpxtIWFqVpt66pTQn1zCDW8WX0b7hw/edit#.

[79] M. Möser, I. Eyal, and E. G. Sirer, “Bitcoin covenants,” in 3rd Workshop
on Bitcoin and Blockchain Research, 2016.

[80] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, “Redactable
blockchain, or rewriting history in Bitcoin and friends,” Cryptology
ePrint Archive: Report 2016/757, 2016.

[81] R. Dennis and G. Owen, “Rep on the block: A next generation
reputation system based on the blockchain,” in International Conference
for Internet Technology and Secured Transactions, 2015.

[82] A. Schaub, R. Bazin, O. Hasan, and L. Brunie, “A trustless privacy-
preserving reputation system,” in IFIP SEC - Privacy, 2016.

[83] D. Carboni, “Feedback based reputation on top of the Bitcoin
blockchain,” CoRR, vol. abs/1502.01504, 2016.

[84] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” Massachusetts Institute of Technology, Cam-
bridge, MA, USA, Tech. Rep., 1996.

[85] D. Boneh and M. Naor, “Timed commitments,” in Proceedings of
the 20th Annual International Cryptology Conference on Advances in
Cryptology, ser. CRYPTO ’00. London, UK, UK: Springer-Verlag,
2000, pp. 236–254. [Online]. Available: http://dl.acm.org/citation.cfm?
id=646765.704125

[86] G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan, “Conditional obliv-
ious transfer and timed-release encryption,” in Advances in Cryptology -
EUROCRYPT. International Conference on the Theory and Applications
of Cryptographic Techniques. Springer-Verlag, 1999.

[87] J. Cathalo, B. Libert, and J. Quisquater, “Efficient and non-interactive
timed-release encryption,” in International Conference on Information
and Communication Systems, 2005.

[88] T. Jager, “How to build time-lock encryption,” Cryptology ePrint
Archive, Report 2015/478, 2015, https://eprint.iacr.org/2015/478.pdf.

[89] S. Garg, C. Gentry, A. Sahai, and B. Waters, “Witness encryption and
its applications,” in ACM Symposium on Theory of Computing. ACM,
2013.

21

http://dx.doi.org/10.1007/978-3-540-85174-5_14
https://www.tripadvisor.com/
https://www.hrs.com/web
https://www.yelp.com/
https://www.amazon.com
https://www.gwern.net/Self-decrypting%20files
https://eprint.iacr.org/2015/482.pdf
http://hyperledger-fabric.readthedocs.io/en/latest/protocol-spec/#21-architecture
http://dx.doi.org/10.1007/3-540-44456-4_10
https://cryptonote.org/whitepaper.pdf
https://litecoin.org/
http://dogecoin.com/
http://academictorrents.com/details/d0f9accaec8ac9d538fdf9d675105ae1392ea32b
https://docs.google.com/document/d/1hMCkEQUYm9oFCQpxtIWFqVpt66pTQn1zCDW8WX0b7hw/edit#
http://dl.acm.org/citation.cfm?id=646765.704125
https://eprint.iacr.org/2015/478.pdf

