
Improved Division Property Based Cube Attacks
Exploiting Algebraic Properties of Superpoly

(Full Version)

Qingju Wang1,2,3, Yonglin Hao4?, Yosuke Todo5?, Chaoyun Li6?,
Takanori Isobe7, and Willi Meier8

1 Shanghai Jiao Tong Uninversity, China
2 Technical University of Denmark
3 SnT, University of Luxembourg

4 State Key Laboratory of Cryptology, Beijing, China
5 NTT Secure Platform Laboratories, Japan

6 imec-COSIC, Dept. Electrical Engineering (ESAT), KU Leuven, Belgium
7 University of Hyogo, Japan

8 FHNW, Switzerland
qingju.wang@uni.lu,haoyonglin@yeah.net,todo.yosuke@lab.ntt.co.jp

chaoyun.li@esat.kuleuven.be,takanori.isobe1@gmail.com,willi.meier@fhnw.ch

Abstract. The cube attack is an important technique for the cryptanal-
ysis of symmetric key primitives, especially for stream ciphers. Aiming at
recovering some secret key bits, the adversary reconstructs a superpoly
with the secret key bits involved, by summing over a set of the plain-
texts/IV which is called a cube. Traditional cube attack only exploits
linear/quadratic superpolies. Moreover, for a long time after its pro-
posal, the size of the cubes has been largely confined to an experimental
range, e.g., typically 40. These limits were first overcome by the division
property based cube attacks proposed by Todo et al. at CRYPTO 2017.
Based on MILP modelled division property, for a cube (index set) I, they
identify the small (index) subset J of the secret key bits involved in the
resultant superpoly. During the precomputation phase which dominates
the complexity of the cube attacks, 2|I|+|J| encryptions are required to
recover the superpoly. Therefore, their attacks can only be available when
the restriction |I|+ |J | < n is met.
In this paper, we introduced several techniques to improve the division
property based cube attacks by exploiting various algebraic properties
of the superpoly.
1. We propose the “flag” technique to enhance the preciseness of MILP

models so that the proper non-cube IV assignments can be identified
to obtain a non-constant superpoly.

2. A degree evaluation algorithm is presented to upper bound the de-
gree of the superpoly. With the knowledge of its degree, the super-
poly can be recovered without constructing its whole truth table.
This enables us to explore larger cubes I’s even if |I|+ |J | ≥ n.

? Corresponding authors.



3. We provide a term enumeration algorithm for finding the monomials
of the superpoly, so that the complexity of many attacks can be
further reduced.

As an illustration, we apply our techniques to attack the initialization of
several ciphers. To be specific, our key recovery attacks have mounted
to 839-round Trivium, 891-round Kreyvium, 184-round Grain-128a and
750-round Acorn respectively.

Keywords: Cube attack, Division Property, MILP, Trivium, Kreyvium,
Grain-128a, Acorn, Clique

1 Introduction

Cube attack, proposed by Dinur and Shamir [1] in 2009, is one of the general
cryptanalytic techniques of analyzing symmetric-key cryptosystems. After its
proposal, cube attack has been successfully applied to various ciphers, includ-
ing stream ciphers [2,3,4,5,6], hash functions [7,8,9], and authenticated encryp-
tions [10,11]. For a cipher with n secret variables x = (x1, x2, . . . , xn) and m
public variables v = (v1, v2, . . . , vm), we can regard the algebraic normal form
(ANF) of output bits as a polynomial of x and v, denoted as f(x,v). For a ran-
domly chosen set I = {i1, i2, ..., i|I|} ⊂ {1, . . . ,m}, f(x,v) can be represented
uniquely as

f(x,v) = tI · p(x,v) + q(x,v),

where tI = vi1 · · · vi|I| , p(x,v) only relates to vs’s (s /∈ I) and the secret key
bits x, and q(x,v) misses at least one variable in tI . When vs’s (s /∈ I) and x
are assigned statically, the value of p(x,v) can be computed by summing the
output bit f(x,v) over a structure called cube, denoted as CI , consisting of 2|I|
different v vectors with vi, i ∈ I being active (traversing all 0-1 combinations)
and non-cube indices vs, s /∈ I being static constants.

Traditional cube attacks are mainly concerned about linear or quadratic su-
perpolies. By collecting linear or quadratic equations from the superpoly, the
attacker can recover some secret key bits information during the online phase.
Aiming to mount distinguishing attack by property testing, cube testers are
obtained by evaluating superpolies of carefully selected cubes. In [2], probabilis-
tic tests are applied to detect some algebraic properties such as constantness,
low degree and sparse monomial distribution. Moreover, cube attacks and cube
testers are acquired experimentally by summing over randomly chosen cubes. So
the sizes of the cubes are largely confined. Breakthroughs have been made by
Todo et al. in [12] where they introduce the bit-based division property, a tool for
conducting integral attacks1, to the realm of cube attack. With the help of mixed
integer linear programming (MILP) aided division property, they can identify
the variables excluded from the superpoly and explore cubes with larger size,
1 Integral attacks also require to traverse some active plaintext bits and check whether
the summation of the corresponding ciphertext bits have zero-sum property, which
equals to check whether the superpoly has p(x,v) ≡ 0.

2



e.g.,72 for 832-round Trivium. This enables them to improve the traditional
cube attack.

Division property, as a generalization of the integral property, was first pro-
posed at EUROCRYPT 2015 [13]. With division property, the propagation of
the integral characteristics can be deduced in a more accurate manner, and one
prominent application is the first theoretic key recovery attack on full MISTY1
[14].

The original division property can only be applied to word-oriented primi-
tives. At FSE 2016, bit-based division property [15] was proposed to investigate
integral characteristics for bit-based block ciphers. With the help of division
property, the propagation of the integral characteristics can be represented by
the operations on a set of 0-1 vectors identifying the bit positions with the zero-
sum property. Therefore, for the first time, integral characteristics for bit-based
block ciphers Simon32 and Simeck32 have been proved. However, the sizes of the
0-1 vector sets are exponential to the block size of the ciphers. Therefore, as has
been pointed out by the authors themselves, the deduction of bit-based division
property under their framework requires high memory for block ciphers with
larger block sizes, which largely limits its applications. Such a problem has been
solved by Xiang et al. [16] at ASIACRYPT 2016 by utilizing the MILP model.
The operations on 0-1 vector sets are transformed to imposing division property
values (0 or 1) to MILP variables, and the corresponding integral characteristics
are acquired by solving the models with MILP solvers like Gurobi [17]. With
this method, they are able to give integral characteristics for block ciphers with
block sizes much larger than 32 bits. Xiang et al.’s method has now been applied
to many other ciphers for improved integral attacks [18,19,20,21].

In [12], Todo et al. adapt Xiang et al.’s method by taking key bits into the
MILP model. With this technique, a set of key indices J = {j1, j2, . . . , j|J|} ⊂
{1, . . . , n} is deduced for the cube CI s.t. p(x,v) can only be related to the key
bits xj ’s (j ∈ J). With the knowledge of I and J , Todo et al. can recover 1-bit
of secret-key-related information by executing two phases. In the offline phase,
a proper assignment to the non-cube IVs, denoted by IV ∈ Fm2 , is determined
ensuring p(x, IV ) non-constant. Also in this phase, the whole truth table of
p(x, IV ) is constructed through cube summations. In the online phase, the exact
value of p(x, IV ) is acquired through a cube summation and the candidate
values of xj ’s (j ∈ J) are identified by checking the precomputed truth table. A
proportion of wrong keys are filtered as long as p(x, IV ) is non-constant.

Due to division property and the power of MILP solver, cubes of larger
dimension can now be used for key recoveries. By using a 72-dimensional cube,
Todo et al. propose a theoretic cube attack on 832-round Trivium. They also
largely improve the previous best attacks on other primitives namely Acorn,
Grain-128a and Kreyvium [12,22]. It is not until recently that the result on
Trivium has been improved by Liu et al. [6] mounting to 835 rounds with a
new method called the correlation cube attack. The correlation attack is based
on the numeric mapping technique first appeared in [23] originally used for
constructing zero-sum distinguishers.

3



1.1 Motivations.

Due to [12,22], the power of cube attacks has been enhanced significantly, how-
ever, there are still problems remaining unhandled that we will reveal explicitly.

Finding proper IV ’s may require multiple trials. As is mentioned above,
the superpoly can filter wrong keys only if a proper IV assignment IV ∈ Fm2 in
the constant part of IVs is found such that the corresponding superpoly p(x, IV )
is non-constant. The MILP model in [12,22] only proves the existence of the
proper IV ’s but finding them may not be easy. According to practical experi-
ments, there are quite some IV ’s making p(x, IV ) ≡ 0. Therefore, t ≥ 1 different
IV ’s might be trailed in the precomputation phase before finding a proper one.
Since each IV requires to construct a truth table with complexity 2|I|+|J|, the
overall complexity of the offline phase can be t× 2|I|+|J|. When large cubes are
used (|I| is big) or many key bits are involved (|J | is large), such a complex-
ity might be at the risk of exceeding the brute-force bound 2n. Therefore, two
assumptions are made to validate their cube attacks as follows.

Assumption 1 (Strong Assumption) For a cube CI , there are many values in the
constant part of IV whose corresponding superpoly is balanced.

Assumption 2 (Weak Assumption) For a cube CI , there are many values in the
constant part of IV whose corresponding superpoly is not a constant function.

These assumptions are proposed to guarantee the validity of the attacks as long
as |I| + |J | < n, but the rationality of such assumptions is hard to be proved,
especially when |I|+ |J | are so close to n in many cases. The best solution is to
evaluate different IVs in the MILP model so that the proper IV of the constant
part of IVs and the set J are determined simultaneously before implementing
the attack.
Restriction of |I| + |J | < n. The superpoly recovery has always been domi-
nating the complexity of the cube attack, especially in [12], the attacker knows
no more information except which secret key bits are involved in the superpoly.
Then she/he has to first construct the whole truth table for the superpoly in
the offline phase. In general, the truth-table construction requires repeating the
cube summation 2|J| times, and makes the complexity of the offline phase about
2|I|+|J|. Apparently, such an attack can only be meaningful if |I|+|J | < n, where
n is the number of secret variables. The restriction of |I|+ |J | < n barricades the
adversary from exploiting cubes of larger dimension or mounting more rounds
(where |J | may expand). This restriction can be removed if we can avoid the
truth table construction in the offline phase.

1.2 Our Contributions.

This paper improves the existing cube attacks by exploiting the algebraic prop-
erties of the superpoly, which include the (non-)constantness, low degree and
sparse monomial distribution properties. Inspired by the division property based
cube attack work of Todo et al. in [12], we formulate all these properties in one

4



framework by developing more precise MILP models, thus we can reduce the
complexity of superpoly recovery. This also enables us to attack more rounds, or
employ even larger cubes. Similar to [12], our methods regard the cryptosystem
as a non-blackbox polynomial and can be used to evaluate cubes with large di-
mension compared with traditional cube attack and cube tester. In the following,
our contributions are summarized into five aspects.

Flag technique for finding proper IV assignments. The previous MILP
model in [12] has not taken the effect of constant 0/1 bits of the constant part
of IVs into account. In their model, the active bits are initialized with division
property value 1 and other non-active bits are all initialized to division property
value 0. The non-active bits include constant part of IVs, together with some
secret key bits and state bits that are assigned statically to 0/1 according to
the specification of ciphers. It has been noticed in [22] that constant 0 bits can
affect the propagation of division property. But we should pay more attention to
constant 1 bits since constant 0 bits can be generated in the updating functions
due to the XOR of even number of constant 1’s. Therefore, we propose a for-
mal technique which we refer as the “flag” technique where the constant 0 and
constant 1 as well as other non-constant MILP variables are treated properly.
With this technique, we are able to find proper assignments to constant IVs
(IV ) that makes the corresponding superpoly (p(x, IV )) non-constant. With
this technique, proper IVs can now be found with MILP model rather than
time-consuming trial & summations in the offline phase as in [12,22]. According
to our experiments, the flag technique has a perfect 100% accuracy for finding
proper non-cube IV assignments in most cases. Note that our flag technique has
partially proved the availability of the two assumptions since we are able to find
proper IV ’s in all our attacks.
Degree evaluation for going beyond the |I| + |J | < n restriction. To
avoid constructing the whole truth table using cube summations, we introduce
a new technique that can upper bound the algebraic degree, denoted as d, of the
superpoly using the MILP-aided bit-based division property. With the knowledge
of its degree d (and key indices J), the superpoly can be represented with its(|J|
≤d
)
coefficients rather than the whole truth table, where

(|J|
≤d
)
is defined as(

|J |
≤ d

)
:=

d∑
i=0

(
|J |
i

)
. (1)

When d = |J |, the complexity by our new method and that by [12] are equal.
For d < |J |, we know that the coefficients of the monomials with degree higher
than d are constantly 0. The complexity of superpoly recovery can be reduced
from 2|I|+|J| to 2|I| ×

(|J|
≤d
)
. In fact, for some lightweight ciphers, the algebraic

degrees of their round functions are quite low. Therefore, the degrees d are
often much smaller than the number of involved key bits |J |, especially when
high-dimensional cubes are used. Since d� |J | for all previous attacks, we can
improve the complexities of previous results and use larger cubes mounting to
more rounds even if |I|+ |J | ≥ n.

5



Precise Term enumeration for further lowering complexities. Since the
superpolies are generated through iterations, the number of higher-degree mono-
mials in the superpoly is usually much smaller than its low-degree counterpart.
For example, when the degree of the superpoly is d < |J |, the number of d-degree
monomials are usually much smaller than the upper bound

(|J|
d

)
. We propose

a MILP model technique for enumerating all t-degree (t = 1, . . . , d) monomials
that may appear in the superpoly, so that the complexities of several attacks are
further reduced.
Relaxed Term enumeration. For some primitives (such as 750-round Acorn),
our MILP model can only enumerate the d-degree monomials since the num-
ber of lower-degree monomials are too large to be exhausted. Alternately, for
t = 1, . . . , d− 1, we can find a set of key indices JRt ⊆ J s.t. all t-degree mono-
mials in the superpoly are composed of xj , j ∈ JRt. As long as |JRt| < |J | for
some t = 1, . . . , d− 1, we can still reduce the complexities of superpoly recovery.

Combining the flag technique and the degree evaluation above, we are able to
lower the complexities of the previous best cube attacks in [6,12,22]. Particularly,
we can further provide key recovery results on 839-round Trivium2, 891-round
Kreyvium, 184-round Grain-128a, and 750-round Acorn. Furthermore, the pre-
cise & relaxed term enumeration techniques allow us to lower the complexities
of 833-round Trivium, 849-round Kreyvium, 184-round Grain-128a and 750-
round Acorn. Our concrete results are summarized in Table 1. In [25], Todo
et al. revisit the fast correlation attack and analyze the key-stream generator
(rather than the initialization) of the Grain family (Grain-128a, Grain-128, and
Grain-v1). As a result, the key-stream generators of the Grain family are in-
secure. In other words, they can recover the internal state after initialization
more efficiently than by exhaustive search. And the secret key is recovered from
the internal state because the initialization is a public permutation. To the best
of our knowledge, all our results of Kreyvium, Grain-128a, and Acorn are the
current best key recovery attacks on the initialization of the targeted ciphers.
However, none of our results seems to threaten the security of the ciphers.
Clique view of the superpoly recovery. In order to lower the complexity
of the superpoly recovery, the term enumeration technique has to execute many
MILP instances, which is difficult for some applications. We represent the re-
sultant superpoly as a graph, so that we can utilize the clique concept from the
graph theory to upper bound the complexity of the superpoly recovery phase,
without requiring MILP solver as highly as the term enumeration technique.

Organizations. Sect. 2 provides the background of cube attacks, division prop-
erty, MILP model etc. Sect. 3 introduces our flag technique for identifying proper
assignments to non-cube IVs. Sect. 4 details the degree evaluation technique up-
per bounding the algebraic degree of the superpoly. Combining the flag technique
and degree evaluation, we give improved key recovery cube attacks on 4 targeted
ciphers in Sect. 5. The precise & relaxed term enumeration as well as their ap-

2 While this paper was under submission, Fu et al. released a paper on ePrint [24] and
claimed that 855 rounds initialization of Trivium can be attacked.

6



plications are given in Sect. 6. We revisit the term enumeration technique from
the clique overview in Sect. 7. Finally, we conclude in Sect. 8.

Table 1. Summary of our cube attack results

Applications #Full Rounds #Rounds Cube size |J | Complexity Reference

Trivium 1152

799 32 † - practical [4]
832 72 5 277 [12,22]
833 73 7 276.91 Sect. 6.1
835 37/36∗ - 275 [6]
836 78 1 279 Sect. 5.1
839 78 1 279 Sect. 5.1

Kreyvium 1152

849 61 23 284 [22]
849 61 23 281.7 App.A
849 61 23 273.41 Sect. 6.2
872 85 39 2124 [22]
872 85 39 294.61 App.A
891 113 20 2120.73 App.A

Grain-128a 256

177 33 - practical [26]
182 88 18 2106 [12,22]
182 88 14 2102 App.B
183 92 16 2108 [12,22]
183 92 16 2108 − 296.08 App.B
184 95 21 2109.61 Sect. 6.3

Acorn 1792

503 5 ‡ - practical ‡ [5]
704 64 58 2122 [12,22]
704 64 63 277.88 Sect. 6.4
750 101 81 2125.71 App.C
750 101 81 2120.92 Sect. 6.4

† 18 cubes whose size is from 32 to 37 are used, where the most efficient cube is shown
to recover one bit of the secret key.
∗ 28 cubes of sizes 36 and 37 are used, following the correlation cube attack scenario.
It requires an additional 251 complexity for preprocessing.
‡ The attack against 477 rounds is mainly described for the practical attack in [5].
However, when the goal is the superpoly recovery and to recover one bit of the secret
key, 503 rounds are attacked.

2 Preliminaries

2.1 Mixed Integer Linear Programming

MILP is an optimization or feasibility program whose variables are restricted to
integers. A MILP modelM consists of variablesM.var, constraintsM.con, and
an objective functionM.obj. MILP models can be solved by solvers like Gurobi
[17]. If there is no feasible solution at all, the solver simply returns infeasible. If
no objective function is assigned, the MILP solver only evaluates the feasibility

7



of the model. The application of MILP model to cryptanalysis dates back to
the year 2011 [27], and has been widely used for searching characteristics cor-
responding to various methods such as differential [28,29], linear [29], impossible
differential [30,31], zero-correlation linear [30], and integral characteristics with
division property [16]. We will detail the MILP model of [16] later in this section.

2.2 Cube Attack

Considering a stream cipher with n secret key bits x = (x1, x2, . . . , xn) and m
public initialization vector (IV) bits v = (v1, v2, . . . , vm). Then, the first output
keystream bit can be regarded as a polynomial of x and v referred as f(x,v).
For a set of indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n}, which is referred as cube
indices and denote by tI the monomial as tI = vi1 · · · vi|I| , the algebraic normal
form (ANF) of f(x,v) can be uniquely decomposed as

f(x,v) = tI · p(x,v) + q(x,v),

where the monomials of q(x,v)miss at least one variable from {vi1 , vi2 , . . . , vi|I|}.
Furthermore, p(x,v), referred as the superpoly in [1], is irrelevant to {vi1 , vi2 , . . . ,
vi|I|}. The value of p(x,v) can only be affected by the secret key bits x and the
assignment to the non-cube IV bits vs (s /∈ I). For a secret key x and an
assignment to the non-cube IVs IV ∈ Fm2 , we can define a structure called cube,
denoted as CI(IV ), consisting of 2|I| 0-1 vectors as follows:

CI(IV ) := {v ∈ Fm2 : v[i] = 0/1, i ∈ I
∧

v[s] = IV [s], s /∈ I}. (2)

It has been proved by Dinur and Shamir [1] that the value of superpoly p
corresponding to the key x and the non-cube IV assignment IV can be computed
by summing over the cube CI(IV ) as follows:

p(x, IV ) =
⊕

v∈CI(IV )

f(x,v). (3)

In the remainder of this paper, we refer to the value of the superpoly correspond-
ing to the assignment IV in Eq. (3) as pIV (x) for short. We use CI as the cube
corresponding to arbitrary IV setting in Eq. (2). Since CI is defined according
to I, we may also refer I as the “cube” without causing ambiguities. The size of
I, denoted as |I|, is also referred as the dimension of the cube.

Note: since the superpoly p is irrelevant to cube IVs vi, i ∈ I, the value of
IV [i], i ∈ I cannot affect the result of the summation in Eq. (3) at all. Therefore
in Sect. 5, our IV [i]’s (i ∈ I) are just assigned randomly to 0-1 values.

2.3 Bit-Based Division Property and its MILP Representation

At 2015, the division property, a generalization of the integral property, was pro-
posed in [13] with which better integral characteristics for word-oriented cryp-
tographic primitives have been detected. Later, the bit-based division property

8



was introduced in [15] so that the propagation of integral characteristics can
be described in a more precise manner. The definition of the bit-based division
property is as follows:

Definition 1 ((Bit-Based) Division Property). Let X be a multiset whose
elements take a value of Fn2 . Let K be a set whose elements take an n-dimensional
bit vector. When the multiset X has the division property D1n

K , it fulfils the fol-
lowing conditions:⊕

x∈X
xu =

{
unknown if there exist k ∈ K s.t. u � k,

0 otherwise,

where u � k if ui ≥ ki for all i, and xu =
∏n
i=1 x

ui
i .

When the basic bitwise operations COPY, XOR, AND are applied to the ele-
ments in X, transformations of the division property should also be made fol-
lowing the propagation corresponding rules copy, xor, and proved in [13,15].
Since round functions of cryptographic primitives are combinations of bitwise
operations, we only need to determine the division property of the chosen plain-
texts, denoted by D1n

K0
. Then, after r-round encryption, the division property of

the output ciphertexts, denoted by D1n

Kr , can be deduced according to the round
function and the propagation rules. More specifically, when the plaintext bits
at index positions I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . , n} are active (the active bits
traverse all 2|I| possible combinations while other bits are assigned to static 0/1
values), the division property of such chosen plaintexts is D1n

k , where ki = 1 if
i ∈ I and ki = 0 otherwise. Then, the propagation of the division property from
D1n

k is evaluated as

{k} := K0 → K1 → K2 → · · · → Kr,

where DKi is the division property after i-round propagation. If the division
property Kr does not have an unit vector ei whose only ith element is 1, the ith
bit of r-round ciphertexts is balanced.

However, when round r gets bigger, the size of Kr expands exponentially
towards O(2n) requiring huge memory resources. So the bit-based division prop-
erty has only been applied to block ciphers with tiny block sizes, such as Simon32
and Simeck32 [15]. This memory-crisis has been solved by Xiang et al. using the
MILP modeling method.

Propagation of Division Property with MILP. At ASIACRYPT 2016,
Xiang et al. first introduced a new concept division trail defined as follows:

Definition 2 (Division Trail [16]). Let us consider the propagation of the
division property {k} def

= K0 → K1 → K2 → · · · → Kr. Moreover, for any
vector k∗i+1 ∈ Ki+1, there must exist a vector k∗i ∈ Ki such that k∗i can propa-
gate to k∗i+1 by the propagation rule of the division property. Furthermore, for
(k0,k1, . . . ,kr) ∈ (K0 × K1 × · · · × Kr) if ki can propagate to ki+1 for all
i ∈ {0, 1, . . . , r − 1}, we call (k0 → k1 → · · · → kr) an r-round division trail.

9



Let Ek be the target r-round iterated cipher. Then, if there is a division trail
k0

Ek−−→ kr = ej (j = 1, ..., n), the summation of jth bit of the ciphertexts is
unknown; otherwise, if there is no division trial s.t. k0

Ek−−→ kr = ej , we know
the ith bit of the ciphertext is balanced (the summation of the ith bit is constant
0). Therefore, we have to evaluate all possible division trails to verify whether
each bit of ciphertexts is balanced or not. Xiang et al. proved that the basic
propagation rules copy, xor, and of the division property can be translated as
some variables and constraints of an MILP model. With this method, all possible
division trials can be covered with an MILP modelM and the division property
of particular output bits can be acquired by analyzing the solutions of the M.
After Xiang et al.’s work, some simplifications have been made to the MILP
descriptions of copy, xor, and in [18,12]. We present the current simplest MILP-
based copy, xor, and as follows:

Proposition 1 (MILPModel for COPY [18]). Let a COPY−−−−→ (b1, b2, . . . , bm)
be a division trail of COPY. The following inequalities are sufficient to describe
the propagation of the division property for copy.{

M.var ← a, b1, b2, . . . , bm as binary.
M.con← a = b1 + b2 + · · ·+ bm

Proposition 2 (MILP Model for XOR [18]). Let (a1, a2, . . . , am)
XOR−−−→ b

be a division trail of XOR. The following inequalities are sufficient to describe
the propagation of the division property for xor.{

M.var ← a1, a2, . . . , am, b as binary.
M.con← a1 + a2 + · · ·+ am = b

Proposition 3 (MILP Model for AND [12]). Let (a1, a2, . . . , am)
AND−−−→ b

be a division trail of AND. The following inequalities are sufficient to describe
the propagation of the division property for and.{

M.var ← a1, a2, . . . , am, b as binary.
M.con← b ≥ ai for all i ∈ {1, 2, . . . ,m}

Note: Proposition 3 includes redundant propagations of the division property,
but they do not affect preciseness of the obtained characteristics [12].

2.4 The Bit-Based Division Property for Cube Attack

When the number of initialization rounds is not large enough for a thorough
diffusion, the superpoly p(x,v) defined in Eq. (2) may not be related to all key
bits x1, . . . , xn corresponding to some high-dimensional cube I. Instead, there is
a set of key indices J ⊆ {1, . . . , n} s.t. for arbitrary v ∈ Fm2 , p(x,v) can only be
related to xj ’s (j ∈ J). In CRYPTO 2017, Todo et al. proposed a method for

10



determining such a set J using the bit-based division property [12]. They further
showed that, with the knowledge of such J , cube attacks can be launched to
recover some information related to the secret key bits. More specifically, they
proved the following Lemma 1 and Proposition 4.

Lemma 1. Let f(x) be a polynomial from Fn2 to F2 and afu ∈ F2 (u ∈ Fn2 ) be
the ANF coefficients of f(x). Let k be an n-dimensional bit vector. Assuming
there is no division trail such that k f−→ 1, then afu is always 0 for u � k.

Proposition 4. Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{1, 2, . . . ,m}, let CI be a set of 2|I| values where the variables in {vi1 , vi2 , . . . , vi|I|}
are taking all possible combinations of values. Let kI be an m-dimensional bit
vector such that vkI = tI = vi1vi2 · · · vi|I| , i.e. ki = 1 if i ∈ I and ki = 0 oth-

erwise. Assuming there is no division trail such that (eλ,kI)
f−→ 1, xλ is not

involved in the superpoly of the cube CI .

When f represents the first output bit after the initialization iterations, we
can identify J by checking whether there is a division trial (eλ,kI)

f−→ 1 for
λ = 1, . . . , n using the MILP modeling method introduced in Sect. 2.3. If the
division trial (eλ,kI)

f−→ 1 exists, we have λ ∈ J ; otherwise, λ /∈ J .
When J is determined, we know that for some assignment to the non-cube

IV ∈ Fm2 , the corresponding superpoly pIV (x) is not constant 0, and it is
a polynomial of xj , j ∈ J . With the knowledge of J , we recover offline the
superpoly pIV (x) by constructing its truth table using cube summations defined
as Eq. (3). As long as pIV (x) is not constant, we can go to the online phase where
we sum over the cube CI(IV ) to get the exact value of pIV (x) and refer to the
precomputed truth table to identify the xj , j ∈ J assignment candidates. We
summarize the whole process as follows:

1. Offline Phase: Superpoly Recovery. Randomly pick an IV ∈ Fm2 and
prepare the cube CI(IV ) defined as Eq. (2). For x ∈ Fn2 whose xj , j ∈ J
traverse all 2|J| 0-1 combinations, we compute and store the value of the
superpoly pIV (x) as Eq. (3). The 2|J| values compose the truth table of
pIV (x) and the ANF of the superpoly is determined accordingly. If pIV (x)
is constant, we pick another IV and repeat the steps above until we find an
appropriate one s.t. pv(x) is not constant.

2. Online Phase: Partial Key Recovery. Query the cube CI(IV ) to en-
cryption oracle and get the summation of the 2|I| output bits. We denoted
the summation by λ ∈ F2 and we know pIV (x) = λ according to Eq. (3). So
we look up the truth table of the superpoly and only reserve the xj , j ∈ J
s.t. pIV (x) = λ.

3. Brute-Force Search. Guess the remaining secret variables to recover the
entire value in secret variables.

Phase 1 dominates the time complexity since it takes 2|I|+|J| encryptions to
construct the truth table of size 2|J|. It is also possible that pIV (x) is constant

11



so we have to run several different IV ’s to find the one we need. The attack
can only be meaningful when (1) |I|+ |J | < n; (2) appropriate IV ’s are easy to
be found. The former requires the adversary to use “good” cube I’s with small
J while the latter is the exact reason why Assumptions 1 and 2 are proposed
[12,22].

3 Modeling the Constant Bits to Improve the Preciseness
of the MILP Model

In the initial state of stream ciphers, there are secret key bits, public modifiable
IV bits and constant 0/1 bits. In the previous MILP model, the initial bit-based
division properties of the cube IVs are set to 1, while those of the non-cube IVs,
constant state bits or even secret key bits are all set to 0.

Obviously, when constant 0 bits are involved in multiplication operations,
it always results in an constant 0 output. But, as is pointed out in [22], such
a phenomenon cannot be reflected in previous MILP model method. In the
previous MILP model, the widely used COPY+AND operation:

COPY+AND : (s1, s2)→ (s1, s2, s1 ∧ s2). (4)

can result in division trials (x1, x2)
COPY+AND−−−−−−−−−→ (y1, y2, a) as follows:

(1, 0)
COPY+AND−−−−−−−−−→ (0, 0, 1),

(0, 1)
COPY+AND−−−−−−−−−→ (0, 0, 1).

Assuming that either s1 or s2 of Eq. (4) is a constant 0 bit, (s1 ∧ s2) is always 0.
In this occasion, the division property of (s1 ∧ s2) must be 0 which is overlooked
by the previous MILP model. To prohibit the propagation above, an additional
constraintM.con← a = 0 should be added when either s1 or s2 is constant 0.

In [22], the authors only consider the constant 0 bits. They thought the model
can be precise enough when all the state bits initialized to constant 0 bits are
handled. But in fact, although constant 1 bits do not affect the division property
propagation, we should still be aware because 0 bits might be generated when
even number of constant 1 bits are XORed during the updating process. This is
later shown in Example 2 for Kreyvium in App. A.

Therefore, for all variables in the MILP v ∈ M.var, we give them an ad-
ditional flag v.F ∈ {1c, 0c, δ} where 1c means the bit is constant 1, 0c means
constant 0 and δ means variable. Apparently, when v.F = 0c/1c, there is always
a constraint v = 0 ∈M.con. We define =, ⊕ and × operations for the elements
of set {1c, 0c, δ}. The = operation tests whether two elements are equal(naturally
1c = 1c, 0c = 0c and δ = δ ). The ⊕ operation follows the rules:

1c ⊕ 1c = 0c

0c ⊕ x = x⊕ 0c = x

δ ⊕ x = x⊕ δ = δ

for arbitrary x ∈ {1c, 0c, δ} (5)

12



The × operation follows the rules:
1c × x = x× 1c = x

0c × x = x× 0c = 0c

δ × δ = δ

for arbitrary x ∈ {1c, 0c, δ} (6)

Therefore, in the remainder of this paper, the MILP models for COPY, XOR
and AND should also consider the effects of flags. So the previous copy, xor, and
and should now add the assignment to flags. We denote the modified versions as
copyf, xorf, and andf and define them as Proposition 5 6 and 7 as follows.

Proposition 5 (MILPModel for COPY with Flag). Let a COPY−−−−→ (b1, b2, . . . ,
bm) be a division trail of COPY. The following inequalities are sufficient to de-
scribe the propagation of the division property for copyf.

M.var ← a, b1, b2, . . . , bm as binary.
M.con← a = b1 + b2 + · · ·+ bm

a.F = b1.F = . . . = bm.F

We denote this process as (M, b1, . . . , bm)← copyf(M, a,m).

Proposition 6 (MILPModel for XOR with Flag). Let (a1, a2, . . . , am)
XOR−−−→

b be a division trail of XOR. The following inequalities are sufficient to describe
the propagation of the division property for xorf.

M.var ← a1, a2, . . . , am, b as binary.
M.con← a1 + a2 + · · ·+ am = b

b.F = a1.F ⊕ a2.F ⊕ · · · ⊕ am.F

We denote this process as (M, b)← xorf(M, a1, . . . , am).

Proposition 7 (MILPModel for AND with Flag). Let (a1, a2, . . . , am)
AND−−−→

b be a division trail of AND. The following inequalities are sufficient to describe
the propagation of the division property for andf.

M.var ← a1, a2, . . . , am, b as binary.
M.con← b ≥ ai for all i ∈ {1, 2, . . . ,m}
b.F = a1.F × a2.F × · · · am.F
M.con← b = 0 if b.F = 0c

We denote this process as (M, b)← andf(M, a1, . . . , am).

With these modifications, we are able to improve the preciseness of the MILP
model. The improved attack framework can be written as Algorithm 1. It enables
us to identify the involved keys when the non-cube IVs are set to specific constant
0/1 values by imposing corresponding flags to the non-cube MILP binary vari-
ables. With this method, we can determine an IV ∈ Fm2 s.t. the corresponding
superpoly pIV (x) 6= 0.

13



Algorithm 1 Evaluate secret variables by MILP with Flags
1: procedure attackFramework(Cube indices I, specific assignment to non-cube IVs

IV or IV = NULL)
2: Declare an empty MILP modelM
3: Declare x as n MILP variables ofM corresponding to secret variables.
4: Declare v as m MILP variables ofM corresponding to public variables.
5: M.con← vi = 1 and assign vi.F = δ for all i ∈ I
6: M.con← vi = 0 for all i ∈ ({1, 2, . . . , n} − I)
7: M.con←

∑n
i=1 xi = 1 and assign xi.F = δ for all i ∈ {1, . . . , n}

8: if IV = NULL then
9: vi.F = δ for all i ∈ ({1, 2, . . . ,m} − I)
10: else
11: Assign the flags of vi, i ∈ ({1, 2, . . . ,m} − I) as:

vi.F =

{
1c if IV [i] = 1

0c if IV [i] = 0

12: end if
13: UpdateM according to round functions and output functions
14: do
15: solve MILP modelM
16: if M is feasible then
17: pick index j ∈ {1, 2, . . . , n} s.t. xj = 1
18: J = J ∪ {j}
19: M.con← xj = 0
20: end if
21: whileM is feasible
22: return J
23: end procedure

4 Upper Bounding the Degree of the Superpoly

For an IV ∈ Fm2 s.t. pIV (x) 6= 0, the ANF of pIV (x) can be represented as

pIV (x) =
∑
u∈Fn2

aux
u (7)

where au is determined by the values of the non-cube IVs. If the degree of
the superpoly is upper bounded by d, then for all u’s with Hamming weight
satisfying hw(u) > d, we constantly have au = 0. In this case, we no longer have
to build the whole truth table to recover the superpoly . Instead, we only need
to determine the coefficients au for hw(u) ≤ d. Therefore, we select

∑d
i=0

(|J|
i

)
different x’s and construct a linear system with

(∑d
i=0

(|J|
i

))
variables and the

coefficients as well as the whole ANF of pIV (x) can be recovered by solving
such a linear system. So the complexity of Phase 1 can be reduced from 2|I|+|J|

to 2|I| ×
∑d
i=0

(|J|
i

)
. For the simplicity of notations, we denote the summation∑d

i=0

(|J|
i

)
as
(|J|
≤d
)
in the remainder of this paper. With the knowledge of the

14



involved key indices J = {j1, j2, . . . , j|J|} and the degree of the superpoly d =
deg pIV (x), the attack procedure can be adapted as follows:

1. Offline Phase: Superpoly Recovery. For all
(|J|
≤d
)
x’s satisfying hw(x) ≤

d and
⊕

j∈J ej � x, compute the values of the superpolys as pIV (x) by
summing over the cube CI(IV ) as Eq. (3) and generate a linear system of
the

(|J|
≤d
)
coefficients au (hw(u) ≤ d). Solve the linear system, determine the

coefficient au of the
(|J|
≤d
)
terms and store them in a lookup table T . The

ANF of the pIV (x) can be determined with the lookup table.
2. Online Phase: Partial Key Recovery. Query the encryption oracle and

sum over the cube CI(IV ) as Eq. (3) and acquire the exact value of pIV (x).
For each of the 2|J| possible values of {xj1 , . . . , xj|J|}, compute the values of
the superpoly as Eq. (7) (the coefficient au are acquired by looking up the
precomputed table T ) and identify the correct key candidates.

3. Brute-force search phase. Attackers guess the remaining secret variables
to recover the entire value in secret variables.

The complexity of Phase 1 becomes 2|I| ×
(|J|
≤d
)
. Phase 2 now requires 2|I| en-

cryptions and 2|J| ×
(|J|
≤d
)
table lookups, so the complexity can be regarded as

2|I|+2|J|×
(|J|
≤d
)
. The complexity of Phase 3 remains 2n−1. Therefore, the number

of encryptions an available attack requires is

max

{
2|I| ×

(
|J |
≤ d

)
, 2|I| + 2|J| ×

(
|J |
≤ d

)}
< 2n. (8)

The previous limitation of |I|+ |J | < n is removed.
The knowledge of the algebraic degree of superpolys can largely benefit the

efficiency of the cube attack. Therefore, we show how to estimate the algebraic
degree of superpolys using the division property. Before the introduction of the
method, we generalize Proposition 4 as follows.

Proposition 8. Let f(x,v) be a polynomial, where x and v denote the secret
and public variables, respectively. For a set of indices I = {i1, i2, . . . , i|I|} ⊂
{1, 2, . . . ,m}, let CI be a set of 2|I| values where the variables in {vi1 , vi2 , . . . , vi|I|}
are taking all possible combinations of values. Let kI be an m-dimensional bit
vector such that vkI = tI = vi1vi2 · · · vi|I| . Let kΛ be an n-dimensional bit vector.

Assuming there is no division trail such that (kΛ||kI)
f−→ 1, the monomial xkΛ

is not involved in the superpoly of the cube CI .

Proof. The ANF of f(x,v) is represented as follows

f(x,v) =
⊕

u∈Fn+m
2

afu · (x‖v)
u
,

15



where afu ∈ F2 denotes the ANF coefficients. The polynomial f(x,v) is decom-
posed into

f(x,v) =
⊕

u∈Fn+m
2 |u�(0‖kI)

afu · (x‖v)
u ⊕

⊕
u∈Fn+m

2 |u6�(0‖kI)

afu · (x‖v)
u

= tI ·
⊕

u∈Fn+m
2 |u�(0‖kI)

afu · (x‖v)
u⊕(0‖kI) ⊕

⊕
u∈Fn+m

2 |u6�(0‖kI)

afu · (x‖v)
(0‖u)

= tI · p(x,v)⊕ q(x,v).

Therefore, the superpoly p(x,v) is represented as

p(x,v) =
⊕

u∈Fn+m
2 |u�(0‖kI)

afu · (x‖v)
u⊕(0‖kI).

Since there is no division trail (kΛ‖kI)
f−→ 1, afu = 0 for u � (kΛ‖kI) because

of Lemma1. Therefore,

p(x,v) =
⊕

u∈Fn+m
2 |u�(0‖kI),ukΛ‖0=0

afu · (x‖v)u⊕(0‖kI).

This superpoly is independent of the monomial xkΛ since ukΛ‖0 is always 0. ut

Algorithm 2 Evaluate upper bound of algebraic degree on the superpoly
1: procedure DegEval(Cube indices I, specific assignment to non-cube IVs IV or

IV = NULL)
2: Declare an empty MILP modelM.
3: Declare x be n MILP variables ofM corresponding to secret variables.
4: Declare v be m MILP variables ofM corresponding to public variables.
5: M.con← vi = 1 and assign the flags vi.F = δ for all i ∈ I
6: M.con← vi = 0 for i ∈ ({1, . . . , n} − I)
7: if IV = NULL then
8: Assign the flags vi.F = δ for i ∈ ({1, . . . , n} − I)
9: else
10: Assign the flags of vi, i ∈ ({1, 2, . . . , n} − I) as:

vi.F =

{
1c if IV [i] = 1

0c if IV [i] = 0

11: end if
12: Set the objective functionM.obj ←

∑n
i=1 xi

13: UpdateM according to round functions and output functions
14: Solve MILP modelM
15: return The solution ofM.
16: end procedure

16



According to Proposition 8, the existence of the division trial (kΛ||kI)
f−→ 1

is in accordance with the existence of the monomial xkΛ in the superpoly of the
cube CI .

If there is d ≥ 0 s.t. for all kΛ of hamming weight hw(kΛ) > d, the division
trail xkΛ does not exist, then we know that the algebraic degree of the superpoly
is bounded by d. Using MILP, this d can be naturally modeled as the maximum
of the objective function

∑n
j=1 xj . With the MILP model M and the cube in-

dices I, we can bound the degree of the superpoly using Algorithm 2. Same
with Algorithm 1, we can also consider the degree of the superpoly for specific
assignment to the non-cube IVs. So we also add the input IV that can either be
a specific assignment or a NULL referring to arbitrary assignment. The solution
M.obj = d is the upper bound of the superpoly’s algebraic degree. Furthermore,
corresponding to M.obj = d and according to the definition of M.obj, there
should also be a set of indices {l1, . . . , ld} s.t. the variables representing the ini-
tially declared x (representing the division property of the key bits) satisfy the
constraints xl1 = . . . = xld = 1. We can also enumerate all t-degree (1 ≤ t ≤ d)
monomials involved in the superpoly using a similar technique which we will
detail later in Sect. 6.

5 Applications of Flag Technique and Degree Evaluation

We apply our method to 4 NLFSR-based ciphers namely Trivium, Kreyvium,
Grain-128a and Acorn. Among them, Trivium, Grain-128a and Acorn are
also targets of [12]. Using our new techniques, we can both lower the complexities
of previous attacks and give new cubes that mount to more rounds. We give
details of the application to Trivium in this section, and the applications to
Kreyvium, Grain-128a and Acorn in App. A,B and C respectively.

5.1 Specification of Trivium

Trivium is an NLFSR-based stream cipher, and the internal state is repre-
sented by 288-bit state (s1, s2, . . . , s288). Fig. 1 shows the state update function
of Trivium. The 80-bit key is loaded to the first register, and the 80-bit IV is
loaded to the second register. The other state bits are set to 0 except the least
three bits in the third register. Namely, the initial state bits are represented as

(s1, s2, . . . , s93) = (K1,K2, . . . ,K80, 0, . . . , 0),

(s94, s95, . . . , s177) = (IV1, IV2, . . . , IV80, 0, . . . , 0),

(s178, s279, . . . , s288) = (0, 0, . . . , 0, 1, 1, 1).

The pseudo code of the update function is given as follows.

t1 ← s66 ⊕ s93
t2 ← s162 ⊕ s177
t3 ← s243 ⊕ s288
z ← t1 ⊕ t2 ⊕ t3

17



zi

Fig. 1. Structure of Trivium

t1 ← t1 ⊕ s91 · s92 ⊕ s171
t2 ← t2 ⊕ s175 · s176 ⊕ s264
t3 ← t3 ⊕ s286 · s287 ⊕ s69
(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s279, . . . , s288)← (t2, s178, . . . , s287)

Here z denotes the 1-bit key stream. First, in the key initialization, the state
is updated 4 × 288 = 1152 times without producing an output. After the key
initialization, one bit key stream is produced by every update function.

5.2 MILP Model of Trivium

The only non-linear component of Trivium is a 2-degree core function denoted
as fcore that takes as input a 288-bit state s and 5 indices i1, . . . , i5, and outputs
a new 288-bit state s′ ← fcore(s, i1, . . . , i5) where

s′i =

{
si1si2 + si3 + si4 + si5 , i = i5

si, otherwise
(9)

The division property propagation for the core function can be represented as
Algorithm 3. The input of Algorithm 3 consists ofM as the current MILP model,
a vector of 288 binary variables x describing the current division property of the
288-bit NFSR state, and 5 indices i1, i2, i3, i4, i5 corresponding to the input bits.
Then Algorithm 3 outputs the updated model M, and a 288-entry vector y
describing the division property after fcore.

With the definition of Core, the MILP model of R-round Trivium can be
described as Algorithm 4. This algorithm is a subroutine of Algorithm 1 for
generating the MILP modelM, and the modelM can evaluate all division trails

18



Algorithm 3 MILP model of division property for the core function (9)
1: procedure Core(M,x, i1, i2, i3, i4, i5)
2: (M, yi1 , z1)← copyf(M, xi1)
3: (M, yi2 , z2)← copyf(M, xi2)
4: (M, yi3 , z3)← copyf(M, xi3)
5: (M, yi4 , z4)← copyf(M, xi4)
6: (M, a)← andf(M, z1, z2)
7: (M, yi5)← xorf(M, a, z2, z3, z4, xi5)
8: for all i ∈ {1, 2, . . . , 288} w/o i1, i2, i3, i4, i5 do
9: yi = xi
10: end for
11: return (M,y)
12: end procedure

for Trivium whose initialization rounds are reduced to R. Note that constraints
to the input division property are imposed by Algorithm1.

5.3 Experimental Verification

Identical to [12], we use the cube I = {1, 11, 21, 31, 41, 51, 61, 71} to verify our
attack and implementation. The experimental verification includes: the degree
evaluation using Algorithm 2, specifying involved key bits using Algorithm 1
with IV = NULL or specific non-cube IV settings.

Example 1 (Verification of Our Attack against 591-round Trivium). With IV =
NULL using Algorithm 1, we are able to identify J = {23, 24, 25, 66, 67}. We
know that with some assignment to the non-cube IV bits, the superpoly can be
a polynomial of secret key bits x23, x24, x25, x66, x67. These are the same with
[12]. Then, we set IV to random values and acquire the degree through Algo-
rithm 2, and verify the correctness of the degree by practically recovering the
corresponding superpoly.

– When we set IV = 0xcc2e487b, 0x78f99a93, 0xbeae, and run Algorithm 2,
we get the degree 3. The practically recovered superpoly is also of degree 3:

pv(x) = x66x23x24 + x66x25 + x66x67 + x66,

which is in accordance with the deduction by Algorithm2 through MILP
model.

– When we set IV = 0x61fbe5da, 0x19f5972c, 0x65c1, the degree evaluation
of Algorithm 2 is 2. The practically recovered superpoly is also of degree 2:

pv(x) = x23x24 + x25 + x67 + 1.

– When we set IV = 0x5b942db1, 0x83ce1016, 0x6ce, the degree is 0 and the
superpoly recovered is also constant 0.

19



Algorithm 4 MILP model of division property for Trivium
1: procedure TriviumEval(round R)
2: Prepare empty MILP ModelM
3: M.var ← vi for i ∈ {1, 2, . . . , 128}. . Declare Public Modifiable IVs
4: M.var ← xi for i ∈ {1, 2, . . . , 128}. . Declare Secret Keys
5: M.var ← s0i for i ∈ {1, 2, . . . , 288}
6: s0i = xi, s0i+93 = vi for i = 1, . . . , 80.
7: M.con← s0i = 0 for i = 81, . . . , 93, 174, . . . , 288.
8: s0i .F = 0c for i = 81, . . . , 285 and s0j .F = 1c for j = 286, 287, 288. . Assign the

flags for constant state bits
9: for r = 1 to R do
10: (M,x) = Core(M, sr−1, 66, 171, 91, 92, 93)
11: (M,y) = Core(M,x, 162, 264, 175, 176, 177)
12: (M,z) = Core(M,y, 243, 69, 286, 287, 288)
13: sr = z ≫ 1
14: end for
15: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
16: M.con← sRi = 0
17: end for
18: M.con← (sR66 + sR93 + sR162 + sR177 + sR243 + sR288) = 1
19: returnM
20: end procedure

On the accuracy of MILP model with flag technique. As a comparison,
we use the cube above and conduct practical experiments on different rounds
namely 576, 577, 587, 590, 591 (selected from Table 2 of [22]). We try 10000
randomly chosen IV ’s. For each of them, we use the MILP method to evaluate
the degree d, in comparison with the practically recovered ANF of the superpoly
pIV (x). For 576, 577, 587 and 590 rounds, the accuracy is 100%. In fact, such
100% accuracy is testified in most of our applied ciphers, as shown in App. A,
B and C. For 591-round, the accuracies are distributed as:

1. When the MILP model gives degree evaluation d = 0, the accuracy is 100%
that the superpoly is constant 0.

2. When the MILP model gives degree evaluation d = 3, there is an accuracy
49% that the superpoly is a 3-degree polynomial. For the rest, the superpoly
is constant 0.

3. When the MILP model gives degree evaluation d = 2, there is accuracy 43%
that the superpoly is a 2-degree polynomial. For the rest, the superpoly is
constant 0.

The ratios of error can easily be understood: for example, in some case, one key
bit may multiply with constant 1 in one step xi · 1 and be canceled by XORing
with itself in the next round, this results in a newly generated constant 0 bit
((xi · 1) ⊕ xi = 0). However, by the flag technique, this newly generated bit
has flag value δ = (δ × 1c) + δ. In our attacks, the size of cubes tends to be
large, which means most of the IV bits become active, the above situation of

20



(xi · 1)⊕ xi = 0 will now become (xi · vj)⊕ xi. Therefore, when larger cubes are
used, fewer constant 0/1 flags are employed, and the MILP models are becoming
closer to those of IV = NULL. It is predictable that the accuracy of the flag
technique tends to increase when larger cubes are used. To verify this statement,
we construct a 10-dimensional cube I = {5, 13, 18, 22, 30, 57, 60, 65, 72, 79} for
591-round Trivium. When IV = NULL, we acquire the same upper bound of
the degree d = 3. Then, we tried thousands of random IVs, and get an overall
accuracy 80.9%. From above, we can conclude that the flag technique has high
preciseness and can definitely improve the efficiency of the division property
based cube attacks.

5.4 Theoretical Results

The best result in [12] mounts to 832-round Trivium with cube dimension |I| =
72 and the superpoly involves |J | = 5 key bits. The complexity is 277 in [12].
Using Algorithm 2, we further acquire that the degree of such a superpoly is 3.
So the complexity for superpoly recovery is 272×

(
5
≤3
)
= 276.7 and the complexity

for recovering the partial key is 272 + 23 ×
(
5
3

)
. Therefore, according to Eq. (8),

the complexity of this attack is 276.7.
We further construct a 77-dimensional cube, I = {1, . . . , 80} \ {5, 51, 65}. Its

superpoly after 835 rounds of initialization only involves 1 key bit J = {57}. So
the complexity of the attack is 278. Since there are only 3 non-cube IVs, we let
IV be all 23 possible non-cube IV assignments and run Algorithm 1. We find
that x57 is involved in all of the 23 superpolys. So the attack is available for any
of the 23 non-cube IV assignments. This can also be regarded as a support to
the rationality of Assumption 1.

According previous results, Trivium has many cubes whose superpolys only
contain 1 key bit. These cubes are of great value for our key recovery attacks.
Firstly, the truth table of such superpoly is balanced and the Partial Key Re-
covery phase can definitely recover 1 bit of secret information. Secondly, the
Superpoly Recovery phase only requires 2|I|+1 and the online Partial Key Re-
covery only requires 2|I| encryptions. Such an attack can be meaningful as long
as |I|+ 1 < 80, so we can try cubes having dimension as large as 78. Therefore,
we investigate 78-dimensional cubes and find the best cube attack on Trivium
is 839 rounds. By running Algorithm 1 with 22 = 4 different assignments to
non-cube IVs, we know that the key bit x61 is involved in the superpoly for
IV = 0x0, 0x4000, 0x0 or IV = 0x0, 0x4002, 0x0. In other words, the 47-th
IV bit must be assigned to constant 1. The summary of our new results about
Trivium is in Table 2.

6 Lower Complexity with Term Enumeration

In this section, we show how to further lower the complexity of recovering the
superpoly (Phase 1) in Sect. 4.

With cube indices I, key bits J and degree d, the complexity of the current
superpoly recovery is 2I ×

(|J|
≤d
)
, where

(|J|
≤d
)
corresponds to all 0−, 1 − . . .,

21



Table 2. Summary of theoretical cube attacks on Trivium. The time complexity in
this table shows the time complexity of Superpoly Recovery (Phase 1) and Partial Key
Recovery (Phase 2).

#Rounds |I| Degree Involved keys J Time complexity

832 72† 3 34, 58, 59, 60, 61 (|J | = 5) 276.7

833 73‡ 3 49, 58, 60, 74, 75, 76 (|J | = 7) 279

833 74∗ 1 60 (|J | = 1) 275

835 77? 1 57 (|J | = 1) 278

836 78◦ 1 57 (|J | = 1) 279

839 78• 1 61 (|J | = 1) 279

†: I = {1, 2, ..., 65, 67,69, ..., 79}
‡: I = { 1,2, ..., 67, 69,71, ..., 79}
∗: I = {1,2, ..., 69, 71, 73, ..., 79}
?: I = {1, 2, 3, 4, 6, 7, . . . , 50, 52, 53,. . . ,64, 66, 67, . . . , 80 }
◦: I = {1, ..., 11, 13, ..., 42, 44, ..., 80 }
•: I = {1, ..., 33, 35, ..., 46, 48, ..., 80 } and IV [47] = 1

d−degree monomials. When d ≤ |J |/2 (which is true in most of our applications),
we constantly have

(|J|
0

)
≤ . . . ≤

(|J|
d

)
. But in practice, high-degree terms are

generated in later iterations and the high-degree monomials should be fewer
than their low-degree counterparts. Therefore, for all

(|J|
i

)
monomials, only very

few of them may appear in the superpoly. Similar to Algorithm 1 that decides
all key bits appear in the superpoly, we propose Algorithm 5 that enumerates
all t-degree monomials that may appear in the superpoly. Apparently, when we
use t = 1, we can get J1 = J , the same output as Algorithm 1 containing
all involved keys. If we use t = 2, 3, . . . , d, we get J2, . . . , Jd that contains all
possible monomials of degrees 2, 3, . . . , d. Therefore, we only need to determine
1 + |J1| + |J2| + . . . + |Jd| coefficients in order to recover the superpoly and
apparently, |Jt| ≤

(|J|
t

)
for t = 1, . . . d. With the knowledge of Jt, t = 1, . . . , d,

the complexity for Superpoly Recovery (Phase 1) has now become

2|I| × (1 +

d∑
t=1

|Jt|) ≤ 2|I| ×
(
|J |
≤ d

)
. (10)

And the size of the lookup table has also reduced to (1 +
∑d
t=1 |Jt|). So the

complexity of the attack is now

max{2|I| × (1 +

d∑
t=1

|Jt|), 2|I| + 2|J| × (1 +

d∑
t=1

|Jt|)}. (11)

22



Furthermore, since high-degree monomials are harder to be generated through
iterations than low-degree ones, we can often find |Ji| <

(|J|
i

)
when i approaches

d. So the complexity for superpoly recovery has been reduced.
Note: Jt’s (t = 1, . . . , d) can be generated by TermEnum of Algorithm 5 and
they satisfy the following Property 1. This property is equivalent to the “Embed
Property” given in [19].

Property 1. For t = 2, . . . , d, if there is T = (i1, i2, . . . , it) ∈ Jt and T ′ =
(is1 , . . . , isl) (l < t) is a subsequence of T (1 ≤ s1 < . . . < sl ≤ t). Then,
we constantly have T ′ ∈ Jl.

Before proving Property 1, we first prove the following Lemma 2.

Lemma 2. If k � k′ and there is division trial k f−→ l, then there is also division
trial k′ f−→ l′ s.t. l � l′.

Proof. Since f is a combination of COPY, AND and XOR operations, and the
proofs when f equals to each of them are similar, we only give a proof of the
case when f equals to COPY. Let f : (∗, . . . , ∗, x) COPY−−−−→ (∗, . . . , ∗, x, x).

First assume the input division property be k = (k1, 0), since k � k′, there
must be k′ = (k′1, 0) and k1 � k′1. We have l = k, l′ = k′, thus the property
holds.

When the input division property is k = (k1, 1), we know that the output
division property can be l ∈ {(k1, 0, 1), (k1, 1, 0)}. Since k � k′, we know k′ =
(k′1, 1) or k′ = (k′1, 0), and k1 � k′1. When k′ = (k′1, 0), then l′ = k′ = (k′1, 0),
the relation holds. When k′ = (k′1, 1), we know l′ ∈ {(k′1, 0, 1), (k′1, 1, 0)}, the
relation still holds. ut

Now we are ready to prove Property 1.

Proof. Let k,k ∈ Fn2 satisfy ki = 1 for i ∈ T and ki = 0 otherwise; k′i = 1
for i ∈ T ′ and k′i = 0 otherwise. Since T ∈ Jt, we know that there is division
trial (k,kI)

R−Rounds−−−−−−−→ (0, 1) Since k � k′, we have (k,kI) � (k′,kI) and
according to Lemma 2, there is division trial s.t. (k′,kI)

R−Rounds−−−−−−−→ (0m+n, s)
where (0m+n, 1) � (0m+n, s). Since the hamming weight of (k′,kI) is larger than
0 and there is no combination of COPY, AND and XOR that makes non-zero
division property to all-zero division property. So we have s = 1 and there exist
division trial (k′,kI)

R−Rounds−−−−−−−→ (0, 1). ut

Property 1 reveals a limitation of Algorithm 5. Assume the superpoly is

pv(x1, x2, x3, x4) = x1x2x3 + x1x4.

We can acquire J3 = {(1, 2, 3)} by running TermEnum of Algorithm 5. But,
if we run TermEnum with t = 2, we will not acquire just J2 = {(1, 4)} but
J2 = {(1, 4), (1, 2), (1, 3), (2, 3)} due to (1, 2, 3) ∈ J3 and (1, 2), (1, 3), (2, 3) are
its subsequences. Although there are still redundant terms, the reduction from(|J|
d

)
to |Jd| is usually huge enough to improve the existing cube attack results.

23



Algorithm 5 Enumerate all the terms of degree t

1: procedure TermEnum(Cube indices I,
specific assignment to non-cube IVs
IV or IV = NULL, targeted degree t)

2: Declare an empty MILP modelM
and an empty set Jt = φ ⊆ {1, . . . , n}n

3: Declare x as n MILP variables of
M corresponding to secret variables.

4: Declare v as m MILP variables of
M corresponding to public variables.

5: M.con← vi = 1 and assign vi.F =
δ for all i ∈ I

6: M.con ← vi = 0 for all i ∈
({1, 2, . . . , n} − I)

7: M.con ←
∑n

i=1 xi = t and assign
xi.F = δ for all i ∈ {1, . . . , n}

8: if IV = NULL then
9: vi.F = δ for all i ∈

({1, 2, . . . , n} − I)
10: else
11: Assign the flags of vi, i ∈

({1, 2, . . . , n} − I) as:

vi.F =

{
1c if IV [i] = 1

0c if IV [i] = 0

12: end if
13: Update M according to round

functions and output functions
14: do
15: solve MILP modelM
16: if M is feasible then
17: pick index sequence

(j1, . . . , jt) ⊆ {1, . . . , n}t s.t.
xj1 = . . . = xjt = 1

18: Jt = Jt ∪ {(j1, . . . , jt)}
19: M.con←

∑t
i=1 xji ≤ t− 1

20: end if
21: whileM is feasible
22: return Jt
23: end procedure

1: procedure RTermEnum(Cube indices
I, specific assignment to non-cube IVs
IV or IV = NULL, targeted degree t)

2: Declare an empty MILP model
M and an empty set JRt = φ ⊆
{1, . . . , n}

3: Declare x as n MILP variables of
M corresponding to secret variables.

4: Declare v as m MILP variables of
M corresponding to public variables.

5: M.con← vi = 1 and assign vi.F =
δ for all i ∈ I

6: M.con ← vi = 0 for all i ∈
({1, 2, . . . , n} − I)

7: M.con ←
∑n

i=1 xi ≥ t and assign
xi.F = δ for all i ∈ {1, . . . , n}

8: if IV = NULL then
9: vi.F = δ for all i ∈

({1, 2, . . . , n} − I)
10: else
11: Assign the flags of vi, i ∈

({1, 2, . . . , n} − I) as:

vi.F =

{
1c if IV [i] = 1

0c if IV [i] = 0

12: end if
13: Update M according to round

functions and output functions
14: do
15: solve MILP modelM
16: if M is feasible then
17: pick index set
{j1, . . . , jt′} ⊆ {1, . . . , n} s.t. t′ ≥ t
and xj1 = . . . = xjt′ = 1

18: JRt = JRt ∪ {j1, . . . , jt′}
19: M.con←

∑
i/∈J′

t
xi ≥ 1

20: end if
21: whileM is feasible
22: return Jt
23: end procedure

24



Applying such term enumeration technique, we are able to lower complex-
ities of many existing attacks namely: 832-, 833-round Trivium, 849-round
Kreyvium, 184-round Grain-128a and 704-round Acorn. The attack on 750-
round Acorn can also be improved using a relaxed version of TermEnum which
is presented as RTermEnum on the righthand side of Algorithm 5. In the relaxed
algorithm, RTermEnum is acquired from TermEnum by replacing some states which
are marked in red in Algorithm 5, and we state details later in Sect. 6.4.

6.1 Application to Trivium

As can be seen in Table 2, the attack on 832-round Trivium has J = J1 = 5 and
degree d = 3, so we have

(
5
≤3
)
= 26 using previous technique. But by running

Algorithm 5, we find that |J2| = 5, |J3| = 1, so we have

1 +

3∑
t=1

|Jt| = 12 <

(
5

≤ 3

)
= 26.

Therefore, the complexity has now been lowered from 276.7 to 275.8. Similar
technique can also be applied to the 73 dimensional cube of Table 2. Details are
shown in Table 3.

Table 3. Results of Trivium with Precise Term Enumeration

#Rounds |I| |J1| |J2| |J3| |J4| |J5| |Jt|, t ≥ 6 1 +
∑d

t=1 |Jt| Previous Improved

832 72 5 5 1 0 0 0 12≈ 23.58 276.7 275.58

833 73 7 6 1 0 0 0 15≈ 23.91 279 276.91

6.2 Applications to Kreyvium

We revisit the 61-dimensional cube first given in [23] and transformed to a key
recovery attack on 849-round Kreyvium in [22]. The degree of the superpoly
is 9 so the complexity is given as 281.7 in Appex. A. Since J = J1 is of size
23, we enumerate all the terms of degree 2-9 and acquire the sets J2, . . . , J9.
1 +

∑d
t=1 |Jt| = 5452 ≈ 212.41. So the complexity is now lowered to 273.41. The

details are listed in Table 4.

Table 4. Results of Kreyvium with Precise Term Enumeration

#Rounds |I| |J1| |J2| |J3| |J4| |J5| |J6| |J7| |J8| |J9| 1 +
∑d

t=1 |Jt| Previous Improved

849 61 23 158 555 1162 1518 1235 618 156 26 5452≈ 212.41 281.7 273.41

25



6.3 Applications to Grain-128a

For the attack on 184-round Grain-128a, the superpoly has degree d = 14, the
number of involved key bits is |J | = |J1| = 21 and we are able to enumerate all
terms of degree 1-14 as Table 5.

Table 5. Results of Grain-128a with Term Enumeration

#Rounds |I| |J1| |Ji| (2 ≤ i ≤ 14) 1 +
∑d

t=1 |Jt| Previous Improved

184 95 21 157, 651, 1765, 3394, 4838, 5231, 214.61 2115.95 2109.61

4326, 2627, 1288, 442, 104, 15, 1

6.4 Applications to Acorn

For the attack on 704-round Acorn, with the cube dimension 64, the number
of involved key bits in the superpoly is 72, and the degree is 7. We enumerate all
the terms of degree from 2 to 7 as in Table 6, therefore we manage to improve
the complexity of our cube attack in the previous section.

Table 6. Results of Acorn with Precise Term Enumeration

#Rounds |I| |J1| |J2| |J3| |J4| |J5| |J6| |J7| 1 +
∑d

t=1 |Jt| Previous Improved

704 64 72 1598 4911 5755 2556 179 3 213.88 293.23 277.88

Relaxed Algorithm 5. For the attack on 750-round Acorn (the superpoly
is of degree d = 5), The left part of Algorithm 5 can only be carried out for
the 5-degree terms |J5| = 46. For t = 2, 3, 4, the sizes of Jt are too large to
be enumerated. We settle for the index set JRt containing the key indices that
composing all the t-degree terms. For example, when J3 = {(1, 2, 3), (1, 2, 4)},
we have JR3 = {1, 2, 3, 4}. The relationship between Jt and JRt is |Jt| ≤

(|JRt|
t

)
and J1 = JR1. The searching space for Jt in Algorithm 5 is

(|J1|
t

)
while that

of the relaxed algorithm is only
(|JRt|

t

)
. So it is much easier to enumerate JRt,

therefore the complexity can still be improved (in comparison with Eq. (8)) as
long as |JRt| < |J1|. The complexity of this relaxed version can be written as

max{2|I| × (1 +

d−1∑
t=1

(
|JRt|
t

)
+ Jd), 2

|I| + 2|J| × (1 +

d−1∑
t=1

(
|JRt|
t

)
+ Jd)} (12)

For 750-round Acorn, we enumerate J5 and JR1, . . . , JR4 whose sizes are listed
in Table 7. The improved complexity, according to Eq. (12), is 2120.92, lower than
the original 2125.71 given in App. A.

26



Table 7. Results of Acorn with Relaxed Term Enumeration

#Rounds |I| |JR1| |JR2| |JR3| |JR4| |J5| 1 +
∑d−1

t=1

(|JRt|
t

)
+ |Jd| Previous Improved

750 101 81 81 77 70 46 219.92 2125.71 2120.92

7 A Clique View of the Superpoly Recovery

The precise & relaxed term enumeration technique introduced in Sect. 6 have to
execute many MILP instances, which is difficult for some applications. In this
section, we represent the resultant superpoly as a graph, which is called superpoly
graph, so that we can utilize the clique concept from the graph theory to upper
bound the complexity of the superpoly recovery phase in our attacks, without
requiring MILP solver as highly as the term enumeration technique.

Definition 3 (Clique[32]). In a graph G = (V,E), where V is the set of ver-
tices and E is the set of edges, a subset C ⊆ V , s.t. each pair of vertices in C is
connected by an edge is called a clique.

A i-clique is defined as a clique consists of i vertices, and i is called the clique
number. A 1-clique is a vertex, a 2-clique is just an edge, and a 3-clique is called
a triangle.

Given a cube CI , by running Algorithm 5 for degree i, we determine Ji,
which is the set of all the degree-i terms that might appear in the superpoly
p(x,v) (see Sect. 6). Then we represent p(x,v) as a graph G = (J1, J2), where
the vertices in J1 correspond to the involved secret key bits in p(x,v), the edges
between any pairs of the vertices reveal the quadratic terms involved in p(x,v),
We call the graph G = (J1, J2) the superpoly graph of the cube CI . The set of
i-cliques in the superpoly graph is denoted as Ki. Note that there is a natural
one-to-one correspondence between the sets Ji and Ki for i = 1, 2.

It follows from the definition of a clique that any i-clique in Ki (i ≥ 2)
represents a monomial of degree i whose all divisors of degree 2 belong to J2. On
the other hand, due to the “embed” Property 1 in Sect. 6, we have that all its
quadratic divisors must be in J2. Then any monomial in Ji can be represented
by an i-clique in Ki. Hence for all i ≥ 2, Ji corresponds to a subset of Ki. Denote
the number of i-cliques as |Ki|, then |Ji| ≤ |Ki|. Apparently, |Ki| ≤

(|J|
i

)
for all

1 ≤ i ≤ d.
Now we show a simple algorithm for constructing Ki from J1 and J2 for i ≥ 3.

For instance, when constructing K3, we take the union operation of all possible
combinations of three elements from J2, and only keep the elements of degree 3.
Similarly, we construct Ki for 3 < i ≤ d, where d is the degree of the superpoly.
Therefore, all the i-cliques (3 ≤ i ≤ d) are found by the simple algorithm, i.e.
the number of i-cliques |Ki| in G(J1, J2) is determined. We therefore can upper
bound the complexity of the offline phase as

2|I| × (1 +

d∑
i=1

|Ki|). (13)

27



Note that we have

|Ji| ≤ |Ki| ≤
(
|J1|
i

)
.

It indicates that the upper bound of the superpoly recovery given by clique theory
in Eq. (13) is better than the one provided by our degree evaluation in Eq. (8),
while it is weaker than the one presented by our term enumeration techniques
in Eq. (10). However, it is unclear if there exists a specific relation between |Ki|
and

(|J′
i|
i

)
in the relaxed terms enumeration technique.

Advantage over the terms enumeration techniques. In Sect. 6 when cal-
culating Ji (i ≥ 3) by Algorithm 5, we set the target degree as i and solve
the newly generated MILP to obtain Ji, regardless of the knowledge of Ji−1 we
already hold. On the other hand, as is known in some cases, the MILP solver
might take long time before providing Ji as desired. However, by using clique
theory, we first acquire J1 and J2, which are essential for the term enumeration
method as well. According to the “embed” property, we then make full use of the
knowledge of J1 and J2, to construct Ki for i ≥ 3 by an algorithm which is ac-
tually just performing simple operations (like union operations among elements,
or removal of repeated elements, etc) in sets. So hardly any cost is required to
find all the Ki (3 ≤ i ≤ d) we want. This significantly saves the computation
costs since solving MILP is usually very time-consuming.

8 Conclusion

Algebraic properties of the resultant superpoly of the cube attacks were further
studied. We developed a division property based framework of cube attacks
enhanced by the flag technique for identifying proper non-cube IV assignments.
The relevance of our framework is three-fold: For the first time, it can identify
proper non-cube IV assignments of a cube leading to a non-constant superpoly,
rather than randomizing trails & summations in the offline phase. Moreover,
our model derived the upper bound of the superpoly degree, which can break
the |I|+ |J | < n barrier and enable us to explore even larger cubes or mount to
attacks on more rounds. Furthermore, our accurate term enumeration techniques
further reduced the complexities of the superpoly recovery, which brought us the
current best key recovery attacks on ciphers namely Trivium, Kreyvium, Grain-
128a and Acorn.

Besides, when term enumeration cannot be carried out, we represent the
resultant superpoly as a graph. By constructing all the cliques of our superpoly
graph, an upper bound of the complexity of superpoly recovery can be obtained.

Acknowledgements. We would like to thank Christian Rechberger, Elmar
Tischhauser, Lorenzo Grassi and Liang Zhong for their fruitful discussions, and
the anonymous reviewers for their valuable comments. This work is supported by

28



University of Luxembourg project - FDISC, National Key Research and Develop-
ment Program of China (Grant No. 2018YFA0306404), National Natural Science
Foundation of China (No. 61472250, No. 61672347), Program of Shanghai Aca-
demic/Technology Research Leader (No. 16XD1401300), the Research Council
KU Leuven: C16/15/058, OT/13/071, the Flemish Government through FWO
projects and by European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No H2020-MSCA-ITN-2014-643161 ECRYPT-
NET.

References

1. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In Joux,
A., ed.: EUROCRYPT 2009. Volume 5479 of LNCS., Springer (2009) 278–299

2. Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In Dunkelman, O., ed.: FSE 2009.
Volume 5665 of LNCS., Springer (2009) 1–22

3. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In Joux,
A., ed.: FSE 2011. Volume 6733 of LNCS., Springer (2011) 167–187

4. Fouque, P., Vannet, T.: Improving key recovery to 784 and 799 rounds of Trivium
using optimized cube attacks. In Moriai, S., ed.: FSE 2013. Volume 8424 of LNCS.,
Springer (2013) 502–517

5. Salam, M.I., Bartlett, H., Dawson, E., Pieprzyk, J., Simpson, L., Wong, K.K.:
Investigating cube attacks on the authenticated encryption stream cipher ACORN.
In Batten, L., Li, G., eds.: ATIS 2016. Volume 651 of CCIS., Springer (2016) 15–26

6. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation Cube Attacks: From Weak-Key
Distinguisher to Key Recovery. In Nielsen, J.B., Rijmen, V., eds.: EUROCRYPT
2018 Part II. Volume 10821 of Lecture Notes in Computer Science., Springer (2018)
715–744

7. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In
Oswald, E., Fischlin, M., eds.: EUROCRYPT 2015 Part I. Volume 9056 of LNCS.,
Springer (2015) 733–761

8. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional Cube Attack
on Reduced-Round Keccak Sponge Function. In Coron, J., Nielsen, J.B., eds.:
EUROCRYPT 2017 Part II. Volume 10211 of LNCS., Springer (2017) 259–288

9. Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on Keccak
keyed modes with MILP method. In Takagi, T., Peyrin, T., eds.: ASIACRYPT
2017 Part I. Volume 10624 of LNCS., Springer (2017) 99–127

10. Li, Z., Dong, X., Wang, X.: Conditional cube attack on round-reduced ASCON.
IACR Trans. Symmetric Cryptol. 2017(1) (2017) 175–202

11. Dong, X., Li, Z., Wang, X., Qin, L.: Cube-like attack on round-reduced initializa-
tion of Ketje Sr. IACR Trans. Symmetric Cryptol. 2017(1) (2017) 259–280

12. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In Katz, J., Shacham, H., eds.: CRYPTO 2017 Part
III. Volume 10403 of LNCS., Springer (2017) 250–279

13. Todo, Y.: Structural evaluation by generalized integral property. In Oswald, E.,
Fischlin, M., eds.: EUROCRYPT 2015 Part I. Volume 9056 of LNCS., Springer
(2015) 287–314

29



14. Todo, Y.: Integral cryptanalysis on full MISTY1. In Gennaro, R., Robshaw, M.,
eds.: CRYPTO 2015 Part I. Volume 9215 of LNCS., Springer (2015) 413–432

15. Todo, Y., Morii, M.: Bit-based division property and application to SIMON family.
In Peyrin, T., ed.: FSE 2016. Volume 9783 of LNCS., Springer (2016) 357–377

16. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching
integral distinguishers based on division property for 6 lightweight block ciphers.
In Cheon, J.H., Takagi, T., eds.: ASIACRYPT 2016 Part I. Volume 10031 of LNCS.,
Springer (2016) 648–678

17. Gu, Z., Rothberg, E., Bixby, R.: Gurobi optimizer. http://www.gurobi.com/
18. Sun, L., Wang, W., Wang, M.: MILP-Aided Bit-Based Division Property for Prim-

itives with Non-Bit-Permutation Linear Layers. Cryptology ePrint Archive, Report
2016/811 (2016) https://eprint.iacr.org/2016/811.

19. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property
for ARX ciphers and word-based division property. In Takagi, T., Peyrin, T., eds.:
ASIACRYPT 2017 Part I. Volume 10624 of LNCS., Springer (2017) 128–157

20. Funabiki, Y., Todo, Y., Isobe, T., Morii, M.: Improved integral attack on HIGHT.
In Pieprzyk, J., Suriadi, S., eds.: ACISP 2017 Part I. Volume 10342 of LNCS.,
Springer (2017) 363–383

21. Wang, Q., Grassi, L., Rechberger, C.: Zero-sum partitions of PHOTON permuta-
tions. In Smart, N., ed.: CT-RSA 2018. Volume 10808 of LNCS., Springer (2018)

22. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomi-
als based on division property (full version). Cryptology ePrint Archive, Report
2017/306 (2017) https://eprint.iacr.org/2017/306.

23. Liu, M.: Degree evaluation of NFSR-based cryptosystems. In Katz, J., Shacham,
H., eds.: CRYPTO 2017 Part III. Volume 10403 of LNCS., Springer (2017) 227–249

24. Fu, X., Wang, X., Dong, X., Meier, W.: A key-recovery attack on 855-round
Trivium. Cryptology ePrint Archive, Report 2018/198 (2018) https://eprint.
iacr.org/2018/198.

25. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack
revisited–cryptanalysis on full Grain-128a, Grain-128, and Grain-v1. CRYPTO
2018 (2018) (accepted).

26. Lehmann, M., Meier, W.: Conditional differential cryptanalysis of Grain-128a. In
Pieprzyk, J., Sadeghi, A., Manulis, M., eds.: CANS 2012. Volume 7712 of LNCS.,
Springer (2012) 1–11

27. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In Wu, C., Yung, M., Lin, D., eds.:
Inscrypt 2011. Volume 7537 of LNCS., Springer (2011) 57–76

28. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In Sarkar, P.,
Iwata, T., eds.: ASIACRYPT 2014 Part I. Volume 8873 of LNCS., Springer (2014)
158–178

29. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu,
K.: Towards finding the best characteristics of some bit-oriented block ciphers
and automatic enumeration of (related-key) differential and linear characteristics
with predefined properties. Cryptology ePrint Archive, Report 2014/747 (2014)
https://eprint.iacr.org/2014/747.

30. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for
impossible differentials and zero-correlation linear approximations. Cryptology
ePrint Archive, Report 2016/689 (2016) https://eprint.iacr.org/2016/689.

30

http://www.gurobi.com/
https://eprint.iacr.org/2016/811
https://eprint.iacr.org/2017/306
https://eprint.iacr.org/2018/198
https://eprint.iacr.org/2018/198
https://eprint.iacr.org/2014/747
https://eprint.iacr.org/2016/689


31. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects - revealing structural properties of several ciphers. In Coron, J.,
Nielsen, J.B., eds.: EUROCRYPT 2017 Part III. Volume 10212 of LNCS., Springer
(2017) 185–215

32. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. Volume 290. Macmil-
lan London (1976)

33. Wu, H.: Acorn v3 (2016) Submission to CAESAR competition.

A Application to Kreyvium

A.1 Specification of Kreyvium

zi

Fig. 2. Structure of Kreyvium

Kreyvium is designed for the use of fully Homomorphic encryption. It claims
128-bit security and accepts 128-bit IV. Kreyvium consists of 5 registers. Two of
them are LFSRs denoted as K∗ and IV ∗ respectively. The remaining three are
NFSRs that are concatenated to make up a 288-bit state denoted as

S = ((s1, . . . , s93), (s94, . . . , s177), (s178, . . . , s288))

31



The registers are initialized with the 128 key bits, K1, . . . ,K128, and 128 IV bits,
IV1, . . . , IV128 as follows:

(IV ∗127, IV
∗
126, . . . , IV

∗
0 ) = (IV1, IV2, . . . , IV128),

(s1, s2, . . . , s93) = (K1,K2, . . . ,K93),

(s94, s95, . . . , s177) = (IV1, IV2, . . . , IV84),

(s178, s279, . . . , s288) = (IV85, IV86, . . . , IV128, 1, 1, . . . , 1, 0),

(K∗127,K
∗
126, . . . ,K

∗
0 ) = (K1,K2, . . . ,K128),

The pseudo code of the update function is given as follows.

t1 ← s66 ⊕ s93
t2 ← s162 ⊕ s177
t3 ← s243 ⊕ s288 ⊕K∗0
z ← t1 ⊕ t2 ⊕ t3
t1 ← t1 ⊕ s91 · s92 ⊕ s171 ⊕ IV ∗0
t2 ← t2 ⊕ s175 · s176 ⊕ s264
t3 ← t3 ⊕ s286 · s287 ⊕ s69
(s1, s2, . . . , s93)← (t3, s1, . . . , s92)

(s94, s95, . . . , s177)← (t1, s94, . . . , s176)

(s178, s279, . . . , s288)← (t2, s178, . . . , s287)

(K∗127,K
∗
126, . . . ,K

∗
0 )← (K∗0 ,K

∗
127,K

∗
126, . . . ,K

∗
1 )

(IV ∗127, IV
∗
126, . . . , IV

∗
0 )← (IV ∗0 , IV

∗
127, IV

∗
126, . . . , IV

∗
1 )

Here z denotes the 1-bit key stream. First, in the key initialization, the state
is updated 4 × 288 = 1152 times without producing an output. After the key
initialization, one bit key stream is produced by every update function. Fig. 2
depicts the state update function of Kreyvium.

A.2 MILP Model of Kreyvium

Kreyvium shares the same core function with Trivium as is defined in Eq. (9),
and the division property propagation for the core function is denoted as Core
and defined in Algorithm 3. Besides Core, the LFSRs K∗ and IV ∗ are modeled
as LFSR in Algorithm 6. With the current MILP modelM and a vector x of 128
binary MILP variables as input, Algorithm 6 outputs the updated modelM, a
new 128-variable vector y describing the division property of the LFSR after one
round of update, and an additional variable o describing the output of LFSR.

With the definitions of Core and LFSR, the MILP model forR-round Kreyvium
can be described as Algorithm 7. This algorithm generates MILP model M as
the input of Algorithm1, and the model M can evaluate all division trails for
Kreyvium whose initialization rounds are reduced to R.

32



Algorithm 6 MILP model of division property for the K∗ and IV ∗

1: procedure LFSR(M,x)
2: (M, a, o)← copyf(M, x0)
3: for all i ∈ {0, 1, . . . , 126} do
4: yi = xi+1

5: end for
6: y127 = a
7: return (M,y, o)
8: end procedure

A.3 Experimental Verification

Identical to [22], we still use cube I = {1, 11, 21, 31, 41, 51, 61, 71} to verify our
attack and implementation. The experimental verification includes: the degree
evaluation using Algorithm 2, specifying involved key bits using Algorithm 1
with IV = NULL or specific non-cube IV settings.

Example 2 (Verification of Our Attack against 576-round Kreyvium). With IV =
NULL using Algorithm 1, we are able to identify J = {48, 73, 74, 75}. We know
that with some assignment to the non-cube IV bits, the superpoly can be a
polynomial of secret key bits x48, x73, x74, x75. Using Algorithm 2, we know that
degree of the superpoly is upper bounded by 2, so the superpoly is at most a
2-degree polynomial of x48, x73, x74, x75.

Then, we run Algorithm 1 with specific randomly chosen IV and verify
the MILP-deduced results by exactly running the cube attacks with over 210

randomly chosen keys. We find that the MILP evaluation is in high accordance
with the experiment:

– When IV is assigned to specific value such as IV = (0x613fa9ca, 0x5068e953,
0xe0f73db6, 0xc8c3491f), the MILP model reports that all 4 key bits x48,
x73, x74, x75 are involved in the superpoly. Furthermore, if we run Algorithm
2 with this IV , it can output degree 2 and identify a 2-degree monomial
x73x74. It has been experimentally verified that the superpoly correspond-
ing to this non-cube IV setting is

pIV (x) = x48 + x73x74 + x75.

– Contrarily, if we use another IV assignment IV = (0x3ce780c, 0x6e0445b3,
0xefe379b5, 0x58e15b6c), and run Algorithm 1, we will find that the set
J is empty—the superpoly is irrelevant with any secret key bits. This is
experimentally verified since the summation is constantly 0 for arbitrary
many randomly chosen keys.

– When we assign all non-cube IV bits to 1, or equivalently IV = (0xffffffff,
0xffffffff, 0xffffffff, 0xffffffff), both the MILP model and the prac-
tical cube summation shows that pIV (x) = 0. While using the method of
identifying the constant 0 bits given in [22] cannot detect such a phenomenon.
This example verifies the advantage of our flag technique.

33



Algorithm 7 MILP model of division property for Kreyvium
1: procedure KreyviumEval(round R)
2: Prepare empty MILP ModelM
3: M.var ← vi for i ∈ {1, 2, . . . , 128}. . Declare Public Modifiable IVs
4: M.var ← xi for i ∈ {1, 2, . . . , 128}. . Declare Secret Keys
5: for i = 1 to 128 do . Initialize K∗

6: if i ≤ 93 then
7: (M, s0i ,K

0
128−i)← copyf(M, xi, 2).

8: else
9: K0

128−i = xi.
10: end if
11: end for
12: for i = 1 to 128 do . Initialize IV ∗

13: (M, s093+i, IV
0
128−i)← copyf(M, vi, 2).

14: end for
15: for i = 222 to 287 do . Constant 1 bits
16: M.con← s0i = 0, s0i .F = 1c.
17: end for
18: M.con← s0288 = 0, s0288.F = 0c. . Constant 0 bit
19: for r = 1 to R do
20: (M,x)← Core(M, sr−1, 66, 171, 91, 92, 93)
21: (M, IV r, v∗)← LFSR(M, IV r−1)
22: (M, t1)← xorf(M, v∗, x93)
23: x93 = t1 . Update the 93rd entry of x
24: (M,y)← Core(M,x, 162, 264, 175, 176, 177)
25: (M,z)← Core(M,y, 243, 69, 286, 287, 288)
26: (M,Kr, k∗)← LFSR(M,Kr−1)
27: (M, t3)← xorf(M, k∗, y288)
28: z288 = t3 . Update the 288th entry of z
29: sr = z ≫ 1
30: end for
31: for all i ∈ {1, 2, . . . , 288} w/o 66, 93, 162, 177, 243, 288 do
32: M.con← sRi = 0
33: end for
34: for all i ∈ {1, 2, . . . , 128} do
35: M.con← KR

i = 0
36: M.con← IV R

i = 0
37: end for
38: M.con← (sr66 + sr93 + sr162 + sr177 + sr243 + sr288) = 1
39: returnM
40: end procedure

34



On the accuracy of MILP model with flag technique. We’ve tried 10000
random IV and the accuracy is 100% for Kreyvium: when the MILP degree
evaluation gives d = 2, the superpoly is constantly a 2-degree polynomial; if
d = 0, the superpoly is constant 0. These experiments have verified that the
method of modeling constant bits using the method in Sect. 3 can largely improve
the preciseness of the cube attack. Under the effect of flags technique, the MILP
model can now specify the key bits and identify most significant terms for specific
non-cube IV assignments.

A.4 Theoretical Results

Firstly, by running Algorithm 1 with parameter IV = (0, 0, 0, 0), we are able
to prove the availability of the zero-sum distinguishers given in [23,22]. On the
contrary, for higher-dimensional cube I’s, the degrees acquired by running Al-
gorithm 1 with IV = (0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff) are
usually equal to those acquired with IV = NULL. This is true for all the theoretic
key recovery results on Kreyvium in this section. Such a phenomenon indicates
that the “all-one” setting is a good choice for making non-constant superpolies.

In [22], the 61-dimensional cube I (first appeared in [23]) was used for at-
tacking 849-round Kreyvium. It shows that the corresponding J is of size 23.
So the complexity of superpoly recovery is 261+23 = 284. With the same I and
by running Algorithm 1 (both all-one setting and IV = NULL), we identify the
same J . By running Algorithm 2, we find that the degree of the superpoly at
round 849 is 9. Therefore, using our new techniques, we are able to lower the
complexity to 294.61 according to Eq. (8). They also proposed a 85-dimensional
cube and mounted to 872 rounds (|J | = 39). By running Algorithm 2, we know
the degree of the superpoly is only 2 and the complexity can be lowered from
the original 2124 to 294.61.

Now that the |I| + |J | < n limitation has disappeared, we can construct
larger cubes for attacking more rounds. We construct a 102-dimensional cube
finding whose superpoly has degree 2 at round 887 and 3 at round 888. The
sizes of J ’s are 44 and 36 respectively. So this cube can be used for attacking
887-round Kreyvium with complexity 2115.80 and 888-round with complexity
2111.38. Our best attack has mounted to 891 rounds using a 113-dimensional
cube. The superpoly at round 891 has degree 2 and |J | = 20. So the complexity
for attacking round 891 is 2120.73 according to Eq. (1).

Details of all our attacks are listed in Table 8.

B Application to Grain-128a

B.1 Specification of Grain-128a

Grain-128a is one of Grain family of NLFSR-based stream ciphers, and the inter-
nal state is represented by two 128-bit states, (b0, b1, . . . , b127) and (s0, s1, . . . , s127).
The 128-bit key is loaded to the first register b, and the 96-bit IV is loaded to

35



Table 8. Summary of theoretical cube attacks on Kreyvium. The time complexity in
this table shows the time complexity to recover the superpoly.

#Rounds |I| Degree Involved secret variables J Time complexity

849 61† 9 47, 49, 51, 53, 55, 64, 66, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 89, 90, 91, 92, 93 (|J| = 23)

281.7

872 85‡ 2 5, 6, 20, 21, 22, 30, 31, 37, 39, 40, 41, 49, 53, 54, 56, 57,
58, 63, 64, 65, 66, 67, 74, 75, 76, 89, 91, 92, 93, 96, 98, 99,
100, 108, 122, 123, 124, 125, 126 (|J| = 39)

294.61

887 102? 3 9, 10, 11, 23, 24, 25, 28, 33, 34, 35, 39, 42, 44, 46, 47,
48, 49, 50, 53, 56, 57, 59, 65, 68, 69, 70, 78, 79, 80, 82,
83, 84, 87, 90, 91, 92, 93, 94, 101, 103, 108, 115, 116, 118
(|J| = 44)

2115.80

888 102? 2 7, 8, 9, 17, 18, 22, 32, 33, 41, 45, 46, 47, 48, 51, 52, 53, 55,
56, 57, 58, 68, 76, 77, 78, 79, 80, 81, 83, 84, 85, 91, 100,
114, 115, 116, 117 (|J| = 36)

2111.38

891 113♠ 2 19, 37, 46, 47, 62, 63, 64, 66, 71, 72, 73, 78, 91, 92, 93, 96,
106, 121, 122, 123 (|J| = 20)

2120.73

†: I = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 32, 34, 37, 39, 41, 43, 45, 47, 49, 51, 53,
55, 58, 60, 62, 64, 66, 68, 70, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103,
105, 108, 110, 112, 114, 116, 118, 120, 123, 125, 127}

‡: I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 111, 113, 115, 117, 119, 121, 123, 125, 127}

?: I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74,
76, 78, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,
123, 124, 125, 126, 127, 128}

♠: I = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 58,
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 115, 116, 117, 119, 121, 122, 124, 125, 126, 127, 128}

zi

s0 s127b0 b127

24 5

27 7 1

6

h

g f

Fig. 3. Structure of Grain-128a

36



the second register s. The other state bits are set to 1 except the least one bit
in the second register. Namely, the initial state bits are represented as

(b0, b1, . . . , b127) = (K1,K2, . . . ,K128),

(s0, s1, . . . , s127) = (IV1, IV2, . . . , IV96, 1, . . . , 1, 0).

The pseudo code of the update function in the initialization is given as follows.

g ← b0 + b26 + b56 + b91 + b96

+ b3b67 + b11b13 + b17b18 + b27b59 + b40b48 + b61b65 + b68b84 (14)
+ b88b92b93b95 + b22b24b25 + b70b78b82.

f ← s0 + s7 + s38 + s70 + s81 + s96 (15)
h← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94 (16)

z ← h+ s93 +
∑
j∈A

bj (17)

(b0, b1, . . . , b127)← (b1, . . . , b127, g + s0 + z)

(s0, s1, . . . , s127)← (s1, . . . , s127, f + z)

Here, A = {2, 15, 36, 45, 64, 73, 89}. First, in the key initialization, the state is
updated 256 times without producing an output. After the key initialization, the
update function is tweaked such that z is not fed to the state, and z is used as
a key stream. Fig. 3 shows the state update function of Grain-128a.

B.2 MILP Model of Grain-128a

Grain128aEval in Algorithm8 generates MILP model M of Algorithm1, and
the model M can evaluate all division trails for Grain-128a whose initializa-
tion rounds are reduced to R. funcZ generates MILP variables and constraints
for Eq. (16) and Eq. (17). funcG generates MILP variables and constraints for
Eq. (14). funcF generates MILP variables and constraints for Eq. (15). Com-
pared with the description in [12], the number of constraints are not static due
to the involvement of flags. The details of funcZ, funcG, and funcF are described
in Algorithm 10. Note that the subroutine functions CAND and CXOR of funcZ,
funcG, and funcF are just modeling the COPY+AND, COPY+XOR operations
on many bits. We detail them in Algorithm 9.

B.3 Experimental Verification

We implemented the MILP modelM for the propagation of the division property
on Grain-128a and evaluated involved secret variables by using Algorithm1. In
order to show the advantage of our new model, we execute the same small cube
as that of [12]: I = {1, 2, . . . , 9}. We show that our new techniques can provide
more information than the traditional method.

37



Algorithm 8 MILP model for the initialization of Grain-128a
1: procedure Grain128aEval(round R)
2: Prepare empty MILP ModelM
3: M.var ← vi for i ∈ {1, 2, . . . , 128}. . Declare Public Modifiable IVs
4: M.var ← xi for i ∈ {1, 2, . . . , 128}. . Declare Secret Keys
5: M.var ← b0i for i ∈ {0, 1, . . . , 127}. . Initial Division Property of NFSR
6: M.var ← s0i for i ∈ {0, 1, . . . , 127}. . Initial Division Property of LFSR
7: M.con← b0i = xi+1 for i ∈ {0, 1, . . . , 127}.
8: M.con← s0i = vi+1 for i ∈ {0, 1, . . . , 95}.
9: M.con← s0i = 0 for i ∈ {96, . . . , 127}.
10: Initialize the flags of constant state bits: s0i .F = 1c for i ∈ {96, . . . , 126} and

s0127.F = 0c. . Constant Bits are Initialized with the corresponding flags
11: for r = 1 to R do
12: (M, b′, s′, z) = funcZ(M, br−1, sr−1)
13: (M, zg, zf )← copyf(M, z)
14: (M, b′′, g) = funcG(M, b′)
15: (M, s′′, f) = funcF(M, s′)
16: for i = 0 to 126 do
17: bri = b′′i+1

18: sri = s′′i+1

19: end for
20: (M, br127)← xorf(M, g, s′′0 , zg)
21: (M, sr127)← xorf(M, f, zf )
22: end for
23: (M, b′, s′, z) = funcZ(M, bR, sR)
24: for all i ∈ {0, 1, . . . , 127} do
25: M.con← b′i = 0
26: M.con← s′i = 0
27: end for
28: M.con← z = 1
29: returnM
30: end procedure

Example 3 (Verification of Our Attack against 106-round Grain-128a). With
IV = NULL, we run Algorithm 1 and identify the involved key bits as J =
{53, 85, 119, 122, 126, 127}. Compared with [12], K46 is excluded. We have tried
thousands of non-cube IVs and none of them has superpoly related to K46.
Comparing our IV = NULL model with the previous method, we find that the
only difference lies in the effect of flags imposed to the initial constant state
bits s096, . . . , s0127. This experiment has proved the preciseness improvement of
our new flag technique. By running Algorithm 2, we know the degree of the
superpoly is 5 and simultaneously, we are able to acquire all possible 5-degree
monomials: x53x119x122x126x127 and x85x119x122x126x127. These findings are in
accordance with the experimentally recovered ANF of the superpoly

pv(x) = (x53 + x85) · x119 · (x122 + v76) · x126 · x127,

which is given in [12].

38



Algorithm 9 MILP model for COPY+XOR and COPY+AND in Grain-128a
1: procedure CAND(M, b, s, I, J)
2: (M, b′i, xi)← copyf(M, bi) for all i ∈ I
3: (M, s′j , yj)← copyf(M, sj) for all j ∈ J
4: for all i ∈ {0, 1, . . . , 127} − I do
5: b′i = bi
6: end for
7: for all j ∈ {0, 1, . . . , 127} − J do
8: s′i = si
9: end for
10: (M, z)← andf(M, b′i,i∈I , s

′
j,j∈J)

11: return (M, b′, s′, z)
12: end procedure
1: procedure CXOR(M, b, s, I, J)
2: (M, b′i, xi)← copyf(M, bi) for all i ∈ I
3: (M, s′j , yj)← copyf(M, sj) for all j ∈ J
4: for all i ∈ {0, 1, . . . , 127} − I do
5: b′i = bi
6: end for
7: for all j ∈ {0, 1, . . . , 127} − J do
8: s′i = si
9: end for
10: (M, z)← xorf(M, b′i,i∈I , s

′
j,j∈J)

11: return (M, b′, s′, z)
12: end procedure

39



Algorithm 10 MILP model for NLFSR and LFSR in Grain-128a
1: procedure funcZ(M, b, s)
2: (M, b1, s1, a1) = CAND(M, b, s, {12}, {8})
3: (M, b2, s2, a2) = CAND(M, b1, s1, φ, {13, 20})
4: (M, b3, s3, a3) = CAND(M, b2, s2, {95}, {42})
5: (M, b4, s4, a4) = CAND(M, b3, s3, φ, {60, 79})
6: (M, b5, s5, a5) = CAND(M, b4, s4, {12, 95}, {94})
7: (M, b6, s6, x) = CXOR(M, b5, s5, {2, 15, 36, 45, 64, 73, 89}, {93})
8: (M, z)← xorf(M, x, a1, . . . , a5)
9: return (M, b6, s6, z)
10: end procedure
1: procedure funcF(M, s)
2: (M, φ, s1, f) = CXOR(M, φ, s, φ, {0, 7, 38, 70, 81, 96})
3: return (M, s1, f)
4: end procedure
1: procedure funcG(M, b)
2: (M, b1, φ, a1) = CAND(M, b, φ, {3, 67}, φ)
3: (M, b2, φ, a2) = CAND(M, b1, φ, {11, 13}, φ)
4: (M, b3, φ, a3) = CAND(M, b2, φ, {17, 18}, φ)
5: (M, b4, φ, a4) = CAND(M, b3, φ, {27, 59}, φ)
6: (M, b5, φ, a5) = CAND(M, b4, φ, {40, 48}, φ)
7: (M, b6, φ, a6) = CAND(M, b5, φ, {61, 65}, φ)
8: (M, b7, φ, a7) = CAND(M, b6, φ, {68, 84}, φ)
9: (M, b9, φ, a9) = CAND(M, b8, φ, {22, 24, 25}, φ)
10: (M, b10, φ, a10) = CAND(M, b9, φ, {70, 78, 82}, φ)
11: (M, b11, φ, x) = CXOR(M, b10, φ, {0, 26, 56, 91, 96}, φ)
12: (M, g)← xorf(M, x, a1, . . . , a10)
13: return (M, b11, g)
14: end procedure

40



On the accuracy of MILP model with flag technique. We’ve tried 10000
random IV and the accuracy is 100% for Grain-128a: when the MILP degree
evaluation gives d = 5, the superpoly is constantly a 5-degree polynomial; if
d = 0, the superpoly is constant 0.

Table 9. Summary of theoretical cube attacks on Grain-128a.

#Rounds |I| Degree Involved secret variables J Time complexity

182 88† 14 36, 40, 51, 52, 53, 56, 61, 62, 69, 79, 81, 82, 122, 127
(|J| = 14)

2102

183 92‡ 14 48, 49, 50, 51, 52, 54, 55, 61, 63, 83, 84, 90, 93, 95, 120,
128 (|J| = 16)

2108 − 296.08

184 95∗ 14 23, 34, 39, 48, 49, 53, 58, 59, 62, 64, 81, 83, 84, 95, 98,
118, 120, 123, 125, 127, 128 (|J| = 21)

2115.95

† I = {1, ..., 40, 42, 44, . . . , 51, 53, ..., 87, 89, 91, 93, 95}
‡ I = {1, ..., 51, 53, ..., 91, 93, 95}
∗ I = {1, ..., 46, 48, ..., 96}, and the non-cube IV bit IV [47] = 0

B.4 Theoretical Results

We first revisit the previous attacks on 182- and 183-round attacks on Grain-
128a using cube dimensions 88 and 92 respectively. For the 88-dimensional cube,
we use our improved flag technique using Algorithm 1 and 8, we find that there
are only |J | = 14 rather than 18 involved keys in the superpoly. Using Algorithm
2, we prove the degree of the superpoly is 14, equal to |J |. So the complexity of
this attack is improved by 24 to 288+14 = 2102.

For the 92-dimensional cube, our new method give the same J of size 16.
The degree of its superpoly is 14. So the complexity is improved slightly from
292+16 = 2108 to 292 ×

(
16
≤14
)
= 2108 − 296.08.

In order to attack round 184, we are supposed to use up all IVs. We select
Ii = {1, . . . , 96} \ {i} for i = 1, . . . , 96. Then, we set IV [i] = 1 and IV [i] = 0.
We run Algorithm 2 with I and the two different IV ’s. We find that when
IV [47] = 1, the degree of the superpoly is 19 and the degree drops to only
14 when IV [47] = 0. This may indicate that many keys are no longer involved
when IV [47] = 0. So we run Algorithm 1 with I47 and IV [47] = 0. Under such a
setting, we have |J | = 21 and the attack is available with complexity 2115.95. We
summarize our attacks as Table 9. We have lowered the complexities of previous
cubes and improved the maximum attacked rounds by 1.

C Application to Acorn

C.1 Specification of Acorn

Acorn is an authenticated encryption and one of the 3rd round candidates
in CAESAR competition. The structure is based on NLFSR, and the internal

41



state is represented by 293-bit state (S0, S1, . . . , S292). There are two component
functions, ks = KSG128(S) and f = FBK128(S), in the update function, and
each is defined as

ks = S12 ⊕ S154 ⊕maj(S235, S61, S193)⊕ ch(S230, S111, S66),

f = S0 ⊕ S̃107 ⊕maj(S244, S23, S160)⊕ (ca ∧ S196)⊕ (cb ∧ ks),

where ks is used as the key stream, and maj and ch are defined as

maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z),
ch(x, y, z) = (x ∧ y)⊕ ((x⊕ 1) ∧ z).

Then, the update function is given as follows.

S289 ← S289 ⊕ S235 ⊕ S230

S230 ← S230 ⊕ S196 ⊕ S193

S193 ← S193 ⊕ S160 ⊕ S154

S154 ← S154 ⊕ S111 ⊕ S107

S107 ← S107 ⊕ S66 ⊕ S61

S61 ← S61 ⊕ S23 ⊕ S0

ks = KSG128(S)

f = FBK128(S, ca, cb)

(S0, S1, . . . , S291, S292)← (S1, S2, . . . , S292, f ⊕m)

The 293-bit state is first initialized to 0. Second, 128-bit secret key is sequentially
loaded to the NLFSR via m. Third, 128-bit initialization vector is sequentially
loaded to the NLFSR via m. Fourth, 128-bit secret key is sequentially loaded to
the NLFSR via m twelve times. The constant bits ca and cb are always 1 in the
initial 1792 rounds. The associated data is always loaded before the output of
the key stream, but we do not care about this process in this paper because the
number of rounds that we can attack is smaller than 1792 rounds. Fig. 4 shows
the structure of Acorn. Please refer to [33] in detail.

0 23 60 61 66 106 107 111 153 154 160 192 193 196 229 230 235 288 289 292

f

m

Fig. 4. Structure of Acorn

C.2 MILP Model of Acorn

In [12,22], the authors have already noticed the effect of constant 0’s on the divi-
sion propagation. As an example, they pointed out the situation that when two

42



Algorithm 11 MILP model for the initialization of Acorn
1: procedure ACORNEval(round R)
2: Prepare empty MILP ModelM
3: M.var ← Ki for i ∈ {1, 2, . . . , 128} as binary . Declare the secret key bits
4: M.var ← IVi for i ∈ {1, 2, . . . , 128} as binary . Declare the public IV bits
5: M.var ← S0

i for i ∈ {0, 1, . . . , 292} as binary and assign their flags as S0
i .F =

0c. . The register bits are initialized as constant 0’s
6: for r = 1 to R do
7: (M,T ) = xorFB(M,Sr−1, 289, 235, 230)
8: (M,U) = xorFB(M,T , 230, 196, 193)
9: (M,V ) = xorFB(M,U , 193, 160, 154)
10: (M,W ) = xorFB(M,V , 154, 111, 107)
11: (M,X) = xorFB(M,W , 107, 66, 61)
12: (M,Y ) = xorFB(M,X, 61, 23, 0)
13: (M,Z, ks) = ksg128(M,Y )
14: (M,A, f) = fbk128(M,Z, ks)
15: for i = 0 to 291 do
16: Sr

i = Ai+1

17: end for
18: M.var ← Sr

292 as binary
19: if 128 < r ≤ 256 then
20: M.con ← Sr

292 = f + IVr−128 and assign the flags Sr
292.F = f.F +

IVr−128.F
21: else
22: M.var ← TKr as binary and assign its flag as TKr.F =

K1+(r mod 128).F
23: M.con← Sr

292 = f + TKr and assign Sr
292.F = f.F + TKr.F

24: end if
25: end for
26: for i = 0 to 127 do
27: M.con← Ki+1 =

∑
j TKi+128×j

28: end for
29: (M,T ) = xorFB(M,SR, 289, 235, 230)
30: (M,U) = xorFB(M,T , 230, 196, 193)
31: (M,V ) = xorFB(M,U , 193, 160, 154)
32: (M,W ) = xorFB(M,V , 154, 111, 107)
33: (M,X) = xorFB(M,W , 107, 66, 61)
34: (M,Y ) = xorFB(M,X, 61, 23, 0)
35: (M,Z, ks) = ksg128(M,Y )
36: for i = 0 to 292 do
37: M.con← Zi = 0
38: end for
39: M.con← ks = 1
40: returnM
41: end procedure

inputs of maj are 0, the output is constant 0. This situation is properly handled
with the flag technique. Furthermore, the flag technique has also handled other

43



situations caused by constant 0/1’s, such as: if y = z = 0/1, ch(x, y, z) = 0/1.
The details for handling such situations are given as Algorithm 12 and Algo-
rithm 13. The MILP model for Acorn is given as ACORNEval in Algorithm11.
It can evaluate division trials for Acorn reduced to R rounds.

xorFB generates MILP variables and constraints for feed-back function with
XOR. ksg128 and fbk128 generates MILP variables and constraints forKSG128
and FBK128, respectively. We detail xorFB, ksg128 and fbk128 as Algorithm
14, 15 and 16. Compared with the descriptions in [12], our algorithms have taken
the effects of flags into account, so the results given by our algorithms are more
precise than those of [12]. Note that Algorithm 11 is a subroutine of Algorithm
1 for generating the MILP modelM and the constraints for the input division
property of Algorithm 11 are imposed by Algorithm1.

Algorithm 12 MILP model for maj in Acorn
1: procedure maj(M,X, i, j, k)
2: if Xi.F ⊕Xj .F = 0c then
3: (M, Yi, a)← copyf(M, Xi)
4: (M, Yj , b)← copyf(M, Xj)
5: (M, o)← andf(M, a, b)
6: Ys = Xs for all s ∈ {0, . . . , 292} − {i, j}
7: else if Xi.F ⊕Xk.F = 0c then
8: (M, Yi, a)← copyf(M, Xi)
9: (M, Yk, c)← copyf(M, Xk)
10: (M, o)← andf(M, a, c)
11: Ys = Xs for all s ∈ {0, . . . , 292} − {i, k}
12: else if Xj .F ⊕Xk.F = 0c then
13: (M, Yj , b)← copyf(M, Xj)
14: (M, Yk, c)← copyf(M, Xk)
15: (M, o)← andf(M, b, c)
16: Ys = Xs for all s ∈ {0, . . . , 292} − {j, k}
17: else
18: (M, Yj , a1, a2)← copyf(M, Xi)
19: (M, Yj , b1, b2)← copyf(M, Xj)
20: (M, Yk, c1, c2)← copyf(M, Xk)
21: (M, a)← andf(M, a1, b1)
22: (M, b)← andf(M, a2, c1)
23: (M, c)← andf(M, b2, c2)
24: (M, o)← xorf(M, a, b, c)
25: Ys = Xs for all s ∈ {0, . . . , 292} − {i, j, k}
26: end if
27: return (M,Y , o)
28: end procedure

44



Algorithm 13 MILP model for ch in Acorn
1: procedure ch(M,X, i, j, k)
2: if Xi.F = 0c or Xj .F ⊕Xk.F = 0c then
3: (M, Yk, o)← copyf(M, Xk)
4: Ys = Xs for all s ∈ {0, . . . , 292} − {k}
5: else if Xi.F = 1c then
6: (M, Yj , o)← copyf(M, Xj)
7: Ys = Xs for all s ∈ {0, . . . , 292} − {j}
8: else
9: (M, Yj , a1, a2)← copyf(M, Xi)
10: (M, Yj , b1)← copyf(M, Xj)
11: (M, Yk, c, c1)← copyf(M, Xk)
12: (M, a)← andf(M, a1, b1)
13: (M, b)← andf(M, a2, c1)
14: (M, o)← xorf(M, a, b, c)
15: Ys = Xs for all s ∈ {0, . . . , 292} − {i, j, k}
16: end if
17: return (M,Y , o)
18: end procedure

Algorithm 14 MILP model for LFSR in Acorn
1: procedure xorFB(M,X, i, j, k)
2: (M, Yi, a)← copyf(M, Xi)
3: (M, Yj , b)← copyf(M, Xj)
4: (M, Yk)← xorf(M, a, b,Xk)
5: Ys = Xs for all s ∈ {1, . . . , 293} − {i, j, k}
6: return (M,Y )
7: end procedure

Algorithm 15 MILP model for ksg128 in Acorn
1: procedure ksg128(M,X)
2: (M, A12, x1)← copyf(M, X12)
3: (M, A154, x2)← copyf(M, X154)
4: At = Xt for all t ∈ {0, . . . , 292} − {12, 154}
5: (M,B, x3)← maj(M,A, 235, 61, 193)
6: (M,Y , x4)← ch(M,B, 230, 111, 66)
7: (M, z)← xorf(M, x1, x2, x3, x4)
8: return (M,Y , z)
9: end procedure

45



Algorithm 16 MILP model for fbk128 in Acorn
1: procedure fbk128(M,X, ks)
2: (M, A0, x1)← copyf(M, X0)
3: (M, A107, x2)← copyf(M, X107)
4: (M, A107, x3)← copyf(M, X196)
5: At = Xt for all t ∈ {0, . . . , 292} − {0, 107, 196}
6: (M,B, x4)← maj(M,A, 244, 23, 160)
7: (M, z)← xorf(M, x1, x2, x3, x4, ks)
8: return (M,Y , z)
9: end procedure

C.3 Experimental Verification

We still use the cube I = {1, 2, 3, 4, 5, 8, 20, 125, 126, 127, 128}, and implement
the attack on 517-round Acorn.

Example 4 (Verification of Our Attack against 517-round Acorn). We run Al-
gorithm 1 with IV = NULL and acquire the same involved keys (K6, K8, K10,
K11, K12, K15, K16, K45, and K49) as [12]. By running Algorithm 2, we know
the degree is 1 which is the same as the recovered superpoly

pIV (x) = x6 + x8 + x10 + x11 + x12 + x15 + x16 + x45 + x49,

where different IV are used but the ANF remains unchanged. Both the MILP
model and the practical experiments indicate that the corresponding superpoly
involves the same key bits as above. This has not only proved the preciseness
of the flag technique but also supported the rationality of Assumption 1 for
Acorn.

On the accuracy of MILP model with flag technique. For 10000 random
IV , the accuracy is 100% for ACORN: when the MILP degree evaluation gives
d = 1, the superpoly is constantly a 1-degree polynomial. There is no IV assign-
ments making d = 0 and the experimentally recovered superpoly is constantly a
linear expression.

C.4 Theoretical Results

We revisit the result in [12]. Using Algorithm 1, we find |J | = 63, 5 additional key
bits are detected compared to [12] due to the flag technique. With the application
of Algorithm 2, we deduce the degree of the superpoly as 7. So the complexity
of this attack is 293.23 according to Eq. (8), much lower than the previous 2122.
In order to attack more rounds, we construct a 96-dimensional cube that can
mount to 743 rounds. The superpoly involves 72 key bits and the degree is 4. So
the complexity of this attack is 2116.06. We also construct a 101-dimensional cube
that can mount to 750 rounds. It has |J | = 81 and the degree of the superpoly is
5. The complexity for attacking 750-round ACORN is therefore 2125.71 according
to Eq. (8). The detailed parameters of these attacks are listed in Table 10.

46



Table 10. Summary of theoretical cube attacks on ACORN. The time complexity in
this table shows the time complexity of Phase 1 and Phase 2.

# |I| Degree Involved secret variables J Time
Rounds complexity

704 64† 7 1,...,12, 14,...21, 23,...,38, 40,...44, 48, 49, 50, 54, 58, 60, 63, 64, 65,
68, 69, 71, 74, 75, 97, 102, 108 (|J| = 63)

293.23

743 96‡ 4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 44, 45, 46, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 69, 70, 72, 91, 93, 94, 95, 100, 103 (|J| = 72)

2116.06

750 101∗ 5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63,
64, 65, 66, 67, 68, 69, 71, 76, 77, 81, 83, 86, 87, 90, 91, 96, 98, 100,
101, 102, 120 (|J| = 81)

2125.71

†: I = {1, 2, ..., 32, 97,98, ..., 128}
‡: I = {1, 2, ..., 48, 81,82, ..., 128}
∗: I = {1, 2, 3, 4, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 37, 39,

40, 42, 45, 46, 47, 48, 49, 50, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 73, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 126, 127}

47


	Improved Division Property Based Cube Attacks Exploiting Algebraic Properties of Superpoly (Full Version)
	Introduction
	Motivations.
	Our Contributions.
	Organizations.


	Preliminaries
	Mixed Integer Linear Programming
	Cube Attack
	Bit-Based Division Property and its MILP Representation
	Propagation of Division Property with MILP.

	The Bit-Based Division Property for Cube Attack

	Modeling the Constant Bits to Improve the Preciseness of the MILP Model
	Upper Bounding the Degree of the Superpoly
	Applications of Flag Technique and Degree Evaluation
	Specification of Trivium
	MILP Model of Trivium
	Experimental Verification
	Theoretical Results

	Lower Complexity with Term Enumeration
	Application to Trivium
	Applications to Kreyvium
	Applications to Grain-128a
	Applications to Acorn
	Relaxed Algorithm 5.


	A Clique View of the Superpoly Recovery
	Advantage over the terms enumeration techniques.

	Conclusion
	Application to Kreyvium
	Specification of Kreyvium
	MILP Model of Kreyvium
	Experimental Verification
	Theoretical Results

	Application to Grain-128a
	Specification of Grain-128a
	MILP Model of Grain-128a
	Experimental Verification
	Theoretical Results

	Application to Acorn
	Specification of Acorn
	MILP Model of Acorn
	Experimental Verification
	Theoretical Results



