
IND-CCA-secure Key Encapsulation Mechanism
in the Quantum Random Oracle Model,

Revisited?

Haodong Jiang1,2, Zhenfeng Zhang2,3, Long Chen2,3, Hong Wang1, and Zhi
Ma1,4

1 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Zhengzhou, Henan, China

2 TCA Laboratory, State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, China

3 University of Chinese Academy of Sciences, Beijing, China
4 CAS Center for Excellence and Synergetic Innovation Center in Quantum

information and Quantum Physics,USTC, Hefei, Anhui, China
hdjiang13@gmail.com, {chenlong,zfzhang}@tca.iscas.ac.cn,

{wfallmoon,ma zhi}@163.com

Abstract. With the gradual progress of NIST’s post-quantum cryptog-
raphy standardization, the Round-1 KEM proposals have been posted for
public to discuss and evaluate. Among the IND-CCA-secure KEM con-
structions, mostly, an IND-CPA-secure (or OW-CPA-secure) public-key
encryption (PKE) scheme is first introduced, then some generic transfor-
mations are applied to it. All these generic transformations are construct-
ed in the random oracle model (ROM). To fully assess the post-quantum
security, security analysis in the quantum random oracle model (QROM)
is preferred. However, current works either lacked a QROM security proof
or just followed Targhi and Unruh’s proof technique (TCC-B 2016) and
modified the original transformations by adding an additional hash to
the ciphertext to achieve the QROM security.

In this paper, by using a novel proof technique, we present QROM se-
curity reductions for two widely used generic transformations without
suffering any ciphertext overhead. Meanwhile, the security bounds are
much tighter than the ones derived by utilizing Targhi and Unruh’s proof
technique. Thus, our QROM security proofs not only provide a solid
post-quantum security guarantee for NIST Round-1 KEM schemes, but
also simplify the constructions and reduce the ciphertext sizes. We also
provide QROM security reductions for Hofheinz-Hövelmanns-Kiltz mod-
ular transformations (TCC 2017), which can help to obtain a variety of
combined transformations with different requirements and properties.

Keywords: quantum random oracle model · key encapsulation mecha-
nism · IND-CCA security · generic transformation

? An earlier version of this paper appeared with title “Post-quantum IND-CCA-secure
KEM without Additional Hash”.

1 Introduction

As a foundational cryptography primitive, key encapsulation mechanism (KEM)
is efficient and versatile. It can be used to construct, in a black-box manner, PKE
(the KEM-DEM paradigm [1]), key exchange and authenticated key exchange
[2, 3]. Compared with designing a full PKE scheme, the KEM construction is
usually somewhat easier or more efficient. In December 2016, National Insti-
tute of Standards and Technology (NIST) announced a competition with the
goal to standardize post-quantum cryptographic (PQC) algorithms including
digital-signature, public-key encryption (PKE), and KEM (or key exchange)
with security against quantum adversaries [4]. Among the 69 Round-1 algorith-
m submissions, posted in December 2017 by NIST for public to discuss and
evaluate [4], there are 39 proposals for KEM constructions.

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [5] is wide-
ly accepted as a standard security notion for many cryptography applications.
However, the security is usually much more difficult to prove than IND-CPA
(and OW-CPA) security, i.e., indistinguishability (and one-way) against chosen-
plaintext attacks. Mostly, generic transformations [6, 7] are used to create an
IND-CCA-secure KEM from some weakly secure (OW-CPA or IND-CPA) P-
KEs.

Recently, considering the drawbacks of previous analysis of Fujisaki-Okamoto
(FO) transformation [8, 9], such as a non-tight security reduction and the need
for a perfectly correct scheme, Hofheinz, Hövelmanns and Kiltz [7] revisited the
KEM version of FO transformation [6] and provided a fine-grained and modular

toolkit of transformations U�⊥, U⊥, U�⊥m, U⊥m, QU�⊥m and QU⊥m (In what follows,
these transformations will be categorized as modular FO transformations for
brevity), where m (without m) means K = H(m) (K = H(m, c)), �⊥ (⊥) mean-
s implicit (explicit) rejection5 and Q means adding an additional hash to the
ciphertext. Combing these modular transformations, they obtained several vari-

ants of FO transformation FO�⊥, FO⊥, FO�⊥m, FO⊥m, QFO�⊥m and QFO⊥m (These
transformations will be categorized as FO transformations in the following).

All the (modular) FO transformations are in the random oracle model (ROM)
[10]. When the KEM scheme is instantiated, the random oracle is usually re-
placed by a hash function, which a quantum adversary may evaluate on a quan-
tum superposition of inputs. As a result, to fully assess post-quantum security,
we should analyze security in the quantum random oracle model (QROM), as
introduced in [11]. However, proving security in the QROM is quite challenging,
as many classical ROM proof techniques will be invalid [11].

In [7], Hofheinz et al. presented QROM security reductions for QU�⊥m, QU⊥m,

QFO�⊥m and QFO⊥m. For these transformations, there is an additional hash in
the ciphertext, which plays an important role in their reductions. The security

reductions for U�⊥, U⊥, U�⊥m, U⊥m, FO�⊥, FO⊥, FO�⊥m and FO⊥m are just presented
in the ROM.
5 In implicit (explicit) rejection, a pseudorandom key (an abnormal symbol ⊥) is

returned for an invalid ciphertext.

2

Among the 39 KEM submissions, there are 35 schemes that take IND-CCA as
the security goal. Particularly, 25 IND-CCA-secure KEM schemes are construct-
ed by utilizing above transformations (see Table 1) from different PKE schemes,
with different security notions (e.g., IND-CPA vs OW-CPA), and underlying
hardness of certain problems over lattice, code theory and isogeny. In the sub-
missions of LAC, Odd Manhattan, LEDAkem and SIKE, the QROM security is

not considered. In the 16 submissions including FrodoKEM etc., QFO�⊥6, QFO⊥,

QFO�⊥m and QFO⊥m are used, where an additional hash is appended to the cipher-
text. In the other 5 submissions including CRYSTALS-Kyber, LIMA, SABER,
ThreeBears and Classic McEliece, the additional hash is removed according to
Saito, Xagawa, and Yamakawa’s work [12] and our work in previous version [?].

For the (modular) FO transformations, the underlying PKE schemes differ
in the following aspects including additional hash, correctness, determinacy, and
security.

– Additional hash. Additional hash here is a length-preserving hash func-
tion (that has the same domain and range size) appended to the ciphertext,
which was first introduced by Targhi and Unruh [13] to prove the QROM
security of the variants of FO transformation [8, 9] and OAEP transforma-
tion [14, 15]. Following Targhi and Unruh’s trick, Hofheinz et al. gave the

transformations QU�⊥m, QU⊥m, QFO�⊥m and QFO⊥m by adding an additional
hash to the corresponding ROM constructions, and presented the QROM
security reductions for them.
Among NIST Round-1 submissions of an IND-CCA-secure KEM, 16 pro-
posals use this trick to achieve QROM security. Intuitively, for 128-bit post-
quantum security, this additional hash merely increases the ciphertext size
by 256 bits [16]. However, we note that the QROM security proof in [7, 13]
requires the additional hash to be length-preserving. Thus, for some schemes
where the message space is strictly larger than the output space of the hash
function, the increasement of ciphertext size is significant. Hülsing et al. [17]
tried several ways to circumvent this issue, unfortunately all straight forward
approaches failed. For their specific NTRU-based KEM, additional 1128 bits
are needed, which accounts for 11% of the final encapsulation size.
In the ROM, this additional hash is clearly redundant for the constructions
of an IND-CCA-secure KEM [6, 7]. Some proposals, e.g., ThreeBears [18],
believe this additional hash adds no security. To accomplish the QROM
security proof, this additional hash was deliberately introduced, which in-
creased the ciphertext size and complicated the implementation. Thus, a
natural question is that: can we improve the QROM security proofs without
suffering any ciphertext overhead for these constructions?

– Correctness error. For many practical post-quantum PKE schemes, e.g.,
DXL [19], Peikert [20], BCNS [21], New hope [22], Frodo [23], Lizard [24], Ky-
ber [25], NTRUEncrypt [26], NTRU Prime [27], CAKE [28] and QC-MDPC

6 QFO⊥ (QFO�⊥) is the same as QFO⊥m (QFO�⊥
m) except that K = H(m, c). Its security

proof can be easily obtained from the one for QFO⊥m (QFO�⊥
m) in [7].

3

[29], there exists a small correctness error δ, i.e., the probability of decryp-
tion failure in a legitimate execution of the scheme. Specially, among the
KEM submissions in Table 1, there are 18 proposals that have a correctness
error issue.
From a security point of view, it turns out that correctness errors not only
influence the validity of a security proof, but also leak information on the
private key [30]. Particularly, the chosen-ciphertext attacks by exploiting the
gathered correctness errors [30, 31] were demonstrated for CCA versions of
NTRUEncrypt and QC-MDPC obtained by using generic transformations,
whose securities were proved assuming the underlying PKEs perfectly correc-
t. Additionally, recently, Bernstein et al. [32] showed that the HILA5 KEM
[33] does not provide IND-CCA security by demonstrating a key-recovery at-
tack in the standard IND-CCA attack model using the information obtained
from the correctness errors.
To date, it is not clear how highly these correctness errors can affect the CCA
security of these KEM schemes and how high these correctness errors should
be to achieve a fixed security strength. To the best of our knowledge, for
all previous security analyses about (modular) FO transformations except
the work [7], perfect correctness, i.e., δ = 0, is assumed. Therefore, QROM
security analyses of above (modular) FO transformations with correctness
errors into consideration are preferred.

– Determinacy. According to the works [7, 34], an IND-CCA-secure KEM
in the ROM can be easily constructed by applying the transformation U⊥m
(or U�⊥m) to a deterministic PKE (DPKE). Saito et al. [12] showed that a
DPKE can be constructed based on the concepts of the GPV trapdoor func-
tion for LWE [35], NTRU [26], the McEliece PKE [36], and the Niederreiter
PKE [37]. However, the popular LWE cryptosystem and variants [38–41]
are probabilistic encryption, which are referred by CRYSTALS-Kyber, EM-
BLEM and R.EMBLEM, FrodoKEM, KINDI, LAC, Lepton, LIMA, Lizard,
NewHope, Round2, SABER and ThreeBears [4]. Particularly, of the under-
lying PKEs in the KEM proposals in Table 1, DPKEs just account for 28%.

– Security notion. IND-CPA security and OW-CPA security are widely ac-
cepted as standard security notions for PKE. In the KEM submissions in
Table 1, all the underlying PKE schemes satisfy the OW-CPA security. The
IND-CPA security is taken as a security goal of a PKE/KEM scheme dur-
ing NIST’s PQC standardization, and satisfied for most latticed-based and
isogeny-based PKE schemes. FO transformations are widely used as they
just require the PKE schemes to have the standard CPA security.
There are also some non-standard security notions, e.g., one-way against
plaintext checking attacks (OW-PCA), one-way against validity checking
attacks (OW-VA), one-way against plaintext and validity checking attack-
s (OW-PVCA) for PKE [6, 7] and disjoint simulatability (DS) for DPKE
[12]. According to [7, 12], if the underlying PKE satisfies these non-standard
securities, modular FO transformations can be used to construct an IND-
CCA-secure KEM with a tighter security reduction. Particularly, saito et al.
[12] presented a tight security proof for U�⊥m with stronger assumptions for

4

underlying DPKE scheme, DS security and perfect correctness, which are
satisfied by Classical McEliece in Table 1.

To accurately evaluate the CCA security of the KEM proposals in Table 1 in
the QROM, taking correctness error into account, we revisit the QROM secu-
rity of above (modular) FO transformations without additional hash and with
different assumptions for the underlying PKE scheme in terms of determinacy
and security.

1.1 Our Contributions

1. For any correctness error δ (0 ≤ δ < 1), we prove the QROM security of

two generic transformations, FO�⊥ and FO�⊥m in [7], by reducing the standard
OW-CPA security of the underlying PKE to the IND-CCA security of KEM,
see Table 2.
The obtained security bounds are both ε′ ≈ q

√
δ + q

√
ε, where ε′ is the

success probability of an adversary against the IND-CCA security of the
resulting KEM, ε is the success probability of another adversary against
the OW-CPA security of the underlying PKE, and q is the total number of
B’s queries to various oracles. Our security bounds are much better than
ε′ ≈ q

√
q2δ + q

√
ε, achieved by [7]. Meanwhile, the additional hash is not

required as it is redundant for our security proofs. In [12], saito et al. also

obtained a same tight security bound ε′ ≈ q
√
ε for a variant of FO�⊥m, FO′�

⊥
m =

TPunc◦U�⊥m7, by assuming the underlying PKE scheme IND-CPA-secure and
perfectly correct (i.e., δ = 0).
With our tighter QROM security proofs, 16 KEM constructions including

FrodoKEM etc., where QFO�⊥, QFO⊥, QFO�⊥m and QFO⊥m are used, can be
simplified by cutting off the additional hash and improved in performance
with respect to speed and sizes. Additionally, although LAC and SIKE are

constructed by using FO�⊥ without the additional hash, the QROM security
proof is not considered in their proposals. Thus, our proofs also provide a
solid post-quantum security guarantee for these two KEM schemes without
any additional ciphertext overhead.

2. For modular FO transformations including U�⊥, U⊥, U�⊥m and U⊥m in [7], we
provide QROM security reductions without additional hash for any correct-
ness error δ (0 ≤ δ < 1), see Table 3.
Specifically, we first define the quantum version of OW-PCA and OW-PVCA
by one-way against quantum plaintext checking attacks (OW-qPCA) and
one-way against quantum plaintext and (classical) validity checking attacks
(OW-qPVCA) (quantum plaintext checking attacks mean that the adver-
sary can make quantum queries to the plaintext checking oracle). For any
correctness error δ (0 ≤ δ < 1), we provide QROM security reductions for,

U�⊥ from OW-qPCA, U⊥ from OW-qPVCA, U�⊥m from OW-CPA (and DS),
U⊥m from OW-VA, to IND-CCA without additional hash.

7 TPunc is a variant of T in [7]

5

Table 1: List of KEM submissions based on (modular) FO transformations.

Proposals Transformations
Correctness

error
DPKE?

QROM
consideration?

CRYSTALS-Kyber FO�⊥ Y N Y

EMBLEM and R.EMBLEM QFO⊥ Y N Y

FrodoKEM QFO�⊥ Y N Y

KINDI QFO�⊥
m Y N Y

LAC FO�⊥ Y N N

Lepton QFO⊥ Y N Y

LIMA FO⊥m Na N Y

Lizard QFO�⊥ Y N Y

NewHope QFO�⊥ Y N Y

NTRU-HRSS-KEM QFO⊥m N N Y

Odd Manhattan U⊥m N N N

OKCN-AKCN-CNKE QFO�⊥ Y N Y

Round2 QFO�⊥ Y N Y

SABER FO�⊥ Y N Y

ThreeBears FO⊥m Y N Y

Titanium QFO�⊥ Y N Y

BIG QUAKE QFO⊥ N N Y

Classic McEliece U�⊥ N Y Y

DAGS QFO⊥m N N Y

HQC QFO⊥ Y N Y

LEDAkem U�⊥m Y Y N

LOCKER QFO⊥ Y N Y

QC-MDPC QFO⊥m Y N Y

RQC QFO⊥ N N Y

SIKE FO�⊥ N N N

a In the round-1 submission, the LIMA team uses rejection sampling in en-
cryption to avoid correctness errors. But they claim that they will replace
the rejection sampling in encryption with a “standard” analysis of correct-
ness errors to fix a mistake in previous analysis if LIMA survives until the
second round [42].

6

Table 2: FO transformations from standard security assumptions.

Transformation
Underlying

security
Security
bound

Additional
hash

Perfectly
correct?

QFO�⊥
m and QFO⊥m [7] OW-CPA q

√
q2δ + q

√
ε Y N

FO′�⊥m [12] IND-CPA q
√
ε N Y

FO�⊥ and FO�⊥m Our work OW-CPA q
√
δ + q

√
ε N N

Table 3: Modular FO transformations from non-standard security assumptions.

Transformation
Underlying

security
Security
bound

Additional
hash

DPKE
Perfectly
correct?

QU⊥m [7] OW-PCA q
√
ε Y N N

QU�⊥
m [7] OW-PCA q

√
ε Y N N

U�⊥m[12] DS ε N Y Y

U�⊥ Our work OW-qPCA q
√
ε N N N

U⊥ Our work OW-qPVCA q
√
ε N N N

U�⊥m Our work OW-CPA q
√
δ + q

√
ε N Y N

U�⊥m Our work DS q
√
δ + ε N Y N

U⊥m Our work OW-VA q
√
δ + q

√
ε N Y N

OW-qPCA (OW-qPVCA) security is just a proof artefact for simulating H.
Compared with the DS security notion introduced by [12], the OW-qPCA
security is less restrained and weaker. We note that the DS security notion is
defined for the DPKE scheme which satisfies (1) statistical disjointness and
(2) ciphertext-indistinguishability. Actually, all the DPKE schemes satisfy
the OW-qPCA security as the plaintext checking oracle can be simulated
by re-encryption in a quantum computer. Therefore, all the instantiations of
DS-secure DPKE in [12] are also OW-qPCA-secure. Particularly, the OW-
qPCA security is not restrained to the DPKE scheme. Many post-quantum
PKE schemes satisfy OW-qPCA security, e.g., NTRU [26], McEliece [36],
and Niederreiter [37]. Additionally, we show that the resulting PKE scheme
achieved by applying the transformation T to a OW-CPA-secure PKE [7] is
also OW-qPCA-secure.

Our security reductions preserve the tightness of the ones in [7, 12] without
additional hash for any correctness error δ (0 ≤ δ < 1), see Table 3. Our
QROM security analyses not only provide post-quantum security guarantees
for the KEM schemes constructed by using these modular FO transforma-
tions, e.g., Odd Manhattan, Classic McEliece and LEDAkem, but also can
help to obtain a variety of combined transformations with different require-
ments and properties.

7

1.2 Techniques

Remove the additional hash As explained by Targhi and Unruh [13], their
proof technique strongly relies on the additional hash. In their paper, they dis-
cussed the QROM security of a variant of FO transformation from a OW-CPA-
secure PKE to an IND-CCA-secure PKE. To implement the security reduction,
one needs to simulate the decryption oracle without possessing the secret key. In
classical proof, a RO-query list is used to simulate such an oracle. In the QROM,
the simulator has no way to learn the actual content of adversarial RO queries,
therefore such a RO-query list does not exist. Targhi and Unruh circumvented
this issue by adding an additional length-preserving hash (modeled as a RO) to
the ciphertext. In the security reduction, this additional RO is simulated by a
k-wise independent function. For every output of this RO, the simulator can re-
cover the corresponding input by inverting this function. Thereby, the simulator
can answer the decryption queries without a secret key.

When considering the generic transformations from a weakly secure PKE
to an IND-CCA-secure KEM, one needs to simulate the decapsulation oracle
Decaps without the secret key. Indeed, obviously, we can modify the trans-
formations by adding an additional length-preserving hash to the ciphertext so
that the simulator can carry out the decryption. Thus, using the key-derivation-
function (KDF, modeled as a random oracle H), he can easily simulate the
Decaps oracle.

In [11, Theorem 6], Boneh et al. proved the QROM security of a generic
hybrid encryption scheme [10], built from an injective trapdoor function and
symmetric key encryption scheme. Inspired by their proof idea, we present a
novel approach to simulate the Decaps oracle8.

The high level idea is that we associate the random oracle H (KDF in the
KEM) with a secret random function H ′ by setting H = H ′◦g such that H ′(·) =
Decaps(sk, ·). We demand that the function g should be indistinguishable from
an injective function for any efficient quantum adversary. Thus, in the view of
the adversary against the IND-CCA security of KEM, H is indeed a random
oracle. Meanwhile, we can simulate the Decaps oracle just by using H ′. Note
that in our simulation of the Decaps oracle, we circumvent the decryption
computation. Thereby, there is no need to read the content of adversarial RO
queries, which makes it unnecessary to add an additional length-preserving hash
to the ciphertext.

Tighten the security bound When proving the IND-CCA security of KEM

from the OW-CPA security of underlying PKE for FO�⊥ and FO�⊥m, reprogram-
ming the random oracles G and H is a natural approach. In quantum setting,
the one-way to hiding (OW2H) lemma [43, Lemma 6.2] is a practical tool to
argue the indistinguishability between games where the random oracles are re-
programmed. However, the OW2H lemma inherently incurs a quadratic security
loss.

8 This method is also used by a concurrent and independent work [12].

8

To tighten the security bounds, we have to decrease the times of the usage of

the OW2H lemma. [7] analyzed the QROM security of QFO�⊥m (and QFO⊥m) by
two steps. First, they presented a QROM security reduction from the OW-CPA
security of the underlying PKE to the OW-PCA security of an intermediate
scheme PKE′. In this step, the random oracle G was reprogrammed, thus by
using the OW2H lemma they obtained that ε′′ ≤ q2δ + q

√
ε, where ε′′ is the

success probability of an adversary against the OW-PCA security of PKE′. In
the second step, they reduced the OW-PCA security of PKE′ to the IND-CCA
security of KEM, where the random oracles H and H ′′ (the additional hash)
were reprogrammed. Again, by using the OW2H lemma, they gained ε′ ≤ q

√
ε′′.

Finally, combing above two bounds, they obtained the security bound of KEM,
ε′ ≤ q

√
q2δ + q

√
ε. Direct combination of the modular analyses leads to twice

utilization of the OW2H lemma, which makes the security bound highly non-
tight.

When considering the QROM security of FO�⊥ and FO�⊥m, instead of modular
analysis, we choose to reduce the OW-CPA security of underlying PKE to the
IND-CCA security of KEM directly without introducing an intermediate scheme
PKE′. In this way, G and H are reprogrammed simultaneously, thus the OW2H
lemma is used only once in our reductions.

We also find that the order of the games can highly affect the tightness of
the security bound. If we reprogram G and H before simulating the Decaps
oracle with the secret random function H ′, the obtained security bound will be

q

√
ε+ q

√
δ, where the ε term has quadratic loss and the δ term has quartic loss.

Therefore, we choose to simulate the Decaps oracle with H ′ before reprogram-
ming G and H. But, in this way, when using the OW2H lemma to argue the
indistinguishability between games where G and H are reprogrammed, one has
to guarantee the consistency of H and H ′. We solve this by generalizing the
OW2H lemma to the case where the reprogrammed oracle and other redundant
oracle can be sampled simultaneously according to some joint distribution (for
complete description of the generalized OW2H lemma, see Lemma 3).

Finally, our derived security bound is q
√
δ+ q

√
ε, which is much tighter than

the bound q
√
q2δ + q

√
ε obtained by [7].

1.3 Discussion

Tightness. Having a tight security reduction is a desirable property for practice
cryptography, especially in large-scale scenarios. In the ROM, if we assume that

the underlying PKE scheme in FO�⊥ and FO�⊥m is IND-CPA-secure, we can obtain
a tight reduction from the IND-CPA security of underlying PKE to IND-CCA se-

curity of resulting KEM [7]. Specially, if the PKE scheme in FO�⊥m is instantiated
with a Ring-LWE-based PKE scheme [40], the security of the underlying Ring-
LWE problem can be reduced to the IND-CCA security of KEM [44]. In [12],

saito et al. presented a tight security reduction for U�⊥m by assuming a stronger
underlying DPKE, which is only satisfied by Classic McEliece in Table 1. For

9

the widely used FO�⊥ and FO�⊥m, quadratic security loss still exists even assuming
the IND-CPA security of the underlying PKE scheme, see Table 2. For the tight
ROM security reductions in [44, 7], the simulators need to make an elaborate
analysis of the RO-query inputs and determine which one of the query inputs
can be used to break the IND-CPA security of the underlying PKE scheme [7] or
solve a decision Ring-LWE problem [44]. However, in the QROM, such a proof
technique will be invalid for the reason that there is no way for the simulators to
learn the RO-query inputs [45, 46]. Thus, in the QROM, it is still an important
open problem that whether one can develop a novel proof technique to obtain a

tight reduction for FO�⊥ and FO�⊥m assuming standard IND-CPA security of the
underlying PKE.

Implicit rejection. For most of the previous generic transformations from
a OW-CPA-secure (or IND-CPA-secure) PKE to an IND-CCA-secure KEM,
explicit rejection is adopted. In [7], Hofheinz et al. presented several transfor-
mations with implicit rejection. These two different versions (explicit rejection
and implicit rejection) have their own merits. The transformation with implicit
rejection [7] does not require the underlying PKE scheme to be γ-spread [8, 9]
(meaning that the ciphertexts generated by the probabilistic encryption algo-
rithm have sufficiently large entropy), which may allow choosing better system
parameters for the same security level. Whereas, the ones with explicit rejection
have a relatively simple decapsulation algorithm.

In our paper, we just give QROM security reductions for the transformations
with implicit rejection. It is not obvious how to extend our QROM security proofs
for the transformations with explicit rejection, since the simulator has no way
to tell if the submitted ciphertext is valid. In classical ROM, we usually assume
the underlying PKE is γ-spread. Then, we can recognize invalid ciphertexts just
by testing if they are in the RO-query list, as the probability that the adversary
makes queries to the decapsulation oracle with a valid ciphertext which is not
in the RO-query list is negligible [44, 7–9]. Unfortunately, in the QROM, the
adversary makes quantum queries to the RO, above RO-query list does not
exist. Thus, the ROM proof technique for the recognition of invalid ciphertexts
is invalid in the QROM. Here, we leave it as an open problem to prove the

QROM security of the transformations FO�⊥ and FO�⊥m with explicit rejection.

1.4 Subsequent Works

Subsequent to the preliminary version of this paper, several works [47–50] fur-
ther researched the IND-CCA security of (modular) FO transformations in the
QROM. [47] developed a novel approach to verify the validity of a ciphertext, and
proved the IND-CCA security FO⊥m, FO⊥ and U⊥m with plaintext confirmation,
under the same assumptions and with the same tightness as in this paper and
[12]. Using the semi-classical oracle technique [51], [47, 48] gave tighter security
proofs for FO transformations and modular FO transformations by reducing the
factor of security loss from O(q) to O(

√
q), for the transformation T by reducing

10

the degree of security loss from 2 to 1. Very recently, [50] further improved the
proofs for the modular FO transformations by reducing the factor of security loss
from O(

√
q) to O(1), which is enabled by a new double-sided OW2H lemma. In

addition, quantum CCA security of the KEMs in [12, 47] is considered by [49].
On the other hand, Jiang, Zhang and Ma [52] gave an impossibility result

for FO transformations and modular FO transformations, which shows that a
typical measurement-based reduction in the QROM from breaking standard OW-
CPA (or IND-CPA) security of the underlying PKE to breaking the IND-CCA
security of the resulting KEM, will inevitably incur a quadratic loss of the se-
curity, where “measurement-based” means the reduction measures a hash query
from the adversary and uses the measurement outcome to break the underlying
security of PKE. In particular, all currently known security reductions are of
this type, and such an impossibility result suggests an explanation for the lack
of progress in improving the reduction tightness in terms of the degree of security
loss.

2 Preliminaries

Symbol description. Denote K, M, C and R as key space, message space,
ciphertext space and randomness space, respectively. For a finite set X, we de-

note the sampling of a uniform random element x by x
$← X, and we denote the

sampling according to some distribution D by x←D. By x =?y we denote the
integer that is 1 if x = y, and otherwise 0. Pr[P : G] is the probability that the
predicate P holds true where free variables in P are assigned according to the
program in G. Denote deterministic (probabilistic) computation of an algorithm
A on input x by y := A(x) (y ← A(x)). AH means that the algorithm A gets
access to the oracle H.

2.1 Quantum Random Oracle Model

In the ROM [10], we assume the existence of a random function H, and give
all parties oracle access to this function. The algorithms comprising any crypto-
graphic protocol can use H, as can the adversary. Thus we modify the security
games for all cryptographic systems to allow the adversary to make random
oracle queries.

When a random oracle scheme is implemented, some suitable hash functionH
is included in the specification. Any algorithm (including the adversary) replaces
oracle queries with evaluations of this hash function. In quantum setting, because
a quantum algorithm can evaluate H on an arbitrary superposition of inputs,
we must allow the quantum adversary to make quantum queries to the random
oracle. We call this the quantum random oracle model [11]. Unless otherwise
specified, the queries to random oracles are quantum in our paper.

Tools. Next we state four lemmas that we will use throughout the paper. The
first two lemmas have been proved in other works, and we prove the last two in

11

Appendixes B and C. Most of the background in quantum computation needed
to understand this paper is just for above two proofs. Therefore, we present the
necessary background in Appendix A. Here, we just recall two basic facts about
quantum computation.

– Fact 1. Any classical computation can be implemented on a quantum com-
puter.

– Fact 2. Any function that has an efficient classical algorithm computing it
can be implemented efficiently as a quantum-accessible oracle.

Lemma 1 (Simulating the random oracle [53, Theorem 6.1]). Let H
be an oracle drawn from the set of 2q-wise independent functions uniformly at
random. Then the advantage any quantum algorithm making at most q queries
to H has in distinguishing H from a truly random function is identically 0.

Lemma 2 (Generic search problem [54, 55]). Let γ ∈ [0, 1]. Let Z be a
finite set. N1 : Z → {0, 1} is the following function: For each z, N1(z) = 1
with probability pz (pz ≤ γ), and N1(z) = 0 else. Let N2 be the function with
∀z : N2(z) = 0. If an oracle algorithm A makes at most q quantum queries to
N1 (or N2), then∣∣Pr[b = 1 : b← AN1]− Pr[b = 1 : b← AN2]

∣∣ ≤ 2q
√
γ.

Particularly, the probability of A finding a z such that N1(z) = 1 is at most
2q
√
γ, i.e., Pr[N1(z) = 1 : z ← AN1] ≤ 2q

√
γ.

Note. [54, Lemma 37] and [55, Theorem 1] just consider the specific case where
all pzs are equal to γ. But in our security proof, we need to consider the case
where pz ≤ γ and pzs are in general different from each other. Fortunately, it is
not difficult to verify that the proof of [54, Lemma 37] can be extended to this
generic case.

The one-way to hiding (OW2H) lemma [43, Lemma 6.2] is a useful tool
for reducing a hiding (i.e., indistinguishability) property to a guessing (i.e., one-
wayness) property in the security proof. Roughly speaking, the lemma states that
if there exists an oracle algorithm A who issuing at most q1 queries to random
oracle O1 can distinguish (x,O1(x)) from (x, y), where y is chosen uniformly at
random, we can construct another oracle algorithm B who can find x by running
A and measuring one of A’s query. However, in our security proof, the oracle
O1 is not a perfect random function and A can have access to other oracle O2

associated to O1. Therefore, we generalize the OW2H lemma.

Lemma 3 (One-way to hiding, with redundant oracle). Let oracles O1,
O2, input parameter inp and x be sampled from some joint distribution D which
satisfies following conditions,

Condition 1: x ∈ {0, 1}n (the domain of O1),

12

Condition 2: O1(x) is uniform over {0, 1}m (the codomain of O1) for any fixed
O1(x′) (x′ 6= x), O2, inp and x.

Consider an oracle algorithm AO1,O2 that makes at most q1 queries to O1 and
q2 queries to O2. Denote E1 as the event that AO1,O2 on input (inp, x,O1(x))
outputs 1. Reprogram O1 at x and replace O1(x) by a uniformly random y from
{0, 1}m. Denote Ö1 as the oracle that Ö1(x) := y and Ö1 = O1 everywhere

else. Denote E2 (Ë2, resp.) as the event that AO1,O2 (AÖ1,O2 , resp.) on input
(inp, x, y) ((inp, x,O1(x)), resp.) outputs 1.

Let BO1,O2 (BÖ1,O2 , resp.) be an oracle algorithm that on input (inp, x, y)

((inp, x,O1(x)), resp.) does the following: pick i
$← {1, . . . , q1}, run AO1,O2(inp, x, y)

(AÖ1,O2(inp, x,O1(x)), resp.) until the i-th query to O1 (Ö1, resp.), measure the
argument of the query in the computational basis, and output the measurement
outcome. (When A makes less than i queries, B outputs ⊥ /∈ {0, 1}n.) Let

Pr[E1] = Pr[b′ = 1 : (O1,O2, inp, x)←D, y $← {0, 1}m, b′ ← AO1,O2(inp, x,O1(x))]

Pr[E2] = Pr[b′ = 1 : (O1,O2, inp, x)←D, y $← {0, 1}m, b′ ← AO1,O2(inp, x, y]

PB = Pr[x′ = x : (O1,O2, inp, x)←D, y $← {0, 1}m, x′ ← BO1,O2(inp, x, y)]

Pr[Ë2] = Pr[b′ = 1 : (O1,O2, inp, x)←D, y $← {0, 1}m, b′ ← AÖ1,O2(inp, x,O1(x)]

PB̈ = Pr[x′ = x : (O1,O2, inp, x)←D, y $← {0, 1}m, x′ ← BÖ1,O2(inp, x,O1(x))].

Then |Pr[E1]− Pr[E2]| ≤ 2q1
√
PB and if only Condition 1 is met, we have∣∣∣Pr[E1]− Pr[Ë2]

∣∣∣ ≤ 2q1
√
PB̈ .

Note that O2 is unchanged during the reprogramming of O1 at x. In partic-
ular, the view of A in E1 is the same as the view of A in Ë2 except for the first
accessible oracle (O1 vs. Ö1). Thus, intuitively, O2 is redundant and unhelpful
for A distinguishing O1 from Ö1. The complete proof of Lemma 3 is similar to
the proof of the OW2H lemma [43, Lemma 6.2] and we present it in Appendix
B.

We remark that the condition 29 is just used to guarantee that Pr[E2] =
Pr[Ë2] and PB = PB̈ , please refer to Appendix B for details. If one wants to

achieve a security proof with better auditability,
∣∣∣Pr[E1]− Pr[Ë2]

∣∣∣ ≤ 2q1
√
PB̈

might be a better choice than |Pr[E1]− Pr[E2]| ≤ 2q1
√
PB . We note that our

results in Lemma 3 are independent of q2 (the number of A’s queries to O2).
Thus, if we take O2 as one part of A’s input, Lemma 3 can be viewed as a specific
version of [51, Theorem 3], a more generalized OW2H lemma with probabilities
introduced by Ambainis, Hamburg and Unruh.

Lemma 4. Let ΩH (ΩH′) be the set of all functions H : {0, 1}n1 × {0, 1}n2 →
{0, 1}m (H ′ : {0, 1}n2 → {0, 1}m). Let H

$← ΩH , H ′
$← ΩH′ , x

$← {0, 1}n1 .

9 The condition that O1(x) is independent from O2 in an earlier version is also used
to guarantee that Pr[E2] = Pr[Ë2] and

√
PB =

√
PB̈ . But, actually, the condition

2 is enough.

13

Let F0 = H(x, ·), F1 = H ′(·) Consider an oracle algorithm AH,Fi that makes at
most q queries to H and Fi (i ∈ {0, 1}). If x is independent from the AH,Fi ’s
view, ∣∣Pr[1← AH,F0]− Pr[1← AH,F1]

∣∣ ≤ 2q
1√
2n1

.

We now sketch the proof of Lemma 4. The complete proof is in Appendix C.

Proof sketch. In classical setting, it is obvious that
∣∣Pr[1← AH,F0]− Pr[1← AH,F1]

∣∣
can be bounded by the probability that A performs an H-query with input (x, ∗).
As x is independent from AH,Fi ’s view,

∣∣Pr[1← AH,F0]− Pr[1← AH,F1]
∣∣ ≤

q 1
2n1

. In quantum setting, it is not well-defined that A queries (x, ∗) from H,
since H can be queried in superposition. To circumvent this problem, we follow
Unruh’s proof technique in [43, Lemma 6.2] and define a new adversary B who
runs A, but at some random query stops and measures the query input. Let
PB be the probability that B measures x. Similarly to [43, Lemma 6.2], we can
bound

∣∣Pr[1← AH,F0]− Pr[1← AH,F1]
∣∣ by 2q

√
PB . Since x is independent from

the AH,Fi ’s view, PB = 1
2n1

. Thus,
∣∣Pr[1← AH,F0]− Pr[1← AH,F1]

∣∣ ≤ 2q 1√
2n1

.

2.2 Cryptographic Primitives

Definition 1 (Public-key encryption). A public-key encryption scheme PKE =
(Gen,Enc,Dec) consists of a triple of polynomial time (in the security parameter
λ) algorithms and a finite message spaceM. Gen, the key generation algorithm,
is a probabilistic algorithm which on input 1λ outputs a public/secret key-pair
(pk, sk). The encryption algorithm Enc, on input pk and a message m ∈ M,
outputs a ciphertext c ← Enc(pk,m). If necessary, we make the used random-

ness of encryption explicit by writing c := Enc(pk,m; r), where r
$← R (R is the

randomness space). Dec, the decryption algorithm, is a deterministic algorithm
which on input sk and a ciphertext c outputs a message m := Dec(sk, c) or a
special symbol ⊥/∈M to indicate that c is not a valid ciphertext.

Definition 2 (Correctness [7]). A PKE is δ-correct if

E[max
m∈M

Pr[Dec(sk, c) 6= m : c← Enc(pk,m)]] ≤ δ,

where the expectation is taken over (pk, sk)← Gen.

We now define four security notions for public-key encryption: one-way against
chosen plaintext attacks (OW-CPA), one-way against validity checking attacks
(OW-VA), one-way against quantum plaintext checking attacks (OW-qPCA)
and one-way against quantum plaintext and (classical) validity checking attacks
(OW-qPVCA).

Definition 3 (OW-ATK-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message spaceM. For ATK ∈ {CPA,VA, qPCA,

14

qPVCA}, we define OW-ATK games as in Fig. 1, where

OATK :=

⊥ ATK = CPA

Val(·) ATK = VA
Pco(·, ·) ATK = qPCA

Pco(·, ·),Val(·) ATK = qPVCA.

Define the OW-ATK advantage function of an adversary A against PKE as
AdvOW-ATK

PKE (A) := Pr[OW-ATKAPKE = 1].

Game OW-ATK

1 : (pk, sk)← Gen

2 : m∗
$←M

3 : c∗ ← Enc(pk,m∗)

4 : m′ ← AOATK(pk, c∗)

5 : return m′ =?m∗

Pco(m,c)

1 : if m /∈M
2 : return ⊥
3 : else return

4 : Dec(sk, c) =?m

Val(c)

1 : m := Dec(sk, c)

2 : if m ∈M
3 : return 1

4 : else return 0

Fig. 1: Games OW-ATK (ATK ∈ {CPA, VA, qPCA, qPVCA}) for PKE, where OATK

is defined in Definition 3. In games qPCA and qPVCA, the adversary A can query the
Pco oracle with quantum state.

Remark. We note that the security game OW-qPCA (OW-qPVCA) is the same
as OW-PCA (OW-PVCA) except the adversary A’s queries to the Pco oracle. In
OW-qPCA (OW-qPVCA) game,A can make quantum queries to the Pco oracle,
while in OW-PCA (OW-PVCA) game only the classical queries are allowed.
These two new security notations will be used in the security analysis of modular
FO transformations in Sec. 4.

Definition 4 (DS-secure DPKE[12]). Let DM denote an efficiently sam-
pleable distribution on M. A DPKE scheme (Gen,Enc,Dec) with plaintext and
ciphertext spaces M and C is DM-disjoint simulatable if there exists a PPT
algorithm S that satisfies (1) Statistical disjointness: DisjPKE,S := max

pk
Pr[c ∈

Enc(pk,M) : c ← S(pk)] is negligible. (2) Ciphertext-indistinguishability: For
any PPT adversary A, AdvDS-IND

PKE,DM,S(A) := |Pr[A(pk, c∗) → 1 : (pk, sk) ←
Gen;m∗ ← DM; c∗ := Enc(pk,m∗)]− Pr[A(pk, c∗) → 1 : (pk, sk) ← Gen; c∗ ←
S(pk)]| is negligible.

Definition 5 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms Gen, Encaps and Decaps. The key generation al-
gorithm Gen outputs a key pair (pk, sk). The encapsulation algorithm Encaps,
on input pk, outputs a tuple (K, c) where c is said to be an encapsulation of
the key K which is contained in key space K. The deterministic decapsulation
algorithm Decaps, on input sk and an encapsulation c, outputs either a key

15

K := Decaps(sk, c) ∈ K or a special symbol ⊥/∈ K to indicate that c is not a
valid encapsulation.

Game IND-CCA

1 : (pk, sk)← Gen

2 : b
$← {0, 1}

3 : (K∗0 , c
∗)← Encaps(pk)

4 : K∗1
$← K

5 : b′ ← ADecaps(pk, c∗,K∗b)

6 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk, c)

Fig. 2: IND-CCA game for KEM.

We now define a security notion for KEM: indistinguishability against chosen
ciphertext attacks (IND-CCA).

Definition 6 (IND-CCA-secure KEM). We define the IND-CCA game as
in Fig. 2 and the IND-CCA advantage function of an adversary A against KEM
as AdvIND-CCA

KEM (A) :=
∣∣Pr[IND-CCAAKEM = 1]− 1

2

∣∣.
We also define OW-ATK security of PKE, DS security of DPKE and IND-

CCA security of KEM in the QROM, where adversary A can make quantum
queries to random oracles. Following the work [7], we also make the convention
that the number qH of adversarial queries to a random oracle H counts the
total number of times H is executed in the experiment. That is, the number of
A’s explicit queries to H plus the number of implicit queries to H made by the
experiment.

3 Security Proofs for Two Generic KEM Constructions
in the QROM

In this section, we revisit two generic transformations, FO�⊥ and FO�⊥m, see Fig. 3
and Fig. 4. These two transformations are widely used in the post-quantum IND-
CCA-secure KEM constructions, see Table 1. But, there are no QROM security
proofs for them. To achieve QROM security, some proposals, e.g., FrodoKEM,

followed Hofheinz et al.’s work [7] and modified FO�⊥ and FO�⊥m by adding an
additional length-preserving hash function to the ciphertext. Here, we present

two QROM security proofs for FO�⊥ and FO�⊥m respectively without suffering any
ciphertext overhead.

16

Gen′

1 : (pk, sk)← Gen

2 : s
$←M

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c = Enc(pk,m;G(m))

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : return K := H(m′, c)

5 : else return

6 : K := H(s, c)

Fig. 3: IND-CCA-secure KEM-I=FO�⊥[PKE,G,H]

Gen′

1 : (pk, sk)← Gen

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c = Enc(pk,m;G(m))

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 4: IND-CCA-secure KEM-II=FO�⊥m[PKE,G,H,f]

To a public-key encryption scheme PKE = (Gen, Enc, Dec) with message
space M and randomness space R, hash functions G : M→ R, H : {0, 1}∗ →
{0, 1}n and a pseudorandom function (PRF) f with key space Kprf , we asso-

ciate KEM-I=FO�⊥[PKE,G,H] and KEM-II=FO�⊥m[PKE,G,H,f]10 shown in Fig.
3 and Fig. 4, respectively. The following two theorems establish that IND-CCA
securities of KEM-I and KEM-II can both reduce to the OW-CPA security of
PKE, in the QROM.

Theorem 1 (PKE OW-CPA
QROM⇒ KEM-I IND-CCA). If PKE is δ-

correct, for any IND-CCA B against KEM-I, issuing at most qD queries to the
decapsulation oracle Decaps, at most qG queries to the random oracle G and
at most qH queries to the random oracle H, there exists a OW-CPA adversary
A against PKE such that AdvIND-CCA

KEM-I (B) ≤ 2qH
1√
|M|

+ 4qG
√
δ + 2(qG + qH) ·√

AdvOW-CPA
PKE (A) and the running time of A is about that of B.

Proof. Given (pk, sk) and m ∈M, let

Rbad(pk, sk,m) := {r ∈ R : Dec(sk,Enc(pk,m; r)) 6= m}
10 FO�⊥m here is the generic version of FO�⊥m in [7]. In their work, such a pseudorandom

function f is instantiated with H(s, ·) (s is a random seed and contained in the secret
key sk′).

17

denote the set of “bad” randomness and letRgood(pk, sk,m) = R\Rbad(pk, sk,m)
denote the set of “good” randomness. Define

δ(pk, sk,m) =
|Rbad(pk, sk,m)|

|R|

as the fraction of bad randomness and δ(pk, sk) = maxm∈M δ(pk, sk,m). With
this notation δ = E[δ(pk, sk)], where the expectation is taken over (pk, sk)←Gen.

Let G′ be a random function such that G′(m) is sampled according to the
uniform distribution in Rgood(pk, sk,m). Let ΩG′ be the set of all functions G′.
Denote ΩG, ΩH and ΩH′ as the sets of all functions G :M→R, H :M×C → K
and H ′ : C → K, respectively.

Let B be an adversary against the IND-CCA security of KEM-I, issuing at
most qD queries to Decaps, at most qG queries to G and at most qH queries to
H. Consider the games in Fig. 5 and Fig. 9.

Game G0. Since game G0 is exactly the IND-CCA game,∣∣∣∣Pr[GB0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CCA
KEM-I (B).

GAMES G0 −G6

1 : (pk, sk′)← Gen′;G
$← ΩG

2 : G′
$← ΩG′ ;G := G′ //G2 −G4

3 : H1, H2
$← ΩH′ ;H3

$← ΩH

4 : m∗
$←M

5 : r∗ := G(m∗)

6 : c∗ := Enc(pk,m∗; r∗)

7 : k∗0 := H(m∗, c∗)

8 : k∗1
$← K; b

$← {0, 1}

9 : b′ ← BG,H,Decaps(pk, c∗, k∗b)//G0 −G5

10 : G̈ := G; G̈(m∗)
$←R //G6

11 : Ḧ := H; Ḧ(m∗, c∗)
$← K //G6

12 : b′ ← BG̈,Ḧ,Decaps(pk, c∗, k∗b) //G6

13 : return b′ =?b

H(m, c)

1 : if Enc(pk,m;G(m)) = cG3 −G6

2 : return H1(c) //G3 −G6

3 : return H3(m, c)

Decaps (c 6= c∗) //G0 −G3

1 : Parse sk′ = (sk, s)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : return K := H(m′, c)

5 : else return

6 : K := H(s, c) //G0

7 : K := H2(c) //G1 −G3

Decaps (c 6= c∗) //G4 −G6

1 : return K := H1(c)

Fig. 5: Games G0-G6 for the proof of Theorem 1

18

AH,Fi

1 : (pk, sk)← Gen;G
$← ΩG

2 : m∗
$←M

3 : r∗ := G(m∗)

4 : c∗ := Enc(pk,m∗; r∗)

5 : k∗0 := H(m∗, c∗); k∗1
$← K

6 : b
$← {0, 1}

7 : b′ ← BG,H,Decaps(pk, c∗, k∗b)

8 : return b′ =?b

Decaps (c 6= c∗)

1 : m′ := Dec(sk, c)

2 : if Enc(pk,m′;G(m′)) = c

3 : return K := H(m′, c)

4 : else return

5 : K := Fi(c)

Fig. 6: AH,Fi for the proof of Theorem 1.

AN (pk, sk)

1 : Pick 2qG-wise function f

2 : b′′ ← BG̃(pk, sk)

3 : return b′′

G̃(m)

1 : if N(m) = 0

2 : G̃(m) = Sample(R \Rbad(pk, sk,m); f(m))

3 : else

4 : G̃(m) = Sample(Rbad(pk, sk,m); f(m))

5 : return G̃(m)

Fig. 7: AN for the proof of Theorem 1

Game G1. In game G1, we change the Decaps oracle that H2(c) is returned
instead of H(s, c) for an invalid encapsulation c. Define an oracle algorithm

AH,Fi (i ∈ {0, 1}), see Fig. 6. Let H = H3, F0(·) = H3(s, ·) (s
$← M) and

F1 = H2, where H2 and H3 are chosen in the same way as G0 and G1. Then,
Pr[GBi ⇒ 1] = Pr[1← AH,Fi]. Since the uniform secret s is chosen independently
from AH,Fi ’s view, we can use Lemma 4 to obtain∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ ≤ 2qH ·
1√
|M|

.

Game G2. In game G2, we replace G by G′ that uniformly samples from “good”

randomness at random, i.e., G′
$← ΩG′ . Note that the distinguishing problem

between G1 and G2 is essentially the distinguishing problem between G and G′.

Specifically, we can construct an adversary BG̃(pk, sk) against the distinguishing

problem between G and G′ by taking the accessible oracle G̃ as G, simulating
B’s view and outputting in the same way as G1 and G2. Then, for any fixed

(pk, sk) that is generated by Gen, if G̃ = G, BG̃(pk, sk) perfectly simulates G1

19

and Pr[1 ← BG : (pk, sk)] = Pr[GB1 ⇒ 1 : (pk, sk)]. If G̃ = G′, BG̃(pk, sk)
perfectly simulates G2 and Pr[Pr[1 ← BG

′
: (pk, sk)] = Pr[GB2 ⇒ 1 : (pk, sk)].

Thus, ∣∣Pr[GB1 ⇒ 1 : (pk, sk)]− Pr[GB2 ⇒ 1 : (pk, sk)]
∣∣

=
∣∣∣Pr[1← BG : (pk, sk)]− Pr[1← BG

′
: (pk, sk)]

∣∣∣ .
Next, we will show that any algorithm that distinguishes G from G′ can

be converted into an algorithm that distinguishes N1 from N2, where N1 is a
function such that N1(m) is sampled from the Bernoulli distribution Bδ(pk,sk,m),
i.e., Pr[N1(m) = 1] = δ(pk, sk,m) and Pr[N1(m) = 0] = 1− δ(pk, sk,m), and
N2 is a constant function that always outputs 0 for any input.

For any adversary BG̃(pk, sk), we can construct an adversary AN (pk, sk)
as in Fig. 7. Sample(Y) is a probabilistic algorithm that returns a uniformly

distributed y
$← Y. Sample(Y; f(m)) denotes the deterministic execution of

Sample(Y) using explicitly given randomness f(m).

Note that G̃ = G if N = N1 and G̃ = G′ if N = N2. Thus, for any fixed
(pk, sk) that is generated by Gen, Pr[1 ← AN1 : (pk, sk)] = Pr[1 ← BG :
(pk, sk)] and Pr[1← AN2 : (pk, sk)] = Pr[1← BG

′
: (pk, sk)]. Conditioned on a

fixed (pk, sk) we obtain by Lemma 2∣∣∣Pr[1← BG : (pk, sk)]− Pr[1← BG
′

: (pk, sk)]
∣∣∣

=
∣∣Pr[1← AN1 : (pk, sk)]− Pr[1← AN2 : (pk, sk)]

∣∣ ≤ 2qG
√
δ(pk, sk).

Note that
∣∣Pr[GB1 ⇒ 1 : (pk, sk)]− Pr[GB2 ⇒ 1 : (pk, sk)]

∣∣ can be bounded by

the maximum distinguishing probability between G and G′ for BG̃(pk, sk). Thus,∣∣Pr[GB1 ⇒ 1 : (pk, sk)]− Pr[GB2 ⇒ 1 : (pk, sk)]
∣∣ ≤ 2qG

√
δ(pk, sk).

By averaging over (pk, sk)←Gen we finally obtain∣∣Pr[GB1 ⇒ 1]− Pr[GB2 ⇒ 1]
∣∣ ≤ 2qG

√
δ.

Game G3. Note that in game G2, H(m, c) = H3(m, c). In game G3, if H-query
input (m, c) satisfies g(m) = c, the response is replaced by Hg

1 (m) = H1◦g(m) =
H1(g(m)) = H1(c), where

g(·) = Enc(pk, ·;G(·)).

Note that g in G3 is an injective function since G in G3 only samples from
“good” randomness. Thus, the distributions of H in G2 and G3 are identical.
Therefore,

Pr[GB2 ⇒ 1] = Pr[GB3 ⇒ 1].

20

Game G4. In game G4, the Decaps oracle is changed that it makes no use of
the secret key sk′ any more. When B queries the Decaps oracle on c (c 6= c∗),
K := H1(c) is returned as the response. Let m′ := Dec(sk, c) and consider the
following two cases.

Case 1: Enc(pk,m′;G(m′)) = c. In this case, H(m′, c) = H1(c). Thus, both
Decaps oracles in G3 and G4 return the same value.

Case 2: Enc(pk,m′;G(m′)) 6= c. Random values H2(c) and H1(c) are returned
in G3 and G4 respectively. In G3, H2 is a random function independent of
the oracles G and H, thus H2(c) is uniform at random in B’s view. In G4,
B’s queries to H can only help him get access to H1 at ĉ such that g(m̂) = ĉ
for some m̂. Consequently, H1(c) is also a fresh random key just like H2(c) in
B’s view due to the fact that G in G4 only samples from “good” randomness
and there exits no an m′′ such that g(m′′) = c. Hence, in this case, the
output distributions of the Decaps oracles in G3 and G4 are same in B’s
view.

As a result, the output distributions of G3 and G4 are statistically indistinguish-
able and we have

Pr[GB3 ⇒ 1] = Pr[GB4 ⇒ 1].

Game G5. In game G5, we replace G′ by G, that is, G in this game is re-
set to be an ideal random oracle. Then, similar to the case of G1 and G2, the
distinguishing problem between G4 and G5 also can be converted to the distin-
guishing problem between G and G′. Particularly, we can construct an adversary

B′G̃(pk, sk) against the distinguishing problem between G and G′ by simulating

G with the accessible oracle G̃, simulating B’s view and outputting in the same
way as G4 and G5. Then, for any fixed (pk, sk) that is generated by Gen, G4 is

perfectly simulated when G̃ = G′ and G5 is perfectly simulated when G̃ = G.
Thus, ∣∣Pr[GB4 ⇒ 1 : (pk, sk)]− Pr[GB5 ⇒ 1 : (pk, sk)]

∣∣
=
∣∣∣Pr[1← B′G : (pk, sk)]− Pr[1← B′G

′
: (pk, sk)]

∣∣∣ .
Using the same analysis in game G2, we can obtain that∣∣∣Pr[1← B′G : (pk, sk)]− Pr[1← B′G

′
: (pk, sk)]

∣∣∣ ≤ 2qG
√
δ(pk, sk).

Then, ∣∣Pr[GB4 ⇒ 1 : (pk, sk)]− Pr[GB5 ⇒ 1 : (pk, sk)]
∣∣ ≤ 2qG

√
δ(pk, sk).

Finally, averaging over (pk, sk)←Gen, we have∣∣Pr[GB4 ⇒ 1]− Pr[GB5 ⇒ 1]
∣∣ ≤ 2qG

√
δ.

Let G̈ (Ḧ) be the function that G̈(m∗) = ṙ∗ (Ḧ(m∗, c∗) = k̇∗0), and G̈ = G
(Ḧ = H) everywhere else, where ṙ∗ and k̇∗0 are picked uniformly at random from
R and K.

21

Game G6. In game G6, replace G and H by G̈ and Ḧ respectively. In this game,
bit b is independent from B’s view. Hence,

Pr[GB6 ⇒ 1] =
1

2
.

Note that in this game we reprogram the oracles G and H on inputs m∗

and (m∗, c∗) respectively. In classical setting, this will be unnoticed unless the
event Query that B queries G on m∗ or H on (m∗, c∗) happens. Then we can
argue that G5 and G6 are indistinguishable until Query happens. In quantum
setting, due to the quantum queries to G and H, the case is complicated and
we will use Lemma 3 to bound

∣∣Pr[GB5 ⇒ 1]− Pr[GB6 ⇒ 1]
∣∣. Note that (m∗, c∗)

is a valid plaintext-ciphertext pair, i.e., g(m∗) = c∗. Therefore, H(m∗, c∗) =
H1(c∗) = Hg

1 (m∗). Actually, we just reprogram G and Hg
1 at m∗.

Let Ḧg
1 (m∗)

$← K and Ḧg
1 = Hg

1 everywhere else. Let (G × Hg
1)(x) :=

(G(x), Hg
1 (x)) and (G̈ × Ḧg

1)(·) = (G̈(·), Ḧg
1 (·))11. Hg

1 and H3 are internal ran-
dom oracles that B can have access to only by querying the oracle H. Then, the
number of total queries to G×Hg

1 is at most qG+qH . Let H ′1 be the function such
that H ′1(g(m∗)) =⊥ and H ′1 = H1 everywhere else. H ′1 is exactly the Decaps
oracle in G5 and G6 and unchanged during the reprogramming of G×Hg

1 .

Let AG×H
g
1 ,H

′
1 be an oracle algorithm that has quantum access to G × Hg

1

and H ′1, see Fig. 8. Sample G, H1, Hg
1 and pk in the same way as G5 and G6, i.e.,

(pk, sk′)← Gen′, G
$← ΩG, H1

$← ΩH′ , Hg
1 := H1◦g. Let m∗

$←M, r∗ := G(m∗)
and k∗0 := Hg

1 (m∗).

Apparently, AG×H
g
1 ,H

′
1 on input (pk,m∗, (r∗, k∗0)) perfectly simulates G5, and

AG̈×Ḧ
g
1 ,H

′
1 on input (pk,m∗, (r∗, k∗0)) perfectly simulates G6. Let BG̈×Ḧ

g
1 ,H

′
1 be

an oracle algorithm that on input (pk,m∗, (r∗, k∗0)) does the following: pick i
$←

{1, . . . , qG + qH}, run AG̈×Ḧ
g
1 ,H

′
1(pk,m∗, (r∗, k∗0)) until the i-th query to G̈ ×

Ḧg
1 , measure the argument of the query in the computational basis, output the

measurement outcome (when A makes less than i queries, output ⊥). Define

game G7 as in Fig. 9. Then, Pr[BG̈×Ḧ
g
1 ,H

′
1 ⇒ m∗] = Pr[GB7 ⇒ 1] since G̈ × Ḧg

1

reveals no information of G(m∗) and H(m∗, c∗).

Applying Lemma 3 with O1 = G ×Hg
1 , Ö1 = G̈ × Ḧg

1 , O2 = H ′1, inp = pk,
x = m∗ and y = (r∗, k∗0), we have

∣∣Pr[GB5 ⇒ 1]− Pr[GB6 ⇒ 1]
∣∣ ≤ 2(qG + qH)

√
Pr[GB7 ⇒ 1].

11 Note that if one wants to make queries to G (or Hg
1) by accessing to G × Hg

1 , he
just needs to prepare a uniform superposition of all states in the output register
responding to Hg

1 (or G). This trick [56, 57, 13] has been used to ignore part of the
output of an oracle.

22

AG×H
g
1 ,H′

1(pk,m∗, (r∗, k∗0))

1 : H3
$← ΩH

2 : c∗ := Enc(pk,m∗; r∗)

3 : k∗1
$← K

4 : b
$← {0, 1}

5 : b′ ← BG,H,Decaps(pk, c∗, k∗b)

6 : return b′ =?b

H(m, c)

1 : if g(m) = c

2 : return Hg
1 (m)

3 : else return H3(m, c)

Decaps (c 6= c∗)

1 : return K := H ′1(c)

Fig. 8: AG×H
g
1 ,H′

1 for the proof of Theorem 1.

GAMES G7

1 : i
$← {1, . . . , qG + qH}, (pk, sk′)← Gen′, G

$← ΩG

2 : H1
$← ΩH′ , H3

$← ΩH

3 : m∗
$←M, r∗

$←R
4 : c∗ := Enc(pk,m∗; r∗)

5 : k∗0 , k
∗
1

$← K

6 : b
$← {0, 1}

7 : run BG,H,Decaps(pk, c∗, k∗b) until the i−th query to G×Hg
1

8 : measure the argument m̂

9 : return m̂ =?m∗

H(m, c)

1 : if Enc(pk,m;G(m)) = c

2 : return H1(c)

3 : else return H3(m, c)

Decaps (c 6= c∗)

1 : return K := H1(c)

Fig. 9: Game G7 for the proof of Theorem 1

Next, we construct an adversary A against the OW-CPA security of the PKE
scheme such that AdvOW-CPA

PKE (A) = Pr[GB7 ⇒ 1]. The adversary A on input (1λ,
pk, c) does the following:

1. Run the adversary B in game G7.
2. Use a 2qG-wise independent function and two different 2qH -wise independent

functions to simulate the random oracles G, H1 and H3 respectively. The
random oracle H is simulated in the same way as the one in game G7.

3. Answer the decapsulation queries by using the Decaps oracle in Fig. 9.

4. Select k∗
$← K and respond to B’s challenge query with (c, k∗).

23

5. Select i
$← {1, . . . , qG+qH}, measure the argument m̂ of i-th query to G×Hg

1

and output m̂.

According to Lemma 1, AdvOW-CPA
PKE (A) = Pr[GB7 ⇒ 1]. Finally, combing this

with the bounds derived above, we can conclude that

AdvIND-CCA
KEM-I (B) ≤ 2qH

1√
|M|

+ 4qG
√
δ + 2(qG + qH) ·

√
AdvOW-CPA

PKE (A).

ut

Theorem 2 (PKE OW-CPA
QROM⇒ KEM-II IND-CCA). If PKE is δ-

correct, for any IND-CCA B against KEM-II, issuing at most qD classical
queries to the decapsulation oracle Decaps and at most qG (qH) queries to ran-
dom oracle G (H), there exist a quantum OW-CPA adversary A against PKE
and an adversary A′ against the security of PRF with at most qD classical queries

such that AdvIND-CCA
KEM-II (B) ≤ AdvPRF(A′)+4qG

√
δ+2(qH + qG) ·

√
AdvOW-CPA

PKE (A)

and the running time of A is about that of B.

The only difference between KEM-I and KEM-II is the KDF function. In KEM-I,
K = H(m, c), while K = H(m) in KEM-II. Note that given pk and random
oracle G, c is determined by m. The proof of Theorem 2 is similar to the one of
Theorem 1 and we present it in Appendix D.

4 Modular Analysis of FO transformation in the QROM

In [7], Hofheinz et al. introduced seven modular transformations T, U�⊥, U⊥,

U�⊥m, U⊥m, QU�⊥m and QU⊥m. But, they just presented QROM security reductions

for the transformations T, QU�⊥m and QU⊥m. Different from the transformations

U�⊥, U⊥, U�⊥m and U⊥m, the transformations QU�⊥m and QU⊥m have an additional
length-preserving hash in the ciphertext, thus they can follow the proof technique
in [58, 13] to give QROM security reductions for them. As they pointed [13],
their QROM security reductions quite rely on this additional hash. And, QROM
security reductions for U�⊥, U⊥, U�⊥m and U⊥m are missing in [7]. In [12], saito et al.

presented a tight QROM security reduction for U�⊥m with stronger assumptions
for underlying DPKE scheme, DS-security and perfect correctness.

In this section, we revisit the transformations U�⊥, U⊥, U�⊥m and U⊥m, and
argue their QROM security without any modification to the constructions and
with correctness error into consideration. [7] has shown that the transformation
T can turn a OW-CPA-secure PKE into a OW-PCA-secure PKE in the QROM.
In Section 4.1, we first show that the resulting PKE scheme by applying T to a
OW-CPA-secure PKE is also OW-qPCA-secure. The QROM security reduction
for U�⊥ (U⊥) from the OW-qPCA (OW-qPVCA) security of PKE to the IND-
CCA security of KEM is given in Section 4.2 (4.3). In Section 4.4, we show that

U�⊥m (U⊥m) transforms any OW-CPA-secure or DS-secure (OW-VA-secure) DPKE
into an IND-CCA-secure KEM in the QROM.

24

4.1 T: from OW-CPA to OW-qPCA in the QROM

To a public-key encryption PKE=(Gen, Enc, Dec) with message space M and
randomness space R, and a hash function G : M → R, we associate PKE′ =
T [PKE, G]. The algorithms of PKE′=(Gen,Enc′,Dec′) are defined in Fig. 10.

Theorem 3 (PKE OW-CPA
QROM⇒ PKE′ OW-qPCA). If PKE is δ-correct,

for any OW-qPCA B against PKE′, issuing at most qG quantum queries to
the random oracle G and at most qP quantum queries to the plaintext check-
ing oracle Pco, there exists a OW-CPA adversary A against PKE such that

Adv
OW−qPCA
PKE′ (B) ≤ 2qG ·

√
δ+ (1 + 2qG) ·

√
AdvOW-CPA

PKE (A) and the running time

of A is about that of B.

The proof is essentially the same as the one of [7, Theorem 4.4] excep-
t the argument about the difference in B’s success probability between game
G0 and game G1. Game G0 is exactly the original OW-qPCA game. In game
G1, the Pco oracle is replaced by a simulation where Enc(pk,m;G(m)) =?c
is returned for the query input (m, c). As pk is public and G is a quantum
random oracle, such a Pco simulation can be queried on a quantum superpo-
sition of inputs. Note that G0 and G1 are indistinguishable unless there exits
an adversary who issuing at most qG queries to G can distinguish N1 from a
constant function N2 that always outputs 0 for any input, where N1(m) = 0 if
Dec(sk,Enc(pk,m;G(m))) = m, and otherwise N1(m) = 1. Thus, using Lemma
2, we can obtain that

∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]
∣∣ ≤ 2qG ·

√
δ. Then, following

the security proof of [7, Theorem 4.4], we can easily prove Theorem 3.

Enc′(pk,m)

1 : c = Enc(pk,m;G(m))

2 : return c

Dec′(sk, c)

1 : m′ := Dec(sk, c)

2 : if Enc(pk,m′;G(m′)) = c

3 : return m′

4 : else return ⊥

Fig. 10: OW-qPCA-secure PKE′ = T [PKE, G]

4.2 U�⊥: from OW-qPCA to IND-CCA in the QROM

To a public-key encryption PKE′=(Gen′, Enc′, Dec′) and a hash function H, we

associate KEM-III = U�⊥[PKE′, H]. The algorithms of KEM-III=(Gen,Encaps,Decaps)
are defined in Fig. 11.

25

Gen

1 : (pk, sk)← Gen′

2 : s
$←M

3 : sk′ := (sk, s)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c← Enc′(pk,m)

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ := Dec′(sk, c)

3 : if m′ =⊥
4 : return K := H(s, c)

5 : else return

6 : K := H(m′, c)

Fig. 11: IND-CCA-secure KEM-III = U�⊥[PKE′, H]

Theorem 4 (PKE′ OW-qPCA
QROM⇒ KEM-III IND-CCA). If PKE′ is

δ-correct, for any IND-CCA B against KEM-III, issuing at most qD (classi-
cal) queries to the decapsulation oracle Decaps and at most qH queries to
the quantum random oracle H, there exists a quantum OW-qPCA adversary
A against PKE′ that makes at most qH queries to the Pco oracle such that

AdvIND-CCA
KEM-III (B) ≤ 2qH

1√
|M|

+ 2qH ·
√
Adv

OW−qPCA
PKE′ (A) and the running time of

A is about that of B.

The proof skeleton of Theorem 4 is essentially the same as the one of Theorem
1. Here, we briefly state the main differences. The complete proof is presented
in Appendix E.

In KEM-I, the randomness used in the encryption algorithm is determined
by the random oracle G. Given a plaintext m, we can deterministically evaluate
the ciphertext c = Enc(pk,m;G(m)). Thus, we can divide H-query inputs (m, c)
into two categories by judging if (m, c) is a matching plaintex-ciphertext pair
(i.e., c = Enc(pk,m;G(m))) or not. In KEM-III, the encryption algorithm may
be probabilistic, thus the above method will be invalid. Instead, we can query
the Pco oracle to judge whether (m, c) is a matching plaintex-ciphertext pair.
If Pco(m, c) = 1, the random oracle H returns H1(c), otherwise H3(m, c). To
simulate the random oracle H, we make quantum queries to Pco (this is the
reason why we require the scheme PKE′ to be OW-qPCA-secure). Note that
it is impossible that Pco(m1, c) = Pco(m2, c) = 1 for m1 6= m2. Thus, H is
perfectly simulated without introducing the δ term. As B’s queries to H can only
help him get access to H1 at c such that Dec′(sk, c) = m̂ for some m̂ 6= ⊥, the
Decaps oracle can be perfectly simulated by H1. Therefore, different from the
security bounds obtained in Theorem 1 and Theorem 2, the δ term is removed
with the OW-qPCA security of underlying PKE.

26

Gen

1 : (pk, sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m
$←M

2 : c← Enc′(pk,m)

3 : K := H(m, c)

4 : return (K, c)

Decaps⊥(sk, c)

1 : m′ := Dec′(sk, c)

2 : if m′ =⊥
3 : return ⊥
4 : else return

5 : K := H(m′, c)

Fig. 12: IND-CCA-secure KEM-IV = U⊥[PKE′, H]

4.3 U⊥: from OW-qPVCA to IND-CCA in the QROM

To a public-key encryption PKE′=(Gen′, Enc′, Dec′) and a hash function H,
we associate KEM-IV = U⊥[PKE′, H]. We remark that U⊥ is essentially the
transformation [6, Table 2], a KEM variant of the REACT/GEM transformations
[59, 60]. The algorithms of KEM-IV=(Gen,Encaps,Decaps⊥) are defined in Fig.
12.

Theorem 5 (PKE′ OW-qPVCA
QROM⇒ KEM-IV IND-CCA). If PKE′ is

δ-correct, for any IND-CCA B against KEM-IV, issuing at most qD (classical)
queries to the decapsulation oracle Decaps and at most qH queries to the quan-
tum random oracle H, there exists a OW-qPVCA adversary A against PKE′

that makes at most qH queries to the Pco oracle and at most qD queries to

the Val oracle such that AdvIND-CCA
KEM-IV (B) ≤ 2qH ·

√
Adv

OW−qPVCA
PKE′ (A) and the

running time of A is about that of B.

The only difference between KEM-III and KEM-IV is the response to the in-
valid ciphertext in the decapsulation algorithm. When the ciphertext c is invalid,
the decapsulation algorithm in KEM-III returns a pseudorandom key related to
c. In this way, whatever the ciphertext (valid or invalid) is submitted, the return
values have the same distribution. As a result, A can easily simulate the decap-
sulation oracle Decaps without recognition of the invalid ciphertexts. While the
decapsulation algorithm in KEM-IV returns ⊥ when the submitted c is invalid.
Thus, in order to simulate Decaps, A needs to judge if the ciphertext c is valid.
As we assume that the scheme PKE′ is OW-qPVCA-secure, A can query the
Val oracle to fulfill such a judgement. Then, it is easy to verify that by using
the same proof method in Theorem 4 we can obtain the desired security bound.

4.4 U�⊥
m/U⊥

m: from OW-CPA/OW-VA to IND-CCA for
Deterministic Encryption in the QROM

The transformation U�⊥m (U⊥m) is a variant of U�⊥ (U⊥) that derives the KEM key
as K = H(m) instead of K = H(m, c). To a deterministic public-key encryption
scheme PKE′ = (Gen′, Enc′, Dec′) with message space M, a hash function

27

H :M→K, and a pseudorandom function f with key space Kprf , we associate
KEM-V=U�⊥m[PKE′,H,f] and KEM-VI=U⊥m[PKE′,H] shown in Fig. 13 and Fig.
14, respectively.

Gen

1 : (pk, sk)← Gen′

2 : k
$← Kprf

3 : sk′ := (sk, k)

4 : return (pk, sk′)

Encaps(pk)

1 : m
$←M

2 : c := Enc′(pk,m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk′, c)

1 : Parse sk′ = (sk, k)

2 : m′ := Dec′(sk, c)

3 : if Enc′(pk,m′) = c

4 : return K := H(m′)

5 : else return

6 : K := f(k, c)

Fig. 13: IND-CCA-secure KEM-V=U�⊥m[PKE′,H,f]

Gen

1 : (pk, sk)← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m
$←M

2 : c := Enc′(pk,m)

3 : K := H(m)

4 : return (K, c)

Decaps(sk, c)

1 : m′ := Dec(sk, c)

2 : if Enc′(pk,m′) = c

3 : return K := H(m′)

4 : else return ⊥

Fig. 14: IND-CCA-secure KEM-VI=U⊥m[PKE′,H]

We note that for a deterministic PKE scheme the OW-PCA security is e-
quivalent to the OW-CPA security as we can simulate the Pco oracle via re-
encryption during the proof. Thus, combing the proofs of Theorem 2, Theorem
4, Theorem 5 and [12, Theorem 4.1], we can easily obtain the following two
theorems.

Theorem 6 (PKE′ OW-CPA
QROM⇒ KEM-V IND-CCA). If PKE′ is δ-

correct and deterministic, for any IND-CCA B against KEM-V, issuing at most
qE quantum queries to the encryption oracle12, at most qD (classical) queries
to the decapsulation oracle Decaps and at most qH quantum queries to the
random oracle H, there exist a quantum OW-CPA adversary A against PKE′,
an adversary A′ against the security of PRF with at most qD classical queries and
an adversary C against the UM-DS security with a simulator S of PKE′ (UM
is the uniform distribution in M) such that AdvIND-CCA

KEM-V (B) ≤ AdvPRF(A′) +

12 For the deterministic scheme PKE′, given public key pk, quantum adversary B can
execute the encryption algorithm Enc′ in a quantum computer.

28

4qE
√
δ + 2qH ·

√
AdvOW-CPA

PKE′ (A) and AdvIND-CCA
KEM-V (B) ≤ AdvPRF(A′) + 4qE

√
δ +

AdvDS-IND
PKE′,UM,S(C) + DisjPKE′,S, and the running time of A (C) is about that of

B.

Theorem 7 (PKE′ OW-VA
QROM⇒ KEM-VI IND-CCA). If PKE′ is δ-

correct and deterministic, for any IND-CCA B against KEM-VI, issuing at most
qE quantum queries to the encryption oracle, at most qD (classical) queries to
the decapsulation oracle Decaps and at most qH quantum queries to the random
oracle H, there exists a quantum OW-VA adversary A against PKE′ who makes
at most qD queries to the Val oracle such that AdvIND-CCA

KEM-VI (B) ≤ 2qE
√
δ+ 2qH ·√

AdvOW-VA
PKE′ (A) and the running time of A is about that of B.

Remark: We stress that the correctness term 4qE
√
δ in Theorem 6 and 2qE

√
δ

in Theorem 7 can be improved to be 2δ according to the work [49], but cannot
be applied to the deterministic PKEs derandomized by the random oracle.

Acknowledgements. We would like to thank anonymous reviews of Cryp-
to 2018, Keita Xagawa, Takashi Yamakawa, Jiang Zhang, and Edoardo Per-
sichetti for their helpful comments and suggestions. This work is supported by
the National Key Research and Development Program of China (No. 2017YF-
B0802000), the National Natural Science Foundation of China (No. U1536205,
61472446, 61701539, 61501514), and the Open Project Program of the State
Key Laboratory of Mathematical Engineering and Advanced Computing (No.
2016A01).

References

1. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33(1) (2003) 167–226

2. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key
exchange in the standard model. In Mu, Y., Susilo, W., Seberry, J., eds.: Informa-
tion Security and Privacy, 13th Australasian Conference – ACISP 2008. Volume
5107 of LNCS., Springer-Verlag (2008) 69–83

3. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. Designs, Codes and Cryptography
76(3) (2015) 469–504

4. NIST: National institute for standards and technology. Post quantum crypto
project (2017) https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions.

5. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Feigenbaum, J., ed.: Advances in Cryptology – CRYP-
TO 1991. Volume 576 of LNCS., Springer (1992) 433–444

6. Dent, A.W.: A designer’s guide to KEMs. In Paterson, K.G., ed.: Cryptography
and Coding: 9th IMA International Conference. Volume 2898 of LNCS., Springer-
Verlag (2003) 133–151

29

7. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In Kalai, Y., Reyzin, L., eds.: Theory of Cryptography
- 15th International Conference – TCC 2017. Volume 10677 of LNCS., Springer
(2017) 341–371

8. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In Wiener, M.J., ed.: Advances in Cryptology – CRYPTO 1999.
Volume 99 of LNCS., Springer (1999) 537–554

9. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. Journal of cryptology 26(1) (2013) 1–22

10. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V., eds.: Proceedings of the 1st ACM Conference on Computer and Communica-
tions Security – CCS 1993, ACM (1993) 62–73

11. Boneh, D., Dagdelen, O., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In Lee, D.H., Wang, X., eds.: Advances in
Cryptology – ASIACRYPT 2011. Volume 7073 of LNCS., Springer (2011) 41–69

12. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In Nielsen, J.B., Rijmen, V., eds.: Advances
in Cryptology – EUROCRYPT 2018. Volume 10822 of LNCS. (2018) 520–551

13. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In Hirt, M., Smith, A.D., eds.: Theory of Cryptography Con-
ference – TCC 2016-B. Volume 9986 of LNCS., Springer (2016) 192–216

14. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In Santis, A.D., ed.:
Advances in Cryptology – EUROCRYPT 1994. Volume 950 of LNCS., Springer
(1994) 92–111

15. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the RSA assumption. In Kilian, J., ed.: Advances in Cryptology – CRYPTO 2001.
Volume 2139 of LNCS., Springer (2001) 260–274

16. Grover, L.K.: A fast quantum mechanical algorithm for database search. In Miller,
G.L., ed.: Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing – STOC 1996, ACM (1996) 212–219

17. Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: High-speed key encapsula-
tion from NTRU. In Fischer, W., Homma, N., eds.: Cryptographic Hardware and
Embedded Systems – CHES 2017. Volume 10529 of LNCS., Springer-Verlag (2017)
232–252

18. Hamburg, M.: Module-LWE: The three bears. Technical report, http-
s://www.shiftleft.org/papers/threebears/

19. Ding, J.: A simple provably secure key exchange scheme based on the learning
with errors problem. IACR Cryptology ePrint Archive 2012 (2012) 688

20. Peikert, C.: Lattice cryptography for the internet. In Mosca, M., ed.: International
Workshop on Post-Quantum Cryptography – PQCrypto 2014. Volume 8772 of
LNCS., Springer (2014) 197–219

21. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange
for the TLS protocol from the ring learning with errors problem. In: 2015 IEEE
Symposium on Security and Privacy – SP 2015, IEEE Computer Society (2015)
553–570

22. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In Holz, T., Savage, S., eds.: 25th USENIX Security Symposium –
USENIX Security 2016, USENIX Association (2016) 327–343

30

23. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! practical, quantum-secure key
exchange from LWE. In Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S., eds.: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security – CCS 2016, ACM (2016) 1006–1018

24. Cheon, J.H., Kim, D., Lee, J., Song, Y.S.: Lizard: Cut off the tail! practical post-
quantum public-key encryption from LWE and LWR. Technical report, Cryptology
ePrint Archive, Report 2016/1126, 2016. http://eprint.iacr.org/2016/1126

25. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: CRYSTALS–kyber: a CCA-secure module-lattice-based
KEM. In: 2018 IEEE European Symposium on Security and Privacy – EuroS&P
2018, IEEE (2018) 353–367

26. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In Buhler, J., ed.: Algorithmic Number Theory, Third International
Symposium, ANTS-III. Volume 1423 of LNCS., Springer (1998) 267–288

27. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU
Prime: reducing attack surface at low cost. In Adams, C., Camenisch, J., eds.:
Selected Areas in Cryptography – SAC 2017. Volume 10719 of LNCS., Springer
(2017) 235–260

28. Barreto, P.S., Gueron, S., Gueneysu, T., Misoczki, R., Persichetti, E., Sendrier,
N., Tillich, J.P.: CAKE: Code-based algorithm for key encapsulation. In O’Neill,
M., ed.: Cryptography and Coding - 16th IMA International Conference – IMACC
2017. Volume 10655 of LNCS., Springer (2017) 207–226

29. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.: MDPC-McEliece: New M-
cEliece variants from moderate density parity-check codes. In: Proceedings of the
2013 IEEE International Symposium on Information Theory (ISIT), IEEE (2013)
2069–2073

30. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of NTRU
encryption. In Boneh, D., ed.: Advances in Cryptology – CRYPTO 2003. Volume
2729 of LNCS., Springer (2003) 226–246

31. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. In Cheon, J.H., Takagi, T., eds.: Advances in
Cryptology – ASIACRYPT 2016. Volume 10031 of LNCS., Springer (2016) 789–815

32. Bernstein, D.J., Bruinderink, L.G., Lange, T., Panny, L.: HILA5 pindakaas: On the
CCA security of lattice-based encryption with error correction. In Joux, A., Nitaj,
A., Rachidi, T., eds.: Progress in Cryptology – AFRICACRYPT 2018. Volume
10831 of LNCS., Springer (2018) 203–216

33. Saarinen, M.J.O.: HILA5: On reliability, reconciliation, and error correction for
Ring-LWE encryption. In: Selected Areas in Cryptography – SAC 2017. Volume
10719 of LNCS., Springer (2017) 192–212

34. Persichetti, E.: Secure and anonymous hybrid encryption from coding theory.
In Gaborit, P., ed.: Post-Quantum Cryptography - 5th International Workshop –
PQCrypto 2013. Volume 7932 of LNCS., Springer (2013) 174–187

35. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In Dwork, C., ed.: Proceedings of the 40th Annual
ACM Symposium on Theory of Computing – STOC 2008, ACM (2008) 197–206

36. Mceliece, R.J.: A public-key cryptosystem based on algebraic. DSN progress report
42-44 (1978) 114–116

37. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15(2) (1986) 159–166

31

38. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6) (2009) 34

39. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-Based encryption.
In Kiayias, A., ed.: The Cryptographers’ Track at the RSA Conference Topics in
Cryptology – CT-RSA 2011. Volume 6558 of LNCS., Springer (2011) 319–339

40. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In Gilbert, H., ed.: Advances in Cryptology – EUROCRYPT
2010. Volume 6110 of LNCS., Springer (2010) 1–23

41. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for Ring-LWE cryptography.
In Johansson, T., Nguyen, P.Q., eds.: Advances in Cryptology – EUROCRYPT
2013. Volume 7881 of LNCS., Springer (2013) 35–54

42. Google: pqc-forum. LIMA (2018) https://groups.google.com/a/list.nist.

gov/forum/#!topic/pqc-forum/6khIivE2KE0.

43. Unruh, D.: Revocable quantum timed-release encryption. Journal of the ACM
62(6) (2015) 49:1–49:76

44. Albrecht, M.R., Orsini, E., Paterson, K.G., Peer, G., Smart, N.P.: Tightly secure
Ring-LWE based key encapsulation with short ciphertexts. In Foley, S.N., Gollman-
n, D., Snekkenes, E., eds.: 22nd European Symposium on Research in Computer
Security – ESORICS 2017. Volume 10492 of LNCS., Springer (2017) 29–46

45. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Physical Review
Letters 100(23) (2008) 230502

46. De Martini, F., Giovannetti, V., Lloyd, S., Maccone, L., Nagali, E., Sansoni, L.,
Sciarrino, F.: Experimental quantum private queries with linear optics. Physical
Review A 80(1) (2009) 010302

47. Jiang, H., Zhang, Z., Ma, Z.: Key encapsulation mechanism with explicit rejection
in the quantum random oracle model. In Lin, D., Sako, K., eds.: Public-Key
Cryptography - PKC 2019. Volume 11443 of LNCS., Springer (2019) 618–645

48. Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsulation
mechanism in the quantum random oracle model. Post-Quantum Cryptography -
5th International Workshop – PQCrypto 2019 (to appear) (2019)

49. Xagawa, K., Yamakawa, T.: (tightly) QCCA-secure key-encapsulation mechanism
in the quantum random oracle model. Post-Quantum Cryptography – PQCrypto
2019 (to appear) (2019) https://eprint.iacr.org/2018/838.

50. Bindel, N., Hamburg, M., Hlsing, A., Persichetti, E.: Tighter proofs of cca security
in the quantum random oracle model. Cryptology ePrint Archive, Report 2019/590
(2019) https://eprint.iacr.org/2019/590.

51. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-
classical oracles. Cryptology ePrint Archive, Report 2018/904 (2018) https://

eprint.iacr.org/2018/904.

52. Jiang, H., Zhang, Z., Ma, Z.: On the non-tightness of measurement-based re-
ductions for key encapsulation mechanism in the quantum random oracle model.
Cryptology ePrint Archive, Report 2019/494 (2019) https://eprint.iacr.org/

2019/494.

53. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In Safavi-Naini, R., Canetti, R., eds.: Advances in Cryptology – CRYPTO
2012. Volume 7417 of LNCS., Springer (2012) 758–775

54. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: The hardness of quantum rewinding. In: 55th IEEE Annual Symposium on
Foundations of Computer Science – FOCS 2014, IEEE (2014) 474–483

32

55. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In Cheng, C., Chung, K., Persiano, G., Yang, B., eds.: Public-Key
Cryptography – PKC 2016. Volume 9614 of LNCS., Springer (2016) 387–416

56. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In Canetti, R., Garay, J.A., eds.: Advances in Cryp-
tology – CRYPTO 2013. Volume 8043 of LNCS., Springer (2013) 361–379

57. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Information & Computation 15(7-8) (2015) 557–567

58. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In Oswald, E., Fischlin, M., eds.: Advances in Cryptology – EUROCRYPT
2015. Volume 9057 of LNCS., Springer (2015) 755–784

59. Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryp-
tosystem transform. In Naccache, D., ed.: Topics in Cryptology – CT-RSA 2001.
Volume 2020 of LNCS., Springer (2001) 159–174

60. Jean-Sébastien, C., Handschuh, H., Joye, M., Paillier, P., Pointcheval, D., Tymen,
C.: GEM: A generic chosen-ciphertext secure encryption method. In Preneel, B.,
ed.: Topics in Cryptology – CT-RSA 2002. Volume 2271 of LNCS., Springer (2002)
263–276

61. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Number 2. Cambridge University Press (2000)

62. Unruh, D.: Quantum position verification in the random oracle model. In Garay,
J.A., Gennaro, R., eds.: Advances in Cryptology – CRYPTO 2014. Volume 8617
of LNCS., Springer (2014) 1–18

A Quantum Computation

We give a short introduction to quantum computation. For a more thorough
discussion, please see [61].

A quantum system A is a complex Hilbert spaceH with an inner product 〈·|·〉.
The state of a quantum system is given by a vector |Ψ〉 of unit norm (〈Ψ |Ψ〉 = 1).
Given quantum systems A and B over spacesHA andHB , respectively, we define
the joint or composite quantum system through the tensor product HA ⊗ HB .
The product state of |ϕA〉 ∈ HA and |ϕB〉 ∈ HB is denoted by |ϕA〉 ⊗ |ϕB〉
or simply |ϕA〉|ϕB〉. A n-qubit system lives in the joint quantum system of n
two-dimensional Hilbert spaces. The standard orthonormal computational basis
B = {|x〉} for such a system is given by |x1〉 ⊗ · · · ⊗ |xn〉 for x = x1 · · ·xn.
Any (classical) bit string x is encoded into a quantum state by |x〉. Denote
TD(|Ψ〉, |ϕ〉) as the trace distance between quantum states |Ψ〉 and |ϕ〉.

Quantum measurement. Given a state |ϕ〉, we can measure |ϕ〉 in the basis B,

obtaining the value x with probability |〈x|ϕ〉|2. Thus, to each |ϕ〉, we associate

a distribution Dϕ where Dϕ(x) = |〈x|ϕ〉|2. The normalization constant and the
fact that B is an orthonormal basis ensure that Dϕ is exactly a valid distribution.
After measurement, the system is in state |x〉.

Quantum algorithm. A quantum algorithm A over a Hilbert space H with a
standard orthonormal basis B is specified by unitary transformation U. The

33

input to A is the initial state |x0〉. Then U is applied to the system, and the final
state is obtained |ϕ〉 = U |x0〉. At last, A’s output is obtained by performing a
measurement on |ϕ〉.

Quantum algorithm usually operates on a product space S ⊗K ⊗ V , where
S represents the work space, K the input space, and V the output space. Given
a function H : K → V , define the standard orthonormal basis B as the set
|s, k, v〉 for s ∈ S, k ∈ K, and v ∈ V . Define the unitary transformation OH over
the Hilbert space spanned by B as the transformation that takes |s, k, v〉 into
|s, k, v ⊕H(k)〉. OH is unitary, its own inverse, and Hermitian.

A quantum algorithm A making q quantum queries to H is then specified
by a sequence of unitary transformations U0, . . . , Uq. The evaluation of A then
consists of alternately applying Ui and OH to the initial state U0|x0〉. The final
state of the algorithm is

UqOH . . . U1OHU0|x0〉.

We say that a quantum algorithm is efficient if q is a polynomial, and all
the Uis are composed of a polynomial number of universal basis gates (the
Hadamard, CNOT, and phase shift gates are commonly used).

B Proof of Lemma 3

Proof. Assume that A(inp, x,O1(x)) uses three quantum systems S, K and V
for its state, oracle input and oracle output, where K has two subsystems K =
K1 ⊗ K2 and V has two subsystems V = V1 ⊗ V2. Let xi, yi ∈ {0, 1} (i ∈
{1, 2, . . . , q}, q = q1 + q2) such that

∑
xi = q1,

∑
yi = q2, xi + yi = 1. Then an

execution of A(inp, x,O1(x)) leads to the final state

|Ψq〉 :=

q∏
i=1

(U i2O
yi
2 U

i
1O

xi
1)|Ψ0〉,

where |Ψ0〉 is the initial state, U i1 and U i2 are A’s state transition operations,
O1 and O2 are the oracle queries such that O1|s, k1, k2, v1, v2〉 := |s, k1, k2, v1 ⊕
O1(k1), v2〉, O2|s, k1, k2, v1, v2〉 := |s, k1, k2, v1, v2 ⊕ O2(k2)〉. A’s output is pro-
duced by applying a measurement M to A’s final state. Then,

Pr[E1] =
∑

(O1,O2,inp,x)y

αb,

where α is the probability of each particular pair (O1,O2, inp, x)y and b =
Pr[M outputs 1 on state |Ψq〉.

Reprogram O1 at x. Denote Ö1 as the function that Ö1(x) := y and Ö1 = O1

everywhere else. Let Ö1|s, k1, k2, v1, v2〉 := |s, k1, k2, v1 ⊕ Ö1(k1), v2〉. Then, the
final state becomes

|Ψ ′q〉 :=

q∏
i=1

(U i2O
yi
2 U

i
1Ö

xi
1)|Ψ0〉.

34

Thus,

Pr[Ë2] =
∑

(O1,O2,inp,x)y

αb′,

where b′ = Pr[M outputs 1 on state|Ψ ′q〉.
According to [61, Theorem 9.1], we know that∣∣∣Pr[E1]− Pr[Ë2]

∣∣∣ ≤ ∑
(O1,O2,inp,x)y

α |b− b′| ≤
∑

(O1,O2,inp,x)y

αDq, (1)

where Dq := TD(|Ψq〉, |Ψ ′q〉) is the trace distance between quantum states |Ψq〉
and |Ψ ′q〉.

Note the fact that the difference between |Ψq〉 and |Ψ ′q〉 just comes from

the difference between O1 and Ö1. Thus, the formulas of |Ψq〉 and |Ψ ′q〉 can be

simplified by |Ψq〉 :=
q1∏
i=1

(UiO1)U0|Ψ0〉 and |Ψ ′q〉 :=
q1∏
i=1

(UiÖ1)U0|Ψ0〉, where Ui

is the product of the transformations between the i-th O1 and (i + 1)-th O1.
Specifically, U0 =

∏
l<j1

(U l2O
yl
2 U

l
1Ol

xl), Ui =
∏
ji≤l<ji+1

(U l2O
yl
2 U

l
1Ol

xl)× Olxji

(1 ≤ i < q1) and Uq1 =
∏
l>jq1

(U l2O
yl
2 U

l
1Ol

xl)×U jq12 O
yjq1
2 U

jq1
1 (ji ∈ {i : xi = 1},

j1 < j2 . . . < jq1).

Define |Φi〉 :=
i∏

j=1

(UjO1)U0|Ψ0〉 and |Φ′i〉 :=
i∏

j=1

(UjÖ1)U0|Ψ0〉 (i ∈ {1, . . . , q1}).

Then, |Φq1〉=|Ψq〉, |Φ′q1〉=|Ψ
′
q〉 and Dq = TD(|Ψq〉, |Ψ ′q〉) = TD(|Φq1〉, |Φ′q1〉).

Describe B as follows: BÖ1,O2(inp, x,O1(x)) picks i
$← {1, . . . , q1}, measures

the quantum system K1 of the state |Φ′i−1〉, and outputs the result. Thus,

PB̈ :=
∑

(O1,O2,inp,x)yi

α

q1

∥∥Qx|Φ′i−1〉∥∥2 ,
where Qx is the projector projecting K1 onto |x〉 (i.e., Qx = I⊗|x〉〈x|⊗I⊗I⊗I).

In fact, we can view K2 and V2 as the subsystems of the auxiliary quantum
system S (that is, O2 is redundant). Then, according to the proof of the OW2H

lemma in [43, Lemma 6.2], we can directly obtain
∣∣∣Pr[E1]− Pr[Ë2]

∣∣∣ ≤ 2q1
√
PB̈ .

But, for completeness, we also preset the complete proof here.
Let Di := TD(|Φi〉, |Φ′i〉). D0 = TD(U0|Φ0〉, U0|Φ0〉) and

Di = TD(UiO1|Φi−1〉, UiÖ1|Φ′i−1〉)
≤ TD(UiO1|Φi−1〉, UiO1|Φ′i−1〉) + TD(UiO1|Φ′i−1〉, UiÖ1Φ

′
i−1〉)

≤ Di−1 + TD(O1|Φ′i−1〉, Ö1|Φ′i−1〉).

Hence,

Dq ≤
q∑
i=1

TD(O1|Φ′i−1〉, Ö1|Φ′i−1〉). (2)

35

Let Vy|s, k1, k2, v1, v2〉 := |s, k1, k2, v1⊕y, v2〉. Then Ö1 = O1(1−Qx)+VyQx.
By using [62, Lemma 12], we can get that

TD(O1|Φ′i−1〉, Ö1|Φ′i−1〉)
= TD(O1(1−Qx)|Φ′i−1〉+O1Qx|Φ′i−1〉, O1(1−Qx)|Φ′i−1〉+ VyQx|Φ′i−1〉)
≤ 2

∥∥O1Qx|Φ′i−1〉
∥∥ = 2

∥∥Qx|Φ′i−1〉∥∥ . (3)

Combing the equations (1, 2, 3), we obtain that∣∣∣Pr[E1]− Pr[Ë2]
∣∣∣ ≤ ∑

(O1,O2,inp,x)y

αDq ≤
∑

(O1,O2,inp,x)yi

αTD(O1|Φ′i−1〉, Ö1|Φ′i−1〉)

≤
∑

(O1,O2,inp,x)yi

α2
∥∥Qx|Φ′i−1〉∥∥

(∗)
≤ 2q1

√ ∑
(O1,O2,inp,x)yi

α

q1

∥∥Qx|Φ′i−1〉∥∥2 = 2q1
√
PB̈ ,

where (*) uses Jensen’s inequality.

If the condition 2 that O1(x) is uniform over {0, 1}m for any fixed O1(x′)
(x′ 6= x), O2, inp and x, we have Pr[Ë2] = Pr[E2] and PB = PB̈ since y and
O1(x) are both uniform over {0, 1}m for any fixed O1(x′) (x′ 6= x), O2, inp and
x, and thus A’s views are the same in the events Ë2 and E2. Therefore, if the
condition 2 is satisfied, we have

|Pr[E1]− Pr[E2]| ≤ 2q1
√
PB .

ut

C Proof of Lemma 4

Proof. Assume that A uses three quantum systems S, K and V for its state,
oracle input and oracle output, where K has two subsystems K = K1 ⊗ K2.
K1, K2 and V have n1, n2 and m qubits respectively. Then an execution of
A leads to the final state (UOH)q|ΨxH′〉, where |ΨxH′〉 is the initial state, OH |
s, k1⊗k2, v〉 := |s, k1⊗k2, v⊕H(k1, k2)〉, and U is A’s state transition operation.
We assume that all the transition operations Ui are identical and equal to U
(the proof in the general case is essentially identical). A’s output is produced by
applying a measurement M to A’s final state.

Define |Ψ iHxH′〉 := (UOH)i|ΨxH′〉. Then, we can obtain

Pr[E1] =
∑
HxH′

αbHxH′ ,

where bHxH′ = Pr[M outputs 1 on state |Ψ qHxH′〉], α = 2−m2(n1+n2)−n1−m2n2
.

36

Reprogram H at (x, ·). Denote HxH′ as the function that HxH′(x, ·) = H ′(·)
and HxH′ = H everywhere else. Thus,

Pr[E2] =
∑
HxH′

αbHxH′xH′ .

According to [61, Theorem 9.1], we know that

|Pr[E1]− Pr[E2]| ≤
∑
HxH′

α
∣∣bHxH′ − bHxH′xH′

∣∣ ≤ ∑
HxH′

αDq, (4)

where Di := TD(|Ψ iHxH′〉, |Ψ iHxH′xH′〉) is the trace distance between quantum

states |Ψ iHxH′〉 and |Ψ iHxH′xH′〉.
Note that D0 = TD(|ΨxH′〉, |ΨxH′〉) = 0 and

Di = TD(UOH |Ψ i−1HxH′〉, UOHxH′ |Ψ i−1HxH′xH′〉)

≤ TD(UOH |Ψ i−1HxH′〉, UOHxH′ |Ψ i−1HxH′〉) + TD(UOHxH′ |Ψ i−1HxH′〉, UOHxH′ |Ψ i−1HxH′xH′〉)

≤ Di−1 + TD(OH |Ψ i−1HxH′〉, OHxH′ |Ψ i−1HxH′〉).

Hence,

Dq ≤
q∑
i=1

TD(OH |Ψ i−1HxH′〉, OHxH′ |Ψ i−1HxH′〉) (5)

Let OH′ |a, k1⊗k2, v〉 := |a, k1⊗k2, v⊕H ′(k2)〉. Qx is the projector projecting
K1 onto |x〉 (i.e., Qx = I⊗|x〉〈x|⊗I⊗I). Then, OHxH′ = OH(1−Qx)+OH′Qx.
By using [62, Lemma 12], we can get that

TD(OH |Ψ i−1HxH′〉, OHxH′ |Ψ i−1HxH′〉)
= TD(OH(1−Qx)|Ψ i−1HxH′〉+OHQx|Ψ i−1HxH′〉, OH(1−Qx)|Ψ i−1HxH′〉+OH′Qx|Ψ i−1HxH′〉)
≤ 2

∥∥OHQx|Ψ i−1HxH′〉
∥∥ = 2

∥∥Qx|Ψ i−1HxH′〉
∥∥ . (6)

Combing the equations (4, 5, 6), we obtain that

|Pr[E1]− Pr[E2]| ≤
∑
HxH′i

2α
∥∥Qx|Ψ i−1HxH′〉

∥∥ (∗)
≤ 2q

√ ∑
HxH′i

α

q

∥∥Qx|Ψ i−1HxH′〉
∥∥2,

where (*) uses Jensen’s inequality.

Define algorithm B as follows: pick i
$← {1, . . . , q}, measure the quantum

system K1 of A’s i-th query state |Ψ i−1HxH′〉, obtain x̂ and output x̂ =?x. Thus,

Pr[B ⇒ 1] is exactly
∑

HxH′i

α
q

∥∥Qx|Ψ i−1HxH′〉
∥∥2. Because x is chosen uniformly at

random and independent from A’s view, Pr[B ⇒ 1] = 1
2n1

. Therefore,

|Pr[E1]− Pr[E2]| ≤ 2q
1√
2n1

.

ut

37

D Proof of Theorem 2

Proof. Let B be an adversary against the IND-CCA security of KEM-II, issuing
at most qD classical queries to Decaps, at most qG queries to G and at most qH
queries to H. Consider the sequence of games given in Fig. 15 and Fig. 17. Let
ΩH′′ be the set of all functions H ′′ :M→ K and we follow the same notations
ΩG, ΩG′ , ΩH and ΩH′ in the proof of Theorem 1.

GAMES G0 −G6

1 : (pk, sk′)← Gen′;G
$← ΩG

2 : G′
$← ΩG′ ;G := G′ //G2 −G4

3 : H1
$← ΩH′′ , H2, H3

$← ΩH′

4 : m∗
$←M

5 : r∗ := G(m∗)

6 : c∗ := Enc(pk,m∗; r∗)

7 : k∗0 := H(m∗)

8 : k∗1
$← K

9 : b
$← {0, 1}

10 : b′ ← BG,H,Decaps(pk, c∗, k∗b)

11 : G̈ := G; G̈(m∗)
$←R //G6

12 : Ḧ := H; Ḧ(m∗)
$← K //G6

13 : b′ ← BG̈,Ḧ,Decaps(pk, c∗, k∗b)

14 : return b′ =?b

H(m)

1 : return H1(m) //G0 −G2

2 : g(·) := Enc(pk, ·;G(·))//G3 −G6

3 : return H2(g(m)) //G3 −G6

Decaps (c 6= c∗) //G0 −G3

1 : Parse sk′ = (sk, k)

2 : m′ := Dec(sk, c)

3 : if Enc(pk,m′;G(m′)) = c

4 : K := H(m′)

5 : else return

6 : return K := f(k, c) //G0

7 : return K := H3(c) //G1 −G3

Decaps (c 6= c∗) //G4 −G6

1 : return K := H2(c)

Fig. 15: Games G0 −G6 for the proof of Theorem 2

Game G0. Game G0 is exactly the IND-CCA game,∣∣∣∣Pr[GB0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CCA
KEM-II (B).

Game G1. In game G1, the Decaps oracle is changed that the pseudorandom
function f is replaced by a random function H3. Thus, the private key k, con-
tained in the secret key sk′, is never used in G1. Because B’s queries to Decaps
are just classical, B can make classical queries to f at most qD times. B’s views in
G0 and G1 are same unless there exists some adversary A′ who can distinguish
f from the random function H3 with at most qD classical queries. Then,∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]

∣∣ ≤ AdvPRF(A′).

38

Game G2. In game G2, we replace G by G′ that uniformly samples from “good”

randomness at random, i.e., G′
$← ΩG′ . Essentially, the distinguishing problem

between G1 and G2 is equivalent to the distinguishing problem between G and
G′. Using the same method in the proof of Theorem 1, we obtain∣∣Pr[GB1 ⇒ 1]− Pr[GB2 ⇒ 1]

∣∣ ≤ 2qG
√
δ.

Game G3. In game G3, H1 is substituted with H2 ◦ g (g(·) := Enc(pk, ·;G(·))).
Since the G in this game only samples “good” randomness, the function g is
injective. Thus, H2 ◦ g is a perfect random function. Therefore, G2 and G3 are
statistically indistinguishable and we can obtain

Pr[GB2 ⇒ 1] = Pr[GB3 ⇒ 1].

Game G4. In game G4, the Decaps oracle is changed that it makes no use of
the secret key sk′ any more. When B queries the Decaps oracle on c (c 6= c∗),
K := H2(c) is returned as the response. With the same analysis method in the
proof of Theorem 1, we have

Pr[GB3 ⇒ 1] = Pr[GB4 ⇒ 1].

Game G5. In game G5, we replace G′ by G, that is, G in this game is reset to be
an ideal random oracle. Then, similar to the case ofG1 andG2, the distinguishing
problem between G4 and G5 also can be converted to the distinguishing problem
between G and G′. Thus, as the same case in the proof of Theorem 1, we have∣∣Pr[GB4 ⇒ 1]− Pr[GB5 ⇒ 1]

∣∣ ≤ 2qG
√
δ.

Let G̈ (Ḧ) be the function that G̈(m∗) = ṙ∗ (Ḧ(m∗) = k̇∗0), and G̈ = G
(Ḧ = H) everywhere else, where ṙ∗ and k̇∗0 are picked uniformly at random from
R and K.

Game G6. In game G6, replace G and H by G̈ and Ḧ respectively. In this game,
bit b is independent from B’s view. Hence,

Pr[GB6 ⇒ 1] =
1

2
.

AG×H
g
2 ,H′

2(pk,m∗, (r∗, k∗0))

1 : c∗ := Enc(pk,m∗; r∗)

2 : k∗1
$← K

3 : b
$← {0, 1}

4 : b′ ← BG,H,Decaps(pk, c∗, k∗b)

5 : return b′ =?b

H(m)

1 : return Hg
2 (m)

Decaps (c 6= c∗)

1 : return K := H ′2(c)

Fig. 16: AG×H
g
2 ,H′

2 for the proof of Theorem 2.

39

GAMES G7

1 : i
$← {1, . . . , qG + qH}

2 : (pk, sk′)← Gen′

3 : G
$← ΩG;H2

$← Ω′H

4 : m∗
$←M; r∗

$←R
5 : c∗ := Enc(pk,m∗; r∗)

6 : k∗
$← K

7 : run BG,H,Decaps(pk, c∗, k∗)

8 : until the i−th query to G×H
9 : measure the argument m̂

10 : return m̂ =?m∗

H(m)

1 : g(·) := Enc(pk, ·;G(·))
2 : return H2(g(m))

Decaps (c 6= c∗)

1 : return K := H2(c)

Fig. 17: Game G7 for the proof of Theorem 2

Let Ḧg
2 (m∗)

$← K and Ḧg
2 = Hg

2 everywhere else. Let (G × Hg
2)(m) =

(G(m), H2 ◦ g(m)) and (G̈× Ḧg
2)(m) = (G̈(m), Ḧ2 ◦ g(m)). The number of total

queries to G×Hg
2 is at most qG+qH . Let H ′2 be the function that H ′2(g(m∗)) =⊥

and H ′2 = H2 everywhere else.
Let AG×H

g
2 ,H

′
2 be an oracle algorithm on input (pk,m∗, (r∗, k∗0)) in Fig. 16.

Sample G, H2, Hg
2 and pk in the same way as G5 and G6, i.e., (pk, sk′) ←

Gen′,G
$← ΩG, H2

$← ΩH′ and Hg
2 := H2 ◦ g. Let m∗

$←M, r∗ := G(m∗) and

k∗0 := Hg
2 (m∗). Then, AG×H

g
2 ,H

′
2 perfectly simulates G5 and AG̈×Ḧ

g
2 ,H

′
2 perfectly

simulates G6.
Let BG̈×Ḧ

g
2 ,H

′
2 be an oracle algorithm that on input (pk,m∗, (r∗, k∗0)) does

the following: pick i
$← {1, . . . , qG+qH}, run AG̈×Ḧ

g
2 ,H

′
2(pk,m∗, (r∗, k∗0)) until the

i-th query to G̈× Ḧg
2 , measure the argument of the query in the computational

basis, output the measurement outcome (when A makes less than i queries,
output ⊥). Define game G7 as in Fig. 17. Then, Pr[BG×H

g
2 ,H

′
2 ⇒ m∗] = Pr[GB7 ⇒

1].
Applying Lemma 3 with O1 = G × Hg

2 , O2 = H ′2, inp = pk, x = m∗ and
y = (r∗, k∗0), we have∣∣Pr[GB5 ⇒ 1]− Pr[GB6 ⇒ 1]

∣∣ ≤ 2(qG + qH)
√

Pr[GB7 ⇒ 1].

Then, we construct an adversary A against the OW-CPA security of PKE
such that AdvOW-CPA

PKE (A) = Pr[GB7 ⇒ 1]. The adversary A on input (1λ, pk, c)
does the following:

1. Run the adversary B in game G7.
2. Use a 2qG-wise independent function and a 2qH -wise independent function

to simulate random oracles G and H2 respectively. The random oracle H is
simulated by H2 ◦ g. Use G×H to answer B’s queries to both G and H.

40

3. Answer the decapsulation queries by using the Decaps oracle as in Fig. 17.

4. Select k∗
$← K and respond to B’s challenge query with (c, k∗).

5. Select i
$← {1, . . . , qG + qH}, measure the argument m̂ of the i-th query to

G×H and output m̂.

It is obvious that AdvOW-CPA
PKE (A) = Pr[GB7 ⇒ 1]. Combing this with the bounds

derived above, we can conclude that

AdvIND-CCA
KEM-II (B) ≤ AdvPRF(A′) + 4qG ·

√
δ + 2(qH + qG) ·

√
AdvOW-CPA

PKE (A).

ut

E Proof of Theorem 4

Proof. Let B be an adversary against the IND-CCA security of KEM-III, issuing
at most qD queries to Decaps and at most qH queries to H. We follow the same
notations ΩH and ΩH′ in the proof of Theorem 1. Consider the games in Fig.
18 and Fig. 20.

Game G0. Since game G0 is exactly the IND-CCA game,

∣∣∣∣Pr[GB0 ⇒ 1]− 1

2

∣∣∣∣ = AdvIND-CCA
KEM-III (B).

Game G1. In game G1, the Decaps oracle is changed that H2(c) is returned
instead of H(s, c) for an invalid encapsulation c. Considering that B’s view is
independent from (the uniform secret) s, we can use Lemma 4 to obtain

∣∣Pr[GB0 ⇒ 1]− Pr[GB1 ⇒ 1]
∣∣ ≤ 2qH ·

1√
M

.

41

GAMES G0 −G4

1 : (pk, sk′)← Gen′;G
$← ΩG

2 : H1, H2
$← ΩH′ ;H3

$← ΩH

3 : m∗
$←M

4 : c∗ ← Enc(pk,m∗)

5 : k∗0 := H(m∗, c∗)

6 : k∗0
$← K //G4

7 : k∗1
$← K

8 : b
$← {0, 1}

9 : b′ ← BG,H,Decaps(pk, c∗, k∗b)

10 : return b′ =?b

H(m, c)

1 : if Pco(m, c) = 1 //G2 −G4

2 : return H1(c) //G2 −G4

3 : return H3(m, c)

Decaps (c 6= c∗) //G0 −G2

1 : Parse sk′ = (sk, s)

2 : m′ := Dec′(sk, c)

3 : if m′ 6=⊥ return K := H(m′, c)

4 : else return

5 : K := H(s, c) //G0

6 : K := H2(c) //G1 −G2

Decaps (c 6= c∗) //G3 −G4

1 : return K := H1(c)

Fig. 18: Games G0-G4 for the proof of Theorem 4

Game G2. In game G2, H is changes that H1(c) is returned instead of H3(m, c)
when (m, c) satisfies Pco(m, c) = 1 (i.e., Dec′(sk, c) = m). Note that it is
impossible that Pco(m1, c) = Pco(m2, c) = 1 for m1 6= m2 because Dec′ is a
deterministic algorithm. Further, as H1 is a random function independent of H3,
H in game G2 is also a uniform random function like the one in game G1. Thus,

Pr[GB1 ⇒ 1] = Pr[GB2 ⇒ 1].

Game G3. In game G3, the Decaps oracle is changed that it makes no use
of the secret key sk′ any more. When B queries the Decaps oracle on c (c 6=
c∗), K := H1(c) is returned as the response. In order to show that the output
distributions of Decaps are identical in G2 and G3, we consider the following
cases for a fixed ciphertext c and m′ := Dec′(sk, c).

Case 1: m′ 6= ⊥. Note that H(m′, c) = H1(c) on account of Pco(m′, c) = 1.
Therefore, the two Decaps oracles in games G2 and G3 return the same
value.

Case 2: m′ = ⊥. Random values H2(c) and H1(c) in K are returned in G2 and
G3, respectively. In G2, H2 is a random function independent of G and H.
In G3, B’s queries to H can only help him get access to H1 at c such that
Dec′(sk, c) = m̂ for some m̂ 6= ⊥. Therefore, B never sees H1(c) by querying
H. Hence, in B’s view, H1(c) is totally uniform at random like H2(c). As a
result, the Decaps oracle in G3 has the same output distribution as the one
in G2.

42

AH,H′
1(pk, (m∗, c∗), k∗0)

1 : k∗1
$← K

2 : b
$← {0, 1}

3 : b′ ← BH,Decaps(pk, c∗, k∗b)

4 : return b′ =?b

Decaps (c 6= c∗)

1 : return K := H ′1(c)

Fig. 19: AH,H′
1 for the proof of Theorem 4.

GAMES G5

1 : i
$← {1, . . . , qG + qH}, (pk, sk′)← Gen′

2 : H1
$← ΩH′ , H3

$← ΩH

3 : m∗
$←M

4 : c∗←Enc(pk,m∗)

5 : k∗
$← K

6 : run BG,H,Decaps(pk, c∗, k∗) until the i−th query to H

7 : measure the argument m̂‖ĉ
8 : return m̂ =?m∗ ∧ ĉ =?c∗

H(m, c)

1 : if Pco(m, c) = 1

2 : return H1(c)

3 : else return H3(m, c)

Decaps (c 6= c∗)

1 : return K := H1(c)

Fig. 20: Game G5 for the proof of Theorem 4

We have shown that B’s views are identical in both games and

Pr[GB2 ⇒ 1] = Pr[GB3 ⇒ 1].

Game G4. In game G4, k∗0 is chosen uniformly at random from K. In this game,
bit b is independent from B’s view. Hence,

Pr[GB4 ⇒ 1] =
1

2
.

Let AH,H
′
1 be an oracle algorithm on input (pk, (m∗, c∗), k∗0) as in Fig. 19. Let

(pk, sk′)← Gen′, H1
$← ΩH′ , H3

$← ΩH , m∗
$←M, c∗ ← Enc(pk,m∗) and H is

simulated as the one in G3 and G4. Let H ′1 be the function with H ′1(c∗) =⊥ and
H ′1 = H1 everywhere else. Then, if k∗0 := H(m∗, c∗), AH,H

′
1 perfectly simulates

43

G3. And, if k∗0
$← K, AH,H

′
1 perfectly simulates G4. Let BH,H

′
1 be an oracle

algorithm that on input (pk, (m∗, c∗)) does the following: pick i
$← {1, . . . , qH}

and k∗0
$← K, run AH,H

′
1(pk, (m∗, c∗), k∗0) until the i-th query to H, measure

the argument of the query in the computational basis, output the measurement
outcome (when AH,H

′
1 makes less than i queries, output ⊥). Define game G5 as

in Fig. 20. Then, Pr[BH,H
′
1 ⇒ (m∗, c∗)] = Pr[GB5 ⇒ 1].

Since for any fixed pk, m∗, c∗, H(m, c) ((m, c) 6= (m∗, c∗)) and H ′1, H(m∗, c∗)
is uniformly random. Thus, applying Lemma 3 withO1 = H,O2 = H ′1, inp = pk,
x = (m∗, c∗) and y = k∗0 , we have∣∣Pr[GB3 ⇒ 1]− Pr[GB4 ⇒ 1]

∣∣ ≤ 2qH

√
Pr[GB5 ⇒ 1].

Then, we construct an adversary A against the OW-qPCA security of the
PKE′ scheme such that Adv

OW−qPCA
PKE′ (A) = Pr[GB5 ⇒ 1]. The adversary A on

input (1λ, pk, c) does the following:

1. Run the adversary B in game G5.
2. Use two different 2qH -wise independent functions to simulate the random

oracles H1 and H3 respectively. The random oracle H is simulated in the
same way as the one in game G5.

3. Answer the decapsulation queries by using the Decaps oracle in Fig. 20.

4. Select k∗
$← K and respond to B’s challenge query with (c, k∗).

5. Select i
$← {1, . . . , qH}, measure the argument m̂‖ĉ of the i-th query to H

and output m̂.

According to Lemma 1, AdvOW−qPCA
PKE′ (A) = Pr[GB5 ⇒ 1]. Finally, combing

this with the bounds derived above, we can conclude that

AdvIND-CCA
KEM-III (B) ≤ 2qH

1√
M

+ 2qH ·
√
Adv

OW−qPCA
PKE′ (A).

ut

44

