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Abstract

In this work we seek to construct collusion-resistant traitor tracing systems with small ciphertexts
from standard assumptions that also move toward practical efficiency. In our approach we will hold
steadfast to the principle of collusion resistance, but relax the requirement on catching a traitor from a
successful decoding algorithm. We define a f -risky traitor tracing system as one where the probability
of identifying a traitor is f(λ, n) times the probability a successful box is produced. We then go on to
show how to build such systems from prime order bilinear groups with assumptions close to those used
in prior works. Our core system achieves, for any k > 0, f(λ, n) ≈ k

n+k−1
where ciphertexts consists of

(k + 4) group elements and decryption requires (k + 3) pairing operations.
At first glance the utility of such a system might seem questionable since the f we achieve for short

ciphertexts is relatively small. Indeed an attacker in such a system can more likely than not get away
with producing a decoding box. However, we believe this approach to be viable for four reasons:

1. A risky traitor tracing system will provide deterrence against risk averse attackers. In some settings
the consequences of being caught might bear a high cost and an attacker will have to weigh his
utility of producing a decryption D box against the expected cost of being caught.

2. Consider a broadcast system where we want to support low overhead broadcast encrypted com-
munications, but will periodically allow for a more expensive key refresh operation. We refer to
an adversary produced algorithm that maintains the ability to decrypt across key refreshes as a
persistent decoder. We show how if we employ a risky traitor tracing systems in this setting, even
for a small f , we can amplify the chances of catching such a “persistent decoder” to be negligibly
close to 1.

3. In certain resource constrained settings risky traitor tracing provides a best tracing effort where
there are no other collusion-resistant alternatives. For instance, suppose we had to support 100K
users over a radio link that had just 10KB of additional resources for extra ciphertext overhead.
None of the existing

√
N bilinear map systems can fit in these constraints. On the other hand a

risky traitor tracing system provides a spectrum of tracing probability versus overhead tradeoffs
and can be configured to at least give some deterrence in this setting.

4. Finally, we can capture impossibility results for differential privacy from 1
n

-risky traitor tracing.
Since our ciphertexts are short (O(λ)), we get the negative result which matches what one would
get plugging in the obfuscation based tracing system Boneh-Zhandry [BZ14] solution into the prior
impossibility result of Dwork et al. [DNR+09].
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1 Introduction

A traitor tracing [CFN94] system is an encryption system in which a setup algorithm produces a public key
pk, master secret key msk and n private keys sk1, sk2, . . . , skn that are distributed to n user devices. One
can encrypt a message m using the public key to produce a ciphertext ct which can be decrypted using any
of the private keys; however, is inaccessible by an attacker that is bereft of any keys. The tracing aspect
comes into play if we consider an attacker that corrupts some subset S ⊆ {1, . . . , n} of the devices and
produces a decryption algorithm D that decrypts ciphertext with some non-negligible probability ε(λ) where
λ is the security parameter. An additional Trace algorithm will take as input the master secret key msk and
with just oracle access to D will identify at least one user from the corrupted set S (and no one outside
it). Importantly, any secure system must be able to handle attackers that will construct D in an arbitrary
manner including using techniques such as obfuscation.

While the concept of traitor tracing was originally motivated by the example of catching users that
created pirate decoder boxes in broadcast TV systems, there are several applications that go beyond that
setting. For example ciphertexts could be encryptions of files stored on cloud storage. Or one might use
a broadcast to transmit sensitive information to first responders on an ad-hoc deployed wireless network.
In addition, the concepts and techniques of traitor tracing have had broader impacts in cryptography and
privacy. Most notably Dwork et al. [DNR+09] showed that the existence of traitor tracing schemes leads to
certain impossibility results in the area of differential privacy [DMNS06]. Briefly, they consider the problem
of constructing a “sanitizer” A that takes in a database x1, . . . , xn of entries and wishes to efficiently produce
a sanitized summary of database that can evaluate a set of predicate queries on the database. The sanitized
database should both support giving an average of answers without too much error and the database should
be differentially private in that no one entry should greatly impact the output of the sanitization process.
The authors show that an efficient solution to such a problem is impossible to achieve (for certain parameters)
assuming the existence of a (collusion resistant) traitor tracing system. The strength of their negative results
is directly correlated with the size of ciphertexts in the traitor tracing system.

A primary obstacle in building traitor tracing systems is achieving (full) collusion resistance. There
have been several proposals [BF99, NP00, KY02, Sir06, BP08, BN08, KP10] for building systems that are
k-collusion resistant where the size of the ciphertexts grows as some polynomial function of k. These systems
are secure as long as the number of corrupted keys |S| ≤ k; however, if the size of the corrupted set exceeds
k the attacker will be able to produce a decryption box that is untraceable. Moreover, the collusion bound
of k is fixed at system setup so an attacker will know how many keys he needs to exceed to beat the system.
In addition, the impossibility results of Dwork et al. [DNR+09] only apply for fully collusion resistant
encryption systems. For these reasons we will focus on collusion resistant systems in the rest of the paper.

The existing approaches for achieving collusion resistant broadcast encryption can be fit in the framework
of Private Linear Broadcast Encryption (PLBE) introduced by Boneh, Sahai and Waters [BSW06]. In a
PLBE system the setup algorithm takes as input a security parameter λ and the number of users n. Like a
traitor tracing system it output a public key pk, master secret key msk and n private keys sk1, sk2, . . . , skn
where a user with index j is given key skj . Any of the private keys is capable of decrypting a ciphertext ct
created using pk. However, there is an additional TrEncrypt algorithm that takes in the master secret key, a
message and an index i. This produces a ciphertext that only users with index j ≥ i can decrypt. Moreover,
any adversary produced decryption box D that was created with a set of S where i /∈ S would not be able to
distinguish between encryption to index i or i+1. These properties lead to a tracing system where the tracer
measures for each index the probability that D decrypts a ciphertext encrypted (using TrEncrypt) for that
index and reports all indices i where there is a significant discrepancy between i and i+ 1. These properties
imply that such a PLBE based traitor tracing system will catch at least one user in S with all but negligible
probability and not falsely accuse anyone in S.

The primary difficulty in achieving collusion resistant traitor tracing is to do so with short ciphertext
size. There are relatively few approaches for achieving this goal. First, one can achieve PLBE in a very
simple way from public key encryption. Simply create n independent public and private key pairs from the
PKE system and lump all the individual public keys together as the PLBE public key. To encrypt one just
encrypts to each sub public key in turn. The downside of this method is that the ciphertext size grows as
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O(n · λ) as each of the n users need their own slot in the PLBE ciphertext. If one plugs this into the Dwork
et al. [DNR+09] impossibility result it rules out systems with a query set Q of size 2O(n·λ) or larger. Boneh,
Sahai and Waters [BSW06] showed how ciphertexts in a PLBE system can be compressed to O(

√
n · λ)

using bilinear maps of composite order. Future variants [GKSW10, Fre10] moved this to the decision linear
assumption in prime order groups. While this was an improvement and worked under standard assumptions,
there was still a large gap between this and the ideal case where ciphertext size has only polylogarithmic
dependence on n.

To achieve really short ciphertexts one needs to leverage heavier tools such as collusion resistant functional
encryption or indistingishability obfuscation [BGI+01, GGH+13]. For instance, a simple observation shows
that one can make a PLBE scheme directly from a collusion resistant FE scheme such as the [GGH+13].
Boneh and Zhandry [BZ14] gave a construction of PLBE from indistinguishability obfuscation. These two
approaches get ciphertexts that grow proportionally to log n and thus leading to differential privacy im-
possibility results with smaller query sets of size n · 2O(λ). However, general functional encryption and
indistinguishability obfuscation candidates currently rely on multilinear map candidates, many of which
have been broken and the security of which is not yet well understood. In addition, the actual decryption
time resulting from using obfuscation is highly impractical.

Our Results. In this work we seek to construct collusion resistant traitor tracing systems with small
ciphertexts from standard assumptions geared towards practical efficiency. In our approach we will hold
steadfast to the principle of collusion resistance, but relax the requirement on catching a traitor from a
successful decoding algorithm. We define a f -risky traitor tracing system as one where the probability of
identifying a traitor is f(λ, n) times the probability a successful box is produced. We then go on to show how
to build such systems from prime order bilinear groups. Our core system achieves f(λ, n) ≈ k

n+k−1 where
ciphertexts consist of (k+ 4) group elements and decryption requires (k+ 3) pairing operations, where k > 0
is a system parameter fixed at setup time. For the basic setting, i.e. k = 1, this gives us a success probability
of 1

n , ciphertext consisting of 5 group elements, and decryption requiring just 4 pairing operations in primer
order groups.1 In addition, we show a generic way to increase f by approximately a factor of c at the cost
of increasing the size of the ciphertext and decryption time also by a factor of c.

At first glance the utility of such a system might seem questionable since the function f we achieve for
short ciphertexts is relatively small. Indeed an attacker in such a system can more likely than not get away
with producing a decoding box. However, we believe this approach to be viable for four reasons:

1. A risky traitor tracing system will provide deterrence against risk averse attackers. In some setting
the consequences of being caught might bear a high cost and an attacker will have to weigh his utility
of producing a decryption D box against the expected cost of being caught.

2. Consider a broadcast system where we want to support low overhead broadcast encrypted communica-
tions, but will periodically allow for a more expensive key refresh operation. We refer to an adversary
produced algorithm that maintains the ability to decrypt across key refreshes as a persistent decoder
We show how if we employ a risky traitor tracing systems in this setting, even for a small f , we can
amplify the chances of catching such a “persistent decoder” to be negligibly close to 1. We discuss this
further in our technical overview.

3. In certain resource constrained settings risky traitor tracing provides a best tracing effort where there
are no other collusion-resistant alternatives. For instance, suppose we had to support 100K users over
a radio link that had just 10KB of additional resources for extra ciphertext overhead. None of the
existing

√
N bilinear map systems [BSW06, BW06, GKSW10, Fre10] can fit in these constraints. On

the other hand a risky traitor tracing system provides a spectrum of tracing probability versus overhead
tradeoffs and can be configured to at least give some deterrence in this setting.

1In addition to our construction from prime-order bilinear groups, we also provide a construction from composite order
bilinear groups where ciphertexts consist of three group elements and decryption requires two pairing operations only.
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4. Finally, we show that the argument of Dwork et al. applies to 1
n -risky traitor tracing. Interestingly,

when we structure our argument carefully we can achieve the same negative results as when it is
applied to a standard traitor tracing system. Since our ciphertexts are short (O(λ)), we get the
negative result which matches what one would get plugging in the obfuscation based tracing system
Boneh-Zhandry [BZ14] solution into the prior impossibility result of Dwork et al. [DNR+09].

1.1 Technical Overview

In this section, we give a brief overview of our technical approach. We start by discussing the definitional
work. That is, we discuss existing traitor tracing definitions, mention their limitations and propose a stronger
(and possibly more useful) definition, and finally introduce a weaker notion of traitor tracing which we call
risky traitor tracing. Next, we describe our construction for risky traitor tracing from bilinear maps. Lastly,
we discuss the differential privacy negative results implied by existence of risky traitor tracing schemes.

Definitional Work. A traitor tracing system consists of four poly-time algorithms — Setup, Enc, Dec,
and Trace. The setup algorithm takes as input security parameter λ, and number of users n and generates
a public key pk, a master secret key msk, and n private keys sk1, . . . , skn. The encrypt algorithm encrypts
messages using pk and the decrypt algorithm decrypts a ciphertext using any one of the private keys ski.
The tracing algorithm takes msk as input and is given a black-box oracle access to a pirate decoder D. It
either outputs a special failure symbol ⊥, or an index i ∈ {1, . . . , n} signalling that the key ski was used to
create the pirate decoder.

Traditionally, a traitor tracing scheme is required to satisfy two security properties. First, it must be
IND-CPA secure, i.e. any PPT adversary, when given no private keys, should not be able to distinguish
between encryptions of two different messages. Second, it is required that if an adversary, given private
keys {ski}i∈S for any set S of its choice, builds a good pirate decoding box D (that is, a decoding box that
can can decrypt encryptions of random messages with non-negligible probability), then the trace algorithm
should be able to catch one of the private keys used to build the pirate decoding box. Additionally, the trace
algorithm should not falsely accuse any user with non-negligible probability. This property is referred to as
secure traitor tracing.

Now a limitation of the traitor tracing property as traditionally defined is that a pirate box is labeled
as a good decoder only if it extracts the entire message from a non-negligible fraction of ciphertexts.2 In
numerous practical scenarios such a definition could be useless and problematic. For instance, consider
a pirate box that can always decrypt encryptions of messages which lie in a certain smaller set but does
not work on others. If the size of this special set is negligible, then it won’t be a good decoder as per
existing definitions, but might still be adversarially useful in practice. There are also other reasons why the
previous definitions of traitor tracing are problematic (see Section 3.2 for more details). To this end, we use
an indistinguishability-based secure-tracing definition, similar to that used in [NWZ16], in which a pirate
decoder is labeled to a good decoder if it can distinguish between encryptions of messages chosen by the
adversary itself. We discuss this in more detail in Section 3.2.

In this work, we introduce a weaker notion of traitor tracing called f -risky traitor tracing, where f is
a function that takes the security parameter λ and number of users n as inputs. The syntax as well as
IND-CPA security requirement is identical to that of standard traitor tracing schemes. The difference is in
the way security of tracing traitors is defined. In an f -risky system, we only require that the trace algorithm
must catch a traitor with probability at least f(λ, n) whenever the adversary outputs a good decoder. This
property is referred to as f -risky secure traitor tracing. Note that a 1-risky traitor tracing scheme is simply
a standard traitor tracing scheme, and as f decreases, this progressively becomes weaker.

Constructing Risky Traitor Tracing from Bilinear Maps. As mentioned before, our main construc-
tion is based on prime order bilinear groups, and leads to a k

n+k−1 -risky traitor tracing where k is chosen
at setup time. However, for ease of technical exposition we start with a simpler construction that uses

2The tracing algorithm only needs to work when the pirate box is a good decoder.
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composite order bilinear groups and leads to 1
n -risky traitor tracing scheme. This scheme conveys the basic

idea and will serve as a basis for our prime order construction.
Let G,GT be groups of order N = p1p2p3p4 such that there exists a bilinear mapping e : G × G → GT

(that is, a mapping which maps (ga, gb) to e(g, g)a·b for all a, b ∈ ZN ). Since these groups are of composite
order, G has subgroups G1,G2,G3,G4 of prime order p1, p2, p3 and p4 respectively. Moreover, pairing any
element in Gi with an element in Gj (for i 6= j) results in the identity element (we will say that elements in
Gi and Gj are orthogonal to each other).

At a high level, our construction works as follows. There are three key-generation algorithms: ‘less-
than’ key-generation, ‘equal’ key-generation and ‘greater-than’ key-generation. Similarly, we have three
encryption algorithms : ‘standard’ encryption, ‘less-than’ encryption and ‘less-than-equal’ encryption. Out
of these encryption algorithms, the ‘less-than’ and ‘less-than-equal’ encryptions require the master secret
key, and are only used for tracing traitors. The decryption functionality can be summarized by Table 1.

‘less-than’ keygen ‘equal’ keygen ‘greater-than’ keygen
standard enc 3 3 3

‘less-than’ enc 7 3 3

‘less-than-equal’ enc 7 7 3

Table 1: Decryption functionality for different encryption/key-generation algorithms. The symbol 3 denotes
that decryption works correctly, while 7 denotes that decryption fails.

The master secret key consists of a ‘cutoff’ index i chosen uniformly at random from {1, . . . , n}. For
any index j < i, it uses the ‘less-than’ key-generation algorithm to generate keys. For j > i, it uses the
‘greater-than’ key-generation algorithm, and for j = i, it uses the ‘equal’ key-generation algorithm. The
ciphertext for a message m is a ‘standard’ encryption of m. From Table 1, it is clear that decryption works.
The trace algorithm tries to identify if the cutoff index i is used by the pirate box D. It first checks if D
can decrypt ‘less-than’ encryptions. If so, then it checks if D can decrypt ‘less-than-equal’ encryptions. If D
works in the ‘less-than’ case, but not in the ‘less-than-equal’ case, then the trace algorithm identifies index
i as one of the traitors.

Let us now look at how the encryption/key generation algorithms work at a high level. The public key in
our scheme consists of g1 ∈ G1 and e(g1, g1)α, while the master secret key has the cut-off index i, element α,
as well as generators for all subgroups of G. The ‘less-than’ keys are set to be gα1 ·w3 ·w4, where w3, w4 are
random group elements from G3,G4 respectively. The ‘equal’ key is gα1 · w2 · w4, where w2 ← G2, w4 ← G4.
Finally, the ‘greater-than’ key has no G2 or G3 terms, and is set to be gα1 · w4.

The ‘standard’ encryption of message m is simply (m · e(g1, g1)α·s, gs1). In the ‘less-than’ and ‘less-than-
equal’ ciphertexts, the first component is computed similarly but the second component is modified. For
‘less-than’ encryptions, the ciphertext is (m · e(g1, g1)α·s, gs1 · h3), where h3 is a uniformly random group
element in G3. For ‘less-than-equal’ encryptions the ciphertext is (m · e(g1, g1)α·s, gs1 · h2 · h3), where h2 and
h3 are uniformly random group elements in G2 and G3 respectively.

To decrypt a ciphertext ct = (ct1, ct2) using a key K, one must compute ct1/e(ct2,K). It is easy to verify
that the keys and encryptions follow the decryption behavior described in Table 1. For instance, an ‘equal’ key
K = gα1 ·w2 ·w4 can decrypt a ‘less-than’ encryption (m · e(g1, g1)α·s, gs1 ·h3) because e(ct2,K) = e(g1, g1)α·s.
However, an ‘equal’ key cannot decrypt a ‘less-than-equal’ ciphertext ct = (m · e(g1, g1)α·s, gs1 · h2) because
e(ct2,K) = e(g1, g1)α·s · e(h2, w2).

Given this construction, we need to prove two claims. First, we need to show that no honest party is
implicated by our trace algorithm; that is, if an adversary does not receive key for index i, then the trace
algorithm must not output index i. We show that if an adversary does not have key for index i, then the
pirate decoding box must not be able to distinguish between ‘less-than’ and ‘less-than-equal’ encryptions
(otherwise we can break the subgroup-decision assumption on composite order bilinear groups). Next, we
show that if an adversary outputs a pirate decoding box that works with probability ρ, then we can identify
a traitor with probability ρ/n. To prove this, we show that if ρi denotes the probability that the adversary
outputs a ρ-functional box and i is the cutoff-index, then the sum of all these ρi quantities is close to ρ. The
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above scheme is formally described later in Appendix C along with a detailed security proof. Next we move
on to our risky traitor tracing construction from prime order bilinear groups.

Moving to Prime Order Bilinear Maps and k
n+k−1 -Risky. The starting point for building k

n+k−1 -
risky traitor tracing scheme from prime order bilinear groups is the aforementioned scheme. Now to increase
the success probability of the tracing algorithm by a factor k, we increase the types of secret keys and
ciphertexts from 3 to k + 2 such that the decryptability of ciphertexts w.r.t. secret keys can again be
described as an upper-triangular matrix of dimension k + 2 as follows.

‘< w’ ‘= w’ ‘= w + 1’ · · · ‘= w + k − 1’ ‘≥ w + k’
keygen keygen keygen keygen keygen

standard enc 3 3 3 · · · 3 3

‘< w’ enc 7 3 3 · · · 3 3

‘< w + 1’ enc 7 7 3 · · · 3 3
...

...
...

. . .
. . .

...
...

‘< w + k − 1’ enc 7 7 7 · · · 3 3

‘< w + k’ enc 7 7 7 · · · 7 3

Table 2: New Decryption Functionality.

The basic idea will similar to the one used previously, except now we choose a cutoff window W =
{w,w + 1, . . . , w + k − 1} of size k uniformly at random. (Earlier the window had size 1, that is we choose a
single index.) The first w− 1 users are given ‘< w’ keys. For w ≤ j < w+ k, the jth user gets ‘= j’ key, and
rest of the users get the ‘≥ w+k’ keys. The remaining idea is similar to what we used which is that the tracer
estimates the successful decryption probability for a decoder D on all the special index encryptions (i.e.,
‘< j’ encryptions), and outputs the indices of all those users where there is a gap in decoding probability
while moving from type ‘< j’ to ‘< j + 1’.

Now instead of directly building a scheme that induces such a decryption functionality, we provide a
general framework for building risky traitor tracing schemes. In this work, we introduce a new intermedi-
ate primitive called Mixed Bit Matching Encryption (mBME) and show that it is sufficient to build risky
traitor tracing schemes. In a mBME system, the secret keys and ciphertexts are associated with bit vectors
x,y ∈ {0, 1}` (respectively) for some `. And decryption works whenever f(x,y) = 1 where f computes an
‘AND-of-ORs’ over vectors x,y (i.e., for every i ≤ `, either xi = 1 or yi = 1). Using the public parameters,
one could encrypt to the ‘all-ones’ vector, and using the master secret key one could sample a ciphertext
(or secret key) for any vector. For security, we require that the ciphertexts and the secret keys should not
reveal non-trivial information about their associated vectors. In other words, the only information an adver-
sary learns about these vectors is by running the decryption algorithm. In the sequel, we provide a generic
construction of risky traitor tracing from a mBME scheme, and also give a construction of mBME scheme
using prime order bilinear groups. They are described in detail later in Sections 5 and 6.

Finally, we also provide a performance evaluation of our risky traitor tracing scheme in Section 7.

Relation to BSW traitor tracing scheme. Boneh, Sahai and Waters [BSW06] constructed a (fully)
collusion-resistant traitor tracing scheme with O(

√
n ·λ) size ciphertexts. The BSW construction introduced

the private linear broadcast encryption (PLBE) abstraction, showed how to build traitor tracing using PLBE,
and finally gave a PLBE construction using composite-order bilinear groups.

Our framework deviates from the PLBE abstraction in that we support encryptions to only k+1 adjacent
indices (that is, if w is starting index of the cutoff window, then we support encryptions to either w, . . . , w+k)
and index 0. As a result, the trace algorithm can only trace an index in the window w, . . . , w+ k. The main
difficulty in our proof argument is that encrypting to index j is not defined for indices oustide the cutoff
window, i.e. j /∈ {0, w, w + 1, . . . , w + k}. As a result, we need to come up with a new way to link success
probabilities across different setups and weave these into an argument.
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Negative Results for Differential Privacy. Given a database D = (x1, x2, . . . , xn) ∈ Xn, in which each
row represents a single record of some sensitive information contributed by an individual and each record
is an element in the data universe X , the problem of privacy-preserving data analysis is to allow statistical
analyses of D while protecting the privacy of individual contributors. The problem is formally defined in
the literature by representing the database with a sanitized data structure s that can be used to answer all
queries q in some query class Q with reasonable accuracy, with the restriction that the sanitization of any
two databases D,D′ which differ at only a single position are indistinguishable. In this work, we will focus
on counting (or statistical) queries. Informally, a counting query q on a database D tells what fraction of
records in D satisfy the property associated with q.

Dwork et al. [DNR+09] first showed that secure traitor tracing schemes can be used to show hardness
results for efficient differentially private sanitization. In their hardness result, the data universe is the private
key space of traitor tracing scheme and the query space is the ciphertext space. A database consists of n
private keys and each query is associated with either an encryption of 0 or 1. Formally, for a ciphertext ct,
the corresponding query qct on input a private key sk outputs the decryption of ct using sk. They show that
if the underlying traitor tracing scheme is secure, then there can not exist sanitizers that are simultaneously
accurate, differentially private, and efficient. At a very high level, the idea is as follows. Suppose there
exists an efficient sanitizer A that, on input D = (sk1, . . . , skn) outputs a sanitization s. The main idea is
to use sanitizer A to build a pirate decoding box such that the tracing algorithm falsely accuses a user with
non-negligible probability, thereby breaking secure traitor traitor property. Concretely, let B be an attacker
on the secure tracing property that works as follows — B queries for private keys of all but ith party, and
then uses sanitizer A to generate sanitization s of the database containing all the queried private keys, and
finally it outputs the pirate decoding box as the sanitization evaluation algorithm which has s hardwired
inside and on input a ciphertext ouputs its evaluation given sanitization s.3

To prove that the tracing algorithm outputs i (with non-negligible probability) given such a decoding
box, Dwork et al. crucially rely on the fact that A is differentially private. First, they show that if an
adversary uses all private keys to construct the decoding box, then the tracing algorithm always outputs
an index and never aborts.4 Then, they argue that there must exist an index i such that tracing algorithm
outputs i with probability p ≥ 1/n. Finally, to complete the claim they show that even if ith key is removed
from the database, the tracing algorithm will output i with non-negligible probability since the sanitizer is
differentially private with parameters ε = O(1) and δ = o(1/n).

In this work, we show that their analysis can be adapted to risky traitor tracing as well. Concretely, we
show that f -risky secure traitor tracing schemes can be used to show hardness results for efficient differentially
private sanitization, where f directly relates to the differential privacy parameters. At a high level, the proof
strategy is similar, i.e. we also show that an efficient sanitizer could be used to build a good pirate decoding
box. The main difference is that now we can only claim that if an adversary uses all private keys to
construct the decoding box, then (given oracle access to the box) the tracing algorithm outputs an index
with probability at least f , i.e. the trace algorithm could potentially abort with non-negligible probability.
Next, we can argue that there must exist an index i such that tracing algorithm outputs i with probability
p ≥ f/n. Finally, using differential privacy of A we can complete the argument. An important caveat in the
proof is that since the lower bounds in the probability terms have an additional multiplicative factor of f ,
thus f -risky traitor tracing could only be used to argue hardness of differential privacy with slightly lower
values of parameter δ, i.e. δ = o(f/n).

However, we observe that if the risky traitor tracing scheme additionally satisfies what we call “singular
trace” property, then we could avoid the 1/n loss. Informally, a risky scheme is said to satisfy the singular
trace property if the trace algorithm always outputs either a fixed index or the empty set. One could visualize
the fixed index to be tied to the master secret and public keys. Concretely, we show that f -risky traitor
tracing with singular trace property implies hardness of differential privacy for δ = o(f), thereby matching
that achieved by previous obfuscation based result of [BZ14]. We describe our hardness result in detail in

3Technically, the decoding box must round the output of evaluation algorithm in order to remove evaluation error.
4In the full proof, one could only argue that tracing algorithm outputs an index with probability at least 1 − β where β is

the accuracy parameter of sanitizer A.
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Section 8.2.

Amplifying the Probability of Tracing — Catching Persistent Decoders. While an f -risky traitor
tracing system by itself gives a small probability of catching a traitor, there can be ways to deploy it that
increase this dramatically. We discuss one such way informally here.

Consider a broadcast system where we want to support low overhead broadcast encrypted communica-
tions, but will periodically allow for a more expensive key refresh operation. Suppose that we generate the
secret keys sk1, sk2, . . . , skn for a risky traitor tracing system and in addition generate standard secret keys
SK1, . . . ,SKn. In this system an encryptor can use the traitor tracing public key pk to compute a ciphertext.
A user i will use secret key ski to decrypt. The system will allow this to continue for a certain window
of time. (Note during the window different ciphertexts may be created by different users.) Then at some
point in time the window will close and a new risky tracing key pk′ and secret keys sk′1, sk′2, . . . , sk′n will be
generated. The tracing secret keys will be distributed by encrypting each sk′i under the respective permanent
secret key SKi. And the encryptors will be instructed to only encrypt using the new public key pk′. This can
continue for an arbitrary number of windows followed by key refreshes. Note that each key refresh requires
O(nλ) size communication.

Consider an attacker that wishes to disperse a stateless decoder D that is capable of continuing to
work through multiple refresh cycles. Such a “persistent decoder” can be traced with very high probability
negligibly close to 1. The tracing algorithm must simply give it multiple key refreshes followed by calls to the
Trace algorithm and by the risky property it will eventually pick one that can trace one of the contributors.

We emphasize that care must be taken when choosing the refresh size window. If the window is too
small the cost of key refreshes will dominate communication — in one extreme if a refresh happens at the
frequency that ciphertexts are created then the communication is as bad as the trivial PLBE system. In
addition, dispersing new public keys very frequently can be an issue. On the other hand if a refresh window
is very long, then an attacker might decide there is value in producing a decoding box that works only for
the given window and we are back to having only an f(λ, n) chance of catching him.

1.2 Additional Related Work

Our traitor tracing system allows for public key encryption, but requires a master secret key to trace users as
do most works. However, there exists exceptions [Pfi96, PW97, WHI01, KY03, CPP05, BW06, BZ14] where
the tracing can be done using a public key. In a different line of exploration, Kiayias and Yung [KY02] argue
that a traitor tracing system with higher overhead can be made “constant rate” with long enough messages.
Another interesting point in the space of collusion resistant systems is that of Boneh and Naor [BN08]. They
show how to achieve short ciphertext size, but require private keys that grow quadratically in the number
of users as O(n2λ). In addition, this is only achievable assuming a perfect decoder. If the decoder D works
with probability δ then the secret key grows to O(n2λ/δ2). Furthermore, the system must be configured
a-priori with a specific δ value and once it is set one will not necessarily be able to identify a traitor from
a box D that works with smaller probability. Such systems have been called threshold traitor tracing
systems [NP98, CFNP00]. Both [NP98, CFNP00] provide combinatorial and probabilistic constructions in
which the tracing algorithm is guaranteed to work with high probability, and to trace t traitors they get
private keys of size O(t·log n). In contrast we can capture any traitor strategy that produces boxes that work
with any non-negligible function ε(λ). Chor et al. [CFNP00] also considered a setting for traitor tracing in
which the tracing algorithm only needs to correctly trace with probability 1− p, where p could the scheme
parameter. However, this notion has not been formally defined or explored since then.

Dwork et al. [DNR+09] first showed that existence of collusion resistant traitor tracing schemes implies
hardness results for efficient differentially private sanitization. In their hardness result, the database consists
of n secret keys and each query is associated with an encryption of 0/1. Thus, the size of query space depends
on the size of ciphertexts. Instantiating the result of Dwork et al. with the traitor tracing scheme of Boneh
et al. [BSW06], we get that under assumptions on bilinear groups, there exist a distribution on databases
of size n and a query space of size O(2

√
n·λ) such that it is not possible to efficiently sanitize the database
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in a differentially private manner.
Now the result of Dwork et al. gives hardness of one-shot sanitization. A one-shot sanitizer is supposed

to produce a summary of an entire database from which approximate answers to any query in the query
set could be computed. A weaker setting could be where we consider interactive sanitization, in which the
queries are fixed and given to the sanitizer as an additional input and the sanitizer only needs to output
approximate answers to all those queries instead of a complete summary. Ullman [Ull13] showed that, under
the assumption that one-way functions exist, there is no algorithm that takes as input a database of n records
along with an arbitrary set of about O(n2) queries, and approximately answers each query in polynomial
time while preserving differential privacy. Ullman’s result differs from the result of Dwork et al. in that it
applies to algorithms answering any arbitrary set of O(n2) queries, whereas Dwork et al. show that it is
impossible to sanitize a database with respect to a fixed set of O(2

√
n·λ) queries.

Recently a few works [BZ14, KMUZ16] have improved the size of query space for which (one-shot)
sanitization is impossible from O(2

√
n·λ) to n · O(2λ) to poly(n).5 [BZ14] showed the impossibility by first

constructing a fully collusion resistant scheme with short ciphertexts, and later simply applying the Dwork et
al. result. On the other hand, [KMUZ16] first construct a weakly secure traitor tracing scheme by building on
top of PLBE abstraction, and later adapt the Dwork et al. impossibility result for this weaker variant. These
works however assume existence of a stronger cryptographic primitive called indistinguishability-obfuscator
(iO) [BGI+01, GGH+13]. Currently we do not know of any construction of iO from a standard cryptographic
assumption. In this work, we are interested in improving the state-of-the-art hardness results in differential
privacy based on standard assumptions.

More recent related work. In an independent and concurrent work, Kowalczyk, Malkin, Ullman and
Wichs [KMUW17] gave similar differential privacy negative results from any functional encryption system
for comparisons that supported two ciphertext and an unbounded number of secret keys. And showed how
to realize this from one way functions. The negative results they achieve are similar to ours, but apply for
slightly smaller database sizes. The focus of their work is on negative results for differential privacy, whereas
our risky tracing framework has both positives application as well as differential privacy impossibility results.

Subsequent to our work, Goyal, Koppula and Waters [GKW18] gave a collusion resistant tracing system
from the Learning with Errors assumption where the ciphertext size grows polynomially in λ, lg(N).

2 Preliminaries

Notations. For any set X , let x ← X denote a uniformly random element drawn from the set X . Given
a PPT algorithm D, let AD denote an algorithm A that uses D as an oracle (that is, A sends queries to
D, and for each query x, it receives D(x)). Throughout this paper, we use PPT to denote probabilistic
polynomial-time. We will use lowercase bold letters for vectors (e.g. v), and we will sometimes represent bit
vectors v ∈ {0, 1}` as bit-strings of appropriate length.

2.1 Assumptions

In this work, we will be using bilinear groups. Let Grp-Gen be a PPT algorithm that takes as input security
parameter λ (in unary), and outputs a λ-bit prime p, an efficient description of groups G1,G2,GT of order
p, generators g1 ∈ G1, g2 ∈ G2 and an efficient non-degenerate bilinear mapping e : G1 ×G2 → GT (that is,
e(g1, g2) 6= 1GT , and for all a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)a·b).

We will be using the following assumptions in this work.

Assumption 1. For every PPT adversary A, there exists a negligible function negl(·) s.t. for all λ ∈ N,

Pr

[
b← A

(
params,

gx1 , g
y
1 , g

y·z
1 , gy2 , g

z
2 , Tb

)
:

params = (p,G1,G2,GT , g1, g2, e(·, ·))← Grp-Gen(1λ);

x, y, z, r ← Zp, T0 = gx·y·z1 , T1 = gx·y·z+r1 , b← {0, 1}

]
≤ 1/2+negl(λ).

5In this work, we only focus on the size of query space.
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Assumption 2. For every PPT adversary A, there exists a negligible function negl(·) s.t. for all λ ∈ N,

Pr

[
b← A

(
params,

gy1 , g
z
1 , g

x
2 , g

y
2 , Tb

)
:

params = (p,G1,G2,GT , g1, g2, e(·, ·))← Grp-Gen(1λ);

x, y, z, r ← Zp, T0 = gx·y·z2 , T1 = gx·y·z+r2 , b← {0, 1}

]
≤ 1/2 + negl(λ).

3 Risky Traitor Tracing

In this section, we will first introduce the traditional definition of traitor tracing based on that given by Boneh,
Sahai and Waters [BSW06]. We provide a “public key” version of the definition in which the encryption
algorithm is public, but the tracing procedure will require a master secret key. Our definition will by default
capture full collusion resistance.

A limitation of this definition is that the tracing algorithm is only guaranteed to work on decoders that
entirely decrypt encryptions of randomly selected messages with non-negligible probability. We we will
discuss why this definition can be problematic and then provide an indistinguishability based definition for
secure tracing.

Finally, we will present our new notion of risky traitor tracing which captures the concept of a trace
algorithm that will identify a traitor from a working pirate box with probability close to f(λ, n). Our main
definition for risky traitor tracing will be a public key one using the indistinguishability; however we will also
consider some weaker variants that will be sufficient for obtaining our negative results in differential privacy.

3.1 Public Key Traitor Tracing

A traitor tracing scheme with message space M consists of four PPT algorithms Setup,Enc,Dec and Trace
with the following syntax:

(msk, pk, (sk1, . . . , skn)) ← Setup(1λ, 1n) : The setup algorithm takes as input the security parameter
λ, number of users n, and outputs a master secret key msk, a public key pk and n secret keys
sk1, sk2, . . . , skn.

ct ← Enc(pk,m ∈ M) : The encryption algorithm takes as input a public key pk, message m ∈ M and
outputs a ciphertext ct.

y ← Dec(sk, ct) : The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs
y ∈M∪ {⊥}.

S ← TraceD(msk, 1y) : The tracing algorithm takes a parameter y ∈ N (in unary) as input, has black box
access to an algorithm D, and outputs a set S ⊆ {1, 2, . . . , n}.

Correctness For correctness, we require that if ct is an encryption of message m, then decryption of ct
using one of the valid secret keys must output m. More formally, we require that for all λ ∈ N, n ∈ N,
(msk, pk, (sk1, . . . , skn))← Setup(1λ, 1n), m ∈M, ct← Enc(pk,m) and i ∈ {1, 2, . . . , n}, Dec(ski, ct) = m.

Security A secure traitor tracing scheme must satisfy two security properties. First, the scheme must
be IND-CPA secure (that is, any PPT adversary, when given no secret keys, cannot distinguish between
encryptions of m0,m1). Next, we require that if an adversary, using some secret keys, can build a pirate
decoding box, then the trace algorithm should be able to catch at least one of the secret keys used to build
the pirate decoding box. In this standard definition, the trace algorithm identifies a traitor if the pirate
decoding box works with non-negligible probability in extracting the entire message from an encryption of
a random message.

Definition 3.1 (IND-CPA security). A traitor tracing scheme T = (Setup,Enc,Dec,Trace) is IND-CPA secure
if for any PPT adversary A = (A1,A2), polynomial n(·), there exists a negligible function negl(·) such that
for all λ ∈ N, |Pr[1← Expt-IND-CPATA(1λ, 1n)]− 1/2| ≤ negl(λ), where Expt-IND-CPAT ,A is defined below.
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• (msk, pk, (sk1, . . . , skn))← Setup(1λ, 1n(λ))

• (m0,m1, σ)← A1(pk)

• b← {0, 1}, ct← Enc(pk,mb)

• b′ ← A2(σ, ct). Experiment outputs 1 iff b = b′.

Definition 3.2 (Secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) a traitor tracing scheme. For
any polynomial n(·), non-negligible function ε(·) and PPT adversary A, consider the following experiment
ExptTA,n,ε(λ):

•
(
msk, pk,

(
sk1, . . . , skn(λ)

))
← Setup(1λ, 1n(λ)).

• D ← AO(·)(pk)

• SD ← TraceD(msk, 11/ε(λ)).

Here, O(·) is an oracle that has {sk1, sk2, . . . , skn(λ)} hardwired, takes as input an index i ∈ {1, 2, . . . , n(λ)}
and outputs ski. Let S be the set of indices queried by A. Based on this experiment, we will now define the
following (probabilistic) events and the corresponding probabilities (which is a function of λ, parameterized
by A, n, ε):

• Good-Decoder : Pr[D(ct) = m : m←M, ct← Enc(pk,m)] ≥ ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

• Cor-Tr : SD ⊆ S ∧ SD 6= ∅
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : SD \ S 6= ∅
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be secure if for every PPT adversary A, polynomials n(·), p(·) and
non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N such
that ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥ Pr -G-DA,n,ε(λ)− negl2(λ).

3.2 Indistinguishability Security Definition for Traitor Tracing Schemes

A limitation of the previous definition is that the tracing algorithm is only guaranteed to work on decoders
that entirely decrypt a randomly selected message with non-negligible probability. This definition can be
problematic for the following reasons.

• First, there could be pirate boxes which do not extract the entire message from a ciphertext, but
can extract some information about the message underlying a ciphertext. For example, a box could
paraphrase English sentences or further compress an image. Such boxes could be very useful to own
in practice yet the tracing definition would give no guarantees on the ability to trace them.

• Second, a pirate decoder may not be very successful in decrypting random ciphertexts, but can decrypt
encryptions of messages from a smaller set. In practice the set of useful or typical messages might indeed
fall in a smaller set.

• Finally, if the message space is small (that is, of polynomial size), then one can always construct
a pirate decoder which succeeds with non-negligible probability and can not get caught (the pirate
decoder box simply outputs a random message for each decryption query. If M is the message space,
then decryption will be successful with probability 1/|M|). Since such a strategy does not use any
private keys, it cannot be traced. Therefore the above definition is only sensible for superpolynomial
sized message spaces.
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To address these issues, we provide a stronger definition, similar to that used in [NWZ16], in which a
pirate decoder is successful if it can distinguish between encryptions of messages chosen by the decoder itself.
For this notion, we also need to modify the syntax of the Trace algorithm. Our security notion is similar to
the one above except that an attacker will output a box D along with two messages (m0,m1). If the box
D is able to distinguish between encryptions of these two messages with non-negligible probability then the
tracing algorithm can identify a corroborating user.

TraceD(msk, 1y,m0,m1): The trace algorithm has oracle access to a program D, it takes as input a master
secret key msk, y (in unary) and two messages m0,m1. It outputs a set S ⊆ {1, 2, . . . , n}.

Definition 3.3 (Ind-secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) be a traitor tracing scheme. For
any polynomial n(·), non-negligible function ε(·) and PPT adversaryA, consider the experiment Expt-TTTA,n,ε(λ)
defined in Figure 1. Based on this experiment, we will now define the following (probabilistic) events and
the corresponding probabilities (which is a function of λ, parameterized by A, n, ε):

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

• Cor-Tr : SD ⊆ S ∧ SD 6= ∅
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : SD \ S 6= ∅
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be ind-secure if for every PPT adversary A, polynomials n(·), p(·)
and non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N
satisfying ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥ Pr -G-DA,n,ε(λ)− negl2(λ).

Experiment Expt-TTTA,n,ε(λ)

•
(
msk, pk,

(
sk1, . . . , skn(λ)

))
← Setup(1λ, 1n(λ)).

• (D,m0,m1)← AO(·)(pk)

• SD ← TraceD(msk, 11/ε(λ),m0,m1).

Here, O(·) is an oracle that has {sk1, sk2, . . . , skn(λ)} hardwired, takes as input an index i ∈ {1, 2, . . . , n(λ)}
and outputs ski. Let S be the set of indices queried by A.

Figure 1: Experiment Expt-TT

3.3 Risky Traitor Tracing

In this section, we will introduce the notion of risky traitor tracing. The syntax is same as that of ind-secure
traitor tracing. However, for security, if the adversary outputs a good decoder, then the trace algorithm will
catch a traitor with probability f where f is a function of λ and the number of users.

Definition 3.4 (f -risky secure traitor tracing). Let f : N×N→ [0, 1] be a function and T = (Setup,Enc,Dec,Trace)
a traitor tracing scheme. For any polynomial n(·), non-negligible function ε(·) and PPT adversary A, con-
sider the experiment Expt-TTTA,n,ε(λ) (defined in Figure 1). Based on this experiment, we will now define the
following (probabilistic) events and the corresponding probabilities (which are functions of λ, parameterized
by A, n, ε):

• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

12



• Cor-Tr : SD ⊆ S ∧ SD 6= ∅
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : SD \ S 6= ∅
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A traitor tracing scheme T is said to be f -risky secure if for every PPT adversary A, polynomials n(·),
p(·) and non-negligible function ε(·), there exists negligible functions negl1(·), negl2(·) such that for all λ ∈ N
satisfying ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥ Pr -G-DA,n,ε(λ) ·f(λ, n(λ))−
negl2(λ).

We also define another interesting property for traitor tracing schemes which we call “singular” trace.
Informally, a scheme satisfies it if the trace algorithm always outputs either a fixed index or the reject symbol.
The fixed index could depend on the master secret and public keys. Below we define it formally.

Definition 3.5 (Singular Trace). A traitor tracing scheme T = (Setup,Enc,Dec,Trace) is said to satisfy
singular trace property if for every polynomial n(·), λ ∈ N, keys (msk, pk, (sk1, . . . , skn)) ← Setup(1λ, 1n),
there exists an index i∗ ∈ {1, . . . , n} such that for every poly-time algorithm D, parameter y ∈ N, any two
messages m0,m1,

Pr[TraceD(msk, 1y,m0,m1) ∈ {{i∗}, ∅}] = 1,

where the probability is taken over random coins of Trace.

3.4 Private Key Traitor Tracing

We will now present different security notions for private key encryption schemes with risky traitor tracing.
Here, the master secret key is used for encrypting messages, generating secret keys for parties and tracing
traitors. The first security notion will be a private key analog of Definition 3.4, where the adversary also
gets encryption queries before it sends the pirate decoding box. In the second notion, the adversary does
not get any encryption queries. While this definition is weaker than the first notion (and may not capture
practical scenarios), it suffices for our differential privacy application.

First, we will present the syntax for private key traitor tracing. A private key traitor tracing scheme for
message space M consists of the following algorithms.

(msk, (sk1, . . . , skn))← Setup(1λ, 1n) : The setup algorithm takes as input the security parameter λ, number
of users n, and outputs a master secret key msk and n secret keys sk1, sk2, . . . , skn.

ct← Enc(msk,m ∈M) : The encryption algorithm takes as input a master secret key pk, message m ∈M
and outputs a ciphertext ct.

y ← Dec(sk, ct) : The decryption algorithm takes as input a secret key sk, ciphertext ct and outputs
y ∈M∪ {⊥}.

S ← TraceD(msk, 1y) : The tracing algorithm takes a parameter y ∈ N (in unary) as input, has black box
access to an algorithm D, and outputs a set S ⊆ {1, 2, . . . , n}.

The correctness property is similar to that in the public key setting.

3.4.1 Security

Definition 3.6 (Private Key f -risky secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) be a private
key traitor tracing scheme. For any polynomial n(·), non-negligible function ε(·) and PPT adversary A,
consider the experiment Expt-TT-privTA,n,ε(λ) (described in Figure 2). Based on this experiment, we will
now define the following (probabilistic) events and the corresponding probabilities (which is a function of λ,
parameterized by A, n, ε):
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• Good-Decoder : Pr[D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + ε(λ)
Pr -G-DA,n,ε(λ) = Pr[Good-Decoder].

• Cor-Tr : SD ⊆ S ∧ SD 6= ∅
Pr -Cor-TrA,n,ε(λ) = Pr[Cor-Tr].

• Fal-Tr : SD \ S 6= ∅
Pr -Fal-TrA,n,ε(λ) = Pr[Fal-Tr].

A private key traitor tracing scheme T is said to be f -risky secure if for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exist negligible functions negl1(·), negl2(·)
such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥
Pr -G-DA,n,ε(λ) · f(λ, n(λ))− negl2(λ).

Experiment Expt-TT-privTA,n,ε(λ)

•
(
msk,

(
sk1, . . . , skn(λ)

))
← Setup(1λ, 1n(λ)).

• (D,m0,m1)← AO1(·),O2(·)()

• SD ← TraceD(msk, 11/ε(λ),m0,m1).

Here, O1(·) is an oracle that has {sk1, sk2, . . . , skn(λ)} hardwired, takes as input an index i ∈ {1, 2, . . . , n(λ)}
and outputs ski. Let S be the set of indices queried by A.
The oracle O2(·) is the encryption oracle that has msk hardwired, takes a message m as input, and outputs
Enc(msk,m).

Figure 2: Experiment Expt-TT-priv

Definition 3.7 (Private Key No-Query f -risky secure traitor tracing). Let T = (Setup,Enc,Dec,Trace) be a
private key traitor tracing scheme. For any polynomial n(·), non-negligible function ε(·) and PPT adversary
A, consider the experiment Expt-TT-privTA,n,ε(λ) (described in Figure 2), except that the adversary A does
not have access to the encryption oracle O2. Based on this experiment, we can define the following (proba-
bilistic) events Good-Decoder, Cor-Tr, Fal-Tr and the corresponding probabilities Pr -G-DA,n,ε, Pr -Cor-TrA,n,ε,
Pr -Fal-TrA,n,ε respectively.

A private key traitor tracing scheme T is said to be no-query f -risky secure if for every PPT adversary
A, polynomials n(·), p(·) and non-negligible function ε(·), there exist negligible functions negl1(·), negl2(·)
such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤ negl1(λ) and Pr -Cor-TrA,n,ε(λ) ≥
Pr -G-DA,n,ε(λ) · f(λ, n(λ))− negl2(λ).

4 A New Abstraction for Constructing Risky Traitor Tracing

Let {Mλ}λ denote the message space. A mixed bit matching encryption scheme for M consists of five
algorithms with the following syntax.

Setup(1λ, 1`) → (pk,msk): The setup algorithm takes as input security parameter λ, a parameter ` and
outputs a public key pk and master secret key msk.

KeyGen(msk,x ∈ {0, 1}`)→ sk: The key generation algorithm takes as input the master secret key msk and

a vector x ∈ {0, 1}`. It outputs a secret key sk corresponding to x.

Enc-PK(pk,m ∈ M) → ct: The public-key encryption algorithm takes as input a public key pk and a
message m, and outputs a ciphertext ct.

Enc-SK(msk,m ∈ M,y ∈ {0, 1}`) → ct: The secret-key encryption algorithm takes as input master secret

key msk, message m, and an attribute vector y ∈ {0, 1}`. It outputs a ciphertext ct.
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Dec(sk, ct) → z: The decryption algorithm takes as input a ciphertext ct, a secret key sk and outputs
z ∈M∪ {⊥}.

Permissions Define f : {0, 1}` × {0, 1}` → {0, 1} by the following:

f(x,y) =
∧̀
i=1

xi ∨ yi

We will use this function to determine when secret keys with attribute vectors x are “permitted” to
decrypt ciphertexts with attribute vectors y.

Correctness We require the following properties for correctness:

• For every λ ∈ N, ` ∈ N, (pk,msk)← Setup(1λ, 1`), x ∈ {0, 1}`, sk← KeyGen(msk,x), message m ∈Mλ

and ct← Enc-PK(pk,m), Dec(sk, ct) = m.

• For every λ ∈ N, ` ∈ N, (pk,msk)← Setup(1λ, 1`), x ∈ {0, 1}`, sk← KeyGen(msk,x), message m ∈Mλ,

y ∈ {0, 1}` and ct← Enc-SK(msk,m,y), if f(x,y) = 1 then Dec(sk, ct) = m.

4.1 Security

Oracles To begin, we define two oracles we use to enable the adversary to query for ciphertexts and secret
keys. Let m be a message, and x,y,∈ {0, 1}`.

• Osk
msk(x)← KeyGen(msk,x).

• Oct
msk(m,y)← Enc-SK(msk,m,y).

Experiments We will now define three security properties that a mixed bit matching encryption scheme
must satisfy. These definitions are similar to the indistinguishability-based data/function privacy definitions
for attribute based encryption. For each of these experiments we restrict the adversary’s queries to the
ciphertext and secret key oracles to prevent trivial distinguishing strategies. Also, we will be considering
selective definitions, since our constructions achieve selective security, and selective security suffices for our
risky traitor tracing application. One could also consider full (adaptive) versions of these security definitions.

Definition 4.1. A mixed bit matching encryption scheme mBME = (Setup,KeyGen,Enc-PK,Enc-SK,Dec)
is said to satisfy pk-sk ciphertext indistinguishability if for any polynomial `(·) and stateful PPT adver-
sary A, there exists a negligible function negl(·) such that for all security parameters λ ∈ N, Pr[1 ←
Expt-pk-sk-ctmBME

`(λ),A(1λ)] ≤ 1/2 + negl(λ), where Expt-pk-sk-ct is defined in Figure 3.

Experiment Expt-pk-sk-ctmBME
`(λ),A(1λ)

• (pk,msk)← Setup(1λ, 1`(λ))

• m← AO
sk
msk,O

ct
msk(pk).

• ct0 ← Enc-SK(msk,m, 1`(λ)), ct1 ← Enc-PK(pk,m), b← {0, 1}

• b′ ← AO
sk
msk,O

ct
msk(ctb).

• Output 1 if b = b′, and 0 otherwise.

Figure 3: Public-key vs Secret-key Ciphertext Indistinguishability Experiment

15



Definition 4.2. A mixed bit matching encryption scheme mBME = (Setup,KeyGen,Enc-PK,Enc-SK,Dec)
is said to satisfy selective ciphertext hiding if for any polynomial `(·) and stateful PPT adversary A, there
exists a negligible function negl(·) such that for all security parameters λ ∈ N, Pr[1← Expt-ct-indmBME

`(λ),A(1λ)] ≤
1/2 + negl(λ), where Expt-ct-ind is defined in Figure 4.

Experiment Expt-ct-indmBME
`(λ),A(1λ)

• (y0,y1)← A(1λ).

• (pk,msk)← Setup(1λ, 1`(λ))

• (m0,m1)← AO
sk
msk,O

ct
msk(pk)

• b← {0, 1}, ctb ← Enc-SK(msk,mb,yb)

• b′ ← AO
sk
msk,O

ct
msk(ctb)

• Output 1 if b = b′, and 0 otherwise.

Adversarial Restrictions: For all queries x made by A to Osk
msk the following conditions must hold:

• If m0 = m1, then f(x,y0) = f(x,y1).

• If m0 6= m1, then f(x,y0) = f(x,y1) = 0.

Figure 4: Ciphertext Hiding Experiment

Definition 4.3. A mixed bit matching encryption scheme mBME = (Setup,KeyGen,Enc-PK,Enc-SK,Dec)
is said to satisfy selective key hiding if for any polynomial `(·) and stateful PPT adversary A, there exists
a negligible function negl(·) such that for all security parameters λ ∈ N, Pr[1 ← Expt-key-indmBME

`(λ),A(1λ)] ≤
1/2 + negl(λ), where Expt-key-ind is defined in Figure 5.

Experiment Expt-key-indmBME
`(λ),A(1λ)

• (x0,x1)← A(1λ)

• (pk,msk)← Setup(1λ, 1`(λ))

• b← {0, 1}, skb ← KeyGen(msk,xb)

• b′ ← AO
sk
msk,O

ct
msk(pk, skb)

• Output 1 if b = b′, and 0 otherwise.

Adversarial Restrictions: For all queries (m,y) made by A to Oct
msk the following equality must hold:

f(x0,y) = f(x1,y).

Figure 5: Key Hiding Experiment

4.2 Simplified Ciphertext Hiding

As a tool for proving mixed bit matching encryption constructions secure, we define two simplified ciphertext
hiding experiments, and then show that they imply the original (selective) ciphertext hiding security game.

Definition 4.4. A mixed bit matching encryption scheme mBME = (Setup,KeyGen,Enc-PK,Enc-SK,Dec)
is said to satisfy selective 1-attribute ciphertext hiding if for any polynomial `(·) and stateful PPT ad-
versary A, there exists a negligible function negl(·) such that for all security parameters λ ∈ N, Pr[1 ←
Expt-1-attr-ct-indmBME

`(λ),A(1λ)] ≤ 1/2 + negl(λ), where Expt-1-attr-ct-ind is defined in Figure 6.
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Experiment Expt-1-attr-ct-indmBME
`(λ),A(1λ)

• (y0,y1)← A(1λ) where y0,i 6= y1,i for at most one i ∈ {1, . . . , `(λ)}.
• (pk,msk)← Setup(1λ, 1`(λ))

• m← AO
sk
msk,O

ct
msk(pk)

• b← {0, 1}, ctb ← Enc-SK(msk,mb,yb).

• b′ ← AO
sk
msk,O

ct
msk(pk, ctb)

• Output 1 if b = b′, and 0 otherwise.

Adversarial Restrictions: For all queries x made by A to Osk
msk the following equality must hold:

f(x,y0) = f(x,y1).

Figure 6: 1-Attribute Ciphertext Hiding Experiment

Definition 4.5. A mixed bit matching encryption scheme mBME = (Setup,KeyGen,Enc-PK,Enc-SK,Dec)
is said to satisfy selective ciphertext indistinguishability under chosen attributes if for any polynomial `(·)
and stateful PPT adversary A, there exists a negligible function negl(·) such that for all security parameters
λ ∈ N, Pr[1← Expt-IND-CAmBME

`(λ),A(1λ)] ≤ 1/2 + negl(λ), where Expt-IND-CA is defined in Figure 7.

Experiment Expt-IND-CAmBME
`(λ),A(1λ)

• y← A(1λ).

• (pk,msk)← Setup(1λ, 1`(λ))

• (m0,m1)← AO
sk
msk,O

ct
msk(pk)

• b← {0, 1}, ctb ← Enc-SK(msk,mb,y).

• b′ ← AO
sk
msk,O

ct
msk(pk, ctb)

• Output 1 if b = b′, and 0 otherwise.

Adversarial Restrictions: If m0 6= m1, then for all queries x made by A to Osk
msk the following

equality must hold: f(x,y) = 0.

Figure 7: Ciphertext Indistinguishability under Chosen Attributes Experiment

Theorem 4.1. If a mixed bit matching encryption scheme mBME = (Setup,KeyGen,Enc-PK,Enc-SK,Dec)
satisfies selective 1-attribute ciphertext hiding (Definition 4.4) and selective ciphertext indistinguishability
under chosen attributes (Definition 4.5), then it also satisfies selective ciphertext hiding (Definition 4.2).

The proof of above theorem is provided later in Appendix A.

4.3 Simplified Key Hiding

We also define a similar simplified experiment for the key hiding security property.

Definition 4.6. A mixed bit matching encryption scheme mBME = (Setup,KeyGen,Enc-PK,Enc-SK,Dec) is
said to satisfy selective 1-attribute key hiding if for any polynomial ` and stateful PPT adversary A, there ex-
ists a negligible function negl(·) such that for all security parameters λ ∈ N, Pr[1← Expt-1-attr-key-indmBME

`(λ),A(1λ)] ≤
1/2 + negl(λ), where Expt-1-attr-key-ind is defined in Figure 8.

Theorem 4.2. If a mixed bit matching encryption scheme mBME = (Setup,KeyGen,Enc-PK,Enc-SK,Dec)
satisfies 1-attribute key hiding (Definition 4.6) then it satisfies key hiding (Definition 4.3).

The proof of above theorem is provided later in Appendix A.
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Experiment Expt-1-attr-key-indmBME
`(λ),A(1λ)

• (x0,x1)← A(1λ) where x0,i 6= x1,i for at most one i.

• (pk,msk)← Setup(1λ, 1`(λ)).

• b← {0, 1}, skb ← KeyGen(msk,xb).

• b′ ← AO
sk
msk,O

ct
msk(pk, skb).

• Output 1 if b = b′.

Adversarial Restrictions: For all queries (m,y) made by A to Oct
msk the following equality must hold:

f(x0,y) = f(x1,y).

Figure 8: 1-Attribute Key Hiding Experiment

5 Building Risky Traitor Tracing using Mixed Bit Matching En-
cryption

In this section, we provide a generic construction for risky traitor tracing schemes from any mixed bit
matching encryption scheme. Our transformation leads to a risky traitor tracing scheme with secret-key

tracing. The risky-ness of the scheme will be f = k
n+k−1 − O

(
k(k−1)
n2

)
,6 where k can be thought of as a

scheme parameter fixed during setup, and the size of ciphertext will grow with k.

5.1 Construction

• Setup(1λ, 1n): The setup algorithm chooses a key pair for mixed bit matching encryption system as
(mbme.pk,mbme.msk) ← mBME.Setup(1λ, 1k+1). Next, it samples an index w as w ← {−k + 2,−k +
3, . . . , n− 1, n}, and sets vectors xi for i ∈ [n] as

xi =


0k+1 if i < w,

0k−i+w1i−w+1 if w ≤ i < w + k,

1k+1 otherwise.

It sets the master secret key as msk = (mbme.msk, w), public key as pk = mbme.pk, and computes the
n user secret keys as ski ← mBME.KeyGen(mbme.msk,xi) for i ∈ [n].

• Enc(pk,m): The encryption algorithm outputs the ciphertext ct as ct← mBME.Enc-PK(pk,m).

• Dec(sk,m): The decryption algorithm outputs the message m as m = mBME.Dec(sk, ct).

• TraceD(msk, 1y,m0,m1): Let msk = (mbme.msk, w). To define the trace algorithm, we first define a
special index encryption algorithm Enc-ind which takes as input a master secret key msk, message m,
and an index i ∈ [k + 1].

Enc-ind(msk,m, i): The index encryption algorithm outputs ct← mBME.Enc-SK(msk,m, 1k+1−i0i).

Next, consider the Subtrace algorithm defined in Figure 9. The sub-tracing algorithm simply tests
whether the decoder box uses the key for user i + w − 1 where i is one of the inputs provided to
Subtrace. Now the tracing algorithm simply runs the Subtrace algorithm for all indices i ∈ [k], and for
each index i where the Subtrace algorithm outputs 1, the tracing algorithm adds index i+w− 1 to the
set of traitors. Concretely, the algorithm runs as follows:

– Let S = ∅. For i = 1 to k:

6We want to point out that for k = 1 we get the tight risky-ness, i.e. prove that our scheme is 1
n

-risky secure.
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∗ Compute b← Subtrace(mbme.msk, 1y,m0,m1, i).

∗ If b = 1, set S := S ∪ {i+ w − 1}.
– Output S.

Algorithm Subtrace(msk, 1y,m0,m1, i)

Inputs: Key msk, parameter y, messages m0,m1, index i
Output: 0/1
Let ε = b1/yc. It sets T = λ · n/ε, and count1 = count2 = 0. For j = 1 to T , it computes the following:

1. It chooses bj ← {0, 1} and computes ctj,1 ← Enc-ind(msk,mbj , i) and sends ctj,1 to D. If D outputs
bj , set count1 = count1 + 1, else set count1 = count1 − 1.

2. It chooses cj ← {0, 1} and computes ctj,2 ← Enc-ind(msk,mcj , i+1) and sends ctj,2 to D. If D outputs
cj , set count2 = count2 + 1, else set count2 = count2 − 1.

If count1 − count2 > T · (ε/4n), output 1, else output 0.

Figure 9: Subtrace

Correctness. Since the encryption algorithm simply runs the public-key encryption algorithm for mixed
bit matching encryption the correctness of above scheme follows directly from the correctness of the mixed
bit matching encryption scheme.

Singular Trace Property. Note that if k is fixed to be 1, then our scheme satisfies the singular trace
property as defined in Definition 3.5. This is because the trace algorithm will either output the fixed index
w (chosen during setup), or output an empty set.

5.2 Proof of Security

5.2.1 IND-CPA Security

First, we will show that the above traitor tracing scheme is IND-CPA secure. Formally, we prove the following.

Theorem 5.1. If the mixed bit matching encryption scheme mBME = (mBME.Setup, mBME.KeyGen,
mBME.Enc-PK, mBME.Enc-SK, mBME.Dec) satisfies pk-sk ciphertext indistinguishability and ciphertext hid-
ing properties (Definitions 4.1 and 4.2), then the traitor tracing scheme described in Section 5.1 is IND-CPA
secure (Definition 3.1).

Proof. Our proof proceeds via a sequence of hybrid games. Each game is played between the IND-CPA
challenger and attacker A. Let A be any PPT adversary that wins the IND-CPA game with non-negligible
advantage. We argue that such an adversary must break either pk-sk ciphertext indistinguishability, or ci-
phertext hiding security of the underlying mixed bit matching encryption scheme. The first game corresponds
to the IND-CPA game as described in Definition 3.1.

We will first define the sequence of hybrid games, and then show that they are computationally indistin-
guishable.

Game 1: This corresponds to the original IND-CPA game.

• Setup Phase. The challenger runs the Setup algorithm to generate the public-secret keys (msk, pk, {ski}i).
It sends the public key pk to the attacker A.

• Challenge Phase. A sends two messages m0,m1 to the challenger. The challenger chooses a random
bit b ← {0, 1} and computes the challenge ciphertext as ct ← mBME.Enc-PK(pk,mb). It sends ct to
the attacker.

• Guess. A outputs its guess b′, and wins if b = b′.
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Game 2: This is identical to the previous game, except the challenger computes the challenge ciphertext
ct as a secret-key ciphertext instead of a public-key ciphertext.

• Challenge Phase. A sends two messages m0,m1 to the challenger. The challenger chooses a random
bit b ← {0, 1} and computes the challenge ciphertext as ct ← mBME.Enc-SK(msk,mb, 1

k+1). It sends
ct to the attacker.

Let AdviA = |Pr[b′ = b]− 1/2| denote the advantage of adversary A in guessing the bit b in Game i. To
complete the proof, we establish via a sequence of lemmas that no PPT adversary A can distinguish between
Game 1 and 2 with non-negligible probability, as well as can have non-negligible advantage in Game 2. Below
we discuss our lemmas in detail.

Lemma 5.1. If mBME = (mBME.Setup, mBME.KeyGen, mBME.Enc-PK, mBME.Enc-SK, mBME.Dec) satis-
fies pk-sk ciphertext indistinguishability, then for all PPT adversaries A, |Adv1

A − Adv2
A| is negligible in the

security parameter λ.

Proof. Suppose there exists an adversary A such that |Adv1
A−Adv2

A| is non-negligible. We construct an algo-
rithm B that can break pk-sk ciphertext indistinguishability property of the underlying mixed bit matching
encryption scheme.

The mixed bit matching encryption scheme challenger samples mBME key pair (pk,msk), and sends pk
to the reduction algorithm B which it forwards to adversary A. Next, A sends two challenge messages
m0,m1 to the reduction algorithm B. B then chooses a random bit b← {0, 1}, and sends mb to the mBME
challenger as its challenge message. The challenger replies with challenge ciphertext ct which B forwards
to A as its challenge. Finally, A outputs its guess b′. If b = b′, then B sends 0 as its guess (i.e., ct was
public-key ciphertext), otherwise it sends 1 as its guess (i.e., ct was secret-key ciphertext) as its guess to the
mBME challenger.

Note that if the mBME challenger computed ct as ct← mBME.Enc-PK(pk,mb), then B perfectly simulates
Game 1 for adversary A. Otherwise it simulates Game 2 for A. As a result, if |Adv1

A−Adv2
A| is non-negligible,

then B breaks pk-sk ciphertext indistinguishability with non-negligible advantage.

Lemma 5.2. If mBME = (mBME.Setup, mBME.KeyGen, mBME.Enc-PK, mBME.Enc-SK, mBME.Dec) satis-
fies ciphertext hiding, then for all PPT adversaries A, Adv2

A is negligible in the security parameter λ.

Proof. Suppose there exists an adversary A such that Adv2
A is non-negligible. We construct an algorithm B

that can break ciphertext hiding property of the underlying mixed bit matching encryption scheme.
The mixed bit matching encryption scheme challenger samples mBME key pair (pk,msk), and sends pk to

the reduction algorithm B which it forwards to adversary A. Next, A sends two challenge messages m0,m1

to the reduction algorithm B. B then sends ((m0, 1
k+1), (m1, 1

k+1)) to the mBME challenger as its challenge
message-attribute pairs. The challenger replies with challenge ciphertext ct which B forwards to A as its
challenge. Finally, A outputs its guess b′, which B forwards to the mBME challenger as its guess.

Note that B perfectly simulates Game 2 for adversary A. Therefore, if Adv2
A is non-negligible, then B

breaks ciphertext hiding with non-negligible advantage.

5.2.2 False Trace Probability

Next, we will show that an honest party will not be implicated by our trace algorithm with non-negligible
probability.

Theorem 5.2. If mBME = (mBME.Setup, mBME.KeyGen, mBME.Enc-PK, mBME.Enc-SK, mBME.Dec)
satisfies ciphertext hiding (Definition 4.2), then for every PPT adversary A, polynomials n(·), k(·), p(·) and
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non-negligible function ε(·), there exists a negligible function negl(·) such that for all λ ∈ N satisfying
ε(λ) > 1/p(λ),

Pr -Fal-TrA,n,ε(λ) ≤ negl(λ),

where Pr -Fal-TrA,n,ε(·) is as defined in Definition 3.4.

Proof. Given any pirate decoder boxD, let p
(ind)
D = Pr[D(ct) = b : ct← Enc-ind(msk,mb, ind)] for ind ∈ [k+1],

where the probability is taken over bit b, random coins of decoder D and randomness used during encryption.
Let Diff-Advind denote the event when the advantage of decoder D in distinguishing index-ind encryptions
of m0 and m1 is ε/8n more than its advantage in distinguishing index-(ind + 1) encryptions. Formally, for
ind ∈ [k], let

Diff-Advind : p
(ind)
D − p(ind+1)

D > ε/8n.

Also, for ind ∈ [k], let Fal-SubTrind denote the event Fal-Tr ∧ (ind ∈ SD) where SD corresponds the set of
traitors output by the Trace algorithm. In other words, Fal-SubTrind occurs when indth Subtrace outputs 1
and A had not queried for the corresponding secret key.

First, note that we could rewrite the probability of a false trace as

Pr[Fal-Tr] ≤
∑

ind∈[k]

Pr[Fal-SubTrind]

≤
∑

ind∈[k]

Pr[Fal-SubTrind | Diff-Advind] +
∑

ind∈[k]

Pr[Fal-SubTrind ∧ Diff-Advind].

To bound the overall probability of a false trace, we start by showing that Pr[Fal-SubTrind | Diff-Advind] ≤
negl1(λ) by using a simple Chernoff bound. Next, we show that Pr[Fal-SubTrind ∧ Diff-Advind] ≤ negl2(λ)
by relying on ciphertext hiding property of the mixed bit matching encryption scheme. These two lemmas
together imply that Pr -Fal-TrA,n,ε(λ) is also bounded by a negligible function.

Lemma 5.3. For every adversary A, there exists a negligible function negl1(·) such that for all λ ∈ N,
ind ∈ [k]

Pr[Fal-SubTrind | Diff-Advind] ≤ negl1(λ).

Proof. Consider the binary random variables X(ind) for ind ∈ [k + 1] defined as

X(ind) =

{
1 with probability p

(ind)
D ,

0 otherwise.

Let Z(ind) be another random variable defined as Z(ind) = X(ind)−X(ind+1). Now using linearity of expectation,
we can write that

E[Z(ind) | Diff-Advind] ≤ ε/8n.

Also, we know that the sub-tracing algorithm estimates E[Z(ind)] by independently sampling T = λ · n/ε
elements from the distribution induced by Z(ind). In other words, in each trial it first computes a single
index-ind and index-(ind+1) encryptions of messages m0 and m1 using uniform randomness, then it uses the

decoder box D to decrypt each ciphertext and sets the value of sampled variable appropriately. Let z
(ind)
i be

the sampled value in ith trial. Now we know that count
(ind)
1 − count

(ind)
2 =

∑T
i=1 z

(ind)
i . Thus, we can write

that

Pr[Fal-SubTrind | Diff-Advind] = Pr

[
T∑
i=1

z
(ind)
i > T · ε/4n | Diff-Advind

]
.

Using a Chernoff bound, we can bound the above probability as

Pr[Fal-SubTrind | Diff-Advind] ≤ e−Tε/16n.
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Substituting T = λ ·n/ε, we get Pr[Fal-SubTrind |Diff-Advind] ≤ 2−O(λ) = negl1(λ). This completes the proof.

Lemma 5.4. If mBME satisfies ciphertext hiding, then for every PPT adversary A, polynomials n(·), p(·)
and non-negligible function ε(·), there exists a negligible function negl2(·) such that for all λ ∈ N satisfying
ε(λ) > 1/p(λ), and every ind ∈ [k],

Pr[Fal-SubTrind ∧ Diff-Advind] ≤ negl2(λ).

Here, the events Fal-SubTrind and Diff-Advind are parameterized by the adversary A.

Proof. The proof of above lemma is independent of the choice of index ind. Thus, for the purpose of this proof,
consider ind as a fixed value. Note that it is sufficient to show that Pr[Fal-SubTrind ∧Diff-Advind] is bounded
by a negligible function. Suppose, on the contrary, there exists a PPT adversary A, polynomials n(·), p(·)
and non-negligible functions ε(·), δ(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), Pr[Fal-SubTrind ∧
Diff-Advind] ≥ δ(λ). Then we can construct an algorithm B that can break ciphertext hiding property of the
underlying mixed bit matching encryption scheme.

The reduction algorithm B chooses an index w as w ← {−k + 2, . . . , n(λ)}, and sends the challenge
attribute pair as (y0,y1) = (1k+1−ind0ind, 1k−ind0ind+1) to the mixed bit matching encryption scheme chal-
lenger. The mBME challenger samples mBME key pair (pk,msk), and sends pk to the reduction algorithm B
which it forwards to adversary A. Next, A makes key queries to B which are answered as follows. For each
key query i ∈ [n(λ)], if i = w+ ind− 1 then B aborts (and outputs a random bit), otherwise B makes secret
key query for vector xi to mBME challenger and forwards the challenger’s response ski to A. (Here xi is as
defined in the construction. Note that xi depends on the index w chosen by B.) After all these queries, the
adversary A sends a decoder box D and messages m0,m1 to B.
B then chooses two bits α, β uniformly at random, i.e. α, β ← {0, 1}. Next, B sends messages (mα,mα)

as its challenge messages (i.e., a single challenge message mα). It receives challenge ciphertext ct∗ from
mBME challenger. B then also queries the mBME challenger for a (secret-key) encryption of mα for vector
yβ . Let ct be the challenger’s response. Finally, B runs decoder box D on ct and ct∗ independently, and if
D(ct) = D(ct∗), it outputs b′ = β, else it outputs b′ = 1− β as its guess.

First, note that B does not make any secret key query for vector xw+ind−1 = 0k−ind+11ind, but only makes
key queries for vectors 0k−j+11j for j 6= ind. (Recall it aborts if i = w + ind− 1.) Since all these queries are
allowed as f(xi,y0) = f(xi,y1) for all i 6= w + ind − 1 (where f denotes the ‘AND-of-ORs’), thus B is an
admissible adversary in the key hiding game. Now we analyse B’s advantage in breaking ciphertext hiding
security.

Let pDj,b = Pr[D(ct) = b : ct ← mBME.Enc-SK(msk,mb, 1
k+1−j0j)], where the probability is taken over

the coins of decoder D and encryption algorithm. Recall we have that Pr[Fal-SubTrind ∧ Diff-Advind] ≥ δ(λ).
Therefore, we can write that

Pr
[
Fal-SubTrind ∧

(
(pDind,0 + pDind,1)/2− (pDind+1,0 + pDind+1,1)/2

)
≥ ε/8n

]
≥ δ(λ).

Thus, we can also write that there exists a bit b such that

Pr
[
Fal-SubTrind ∧

(
pDind,b − pDind+1,b

)
≥ ε/8n

]
≥ δ(λ).

Now since the reduction algorithm B simply randomly guesses this bit b, thus we have that

Pr
[
Fal-SubTrind ∧

(
pDind,α − pDind+1,α

)
≥ ε/8n

]
≥ δ(λ)/2.

Let β∗ denote the challenger’s bit (i.e., ct∗ encrypts mα for index yβ∗). Next, consider the following
probability:

ρD,m = Pr

β∗ = b′ :
β∗ ← {0, 1}; ct∗ ← mBME.Enc-SK(msk,m,yβ∗);
β ← {0, 1}; ct← mBME.Enc-SK(msk,m,yβ);
b′ = β if D(ct∗) = D(ct), else b′ = 1− β

 .
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Since the decoder D is run on ciphertexts ct∗, ct independently, we could rewrite the above probability (for
any message mα) as follows:

ρD,mα = Pr
[
D(ct) = β : β ← {0, 1}; ct← mBME.Enc-SK(msk,mα,yβ)

]2
+ Pr

[
D(ct) 6= β : β ← {0, 1}; ct← mBME.Enc-SK(msk,mα,yβ)

]2
=

(
1

2
+ (−1)α ·

pDind,α − pDind+1,α

2

)2

+

(
1

2
− (−1)α ·

pDind,α − pDind+1,α

2

)2

=
1

2
+
(
pDind,α − pDind+1,α

)2
.

Now we know that with probability δ(λ)/2, we have that Fal-SubTrind ∧
(
pDind,α − pDind+1,α

)
≥ ε/8n occurs.

From above inequality, we get that

Pr
[
B wins |

(
Fal-SubTrind ∧

(
pDind,α − pDind+1,α

)
≥ ε/8n

)]
≥ 1

2
+
( ε

8n

)2

.

Also, since
(
pDind,α − pDind+1,α

)2

≥ 0, thus for any decoder D and message mα, ρD,mα ≥ 1/2. This implies

that

Pr

[
B wins |

(
Fal-SubTrind ∧

(
pDind,α − pDind+1,α

)
≥ ε/8n

)]
≥ 1

2
.

Combining above equations, we get that Pr[B wins] ≥ 1
2 + δ

2 ·
(
ε

8n

)2
. Thus, the lemma follows.

5.2.3 Correct Trace Probability

We will first introduce some notations for our security proof. For any γ ∈ [0, 1/2], a decoder box D is said
to be γ-Dist for messages m0,m1 if

Pr [D(ct) = b : b← {0, 1}, ct← Enc(pk,mb)] ≥ 1/2 + γ.

Similarly, for any index 0 ≤ ind ≤ k + 1, a decoder box D is said to be γ-Dist(ind) for messages m0,m1 if

Pr[D(ct) = b : b← {0, 1}, ct← Enc-ind(msk,mb, ind)] ≥ 1/2 + γ.

For any adversary A and polynomial n(·), we define experiment MakeBoxA,n(λ,w) (see Figure 10). The
experiment takes as input a security parameter λ, index w ∈ {−k + 2,−k + 3, . . . , n − 1, n} and outputs a
decoder box D and two messages m0,m1.

Using the MakeBox experiment, we define the following probabilities, parameterized by γ ∈ [0, 1/2] and
ind ∈ {0, 1, . . . , k + 1}, and a function of λ,w:

Pr -Good-DecA,n,γ(λ,w) = Pr [D is γ-Dist for m0,m1 : (D,m0,m1)← MakeBoxA,n(λ,w)]

Pr -Good-Dec
(ind)
A,n,γ(λ,w) = Pr

[
D is γ-Dist(ind) for m0,m1 : (D,m0,m1)← MakeBoxA,n(λ,w)

]
We also define the following probability parameterized by γ ∈ [0, 1/2] and ind ∈ {1, . . . , k}, and a function
of λ,w:

Pr -Gap
(ind)
A,n,γ(λ,w) = Pr

[
∃ δ ∈ [0, 1/2] s.t.

D is δ-Dist(ind) ∧
D is not (δ − γ)-Dist(ind+1) : (D,m0,m1)← MakeBoxA,n(λ,w)

]
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Experiment MakeBoxA,n(λ,w)

1. The challenger first samples (pk,msk)← mBME.Setup(1λ, 1k+1), and sends pk to A.

2. Let S ⊆ [n] denote the set of indices for which A makes a key query. For each query i ∈ S, the
challenger sends ski to A where ski is computed as follows:

(a) if i < w, then ski ← mBME.KeyGen(msk, 0k+1),

(b) if w ≤ i < w + k, then ski ← mBME.KeyGen(msk, 0k−i+w1i−w+1),

(c) if i ≥ w + k, then ski ← mBME.KeyGen(msk, 1k+1).

3. The adversary outputs a decoder box D and messages m0,m1. The output of the experiment is
(D,m0,m1).

Figure 10: Experiment MakeBoxA,n(λ,w)

All the above probabilities are defined over all the random coins chosen by the challenger and adversary
A during MakeBoxA,n(λ,w) experiment.

Next, we define the following events — SubTr(ind) for ind ∈ [k]. Recall that the Trace algorithm runs
the Subtrace algorithm k times independently on indices 1 to k. Now whenever Subtrace algorithm outputs
1, then the Trace algorithm includes the corresponding index to the set of traitors. For ind ∈ [k], we say

SubTr(ind) occurs if the Subtrace algorithm outputs 1 when run for index ind. In other words, SubTr(ind)

occurs if indth run of Subtrace outputs 1.
We also define another event denoted as Tr. The event Tr occurs if the output of the Trace algorithm is a

non-empty set. In other words, the event Tr is similar to Cor-Tr, except that the output of the Trace algorithm
is not required to be a subset of the set S of keys queried by A. Now we know that Tr = Cor-Tr ∨ Fal-Tr,
and Tr = ∨ind∈[k]SubTr(ind). The proof proceeds in the following steps. First, we show that Pr -G-DA,n,ε is

related to Pr -Gap(ind) (for every ind ∈ {1, . . . , k}) via the following relation.
Note. Throughout this section, we will use ε̃ to denote the term ε/2(n+ 1).

Theorem 5.3. Let A be a PPT adversary, n(·), p(·) polynomials, and ε(·) a non-negligible function. If
mBME = (mBME.Setup, mBME.KeyGen, mBME.Enc-PK, mBME.Enc-SK, mBME.Dec) satisfies pk-sk cipher-
text indistinguishability, key hiding and ciphertext hiding properties (Definitions 4.1, 4.3 and 4.2), then there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), and every ind ∈ {1, . . . , k},∑

w

Pr -Gap
(ind)
A,n,ε̃(λ,w) ≥ Pr -G-DA,n,ε(λ)− negl(λ).

Let Pr-SubTr
(ind)
A,n,ε(λ) denote the probability of event SubTr(ind) in the secure tracing experiment with

adversary A. Next, we show that Pr-SubTr
(ind)
A,n,ε is related to Pr -Gap(ind), and Pr -Cor-TrA,n,ε is related to

Pr-SubTr
(ind)
A,n,ε as follows.

Theorem 5.4. Let A be a PPT adversary, n(·), p(·) polynomials and ε(·) a non-negligible function. If
mBME = (mBME.Setup, mBME.KeyGen, mBME.Enc-PK, mBME.Enc-SK, mBME.Dec) satisfies ciphertext
hiding (Definition 4.2), then there exists a negligible functions negl1(·),negl2(·) such that for all λ ∈ N
satisfying ε(λ) > 1/p(λ), and every ind ∈ {1, . . . , k},

Pr-SubTr
(ind)
A,n,ε(λ) ≥

(∑
w Pr -Gap

(ind)
A,n,ε̃(λ,w)

)
n(λ) + k − 1

− negl1(λ), and

Pr -Cor-TrA,n,ε(λ) ≥ 1−
∏

ind∈[k]

(
1− Pr-SubTr

(ind)
A,n,ε(λ)

)
− negl2(λ).
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Observe that combining the above two theorems, we get the desired result that our scheme is a
(

k
n+k−1 −O

(
k(k−1)
n2

))
-

risky secure traitor tracing scheme. We want to point out that for k = 1 we get the tight risky-ness, i.e.
1
n -risky secure scheme.

We will now prove these theorems in the following sections.

5.2.4 Proof of Theorem 5.3

For notational simplicity, we will skip the dependence of n and ε on λ. Also, we will skip the subscripts A
and n when they are clear from the context.

Outline of the proof. Recall ε̃ = ε/2(n+ 1). At a high level, this proof can be divided into the following
steps:

• We first show that for every ind ∈ [k], Pr -Good-Dec
(ind)
ε−ε̃ (2−ind) ≈ Pr -G-DA,n,ε and Pr -Good-Dec

(ind)
ε−ε̃·(n+1)(n+

2− ind) ≈ 0 (see Observation 5.1, Lemma 5.5 and Lemma 5.6).

• From this, it follows that for every ind ∈ [k], ∃ Γind ⊆ {2− ind, . . . , n+ 1− ind} such that for all
w ∈ Γind,

Pr -Good-Dec
(ind)
ε−ε̃·(w+ind−1)(w)− Pr -Good-Dec

(ind)
ε−ε̃·(w+ind)(w + 1) > 0,

and the sum of these differences is at least Pr -G-DA,n,ε − negl (see Observation 5.2).

• Next, we show that for every ind ∈ [k] and w ∈ {2−ind, . . . , n+1−ind}, Pr -Good-Dec
(ind+1)
ε−ε̃·(w+ind)+ε̃/2(w) ≈

Pr -Good-Dec
(ind)
ε−ε̃·(w+ind)(w + 1) (see Lemma 5.7).

• After this, we relate Pr -Gap(ind)(w) to Pr -Good-Dec(ind)(w) and Pr -Good-Dec(ind+1)(w). We show

Pr -Gap
(ind)
ε̃/2 (w) ≥ Pr -Good-Dec

(ind)
ε−ε̃·(w+ind−1)(w)− Pr -Good-Dec

(ind+1)
ε−ε̃·(w+ind)+ε̃/2(w) (see Lemma 5.8)

≈ Pr -Good-Dec
(ind)
ε−ε̃·(w+ind−1)(w)− Pr -Good-Dec

(ind)
ε−ε̃·(w+ind)(w + 1)

• As a result, we can conclude that for every ind ∈ [k],∑
w

Pr -Gap
(ind)
ε̃/2 (w) ≥

∑
w∈Γind

Pr -Gap
(ind)
ε̃/2 (w)

≥
∑
i∈Γind

(
Pr -Good-Dec

(ind)
ε−ε̃·(w+ind−1)(w)− Pr -Good-Dec

(ind)
ε−ε̃·(w+ind)(w + 1)

)
≥ Pr -G-DA,n,ε − negl

First, we have the following observation.

Observation 5.1. For every adversaryA, polynomial n(·) and λ ∈ N, there exists an w∗ ∈ {−k + 2, . . . , n(λ)}
such that Pr -Good-DecA,n,ε(λ,w

∗) ≥ Pr -G-DA,n,ε(λ).

This observation simply follows from the fact that Pr -G-DA,n,ε(λ) = 1
n+k−1

∑
w Pr -Good-DecA,n,ε(λ,w),

and therefore, there exists some index w∗ such that Pr -Good-DecA,n,ε(λ,w
∗) ≥ Pr -G-DA,n,ε(λ).

Lemma 5.5. If mBME = (mBME.Setup, mBME.KeyGen, mBME.Enc-PK, mBME.Enc-SK, mBME.Dec) sat-
isfies pk-sk ciphertext indistinguishability, key hiding and ciphertext hiding, then for any PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for
all λ ∈ N satisfying ε(λ) > 1/p(λ), every ind ∈ [k],

Pr -Good-Dec
(ind)
ε−ε̃ (λ, 2− ind) ≥ Pr -Good-Decε(λ,w

∗)− negl(λ) ≥ Pr -G-DA,n,ε(λ)− negl(λ).
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Proof. The proof of above theorem is independent of the choice of index ind. Thus, we treat ind as a fixed
value throughout the proof.

Let w = 2 − ind, and γj = ε − j · ε̃/(w∗ + w + 2k) for 0 ≤ j ≤ w∗ + w + 2k. Also, let ρ0(λ) =

Pr -Good-Decε(λ,w
∗) and ρw∗+w+2k(λ) = Pr -Good-Dec

(ind)
ε−ε̃ (λ,w). In order to show that ρ0(λ)−ρw∗+w+2k(λ)

is negligible in λ, we will define a sequence of hybrid experiments, and show that the difference in the
consecutive probabilities is at most negligible in λ.

Hybrid Hyb0. This experiment corresponds to the MakeBoxA,n(λ,w∗), where A finally outputs a decoder
box D and two messages m0,m1 such that D can distinguish between standard encryptions of m0 and m1

with advantage at least γ0. Now note that ρ0(λ) denotes the probability that A outputs a decoder box D
that is γ0-Dist for m0,m1.

Hybrid Hybj for 1 ≤ j ≤ w∗ + k − 1. This experiment is identical to Hyb0, except the challenger now

answers the secret key queries for first j users corresponding to vector 1k+1. Concretely, for each key query
i, the challenger sends ski to A where ski is computed as follows:

1. if i ≤ j, then ski ← mBME.KeyGen(msk, 1k+1),

2. if j < i < w∗, then ski ← mBME.KeyGen(msk, 0k+1),

3. if max(j + 1, w∗) ≤ i < w∗ + k, then ski ← mBME.KeyGen(msk, 0k−i+w
∗
1i−w

∗+1),

4. if i ≥ w∗ + k, then ski ← mBME.KeyGen(msk, 1k+1).

Let ρj(λ) denote the probability that A outputs a decoder box D that is γj-Dist for m0,m1.

Hybrid Hybj for w∗ + k ≤ j < w∗ + w + 2k − 1. This experiment is identical to Hybw∗+k−1, except the
challenger now answers the secret key queries for first (j−w∗−k+1) users as it would in MakeBoxA,n(λ,w).
Concretely, for each key query i, the challenger sends ski to A where ski is computed as follows:

1. if i < min(w, j − w∗ − k + 2), then ski ← mBME.KeyGen(msk, 0k+1),

2. if w ≤ i ≤ j − w∗ − k + 2, then ski ← mBME.KeyGen(msk, 0k−i+w1i−w+1),

3. if i > j − w∗ − k + 2, then ski ← mBME.KeyGen(msk, 1k+1).

Let ρj(λ) denote the probability that A outputs a decoder box D that is γj-Dist for m0,m1.

Hybrid Hybw∗+w+2k−1. This experiment is identical to Hybw∗+w+2k−2, except now ρw∗+w+2k−1(λ) denotes

the probability that A outputs a decoder box D that is γw∗+w+2k−1-Dist(0) for m0,m1.

Hybrid Hybw∗+w+2k. This experiment is identical to Hybw∗+w+2k−1, except now ρw∗+w+2k(λ) denotes

the probability that A outputs a decoder box D that is γw∗+w+2k-Dist(ind) for m0,m1. In other words, this
corresponds to the MakeBoxA,n(λ,w) experiment.

Claim 5.1. If mBME satisfies key hiding, then for any PPT adversary A, polynomials n(·), p(·) and non-
negligible function ε(·), there exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) >
1/p(λ), 0 ≤ j < w∗ + w + 2k − 2, ρj(λ)− ρj+1(λ) ≤ negl(λ).

Proof. Fix any value j. Now it is sufficient to show that ρj(λ)−ρj+1(λ) is bounded by a negligible function.
Suppose, on the contrary, there exists a PPT adversary A, polynomials n(·), p(·) and non-negligible functions
ε(·), δ(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), ρj(λ)− ρj+1(λ) ≥ δ(λ). Then we can construct an
algorithm B that can break key hiding property of the underlying mixed bit matching encryption scheme.
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The reduction algorithm B sends the challenge attribute pair (x∗0,x
∗
1) to the mixed bit matching encryp-

tion scheme challenger where x∗0 and x∗1 are computed as follows:

x∗0 =


0k+1 if j < w∗ − 1,

0k−j+w
∗
1j−w

∗+1 if w∗ − 1 ≤ j < w∗ + k − 1,

1k+1 otherwise.

,

x∗1 =


1k+1 if j < w∗ + k − 1,

0k+1 if w∗ + k − 1 ≤ j < w∗ + w + k − 2,

0k−j+(w∗+w+k−2)1j−(w∗+w+k−2)+1 otherwise.

The mBME challenger samples mBME key pair (pk,msk), and sends pk to the reduction algorithm B which
it forwards to adversary A. The challenger also sends the challenge key sk∗ to B. Next, A makes key queries
to B which are answered as follows.

Case 1: j < w∗ + k − 1. For each key query i ∈ [n], (1) if i ≤ j, then B makes secret key query for
vector 1k+1 to mBME challenger and forwards the challenger’s response ski to A; (2) else if i = j+1, then B
sends sk∗ to A; (3) else if j+1 < i < w∗, then B makes secret key query for vector 0k+1 to mBME challenger
and forwards the challenger’s response ski to A; (4) else if max(j+ 2, w∗) ≤ i < w∗+ k, then B makes secret
key query for vector 0k−i+w

∗
1i−w

∗+1 to mBME challenger and forwards the challenger’s response ski to A;
(5) otherwise B makes secret key query for vector 1k+1 to mBME challenger and forwards the challenger’s
response ski to A.

Case 2: j ≥ w∗+k−1. For each key query i ∈ [n], (1) if i < min(w, j−w∗−k+2), then B makes secret
key query for vector 0k+1 to mBME challenger and forwards the challenger’s response ski to A; (2) else if
w ≤ i < j − w∗ − k + 2, then B makes secret key query for vector 0k−i+w1i−w+1 to mBME challenger and
forwards the challenger’s response ski to A; (3) else if i = j−w∗−k+2, then B sends sk∗ to A; (4) otherwise
B makes secret key query for vector 1k+1 to mBME challenger and forwards the challenger’s response ski to
A.

After all these queries, the adversary A sends a decoder box D and messages m0,m1 to B. The reduction
algorithm B sets γ = (γj + γj+1)/2, T = λ ·n/ε and tests whether D is a γ-Dist box for m0,m1 using simple
counting based estimation. Concretely, it first sets count = 0. For ` = 1 to T , it chooses b` ← {0, 1}, computes
ct` ← mBME.Enc-PK(pk,mb`). Next, if D(ct`) = b`, it sets count = count + 1, else it sets count = count− 1.
Finally, after the T iterations, if count > γ · T , then B guesses 0 (i.e., sk∗ corresponds to x∗0), else it guesses
1 (i.e., sk∗ corresponds to x∗1).

First, note that B is an admissible adversary in the key hiding game since it does not make any secret-key
encryption queries. Now we analyse B’s advantage in breaking key hiding security. Let b and b′ denote the
challenger’s bit and B’s guess, respectively. First, we show that Pr[b′ = 0 | b = 0] ≥ ρj(λ)− negl(λ).

Pr[b′ = 0 | b = 0] = Pr[count > γ · T | b = 0]

≥ Pr[A outputs γj-Dist box D ∧ count > γ · T | b = 0]

≥ Pr[A outputs γj-Dist box D | b = 0]

− Pr[A outputs γj-Dist box D ∧ count ≤ γ · T | b = 0]

≥ ρj(λ)− Pr[count ≤ γ · T | b = 0 ∧ A outputs γj-Dist box D]

≥ ρj(λ)− 2−O(λ).

The last inequality follows by applying a Chernoff bound similar to that used in Lemma 5.3. Next, we show
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that Pr[b′ = 0 | b = 1] ≤ ρj+1(λ) + negl(λ).

Pr[b′ = 0 | b = 1] = Pr[count > γ · T | b = 1]

≤ Pr[A does not output γj+1-Dist box D ∧ count > γ · T | b = 1]

+ Pr[A outputs γj+1-Dist box D ∧ count > γ · T | b = 1]

≤ Pr[count > γ · T | b = 1 ∧ A does not output γj+1-Dist box D] + ρj+1(λ)

≤ 2−O(λ) + ρj+1(λ).

As before, the last inequality follows by applying a Chernoff bound. Thus, combining above bounds, we get
that

Pr[B wins] = Pr[b′ = 0 | b = 0]− Pr[b′ = 0 | b = 1]

≥ ρj(λ)− ρj+1(λ)− negl(λ) ≥ δ(λ)− negl(λ).

Since mBME satisfies key hiding, thus we get a contradiction. Hence, the claim follows.

Claim 5.2. If mBME satisfies pk-sk ciphertext indistinguishability, then for any PPT adversary A, poly-
nomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for all
λ ∈ N satisfying ε(λ) > 1/p(λ), ρw∗+w+2k−2(λ)− ρw∗+w+2k−1(λ) ≤ negl(λ).

Proof. Let j = w∗ + w + 2k − 2. Suppose, on the contrary, there exists a PPT adversary A, polynomials
n(·), p(·) and non-negligible functions ε(·), δ(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), ρj(λ) −
ρj+1(λ) ≥ δ(λ). Then we can construct an algorithm B that can break pk-sk ciphertext indistinguishability
property of the underlying mixed bit matching encryption scheme.

The mBME challenger samples mBME key pair (pk,msk), and sends pk to the reduction algorithm B
which it forwards to adversaryA. Next, Amakes key queries to B which are answered as in MakeBoxA,n(λ,w).
That is, for each key query i ∈ [n], B makes secret key query for vector xi to mBME challenger and forwards
the challenger’s response ski to A. (Here xi is as defined in the construction. Note that xi depends on the
index w.) After all these queries, the adversary A sends a decoder box D and messages m0,m1 to B.
B then chooses two bits α, β uniformly at random, i.e. α, β ← {0, 1}. Next, B sends message mα as

its challenge message. It receives challenge ciphertext ct∗ from mBME challenger. B then also queries the
mBME challenger for a (secret-key) encryption of mα for vector 1k+1. Let ct1 be the challenger’s response.
It also computes ciphertext ct0 as ct0 ← mBME.Enc-PK(pk,mα). Finally, B runs decoder box D on ctβ and
ct∗ independently, and if D(ctβ) = D(ct∗), it outputs b′ = β, else it outputs b′ = 1− β as its guess.

Now we analyse B’s advantage in breaking pk-sk ciphertext indistinguishability security. First, note that
B perfectly simulates hybrids j and j + 1 for adversary A, and in both these hybrids, the challenger and
adversary are interacting as in MakeBoxA,n(λ,w) experiment. Therefore, we can write that

ρj(λ) = Pr -Good-DecA,n,γj (λ,w)

= Pr [D is γj-Dist for m0,m1 : (D,m0,m1)← MakeBoxA,n(λ,w)]

ρj+1(λ) = Pr -Good-Dec
(0)
A,n,γj+1

(λ,w)

= Pr
[
D is γj+1-Dist(0) for m0,m1 : (D,m0,m1)← MakeBoxA,n(λ,w)

]
Let pD = Pr[D(ct) = b : ct← mBME.Enc-PK(pk,mb)], and p

(0)
D = Pr[D(ct) = b : ct← mBME.Enc-SK(msk,mb, 1

k+1)],
where the probability is taken over bit b, random coins of decoder D and randomness used during encryption.
Let Diff-Adv denote the event when the advantage of decoder D in distinguishing between public-key encryp-
tions of m0 and m1 is ε̃/(w∗ + w + 2k) more than its advantage in distinguishing secret-key encryptions (w.r.t

vector 1k+1). Formally, Diff-Adv : pD−p(0)
D > ε̃/(w∗ + w + 2k). Recall that we have ρj(λ)−ρj+1(λ) ≥ δ(λ).
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Thus, we can write the following:

Pr[Diff-Adv] ≥ Pr

[
D is γj-Dist ∧

D is not γj+1-Dist(0) : (D,m0,m1)← MakeBoxA,n(λ,w)

]
≥ Pr -Good-DecA,n,γj (λ,w)− Pr -Good-Dec

(0)
A,n,γj+1

(λ,w)

≥ ρj(λ)− ρj+1(λ) ≥ δ(λ)

The remaining analysis is similar to that provided for proving Lemma 5.4. Finally, we get that Pr[B wins] ≥
1
2 + δ

2 ·
(

ε̃
w∗+w+2k

)2

. Thus, the claim follows.

Claim 5.3. If mBME satisfies ciphertext hiding, then for any PPT adversary A, polynomials n(·), p(·) and
non-negligible function ε(·), there exists a negligible function negl(·) such that for all λ ∈ N satisfying
ε(λ) > 1/p(λ), ρw∗+w+2k−1(λ)− ρw∗+w+2k(λ) ≤ negl(λ).

Proof. The proof of this lemma is similar to that of Claim 5.2. We briefly highlight the changes. First,
the reduction algorithm B sends challenge attribute pair as (y0,y1) = (1k+1, 1k+1−ind0ind) to the mixed bit
matching encryption scheme challenger at the start. Second, B queries the mBME challenger for a (secret-
key) encryption of mα for vector yβ (where α, β ← {0, 1}), and sets the response as ciphertext ct. Note
that in previous proof, B generates two ciphertexts ct0 (by running mBME.Enc-PK) and ct1 (by querying
challenger), and later chooses one of them at random to perform the final check (D(ctβ) = D(ct∗)). Here it
will perform the check as D(ct) = D(ct∗). Finally, since for all keys ski (corresponding to vector xi) given
to the adversary, we have that f(xi,y0) = f(xi,y1) = 1 (where f denotes the ‘AND-of-ORs’). This can be
verified by just checking that f(x1,y0) = f(x1,y1) = 1 holds. Since x1 = 0k+1−ind1ind, thus the invariant
holds which itself implies that f(xi,y0) = f(xi,y1) = 1 for i ≥ 1. Thus, the reduction algorithm B will be
an admissible adversary in the ciphertext hiding game. Remaining proof is identical therefore we skip it.

Lemma 5.6. If mBME = (mBME.Setup, mBME.KeyGen, mBME.Enc-PK, mBME.Enc-SK, mBME.Dec) satis-
fies ciphertext hiding, then for any PPT adversary A, polynomials n(·), p(·) and non-negligible function ε(·),
there exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), every ind ∈ [k],

Pr -Good-Dec
(ind)
A,n,ε−ε̃·(n+1)(λ, n+ 2− ind) ≤ negl(λ).

Proof. Fix any index ind. Suppose, on the contrary, there exists a PPT adversary A, polynomials n(·), p(·)
and non-negligible functions ε(·), δ(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), Pr -Good-Dec

(ind)
A,n,ε−ε̃·(n+1)(λ, n+

2 − ind) ≥ δ(λ). Then we can construct an algorithm B that can break ciphertext hiding property of the
underlying mixed bit matching encryption scheme.

The reduction algorithm B sends challenge attribute pair as y0 = y1 = 1k+1−ind0ind to the mixed bit
matching encryption scheme challenger. The mBME challenger samples mBME key pair (pk,msk), and sends
pk to the reduction algorithm B which it forwards to adversary A. Next, A makes key queries to B which
are answered as in MakeBoxA,n(λ, n+ 2− ind). That is, for each key query i ∈ [n], B makes secret key query
for vector xi to mBME challenger and forwards the challenger’s response ski to A. (Here xi is as defined in
the construction. Note that xi depends on the index w = n+ 2− ind.) After all these queries, the adversary
A sends a decoder box D and messages m0,m1 to B.
B then sends message (m0,m1) as its challenge messages. It receives challenge ciphertext ct∗ from mBME

challenger. B then chooses a random bit β ← {0, 1}, and queries the mBME challenger for a (secret-key)
encryption of mβ for vector y0. Let ct be the challenger’s response. Finally, B runs decoder box D on ct
and ct∗ independently, and if D(ct) = D(ct∗), it outputs b′ = β, else it outputs b′ = 1− β as its guess.
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The probability analysis of B’s advantage is similar to that provided for Claim 5.2, however we need
to argue that B is an admissible adversary. For admissibility, we need to show that none of the keys ski
queried by B can decrypt the challenge ct∗. That is, for all i, f(xi,y0) = 0. Now it is sufficient to show that
f(xn,y0) = 0. Note that y0 = 1k+1−ind0ind, and xn = 0k+2−ind1ind−1. Therefore, we get that f(xn,y0) = 0.
Thus, B is an admissible adversary and the lemma follows.

From the above lemmas, it follows that Pr -Good-Dec
(ind)
ε−ε̃ (λ, 2 − ind) − Pr -Good-Dec

(ind)
ε−ε̃·(n+1)(λ, n + 2 −

ind) ≥ Pr -G-DA,n,ε(λ)− negl(λ). This brings us to the following observation.

Observation 5.2. If mBME satisfies pk-sk ciphertext indistinguishability, key hiding and ciphertext hiding,
then for any PPT adversary A, non-negligible function ε(·), polynomials n(·), p(·), there exists a negligible
function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), and every ind ∈ [k], there exists a

subset Γind ⊆ {2− ind, . . . , n+ 1− ind} such that for every w ∈ Γind, Pr -Good-Dec
(ind)
ε−ε̃·(w+ind−1)(λ,w) −

Pr -Good-Dec
(ind)
ε−ε̃·(w+ind)(λ,w + 1) > 0 and∑

w∈Γind

(
Pr -Good-Dec

(ind)
ε−ε̃·(w+ind−1)(λ,w)− Pr -Good-Dec

(ind)
ε−ε̃·(w+ind)(λ,w + 1)

)
≥ Pr -G-DA,n,ε(λ)− negl(λ).

The next lemma will prove that Pr -Good-Dec(ind)(w + 1) and Pr -Good-Dec(ind+1)(w) are approximately
equal for all w, ind.

Lemma 5.7. If mBME = (mBME.Setup, mBME.KeyGen, mBME.Enc-PK, mBME.Enc-SK, mBME.Dec) sat-
isfies key hiding and ciphertext hiding properties, then for any PPT adversary A, polynomials n(·), p(·)
and non-negligible function ε(·), there exists a negligible function negl(·) such that for all λ ∈ N satisfying
ε(λ) > 1/p(λ), every ind ∈ [k] and w ∈ {2− ind, . . . , n+ 1− ind},

Pr -Good-Dec
(ind+1)
ε−ε̃·(w+ind)+ε̃/2(λ,w) ≤ Pr -Good-Dec

(ind)
ε−ε̃·(w+ind)(λ,w + 1) + negl(λ).

Proof. The proof of above theorem is independent of the choice of index ind and w. Thus, we treat ind and
w as a fixed value throughout the proof.

Let γj = ε− ε̃ · (w+ ind)+ ε̃/2−j · ε̃/(2k+4) for 0 ≤ j ≤ k+2. Also, let ρ0(λ) = Pr -Good-Dec(ind+1)
γ0 (λ,w)

and ρk+2(λ) = Pr -Good-Dec(ind)
γk+2

(λ,w + 1). In order to show that ρ0(λ)− ρk+2(λ) is negligible in λ, we will
define a sequence of hybrid experiments, and show that the difference in the consecutive probabilities is at
most negligible in λ.

Hybrid Hyb0. This experiment corresponds to the MakeBoxA,n(λ,w), where A finally outputs a decoder
box D and two messages m0,m1 such that D can distinguish between index-(ind + 1) encryptions of m0 and
m1 with advantage at least γ0. Now note that ρ0(λ) denotes the probability that A outputs a decoder box

D that is γ0-Dist(ind+1) for m0,m1.

Hybrid Hybj for 1 ≤ j ≤ ind. This experiment is identical to Hyb0, except the key queries for indices
< w + j are answered as per MakeBoxA,n(λ,w + 1). Concretely, for each key query i, the challenger sends
ski to A where ski is computed as follows:

1. if i < w, then ski ← mBME.KeyGen(msk, 0k+1),

2. if w ≤ i < w + j, then ski ← mBME.KeyGen(msk, 0k−i+w+11i−w),

3. if w + j ≤ i < w + k + 1, then ski ← mBME.KeyGen(msk, 0k−i+w1i−w+1),

4. if i ≥ w + k + 1, then ski ← mBME.KeyGen(msk, 1k+1).

Let ρj(λ) denote the probability that A outputs a decoder box D that is γj-Dist(ind+1) for m0,m1.
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Hybrid Hybind+1. This experiment is identical to Hybind, except now ρind+1(λ) denotes the probability that

A outputs a decoder box D that is γind+1-Dist(ind) for m0,m1.

Hybrid Hybj+1 for ind+1 ≤ j ≤ k+1. This experiment is identical to Hybind+1, except the key queries for
indices < w + j are answered as per MakeBoxA,n(λ,w + 1). Concretely, for each key query i, the challenger
sends ski to A where ski is computed as follows:

1. if i < w + 1, then ski ← mBME.KeyGen(msk, 0k+1),

2. if w + 1 ≤ i < w + j, then ski ← mBME.KeyGen(msk, 0k−i+w+11i−w),

3. if w + j ≤ i < w + k + 1, then ski ← mBME.KeyGen(msk, 0k−i+w1i−w+1),

4. if i ≥ w + k + 1, then ski ← mBME.KeyGen(msk, 1k+1).

Let ρj+1(λ) denote the probability that A outputs a decoder box D that is γj+1-Dist(ind) for m0,m1. Note
that Hybk+2 corresponds to the MakeBoxA,n(λ,w + 1) experiment.

Claim 5.4. If mBME satisfies key hiding, then for any PPT adversary A, polynomials n(·), p(·) and non-
negligible function ε(·), there exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) >
1/p(λ), 0 ≤ j < ind, ρj(λ)− ρj+1(λ) ≤ negl(λ).

Proof. Fix any value j. Now it is sufficient to show that ρj(λ)−ρj+1(λ) is bounded by a negligible function.
Suppose, on the contrary, there exists a PPT adversary A, polynomials n(·), p(·) and non-negligible functions
ε(·), δ(·) such that for all λ ∈ N satisfying ε(λ) > 1/q(λ), ρj(λ)− ρj+1(λ) ≥ δ(λ). Then we can construct an
algorithm B that can break key hiding property of the underlying mixed bit matching encryption scheme.

The reduction algorithm B sends the challenge attribute pair (x∗0,x
∗
1) = (0k−j1j+1, 0k−j+11j) to the mixed

bit matching encryption scheme challenger. The mBME challenger samples mBME key pair (pk,msk), and
sends pk to the reduction algorithm B which it forwards to adversary A. The challenger also sends the
challenge key sk∗ to B. Next, A makes key queries to B which are answered as follows.

For each key query i ∈ [n], (1) if i < w, then B makes secret key query for vector 0k+1 to mBME
challenger and forwards the challenger’s response ski to A; (2) else if w ≤ i < w + j, then B makes secret
key query for vector 0k−i+w+11i−w to mBME challenger and forwards the challenger’s response ski to A; (3)
else if i = w+ j, then B sends sk∗ to A; (4) else if w+ j < i < w+ k+ 1, then B makes secret key query for
vector 0k−i+w1i−w+1 to mBME challenger and forwards the challenger’s response ski to A; (5) otherwise B
makes secret key query for vector 1k+1 to mBME challenger and forwards the challenger’s response ski to A.

After all these queries, the adversary A sends a decoder box D and messages m0,m1 to B. The reduction
algorithm B sets γ = (γj + γj+1)/2, T = λ ·n/ε and tests whether D is a γ-Dist box for m0,m1 using simple
counting based estimation. Concretely, it first sets count = 0. For ` = 1 to T , it chooses b` ← {0, 1} and
sends (mb` , 1

k−ind0ind+1) for secret key encryption to the mBME challenger, and receives ciphertext ct` as
response. Next, if D(ct`) = b`, it sets count = count + 1, else it sets count = count − 1. Finally, after
the T iterations, if count > γ · T , then B guesses 0 (i.e., sk∗ corresponds to x0), else it guesses 1 (i.e., sk∗

corresponds to x1).
The probability analysis of B’s advantage is similar to that provided for Claim 5.1, however we need to

argue that B is an admissible adversary. For admissibility, we need to show that the decryptability of the
secret-key ciphertexts ct` by the challenge secret key sk∗ is independent of whether challenger used x∗0 or x∗1.
That is, for all i, f(x∗0, 1

k−ind0ind+1) = f(x∗1, 1
k−ind0ind+1). Note that x∗0 = 0k−j1j+1, and x∗1 = 0k−j+11j .

Since 0 ≤ j < ind, we get that f(x∗b , 1
k−ind0ind+1) = 0 for both b ∈ {0, 1}. Thus, B is an admissible adversary

and the claim follows.

Claim 5.5. If mBME satisfies ciphertext hiding, then for any PPT adversary A, polynomials n(·), p(·) and
non-negligible function ε(·), there exists a negligible function negl(·) such that for all λ ∈ N satisfying
ε(λ) > 1/p(λ), ρind(λ)− ρind+1(λ) ≤ negl(λ).
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Proof. The proof of this lemma is similar to the proof of Claim 5.3. We briefly highlight the changes. First,
the reduction algorithm B sends challenge attribute pair as (y0,y1) = (1k+1−ind0ind, 1k−ind0ind+1) to the mixed
bit matching encryption scheme challenger at the start. Second, B queries the mBME challenger for a (secret-
key) encryption of mα for vector yβ (where α, β ← {0, 1}), and sets the response as ciphertext ct. Finally,
since for all keys ski (corresponding to vector xi) given to the adversary, we have that f(xi,y0) = f(xi,y1)
(where f denotes the ‘AND-of-ORs’). We claim that f(xi,y0) = f(xi,y1) = 0 for i < w + ind, and = 1
for i ≥ w + ind. This can be verified by just checking that f(xw+ind−1,yb) = 0 and f(xw+ind,y0) = 1 for
both b ∈ {0, 1}. Since xw+ind−1 = 0k+2−ind1ind−1 and xw+ind = 0k−ind1ind+1, thus we satisfy the required
constraint. Thus, the reduction algorithm B will be an admissible adversary in the ciphertext hiding game.
Remaining proof is identical therefore we skip it.

Claim 5.6. If mBME satisfies key hiding, then for any PPT adversary A, polynomials n(·), p(·) and non-
negligible function ε(·), there exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) >
1/p(λ), ind + 1 ≤ j < k + 2, ρj(λ)− ρj+1(λ) ≤ negl(λ).

Proof. The proof of this lemma is similar to the proof of Claim 5.4.

Lemma 5.8. For any PPT adversary A, polynomial n(·) and non-negligible function ε(·), all λ ∈ N, every
ind ∈ [k] and w ∈ {2− ind, . . . , n+ 1− ind},

Pr -Gap
(ind)
ε̃/2 (λ,w) ≥ Pr -Good-Dec

(ind)
ε−ε̃·(w+ind−1)(λ,w)− Pr -Good-Dec

(ind+1)
ε−ε̃·(w+ind)+ε̃/2(λ,w).

Proof. Fix any index ind and w. Recall that Pr -Gap(ind) is defined as below

Pr -Gap
(ind)
A,n,ε̃/2(λ,w) = Pr

[
∃ δ ∈ [0, 1/2] s.t.

D is δ-Dist(ind) ∧
D is not (δ − ε̃/2)-Dist(ind+1) : (D,m0,m1)← MakeBoxA,n(λ,w)

]
.

Now we can also write that

Pr -Gap
(ind)
A,n,ε̃/2(λ,w) ≥ max

δ∈[0,1/2]
Pr

[
D is δ-Dist(ind) ∧

D is not (δ − ε̃/2)-Dist(ind+1) : (D,m0,m1)← MakeBoxA,n(λ,w)

]
.

We also know that for any δ ∈ [0, 1/2],

Pr

[
D is δ-Dist(ind) ∧

D is not (δ − ε̃/2)-Dist(ind+1) : (D,m0,m1)← MakeBoxA,n(λ,w)

]
≥ Pr

[
D is δ-Dist(ind) : (D,m0,m1)← MakeBoxA,n(λ,w)

]
− Pr

[
D is (δ − ε̃/2)-Dist(ind+1) : (D,m0,m1)← MakeBoxA,n(λ,w)

]
≥ Pr -Good-Dec

(ind)
δ (λ, i)− Pr -Good-Dec

(ind+1)
δ−ε̃/2 (λ, i).

Finally substituting δ = ε− ε̃ · (w + ind− 1), we get

Pr -Gap
(ind)
A,n,ε̃/2(λ,w) ≥ Pr -Good-Dec

(ind)
ε−ε̃·(w+ind−1)(λ,w)− Pr -Good-Dec

(ind+1)
ε−ε̃·(w+ind)+ε̃/2(λ,w).

This concludes the proof.
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5.2.5 Proof of Theorem 5.4

We need to show that for any PPT adversary A, polynomials n(·), p(·), non-negligible function ε(·), there
exists a negligible functions negl1(·),negl2(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), and every
index ind ∈ [k],

Pr-SubTr
(ind)
A,n,ε(λ) ≥

(∑
w Pr -Gap

(ind)
A,n,ε̃(λ,w)

)
n(λ) + k − 1

− negl1(λ), and

Pr -Cor-TrA,n,ε(λ) ≥ 1−
∏

ind∈[k]

(
1− Pr-SubTr

(ind)
A,n,ε(λ)

)
− negl2(λ).

The first inequality follows directly by applying a Chernoff bound. Note that whenever there is a gap in
distinguishing advantage (between index ind and ind + 1 ciphertexts) for any position w, then with at most
negligible probability the Subtrace algorithm outputs 1. This follows by applying a Chernoff bound similar
to that used in Lemma 5.3.

For second statement, first recall the event Tr which is similar to Cor-Tr, except that the output of the
trace should be in {1, 2, . . . , n} (in particular, it is not required that the output be in the set S of keys
queried). Now we can write the following

Pr[Cor-Tr] = Pr[Tr]− Pr[Fal-Tr]

≥ Pr[Tr]− negl(λ) (using Theorem 5.2)

≥ 1− Pr
[

Tr
]
− negl(λ)

Also, by using independence of SubTr(ind) events, we get that

Pr
[

Tr
]

=
∏

ind∈[k]

(
1− Pr[SubTr(ind)]

)
.

This gives us the following

Pr[Cor-Tr] ≥ 1−
∏

ind∈[k]

(
1− Pr[SubTr(ind)]

)
− negl(λ).

This concludes the proof.

6 Construction: Mixed Bit Matching Encryption Scheme

Let Grp-Gen be an algorithm that takes as input security parameter 1λ and outputs params = (p,G1,G2,GT , e(·, ·), g1, g2)
where p is a λ bit prime, G1,G2,GT are groups of order p, e : G1 × G2 → GT is an efficiently computable
non-degenerate bilinear map and g1, g2 are generators of G1,G2 respectively.

(pk,msk)← mBME.Setup(1λ, 1`): The setup algorithm first chooses params = (p,G1,G2,GT , e(·, ·), g1, g2)←
Grp-Gen(1λ). It chooses α ← Zp, ai ← Zp, bi ← Zp, ci ← Zp for each i ∈ [`]. The public key

consists of params, e(g1, g2)α,
∏
i∈[`] g

ai·bi+ci
1 and {gai1 }i∈[`], while the master secret key consists of(

params, α, {ai, bi, ci}i∈`
)
.

sk ← mBME.KeyGen(x,msk): Let msk =
(
params, α, {ai, bi, ci}i∈`

)
. The key generation algorithm first

chooses t← Zp and ui ← Zp for each i ∈ [`]. It computes K0 = gα2 ·
(∏

i∈[`] g
−t·ci
2

)
·
(∏

i:xi=0 g
−ui·ai
2

)
.

Next, it sets K1 = gt2, and for each i ∈ [`], K2,i = g−t·bi if xi = 1, else K2,i = g−t·bi+ui2 . The key is(
K0,K1, {K2,i}i∈[`]

)
.
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ct← mBME.Enc-SK(m,y,msk): Let msk =
(
params, α, {ai, bi, ci}i∈`

)
. The secret key encryption algorithm

first chooses s← Zp, and for each i ∈ [`] such that yi = 0, it chooses ri ← Zp. It sets C = m·e(g1, g2)α·s,

C0 = gs1, C1 =
(∏

i:yi=1 g
s·(ai·bi+ci)
1

)
·
(∏

i:yi=0 g
s·ci+ai·bi·ri
1

)
. For each i ∈ [`], it sets C2,i = gai·s1 if

yi = 1, else C2,i = gai·ri1 if yi = 0. The ciphertext is
(
C,C0, C1, {C2,i}i∈[`]

)
.

ct← mBME.Enc-PK(m, pk): Let pk = (params, e(g1, g2)α,
∏
i∈` g

ai·bi+ci
1 , {gai1 }i∈[`]). The public key encryp-

tion algorithm is identical to the secret key encryption algorithm. It first chooses s ← Zp. It sets

C = m · e(g1, g2)α·s, C0 = gs1, C1 =
(∏

i∈` g
ai·bi+ci
1

)s
. For each i ∈ [`], it sets C2,i = (gai1 )

s
. The

ciphertext is
(
C,C0, C1, {C2,i}i∈[`]

)
.

z ← mBME.Dec(ct, sk): Let ct =
(
C,C0, C1, {C2,i}i∈[`]

)
and sk =

(
K0,K1, {K2,i}i∈[`]

)
. The decryption

algorithm outputs
C

e(C0,K0) · e(C1,K1) ·
∏
i∈[`] e(C2,i,K2,i)

.

6.1 Correctness

Fix any security parameter λ, message m, vectors x,y such that f(x,y) = 1 and public key pk = (params,
e(g1, g2)α,

∏
i∈[`] g

ai·bi+ci
1 , {gai1 }i∈[`] ). Let (s, {ri}i:yi=0) be the randomness used during encryption, (t, {ui}i:xi=0)

the randomness used during key generation, ciphertext ct = (C,C0, C1, {C2,i}i∈[`]) and key sk = (K0,K1, {K2,i}i∈[`]).

To show that decryption works correctly, it suffices to show that e(C0,K0)·e(C1,K1)·
(∏

i∈[`] e(C2,i,K2,i)
)

=

e(g1, g2)α·s.

e(C0,K0) · e(C1,K1) ·

∏
i∈[`]

e(C2,i,K2,i)


=
(
e(g1, g2)α·s−(

∑
i s·t·ci)−(

∑
i:xi=0 s·ui·ai)

)
·
(
e(g1, g2)(

∑
i s·t·ci)+(

∑
i:yi=1 s·t·ai·bi)+(

∑
i:yi=0 t·ai·bi·ri)

)
·
(
e(g1, g2)−(

∑
i:yi=1 t·s·ai·bi)−(

∑
i:yi=0 t·ai·bi·ri)+(

∑
i:xi=0 ai·s·ui)

)
In the second step, we use the fact that since f(x,y) = 1, whenever xi = 0, yi = 1 (if this was not the case,
then we would have, for all i such that xi = yi = 0, e(g1, g2)ui·ai·ri terms in the product). Simplifying the
expression, we get the desired product e(g1, g2)α·s.

6.2 Security

Theorem 6.1. Assuming Assumption 1 and Assumption 2, the mixed mBME scheme described above sat-
isfies key hiding (Definition 4.3), ciphertext hiding (Definition 4.2), and pk-sk ciphertext indistinguishability
(Definition 4.1) security properties.

To prove security, we need to show that the scheme satisfies Definition 4.1, Definition 4.2 and Defini-
tion 4.3. First, it is easy to check that the scheme satisfies Definition 4.1. This is because the distribution
of an encryption of m using public key pk is identical to the distribution of an encryption of m for attribute
1`, computed using master secret key.

6.2.1 Ciphertext Hiding Security

Lemma 6.1. Assuming Assumption 1 and Assumption 2, the mixed mBME scheme described above satisfies
the ciphertext hiding security property (defined in Definition 4.2).
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As shown in Section 4.2, it suffices to show that the scheme satisfies Definition 4.4 and Definition 4.5.
We will prove each of these properties separately.

Claim 6.1. Assuming Assumption 1, the mixed mBME scheme described above satisfies Definition 4.4.

Proof. Suppose, on the contrary, there exists a PPT adversary A that breaks the simplified ciphertext hiding
property of our scheme with non-negligible advantage ε(·). We will build a PPT reduction algorithm B that
breaks Assumption 1 with advantage ε(·).

The reduction algorithm first receives the challenge (G1,G2,GT , g1, g2, g
x
1 , g

y
1 , g

yz
1 , gy2 , g

z
2 , T ) from the chal-

lenger, where T = gx·y·z1 or gx·y·z+r1 . Next, it receives the challenge vectors y,y′ from the adversary A. Let
j be the (unique) index such that yj 6= y′j , ones the set of indices such that yi = y′i = 1, and zeroes the set
such that yi = y′i = 0.

The reduction algorithm must first generate the public key. Next it receives either ciphertext queries or
key queries and a message m from the adversary. Then it generates the challenge ciphertext. Finally, it
receives more ciphertext and key queries and the adversary’s guess, which it uses to break Assumption 2.

Public key The reduction algorithm implicitly sets aj = y · z and chooses bj , cj ← Zp along with α← Zp.
Next, for each i ∈ ones, it chooses ai, bi, ci ← Zp. For each i ∈ zeroes, it chooses a′i, bi, ci ← Zp and implicitly
sets ai = y + a′i. It computes the public key components as follows.

(
pk1,i, pk2,i

)
=


((
gy·z1

)bi · gci1 , gy·z1

)
if i = j,(

gai·bi+ci1 , gai1

)
if i ∈ ones,(

(gy1 )
bi · ga

′
i·bi+ci

1 , gy1 · g
a′i
1

)
if i ∈ zeroes.

All the above terms can be computed using only g1, gy1 and gy·z1 . The public key is set to be pk =
e(g1, g2)α,

∏
i∈[`] pk1,i,

{
pk2,i

}
i∈[`]

.

Next, the adversary is allowed to query for polynomially many key/ciphertext queries, with the restriction
that for every secret key query x, f(x,y) = f(x,y′), which are handled as follows.

Pre-challenge ciphertext queries For the ciphertext query (m,w), the reduction algorithm chooses
q ← Zp and vi ← Zp for each i ∈ [`]. It then sets C = m · e(g1, g2)α·q, C0 = gq1. Next, for the term C1, note

that the reduction algorithm can compute gai·bi1 and gci1 for all i ∈ [`] using g1, g
y
1 , g

y·z
1 . As a result, for each

i ∈ [`], the reduction algorithm can compute both g
s·(ai·bi+ci)
1 and gs·ci+ai·bi·vi1 , and hence, it can compute

C1. Finally, it can compute C2,i since it can compute gai1 for all i ∈ [`] (using g1, g
y
1 and gy·z1 ). Therefore,

the ciphertext queries can be simulated perfectly.

Pre-challenge secret key queries Let x be the vector queried by the adversary. Here, we have
two cases, depending on whether xj = 0 or xj = 1. In the first case, if xj = 1, then the reduc-
tion algorithm chooses t ← Zp, and for all i such that xi = 0, it chooses ui ← Zp. It sets K1 = gt2,

K0 =
(∏

i∈[`] g
−t·ci
2

)
·
((∏

i:xi=0,i∈ones g
−ui·ai
2

)
·
(∏

i:xi=0,i∈zeroes (gy2 )
−ui · g−ui·a

′
i

2

))
. Finally, for each i ∈ [`],

both g−t·bi2 and g−t·bi+ui2 can be generated using g2. Therefore, in this case, the key query can be handled
using g2, g

y
2 .

In the second case, since xj = 0, there exists an index j∗ ∈ [`] such that yj∗ = y′j∗ = xj∗ = 0. In this
case, the reduction algorithm chooses t← Zp, and chooses ui ← Zp for all i such that i 6= j∗ and xi = 0. It
chooses u′j∗ and sets uj∗ = −z ·uj +u′j∗ . As in the first case, the reduction algorithm can compute K1 = gt2.

It can also compute g−t·ci2 for all i ∈ [`], and for all i such that xi = 0 and i /∈ {j∗, j}, it can compute g−ui·ai2

using g2 and gy2 . Therefore, to compute K0, it suffices to compute g
−uj ·aj−uj∗ ·aj∗
2 . Plugging in the values of

uj∗ , aj∗ , uj and aj , it follows that g
−uj ·aj−uj∗ ·aj∗
2 = (gz2)

a′j∗ ·uj · (gy2 )
−u′j∗ · g−u

′
j∗ ·a

′
j∗

2 , which can be computed
using g2, g

y
2 , g

z
2 . Finally, the reduction algorithm needs to compute K2,i for each i ∈ [`]. For all i ∈ [`], the
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reduction algorithm can compute g−t·bi2 and gui2 using g2 and gz2 . Therefore, the entire secret key can be
computed using g2, g

y
2 , g

z
2 .

After all pre-challenge key/ciphertext queries, the adversary sends a message m, which the reduction uses
to compute the challenge ciphertext.

Challenge ciphertext The reduction algorithm computes the challenge ciphertext ct∗, which corresponds
to an encryption of message m for attribute y or y′. It implicitly sets s = x. For each i 6= j, it chooses ri ←
Zp, and it implicitly sets rj = r/(y ·z)+x. It sets C∗ = m ·e(gx1 , g2)α, C∗0 = gx1 , C∗1 =

(∏
i∈ones (gx1 )

ai·bi+ci
)
·(∏

i∈zeroes (gx1 )
ci · (gy1 )

bi·ri · (g1)
a′i·bi·ri

)
·
(
T bj · (gx1 )

cj
)
. Next, it sets the C∗2,i components as follows.

C∗2,i =


(gx1 )

ai if i ∈ ones,

(gy1 )
ri · ga

′
i·ri

1 if i ∈ zeroes,

T if i = j

It sends ct∗ =
(
C∗, C∗0 , C

∗
1 ,
{
C∗2,i

}
i∈[`]

)
to A.

Next, the adversary is allowed to query for polynomially many more key/ciphertext queries, which are
computed the same way as the pre-challenge queries. After all post-challenge key/ciphertext queries, the
adversary sends its guess b′, and the reduction algorithm forwards this guess to the challenger.

Analysis : Depending on whether T = gx·y·z2 or T = gx·y·z+r2 , the reduction algorithm either outputs
an encryption of m for y or y′. Also, note that the ciphertext and key queries are distributed as in the
security game. In particular, all the exponents {ai, bi, ci}, the randomness chosen for key/ciphertext queries
are uniformly random elements in Zp. Therefore, if A wins with advantage ε, then B breaks Assumption 1
with advantage ε.

Claim 6.2. Assuming Assumption 2, the mixed mBME scheme described above satisfies Definition 4.5.

Proof. Suppose, on the contrary, there exists a PPT adversary A that breaks the message-only ciphertext
hiding property of our scheme with non-negligible advantage ε(·). We will build a PPT reduction algorithm

B that breaks Assumption 1 with advantage ε(·)
2 .

The reduction algorithm first receives the challenge (G1,G2,GT , g1, g2, g
x
1 , g

y
1 , g

y
2 , g

z
2 , T ) from the chal-

lenger, where T = gx·y·z1 or gx·y·z+r1 . Next, it receives the challenge vector y from the adversary A. Let ones
the set of indices such that yi = 1 and zeroes the set such that yi = 0.

The reduction algorithm must first generate the public key. Next it receives either ciphertext queries
or key queries and then challenge message m0,m1 from the adversary. Then it generates the challenge
ciphertext. Finally, it receives more ciphertext and key queries and the adversary’s guess, which it uses to
break Assumption 2.

Public key For each i ∈ [`], the reduction algorithm picks bi, ci ← Zp. Next, for each i ∈ ones, the
reduction algorithm chooses ai ← Zp, and for each i ∈ zeroes, it choodes a′i ← Zp and implicitly sets
ai = y + a′i. It also implicitly sets α = yz. It computes the public key components as follows.

(
pk1,i, pk2,i

)
=


(
gai·bi+ci1 , gai1

)
if i ∈ ones,(

(gy1 )
bi · ga

′
i·bi+ci

1 , gy1 · g
a′i
1

)
if i ∈ zeroes.

All the above terms can be computed using only g1 and gy1 .
The public key is set to be pk = e(gy1 , g

z
1),
∏
i∈[`] pk1,i,

{
pk2,i

}
i∈[`]

.

Next, the adversary is allowed to query for polynomially many key/ciphertext queries, with the restriction
that for every secret key query x, f(x,y) = 0, which are handled as follows.
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Pre-challenge ciphertext queries For the ciphertext query (m,w), the reduction algorithm chooses
q ← Zp and vi ← Zp for each i ∈ [`]. It then sets C = m · e(gy1 , gz2)q, C0 = gq1. Next, for the term C1, note

that the reduction algorithm can compute gai·bi1 and gci1 for all i ∈ [`] using g1 and gy1 . As a result, for each

i ∈ [`], the reduction algorithm can compute both g
q·(ai·bi+ci)
1 and gq·ci+ai·bi·vi1 , and hence, it can compute

C1. Finally, it can compute C2,i since it can compute gai1 for all i ∈ [`] (using g1 and gy1 ). Therefore, the
ciphertext queries can be simulated perfectly.

Pre-challenge secret key queries Let x be the vector queried by the adversary. By the definition of
the security game, f(x,y) = 0 so there exists an index j∗ ∈ [`] such that yj∗ = xj∗ = 0. The reduction
algorithm chooses t← Zp, and chooses ui ← Zp for all i such that i 6= j∗ and xi = 0. It chooses u′j∗ and sets

uj∗ = z+u′j∗ . As in the first case, the reduction algorithm can compute K1 = gt2. It can also compute g−t·ci2

for all i ∈ [`], and for all i such that xi = 0 and i 6= j∗, it can compute g−ui·ai2 using g2 and gy2 . Therefore,

to compute K0, it suffices to compute g
α−uj∗ ·aj∗
2 . Plugging in the values of α, uj∗ and aj∗ , it follows that

g
α−uj∗ ·aj∗
2 = (gz2)

−a′j∗ · (gy2 )
−u′j∗ · g−u

′
j∗ ·a

′
j∗

2 , which can be computed using g2, g
y
2 , g

z
2 . Finally, the reduction

algorithm needs to compute K2,i for each i ∈ [`]. For all i ∈ [`], the reduction algorithm can compute g−t·bi2

and gui2 using g2 and gz2 . Therefore, the entire secret key can be computed using g2, g
y
2 , g

z
2 .

After all pre-challenge key/ciphertext queries, the adversary sends the challenge messages m0,m1, which
the reduction uses to compute the challenge ciphertext.

Challenge ciphertext The reduction algorithm picks a random b ← {0, 1} and computes the challenge
ciphertext ct∗, which corresponds to an encryption of message mb for attribute y or an encryption of a
random element. The reduction algorithm implicitly sets s = x. For each i ∈ zeroes, it chooses ri ← Zp. It

sets C∗ = mb · e(T, g2), C∗0 = gx1 , C∗1 =
(∏

i∈ones (gx1 )
ai·bi+ci

)
·
(∏

i∈zeroes (gx1 )
ci · (gy1 )

bi·ri · (g1)
a′i·bi·ri

)
. Next,

it sets the C∗2,i components as follows.

C∗2,i =

{
(gx1 )

ai if i ∈ ones,

(gy1 )
ri · ga

′
i·ri

1 if i ∈ zeroes

It sends ct∗ =
(
C∗, C∗0 , C

∗
1 ,
{
C∗2,i

}
i∈[`]

)
to A.

Next, the adversary is allowed to query for polynomially many more key/ciphertext queries, which are
computed the same way as the pre-challenge queries. After all post-challenge key/ciphertext queries, the
adversary sends its guess b′. If b′ = b, the reduction algorithm guesses 1, otherwise guesses 0.

Analysis : Depending on whether T = gx·y·z2 or T = gx·y·z+r2 , the reduction algorithm either plays the
honest security game with an encryption of mb under vector y or sends an encryption of a random message.
Also, note that the ciphertext and key queries are distributed as in the security game. In particular, all the
exponents {ai, bi, ci}, the randomness chosen for key/ciphertext queries are uniformly random elements in
Zp. Therefore, if A wins with advantage ε, then B breaks Assumption 1 with advantage ε

2 .

6.2.2 Key-Hiding Security

Lemma 6.2. Assuming Assumption 2, the mixed mBME scheme described above satisfies the key hiding
security property (defined in Definition 4.3).

In order to prove this lemma, it suffices to show that the scheme satisfies Definition 4.6 (using Theo-
rem 4.2).
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Proof. Suppose, on the contrary, there exists a PPT adversary A that breaks the simplified key hiding
property of our scheme with non-negligible advantage ε(·). We will build a PPT reduction algorithm B that
breaks Assumption 2 with advantage ε(·).

The reduction algorithm first receives the challenge (G1,G2,GT , g1, g2, g
y
1 , g

z
1 , g

x
2 , g

y
2 , T ) from the chal-

lenger, where T = gx·y·z2 or gx·y·z+r2 . Next, it receives the challenge vectors x,x′ from the adversary A. Let
j be the (unique) index such that xj 6= x′j , ones the set of indices such that xi = x′i = 1, and zeroes the set
such that xi = x′i = 0.

Public key The reduction algorithm implicitly sets bj = y ·z, cj = −aj ·y ·z+c′j . For all i ∈ ones, it chooses

ai, bi, ci ← Zp. For all i ∈ zeroes, it chooses ai, b
′
i, c
′
i and impicitly sets bi = aj ·y+b′i and ci = −aj ·ai ·y+c′i.

7

In particular, it sets

(
pk1,i, pk2,i

)
=


(
g
c′j
1 , g

aj
1

)
if i = j,

(gci1 , g
ai
1 ) if i ∈ ones,(

g
ai·b′i+c

′
i

1

)
if i ∈ zeroes.

All the above terms can be computed using only g1. The public key is set to be pk =
{

pk1,i

}
i∈[`]

,
{

pk2,i

}
i∈[`]

.

Challenge secret key Next, it sends the challenge secret key (which is a secret key corresponding to
either x or x′). It sets K∗1 = gx2 . It then chooses α ← Zp, implicitly sets uj = −r and ui = aj · x · y + u′i

for all i ∈ zeroes. It sets K∗0 = gα2 ·
(∏

i∈ones (gx2 )
−ci
)
·
(∏

i∈zeroes (gx2 )
−c′i ·

(
g
−u′i·ai
2

))
·
(
T aj · (gx2 )

−c′j
)

. The

reduction algorithm then sets K2,i as follows:

K∗2,i =


(gx2 )

−bi if i ∈ ones,

(gx2 )
−b′i · (g2)

u′i if i ∈ zeroes,

T−1 if i = j

Finally, it sends sk∗ =
(
K∗0 ,K

∗
1 ,
{
K∗2,i

}
i∈[`]

)
to the adversary.

Next, the adversary is allowed to query for secret keys or ciphertexts, with the restriction that for every
ciphertext query (m,y), f(x,y) = f(x′,y). First, let us consider the secret key queries.

Secret key queries Let w denote the secret key query. The reduction algorithm chooses q ← Zp and vi ←
Zp for all i s.t. wi = 0. It setsK1 = gq2, K0 = gα2 ·

((∏
i∈ones g

−q·ci
2

)
·
(∏

i∈zeroes (gy2 )
−q·ai·aj · g−q·c

′
i

2

)
·
(
gx·y2

)q·aj · g−q·c′j2

)
·(∏

i:wi=0 g
−vi·ai
2

)
. Finally, it can compute K2,i since it can compute gbi2 for all i ∈ [`] (using g2, g

y
2 and gy·z2 ),

and the reduction algorithm knows q, {vi}i:wi=0. Therefore, the key queries can be simulated perfectly. The

reduction algorithm can compute K2,i as follows. 8

K2,i =



(g2)
−q·bi if i ∈ ones, wi = 1,

(g2)
−q·bi+vi if i ∈ ones, wi = 0,

(gy2 )
−q·aj · (g2)

−q·b′i if i ∈ zeroes, wi = 1,

(gy2 )
−q·aj · (g2)

−q·b′i+vi if i ∈ zeroes, wi = 0,(
gy·z2

)−q
if i = j, wi = 1,(

gy·z2

)−q · (g2)
vi if i = j, wi = 0.

It sends sk =
(
K0,K1, {K2,i}i∈[`]

)
to the adversary.

7Can probably remove aj from bi, ci and ui.
8Remove this part if the previous two lines are sufficiently clear.
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Ciphertext queries For ciphertext queries, we have two cases. Let y denote the ciphertext query at-
tribute. In the first case, we have yj = 1. In this case, the reduction algorithm chooses s ← Zp and

ri ← Zp for each i such that yi = 1. It sets C = m · e(g1, g2)α·s, C0 = gs1, C1 =
(∏

i:yi=1 g
s·c′i
1

)
·((∏

i:yi=0,i∈ones g
s·ci+ai·bi·ri
2

)
·
(∏

i:yi=0,i∈zeroes (gy1 )
−s·aj ·ai+aj ·ai·ri · gs·c

′
i+b
′
i·ri

2

))
. Here, note that since yj =

1, the term C1 does not contain g
s·cj+aj ·bj ·rj
1 in the product. Finally, it sets C2,i = gs·ai1 or gri·ai1 depending

on whether yi = 1 or yi = 0. It sends
(
C,C0, C1, {C2,i}i∈[`]

)
as the ciphertext, and the reduction algorithm

thus handles the first case.
In the second case, we have yj = 0. Since f(x,y) = f(x′,y), this implies there exists an index j∗

such that xj∗ = x′j∗ = yj∗ = 0 (this implies j∗ ∈ zeroes). The reduction algorithm chooses s ← Zp
and ri ← Zp for all i 6= j∗. For i = j∗, the reduction algorithm chooses r′j∗ and implicitly sets rj∗ =
z · (s − rj)/aj∗ + r′j∗ . It then sets C = m · e(g1, g2)α·s, C0 = gs1. Next, note that to compute C1, it suffices

to compute g
s·cj+aj ·bj ·rj
1 · gs·cj∗+aj∗ ·bj∗ ·rj∗

1 . This is because the remaining terms in the product C1 can be

computed as in the first case. Since s is chosen by B, it can compute g
s·(ci+ai·bi)
1 for each i ∈ [`]. Similarly,

for i 6= j, j∗, it can compute gs·ci+ai·bi·ri1 using g1 and gy1 . By setting rj∗ as described above (and substituting
the implicit values of aj , bj , cj , aj∗ , bj∗ , c∗), we get that

g
s·cj+aj ·bj ·rj
1 · gs·cj∗+aj∗ ·bj∗ ·rj∗

1 = g
s·c′j+s·c

′
j∗+aj∗ ·b′j∗ ·r

′
j∗

1 · (gy1 )
−s·aj ·aj∗+aj ·aj∗ ·r′j∗ · (gz1)

b′j∗ ·(s−rj)

which can be computed using g1, g
y
1 , g

z
1 . Finally, the reduction algorithm needs to compute C2,i. For i 6= j∗,

it sets C2,i = gai·s1 or gai·ri1 , depending on whether yi = 0 or 1. For i = j∗, it sets C2,i = g
ai·r′i
1 ·(gz1)

aj∗ ·(s−rj∗ )
.

This concludes the second case of ciphertext hiding.
Finally, after all key/ciphertext queries, the adversary sends its guess b, and the reduction algorithm

forwards this guess to the challenger. 9

Analysis : Depending on whether T = gx·y·z2 or T = gx·y·z+r2 , the reduction algorithm either outputs a
key for x or x′. Also, note that the ciphertext and key queries are distributed as in the security game.
In particular, all the exponents {ai, bi, ci}, the randomness chosen for key/ciphertext queries are uniformly
random elements in Zp. Therefore, if A wins with advantage ε, then B breaks Assumption 2 with advantage
ε.

7 Performance Evaluation

We provide the performance evaluation of our risky traitor tracing scheme obtained by combining the mixed
bit matching encryption scheme and the transformation to risky TT provided in Sections 6 and 5, respectively.
Our performance evaluation is based on concrete measurements made using the RELIC library [rel] written
in the C language.

We use the BN254 curve for pairings. It provides 126-bit security level [BGDM+10]. All running times
below were measured on a server with 2.93 GHz Intel Xeon CPU and 40GB RAM. Averaged over 10000
iterations, the time taken to perform an exponentiation in the groups G1, G2 and GT is approximately 0.28
ms, 1.60 ms and 0.90 ms, respectively. The time for perform a pairing operation is around 2.22 ms. The size
of elements in group G1 is 96 bytes.

Based on the above measurements, for risky traitor tracing with parameter k we get the ciphertext size
as (96 · k+ 288) bytes, encryption time (0.28 · k+ 1.74) ms, and decryption time (2.226 · k+ 6.66) ms.10 We
point out in the above evaluations we consider the KEM version of our risky traitor tracing in which the

9Slight inaccuracy here. We are not using the absolute value definition for the assumption/security games. So the reduction
algorithm should guess either b or 1− b, depending on whether xj = 0 or 1.

10In these estimations, we ignore the time to evaluate the hash function on the element in the target group GT since it has
an insiginicant effect on the running time.
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message is encrypted using a symmetric key encryption with the hash of the first component of ciphertext
e(g1, g2)α·s is used as the secret key. That is, the hashed value could be used as an AES key to perform
message encryptions. For the basic setting of risky traitor tracing, i.e. k = 1, we get the ciphertext size,
encryption time, and decryption time to be around 384 bytes, 2.16 ms, 8.89 ms (respectively).

8 Hardness of Differentially Private Sanitization

In this section, we show that the Dwork et al. [DNR+09] result works even if the traitor tracing scheme
is f -risky secure. This, together with our construction in Section C.1, results in a hardness result with
query set size 2O(λ) and based on assumptions over composite order bilinear groups. First, we introduce
some differential privacy related preliminaries following the notations from [KMUZ16]. Next, we describe
our hardness result.

8.1 Definitions

Differentially Private Algorithms. A database D ∈ Xn is a collection of n rows x1, . . . , xn, where each
row is an element of the date universe X . We say that two databases D,D′ ∈ X ∗ are adjacent, denoted
by D ∼ D′, if D′ can be obtained from D by the addition, removal, or substitution of a single row (i.e.,
they differ only on a single row). Also, for any database D ∈ Xn and index i ∈ {1, 2, . . . , n}, we use D−i
to denote a database where the ith element/row in D is set removed. At a very high level, an algorithm is
said to be differentially private if its behavior on all adjacent databases is similar. The formal definition is
provided below.

Definition 8.1 (Differential Privacy [DMNS06]). Let A : Xn → Sn be a randomized algorithm that takes
a database as input and outputs a summary. A is (ε, δ)-differentially private if for every pair of adjacent
databases D,D′ ∈ Xn and every subset T ⊆ Sn,

Pr[A(D) ∈ T ] ≤ eε Pr[A(D′) ∈ T ] + δ.

Here parameters ε and δ could be functions in n, the size of the database.

Accuracy of Sanitizers. Note that any algorithm A that always outputs a fixed symbol, say ⊥, already
satisfies Definition 8.1. Clearly such a summary will never be useful as the summary does not contain any
information about the underlying database. Thus, we also need to specify what it means for the sanitizer
to be useful. As described before, in this work we study the notion of differentially private sanitizers that
give accurate answers to statistical queries.11 A statistical query on data universe X is defined by a binary
predicate q : X → {0, 1}. Let Q = {q : X → [0, 1]} be a set of statistical queries on the data universe X .

Given any n ∈ N, database D ∈ Xn and query q ∈ Q, let q(D) =

∑
x∈D q(x)

n
.

Before we define accuracy, we would like to point out that the algorithm A might represent the summary
s of a database D is any arbitrary form. Thus, to extract the answer to each query q from summary s, we
require that there exists an evaluator Eval : S ×Q → [0, 1] that takes the summary and a query, and outputs
an approximate answer to that query. As in prior works, we will abuse notation and simply write q(s) to
denote Eval(s, q), i.e. the algorithm’s answer to query q. At a high level, an algorithm is said to be accurate
if it answers every query to within some bounded error. The formal definition follows.

Definition 8.2 (Accuracy). For a set Q of statistical queries on X , a database D ∈ Xn and a summary
s ∈ S, we say that s is α-accurate for Q on D if

∀q ∈ Q, |q(D)− q(s)| ≤ α.
11Statistical queries are also referred as counting queries, predicate queries, or linear queries in the literature.
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A randomized algorithm A : Xn → S is said to be an (α, β)-accurate sanitizer if for every database D ∈ Xn,

Pr
A’s coins

[A(D) is α-accurate for Q on D] ≥ 1− β.

The parameters α and β could be functions in n, the size of the database.

Efficiency of Sanitizers. In this work, we are interested in asymptotic efficiency, thus we introduce a
computation parameter λ ∈ N. The data universe and query space, both will be parameterized by λ; that is,
for every λ ∈ N, we have a data universe Xλ and a query space Qλ. The size of databases will be bounded
by n = n(λ), where n(·) is a polynomial. Now the algorithm A takes as input a database Xnλ and output a
summary in Sλ, where {Sλ}λ∈N is a sequence of output ranges. And, there is an associated evaluator Eval
that takes a query q ∈ Qλ and a summary S ∈ Sλ and outputs a real-valued answer. The definitions of
differential privacy and accuracy readily extend to such sequences.

Definition 8.3 (Efficiency). A sanitizer A is efficient if, on input a database D ∈ Xnλ , A runs in time
poly(λ, log(|Xλ|), log(|Qλ|)), as well as on input a summary s ∈ Sλ and query q ∈ Qλ, the associated
evaluator Eval runs in time poly(λ, log(|Xλ|), log(|Qλ|)).

8.2 Hardness of Efficient Differentially Private Sanitization from Risky Traitor
Tracing

In this section, we prove hardness of efficient differentially private sanitization from risky traitor tracing
schemes. The proof is an adaptation of the proofs in [DNR+09, Ull13, KMUZ16] to this restricted notion.
At a high level, the idea is to set the data universe to the secret key space and each query will be asso-
ciated with a ciphertext such that answer to a query on any secret key will correspond to the output of
decryption of associated ciphertext using the secret key. Now to show hardness of sanitization we will prove
by contradiction. The main idea is that if there exists an efficient (accurate) sanitizer, then that could be
successfully used as a pirate box in the traitor tracing scheme. Next, assuming that the sanitizer satisfies
differential privacy, we can argue that the sanitizer could still be a useful pirate box even if one of keys in
the database is deleted, however the tracing algorithm will still output the missing key as a traitor with
non-negligible probability, thereby contradicting the property that the tracing algorithm incorrectly traces
with only negligible probability.

Below we state the formal theorem and give a proof. Later we also show to get a stronger hardness result
if the underlying risky traitor tracing schemes also satisfies “singular trace” property (Definition 3.5).

8.2.1 Hardness from Risky Traitor Tracing

Theorem 8.1. If there exists a f -risky secure private-key no-query traitor tracing scheme T = (Setup,Enc,Dec,Trace)
(Definition 3.7), then there exists a data universe and query family {Xλ,Qλ}λ such that there does not any
sanitizer A : Xnλ → Sλ that is simultaneously — (1) (ε, δ)-differentially private, (2) (α, β)-accurate for
query space Qλ on Xnλ , and (3) computationally efficient — for any ε = O(log λ), α < 1/2, β = o(1) and
δ ≤ f · (1− β)/4n.

Proof. Let T = (Setup,Enc,Dec,Trace) be a traitor tracing scheme with key space {Kλ}λ, message space
{0, 1} and ciphertext space {Cλ}λ. For any λ ∈ N, the data universe is set to be Xλ = Kλ, and the
distribution on databases is defined as Xnλ =

{
D : (msk, (sk1, . . . , skn))← Setup(1λ, 1n), D = (sk1, . . . , skn)

}
.

In the sequel, to sample the database, we will simply write (msk, D) ← Setup(1λ, 1n). Each query in the
query space is associated with a ciphertext ct, and the output of any query qct corresponds to the decryption
of associated ciphertext using the input secret key. Formally, Qλ = {Dec(·, ct) : ct ∈ Cλ}, i.e. for every
qct ∈ Qλ, qct(sk) = Dec(sk, ct).

Let A be a computationally efficient algorithm such that it is (ε, δ)-differentially private and (α, β)-
accurate for query space Qλ on Xnλ . From (α, β)-accuracy of A we can write that for every (msk, D) ←
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Setup(1λ, 1n) and every ciphertext ct ∈ Cλ, the following holds

Pr
A’s coins

[|qct(A(D))− qct(D)| ≤ α] ≥ 1− β. (1)

Now from the correctness property of traitor tracing scheme, we know that for every ciphertext ct ←
Enc(msk, b), qct(D) = b. This is because qct(D) =

(∑
sk∈D qct(sk)

)
/n and for every sk, Dec(sk, ct) = b. Also,

since α < 1/2 we can conclude that for every (msk, D)← Setup(1λ, 1n) and every ciphertext ct← Enc(msk, b),
the following holds

Pr
A’s coins

[dEval(A(D), qct)c = b] ≥ 1− β. (2)

Consider an adversary B that plays the f -risky ind-secure tracing game with scheme T . Adversary B runs
as follows. During key query phase, B queries the tracing scheme challenger for all n secret keys sk1, . . . , skn.
Next, it runs the sanitizer A on all n keys with uniformly random coins. In other words, it generates a
summary s as s← A(D) where D = (sk1, . . . , skn). Finally, B outputs Eval(s, ·) as the pirate decoding box,
i.e. the evaluation algorithm with summary s hardwired. Note that B is efficient because A is efficient.

Using the previous equation, we can conlude that adversary B outputs a “good decoder” with probability
at least 1− β. Formally, we can write that for every non-negligible function ε,

Pr -Good-DecTB,n,ε(λ) ≥ 1− β. (3)

Now since the scheme T is f -risky secure where f = f(n, λ), we also get that

Pr -Cor-TrTB,n,ε(λ) ≥ f · (1− β)− negl(λ), (4)

where negl is a negligible function. Since B queries for all n keys, thus whenever there is a “correct trace”
in this scenario, the trace algorithm outputs an index in [n]. Therefore, we can write that

Pr
(msk,D)←Setup(1λ,1n)

s←A(D) and Trace’s coins

[
TraceEval(s,·)(msk) ∈ [n]

]
≥ Pr -Cor-TrTB,n,ε(λ) ≥ f · (1− β)− negl(λ). (5)

Next, we can claim that there exists an index i∗ ∈ [n] such that the trace algorithm, given Eval(s, ·) as the
pirate box, outputs index i∗ with probability at least f · (1 − β)/n, as otherwise it would contradict the
previous lower bound. Formally, we can say that there exists i∗ ∈ [n] such that

Pr
(msk,D)←Setup(1λ,1n)

s←A(D) and Trace’s coins

[
TraceEval(s,·)(msk) = i∗

]
≥ f · (1− β)

n
− negl(λ). (6)

Let Smsk,D,i∗ ⊆ Sλ be the set of summaries such that for every summary s in that set, the probability of
trace algorithm outputting index i∗ given Eval(s, ·) as the pirate box is at least f/n2. Formally, for a given
msk, D, i∗,

Smsk,D,i∗ :=

{
s : Pr

Trace’s coins

[
TraceEval(s,·)(msk) = i∗

]
≥ f

n2

}
. (7)

Now, using the previous two equations, we could claim the following -

Pr
(msk,D)←Setup(1λ,1n)

A’s coins

[A(D) ∈ Smsk,D,i∗ ] ≥
f · (1− β)

2n
. (8)

By (ε, δ)-differential privacy of A, we have that

Pr
(msk,D)←Setup(1λ,1n)

A’s coins

[A(D−i∗) ∈ Smsk,D,i∗ ] ≥ e−ε
(
f · (1− β)

2n
− δ
)
≥ e−ε · f · (1− β)

4n
. (9)
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Finally, combining above equation with the definition of set Smsk,D,i∗ , we get that

Pr
(msk,D)←Setup(1λ,1n)

s←A(D−i∗ ) and Trace’s coins

[
TraceEval(s,·)(msk) = i∗

]
≥ e−ε · f · (1− β)

4n
× f

n2
. (10)

Now this violates the f -risky security of the traitor tracing scheme. Concretely, consider an adversary B∗
that runs as follows. During key query phase, B∗ queries the tracing scheme challenger for all but i∗th secret
key, i.e., {ski}i6=i∗ . Next, it runs the sanitizer A on these n − 1 keys with uniformly random coins, i.e. it
generates a summary s as s← A(D−i∗) where D = (sk1, . . . , skn). Finally, B∗ outputs Eval(s, ·) as the pirate
decoding box, i.e. the evaluation algorithm with summary s hardwired. Note that B∗ is efficient because A
is efficient. Now using the previous equation we can conclude that

Pr -Fal-TrTB∗,n,1/2(λ) ≥ e−ε · f2 · (1− β)

4n3
. (11)

In other words, the probability B∗ leads to a “faulty trace” is non-negligible. However, since T is f -risky
secure, the probability of a faulty trace should be negligible in the security parameter. Thus, this leads to a
contradiction completing the proof.

8.2.2 Hardness from Risky Traitor Tracing with Singular Trace

Theorem 8.2. If there exists a f -risky secure private-key no-query traitor tracing scheme T = (Setup,Enc,Dec,Trace)
(Definition 3.7) satisfying singular trace property (Definition 3.5), then there exists a data universe and query
family {Xλ,Qλ}λ such that there does not any sanitizer A : Xnλ → Sλ that is simultaneously — (1) (ε, δ)-
differentially private, (2) (α, β)-accurate for query space Qλ on Xnλ , and (3) computationally efficient — for
any ε = O(log λ), α < 1/2, β = o(1) and δ ≤ f · (1− β)/4.

Proof. The proof of this theorem is similar to that of Theorem 8.1, therefore we only highlight the equa-
tions/components that are modified. First, the database, query space and input spaces are all identical.
Thus, the proof is identical until Equation (4). Next, since the traitor tracing scheme T is f -risky secure as
well as satisfies the singular trace property, thus we could directly conclude that there exists i∗ ∈ [n] such
that

Pr
(msk,D)←Setup(1λ,1n)

s←A(D) and Trace’s coins

[
TraceEval(s,·)(msk) = i∗

]
≥ f · (1− β)− negl(λ). (12)

In other words, we can avoid a 1/n loss due to the singular trace property. The remaining proof is almost
identical. The only modification is that all the lower bounds in Equations 7, 8 and 9 get tighter by a factor
of n, i.e. the degree of n in the denominator in all of them can be reduced by 1. With these modifications
we can conclude that

Pr
(msk,D)←Setup(1λ,1n)

s←A(D−i∗ ) and Trace’s coins

[
TraceEval(s,·)(msk) = i∗

]
≥ e−ε · f · (1− β)

4
× f

n
. (13)

And, finally if we consider the same adversary B∗ as in previous proof, then we can conclude that

Pr -Fal-TrTB∗,n,1/2(λ) ≥ e−ε · f2 · (1− β)

4n
. (14)

Thus, this leads to a contradiction completing the proof.
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8.2.3 Hardness from Assumptions over Bilinear Groups

Combining Theorem 8.2 with Theorems 5.2, 5.3, 5.4, and 6.1, we get the following corollary.

Corollary 8.1. If Assumption 1 and Assumption 2 hold, then there exists a data universe and query
family {Xλ,Qλ}λ such that there does not any sanitizer A : Xnλ → Sλ that is simultaneously — (1) (ε, δ)-
differentially private, (2) (α, β)-accurate for query space Qλ on Xnλ , and (3) computationally efficient — for
any ε = O(log λ), α < 1/2, β = o(1) and δ ≤ (1− β)/4n.

Similary, combining Theorem 8.2 with Theorems C.2, C.3 and C.4, we get the following corollary.

Corollary 8.2. Assuming subgroup decision (Assumption 3) and subgroup hiding in target group assump-
tions (Assumption 4), there exists a data universe and query family {Xλ,Qλ}λ such that there does not
any sanitizer A : Xnλ → Sλ that is simultaneously — (1) (ε, δ)-differentially private, (2) (α, β)-accurate for
query space Qλ on Xnλ , and (3) computationally efficient — for any ε = O(log λ), α < 1/2, β = o(1) and
δ ≤ (1− β)/4n.

9 Amplifying the Trace Success Probability

In this section, we will show a generic transformation to amplify any traitor tracing scheme’s success proba-
bility. In particular, given two traitor tracing schemes, one being fA-risky and the other one being fB-risky,
we show how to combine them to obtain an (fA + fB − fA · fB)-risky traitor tracing scheme. We will focus
on public key traitor tracing schemes; our transformation can also be applied to private-key traitor tracing
schemes.

9.1 Construction

Let TA = (SetupA, EncA, DecA, TraceA) be an fA-risky secure traitor tracing scheme for message space M,
and TB = (SetupB , EncB , DecB , TraceB) an fB-risky secure traitor tracing scheme for M. We will now
describe a new traitor tracing scheme T = (Setup, Enc, Dec, Trace) for message space M.

Setup(1λ, 1n): The setup algorithm chooses (mpkA,mskA, (skA,1, . . . , skA,n))← SetupA(1λ, 1n) and (mpkB ,
mskB , (skB,1, . . ., skB,n)) ← SetupB(1λ, 1n). It sets mpk = (mpkA,mpkB), msk = (mskA,mskB) and
for j ∈ {1, 2, . . . , n}, skj = (skA,j , skB,j).

Enc(mpk,m): Let mpk = (mpkA,mpkB). The encryption algorithm chooses r ← M, computes ctA ←
EncA(mpkA,m⊕ r) and ctB ← EncB(mpkB , r). It sets ct = (ctA, ctB).

Dec(sk, ct): Let sk = (skA, skB) and ct = (ctA, ctB). The decryption algorithm computes xA ← DecA(skA, ctA),
xB ← DecB(skB , ctB) and outputs xA ⊕ xB .

TraceD(msk, 1y,m0,m1): Let msk = (mskA,mskB) and ε = 1/y. Consider the routines Test-Good-A and
Test-Good-B (defined in Figure 11 and Figure 12) which take as input r ∈ M and a ciphertext, and
outputs 0/1.

Routine Test-Good-A(r, ctB)

Inputs: r ∈M, ciphertext ctB
Output: 0/1

1. Set count = 0 and z = λ · n/ε. For j = 1 to z, do the following:

(a) Choose b← {0, 1}, compute ctA,j ← EncA(mpkA,mb⊕r). If D(ctA,j , ctB) = b, count = count+1.

If count/z > 1/2 + ε/3, output 1, else output 0.

Figure 11: Routine Test-Good-A(r, ctB)
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Routine Test-Good-B(r, ctA)

Inputs: r ∈M, ciphertext ctA
Output: 0/1

1. Set count = 0 and z = λ · n/ε. For j = 1 to z, do the following:

(a) Choose b← {0, 1}, compute ctB,j ← EncB(mpkB ,mb⊕r). If D(ctA, ctB,j) = b, count = count+1.

If count/z > 1/2 + ε/3, output 1, else output 0.

Figure 12: Routine Test-Good-B(r, ctA)

The above routines will be useful for building a pirate decoder for TraceA and TraceB respectively. The
trace algorithm first builds a pirate decoder for TraceA and uses TraceA to trace a traitor. If TraceA
returns an index i ∈ {1, 2, . . . , n}, then the algorithm outputs i. Else, it constructs a different pirate
decoder for TraceB and uses TraceB to trace a traitor.

Trace attempt using TraceA :

1. The trace algorithm first searches for an rA ∈M and ciphertext ctB such that Test-Good-A(rA, ctB) =
1. Let rA = ⊥, ctB = ⊥.

For i = 1 to λ·n/ε, it chooses ri ←M, sets cti ← EncB(mpkB , r
i) and checks if Test-Good-A(ri, cti) =

1. If so, it sets rA = ri, ctB = cti and exits loop.

If rA = ⊥, then quit trace attempt using TraceA.

2. Consider the following pirate decoder DA for TA. The decoder has ctB hardwired. On input
ciphertext ctA, it outputs D(ctA, ctB). The trace algorithm sets mA,0 = m0⊕rA, mA,1 = m1⊕rA
and computes z ← TraceDAA (mskA, 1

4y,mA,0,mA,1).

3. If z 6= ⊥, output z. Else, perform trace attempt using TraceB .

Trace attempt using TraceB : This is similar to the trace attempt using TraceB , except that the
trace algorithm now builds a pirate decoding box for TraceB .

1. The trace algorithm searches for an rB ∈M and ciphertext ctA such that Test-Good-B(rB , ctA) =
1. Let rB = ⊥, ctA = ⊥.

For i = 1 to λ·n/ε, it chooses ri ←M, sets cti ← EncA(mpkA, r
i) and checks if Test-Good-B(ri, cti) =

1. If so, it sets rB = ri, ctA = cti and exits loop.

If rB = ⊥, then quit trace attempt using TraceB .

2. Consider the following pirate decoder DB for TB . The decoder has ctA hardwired. On input
ciphertext ctB , it outputs D(ctA, ctB). The trace algorithm sets mB,0 = m0⊕rB , mB,1 = m1⊕rB
and computes z ← TraceDBB (mskB , 1

4y,mB,0,mB,1).

3. If z 6= ⊥, output z.

Correctness The correctness of this scheme follows from the correctness of schemes TA and TB .

9.2 Security

In this section, we will show that our scheme is IND-CPA and (fA + fB − fA · fB)-risky secure.
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IND-CPA Security

Lemma 9.1. Assuming TA is IND-CPA secure, T is also IND-CPA secure.

Proof. Suppose there exists a PPT adversary A such that Pr[1← Expt-IND-CPAT ,A(1λ, 1n)]−1/2 = η, where
η is non-negligible. We will construct a reduction algorithm B such that Pr[1← Expt-IND-CPATA,B(1λ, 1n)]−
1/2 = η.

The reduction algorithm receives mpkA from the IND-CPA challenger. It then chooses (mskB , mskB ,
(skB,1, . . ., skB,n)) ← Setup(1λ, 1n), sets mpk = (mpkA,mpkB) and sends it to A. The adversary A then
sends two messages m0,m1. The reduction algorithm chooses r ←M. It sets m0,A = m0⊕r, m1,A = m1⊕r
and sends (m0,A,m1,A) to the challenger. The reduction algorithm receives ctA from the challenger. It
computes ctB ← EncB(mpkB , r) and sends ct = (ctA, ctB) to A. The attacker sends its guess b′, and the
reduction algorithm forwards it to the challenger.

If the adversary’s guess is correct, then so is the reduction algorithm’s guess. Therefore, B breaks the
IND-CPA security of TA with advantage η.

False-Trace Probability

Lemma 9.2. Assuming TA is an fA-risky secure traitor tracing scheme, and TB is an fB-risky secure traitor
tracing scheme, for every PPT adversary A, polynomials p(·), n(·) and non-negligible function ε(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), Pr -Fal-TrA,n,ε(λ) ≤
negl(λ).

Proof. Let S denote the set of key queries made by the adversary. We define the following events :

• F1 : TraceA outputs an index i ∈ {1, 2, . . . , n} \ S

• F2 : TraceA outputs ⊥ and TraceB outputs an index i ∈ {1, 2, . . . , n} \ S

Clearly, Pr -Fal-TrA,n,ε = Pr[F1] + Pr[F2]. We will show an upper bound on Pr[F1] and Pr[F2] using the
security of TA and TB respectively.

Claim 9.1. Assuming TA is an fA-risky secure traitor tracing scheme, for every PPT adversary A, poly-
nomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl1(·) such that for all
λ ∈ N satisfying ε(λ) > 1/p(λ), Pr[F1] ≤ negl1(λ).

Proof. Suppose, on the contrary, there exists a PPT adversary A, polynomial n(·) and non-negligible func-
tions ε, η such that Pr[F1] ≥ η(λ). We will show that there exists a non-negligible function εA and a PPT
reduction algorithm B that queries for set S, outputs a decoding box DA and two messages mA,0,mA,1 such

that Pr[TraceDAA (mskA, 1
1/εA ,mA,0,mA,1) ∈ {1, 2, . . . , n} \ S] ≥ η(λ).

The reduction algorithm B first receives mpkA from the challenger. It chooses (mpkB , (skB,1, . . . , skB,n))←
SetupB(1λ, 1n) and sends mpk = (mpkA,mpkB) to A.

Next, it receives secret key queries from A. For query corresponding to index i, the reduction algorithm
sends the same query to challenger. It receives skA,i, and it sends ski = (skA,i, skB,i) to A.

Finally, after all the queries, the adversary A sends a pirate decoding box D together with messages
m0,m1. The reduction algorithm sets T = λ · n/ε. For i = 1 to T , it chooses ri ← M, computes ctiB ←
EncB(mpkB , r

i) and checks if Test-Good-A(ri, ctB) = 1. If no pair exists, it outputs an empty decoding box.
Else, let (rA, ctB) be the first such pair. The reduction algorithm uses (rA, ctB) and decoder box D to define
DA and mA,0,mA,1. It sets mA,0 = m0 ⊕ rA and mA,1 = m1 ⊕ rA. The pirate box DA has ctB hardwired,
and it takes as input a ciphertext ct and outputs D((ct, ctB)). B sends DA,mA,0,mA,1 to the challenger.

Now, if Pr[F1] ≥ η(λ), then Pr[TraceDAA (mskA, 1
4/ε,mA,0,mA,1) ∈ {1, 2, . . . , n} \ S] ≥ η(λ).
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Claim 9.2. Assuming TB is an fB-risky secure traitor tracing scheme, for every PPT adversary A, polyno-
mials p(·), n(·) and non-negligible function ε(·), there exists a negligible function negl1(·) such that for all
λ ∈ N satisfying ε(λ) > 1/p(λ), Pr[F2] ≤ negl1(λ).

The proof of this claim is identical to the previous one. Here, the reduction algorithm gets TB parameters
from the challenger, and generates the TA parameters by itself. On receiving the decoding box D, it first
tries TraceA by itself. If this trace works, it quits. Else, it computes the box DB and messages mB,0,mB,1

and sends them to the challenger.

Correct-Trace Probability First, we need to define some probabilistic events. In order to do so, let us
recall the security game for traitor tracing.

1. Challenger chooses (mpk = (mpkA,mpkB), msk = (mskA,mskB), (sk1 = (skA,1, skB,1), . . ., skn =
(skA,n, skB,n)))← Setup(1λ, 1n) and sends mpk to A.

2. Adversary queries for secret keys. For each queried index i ∈ {1, 2, . . . , n}, the challenger sends ski.

3. Let S denote the set of keys queried by A. The adversary then sends a pirate decoding box D and two
messages m0,m1.

4. Challenger first uses TraceA. In order to do this, it must build a pirate box DA for scheme TA and find
two messages mA,0 and mA,1 for DA. It does the following:

(a) Let T = λ · n/ε. For i = 1 to T , it chooses ri ←M, computes ctiB ← EncB(mpkB , r
i) and checks

if Test-Good-A(ri, ctiB) = 1. If no pair exists, it quits this step. Else, let (rA, ctB) be the first such
pair.

(b) Challenger uses (rA, ctB) and decoder box D to define DA and mA,0,mA,1. It sets mA,0 = m0⊕rA
and mA,1 = m1⊕ rA. The pirate box DA has ctB hardwired, and it takes as input a ciphertext ct

and outputs D((ct, ctB)). The challenger then computes zA ← TraceDAA (mskA, 1
4/ε,mA,0,mA,1).

If zA 6= ⊥, it outputs zA and quits.

5. Challenger then uses TraceB . As before, it must build a pirate box DB for scheme TB and find two
messages mB,0 and mB,1 for DB . It does the following:

(a) Let T = λ · n/ε. For i = 1 to T , it chooses ri ←M, computes ctiA ← EncA(mpkA, r
i) and checks

if Test-Good-B(ri, ctiA) = 1. If no pair exists, it quits this step. Else, let (rB , ctA) be the first
such pair.

(b) Challenger uses (rB , ctA) and decoder box D to define DA and mB,0,mB,1. It sets mB,0 = m0⊕rB
and mB,1 = m1⊕ rB . The pirate box DB has ctA hardwired, and it takes as input a ciphertext ct

and outputs D((ctA, ct)). The challenger then computes zB ← TraceDBB (mskB , 1
4/ε,mB,0,mB,1).

If zB 6= ⊥, it outputs zB .

We will define the following events, and the corresponding probabilities. These probabilities are param-
eterized by the adversary A, polynomial n(·) and non-negligible ε(·), and a function of λ. For simplicity of
notations, we will skip the the dependence on A, n and ε.

• Good-Decoder : D distinguishes between encryptions of m0 and m1 with advantage ε

• QuitA : No (rA, ctB) pair found in Step 4a;

• Good-DecoderA : DA distinguishes between encryptions of mA,0 and mA,1 with advantage ε/4

• TraceA-Succ : zA ∈ S

• TraceA-Fail : QuitA or zA = ⊥
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• QuitB : No (rB , ctA) pair found in Step 5a

• Good-DecoderB : DB distinguishes between encryptions of mB,0 and mB,1 with advantage ε/4

• TraceB-Succ : zB ∈ S

From the above defined events, it follows that the trace algorithm traces a traitor if one of the following
two events occur:

E1 : TraceA-Succ
OR

E2 : (TraceA-Fail ∧ TraceB-Succ)

As a result, since these events are mutually exclusive, Pr[Cor-Tr] = Pr[E1] + Pr[E2]. We will now analyse
Pr[E1] and Pr[E2] separately.

Theorem 9.1. Assuming TA is an fA-risky secure traitor tracing scheme, for any PPT adversary A, poly-
nomials p(·), n(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for all
λ ∈ N satisfying ε(λ) > 1/p(λ), Pr[E1] ≥ fA(λ, n) · Pr[Good-Decoder]− negl(λ).

Proof. First, using the fact that TA is an fA-risky secure traitor tracing scheme, we can relate the probability
of event E1 to the probability of outputting a good pirate box for TA.

Claim 9.3. Assuming TA is an fA-risky secure traitor tracing scheme, for every PPT adversary A, poly-
nomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for all
λ ∈ N satisfying ε(λ) > 1/p(λ), Pr[E1] ≥ fA(λ, n) · Pr[Good-Decoder ∧ QuitA ∧ Good-DecoderA]− negl(λ).

Proof. We will use the PPT adversary A to build a reduction algorithm B that interacts with a TA challenger
and A, and outputs a pirate decoding box DA and messages mA,0,mA,1.

The reduction algorithm B first receives mpkA from the challenger. It chooses (mpkB , (skB,1, . . . , skB,n))←
SetupB(1λ, 1n) and sends mpk = (mpkA,mpkB) to A.

Next, it receives secret key queries from A. For query corresponding to index i, the reduction algorithm
sends the same query to challenger. It receives skA,i, and it sends ski = (skA,i, skB,i) to A.

Finally, after all the queries, the adversary A sends a pirate decoding box D together with messages
m0,m1. The reduction algorithm sets T = λ · n/ε. For i = 1 to T , it chooses ri ← M, computes ctiB ←
EncB(mpkB , r

i) and checks if Test-Good-A(ri, ctiB) = 1. If no pair exists, it outputs an empty decoding box.
Else, let (rA, ctB) be the first such pair. The reduction algorithm uses (rA, ctB) and decoder box D to define
DA and mA,0,mA,1. It sets mA,0 = m0 ⊕ rA and mA,1 = m1 ⊕ rA. The pirate box DA has ctB hardwired,
and it takes as input a ciphertext ct and outputs D((ct, ctB)). B sends DA,mA,0,mA,1 to the challenger.

Now, using the security of TA, it follows that there exists a negligible function negl(·),

Pr[TraceDAA (mskA, 1
4/ε,mA,0,mA,1) ∈ S ∧ QuitA]

≥ fA(λ, n) · Pr[QuitA ∧ Good-DecoderA]− negl(λ).

Since Pr[QuitA ∧ Good-DecoderA] ≥ Pr[QuitA ∧ Good-DecoderA ∧ Good-Decoder], it follows that

Pr[E1] ≥ fA(λ, n) · Pr[Good-Decoder ∧ QuitA ∧ Good-DecoderA]− negl(λ).

Next, we will show that Pr[Good-Decoder]−Pr[Good-Decoder∧QuitA∧Good-DecoderA] is at most a negligible
function in λ. First, note that

Pr[Good-Decoder] = Pr[Good-Decoder ∧ QuitA] + Pr[Good-Decoder ∧ QuitA ∧ Good-DecoderA]

+ Pr[Good-Decoder ∧ QuitA ∧ Good-DecoderA].

Therefore, it suffices to show that Pr[Good-Decoder∧QuitA] and Pr[Good-Decoder∧QuitA∧Good-DecoderA]
are both bounded by negligible funtions.
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Lemma 9.3. There exists a negligible function negl(·) such that for all λ ∈ N, Pr[Good-Decoder ∧QuitA] ≤
negl(λ).

Proof. Let REncA and REncB denote the space of random coins used by EncA and EncB respectively and for
any decoder D, let GoodD ⊆M×REncB denote the set of coins such that for every (r, r′) ∈ GoodD,

Pr

[
D(ctA, ctB) = b :

b← {0, 1}, ctA ← EncA(mpkA,mb ⊕ r)
ctB = EncB(mpkB , r; r

′)

]
≥ 1 + ε

2
.

Using a Markov argument, we know that if D is “good decoder”, i.e. it distinguishes between encryptions of
m0 and m1 with advantage at least ε, then |GoodD| is at least |M| · |REncB | · ε/2. Concretely, we have that

Pr[(r, r′) ∈ GoodD | Good-Decoder] ≥ ε/2.

Below we show that if (r, r′) ∈ GoodD, then with all but negligible probability, Test-Good-A accepts r and
corresponding ciphertext ctB .

Claim 9.4. There exists a negligible function negl(·) such that for every decoder D, all λ ∈ N, (r, r′) ∈
GoodD,

Pr [Test-Good-A(r,EncB(mpkB , r; r
′)) = 1] ≥ 1− negl(λ).

The proof of above claim follows from Chernoff bounds and is similar to the proof of Lemma C.1. Now, we
analyse Pr[Good-Decoder∧QuitA]. Note that the event QuitA occurs if no (r, r′) is found after λ ·n/ε samples,
such that Test-Good-A(r, ctB) = 1 where ctB = EncB(mpkB , r; r

′). We argue that this event happens with
at most negligible probability. First, we partition the event Good-Decoder ∧ QuitA into two sub-events:

No-Good-Pair : Good-Decoder ∧ None of the (r, r′) sampled are in Good

Test-Good-A-Fail : Good-Decoder ∧ Some sample (r, r′) ∈ Good ∧ Test-Good-A rejects (r, r′)

From the definition of the events, it follows that Pr[Good-Decoder∧QuitA] = Pr[No-Good-Pair]+Pr[Test-Good-A-Fail].
Let us first analyse Pr[No-Good-Pair]. Recall that

Pr[(r, r′) ∈ GoodD | Good-Decoder] ≥ ε/2.

As a result, the probability of not finding (r, r′) ∈ Good after T = λ/ε samples is at most (1−ε/2)T ≤ 2−O(λ),
which is negligible in λ. Next, from Claim 9.4, it follows that there exists a negligible function negl2(·) such
that for all λ ∈ N, Pr[Test-Good-A-Fail] ≤ negl2(λ). Thus, we get that Pr[Good-Decoder ∧ QuitA] ≤ negl(λ).

Lemma 9.4. There exists a negligible function negl(·) such that for all λ ∈ N,

Pr[Good-Decoder ∧ QuitA ∧ Good-DecoderA] ≤ negl(λ).

Proof. Let BadD ⊆ M× REncB denote the set of coins such that for every (r, r′) ∈ BadD, decoder DA =
D(·,EncB(mpkB , r; r

′)) is a “bad” decoder for system A, i.e. DA is not an (ε/4)-Dist decoder for mA,0,mA,1.
Using Chernoff bounds, we get that for every decoder D, (r, r′) ∈ BadD,

Pr [Test-Good-A(r,EncB(mpkB , r; r
′)) = 1] ≤ 2−O(λ).

Now note that while tracing using TraceA, routine Test-Good-A is independently run T = λ · n/ε times.
Using a union bound, we get that the probability Test-Good-A accepts a pair (r, r′) ∈ BadD, in any of those
T tries, is at most T · 2−O(λ) = negl(λ). Thus, we can conclude that Pr[QuitA ∧ Good-DecoderA] ≤ negl(λ).
This completes the proof.
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From the above two lemmas, we can conclude that there exists a negligible function negl(·) such that for
all λ ∈ N, Pr[E1] ≥ fA(λ, n) · Pr[Good-Decoder]− negl(λ). Similarly, we show a lower bound on Pr[E2] next.

Theorem 9.2. Assuming TB is an fB-risky secure traitor tracing scheme, for any PPT adversary A, poly-
nomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for all
λ ∈ N satisfying ε(λ) ≥ 1/p(λ),

Pr[E2] ≥ fB(λ, n) · Pr[Good-Decoder ∧ TraceA-Fail].

Proof. The proof of this theorem will follow a similar structure as the proof of Theorem 9.1. First, using the
fact that TB is an fB-risky secure traitor tracing scheme, we can relate the probability of event E2 to the
probability of outputting a good pirate box for TB .

Claim 9.5. Assuming TB is an fB-risky secure traitor tracing scheme, for every PPT adversary A, polyno-
mial n(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for all λ ∈ N,
Pr[E2] ≥ fB(λ, n) · Pr[Good-Decoder ∧ TraceA-Fail ∧ QuitB ∧ Good-DecoderB ]− negl(λ).

Proof. We will use the PPT adversary A to build a reduction algorithm B that interacts with a TB challenger
and A, and outputs a pirate decoding box DB and messages mB,0,mB,1.

The reduction algorithm B first receives mpkB from the challenger. It chooses (mpkA, (skA,1, . . . , skA,n))←
SetupA(1λ, 1n) and sends mpk = (mpkA,mpkB) to A.

Next, it receives secret key queries from A. For query corresponding to index i, the reduction algorithm
sends the same query to challenger. It receives skB,i, and it sends ski = (skA,i, skB,i) to A. Let S denote the
set of keys queried.

Finally, after all the queries, the adversary A sends a pirate decoding box D together with messages
m0,m1. The reduction algorithm first ‘simulates’ the tracing of traitors using TraceA. It performs Trace
attempt using TraceA (that is, Step 4). If it successfully traces an index i ∈ S, then the reduction algorithm
quits (that is, it outputs an empty tracing box).

Else, the reduction algorithm sets T = λ · n/ε. For i = 1 to T , it chooses ri ← M, computes ctiA ←
EncA(mpkA, r

i) and checks if Test-Good-B(ri, ctA) = 1. If no pair exists, it outputs an empty decoding box.
Else, let (rB , ctA) be the first such pair. The reduction algorithm uses (rB , ctA) and decoder box D to define
DB and mB,0,mB,1. It sets mB,0 = m0 ⊕ rB and mB,1 = m1 ⊕ rB . The pirate box DB has ctA hardwired,
and it takes as input a ciphertext ct and outputs D((ctA, ct)). B sends DB ,mB,0,mB,1 to the challenger.

Now, from security of TB , it follows that

Pr[E2] = Pr[TraceDBB (mskB , 1
4/ε,mB,0,mB,1) ∈ S ∧ TraceA-Fail ∧ QuitB ]

≥fB(λ, n) · Pr[TraceA-Fail ∧ QuitB ∧ Good-DecoderB ]− negl(λ)

≥fB(λ, n) · Pr[TraceA-Fail ∧ QuitB ∧ Good-DecoderB ∧ Good-Decoder]− negl(λ).

This concludes the proof.

Next, in order to show that Pr[Good-Decoder∧ TraceA-Fail∧ QuitB∧ Good-DecoderB ] ≥ Pr[Good-Decoder∧
TraceA-Fail]−negl(λ), it suffices to show that Pr[Good-Decoder∧ TraceA-Fail∧ QuitB ] and Pr[Good-Decoder∧
TraceA-Fail∧ QuitB∧ Good-DecoderB ] are both bounded by some negligible funtions.

Lemma 9.5. There exists a negligible function negl(·) such that for all λ ∈ N, Pr[Good-Decoder∧TraceA-Fail∧
QuitB ] ≤ negl(λ).

Proof. The proof of this lemma is very similar to the proof of Lemma 9.3, so we will briefly list the modifi-
cations required.
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The set of“good” coins corresponding to a decoder D will now be defined as GoodD ⊆M×REncA such
that for every (r, r′) ∈ GoodD,

Pr

[
D(ctA, ctB) = b :

b← {0, 1}, ctB ← EncB(mpkB ,mb ⊕ r)
ctA = EncA(mpkA, r; r

′)

]
≥ 1 + ε

2
.

Next, using a Markov argument, we will argue that fraction of coins in GoodD for a good decoder is at least
ε/2. For completing this argument, the following observation will be important.

Observation 9.1. For any m ∈M, the following distributions are identical:

{(m⊕ r, r) : r ←M} ≡ {(r,m⊕ r) : r ←M}

The rest of the proof will be identical in which we will first argue that Test-Good-B accepts all (r, r′) ∈
GoodD with all but negligible probability. Next, we will divide the event Good-Decoder∧TraceA-Fail∧QuitB
into two sub-events as before and argue that they both occur with at most negligible probability.

Lemma 9.6. There exists a negligible function negl(·) such that for all λ ∈ N,

Pr[Good-Decoder ∧ TraceA-Fail ∧ QuitB ∧ Good-DecoderB ] ≤ negl(λ).

The proof of this lemma is identical to that of Lemma 9.4. Combining the above lemmas, we get that there
exists a negligible function negl(·) such that for all λ ∈ N, Pr[E2] ≥ fB(λ, n)·Pr[Good-Decoder∧TraceA-Fail]−
negl(λ).

Combining Theorem 9.1 and Theorem 9.2, we can compute the ‘riskyness’ of our traitor tracing scheme.
Concretely, we get that

Pr[E1] + Pr[E2]

≥Pr[E1] + fB(λ, n) · Pr[Good-Decoder ∧ TraceA-Fail]− negl1(λ)

= Pr[E1] + fB(λ, n) · (Pr[Good-Decoder]− Pr[E1]− Pr -Fal-TrA,n,ε(λ))− negl1(λ)

≥Pr[E1] · (1− fB(λ, n)) + fB(λ, n) · Pr[Good-Decoder]− negl2(λ)

≥fA(λ, n) · Pr[Good-Decoder] · (1− fB(λ, n)) + fB(λ, n) · Pr[Good-Decoder]− negl3(λ)

≥ (fA(λ, n) + fB(λ, n)− fA(λ, n) · fB(λ, n)) · Pr[Good-Decoder]− negl3(λ)

This concludes the proof.
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A Missing Proofs from Section 4

A.1 Proof of Theorem 4.1

Proof. We prove this theorem via a series of hybrid experiments. First, for all ` ∈ N consider the following
helper function Zip : {0, 1}` × {0, 1}` × {0, . . . , `} → {0, 1}`:

Definition A.1.

Zip(y0,y1, j)i =

{
y0,i ∧ y1,i if i ≤ j
y0,i otherwise

Note that for any y0,y1, Zip(y0,y1, 0) = y0. Next, we prove the following lemma about this function:

Lemma A.1. Let ` ∈ N. For any vectors x,y0,y1 ∈ {0, 1}` and j ∈ {0, . . . , ` − 1}, if f(x,y0) = f(x,y1)
then f(x,w0) = f(x,w1) where w0 = Zip(y0,y1, j) and w1 = Zip(y0,y1, j + 1).

Proof. Note that w0,i = w1,i for all i 6= j + 1. Thus, if xj+1 = 1 or if w0,j+1 = w1,j+1 then f(x,w0) =
f(x,w1).

We then consider the case where w0,j+1 6= w1,j+1 and xj+1 = 0. By definition, w0,j+1 = y0,j+1 and
w1,j+1 = y0,j+1 ∧ y1,j+1. Hence, y0,j+1 = 1 and y1,j+1 = 0. Since xj+1 = 0 (and y1,j+1 = 0), f(x,y1) = 0
and f(x,w1) = 0.

Also, note that since f(x,y0) = f(x,y1), it follows that f(x,y0) = 0, and therefore there exists an index
j∗ such that xj∗ = y0,j∗ = 0. If j∗ > j+1, then w0,j∗ = y0,j∗ = 0. If j∗ < j+1, then w0,j∗ = y0,j∗∧y1,j∗ = 0.
Since y0,j∗ = 1, j∗ 6= j + 1, and therefore there exists an index j∗ such that wj∗ = xj∗ = 0. This implies
that f(x,w0) = 0. This concludes our proof.

Now we define our hybrid experiments using Zip. Let λ ∈ N, `(·) be a polynomial. For any stateful PPT

adversary A and j ∈ {0, . . . , `(λ)}, define Hyb
(j)
mBME,`(λ),A(1λ) in Figure 13.

Experiment Hyb
(j)

mBME,`(λ),A(1λ)

• (y0,y1)← A(1λ).

• (pk,msk)← Setup(1λ, 1`(λ))

• (m0,m1)← AO
sk
msk,O

ct
msk(pk)

• b← {0, 1}, ctb ← Enc-SK(msk,mb, z) where z = Zip(yb,y1−b, j)

• b′ ← AO
sk
msk,O

ct
msk(ctb)

• Output 1 if b = b′, and 0 otherwise.

Adversarial Restrictions: For all queries x made by A to Osk
msk the following conditions must hold:

• If m0 = m1, then f(x,y0) = f(x,y1).

• If m0 6= m1, then f(x,y0) = f(x,y1) = 0.

Figure 13: Ciphertext Hybrid (j)

For notational purposes, we will consider the parameters A,mBME, `(·), and λ implicitly where clear,

and write Hyb
(j)
mBME,`(λ),A(1λ) as Hybj and `(λ) as `.
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Note that Expt-ct-indA = HybA0 ; this is because Zip(yb,y1−b, 0) = yb and therefore, Pr[1← Expt-ct-indA] =

Pr[1← HybA0 ].

Claim A.1. Let j ∈ {0, . . . , `(λ)− 1}, and A be any stateful PPT adversary. If mBME satisfies 1-attribute
hiding, then Pr[1← HybAj+1]− Pr[1← HybAj ] ≤ negl(λ).

Proof. Suppose there exists a PPT adversary such that pA,j+1 = Pr[1 ← HybAj+1], pA,j = Pr[1 ← HybAj ]

and pA,j+1 − pA,j = ε. We construct a stateful PPT adversary B such that Pr[1 ← Expt-1-attr-ct-indB] = ε
using A. The reduction algorithm B first receives (y0,y1) from the adversary A. It chooses b← {0, 1}, sets
w0 = Zip(yb,y1−b, j + 1) and w1 = Zip(yb,y1−b, j) and sends (w0,w1) to the challenger. The challenger
sends a public key pk, which the reduction algorithm forwards to the adversary.

Next, the adversary is allowed to make pre-challenge key/ciphertext queries. All queries are forwarded
to the challenger. The challenger’s response is then forwarded to the adversary A. The adversary then sends
its challenge messages m0,m1. The reduction algorithm sends message mb to the challenger, and receives
a ciphertext ct∗, which it forwards to the adversary. The post-challenge key/ciphertext queries are handled
similar to the pre-challenge queries. Finally, the adversary sends its guess b′. If b = b′, then the reduction
algorithm guesses that it received an encryption of mb for w1, else it guesses that ct∗ is an encryption of mb

for w0.

Analysis : First, note that if A is an admissible adversary for the hybrid experiments, then B is an
admissible adversary for the 1-attribute hiding experiment. This is because for every key query x sent by
A, f(x,y0) = f(x,y1). As a result, using Lemma A.1, it follows that f(x,w0) = f(x,w1).

Let us now analyse the advantage of B. Note that if the challenger encrypts for w0, then B perfectly
simulates Hybj+1 for A, and if the challenger encrypts for w1, then B perfectly simulates Hybj for A.

AdvB = 1/2(Pr[B guesses w0 : Challenger encrypts for w0] + Pr[B guesses w0 : Challenger encrypts for w1])− 1/2

= 1/2(pA,j+1 + (1− pA,j))− 1/2 = ε/2.

Claim A.2. If mBME satisfies ciphertext indistinguishability under chosen attributes, then for any PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, Pr[1 ← HybA` ] − Pr[1 ←
HybA` ] ≤ negl(λ).

Proof. Suppose that there exists a PPT adversaryA and a non-negligible function ε such that Pr[1← HybA` ]−
Pr[1 ← HybA` ] = ε. We construct a stateful PPT adversary B such that Pr[1 ← Expt-IND-CAB] = 1/2 + ε.
The reduction algorithm B first receives (y0,y1) from the adversary. It computes w = Zip(y0,y1, `) and
sends w to the challenger. The challenger sends pk to B, which it forwards to the adversary.

Next, the adversary is allowed to make pre-challenge key/ciphertext queries. The reduction algorithm
forwards these queries to the challenger, and then forwards the challenger’s response to A. The adversary
then sends challenge messages m0,m1. The reduction algorithm sends m0,m1 as challenge messages, and it
receives challenge ciphertext ct∗, which is forwarded to A. The post-challenge queries are handled similar to
the pre-challenge ones. Finally, the adversary submits its guess b′, which the reduction algorithm forwards
to the challenger.

Analysis We now show that B is a valid adversary for Expt-IND-CA. If m0 6= m1, then every key query x
made by A must satisfy f(x,y0) = f(x,y1) = 0. This implies that f(x,w) = 0. Hence all key queries made
by B are admissible. Also note that since Zip(y0,y1, `) = Zip(y1,y0, `) = w, B perfectly simulates Hyb` for
A.

We will now compute B’s advantage. Note that B wins the ciphertext indistinguishability game if and
only if A wins in Hyb`. Therefore, the advantage of B is identical to the advantage of A. This concludes our
proof.
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Proof of Theorem 4.1 Finally, under our assumptions that mBME satisfies 1-attribute hiding and
ciphertext indistinguishability under chosen attributes, both Pr[1 ← Expt-1-attr-ct-indA] ≤ negl(λ) and
Pr[1← Expt-IND-CAA] ≤ negl(λ) for all stateful PPT adversaries A by our two claims. Thus,

Pr[1← Expt-ct-indA] = Pr[1← HybA0 ]

≤Pr[1← HybA0 ] +
∑̀
i=1

(
Pr[1← HybAi ]− Pr[1← HybAi−1]

)
≤Pr[1← Hyb1

` ] + ` · negl(λ)

≤1/2 + negl(λ)

Thus, mBME satisfies ciphertext hiding.

A.2 Proof of Theorem 4.2

Proof. We reduce between these notions of security via a series of hybrids, following a similar approach as
the proof for Theorem 4.1. First, recall the definition of the helper function Zip (Definition A.1). We will
present an analogue of Lemma A.1 for the key-hiding proof.

Lemma A.2. Let ` ∈ N. For any vectors x0,x1,y ∈ {0, 1}` and j ∈ {0, . . . , ` − 1}, if f(x0,y) = f(x1,y)
then f(w0,y) = f(w1,y) where w0 = Zip(x0,x1, j) and w1 = Zip(x0,x1, j + 1).

Let λ ∈ N, `(·) be a polynomial. For any stateful PPT adversary A, any b ∈ {0, 1} and j ∈ {0, . . . , `(λ)},
define Hyb

(j)
mBME,`(λ),A(1λ) in Figure 14. For notational purposes, we will consider the parametersA,mBME, `(·),

and λ implicitly where clear, and write Hyb
(j)
mBME,`(λ),A(1λ) as Hybj and `(λ) as `.

Note that Expt-key-indA = HybA0 , and thus, Pr[1← Expt-key-indA] = Pr[1← HybA0 ].

Experiment Hyb
(j)

mBME,`(λ),A(1λ)

• (x0,x1)← A(1λ).

• (pk,msk)← Setup(1λ, 1`(λ)).

• b← {0, 1}, skb ← KeyGen(msk, zb) where zb = Zip(xb,x1−b, j).

• b′ ← AO
sk
msk,O

ct
msk(pk, ctb)

• Output 1 if b = b′, and 0 otherwise.

Adversarial Restrictions: For all queries (m,y) made by A to Oct
msk the following equality must hold:

f(x0,y) = f(x1,y).

Figure 14: Key Hybrid (j)

Lemma A.3. Assuming the mBME scheme is selective 1-attribute key hiding, for any PPT adversary A
and index j ∈ {0, 1, . . . , `− 1}, there exists a negligible function negl(·) such that for all λ ∈ N, Pr[1 ←
HybAj+1]− Pr[1← HybAj ] ≤ negl(λ).

Suppose there exists a PPT adversary A and a non-negligible function ε such that Pr[1 ← HybAj+1] −
Pr[1 ← HybAj ] = ε. We construct a PPT adversary B such that Pr[1 ← Expt-1-attr-key-indB] = 1/2 + ε.
The reduction algorithm B first receives the challenge vectors x0,x1 from the adversary A. It then chooses
a bit b ← {0, 1}, computes w0 = Zip(xb,x1−b, j + 1) and w1 = Zip(xb,x1−b, j), and sends w0,w1 to the
challenger. The challenger sends pk and sk∗ to B, which it forwards to the adversary. Next, the adversary
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is allowed to make key/ciphertext queries to the reduction algorithm. The reduction algorithm forwards the
queries to the challenger, and then forwards the challenger’s response to A. Finally, A sends its guess b′. If
b = b′, the reduction algorithm guesses that the key corresponds to w0, else it guesses that it corresponds
to w1.

Analysis We now show that B is a valid adversary for Expt-1-attr-key-ind. First, note that w0,w1 can
differ at only one position (index j + 1). Next, using Lemma A.2, it follows that f(w0,y) = f(w1,y) if
f(x0,y) = f(x1,y). Finally, as in the ciphertext hiding proof, we can show that Pr[1 ← HybAj+1] − Pr[1 ←
HybAj ] = ε. Thus, mBME satisfies key hiding.

B Preliminaries (Cont’d)

B.1 Bilinear Groups and Assumptions

In this work, we will use composite order bilinear groups for our main construction. Let G,GT be two
groups of order N . A bilinear map e : G×G→ GT is an efficiently computable function mapping two group
elements of G to a group element in GT and satisfying the following properties:

• Bilinearity : ∀g ∈ G, a, b ∈ ZN , e(ga, gb) = e(g, g)ab

• Non-Degeneracy : e(g, g) 6= 1GT for g 6= 1G, where 1G and 1GT are the identity elements of G and GT
respectively.

We will now present different assumptions on composite order bilinear groups. First, we will present the
a generalization of the subgroup decision assumption introduced by Bellare, Waters and Yilek [BWY11].
Essentially they introduce a framework to capture a class of assumptions related to subgroup decision. From
this class one can use their notation to capture a particular non-interactive assumption. We will be using
the syntax and notations from [BWY11].

Let Bilin-Genk be a PPT algorithm that is parameterized by k, takes as input a security parameter λ
and returns ((p1, p2, . . . , pk) , N,G,GT , e(·, ·)), where pi’s are primes such that pi ∈ {2λ−1, . . . , 2λ − 1} for
all i ∈ {1, 2, . . . , k}, N =

∏
i pi, G and GT are groups of order N and e : G × G → GT is a non-degenerate

bilinear map. For any set S ⊆ {1, 2, . . . , k}, let GS ⊆ G denote the (unique) subgroup of order
∏
i∈S pi. For

any S ⊆ {1, 2, . . . , k}, using {pi}i∈S , one can sample a uniformly random element from GS .

Assumption 3 (General Subgroup Decision Assumption). Consider the experiment Expt-GSD, parameter-
ized by Bilin-Genk and PPT algorithm A, defined in Figure 15.

Experiment Expt-GSDBilin-Genk,A(λ)

1. Challenger chooses ((p1, . . . , pk), N,G,GT , e(·, ·)) ← Bilin-Genk(1λ). It sends (N,G,GT , e(·, ·)) to the
adversary.

2. The adversary sends two subsets S0, S1 ⊆ {1, 2, . . . , k}. The challenger chooses b ← {0, 1}, g ← GSb
and sends g to A.

3. The adversary then queries for polynomially many random elements from subgroups of its choice. For
each queried set S ⊆ {1, 2, . . . , k} such that either (S∩S0 = S∩S1 = ∅) or (S∩S0 6= ∅ and S∩S1 6= ∅),
the challenger sends h← GS to A.

4. Finally, after polynomially many queries, the adversary sends its guess b′. The experiment outputs 1
if b = b′, else it outputs 0.

Figure 15: Experiment Expt-GSD

We say that the General Subgroup Decision holds with respect to Bilin-Genk if for any PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, AdvA(λ) =

∣∣Pr [1← Expt-GSDBilin-Genk,A(λ)]− 1
2

∣∣ ≤
negl(λ).
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We will also need an additional assumption on composite order bilinear groups. This assumption is
similar to “Assumption 3” of [LW10], but captured in a general framework like [BWY11].

Assumption 4 (Subgroup Decision Assumption in Target Group). Consider the experiment Expt-SDT,
parameterized by Bilin-Genk and PPT algorithm A, defined in Figure 16.

Experiment Expt-SDTBilin-Genk,A(λ)

1. Challenger chooses ((p1, . . . , pk), N,G,GT , e(·, ·)) ← Bilin-Genk(1λ). The challenger also chooses
α, s← ZN and g1 ← G{1}. It sends (N,G,GT , e(·, ·)) to the adversary.

2. The adversary then sends a set S1, S2 ⊆ {2, . . . , k} such that S1 ∩ S2 6= ∅. The challenger chooses
u, v ← GS1 , w ← GS2 . It also chooses b← {0, 1}. If b = 0, it sets T = e(g1, g1)α·s, else it sets T ← GT .
The challenger sends (gα1 · u, v, gs1 ·w, T ). The adversary sends its guess b′. The experiment outputs 1
if b = b′, else it outputs 0.

Figure 16: Experiment Expt-SDT

We say that the Subgroup Decision Assumption in Target Group holds with respect to Bilin-Genk if
for any PPT adversary A, there exists a negligible function negl(·) such that for all λ ∈ N, AdvA(λ) =∣∣Pr [1← Expt-SDTBilin-Genk,A(λ)]− 1

2

∣∣ ≤ negl(λ).

Finally, we state the Bilinear Diffie Hellman assumption for composite order groups. This is similar to the
BDDH assumption for prime order groups, except that the challenge elements are chosen from a subgroup.

Assumption 5. We say that the Bilinear Decision Diffie Hellman assumption holds with respect to Bilin-Genk
if for any PPT adversary A = (A1,A2), there exists a negligible function negl(·) such that for all λ ∈ N,∣∣∣∣∣∣∣∣Pr

b← A2(σ,N,G,GT , g, h1, h2, h3, Ub) :

((p1, . . . , pk) , N,G,GT , e(·, ·))← Bilin-Genk(1λ)
(S, σ)← A1(1λ); g ← GS ; a, b, c← ZN
h1 = ga, h2 = gb, h3 = gc

U0 = e(g, g)abc, U1 ← GT , b← {0, 1}

− 1

2

∣∣∣∣∣∣∣∣
is at most negl(λ).

C Public Key Traitor Tracing Scheme

We will now present our public key traitor tracing scheme over composite order bilinear groups.

C.1 Construction

Let Bilin-Gen4 be a group generator that takes as input security parameter λ, parameterized by number
of prime-order subgroups k = 4, and outputs ((p1, p2, p3, p4), N,G,GT , e(·, ·)), where p1, p2, p3, p4 are λ-bit
primes, G is a group of order N = p1p2p3p4 with subgroups G{1},G{2},G{3},G{4} of order p1, p2, p3, p4

respectively. The group GT is a target group of order N and e is an efficient (non-degenerate) bilinear
function.

Setup(1λ, 1n): The setup algorithm first chooses ((p1, p2, p3, p4),G,GT , e(·, ·)) ← Bilin-Gen4(1λ). Next, it
chooses gj ← G{j} for 1 ≤ j ≤ 4, α← ZN and sets mpk = (e(g1, g1)α, g1).

The key generation algorithm then chooses an index i∗ ← {1, 2, . . . , n} and sets the master secret key
to be msk = (i∗, α, g1, g2, g3, g4).

To choose the secret keys, it uses the KeyGenless, KeyGeneq and KeyGengr algorithms defined below.

KeyGenless(msk): It chooses t, u← ZN and sets sk = gα1 · gt3 · gu4 .

KeyGeneq(msk): It chooses t, u← ZN and sets sk = gα1 · gt2 · gu4 .
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KeyGengr(msk): It chooses u← ZN and sets sk = gα1 · gu4 .

For each j ∈ {1, 2, . . . , i∗−1}, it sets the secret key skj ← KeyGenless(msk). It sets ski∗ ← KeyGeneq(msk).
Finally, for all j ∈ {i∗ + 1, . . . , n}, it sets skj ← KeyGengr(msk).

Enc(mpk,m): Let mpk = (A, g1). The encryption algorithm first chooses s← Zp1 and sets ct = (m ·As, gs1).

Dec(sk, ct): Let ct = (C0, C1). The decryption algorithm outputs C0/e(C1, sk).

TraceD(msk, 1y,m0,m1): Let msk = (α, g1, g2, g3, g4) and ε = b1/yc.
To define the trace algorithm, we need to first define two encryption algorithms Encless and Encleq.

Encless(msk,m): This encryption algorithm outputs ciphertexts which have group elements from
G{1,3}. It chooses s, v ← ZN and outputs ct = (m · e(g1, g1)αs, gs1 · gv3).

Encleq(msk,m): This encryption algorithm outputs ciphertexts which have group elements from
G{1,2,3}. It chooses s, u, v ← ZN and outputs ct = (m · e(g1, g1)αs, gs1 · gu2 · gv3).

The trace algorithm first sets T = λ · n/ε. Let countleq = countless = 0. For j = 1 to T , the trace
algorithm computes the following:

1. It chooses bj ← {0, 1} and computes ctlessj ← Encless(msk,mbj ) and sends ctlessj to D. If D outputs

bj , set countless = countless + 1, else set countless = countless − 1.

2. It chooses cj ← {0, 1} and computes ctleqj ← Encless(msk,mcj ) and sends ctleqj to D. If D outputs

cj , set countleq = countleq + 1, else set countleq = countleq − 1.

If countless − countleq > T · (ε/4n), output i∗, else output ⊥.

Correctness Let msk = (e(g1, g!)
α, g1), msk = (α, g1, g2, g3, g4, i), skj = gα1 · g

tj
3 · g

uj
4 for j < i, ski =

gα1 · g
ti
2 · g

ui
4 and skj = gα1 · g

uj
4 for j > i. Fix any message m ∈ M. The encryption of m with randomness

s ∈ ZN is ct = (m · e(g1, g1)α·s, gs1). For index j < i, Dec(skj , ct) = m · e(g1, g1)α·s/e(gα1 · g
tj
3 · g

uj
4 , gs1) = m.

For index i, Dec(ski, ct) = m · e(g1, g1)α·s/e(gα1 · g
ti
2 · g

ui
4 , gs1) = m. For index j > i, Dec(skj , ct) = m ·

e(g1, g1)α·s/e(gα1 · g
uj
4 , gs1) = m.

Singular Trace Property Note that our scheme satisfies the singular trace property defined in Defini-
tion 3.5. The trace algorithm either outputs i (which is chosen during setup, and is part of msk), or outputs
⊥.

C.2 Proof of Security

C.2.1 IND-CPA Security

First, we will show that the traitor tracing scheme is IND-CPA secure. The following proof is similar to the
security proof for El-Gamal encryption scheme.

Theorem C.1. Assuming the Bilinear Decisional Diffie Hellman assumption (Assumption 5), the traitor
tracing scheme described above is IND-CPA secure (Definition 3.1).

Proof. Suppose there exists a PPT adversary A that has advantage ε in the IND-CPA security game. Then
we can use A to build a PPT algorithm B that breaks the BDDH assumption with advantage ε.

The reduction algorithm first sends set S = {1}, and receives (N,G,GT , e(·, ·), g, A,B,C,R) from the
BDDH challenger, where g is a uniformly random element of G{1}, A = ga, B = gb, C = gc and R =

e(g, g)abc or a uniformly random element in GT . The reduction algorithm implicitly sets α = ab by setting
mpk = (e(A,B), g). Next, it receives messages m0,m1 from the adversary A. The reduction algorithm
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chooses b← {0, 1} and sends ct = (mb · R,C) to the adversary. The adversary sends a bit b′. If b = b′, the
reduction algorithm guesses that R = e(g, g)abc, else it guesses that R is uniformly random.

Note that if R = e(g, g)abc, then the reduction algorithm perfectly simulates the IND-CPA game. If R is
uniformly random, then A has zero advantage in this game. As a result, if A can win the IND-CPA game
with advantage ε, then B breaks the BDDH assumption with advantage ε.

C.2.2 False-Trace Probability

Next, we will show that an honest party will not be implicated by our trace algorithm with non-negligible
probability.

Theorem C.2. For every PPT adversary A, polynomials n(·), p(·) and non-negligible function ε(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Fal-TrA,n,ε(λ) ≤ negl(λ),

where Pr -Fal-TrA,n,ε(·) is as defined in Definition 3.4.

Proof. Given any pirate decoder boxD, let ptypeD = Pr[D(ct) = b : ct← Enctype(msk,mb)] for type ∈ {less, leq},
where the probability is taken over bit b, random coins of decoder D and randomness used during encryption.
Let Diff-Adv denote the event when the advantage of decoder D in distinguishing “less” encryptions of m0

and m1 is ε/8n more than its advantage in distinguishing “leq” cipheretexts. Formally, let

Diff-Adv : plessD − p
leq
D > ε/8n.

First, note that we could rewrite the probability of a false trace as

Pr[Fal-Tr] ≤ Pr[Fal-Tr | Diff-Adv] + Pr[Fal-Tr ∧ Diff-Adv].

To bound the overall probability of a false trace, we start by showing that Pr[Fal-Tr |Diff-Adv] ≤ negl1(λ) by
using a simple Chernoff bound. Next, we show that Pr[Fal-Tr | Diff-Adv] ≤ negl2(λ) by relying on subgroup
hiding assumption, i.e. a computational argument. These two lemmas together imply that Pr -Fal-TrA,n,ε(λ)
is also bounded by a negligible function.

Lemma C.1. There exists a negligible function negl1(·) such that for every adversary A, all λ ∈ N,

Pr[Fal-Tr | Diff-Adv] ≤ negl1(λ).

Proof. Consider the binary random variables Xtype for type ∈ {less, leq} defined as

Xtype =

{
1 with probability ptypeD ,

0 otherwise.

Let Z be another random variable defined as Z = X less −X leq. Now using linearity of expectation, we can
write that

E[Z | Diff-Adv] ≤ ε/8n.
Also, we know that the tracing algorithm estimates E[Z] by independently sampling T = λ · n/ε elements
from the distribution induced by Z. In other words, in each trial it first computes a single less and leq
encryptions of messages m0 and m1 using uniform randomness, then it uses the pirate box D to decrypt
each cipheretext and sets the value of sampled variable appropriately. Let zi be the sampled value in ith

trial. Now we know that countless − countleq =
∑T
i=1 zi. Thus, we can write that

Pr[Fal-Tr | Diff-Adv] = Pr

[
T∑
i=1

zi > T · ε/4n | Diff-Adv

]
.
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Using a Chernoff bound, we can bound the above probability as

Pr[Fal-Tr | Diff-Adv] ≤ e−Tε/16n.

Substituting T = λ · n/ε, we get Pr[Fal-Tr | Diff-Adv] ≤ 2−O(λ) = negl(λ). This completes the proof.

Lemma C.2. Assuming the subgroup hiding assumption (Assumption 3), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl2(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr[Fal-Tr ∧ Diff-Adv] ≤ negl2(λ).

Here, the events Fal-Tr and Diff-Adv are parameterized by the adversary A.

Proof. Suppose, on the contrary, there exists a PPT adversary A such that Pr[Fal-Tr ∧ Diff-Adv] = η(λ),
where η is non-negligible. Then we can construct a reduction algorithm B that breaks the subgroup hiding
assumption.

The reduction algorithm B sends challenge sets S0 = {3} and S1 = {2, 3} and gets group element T ,
together with N,G,GT , e(·, ·), where T ∈ GS0 or T ∈ GS1 . Next, it queries for generators of G{1},G{3} and
G{4}, and receives g1, g3, g4 respectively.

It first chooses α← ZN , chooses i← {1, 2, . . . , n} and computes mpk using g1, α. Next, it computes the
secret keys using g1, g3, g4. Concretely, if it is queried for secret key corresponding to i, then the reduction
algorithm outputs a uniformly random bit and quits. (hence it does not require generator for G{2}). For

j < i, it chooses tj , uj ← ZN and sets skj = gα1 ·g
tj
3 ·g

uj
4 . For j > i, it chooses tj ← ZN and sets skj = gα1 ·g

tj
4 .

Finally, after all queries, the adversary sends a pirate box D and messages m0,m1.
The reduction algorithm first computes an estimate of Diff-Adv. It sets countless = count = 0 and

z = λ · n/ε. For k = 1 to z, it does the following: it chooses sk, vk ← ZN and bk ← {0, 1}, sets ctk =
(mbk · e(gα1 , g

sk
1 ), gsk1 · T vk). If D(ctk) = bk, it sets count = count + 1, else it sets count = count − 1. Next,

it chooses s′k, v
′
k ← ZN and b′k ← {0, 1}, sets ct′k = (mb′k

· e(gα1 , g
s′k
1 ), g

s′k
1 · g

v′k
3 ). If D(ct′k) = b′k, it sets

countless = countless + 1, else it sets countless = countless − 1. Finally, if countless − count > ε/16n, B guesses
that T ∈ GS1

, else it guesses that T ∈ GS0
.

First, note that Pr[B guesses T ∈ GS1
| T ∈ GS0

] ≤ (1/2) Pr[A sends i as query | T ∈ GS0
] + negl(λ).

This is because if A does not query for index i and T ∈ GS0 , then the expected value of countless−count = 0.
As a result, using Chernoff bounds, we can argue that the probability that Pr[B guesses T ∈ GS1 | T ∈
GS0
∧ i not queried] ≤ 2−O(λ). Also, Pr[A sends i as query | T ∈ GSb ] = Pr[A sends i as query ], i.e. it is

independent of bit b, becasue the adversary A does not receive T . Thus, Pr[B guesses T ∈ GS1
| T ∈ GS0

] ≤
(1/2) Pr[A sends i as query] + negl(λ). Below we compute Pr[B guesses T ∈ GS1

| T ∈ GS1
].

Pr[B guesses T ∈ GS1 | T ∈ GS1 ]

=
1

2
Pr[A sends i as query | T ∈ GS1

]

+ Pr[B guesses T ∈ GS1 ∧ A does not send i as query | T ∈ GS1 ]

Now from construction of our reduction algorithm, we know that

Pr[B guesses T ∈ GS1
∧ A does not send i as query | T ∈ GS1

] ≥ Pr[Fal-Tr ∧ Diff-Adv].

Therefore, the reduction algorithm B’s advantage could be written as

Pr[B wins] = Pr[B guesses T ∈ GS1 | T ∈ GS1 ]− Pr[B guesses T ∈ GS1 | T ∈ GS0 ]

≥ Pr[Fal-Tr ∧ Diff-Adv]− negl(λ) ≥ η(λ)− negl(λ).

This concludes our proof.
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C.2.3 Correct-Trace Probability

We will first introduce some notations for our security proof. For any γ ∈ [0, 1/2], a decoding box D is said
to be γ-Dist for messages m0,m1 if

Pr[D(ct) = b : b← {0, 1}, ct← Enc(mpk,mb)] ≥ 1/2 + γ.

Similarly, a decoding box D is said to be γ-Distless for messages m0,m1 if

Pr[D(ct) = b : b← {0, 1}, ct← Encless(msk,mb)] ≥ 1/2 + γ.

Finally, we say that D is γ-Distleq for messages m0,m1 if

Pr[D(ct) = b : b← {0, 1}, ct← Encleq(msk,mb)] ≥ 1/2 + γ.

For any adversary A and polynomial n(·), we define experiment MakeBoxA,n(λ, i) (see Figure 17). The
experiment takes as input a security parameter λ, index i ∈ {1, 2, . . . , n(λ)} and outputs a decoding box D
and two messages m0,m1.

Experiment MakeBoxA,n(λ, i)

1. Challenger chooses ((p1, p2, p3, p4), N,G,GT , e(·, ·)) ← Bilin-Gen4(1λ), gj ← G{j} for j ∈ {1, 2, 3, 4}
and α← ZN . It sets mpk = (e(g1, g1)α, g1) and sends mpk to A.

2. The set S represents the keys queried by A. For each queried index j ∈ S, if j < i, the challenger
computes skj ← KeyGenless(msk); if j = i, the challenger computes ski ← KeyGeneq(msk); else, for
j > i, it computes skj ← KeyGengr(msk) and sends skj .

3. The adversary finally outputs a pirate decoding box D and messages m0,m1. The output of the
experiment is (D,m0,m1).

Figure 17: Experiment MakeBoxA,n(λ, i)

Using the MakeBox experiment, we can define the following probabilities, parameterized by γ ∈ [0, 1/2],
and a function of λ, i:

Pr -Good-DecA,n,γ(λ, i) = Pr [D is γ-Dist for m0,m1 : (D,m0,m1)← MakeBoxA,n(λ, i)]

Pr -Good-DecleqA,n,γ(λ, i) = Pr
[
D is γ-Distleq for m0,m1 : (D,m0,m1)← MakeBoxA,n(λ, i)

]

Pr -Good-DeclessA,n,γ(λ, i) = Pr
[
D is γ-Distless for m0,m1 : (D,m0,m1)← MakeBoxA,n(λ, i)

]

Pr -GapA,n,γ(λ, i) = Pr

[
∃ δ ∈ [0, 1/2] s.t.

D is δ-Distless∧
D is not (δ − γ)-Distleq

: (D,m0,m1)← MakeBoxA,n(λ, i)

]
These probabilities are defined over all the random coins chosen by the challenger and adversary A during

MakeBoxA,n(λ, i) experiment.
First, we will show that Pr -G-DA,n,ε is related to Pr -Gap via the following relation.

Theorem C.3. Let A be a PPT adversary, n(·), p(·) polynomials and ε(·) a non-negligible function. There
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),∑

i

Pr -GapA,n,ε/4n (λ, i) ≥ Pr -G-DA,n,ε(λ)− negl(λ).
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Next, we will show that Pr -Cor-TrA,n,ε is related to Pr -Gap via the following relation.

Theorem C.4. Let A be a PPT adversary, n(·), p(·) polynomials and ε(·) a non-negligible function. There
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Cor-TrA,n,ε(λ) ≥

(∑
i Pr -GapA,n,ε/4n(λ, i)

)
n(λ)

− negl(λ).

Observe that combing above two theorems, we get that our scheme is a 1/n-risky secure traitor tracing
scheme. We will now prove these theorems in the following subsections.

C.2.4 Proof of Theorem C.3

For notational simplicity, we will skip the dependence of n and ε on λ. Also, we will skip the subscripts A
and n when they are clear from the context.

Outline of the proof. At a high level, this proof can be divided into the following steps:

• We first show that Pr -Good-Declessε−ε/2n(1) ≈ Pr -G-DA,n,ε and Pr -Good-Declessε−ε(n+1)/2n(n+ 1) ≈ 0 (see
Observation C.1, Lemma C.3 and Lemma C.4).

• From this, it follows that ∃ Γ ⊆ {1, 2, . . . , n} such that for all i ∈ Γ, Pr -Good-Declessε−ε·i/2n(i) −
Pr -Good-Declessε−ε·(i+1)/2n(i + 1) > 0 and the sum of these differences is at least Pr -G-DA,n,ε − negl
(see Observation C.2).

• Next, we show Pr -Good-Decleqε−ε·(i+1)/2n+ε/4n(i) ≈ Pr -Good-Declessε−ε·(i+1)/2n(i+ 1) (see Lemma C.5).

• After this, we relate Pr -Gap(i) to Pr -Good-Decless(i) and Pr -Good-Decleq(i). We show

Pr -Gapε/4n(i) ≥ Pr -Good-Declessε−ε·i/2n(i)− Pr -Good-Decleqε−ε·(i+1)/2n+ε/4n(i) (see Lemma C.6)

≈ Pr -Good-Declessε−ε·i/2n(i)− Pr -Good-Declessε−ε·(i+1)/2n(i+ 1)

• As a result, we can conclude that∑
i

Pr -Gapε/4n(i) ≥
∑
i∈Γ

Pr -Gapε/4n(i)

≥
∑
i∈Γ

(
Pr -Good-Declessε−ε·i/2n(i)− Pr -Good-Declessε−ε·(i+1)/2n(i+ 1)

)
≥ Pr -G-DA,n,ε − negl

First, we have the following observation.

Observation C.1. For every adversary A, polynomial n(·) and λ ∈ N, there exists an i∗ ∈ {1, 2, . . . , n(λ)}
such that Pr -Good-DecA,n,ε(λ, i

∗) ≥ Pr -G-DA,n,ε(λ).

This observation simply follows from the fact that Pr -G-DA,n,ε(λ) = (1/n)
∑
i Pr -Good-DecA,n,ε(λ, i),

and therefore, there exists some index i∗ such that Pr -Good-DecA,n,ε(λ, i
∗) ≥ Pr -G-DA,n,ε(λ).

Lemma C.3. Assuming the subgroup decision assumption (Assumption 3), for any PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl(·) such that for
all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Good-Declessε−ε/2n (λ, 1) ≥ Pr -Good-Decε(λ, i
∗)− negl(λ) ≥ Pr -G-DA,n,ε(λ)− negl(λ).

Proof. Let ρ1(λ) = Pr -Good-Decε(λ, i
∗) and ρ2(λ) = Pr -Good-Declessε−ε/2n (λ, 1). In order to show that ρ1−ρ2

is negligible in λ, we will define a sequence of hybrid events, and show that the difference in their probabilities
is at most negligible in λ.
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Hybrid Hyb1 This experiment is similar to that associated with Good-Decoderε, except that all keys for
indices j < i∗ are generated using KeyGengr. The adversary must finally output a pirate box D and two
messages m0,m1 such that D can distinguish between (normal) encryptions of m0 and m1 with advantage
at least γ1 = ε− ε/8n. Let ρHyb1(λ) denote the probability that A outputs a pirate box D that is γ1-Dist for
m0,m1.

Hybrid Hyb2 This experiment is similar to that associated witho Good-Decoderε, except that the keys
corresponding to index i∗ is also generated using KeyGengr. The adversary must finally output a pirate box
D and two messages m0,m1 such that D can distinguish between (normal) encryptions of m0 and m1 with
advantage at least γ2 = ε− ε/6n. Let ρHyb2(λ) denote the probability that A outputs a pirate box D that is
γ2-Dist for m0,m1.

Hybrid Hyb3 This experiment is similar to that associated with Hyb2, except that the key for index i = 1
is generated using KeyGeneq; all other keys are generated using KeyGengr. The adversary must finally output
a pirate box D and two messages m0,m1 such that D can distinguish between (normal) encryptions of m0

and m1 with advantage at least γ3 = ε− ε/4n. Let ρHyb3(λ) denote the probability that A outputs a pirate
box D that is γ3-Dist for m0,m1.

Claim C.1. Assuming the subgroup decision assumption (Assumption 3), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl1(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρ1(λ)− ρHyb1(λ) ≤ negl1(λ).

Proof. Suppose ρ1 − ρHyb1 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage.

First, B sends its challenge sets S0 = {3, 4}, S1 = {4} and it receives T , where T ∈ GS0
or T ∈ GS1

.
Next, it queries for the generators for G{1},G{2} and G{4}, and receives g1, g2, g4 respectively. The reduction
algorithm first chooses α← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1 and T to construct keys for
indices less than i∗; that is, it chooses uj ← ZN and sets skj = gα1 · Tuj as the secret key for index j < i∗.
For the i∗ index, it uses g1, g2 and g4; that is, it chooses ui∗ , ti∗ and sets ski∗ = gα1 · g

ui∗
2 · gti∗4 . Finally, for

indices j > i∗, the reduction algorithm uses g1 and g4 and sets skj = gα1 · g
uj
4 for randomly chosen uj ← ZN .

After all secret key queries, the reduction algorithm receives pirate box D and m0,m1. The reduction
algorithm sets γ = ε−ε/16n, z = λ ·n/ε and tests whether D is a γ-Dist box for m0,m1 using simple counting
based estimation. Concretely, it first sets count = 0. For k = 1 to z, it chooses bk ← {0, 1}, sk ← ZN and sets
ctk = (mbk · e(g1, g1)α·sk , gsk1 ). Next, if D(ctk) = bk, it sets count = count + 1, else it sets count = count− 1.
Finally, after the z iterations, if count > γ · z, then B guesses that T ∈ GS0

, else it guesses that T ∈ GS1
.

Let us now compute the reduction algorithm’s advantage. First, note that if T ← GS0
then the key for

indices j < i∗ corresponds to a KeyGenless key, and if T ∈ GS1 , then it corresponds to a KeyGengr key (we
use the Chinese Remainder Theorem to argue that {(gα1 · g

uj
3,4)j : g1 ← G1, g3,4 ← G{3,4}, uj ← ZN} is

statistically indistinguishable from {(gα1 ·g
uj
3 ·g

vj
4 ) : g1 ← G{1}, g3 ← G{3}, g4 ← G{4}, uj ← ZN , vj ← ZN}).

Similarly, using Chinese Remainder Theorem, we can argue that the ciphertexts computed by the re-
duction algorithm are indistinguishable from (normal) ciphertexts. We will now analyse B′s advantage in
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breaking the subgroup decision assumption.

Pr[B guesses T ∈ GS0
| T ∈ GS0

]

= Pr[count > γ · z | T ∈ GS0
]

≥ Pr[A outputs ε-Dist box D ∧ count > γ · z | T ∈ GS0
]

≥ Pr[A outputs ε-Dist box D | T ∈ GS0
]

− Pr[A outputs ε-Dist box D ∧ count ≤ γ · z | T ∈ GS0
]

≥ Pr -Good-Decε(λ, i
∗)

− Pr[count ≤ γ · z | T ∈ GS0
∧ A outputs ε-Dist box D]

≥ ρ1 − 2−O(λ).

The last inequality follows by applying a Chernoff bound similar to that in Lemma C.1. Next, let us analyse
the probability that B guesses T ∈ GS0 when T ∈ GS1 .

Pr[B guesses T ∈ GS0 | T ∈ GS1 ]

= Pr[count > γ · z | T ∈ GS1 ]

≤ Pr[A does not output (ε− ε/8n)-Dist box D ∧ count > γ · z | T ∈ GS1 ]

+ Pr[A outputs (ε− ε/8n)-Dist box D ∧ count > γ · z | T ∈ GS1 ]

≤ Pr[count > γ · z | T ∈ GS1 ∧ A does not output (ε− ε/8n)-Dist box D] + ρHyb1

≤ 2−O(λ) + ρHyb1 .

As before, the last inequality follows by applying a Chernoff bound. Thus, combining above bounds, we get
that

Pr[B wins] = Pr[B guesses T ∈ GS0
| T ∈ GS0

]− Pr[B guesses T ∈ GS0
| T ∈ GS1

]

≥ ρ1 − ρHyb1 − negl(λ).

Therefore, since the subgroup decision assumption holds over G, thus we can conclude that ρ1 − ρHyb1 ≤
negl1(λ) for some negligible function negl(·).

Claim C.2. Assuming the subgroup decision assumption (Assumption 3), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl2(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρHyb1(λ)− ρHyb2(λ) ≤ negl2(λ).

Proof. Suppose ρHyb1−ρHyb2 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage. The proof of this claim is
similar to that of Claim C.1.

First, B sends its challenge sets S0 = {2, 4}, S1 = {4} and it receives T , where T ∈ GS0
or T ∈ GS1

.
Next, it queries for the generators for G{1},G{3} and G{4}, and receives g1, g3, g4 respectively. The reduction
algorithm first chooses α ← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1 and g4 to construct keys
for indices less than i∗; that is, it chooses uj ← ZN and sets skj = gα1 · g

uj
4 as the secret key for index j < i∗.

For the i∗ index, it uses g1 and T ; that is, it chooses ui∗ and sets ski∗ = gα1 ·Tui∗ . Finally, for indices j > i∗,
the reduction algorithm uses g1 and g4 and sets skj = gα1 · g

uj
4 for randomly chosen uj ← ZN .

After all secret key queries, the reduction algorithm receives pirate box D and m0,m1. The reduction
algorithm sets γ = ε − ε/7n, z = λ · n/ε, count = 0. Next, it tests whether D is a γ-Dist box for m0,m1.
For k = 1 to z, it chooses bk ← {0, 1}, sk ← ZN , sets ctk = (mbk · e(g1, g1)α·sk , gsk1 ) and if D(ctk) = bk, it
sets count = count + 1, else it sets count = count− 1. Finally, after the z iterations, if count > γ · z, then B
guesses that T ∈ GS0

, else it guesses that T ∈ GS1
.

The analysis of B’s advantage is similar to that in proof of Claim C.1.
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Claim C.3. Assuming the subgroup decision assumption (Assumption 3), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl3(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρHyb2(λ)− ρHyb3(λ) ≤ negl3(λ).

Proof. Suppose ρHyb2−ρHyb3 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage. The proof of this claim is
similar to that of Claim C.1.

First, B sends its challenge sets S0 = {4}, S1 = {2, 4} and it receives T , where T ∈ GS0 or T ∈ GS1 .
Next, it queries for the generators for G{1},G{3} and G{4}, and receives g1, g3, g4 respectively. The reduction
algorithm first chooses α ← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1 and T to construct the
secret key for i = 1. It sets sk1 = (gα1 · T ). Finally, for indices j > 1, the reduction algorithm uses g1 and g4

and sets skj = gα1 · g
uj
4 for randomly chosen uj ← ZN .

After all secret key queries, the reduction algorithm receives pirate box D and m0,m1. The reduction
algorithm sets γ = ε − ε/5n, z = λ · n/ε, count = 0. Next, it tests whether D is a γ-Dist box for m0,m1.
For k = 1 to z, it chooses bk ← {0, 1}, sk ← ZN , sets ctk = (mbk · e(g1, g1)α·sk , gsk1 ) and if D(ctk) = bk, it
sets count = count + 1, else it sets count = count− 1. Finally, after the z iterations, if count > γ · z, then B
guesses that T ∈ GS0

, else it guesses that T ∈ GS1
.

The analysis of B’s advantage is similar to that in proof of Claim C.1.

Claim C.4. Assuming the subgroup decision assumption (Assumption 3), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl3(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρHyb3(λ)− ρ2(λ) ≤ negl3(λ).

Proof. Suppose ρHyb3 − ρ2 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage. The proof of this claim is
similar to that of Claim C.1.

First, B sends its challenge sets S0 = {1}, S1 = {1, 3} and it receives T , where T ∈ GS0
or T ∈ GS1

.
Next, it queries for the generators for G{1}, G{2} and G{4}, and receives g1, g2, g4 respectively. The reduction
algorithm first chooses α← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1, g2 and g4 to construct keys
for index 1; that is, it chooses t1, u1 ← ZN and sets sk1 = gα1 · g

t1
2 · g

u1
4 . For indices j > 1, the reduction

algorithm uses g1 and g4 and sets skj = gα1 · g
uj
4 for randomly chosen uj ← ZN .

After all secret key queries, the reduction algorithm receives pirate box D and m0,m1. The reduction
algorithm sets γ = ε − ε/3n, z = λ · n/ε, count = 0. Next, it tests whether D is a γ-Dist box for m0,m1.
For k = 1 to z, it chooses bk ← {0, 1}, sk ← ZN , sets ctk = (mbk · e(g1, T )α·sk , T sk) and if D(ctk) = bk, it
sets count = count + 1, else it sets count = count− 1. Finally, after the z iterations, if count > γ · z, then B
guesses that T ∈ GS0 , else it guesses that T ∈ GS1 .

The analysis of B’s advantage is similar to that in proof of Claim C.1.

Lemma C.4. Assuming the subgroup hiding in target group assumption (Assumption 4), for any PPT
adversary A, polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl(·)
such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Good-DeclessA,ε− ε·(n+1)
2n

(λ, n+ 1) ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that ρ = Pr -Good-DeclessA,ε− ε·(n+1)
2n

(λ, n+ 1) is non-

negligible in λ. The adversary A receives keys generated by KeyGenless (that is, all the secret keys have
G{1,3,4} group elements), and must output a pirate box D and messages m0,m1 such that D can distinguish

between encryptions of m0 and m1 generated using Encless with probability at least κ = ε − ε·(n+1)
2n . We
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will show that A can be used to build a PPT algorithm B that breaks Assumption 4 with non-negligible
advantage.

The reduction algorithm first sends S1 = {3, 4} and S2 = {3}. It receives (g1, h1, h2, h3, T ) from the
challenger, where h1 = gα1 · u, h3 = gs1 · w, g1 ∈ G{1}, u, h2 ∈ GS1

, w ∈ GS2
and T is either e(g1, g1)α·s or a

uniformly random element in GT . It sets mpk = (e(g1, h1), g1). It responds to the secret key queries using
h1, h2; that is, the secret key for j is skj = (h1 · h

uj
2 ) for some randomly chosen uj . Note that elements from

G{2} are not required since all keys are created using KeyGenless.
Finally, it receives a pirate box D and m0,m1. The reduction algorithm sets γ = ε/8 and count = 0.

Next, it tests whether D is a γ-Distless box for m0,m1. Concretely, for k = 1 to λ/ε, it chooses bk ← {0, 1},
tk, vk ← ZN , sets ctk = (mbk · e(g

tk
1 , h1), gtk1 · wvk) and if D(ctk) = bk, it sets count = count + 1, else sets

count = count− 1. If count < λ/8, the reduction algorithm outputs a uniformly random bit.
Otherwise, it uses D to break Assumption 4. It chooses b ← {0, 1}, computes ct = (mb · T, h3). If

D(ct) = b, it guesses that T = e(g1, g1)α·s. Else it guesses that T is uniformly random.
First, note that the keys are distributed as output of KeyGenless algorithm. This argument follows from

the Chinese Remainder Theorem, since

{(gα1 · w · h
uj
2 )j : γ, γ′, δ, δ′, uj ← ZN , w = gγ3 · gδ4, h2 = gγ

′

3 · gδ
′

4 } ≡ {(gα1 · g
γj
3 · g

δj
4 )j : γj , δj ← ZN}

If T is a uniformly random element in GT , then D cannot distinguish between m0 · T and m1 · T .
Therefore, Pr[B guesses T = e(g1, g1)α·s | T is random ] = 1/2. Next, we will analyse the probability B’s
guess is correct if T = e(g1, g1)α·s. Let event BoxAδ denote the event that A outputs a δ-Distless box D.
Recall κ = ε− ε · (n+ 1)/2n.

Pr[B guesses correctly | T = e(g1, g1)α·s]

= Pr[B guesses correctly ∧ BoxAκ | T = e(g1, g1)α·s]

+ Pr[B guesses correctly ∧ BoxAε/16 ∧ ¬BoxAκ | T = e(g1, g1)α·s].

+ Pr[B guesses correctly ∧ ¬BoxAε/16 | T = e(g1, g1)α·s].

First, let us analyse the probability of B correctly guessing when A outputs a κ-Distless box.

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ BoxAκ ]

= Pr[count ≥ λ/8 ∧D(ct) = b | T = e(g1, g1)α·s ∧ BoxAκ ]

+
1

2
Pr[count < λ/8 | T = e(g1, g1)α·s ∧ BoxAκ ].

Using Chernoff bounds, we have that

Pr
[
count < λ/8 | T = e(g1, g1)α·s ∧ BoxAκ

]
= negl(λ).

Also, we know that Pr
[
D(ct) = b | BoxAκ

]
≥ 1

2 + κ. Thus, we can conclude that

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ BoxAκ ] ≥ 1

2
+ κ− negl(λ). (15)

Next, let us analyse the probability of B correctly guessing when A outputs an ε/16-Distless box.

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ BoxAε/16 ∧ ¬BoxAκ ]

= Pr[count ≥ λ/8 ∧D(ct) = b | T = e(g1, g1)α·s ∧ BoxAε/16 ∧ ¬BoxAκ ]

+
1

2
Pr[count < λ/8 | T = e(g1, g1)α·s ∧ BoxAε/16 ∧ ¬BoxAκ ].
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Let x be the probability that count ≥ λ/8 when A outputs such a box. Concretely, let x = Pr[count < λ/8 |T
= e(g1, g1)α·s ∧ BoxAε/16 ∧ ¬BoxAκ ]. Given this we can write that

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ BoxAε/16 ∧ ¬BoxAκ ]

≥ x ·
(

1

2
+

ε

16

)
+ (1− x) · 1

2
≥ 1

2
.

(16)

Next, let us analyse the probability of B correctly guessing when A does not output an ε/16-Distless box.

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ ¬BoxAε/16]

= Pr[count ≥ λ/8 ∧D(ct) = b | T = e(g1, g1)α·s ∧ ¬BoxAε/16]

+
1

2
Pr[count < λ/8 | T = e(g1, g1)α·s ∧ ¬BoxAε/16].

Again, using Chernoff bounds, we have that

Pr
[
count ≥ λ/8 | T = e(g1, g1)α·s ∧ ¬BoxAε/16

]
= negl(λ).

Thus, we can conclude that

Pr[B guesses correctly | T = e(g1, g1)α·s ∧ ¬BoxAε/16] ≥ 1

2
− negl(λ). (17)

Finally, we also have that

Pr
[
BoxAκ | T = e(g1, g1)α·s

]
= Pr -Good-DeclessA,κ (λ, n+ 1) = ρ.

Combining above fact with Equations 15, 16 and 17, we get that

Pr[B guesses correctly | T = e(g1, g1)α·s] ≥ 1

2
+ ρ · κ− negl(λ).

As a result, the advantage of B in breaking Assumption 4 is at least ρ ·κ−negl(λ). This completes the proof.

From the above lemmas, it follows that Pr -Good-Declessε−ε/2n(λ, 1) − Pr -Good-Declessε−ε(n+1)/2n(λ, n + 1) ≥
Pr -G-DA,n,ε(λ)− negl(λ). This brings us to the following observation.

Observation C.2. For any PPT adversary A, non-negligible function ε(·), polynomials n(·), p(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ), there exists a subset
Γ ⊆ {1, 2, . . . , n} such that Pr -Good-Declessε−ε·i/2n(λ, i)− Pr -Good-Declessε−ε·(i+1)/2n(λ, i+ 1) > 0 and∑

i∈Γ

(
Pr -Good-Declessε−ε·i/2n(λ, i)− Pr -Good-Declessε−ε·(i+1)/2n(λ, i+ 1)

)
≥ Pr -G-DA,n,ε(λ)− negl(λ).

The next lemma will prove that Pr -Good-Decless(i+ 1) and Pr -Good-Decleq(i) are approximately equal.

Lemma C.5. For any PPT adversary A, polynomials n(·), p(·) and non-negligible function ε(·), there exists
a negligible function negl(·) such that for all i ∈ {1, 2, . . . , n}, λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Good-Decleq
ε− ε·(i+1)

2n + ε
4n

(λ, i) ≤ Pr -Good-Decless
ε− ε·(i+1)

2n

(λ, i+ 1) + negl(λ).

Proof. Let ρ1(λ) = Pr -Good-Decleq
ε− ε·(i+1)

2n + ε
4n

(λ, i) and ρ2(λ) = Pr -Good-Decless
ε− ε·(i+1)

2n

(λ, i+ 1).

Let Expt1 denote the first scenario, and Expt2 the second one. The only differences in the two scenarios
are as follows:
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Key for user i in the first scenario is generated using KeyGeneq, while in the second scenario, it is generated
using KeyGenless.

Key for user i + 1 in the first scenario is generated using KeyGengr, while in the second scenario, it is
generated using KeyGeneq.

The decoder in the first scenario must distinguish between Encleq encryptions with advantage at least

ε− ε·(i+1)
2n + ε

4n , while the decoder in the second scenario must distinguish between encryptions generated

using Encless with advantage at least ε− ε·(i+1)
2n .

We will construct two hybrid experiments, and show that consecutive hybrid experiments are computa-
tionally indistinguishable.

Hybrid Hyb1: This is identical to Expt1, except that the key for user i is generated using KeyGenless. The
key for user i+ 1 is generated using KeyGengr and the decoder must distinguish between Encleq encryptions

with advantage at least γ1 = ε − ε·(i+1)
2n + ε

8n . Let ρHyb1(λ) denote the probability that the decoder output

can distinguish between Encleq encryptions with advantage at least γ1.

Hybrid Hyb2 This is identical to Hyb1, except that decoder must distinguish between Encless encryptions

with advantage at least γ2 = ε− ε·(i+1)
2n + ε

16n . Let ρHyb2(λ) denote the probability that the decoder output

can distinguish between Encless encryptions with advantage at least γ2.

Claim C.5. Assuming the subgroup decision assumption (Assumption 3), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl1(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρ1(λ)− ρHyb1(λ) ≤ negl1(λ).

Proof. Suppose ρ1 − ρHyb1 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage.

First, B sends its challenge sets S0 = {2, 4}, S1 = {3, 4} and it receives T , where T ∈ GS0
or T ∈

GS1
. Next, it queries for the generators for G{1}, G{2,3}, G3,4 and G{4}, and receives g1, g2,3, g3,4 and g4

respectively. The reduction algorithm first chooses α← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1

and g3,4 to construct keys for indices less than i; that is, it chooses uj ← ZN and sets skj = gα1 · g
uj
3,4 as the

secret key for index j < i. For the ith index, it uses g1 and T ; that is, it sets ski = gα1 ·T . Finally, for indices
j > i, the reduction algorithm uses g1 and g4 and sets skj = gα1 · g

uj
4 for randomly chosen uj ← ZN .

After all secret key queries, the reduction algorithm receives pirate box D and messages m0,m1. The
reduction algorithm sets γ = ε − ε · (i + 1)/2n + ε/6n, z = λ · n/ε and tests whether D is a γ-Distless

box for m0,m1. The reduction algorithm first sets count = 0. For k = 1 to z, it chooses bk ← {0, 1},
sk, tk ← ZN , sets ctk = (mbk · e(g1, g1)α·sk , gsk1 · g

tk
2,3) and if D(ctk) = bk, it sets count = count + 1, else it

sets count = count − 1. Finally, after the z iterations, if count > γ · z, then B guesses that T ∈ GS0
, else it

guesses that T ∈ GS1
.

Let us now compute the reduction algorithm’s advantage. First, note that if T ← GS0
then the key

for index i corresponds to a KeyGeneq key, and if T ∈ GS1 , then it corresponds to a KeyGenless key. For
indices j < i, the adversary gets KeyGenless keys (we use the Chinese Remainder Theorem to argue that
{(gα1 ·g

uj
3,4)j : g1 ← G1, g3,4 ← G{3,4}, uj ← ZN} is statistically indistinguishable from {(gα1 ·g

uj
3 ·g

vj
4 ) : g1 ←

G{1}, g3 ← G{3}, g4 ← G{4}}). Similarly, for all indices j > i, the keys are generated using KeyGengr.
Similarly, using Chinese Remainder Theorem, we can argue that the ciphertexts computed by the reduc-

tion algorithm are indistinguishable from Encleq ciphertexts. The analysis of B’s advantage is similar to that
in proof of Claim C.1.

Claim C.6. Assuming the subgroup decision assumption (Assumption 3), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·),there exists a negligible function negl2(·) such that for
all λ ∈ N satisfying ε(λ) > 1/p(λ), ρHyb1(λ)− ρHyb2(λ) ≤ negl2(λ).
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Proof. Suppose ρHyb1−ρHyb2 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage.

First, B sends its challenge sets S0 = {2, 3}, S1 = {3} and it receives T , where T ∈ GS0
or T ∈ GS1

.
Next, it queries for the generators for G{1}, G{3}, G{4}, and receives g1, g3, g4 respectively. First, it chooses
α← ZN and sends mpk = (e(g1, g1)α, g1) to A. Next, it receives key queries from A, and it uses g1, g3 and

g4 to construct keys. For indices j ≤ i, it chooses uj , tj ← ZN and sets skj = gα1 · g
uj
3 · g

tj
4 . For indices j > i,

the reduction algorithm chooses tj ← ZN and sends skj = gα1 · g
tj
4 . Finally, after all secret key queries, the

reduction algorithm receives pirate box D and m0,m1. It sets γ = ε− ε · (i+ 1)/2n+ ε/12n, z = λ · n/ε and
count = 0.

For k = 1 to z, the reduction algorithm chooses bk ← {0, 1}, sk, tk ← ZN , sets ctk = (mbk ·e(g1, g1)α·sk , gsk1 ·
T tk) and checks if D(ctk) = bk. If so, it sets count = count + 1, else it sets count = count − 1. After the z
iterations, B checks if count > γ · z. If so, then B guesses that T ∈ GS0 , else it guesses that T ∈ GS1 .

First, note that the secret keys sent to A are identically distributed as in Hyb1 and Hyb2 experiments.
Using the Chinese Remainder Theorem, we can argue that if T ← GS0

, then the z ciphertexts constructed
are distributed as z encryptions generated using Encleq; if T ← GS1

, then the z ciphertexts are distributed
as z encryptions using Encless. The analysis of B’s advantage is similar to that in proof of Claim C.1.

Claim C.7. Assuming the subgroup decision assumption (Assumption 3), for every PPT adversary A,
polynomials n(·), p(·) and non-negligible function ε(·), there exists a negligible function negl3(·) such that
for all λ ∈ N satisfying ε(λ) > 1/p(λ), ρHyb2(λ)− ρ2(λ) ≤ negl3(λ).

Proof. Suppose ρHyb2 − ρ2 = η for some non-negligible function η. We will construct a reduction algorithm
B that breaks the subgroup decision assumption with non-negligible advantage.

First, B sends its challenge sets S0 = {4}, S1 = {2, 4} and it receives T , where T ∈ GS0
or T ∈ GS1

.
Next, it queries for the generators for G{1}, G{3}, G{4}, and receives g1, g3, g4 respectively.

The reduction algorithm first chooses α ← ZN and sets mpk = (e(g1, g1)α, g1). Next, it uses g1 and
g3 and g4 to construct keys for indices less than or equal to i; that is, it chooses uj , tj ← ZN and sets

skj = gα1 · g
uj
3 · g

tj
4 as the secret key for index j ≤ i. For the (i+ 1)th index, it uses g1 and T ; that is, it sets

ski+1 = gα1 · T . Finally, for indices j > i+ 1, the reduction algorithm uses g1 and g4 and sets skj = gα1 · g
uj
4

for randomly chosen uj ← ZN .
After all secret key queries, the reduction algorithm receives pirate box D and m0,m1. The reduction

algorithm sets γ = ε− ε · (i+ 1)/2n+ ε/32n, z = λ · n/ε and tests whether D is a γ-Distless box for m0,m1.
The reduction algorithm first sets count = 0. For k = 1 to z, it chooses bk ← {0, 1}, sk, tk ← ZN , sets
ctk = (mbk · e(g1, g1)α·sk , gsk1 ·g

tk
3 ) and if D(ctk) = bk, it sets count = count + 1, else it sets count = count−1.

Finally, after the z iterations, if count > γ · z, then B guesses that T ∈ GS0
, else it guesses that T ∈ GS1

.
The analysis of B’s advantage is similar to that in proof of Claim C.1.

Lemma C.6. For any PPT adversary A, polynomial n(·) and non-negligible function ε(·), all λ ∈ N,

Pr -Gapε/4n(λ, i) ≥ Pr -Good-Declessε−ε·i/2n(λ, i)− Pr -Good-Decleqε−ε·i/2n−ε/4n(λ, i).

Proof. Recall that Pr -Gap is defined as below

Pr -GapA,n,ε/4n(λ, i) = Pr

[
∃ δ ∈ [0, 1/2] s.t.

D is δ-Distless∧
D is not (δ − ε

4n )-Distleq
: (D,m0,m1)← MakeBoxA,n(λ, i)

]
.

Now we can also write that

Pr -GapA,n,ε/4n(λ, i) ≥ max
δ∈[0,1/2]

Pr

[
D is δ-Distless∧
D is not (δ − ε

4n )-Distleq
: (D,m0,m1)← MakeBoxA,n(λ, i)

]
.
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We also know that for any δ ∈ [0, 1/2],

Pr

[
D is δ-Distless∧
D is not (δ − ε

4n )-Distleq
: (D,m0,m1)← MakeBoxA,n(λ, i)

]
≥ Pr

[
D is δ-Distless : (D,m0,m1)← MakeBoxA,n(λ, i)

]
− Pr

[
D is (δ − ε

4n
)-Distleq : (D,m0,m1)← MakeBoxA,n(λ, i)

]
≥ Pr -Good-Declessδ (λ, i)− Pr -Good-Decleqδ−ε/4n(λ, i).

Finally substituting δ = ε− ε · i/2n, we get

Pr -Gapε/4n(λ, i) ≥ Pr -Good-Declessε−ε·i/2n(λ, i)− Pr -Good-Decleqε−ε·i/2n−ε/4n(λ, i).

This concludes the proof.

C.2.5 Proof of Theorem C.4

We need to show that for any PPT adversary A, polynomials n(·), p(·), non-negligible function ε(·), there
exists a negligible function negl(·) such that for all λ ∈ N satisfying ε(λ) > 1/p(λ),

Pr -Cor-TrA,n,ε(λ) ≥
∑
i Pr -GapA,n,ε/4n(λ, i)

n(λ)
− negl(λ).

First, consider the following events TrA,n,ε and Tr′A,n,ε, parameterized by A, n, ε. The event Tr is similar
to Cor-Tr, except that the output of the trace should be in {1, 2, . . . , n} (in particular, it is not required that
the output be in the set S of keys queried). Let ρless = Pr[b ← D(ct) : b ← {0, 1}, ct ← Encless(msk,mb)]
and ρleq = Pr[b← D(ct) : b← {0, 1}, ct← Encleq(msk,mb)].

The event Tr′ is defined similar to Tr, except we say that Tr′ occurs if D is ε-Dist box and ρless−ρleq > ε/4n.
Note that the only difference between Tr and Tr′ is that in Tr, the challenger computes an estimates ρ̂less
and ρ̂leq of ρless, ρleq (respectively), and checks if ρ̂less − ρ̂leq > ε/8n.

Now, using Chernoff bounds, it follows that Pr[TrA,n,ε] ≥ Pr[Tr′A,n,ε]− 2−O(λ). Next, it follows from the

definitions of Pr[Tr′A,n,ε] and Pr -GapA,n,γ that Pr[Tr′A,n,ε] =
∑
i Pr -GapA,n,ε/4n(λ, i)/n.

Finally, note that

Pr[Cor-Tr] = Pr[Tr]− Pr[Tr ∧ Trace outputs i /∈ S]

= Pr[Tr]− Pr[Fal-Tr]

≥ Pr[Tr]− negl1(λ) (using Theorem C.2)

≥ Pr[Tr′]− 2−O(λ) − negl1(λ)

≥
∑
i

Pr -GapA,n,ε/4n(λ, i)

n
− negl(λ).

This concludes the proof.
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