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Abstract

The development of cloud computing services is restrained by privacy
concerns. Centralized medical services for instance, require a guarantee of
confidentiality when using outsourced computation platforms. Fully Ho-
momorphic Encryption is an intuitive solution to address such issue, but
until 2009, existing schemes were only able to evaluate a reduced number
of operations (Partially Homomorphic Encryption). In 2009, C. Gen-
try proposed a blueprint to construct FHE schemes from SHE schemes.
However, it was not practical due to the huge data size overhead and the
exponential noise growth of the initial SHE. Since then, major improve-
ments have been made over SHE schemes and their noise management,
and resulting schemes, like BGV and FV, allow to foresee small applica-
tions.

Besides scheme improvements, new practical approaches were pro-
posed to bring homomorphic encryption closer to practice. The IV -based
stream cipher trans-ciphering approach brought by Canteaut et al. in
2015 reduces the on-line latency of the trans-ciphering process to a simple
homomorphic addition. The homomorphic evaluation of stream ciphers,
that produces the trans-ciphering keystream, could be computed in an
off-line phase, resulting in an almost transparent trans-ciphering process
from the user point of view. This approach combined with hardware ac-
celerations could bring homomorphic encryption closer to practice.

This paper deals the choice of FV parameters for efficient implemen-
tation of this scheme in the light of related works’ common approaches.
At first sight, using large polynomial degree to reduce the coefficients size
seemed to be advantageous, but further observations contradict it. Large
polynomial degrees imply larger ciphertexts and more complex implemen-
tations, but smaller ones imply more primes to find for CRT polynomial
representation. The result of this preliminary work for the choice of an
adequate hardware target motivates the choice of small degree polynomi-
als rather than small coefficients for the FV scheme.

Keywords: Homomorphic evaluation, FV parameters, Chinese Remain-
der Theorem, Number Theorical Transform.
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1 Introduction

Privacy is one of the main concerns regarding the development of cloud services
in the context of applications handling sensible data. The data privacy on re-
mote servers is guaranteed with standard cryptography. The issue comes up
during the exploitation of these data directly on the outsourced servers. Since
2009 and the thesis of C. Gentry [15], the concept of fully homomorphic en-
cryption introduced by Rivest, Aldeman and Dertouzos in 1978 [22], is not a
conjecture any more. Homomorphic encryption schemes guarantee the equiva-
lence of an operation between the clear data and the encrypted data algebraic
systems. A fully homomorphic encryption scheme guarantees that an homo-
morphic equivalent can be found for any function considered over the clear data
domain. Homomorphic encryption schemes are emerging along with practical
approaches, but the lack of performances of software implementations makes
them difficult to use in real life applications. Hardware optimizations for effi-
cient homomorphic encryption should then be explored.

Partial Homomorphic Encryption schemes are able to homomorphically eval-
uate additions (e.g. Paillier) or multiplications (e.g. RSA). Problems arise
to design an homomorphic encryption scheme able to evaluate both additions
and multiplications. Indeed, in homomorphic cryptography a noise is added to
the encrypted data for security reasons (non-deterministic encryption). If it is
possible to construct Somewhat Homomorphic Encryption schemes (that could
evaluate both additions and multiplications) the added noise results in a large
data size expansion between clear and encrypted data. Moreover, the level of
noise grows with operations in the encrypted domain, and especially with mul-
tiplications. At a certain level, the decryption primitive does not retrieve the
clear data correctly.

Gentry’s blueprint to construct FHE schemes is based on the bootstrapping
procedure: an SHE scheme that can homomorphically evaluate its own decryp-
tion circuit and at least an other operation, becomes a FHE scheme. The first
implementations of the bootstrapping procedure were impractical due to the
SHE exponential noise growth, their complex decryption circuit, and their large
data size expansion [12, 24]. Numerous works proposed new schemes introduc-
ing different mechanisms from sub-exponential noise growth [4, 13] to constant
noise growth [3, 11]. Despite the improved performances, the bootstrapping
procedure is still too complex for them to be practical. Nevertheless these new
schemes lead to a compromise: they can evaluate functions with a multiplicative
depth under a practical limit (20 to 30) but become impractical beyond it. The
FV [11] and BGV [13] schemes are the most accepted today.

In 2013, C. Gentry et al. proposed a new approach revisiting the boot-
strapping procedure to construct FHE schemes [14]. This work is followed by
promising results for fast bootstrapping primitives [7, 10]. They open interesting
perspectives in the definition of efficient FHE systems.

The important data size expansion inherent to homomorphic encryption im-
plies, among other things, an overhead problem in communication costs. To
solve this problem, M. Naehrig et al. [17] proposed a practical approach known
as trans-ciphering: the owner encrypts its data under a standard symmetric
encryption scheme, without data size expansion, and sends them to the server
along with an homomorphic encryption of the symmetric key. Once the server
possesses the encrypted data, the decryption function of the symmetric scheme
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is homomorphically evaluated by the FHE, SHE or L-FHE scheme, resulting in
homomorphic encrypted data. This approach has been improved by A. Can-
teaut et al. [5]. They proposed the use of lightweight additive IV-based stream
ciphers as the underlying symmetric schemes. They have shown that using their
approach, the trans-ciphering procedure’s performance is then dependent of an
intensive off-line computation part, reducing the on-line part of trans-ciphering
to a simple homomorphic addition. This approach solves only the upward com-
munication overhead as the trans-ciphering is a one-way procedure. Still, it im-
proves the practicability of homomorphic encryption but performances are still
not sufficient for software only implementations. For example, it takes ∼ 35
minutes on a mid-end 48-core server to generate 57 homomorphic keystream
elements that could handle up to 7 additionnal ciphertext multiplication lev-
els [5].

The SHE scheme FV [11] handles polynomials with modular integer coeffi-
cients (500 to 5000 bits) modulo a fixed degree polynomial which is in practice
a cyclotomic polynomial of rather large degree (128 to 32768). Manipulation
of such polynomials is expensive, especially during multiplications. This issue
is already addressed with the hardware optimization of lattice based cryptog-
raphy [21]. The opportunity of lattice-based homomorphic encryption helps to
extend the previous work to the context of homomorphic encryption, and in
particular of homomorphic evaluation [9, 19, 23].

In lattice-based cryptography, the parameter selection is difficult in practice.
To the best of our knowledge, most of works related to the hardware acceleration
of homomorphic primitives tend to select previously used parameter sets. We
assume it is done for comparison purposes, but the choice of parameters could
have a significant impact on the correct exploitation of available hardware re-
sources. It motivates the work presented in this paper which makes an analysis
of the FV parameters for adequacy of hardware architecture and algorithm.

In this paper, we exploit the distinction between the application parameters
and the implementation parameters of the FV scheme. When the security and
multiplicative depth requirements are fixed (application parameters), we still
have one degree of freedom to choose the cyclotomic polynomial’s degree N and
the size of the modulus q. By examining the algorithms of recent hardware
acceleration work, both these parameters impact the resulting implementation
complexities.

In a first section, the mathematical notations and the FV evaluation prim-
itives are presented. The second section presents the profiling results that mo-
tivate focus on polynomial multiplications, and then describes the approaches
proposed in hardware optimization studies to implement efficiently these opera-
tions. The third section derives from the inter-dependency of FV parameters the
impacts of the degree N and the size of the modulus q on the implementation
strategy. Finally, the fourth section concludes this paper.

2 Preliminaries on the FV Scheme

This section has two objectives, first to get used to the notations, and second to
make the distinction between a ciphertext multiplication and polynomial multi-
plications occurring in ciphertext multiplication and ciphertext relinearisation.
In a first subsection the mathematical representation used in this paper are
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presented, and the second subsection reminds the FV primitives. The third
subsection presents the set of FV parameters that interests us.

2.1 Mathematical Notations

2.1.1 Algebraic Structure:

The cyclotomic polynomial of order m is denoted Φm(X) and φ is the Euler
totient function. Rm = Z[X]/(Φm(X)) refers to the ring of the polynomial
classes of degree less than N = φ(m) with integer coefficients. In practice, m is
selected as power of 2 and it follows that Φm(X) = XN + 1 and N = m/2.

Elements of the ring Rm are noted in lowercase bold (e.g a ∈ Rm) and their
coefficients in indexed lowercase (e.g. ai ∀ i ∈ (0, 1, ..., N − 1)). The notation a
is used indifferently for the polynomial or its N -point sequence of coefficients.

For an integer q > 1, Zq is the set of integers [−q/2, q/2). The unique integer
in Zq such that [a]q = a mod q, ∀ a ∈ Z is noted [a]q. By extension, Rm,q is the
set of polynomials in Rm with coefficients in Zq. For a polynomial a ∈ Rm, [a]q
is the polynomial in Rm,q obtained by applying [·]q to all its coefficients. The
notation [a]q is used indifferently for the polynomial or its N -point sequence of
coefficients.

2.1.2 Plaintext and Ciphertext Spaces:

The plaintext space of the FV scheme is defined with respect to an integer t > 1,
and it is the set of polynomial in Rm,t (e.g. t = 2).

The ciphertext space is also defined with respect to an integer q > 1. A
ciphertext is a pair of polynomials in Rm,q. Let c be a ciphertext, its canonical
form is noted c = (c0, c1) ∈ R2

m,q. After multiplications, ciphertexts are in a
non-canonical form that requires a relinearisation procedure. Such ciphertexts
are noted c̃ with c̃ = (c̃0, c̃1, c̃2) ∈ R3

m,q.

2.2 FV Primitives

In the context of stream cipher trans-ciphering, both the off-line part and on-
line part are based on homomorphic evaluations. During the off-line phase,
the homomorphic scheme evaluates the IV-based stream cipher, and during the
on-line phase it evaluates the application required by the user. This paper
focuses on the FV primitives specific to homomorphic evaluation. A complete
presentation of the scheme could be found in the original work [11].

The choice is made to work with the second version of the relinearisation
procedure presented in the original work. This version makes the relinearisation
primitive close to the ciphertext multiplication primitive. It is motivated by
the intuition that if a hardware platform computes ciphertext multiplications
efficiently, it conducts also efficient relinearisations.

This relinearisation primitive requires the definition of an integer p > 1
(usually p ≥ q3) and a relinearisation key which is a pair of polynomials in
Rm,p·q. We note rlk = (rlk0, rlk1) ∈ R2

m,p·q the relinearisation key of the FV
instance.

Let a = (a0,a1) ∈ R2
m,q and b = (b0,b1) ∈ R2

m,q be two ciphertexts of
the same FV instance. We note by × (resp. +) the polynomial multiplication
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(resp. addition) over Rm. The scalar multiplication is noted · and the scale-and-
center-rounding operation is represented using bS · .e with S the scaling value.
Finally we remind that [.]q reduces all the polynomial coefficients to the interval
[−q/2, q/2).

Figure 1 shows the operation flow of the ciphertext multiplication and the
ciphertext relinearisation described in the original paper of J. Fan and F. Ver-
cauteren [11] (Sect. 4). In practice the FV multiplication is immediately fol-
lowed by a relinearisation in order to always handle canonical ciphertexts. It is
important to note that polynomial arithmetic takes place in Rm and it is not
possible to reduce the coefficients modulo q at will.

a a0 ×

a1 ×
⌊

t
q
· .
⌉

[.]q c̃0

+
⌊

t
q
· .
⌉

[.]q c̃1 c̃

b0 ×
⌊

t
q
· .
⌉

[.]q c̃2

b b1 ×

(a) Ciphertext multiplication

c̃ c̃0

c̃1 + [.]q c0 c

c̃2 ×
⌊
1
p
· .
⌉

+ [.]q c1

evk evk0 ×
⌊
1
p
· .
⌉

evk1

(b) Ciphertext relinearisation

Figure 1: FV multiplication and relinearisation primitives

2.3 FV Parameters

In this paper an FV instance is a particular set of FV parameters. Four param-
eters are considered: the security level λ, the multiplicative depth evaluation
capability L, the degree of the cyclotomic polynomial N , and the size of the
ciphertext’s polynomial coefficients Tq. Other parameters are described in the
original work [11].

The particular set of parameters (λ, L,N, Tq) has three degrees of freedom:
it requires three of them to be fixed to derive the fourth. A distinction is
made between the application level parameters (λ, L), and (N,Tq) which are
implementation level parameters.

Both the cyclotomic polynomial degree N and the size of the coefficients
Tq have an impact on handling the polynomials. The purpose of this paper is
to investigate their impact on the hardware optimization strategies explored in
related works.
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Table 1: Profiling results of an homomorphic evaluation of Trivium-12 with
the FV implementation of Canteaut et al. [5]. FV parameters: security 80,
multiplicative depth 19, polynomial cyclotomic order 4096 (implies polynomials
with 2048 coefficients) modulus q size 2658-bits. The experiment uses Valgrind
3.10.

HE operation Est. Cycles % Est.
(Million cycles)

HE Trivium 13 337 699 100 %
CtxtMult 13 272 536 99,5 %
- Relinearise 8 381 331 62,8 %
- Multiply 4 085 675 30,6 %
- Others 805 530 6,1 %
CtxtAdd 50 923 0,4 %
Others 14 240 0,1 %

3 Improving Performances of FV Homomorphic
Evaluation

According to Amdahl’s law, a dedicated hardware solution should cover the
most repetitive and compute intensive operations of an application. The iden-
tification of their critical operations is usually done by profiling. When it is
possible, hardware optimizations exploit different levels of parallelism and/or
mathematical simplifications inherent to the underlying algorithms of these op-
erations.

In this section, profiling results of the FV homomorphic evaluation of Triv-
ium from A. Canteaut et al. [5] are presented. In a second subsection, common
approaches for efficient polynomial multiplications are described, highlighting
the influence of FV parameters.

3.1 FV Homomorphic Evaluation of Trivium

Using a library implementing the FV scheme [6], the experimentation of Can-
teaut et al. [5] is reproduced by executing an homomorphic evaluation of Triv-
ium. The Valgrind tool suite [18] is used to identify the ciphertext multiplication
operation as the performance bottleneck of homomorphic evaluation with more
than 99% of the estimated cycles. The results of the profiling are detailed in
Table 1.

The CtxtMult operation is, as explained in the previous section, decomposed
into the actual ciphertext multiplication (30,6 %) and the immediately following
relinearisation (62,8 %). Digging a bit more into these two steps, it appears that
they both rely on the same bottleneck operation, the polynomial multiplications,
realized through FFT convolutions. During the whole evaluation of Trivium-12,
76,1% of the estimated cycles are spent in these convolutions.

The ciphertext relinearisation is twice the computation workload of the ci-
phertext multiplication as the relinearisation key is a pair of polynomials with
coefficients four times the size of ciphertext polynomials.
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This profiling confirms that the critical part of FV homomorphic evaluation
is the ciphertext multiplication and relinearisation. Both rely on polynomial
multiplication, which is also found in lattice-based cryptography.

3.2 Improving Polynomial Multiplications

Polynomial operations are conducted over Rm, it implies that multi-precision
integer operations handle values that could grow up to N ∗ q2 during ciphertext
multiplication and up to N ∗p∗q2 during ciphertext relinearisation. In practice,
two integers Q > N ∗ q2 and K > N ∗ p ∗ q2 are selected, and the polynomial
multiplications are conducted over Rm,Q and Rm,K . The size of modulus q
depends on the others FV parameters, but it grows from hundred of bits up to
thousand of bits in some FV instances. To tackle the large integer arithmetic,
the use of RNS arithmetic through the Chinese Remainders Theorem (CRT) is
quite popular for hardware optimisation approaches [8, 19, 25].

Besides the integer arithmetic, a polynomial multiplication is highly depen-
dent of the degree involved. The naive approach for polynomial multiplication
consists in computing the linear convolution product of its coefficients and has
a complexity in O(N2). To reduce this complexity, the NTT based polynomial
multiplication is widely used in hardware optimization works [19, 21]. A recent
work from Migliore et al. [16] proposes the use of the Karatsuba polynomial
multiplication algorithm for small multiplicative depth applications.

3.2.1 Chinese Remainder Theorem:

To exploit the parallelism brought by CRT, the different modulus q, Q and K are
constructed as fixed size primes’ products. The number of primes required for
each modulus (lq, lQ and lK) depends on Tq and the desired size of these primes
Tprimes (1). By construction of the modulus Q and K, TQ = 2 ∗ Tq + log2(N)
and TK = 5 ∗ Tq + log2(N).

lq =

⌈
Tq

Tprimes

⌉
, lQ =

⌈
2 ∗ Tq + log2(N)

Tprimes

⌉
, lK =

⌈
5 ∗ Tq + log2(N)

Tprimes

⌉
. (1)

With a direct application of the CRT, the bijections Rm,Q
∼= (Rm,p0

× ...×
Rm,plQ−1

) and Rm,K
∼= (Rm,p0

× ... × Rm,plK−1
) allow the addition of paral-

lelism in the polynomial multiplication. The computational cost of switching
the polynomial representation from Rm,Q (resp. Rm,K) to the residue system
representation, and vice versa, is not taken into account. A recent work from
J-C. Bajarad et al. [2] proposes a variant of the FV scheme in which polynomials
stay all along in Residue Number System representations.

The ciphertext polynomial multiplications are decomposed into lQ (resp. lK)
independent residue polynomial multiplications during ciphertext multiplication
(resp. ciphertext relinearisation). The independence of each residue polynomial
multiplication implies a thread level parallelism that could be exploited through
distributed computation.

Considering a residue polynomial multiplication as a simple hardware block
(BRPM), the latency and the hardware cost of a ciphertext polynomial mul-
tiplication block is roughly expressed in function of the number of blocks at
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disposal (#BRPM ∈ [1; lQ] (resp. [1; lK ])). Equations (2) and (3) express them
for a polynomial multiplication during ciphertext multiplications.

LatPolyMult =

⌈
lQ

#BRPM

⌉
∗ LatBRPM

(2)

HCostPolyMult = #BRPM ∗HCostBRPM
(3)

As a residue polynomial has the size of its coefficients fixed by Tprimes, the
characteristics of a block BRPM are independent of the parameter Tq. It can
be already pointed out that when exploiting the RNS arithmetic introduced by
the CRT, the parameters Tq and Tprimes determine the thread level parallelism.
The impact of the parameters N and Tprimes on the hardware blocks BRPM are
detailed in the next subsection.

3.2.2 Polynomial Multiplication over Rm,pi
:

For high degree polynomials, the NTT-based polynomial multiplication seems to
be the most popular approach for hardware optimizations. It computes the con-
volution product of the polynomial multiplication through Number Theoretical
Transforms (Fourier transform on finite fields), and the Cooley-Tukey algorithm
reduces the NTT complexity to O(N log(N)). Furthermore, exploiting the nega-
cyclic convolution theorem, the NTT-based multiplication can directly perform
polynomial multiplications modulo Φm(X) = XN + 1, avoiding a non-trivial
polynomial modular reduction. Nevertheless this approach reduces the choice
of the primes pi, as the existence of an N -point NTT over the residue space Zpi

must be guaranteed.
As described in [20], the existence of the N -point NTT over Rm,pi

is condi-
tioned by the existence of a primitive N -root of unity ω over Zpi

. If one wants
to use the negacyclic convolution theorem over Zpi , he has to find a primitive
2N -root of unity ψ such that ψ2 = ω mod pi. Furthermore, all the elements of
Zpi

should be invertible, this property is guaranteed by selecting pi as a prime.
According to [20], all the conditions above are satisfied if a prime pi can be found
such that 2N divides (pi− 1). Then it just remains the selection of appropriate
ω and ψ. Efficient prime selection is adressed by the NFLlib developpement
team C. Aguilar-Melchor et al. [1].

During the computation of a residue polynomial multiplication, two forward
and one backward N -point NTT are computed (O(N log(N)) complexity). The
other operations consist in point-wise coefficient multiplications between N -
point sequences (O(N) complexity). It is then reasonable to focus the hardware
optimizations on the NTT. We would like now to observe the impact of N on
the NTT latency and hardware cost.

The implementation of an NTT with respect to a radix-2 basic block BRX2

is now considered. The latency and hardware cost of this block are noted re-
spectively LatBRX2

and HCostBRX2
. An N -point NTT computation, with N a

power of two, is composed of log2(N) iterations of N/2 radix-2 block compu-
tations. In this work, it is assumed that an iteration has to finish before the
next one can start, and that the radix-2 blocks are re-used from one iteration
to another. Let #BRX2 ∈ [1;N/2] be the number of radix-2 blocks available for
the computation of one iteration of an N -point NTT.

LatBNTT
=

⌈
N

2 ∗#BRX2

⌉
∗ log2(N) ∗ LatBRX2

(Tprimes) (4)
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HCostBNTT
= #BRX2 ∗HCostBRX2

(Tprimes) (5)

Now that the impact of N over an NTT computation is known ((4) and (5)),
its influence on latency and hardware cost of a residue polynomial multiplica-
tion must be expressed. It is done by considering that the N extra modular
multiplications required for backward NTT are computed as an N -point wise
multiplication. It is reminded that in the negacyclic convolution approach there
are already four N -point wise modular multiplications to compute [21].

Equations (6) and (7) express the latency and the hardware cost of a residue
polynomial multiplication with respect to an NTT block (BNTT) and a mod-
ular multiplier block (BMM). Let #BMM ∈ [1;N ] be the number of modular
multipliers available for an N -point wise multiplication.

LatBRPM
= 3 ∗ LatBNTT

+ 5 ∗
⌈

N

#BMM

⌉
∗ LatBMM

(Tprimes) (6)

HCostBRPM
= HCostBNTT

+ #BMM ∗HCostBMM
(Tprimes) (7)

Both the radix-2 and the modular multiplier implementations have their effi-
ciency related to the choice of an efficient modular reduction, but also in the
choice of the Tprimes parameter [1]. From an hardware design point of view, work-
ing with small Tprimes could be interesting to have smaller integer arithmetic to
perform.

This section has expressed some high level equations that link the FV param-
eters and the hardware optimization choices together. The next one describes
an analysis of the FV parameters and their impact on the hardware optimization
opportunities.

4 FV Parameters and Optimization Opportuni-
ties

From an applicative point of view, the security level λ and the multiplicative
depth L are the parameters that determine the FV instance. But when λ and
L are fixed, there is still freedom in the choice of the cyclotomic polynomial
degree N and in the coefficient size Tq of the ciphertext polynomials. As seen
in the previous section, the parameter Tq has an impact on thread parallelism,
and the parameter N has an impact on the residue polynomial multiplication.
This section discusses the impacts of the relation Tq(N) over the hardware
optimization strategy.

To generate correct sets of FV parameters, a Sage script [6] implementing
the derivation rules from J. Fan and S. Vercauteren [11] is used. Some sets of
parameters are generated with ranges that one could expect in a stream-cipher
trans-ciphering context with Trivium-12 from Canteaut et al. [5]. The security
level is selected between 80 and 192 and the multiplicative depth is selected
between 16 and 32.

4.1 Scalability over Applicative Level Parameters

Figure 2 shows the impact of the security and the multiplicative depth param-
eters on the relation Tq(N). The first relation Tq(N) displayed is fixed for
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Figure 2: Influence of λ and L on the relation Tq(N). The size of the modulus
q is expressed in kbits.

security 80 and multiplicative depth 16. Figure 2a represents the influence of
the security, and 2b the multiplicative depth’s influence over this relation. We
observe that high degree cyclotomic polynomials reduce the influences of λ and
L over coefficient sizes.

A direct relation between the latency of a polynomial multiplication during
ciphertext multiplication and the size of the modulus q is expressed in equations
(1), (2) and (3).

LatPolyMult =

⌈
2 ∗ Tq + log2(N)

Tprimes ∗#BRPM

⌉
∗ LatBRPM

(8)

As explained in Sect. 3.2.2, the latency and the hardware cost of a residue
polynomial multiplication block are only dependent of Tprimes and N . Thus
when Tprimes, N and the hardware target (#BRPM) are fixed, it seems that small
variations of Tq imply small variations of LatPolyMult. Naturally, it depends
also on the constant LatBRPM

. An implementation that chooses to handle large
N , has its latency LatPolyMult less impacted by Tq compare to one that handle
smaller N . However, it is necessary to assess the influence of N over LatBRPM

before concluding that large N reduces application parameter’s influences over
a given implementation.

4.2 Smaller Ciphertexts

The ciphertext size is a high level indicator for memory requirements (storage
capacity, access latency...) that directly impact performances. Without con-
sidering any parallelism, implementation details or optimized data accesses, a
coarse grain relation could be expressed: the smaller the ciphertexts, the better
the performances.

Figure 3 shows the impact of the security and multiplicative depth on the
ciphertext size, which is directly related to Tq and N , CtxtSize = 2 ∗ (Tq ∗
N). The observation shows that a large degree N increases the influence of
security and multiplicative depth over the size of the ciphertexts. This is mildly
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Figure 3: Influence of λ and L on the ciphertext’s size, expressed in Mbits.

counterintuitive with the influence of N on the size of the modulus q. It seems
now more interesting to select small N , and further discussions confirms it.

4.3 Influence of N on Residue Polynomial Multiplications

The description of the NTT-based polynomial multiplication presents the bot-
tleneck operation as the computation of forward and backward N -point NTT.
Equations (4), (6) and equations (5), (7) have expressed the latency and the
hardware cost of a residue polynomial multiplication function of the FV param-
eter N and the hardware blocks availability #BRX2, #BMM.

LatBRPM = 3 ∗
⌈

N

2 ∗#BRX2

⌉
∗ log2(N) ∗LatBRX2 + 5 ∗

⌈
N

#BMM

⌉
∗LatBMM (9)

HCostBRPM
= #BRX2 ∗HCostBRX2

+ #BMM ∗HCostBMM
(10)

Because N is a power of two, selecting larger N has a major impact on the
latency and/or on the hardware implementation cost. In Fig. 4, the theoretical
latency and hardware cost function of N is represented, and this for different
levels of parallelism introduced in a NTT computation. In this representation,
the latency and the hardware cost of the N -point wise multiplications are fixed
by choosing #BMM = 128. The latency (resp. the hardware cost) is expressed
as multiples of LatBRX2 (resp. HCostBRX2). For more simplicity LatBRX2 is
considered equivalent to LatBMM (resp. HCostBRX2 ∼ HCostBMM).

This theoretical experimentation is considered as a best case scenario due to
the approximations made in (4), (5), (6) and (7). Indeed the data dependencies
in the NTT computations, the storage cost of pre-evaluated factors, and the
memory access latencies are not taken into account. In each residue space Rm,pi

,
2N factors have to be pre-computed for an NTT based negacyclic convolution.
Thus doubling N roughly doubles the number of twiddle factors and memory
accesses.

As displayed in figures 4a and 4b, and accordingly to equations (9) and (10),
choosing larger N linearly increases the latency of a residue polynomial multipli-
cation. Similarly, to guarantee a low latency residue polynomial multiplication
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Figure 4: Influence of the FV parameter N over the latency and the hardware
cost of a residue polynomial multiplication, with #BMM = 128 and for different
#BRX2.

for any N , one has to pay an extra hardware cost which linearly increases with
N . Nevertheless, N exponentially increases as its value is restricted to be power
of two (to have both batching property [24] and nega-cyclic convolution) and
naturally, the latency and the hardware cost of a residue polynomial multipli-
cation suffer from this exponentiation.

Considering now that N is fixed, the equations (9) and (10) show that the
latency decreases with larger #BRX2, but the hardware cost similarly increases.
This linear behaviour is also reminiscent with #BRMP in equations (2) and (3).

4.4 Influence of Tq on Parallelism from the CRT

As described in subsection 3.2.1, the CRT parallelism capability is theoretically
enforced by large Tq that increases the number of residue spaces for a fixed prime
size Tprimes. In our context, the considered choices of N , and its implication on
Tq, always enable a valuable acceleration when exploiting the CRT parallelism.

Two limitations to the hardware optimization at CRT level are identified.
The first one is not considered in this paper and is fixed by the extra compu-
tation added by the switches between the CRT representation of a polynomial
and its standard representation with coefficients over Rm,q. The second is the
availability of residue spaces for a given size Tprimes. Indeed, the use of the CRT
is conditioned by the existence of lK primes of size Tprimes. Moreover, the NTT-
based polynomial multiplication brings an additional condition over the choice
of those primes to guarantee the existence of the 2N -NTT in the residue spaces.

The number of required primes lK is directly dependent of the relation Tq(N)
and the size Tprimes (cf. equation 1). The number of primes required to represent
a polynomial inRm,q using a residue representation is presented in fig. 5, and this
for different N and size of primes. To conduct the polynomial multiplications
over Rm,Q (resp. Rm,K) with the CRT approach, one has to find roughly
lQ ∼ 2 ∗ lq (resp. lK ∼ 5 ∗ lq) primes.

As introduced in section 3.2.2, the choice of a small Tprimes is interesting to
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Table 2: Number of primes allowing N -point NTT transform over Zpi
.

Degree N 128 256 512 1024 2048 4096 8192

16-bits primes 47 24 14 5 3 1 0
24-bits primes 8430 4230 2134 1047 536 260 130

reduce the latency and the hardware cost of a modular multiplier block, and
has a direct impact on the efficiency of a residue polynomial multiplication. But
according to the Prime Number Theorem, the number of prime smaller than n
is roughly π(n) ∼ n/ log(n). Finding enough primes with Tprimes ≥ 32, is not
an issue, but considering smaller prime sizes, the number of candidates quickly
drops down. The GMP library is used to find a maximum number of primes
that satisfy the NTT requirement when Tprimes is 16-bits and 24-bits, the results
are shown in Table 2.

The comparison of the number of primes found over 16-bits and 24-bits sizes
with the requirements in Fig. 5, shows a limitation in the choice of small Tprimes

to improve the efficiency of basic arithmetic blocks. Nevertheless, as observed
in Fig. 5, and even with large N , lq (and by extension lQ and lK) is still large
enough to exploit the parallelism bring by CRT.

5 Conclusion

In this paper, insights over the choices of FV parameters are provided for effi-
cient hardware resources exploitation for its evaluation primitives. The analysis
was conducted in the context of stream-cipher based trans-ciphering using the
Trivium cipher. This analysis was also based both on CRT and NTT approaches
to conduct the polynomial multiplications over Rm,Q (resp. Rm,K). This choice
was motivated by the existing works on hardware optimization of lattice-based
cryptography.

The distinction between application level parameters (λ,L) and implemen-
tation level parameters (N,Tq) has been expressed. During the analysis some
observations have been brought to help in the choice of appropriate FV im-
plementation parameters for a flexible and efficient hardware implementation,
regarding the application parameters.
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Larger N reduces the impact of security and multiplicative depth over co-
efficient’s size but still increases ciphertext’s size. The cyclotomic polynomial
degree N , being a power of two, makes the design of efficient NTT-based poly-
nomial multiplications difficult with increasing N . Furthermore, the CRT par-
allelism is easier to exploit than large polynomial multiplication as explained by
J-C. Bajard et al. [2]. It implies that all (N,Tq) are not quite the same for a
fixed (λ, L), and small degree N should be preferred over small coefficient size
Tq.

This analysis was a preliminary study for adequacy of hardware architecture
and algorithms underlying the FV evaluations primitives. Despite the motiva-
tion of choosing small N , concrete choice of (N,Tq) still depends on the practical
limitations of the targeted hardware, and in particular on the memory access
bandwidth and the available computing resources.
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