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Abstract. A Degenerate Grouping Power Attack (DGPA) is a type of Partition-
ing Power Analysis (PPA) used to extract secret keys from the power sidechannel
signal of an encryption algorithm running on a device along with some known and
varying information such as the associated plaintext or ciphertext associated with
each encryption. The DGPA is applied to SIMON and SPECK implementations on
MSP430, PIC16F, and Spartan 6 platforms in this work. While keys are successfully
recovered from unprotected implementations, guidance is given on a minimum num-
ber of rounds, d, to perform per clock cycle in FPGAs and ASICs as to mitigate
against such attacks for a deployment dependent maximum quantity of data which
is to be encrypted with a given key. On the Spartan 6, full key recovery of SIMON
64/128 d ≤ 4 and SPECK 64/128 d ≤ 3 is trivially achieved in seconds with no more
than one million random plaintexts, requiring the use of larger d for most implemen-
tations. The amount of work to recover a key as a function of the amount of collected
data encrypted with that key is explored. To ensure security when performing most
modes of block cipher operation with an algorithm having block size 2n, a particular
key should be used to perform no more than 2n encryptions. A feasible key recov-
ery requiring less than 80-bits of work and data from less than 232 encryptions is
excluded for SIMON 64/128 implementations having d ≥ 9 and for SPECK 64/128
implementations having d ≥ 5. The DGPA attack method is demonstrated to suc-
ceed against a limited data set consisting of one power sample per device clock cycle
against a specifically targeted instruction. This provides a basis for a low power field
deployed power side channel signal capture hardware for embedded key recovery and
exfiltration.

1 Introduction

The widely known Differential Power Attack (DPA)[1], Correlation Power Attack (CPA)[2],
and variants thereof have been shown to be effective in secret key recovery in encryption
algorithms making use of power consumption data along with some known information about
the data being processed. Such methods and variants have all been shown to be related to a
general Partitioning Power Analysis (PPA)[3] which groups captured data according to an
expected amount of power consumption based on the known values of data being processed.

The approach of a degenerate grouping power analysis (DGPA) is presented here which
builds upon [4] and in the simplest form reduces to a 2-bit all or nothing (AON) PPA. When
applied specifically to the SIMON and SPECK lightweight encryption algorithms, the DGPA
method leverages properties of those algorithms to provide enhanced key recovery potential
through the use of coupled key relationships between the 2 bits being examined.

This paper will explore the general approach of the DGPA and the specific application
of DGPA to implementations of SIMON and SPECK in the MSP430 and PIC16F microcon-
trollers and to partially unrolled round-based (PUR) implementations of multiple depths on
the Spartan 6 FPGA. The results extend to other platforms which exhibit different power
consumption characteristics between transitioning and constant register states. Suggestions
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on minimizing the success of an attack on PUR implementations by computing a minimum
number of rounds per clock are presented, an approach which has previously demonstrated
resistance to a power analysis of DES implementations[5]. The frequency at which a key
should be changed in order to maintain an minimum level of protection depending on the
number of unrolled rounds computed per cycle is explored. A random number generator is
not used in the PUR implementations, and these mitigation techniques are not subject to
patent issues as is the case for masking techniques. The DGPA is shown to perform ade-
quately using a single power measurement per clock cycle with a computational complexity
scaling linearly in the number of captured encryptions, supporting the possibility of future
work on lightweight embedded and field deployed power side channel attack systems.

This work only considers an attack using some known values associated with captured
power data to extract an unknown key value. Other possible attacks requiring device char-
acterization which obtain key properties through key manipulation steps in the absence of
some known data component are not considered.

2 DGPA

The Degenerate Group Power Analysis (DGPA) examines δ ≥ 2 bit transitions in registers,
logic, or other components simultaneously and groups power data according to the expected
amount of power consumption due to the machine state transition. The attack requires the
use of power consumption data which is associated with some known varying values, v, such
as plaintext or ciphertext and will recover some set of unknown values, κ, such as encryption
keys.

The meaning of the actual unknown values that are recovered are dependent on the
algorithm being attacked and the specific application of the DGPA technique, and may
be key bits, a linear combination of key bits, or some other nonlinear combination of key
bits and other known values. For this discussion, the unknown values are termed key bits
independent of the actual meaning. Operations in GF (2) over single bits are denoted as +
for addition and · for multiplication.

The value of the jth bit in the device at time τ , bjτ , can be described as a linear combi-
nation of the known quantities, vjτ , and the unknown quantities, κjτ ,

bjτ = κjτ + vjτ (1)

The Hamming distance, β, describing the number of bits which change between two time
adjacent states is given for a single bit by

βjτ,τ+∆τ = bjτ + bjτ+∆τ (2)

∈ {0, 1}

where ∆τ is an offset before or after τ and represents an interval where the state of bj

remains unchanged.
In the DGPA δ = 2 bit case with the unknown key values only appearing as a linear con-

tribution, the general equations describing the two bits, j = 0, 1, simultaneously examined
are

b0τ = κ0τ + v0τ (3)

b1τ ′ = κ1τ ′ + v1τ ′

Note that the times at which the two bits are examined may differ for each bit.
As both κ0τ , κ

1
τ ′ may actually contain multiple unknown value contributions depending

on the algorithm in question, it is possible to define κa as a shared component and κb, κc as
unique components between κ0τ and κ1τ ′ where κ0τ = κa + κb and κ1τ ′ = κa + κc, giving

b0τ = κa + κb + v0τ (4)

b1τ ′ = κa + κc + v1τ ′
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This general case reduces to specific cases where one or more of the κa, κb, κc may be omitted
depending on the algorithm being attacked. The expected Hamming distance describing the
state change of both bits is then β0,1

τ,τ+∆τ,τ ′,τ ′+∆τ ′ = β0
τ,τ+∆τ + β1

τ ′,τ ′+∆τ ′ ∈ {0, 1, 2}.
The possible key hypothesis values for DGPA δ = 2 are κ = (κa, κb, κc) ∈ K ≡ GF (2)3

with the actual correct key value denoted k = (ka, kb, kc). For each κ ∈ K, a single power
measurement for the specific transition time τ, τ + ∆τ, τ ′, τ ′ + ∆τ ′ is grouped in Gκβ for
a given key hypothesis κ and resulting Hamming distance β. In cases where τ 6= τ ′ and
the transition occurs on two clock cycles, the single power measurement is the sum of the
power consumed on each of the two transitions. The time indices used in the grouping
are omitted in the group notation but their contribution to the group generation process is
understood. Note that for degenerate group cases where the same β is achieved with different
bit contributions, the contributions are noted in the group subscript as (b0, b1). Here, the
case of β0,1 = 1 corresponds to either β0 = 1, β1 = 0 or β0 = 0, β1 = 1, forming the
degenerate groups Gκ(1,0) or Gκ(0,1), respectively, which are indistinguishable in the expected
power consumption.

The metric, t, follows the definition of the t-test and is used to describe the DGPA δ = 2
as a PPA with α0 = −1, α1 = 0, α2 = 1 including a special normalization factor of

tκi,j =
sκi − sκj√
σκi

2

Ni
+

σκj
2

Nj

(5)

where sκi , σ
κ
i are the average and standard deviation of the single power measurement in

group Gκi having Ni entries. The t-test method has been used in template attacks[6][7] and
as a general leakage test[8] but is typically not used as the metric in PPA variants. It does
provide a statistical measure as to the strength of the assertion of group ordering.

In the linear model required for CPA or multibit DPA[2], there is an assumption that the
number of simultaneous bit transitions is linearly proportional to the power consumption,
an assumption that is not required of the two bit all or nothing approach, thereby also
avoiding the per bit characterization as required in [9]. When examining the groups the
only requirement is that sk1,1 > sk1,0 > sk0,0 and sk1,1 > sk0,1 > sk0,0 and sk1,0 ≈ sk0,1.

The DGPA examines the value of tκ2,0 for each key hypothesis κ, selecting the largest t as
the one corresponding to the most probable correct key hypothesis, k∗ = (k∗a, k

∗
b , k
∗
c ). The

value of t is a statistical measure indicating the strength of the assertion and can be used
to sort the various recovered key bits to perform targeted brute force permutations over the
weakest recovered bits when a fully recovered key has not been found. From the require-
ment on s it is seen that the correct key yields the relationships of tk2,0 = −tk0,2, tk2,0 > 0,

tk(1,0),(0,1) = tk(0,1),(1,0) ≈ 0. A statistical fluctuation may produce a sk1 > sk2 resulting in a

tk1 > tk2 and a non complete key recovery with k∗ 6= k. However, a fluctuation is much less
likely to produce a tk0 > tk2 . Under certain conditions, an examination of the degenerate Gκ1
groups may reveal exploitable asymmetric properties in the event of signal fluctuations.

2.1 Special Cases

There are a number of special cases for the δ = 2 DGPA depending on the characteristics of
the particular algorithms being attacked where one or more of the κa, κb, κc may be omitted.

Single Bit PPA In the case of the unknown κb absent a κa, κc, the form of the two bits
examined is

b0τ = κb + v0τ (6)

b1τ ′ = v1τ ′

which reduces to a single bit PPA.
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Two Bit AON PPA In the case of the unknown κb, κc absent a κa, the form of the two
bits examined is

b0τ = κb + v0τ (7)

b1τ ′ = κc + v1τ ′

which reduces to a two bit all or nothing PPA. A fully incorrect recovered key produces a
negated t, so it is substantially more likely that an incorrect key pair recovery will recover
at least one of the key bits correctly. The fact that the fully incorrect key corresponds to

Gk2 = Gk0 is defined as a normal hierarchy. A statistical fluctuation as a result of s1 > s2 is
equally as likely to recover (k∗b , k

∗
c ) ∈ {(kb, kc), (kc, kb)}.

Identifying Unrecoverable Key Bits via G1 In the case of the unknown κa absent a
κb, κc, the form of the two bits examined is

b0τ = κa + v0τ (8)

b1τ ′ = κa + v1τ ′

The single shared unknown variable provides a single bit result which may be enhanced
in accuracy by using the two different measurement points. However, when allowing the
unknown component in each bit value to take on different values such as

b0τ = κb + v0τ (9)

b1τ ′ = κc + v1τ ′

where the recovery of κb = κc indicates a concurrence in the value of the shared unknown
quantity. As the equations are overly defined, a fluctuation yielding t1,0 > t2,0 would pro-
duce an identifiable inconsistent state in a G1 degenerate group which indicates a definitive
inability to recover the key state. The identification of bits which cannot be determined
from the degenerate G1 group is the first application of the DGPA.

Coupled Equations, Inverted Hierarchy In the case of the unknown κa, κb absent a
κc, the form of the two bits examined is

b0τ = κa + κb + v0τ (10)

b1τ ′ = κa + v1τ ′

Here the two bits are coupled by the unknown κa. Note that the groups formed under a
particular key hypothesis κ = (κa, κb) are related to the other key hypothesis with Gκa,κb1,1 =

Gκa,κb0,0 = Gκa,κb0,1 = Gκa,κb1,0 and Gκa,κb0,0 = Gκa,κb1,1 = Gκa,κb1,0 = Gκa,κb0,1 If the recovered key

is partially correct as k∗ = (ka, kb), then tka,kb2,0 ≈ 0. Similarly, a fully incorrect key yields

tka,kb2,0 ≈ 0. If instead the partially correct recovered key is k∗ = (ka, kb) then tka,kb2,0 ≈ −tka,kb2,0 .
Since the largest t has been selected to obtain the most probable correct key, it is seen that
a partially recovered key with an incorrect kb is as likely as an fully incorrect recovered
key, both of which are more likely than recovering an incorrect ka alone. The fact that the
the fully incorrect key appears other than in G0 results in a inverted hierarchy relationship

where Gka,kb2 = Gka,kb(0,1) .

The probability of the G1 degenerate groups giving rise to a t1,0 > t2,0 is equal for
either t(1,0),(0,1) and t(0,1),(1,0), both of which include a wrong κa. Since only one of the
degenerate groups contains a wrong κb, the probability of a wrong κb is half that of a
wrong κa when a degenerate G1 group is selected instead of the proper G2 group. As
the probability of selecting the wrong κb through a incorrect selection of the G0 group is
much less than selecting the G1 group, the inverted hierarchy can be said to be biased in
selecting a correct κb over κa with almost a 2:1 enhancement. As such, coupled equations
with inverted hierarchy provide the second application of the DGPA and should be used
when the algorithm under attack allows such application.
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Leveraging Underdetermined Degenerate G2 In the case of the unknown κa, κb, κc,
the form of the two bits examined is the general case

b0τ = κa + κb + v0τ (11)

b1τ ′ = κa + κc + v1τ ′

The κ cannot be definitely determined, as Gka,kb,kc2 = Gka,kb,kc2 . However, the result of the
attack is an identification of the relationship between the ka, kb, kc, where the fixing of one
of the values along with the known relationship between the values reveals the state of the
other two. The use of the set of Gκ2 which are correctly identified is the third application of
the DGPA whereby a limited attack targeting a particular Gκ2 provides all other G2 at no
additional cost. When there are multiple degenerate G2, the correct G2 is denoted as GC .

3 Experimental Method

A custom circuit board was created for each of the Spartan 6 XC6SLX4, MSP430G2553, and
PIC16F1618 to provide data, clock, and power connections to the device under test. In all
cases the supply power (VINT for the Spartan) is measured with a two stage instrumentation
amplifier[10] comprising three LM6181 Operational Amplifiers providing an overall effective
gain of 105× the current signal when driven through a 50Ω terminated cable. The voltage
drop across a sense resistor of 10Ω provides input to a first stage with gain of 21× (with
100kΩ and 10kΩ resistors) and with unity gain in the second stage (with 1kΩ resistors).

Separate power is provided for VIO = 2.5V , VINT = 1.2V , VAUX = 3.3V with three
Keithley 2304A power supplies for the Spartan, and with V = 3.5V with a single supply for
the microcontrollers. A HP6624A power supply is used to provide ±15V for the LM6181.
Data is captured on a Agilent MSO9404A digitizing oscilloscope in segmented mode with
external device clock provided from a HP 8112A. A NI PXIe-8135 controller in a NI PXIe-
1075 chassis runs the test code and provides GPIB test equipment control. Test data and
experiment configuration communication with the device under test is achieved with a NI
PXI-6509 Digital I/O module which provides 5V TTL signals which are translated as re-
quired with an external circuit.

Device test code and configurations are created with the necessary ability to handle
the external data transfer of plaintext and ciphertext with the control machine. Random
plaintext is created on the device by using the ciphertext output of an encryption as the
random plaintext of the next encryption. Encryptions between fixed and random plaintexts
are interleaved. Test code for the microcontroller includes code which provides a marker in
the power signal to aid in synchronization. Recorded traces are processed offline to merge
multiple oscilloscope files and to extract the power signal pulse amplitude as a single value
per clock pulse. Average traces are computed offline for clock signals corresponding to the
same operation in the test separately for the fixed and random plaintext samples.

The fixed plaintext and key are loaded at the start of the test and are taken as the
published test values[11] unless stated otherwise. Due to limited space on the device from
constraints outside of this study, the round keys used for the four round MSP SPECK
64/128 test are those obtained from the m = 3 key expansion and SPECK 64/96 test key
and the Spartan SIMON and SPECK 128/256 test cases derive round keys from the m = 2
key expansion and SIMON/SPECK 128/128 test key. These substitutions do not effect this
study as the round function under test is the same for all m, the number of rounds examined
is less than T , and the constant power consumption of the key schedule algorithm cancels
when computing power differences. The pseudo random plaintext is initialized as zero and
the ciphertext resulting from that encryption is taken as the pseudo random plaintext input
for the next encryption. Unless stated otherwise, all results are generated with 50k events
each of fixed and random plaintext.

A trace refers to the raw measurement of the power consumption of a device as made
by an oscilloscope or other signal acquisition hardware with one data point per time sample
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Fig. 1: A picture of a single trace captured for the second cycle of the encryption for SIMON
(top) and SPECK (bottom) for d = 4 configurations of 64/128 (left) and 128/128 (right).
The clock pulse is shown in green (upper trace in each picture) and the amplified VINT
signal is shown in blue. Note how the power consumption with increasing n is substantially
greater for SPECK than for SIMON due to the cascading effects of the addition carry. The
vertical range showing the raw power measurement is 400mV and the horizontal range is
1µs.

of the acquisition system. The timing of the data acquisition is usually not synchronized
with the clock of the device under attack and as a result, multiple traces of the same device
activity will not precisely align. The use of a trace can be computationally intensive due to
the number of traces and the number of points in each trace being processed. The signal of
interest is generally expected to occur at a single instruction or clock cycle in an algorithm,
and once that location is known, only the power data corresponding to that exact point of
processing must be examined. The preprocessing of the recorded trace data extracts a single
power measurement value per clock cycle. For the Spartan 6, the power peak is measured as
the average of the 21 sample points centered at the 50% point of the capture window which
roughly corresponds to the signal peak, with example signals given in figure 1. For the MSP
and PIC, the power peak is measured as the maximum sample point in the capture window
after the rising clock edge. The resulting power measurement is the power peak subtracted
from the baseline which is calculated as the average of the first 5% of the capture window
prior to the rising clock edge. While the tests described use an external clock trigger to record
one segment per clock, the successful recovery of the power consumption peaks associated
with an internal clock using a single recorded trace was also studied and found to produce
equivalent results.

Specially designed tests were carried out to exercise and characterize the behavior of the
registers in each device type. Directional asymmetry between a register state transition flip
up (0→ 1) and flip down (1→ 0) was examined and is presented in table 1.

4 SIMON and SPECK

SIMON and SPECK are both lightweight block ciphers[11] which are respectively optimized
for hardware and software implementations. The block size is 2n, the number of n-bit key
words is m, and the number of rounds is T . The parameters vary for different implementa-
tions. The key of size nm bits is expanded to obtain T round keys each of n bits. The key
schedule algorithm is unrolled with the corresponding encryption rounds on the Spartan
and round keys are expanded into FLASH for the MSP and PIC prior to encryption.
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Device 0→ 1 (u) 1→ 0 (d) (d) Asymmetry
VCC (V/bit) (V/bit) u

d
− 1

Spartan 6 1.4 1.74E−5± 3.62E−8 1.70E−5± 3.64E−8 2%

MSP430 3.5 6.73E−5± 1.84E−6 5.23E−5± 2.01E−6 29%

PIC16F (SRAM read) 3.5 7.79E−5± 4.27E−5 1.52E−6± 6.57E−6 5034%
PIC16F (Data into ALU) 3.5 3.40E−5± 6.72E−6 1.08E−4± 1.48E−5 -68%
PIC16F (ALU onto bus) 3.5 2.32E−4± 1.82E−5 1.80E−4± 5.48E−6 29%
PIC16F (SRAM write) 3.5 4.96E−5± 5.41E−6 4.79E−5± 1.10E−5 4%

Table 1: Experiments exercising different number of register bit transitions, x, revealed
linear dependence on the signal power, y, presented as the baseline subtracted voltage peak
not including the 105× gain of the instrumentation amplifier. The linear fit parameter p1 is
presented as V/bit for the fit y = p0 +p1x where the arbitrary p0 offset is not consequential.
No asymmetry is seen in the Spartan 6, while a similar 29% asymmetry is seen in both the
MSP430 and PIC16F on the register state change.

The block of size 2n is divided into left and right partitions, X,Y which are the upper
and lower halves of the block. The input to round i is Xi,Yi, the output is Xi+1,Yi+1, and
the round key used in that round is ki. The notation of Xλ indicates a λ bit circular shift
to the left. The n-bit word X has the bit value Xj at index j, with (Xλ)j = Xj+λ.

Operations over single bits in GF (2) are denoted as + for addition and · for multiplica-
tion. When operating over n-bit words denoted by bolded letters, the notation of bitwise-
addition ⊕, bitwise-multiplication &, and addition with carry + is used.

The SIMON round function makes use entirely of bitwise operations and is

Xi+1 = Yi ⊕X2
i ⊕ (X1

i&X8
i )⊕ ki (12)

Yi+1 = Xi

The SIMON keyless round function is defined as Ai = Yi ⊕X2
i ⊕ (X1

i&X8
i ).

The SPECK round function makes use of arithmetic addition and is specified with pa-
rameters α = −8, β = 3 for all but the simplest configurations and is

Xi+1 = (Xα
i + Yi)⊕ ki (13)

Yi+1 = Yβ
i ⊕ (Xα

i + Yi)⊕ ki

The SPECK keyless round results are given as Wi+1 = Xi+1 ⊕ ki and Zi+1 = Yi+1 ⊕
ki. A bit-wise representation of SPECK replaces the addition with an explicit carry term
contribution

Xj
i+1 = Xα+j

i + Y ji + Cji + kji (14)

Y ji+1 = Xj
i+1 + Y β+ji

where

Cj+1
i = Xα+j

i · Y ji + (Xα+j
i + Y ji ) · Cji (15)

C0
i = 0

The implementations of each algorithm tested in this paper follow from the suggested
ATmega implementations[12], with adjustments made only to account for the 16 bit regis-
ters in the MSP430, and the various different available commands in both. The Spartan 6
implementations utilize a single 2n bit register comprised of Flip Flop elements with a LUT5
performing the round function for each bit for SIMON and the CARRY chain bordered by
LUTs performing the round function for SPECK. The register is specially designed and is
bordered by LUTs which control the data source and sink of the register, loading plaintext
data from a bus before encryption begins and taking data from the round logic during en-
cryption, and placing ciphertext onto the bus only once encryption is complete and onto
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the round logic during encryption. Also, as the data can be loaded from a bus size less than
2n, the data is not placed on the round logic until all data is loaded into the registers to
prevent an attack on only a part of the round logic. For both algorithms, the combined
LUT/CARRY components are referred to as the LUT tree. The logic of the LUT tree may
be repeated so that d rounds are computed per clock cycle. During encryption, a single
clock cycle stores the output of the LUT tree into the edge triggered flip flop register which
immediately changes the value which is present on the inputs to the LUT tree. The signal
that is generated is from the overwriting of the round i result with the round i + d result,
while the LUT tree changes state from that with the round i input to that with the round
i+ d input, resulting in the i+ 2d round result being present at the LUT tree output.

The number of bits computed per clock cycle, ν, is fixed at the register width of 8 and
16 for the PIC and MSP respectively, and is set at ν = n for the Spartan implementations
examined.

Data is recorded for the first four rounds of encryption on the PIC and MSP and for
the first 11d rounds on the Spartan. The choice of 4 rounds for the microcontrollers was
made to limit the data set size as used in a different study. The choice of 11d rounds is
only an artifact of initial d = 4, T = 44 SIMON 64/128 testing, with later implementations
using the same 11d for comparison purposes. As the correct key is known, each round can
be examined as a first round with the appropriate expanded key offset with the correct key
and plaintext used to provide the correct input to the round under test.

5 Attacks on Single Instructions

On both studied microcontrollers having register widths less than n, only a part of the block
is processed in any given clock cycle. Examining two bits of any particular single clock cycle,
the signal always takes the form of noncoupled normally ordered groups and gives a result
equivalent to what would be achieved with 2-bit AON PPA. The ability to identify the round
looping, as shown in figure 2, is essential to targeting specific instructions. The combination
of power signals from different clock cycles could be used to leverage the specific aspects of
the DGPA approach, but are not studied here.
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Fig. 2: The raw single power signal (y-axis) per clock cycle (x-axis) for the encryption of
fixed plaintext for four rounds of standard SIMON 64/128 for the MSP430 (top) and the
third clock cycle (ALU latch result to data bus) for the PIC16F (bottom). Clear patterns
are seen and individual instructions can be identified and targeted in the power analysis, as
denoted by the labeled vertical lines.
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MSP The MSP430 16-bit register overwrite is attacked for SIMON 64/128 on the XOR of
Y ⊕K with (X1&X8)⊕X2 to fully recover the first four round keys including propagating
error in under 5,500 plaintexts. A similar attack on SPECK 64/128 on the XOR of (X8 +
Y ) ⊕K with Y 3 yields the first round key completely in under 1k plaintexts and the first
four round keys including propagating in about 5k plaintexts. The t-test corresponding to
the recovery is presented in figure 3.
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(a) Round 1
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(b) Round 2
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(c) Round 3
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(d) Round 4

Fig. 3: The t-test for the incremental degenerate attack on four rounds of SPECK 64/128
on the MSP430, where a round key is recovered using the keys found for previous rounds.
The minimum, average, and maximum t-test of correctly identified key bits are given in
black, with the 1σ from average as the shaded area. The red line is the maximum t-test of
all incorrectly recovered key bits. Note that full key recovery across four rounds is achieved
with approximately 5000 plaintexts, a point at which the minimum t-test value is still
≈ 1σ. This early recovery of the complete first four round keys is followed by partially
incorrect recovery for greater plaintext count due to statistical fluctuations. The maximum
incorrect t-test value remains near 2σ as the average correct t-test value increases beyond
that threshold for rounds 2 and 4, indicating that the t-test value serves as a measure of
confidence on the correctness of the recovered key. This is not seen in the round 3 recovery
due to the propagating error introduced by incorrect recovery in round 2 and not due to
the recovery attempt in round 3 directly.



10 Steven Cavanaugh

PIC On the PIC the four clock cycles per instruction cycle are clearly separable in the
data and the attack is found to work on the clock cycles corresponding to the loading of
the W register in the second cycle and on the placing of the ALU output value on the data
bus in the third cycle. The reading and writing to the SRAM registers does not produce a
large signal as these registers are not the typical file register design and are not constantly
amplified. A four round key recovery with propagating errors of SPECK 64/128 is achieved
with 1.3k random plaintexts by examining the power of an offset increment command which
reveals the signal on the ALU latch which previously computed k⊕ (X−8 + Y). The same
attack on the offset increment command in a SIMON 64/128 implementation fully recovers
four round keys with propagating errors with 930 random plaintexts from the signal on the
ALU latch which previously computed k⊕Y.

6 Simple Attacks on Spartan 6 SIMON/SPECK d=1,2

Average key recovery over the eleven rounds of Spartan 6 sample data was examined for
different attack methods. The best performing attacks operating on the partially unrolled
rounds (PUR) Spartan implementations of d = 1 have only one clock cycle to examine per
round and recover the key completely with 14.1k, 12.5k , 16.6k, 34.4k random plaintexts
for SIMON 64, SIMON 128, SPECK 64, and SPECK 128 as shown in table 2. A simple
approach for recovery of SIMON d = 2 is also feasible as an examination of the Y2 → Y0

overwrite can be used to find k0 which is then used to recover k1 in the X2 → X0 overwrite.
The average rate of key recovery as a function of the number of plaintexts, x, is described
by the equation p0 + p1/(p2 + x), where the parameters are obtained from fits to the data
for the various methods and are presented in table 3.

Type Fully Understood Close (> n− 1
2
) Max Recovery

n d Samples Undetermined Recovery Avg Bits Samples

SIMON

32 1 AON X 14100 0 3060 32 14100
32 2 AON (Y2 → Y0) → k0 - - 28830 31.55 28830
32 2 AON (X2 → X0) → k1 - - - 31.18 44990
32 2 Coupled (k0, k1)→ k0 - - 28510 31.55 28510
32 2 Coupled (k0, k1)→ k1 - - - 31.18 45030
64 1 AON X 12500 0 8100 64 12500
64 1 AON Y 31240 0 25790 64 31240
64 1 1-bit PPA X 12500 0 8090 64 12500
64 1 4-bit PPA X 23120 0 14970 64 23120

SPECK

32 1 AON X - - 16000 31.82 18290
32 1 AON Y 16560 0 9400 32 16560
32 1 G1 4260 3.455 16000 31.82 18280
32 2 d = 2 Single Pass - - 30560 31.82 41700
64 1 AON X 41560 0 17760 64 41560
64 1 AON Y - - 14440 63.91 32740
64 1 G1 14550 1.000 19800 64 34380

Table 2: The number of random plaintext encryption samples required for key recovery
using various attack methods are presented for Spartan 6 implementations of SIMON and
SPECK with block size 2n computing d rounds per clock cycle. Results represent the average
behavior obtained when treating the first 11 clock cycles of each encryption implementation
as a distinct experiment with known random plaintext input. AON X/Y examines two bits
of either X or Y which are uncoupled and which reduce to the 2-bit AON PPA case. G1 is
the DGPA overly defined case. Fully Understood results represent the first time all bits are
understood (either known or identified as undetermined). SIMON d=1 AON Y attacks the
Y overwrite one cycle after the round result is stored in X. SPECK d=2 Single Pass is not
a simple attack, but is included for completeness and is described in section 9.
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n d Type p0 p1 p2 R
3
4
n

x Rn−1
x

MSP SIMON 32 1 AON 34.7744 -20607.8 1108.60 804 4351

MSP SPECK 32 1 AON 32.8089 -5199.00 335.961 254 2538

PIC SIMON 32 1 AON ALU 32.4197 -1022.21 46.8146 75 673

PIC SPECK 32 1 AON ALU 32.2347 -777.991 37.5202 57 593

Spartan SIMON

32 1 AON X 32.3280 -4805.37 293.007 284 3325
32 2 AON (Y2 → Y0) → k0 31.7145 -14269.1 1059.22 790 18912
32 2 AON (X2 → X0) → k1 31.6868 -30244.1 1870.05 2065 42166
32 2 Coupled (k0, k1)→ k0 31.7444 -14417.1 1069.23 792 18298
32 2 Coupled (k0, k1)→ k1 31.7292 -30207.5 974.972 2933 40451
64 1 AON X 64.9898 -14401.5 533.406 314 6704
64 1 AON Y 65.7042 -63133.5 2057.36 1509 21289
64 1 1-bit PPA X 64.5060 -12271.5 436.722 307 7712
64 1 4-bit PPA X 64.9641 -32573.6 1275.67 644 15309

Spartan SPECK

32 1 AON X 32.5635 -20571.6 1432.45 970 11725
32 1 AON Y 32.6074 -11707.5 726.908 633 6557
32 1 G1 32.5633 -20673.6 1439.76 974 11785
32 1 G1 Determined 32.1938 -1977.84 269.749 -28 1387
32 2 d = 2 Single Pass 32.8795 -45971.1 2699.43 2478 21760
64 1 AON X 64.9445 -37269.4 1421.49 778 17745
64 1 AON Y 64.5371 -20488.7 717.674 521 12612
64 1 G1 64.9595 -37573.7 1418.26 797 17757
64 1 G1 Determined 64.1698 -4723.84 385.530 -93 3653

Table 3: The fit of the average key recovery rate over the 4 rounds tested for MSP and PIC
and 11 rounds tested for Spartan follows the form f(x) = p0 + p1

(p2+x)
for x plaintexts for

the SIMON and SPECK implementations with block size 2n computing d rounds per clock
cycle. The expected number of plaintexts required for a recovery of 3

4n and n − 1 of the

round key bits is given as R
3
4n
x and Rn−1x with both obtained from the fit parameters, where

a lower value indicates a stronger method for the same platform and algorithm configuration.
No particular enhancement is seen in the inverted hierarchy coupled approach for Spartan
SIMON d = 2. The total number of key bits correctly identified or specifically determined
to be unrecoverable by the G1 degeneracy is reported as G1 determined. For the smallest
SPECK d = 1 sample of 10 random plaintexts, round key recovery already exceeds 3

4n bits
with actual results of 25 and 52 bits recovered or determined to be unrecoverable for SPECK
64 and SPECK 128, respectively. SPECK d=2 Single Pass is not a simple attack, but is
included for completeness and is described in section 9.

7 Advanced Attacks on SIMON d > 2

The SIMON equations for Xi+d,Yi+d expressed in terms of the inputs Xi,Yi and the keys
ki, ki+1, ..., ki+d−1 always contain linear components of Xi,Yi. The probability, p1, that a
bit j from a sample of random plaintext takes a value of 1 is p1(Xj

i ) = p1(Y ji ) = p1(Xj
i+d) =

p1(Y ji+d) = 1
2 for a sufficiently large sample. All nonlinear terms of the form (X1

j ·X8
j ) then

have a probability p1 = 1
4 .

As implementations with larger d include more nonlinear terms in the equations for
Xi+d, Yi+d, the nonlinear terms have a larger probability of contributing to the value. As-
suming that all i level terms (inputs to the cycle) only appear once each in each linear term,
the probability that the entire nonlinear component of λ terms will give an overall value of
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one is dependent on an odd number of active nonlinear terms and is given by

pnonlin(λ) =

λ∑
odd i

λ!

i!(λ− i)!

(
1

4

)i(
3

4

)λ−i
(16)

The linear approximation of SIMON takes a general form of

Xj
i+d = kjA + kjB + f(Xi,Yi)

j (17)

Y j+2
i+d = kjA + g(Xi,Yi)

j+2

where kA, kB are linear combinations of key bits and the shifted Y j+2
i+d term contains key bits

which also appear in Xj
i+d. The index of the bit being computed is j and the round being

computed is r = i+ d. The functions f, g exclude nonlinear contributions which include key
terms.

A first pass of the data is used to calculate (κA, κB)jr as is done for d = 1, 2. For d ≥ 3,
d− 2 additional passes are required to extract the key bits. In all cases, there are matching
nonlinear terms between Xj , Y j+2 in the form of (Xq+1+j

l · Xq+8+j
l ) that were previously

omitted from f, g where l depends on the level being recovered and q depends on the actual
expansion which is d dependent. Those omitted terms can be used to probe the contained
key information when included individually. For instance

Xj
i+d = kjA + kjB + f(Xi, Yi)

j + (Xq+1+j
i+1 ·Xq+8+j

i+1 ) (18)

= kjA + kjB + f(Xi, Yi)
j + ((ki +Ai)

q+1+j ·Xq+8+j
i+1 )

≈ kjA + kjB + f(Xi, Yi)
j + (ki +Ai)

q+1+j

Y j+2
i+d = kjA + g(Xi, Yi)

j+2 + ((ki +Ai)
q+1+j ·Xq+8+j

i+1 )

≈ kjA + g(Xi, Yi)
j+2 + (ki +Ai)

q+1+j

A similar procedure is carried out for the additional pass to recover ki as in the first pass,
where the value of Aji is Y ji +Xj+2

i + (Xj+1
i ·Xj+8

i ). In the case where Xq+8+j
i+1 = 1 and the

remaining linear combination of non linear terms is zero then the data is properly grouped.
However, approximately half of the time the assumption of Xq+8+j

i+1 = 1 is invalid (the term
is instead zero), which causes the data to be improperly grouped (G2 ⇀↽ G0) only when
(ki +Ai)

q+1+j = 1 which happens half of the time. So the overall probability of improperly
grouping the data is 1/4 and the sample is still biased to reveal ki. For i > 0 it is necessary to
use the previously found values of k0, ..., ki−1 to calculate Aji which results in a propagation
of error if there are incorrect previously found k bits.

The linear approximation begins to fail as the probability of a nonlinear term contribu-
tion increases. The unknown nonlinear term contribution, shown in table 4 demonstrates
how the X,Y2 term coupling serves to prolong the usefulness of the linear approximation.
The DGPA offers an enhancement over the best performing of the other 2-bit methods for
most d, although it is greatest for d = 5. The DGPA enhancement comes from the fact that
the observation of two equations requires both to be correct linear approximations with no
overall nonlinear contribution. Considering the individual probabilities of the shared terms
and unique terms giving rise to overall zero nonlinear contribution, the probability of that
occurring is greater than two uncoupled equations containing no shared terms giving rise
to overall zero nonlinear contribution. Examining less bits at once (1-bit PPA) gives the
greatest probability of a correct linear approximation, although the observation of multiple
bits can in practice offset that benefit with improved statistics and signal significance. An
estimation of the resulting t-test for various d due to contamination of the G2, G0 groups is
given in table 5, along with an estimation of the relative scaling of the data sample required
for a given d to obtain a statistically significant result comparable to the d = 1 case.
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d NTC Correct Linear Approximation Fraction Max DGPA
Xj Y j Xj , Y 2+j Xj Y j Xj , Y 2+j 2-bit X 2-bit Y 2-bit X,Y Enhancement

n = 24, 32, 48, 64

1 0 0 0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.0000%
2 1 0 0 0.750000 1.000000 0.750000 0.562500 1.000000 0.750000 -25.0000%
3 2 1 1 0.625000 0.750000 0.562500 0.390625 0.562500 0.468750 0.0000%
4 4 2 2 0.531250 0.625000 0.390625 0.282227 0.390625 0.332031 0.0000%
5 5 4 3 0.515625 0.531250 0.304688 0.265869 0.282227 0.273926 7.9585%
6 8 5 4 0.501953 0.515625 0.266602 0.251957 0.265869 0.258820 0.2755%
7 10 8 6 0.500488 0.501953 0.255127 0.250489 0.251957 0.251222 1.2582%
8 13 10 7 0.500061 0.500488 0.250763 0.250061 0.250489 0.250275 0.1096%
9 14 13 8 0.500031 0.500061 0.250168 0.250031 0.250061 0.250046 0.0427%
10 18 14 9 0.500002 0.500031 0.250031 0.250002 0.250031 0.250016 0.0004%

Table 4: The total unique unknown nonlinear term count (NTC) for SIMON for various
number of rounds computed per cycle (d) is presented, where zeroth order nonlinear terms
are not included because they are calculable and nonlinear terms which appear twice and
cancel when XOR’d have been removed. The Xj , Y 2+j NTC column indicates the number
of terms which appear in both of the coupled equations for Xj and Y 2+j , and the number
of unique terms in the coupled equation is obtained by subtracting the terms appearing
in both from the total terms in each. The fraction of random plaintext which is described
correctly by the linear approximation is given for single bits of X and Y (1-bit PPA), a pair
of bits from the coupled equations Xj , Y 2+j (DGPA), and for 2-bit PPA pairs taking bits
from only X, only Y , or both X and Y .

Interestingly, this attack method is not strongly dependent on n until d is great enough
that the terms which appear in the linear expansion also appear as an outer term in a
non linear term (a greater n provides less interference for the same d). The method could
presumably be applied to implementations which do not have fully unrolled rounds provided
that the power is added for the cycles corresponding to the necessary X and Y shift. For a
specific d attack, there may be multiple equation pairs that may be used for various terms to
either verify key bit results or identify probable incorrect key bits. Even just recovery with
a single pass of (k∗A, k

∗
B)jr provides ample information on the relationship between key bits

to provide at least one full round key for a brute force attack on the remaining m− 1 round
keys. For this reason, it is necessary to choose d such that the nonlinear term contribution
is as close to half of the total contribution as possible.

The attack is tested for each of the encryption cycles independently, as the correct input
to each cycle can be calculated using the known key. The actual recovery rate is shown in
table 6. While the ability to recover key bits for d ≥ 5 is dependent on the recovery of k∗A
and k∗B , the ability to do so will be dependent on the data sample size which will need to be
increased to compensate for the decreasing significance of the linear approximation. Using
the sample size scaling from table 5, and the fact that 14.1k plaintexts achieved full key
recovery for d = 1, n = 32 on the Spartan, an arbitrary requirement of preventing full key
recovery with fewer than 5 million plaintext results in a minimum recommendation of d = 5.

The treatment given here assumes that single buffers are used for X,Y and that Xi+d

overwrites Xi and Xi+d−1 overwrites Yi. This same approach holds for other implementa-
tions, including ping pong buffers or hybrid combinations providing that the initial state
of the destination buffer is known to the attacker or can otherwise be determined or con-
trolled. In the case of ν < n it is necessary to perform proper bookkeeping as the power
corresponding to some X,Y2 pairs occur on the same cycle, while in other cases the power
from two cycles must be combined. In the ping pong buffer situation, if the contents of the
first destination buffer are not known, then the attack must be performed on the overwrite
of the first source buffer which effectively results in a 2d attack complexity. The only way
to ensure that the first destination buffer value is not known is to load a new random value
into that buffer before each encryption.
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Components of G2 Selection
d G2 G0 G1 t2,0 n2, n0

n = 24, 32, 48, 64

1 100.0000000% 0.0000000% 0.0000000% 2.0000E0 1.0000E0
2 75.0000000% 0.0000000% 25.0000000% 1.5000E0 1.7778E0
3 56.2500000% 18.7500000% 25.0000000% 7.5000E-1 7.1111E0
4 39.0625000% 23.4375000% 37.5000000% 3.1250E-1 4.0960E1
5 30.4687500% 25.7812500% 43.7500000% 9.3750E-2 4.5511E2
6 26.6601562% 24.9023438% 48.4375000% 3.5156E-2 3.2363E3
7 25.5126953% 25.2685547% 49.2187500% 4.8828E-3 1.6777E5
8 25.0762939% 25.0213623% 49.9023438% 1.0986E-3 3.3140E6
9 25.0167847% 25.0076294% 49.9755859% 1.8311E-4 1.1930E8
10 25.0031471% 24.9999046% 49.9969482% 6.4850E-5 9.5113E8
11 25.0008702% 25.0006557% 49.9984741% 4.2915E-6 2.1719E11
12 25.0000600% 25.0000354% 49.9999046% 4.9174E-7 1.6542E13
13 25.0000064% 25.0000055% 49.9999881% 1.8626E-8 1.1529E16

n = 24

14 25.0000003% 25.0000001% 49.9999996% 4.1910E-9 2.2774E17
15 25.0000001% 25.0000000% 49.9999999% 6.9849E-10 8.1986E18
16 25.0000000% 25.0000000% 50.0000000% 2.9104E-10 4.7224E19
17 25.0000000% 25.0000000% 50.0000000% 8.7311E-11 5.2471E20

n = 32, 48, 64

14 25.0000003% 25.0000001% 49.9999996% 3.8417E-9 2.7103E17
15 25.0000000% 25.0000000% 49.9999999% 1.3097E-10 2.3320E20
16 25.0000000% 25.0000000% 50.0000000% 1.5461E-11 1.6733E22
17 25.0000000% 25.0000000% 50.0000000% 1.3642E-12 2.1492E24

Table 5: The components of the G2 selection made with the linear approximation as a result
of the ignored nonlinear contributions for SIMON with various number of rounds computed
per cycle (d). The relative t-test value computed between G2, G0 is given which indicates
how the signal scales down with increasing d. The corresponding relative data count scale,
n, is also given as the number of measurements in each group required to maintain the d = 1
t-test result at larger d, provided that the standard deviation term in the t-test is unchanged
and the event count is the same between the groups. This scale factor should multiply the
number of events required for satisfactory key recovery at d = 1 to obtain an estimated
event count for larger d. The case for G0 is the same result with the index swap 2 ⇀↽ 0.

d Total Average Key Bits Recovered
Key Bits kA kB k0 k1 k2 k3 Total

1 32 32 (100.0%) 32 (100.0%)
2 64 31.36 (98.0%) 31.09 (97.2%) 62.45 (97.6%)
3 96 30.6 (95.7%) 30.1 (94.0%) 29.9 (93.5%) 28.2 (88.1%) 28.9 (90.3%) 87.0 ( 90.6%)
4 128 27.55 (86.1%) 22.36 (69.9%) 25.18 (78.7%) 22.45 (70.2%) 19.82 (61.9%) 19.45 (60.8%) 86.91 (67.9%)

Table 6: The average number of key bits recovered for SIMON n=32 on the Spartan 6 for
the 11 encryption tests for d = 1, 2, 3, 4 where each dataset had 50k random plaintexts per
cycle. The success of a recovery decreases with d due to the increasing contribution of the
non linear terms. The success also decreases as additional key bits are recovered and errors
in previously recovered bits propagate to the later keys. The recovery rate of kA and kB is
shown only for d where the actual round keys are not directly obtained from k∗A and k∗B in
the first pass. Note that a recovery of 50% is consistent with a random guess.
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7.1 Pipelined SIMON

In a pipelined implementation, a given buffer is always overwritten by the same ith round
result. The power signal is then based on the result of two consecutive plaintext encryptions,
requiring the attacker to know both plaintexts. For instance, if the first encryption is per-
formed on XA,YA and the second is performed on XB ,YB , the signal on the buffers storing
result for round i+d is the Hamming distance which is ∝ β(YB,i+d → YA,i+d)+β(XB,i+d →
XA,i+d) where β(x) is the function returning the number of bits set in x. The linear key
term contributions cancel, leaving the attack to be performed only on the nonlinear terms.
This reduces a source of propagating error in the nonlinear term attack but does not give
the trivial result for d = 1. For both d = 1, 2, k0 is recovered by a 2-bit AON attack on the
register overwrite two rounds deep producing the signal

β(Xj
B,i+2 → Xj

A,i+2) = X1+j
B,i+1 ·X

8+j
B,i+1 +X1+j

A,i+1 ·X
8+j
A,i+1 + CX,2(XA,i,XB,i)

j (19)

∝ (A1+j
B,i + k1+ji ) · (A8+j

B,i + k8+ji ) + (A1+j
A,i + k1+ji ) · (A8+j

A,i + k8+ji )

where the key independent values for the X and Y contributions for d = 2 are given by CX,i+d
and CY,i+d. The key dependent values are the nonlinear terms of X. To solve for k1+ji , only

data is examined which has the property that A8+j
A,i = A8+j

B,i and A1+j
A,i = A1+j

B,i ≡ A1+j
A/B,i

which reduces the signal to

β(Xj
B,i+2 → Xj

A,i+2) = (A1+j
A/B,i + k1+ji ) · 1 + CX2(XA,i,XB,i)

j (20)

which is solvable by the 2-bit AON method. The signal β(Xj
B,2 → Xj

A,2) yields k0, The

value of k1 is found in the same way on Xj
B,3 → Xj

A,3 for d = 1 or Y jB,4 → Y jA,4 for d = 1, 2

using previously found round keys. The value of k2 is then found from Xj
B,4 → Xj

A,4 and k3

from Y jB,5 → Y jA,5 for d = 1 or from Xj
B,6 → Xj

A,6 from d = 1, 2.
The approach is the same for d > 2, although there will be some unknown nonlinear

terms which are ignored in the linear approximation and which preferentially take on values
of zero according to equation 16.

In general, the signal from β(Xj
B,i+d → Xj

A,i+d) will contain 2(i + d − 1) nonlinear

terms for the round keys ki, ..., ki+d−2 and the signal from β(Y jB,i+d → Y jA,i+d) will contain
2(i+d−2) nonlinear terms for the round keys ki, ..., ki+d−3. The two lowest order nonlinear
terms will be fixed in the first round key recovery, with each subsequent round key recovery
fixing additional term pairs. To obtain an equivalent result as the standard implementation
at d = 5 as seen in table 4, the number of unknown nonlinear terms must be at least
four, resulting in a minimum depth of d ≥ 5, where β(Y jB,i+5 → Y jA,i+5) will contain six
nonlinear terms of which two will be fixed leaving four unknown terms. Compared to the
PUR implementation, this approach requires a factor of four increase in the amount of data
required from the fixing of the terms, and the number of nonlinear terms increases twice
as fast as the coupled equation standard implementation, resulting in comparably stronger
implementations for d > 5 over non-pipelined implementations.

8 Advanced Attacks on SIMON LUTs

It may be possible to mount a forward attack targeting individual LUTs in a SIMON
implementation, where each LUT represents a single bit of a round function. When d ≥ 2,
the equation for a second round LUT is

Xj
i+2 = Y ji+1 + kji+1 +X2+j

i+1 +X1+j
i+1 ·X

8+j
i+1 (21)

= Xj
i + kji+1 + k2+ji +A2+j

i

+(A1+j
i + k1+ji ) · (A8+j

i + k8+ji )

Aji ≡ Y
j
i +X2+j

i + (X1+j
i ·X8+j

i )
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Two equations are then constructed for the values entering the nonlinear AND term of
the second round LUT.

X1+j
i+1 = k1+j1 +A1+j

i (22)

= κ1+jA +A1+j
i

X8+j
i+1 = k8+j1 +A8+j

i

= κ1+jA + κ1+jB +A8+j
i

If the plaintext is known, a hypothesis can be made for the key pair where the real key value
is contained within the possible hypothesis (k1+ji , k1+ji + k8+ji ) ∈ (κA, κB) .

Groups are then formed for the key hypothesis (κA, κB) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
where the group G2 represents that both input terms to the second level LUT are one, G1

represents one input is one and the other is zero, and G0 represents both being zero.

The t-test value is computed as was done for the register attack. The correct key hy-

pothesis is determined as the one producing the largest t
(κA,κB)
2,0 , although unlike in the

register attack where a change in flip flop state from a previous state consumed more power
than the unchanging flip flop, it cannot be determined if the largest t corresponds to G2 or
G0. This is because the LUT will consume power depending on the function, input order
(which inputs are connected to which address lines of the LUT), and relative time ordering
of the input value changes (routing and placement effects). This behavior would differ from
a similar attack on an ASIC implementation of SIMON where the power consumption of an
AND gate would be dependent on its inputs alone and not correlated with the state of the
other values of the round function terms. An unchanging input on a LUT could consume
more power than the same input being changed depending on the other inputs and other
input change order, or visa versa. Data used in this test was created with implementations
using a constant fixed LUT definition for all round LUTs, eliminating uncertainty arising
from signal input order. The ability to determine which ordering of G2 or G0 corresponds to
the largest of tκA,κB2,0 , tκA,κB0,2 and which corresponds to its compliment is a task requiring de-
vice characterization (device and implementation specific) which, with a known key, allows
for the attack to determine which group (more or less power consumed) for which bit of
each LUT of a given round corresponds to the correct key pairing. If device characterization
is not possible, then 2ν permutations per round must be examined which consider either
G2, G0 for each bit, where ν is the bit width of the LUT tree. The necessary number of
permutations in absence of device characterization is 2µν where µ is the minimum of d− 1
and m. The data needs to be reprocessed for each possible permutation to ensure proper
data grouping, although this may still be a smaller effort than a brute force of the expected
key strength of 2nm.

If the correct k1+j1 can be found from κA, then the known plaintext could be encrypted
by a single round and the process could be repeated to find k2 and so on up to kd−2. The
final kd−1 can be found with the d = 1 register attack.

8.1 Forward SIMON LUT Attack d = 3

With d = 3, the LUT attack can be performed to find ki, ki+1. The same dataset is used
as for the d = 3 register attack. The number of correct recoveries of κA by bit position is
presented in figure 4. The correct key recovery rate is insufficient for a practical attack.

The expected key recovery accuracy for n = 32 once the correct characterization permu-
tation is used is

1σ 2σ 3σ
ki 26 22 7
ki+1 17 11 4
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where the number of bit positions are given that recover the correct key 68% of the time
(1σ), 95% of the time (2σ), and 99.7% of the time (3σ). Note how the second round has
worse performance, even though for this test the correct ki was used to find the plaintext
input to that round. This may be due to a temporal smearing effect from the placement and
routing.

If the threshold is reduced, the number of bit positions that can recover a bit of ki
or ki+1 with a 68% confidence is 26 and 17 respectively. This attack therefore does not
show the necessary reliability that was seen for the register type attack. While this type of
attack may work for ν � n, which is not tested here, the case of ν = n for n = 32 shows
significant variation in the power consumption of the LUT which is dependent not only on
the input value of the nonlinear term components but on the values of the other inputs and
the timing order in which the inputs change value. The plot of the t-test value shown in
figure 5 illustrates the degenerate signal which has a substantially smaller separation in the
second round. Device characterization with a known key attack could be used to determine
the G2, G0 ordering per individual LUT for layout specific effects.
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Fig. 4: For each bit position (x-axis) examined for the d = 3 forward SIMON n = 32 LUT
attack the number of κA correct bits for the 11 cycle test is presented (y-axis) for the attack
on the LUTs for ki (left) and ki+1 (right). A bit position with a large number of bits correct
has the expected group ordering G2 > G0 while a bit position with a small number of bits
correct has the inverted group ordering G0 > G2. Those with an average near 5.5 (solid
red line) do not exhibit the ability to distinguish the correct κA. The dashed lines indicate
1σ, 2σ from the average case of a random guess for κA.

t
15− 10− 5− 0 5 10 15

0

20

40

60

80

100

120

140

160

180

200

t
15− 10− 5− 0 5 10 15

0

50

100

150

200

250

300

350

400

Fig. 5: The t values (x-axis) over the the 11 cycle test for the d = 3 forward SIMON n = 32
LUT attack carried out over each bit is presented for ki (left) and ki+1 (right). The t
corresponding to the expected group ordering G2 > G0 for the correctly identified κA is
shown in green while the t corresponding to the inverted group ordering G0 > G2 for the
correctly identified κA is shown in red. The statistical separation between the correct t (from
G2, G0 or G0, G2) from the degenerate case t (from G1, G1) is evident for the ki recovery
but is substantially reduced for the ki+1 recovery due to a wider variance in the timing of
the changing signals in the second round LUTs compared to the first round LUTs.
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8.2 Reverse SIMON LUT Attack d = 3

A reverse attack can also be carried out on the SIMON LUTs using the encryption result,
XT , YT . A hypothesis for k1T−1, k

8
T−1 fixes the input to the second to last round AND.

X1+j
T−2 = k1+jT−1 + Y 1+j

T +X3+j
T +X2+j

T ·X9+j
T (23)

X8+j
T−2 = k8+jT−1 + Y 8+j

T +X10+j
T +X9+j

T ·X17+j
T

If the correct key hypothesis is chosen, the two inputs will be correctly grouped as both zero
or both one. In the case of both zero, this AND as well as two others will have fixed output
results of zero. In the case of both one, this AND will have a fixed result of one with two
others taking equal probable outputs. If one is zero and the other is one, this AND will have
fixed output of zero and one other AND will have a fixed output of zero. This again leads
to two nearly degenerate G1, a G2, and a G0 grouping. Again, it is not known if fixing a
particular AND output will contribute more or less power to the operation of the LUT, so
either device characterization or the necessary permutations must be carried out. If kT−1
can be recovered, the process can be repeated to recover kT−2 and so on. It is seen that
this reverse attack does not perform as well as the forward attack, with only a few bits able
to be recovered consistently with the expected key recovery accuracy for the d = 3 reverse
attack on the SIMON n = 32 LUTs once the correct characterization permutation is used,
where the number of bit positions are given that recover the correct key 68% of the time
(1σ), 95% of the time (2σ), and 99.7% of the time (3σ).

1σ 2σ 3σ
ki+2 6 2 1
ki+1 7 4 1

The splitting of t for the correct group is not as clear, with most bit positions unable to
perform a statistically significant identification.

9 Advanced Attacks on SPECK d ≥ 2

When attacking SPECK with d ≥ 2, there are key-dependent carry terms from the addition
which are uniformly distributed for random plaintext. For this reason, it is necessary to fix
the value of these carry terms. The equations for X,Y are

Xj
i+1 = κA + κC +Xα+j

i + Y ji + Cji (24)

Y ji+1 = κA + κB +Xj
i+1 + Y β+ji

where κA are linear key terms in common between X and Y, κB , κC are linear key terms
unique to Y and X respectively, as given in table 7, and α, β are the parameters of the
particular SPECK implementation.

A general approach allows for the filtering of the random plaintext to fix the carry terms

Cj+1
i = (Wα+j

i + kα+ji ) · (Zji + kji ) + (Wα+j
i + kα+ji + Zji + kji ) · C

j
i (25)

C0
i = 0

The carry term Cj+1
i can be fixed by examining all possible key bit values in the carry

terms of the expansion and for each combination assigning a subset of data which results
in fixed carry terms. By selecting data which has the property Wα+j

i = κα+ji and Zji = κji ,
the resulting dataset has the property that for every equation examined the carry terms
will be fixed at zero provided that the κ are correct. If the κ are partially incorrect, then
the data will be misclassified reducing the maximum t value towards zero from a random
contribution through the exposed Cji . In the case where both key bits are incorrect so that
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Wα+j
i = κα+ji and Zji = κji the carry bit will be fixed at one. Since all of the carry bit

contributions appear in a linear combination, the overall value of a set of fixed carry terms
is either zero or one. As the κ contained within a single carry term may be flipped changing
the fixed state of that term, the ability to resolve the correct case from the degenerate case
depends on the term content of κA, κB , κC . While the correct and complimentary carry bits
produce degenerate groups, the relative values do provide useful information as to whether
the two key bits in a given multiplication term take on the same or different values from
each other. As a result, once a few key bits have been recovered it is possible to extend
that information to recover many more key bits without any further data processing. Once
the carry contributions are fixed, the exposed key terms may cancel the normal linear key
terms, thus producing a reduced set of free key terms.

d κA κB κC

1 (1) k0 (0) (0)

2 (3) k0, kα0 , k1 (1) kβ0 (0)

3 (5) k0, k2α0 , k1, kα1 , k2 (3) kα+β0 , k2β0 , kβ1 (1) kβ0
4a (10) k0, kα0 , k2α0 , k3α0 , k2β0 ,

k1, k2α1 , k2, kα2 , k3

(7) kα+2β
0 , k2α+β0 , k3β0 , kβ0 ,

kα+β1 , k2β1 , kβ2

(1) kβ1

4b (10) k0, kα0 , k2α0 , k3α0 , k2β0 ,
k1, k2α1 , k2, kα2 , k3

(5) k2α+β0 , kβ0 , kα+β1 , k2β1 , kβ2 (1) kβ1

Table 7: The linear term key components of SPECK (n = 32, 48, 64) for various d where
X ∝ κA + κC and Y ∝ κA + κB . The fixing of the carry contributions cancels some of the
standard linear key terms for d ≥ 4, here shown as the linear terms (d = 4a) and resulting
terms after cancelation (d = 4b).

There is a concept of carry term chaining, where a key term that appears in one carry
term may also appear in one or more additional carry terms. The compliment of the key
hypothesis of one carry term requires both of the key hypothesis in all chained carry terms
to also invert to ensure that these carry terms remain constant. This results in a reduced
number of degenerate groupings which are indistinguishable from the correct solution. A list
of the carry terms, carry chains, and number of degenerate correct solution states is given
in table 8 for n = 32, 48, 64. Note that for n = 24 some of the terms cancel due to index
wrapping.

For a given carry term in a carry chain, Cji there is a key hypothesis for the relationship

between the chained key terms κα+j−1i−1 , κj−1i−1 as obtained from equation 25. Independent
of whether this is the correct key hypothesis or its conjugate, one of the conditions of

kα+j−1i−1 = kj−1i−1 or kα+j−1i−1 = kj−1i−1 will hold. With a single carry chain containing at least
d n|α|e key terms spaced every |α| and thus at least d n|α|e− 1 carry terms, it is only necessary

to permute a single key value in the carry chain to obtain all d n|α|e key terms. If there are

|α| adjacent chains, only α bits need to be permuted to recover an entire round key. A d
implementation recovers d−2 round keys from carry chains and the remaining 2 round keys
from the d = 2 method. As seen in table 8, for d ≥ 3 at least two chains of two terms are
contained at the d− 2 level spaced one index apart, with additional and longer chains given
for earlier rounds reducing the number of required equation pairs to be examined by half.
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d G2 G Carry Chain X Y NX NY

2 21 22 C1 C1 C1 1 1

3 24 210 C1, Cα1 C1, Cα1 C1, Cα1 2 2

Cβ1 Cβ1 0 1
C2 C2 C2 1 1
Cα−1

1 , C−1
1 0 0

4 211 230 C1 C1 C1 1 1

Cα+β1 , Cβ1 Cβ1 Cα+β1 1 1
C2α

1 C2α
1 C2α

1 1 1

C2β
1 C2β

1 0 1
C2, Cα2 C2, Cα2 C2, Cα2 2 2

Cβ2 Cβ2 0 1
C3 C3 C3 1 1
Cα−1

1 , C2α−1
1 , C−1

1 0 0

Cα+β−1
1 , Cβ−1

1 0 0
Cα−1

2 , C−1
2 0 0

Cα−2
1 , C2α−2

1 , C−2
1 0 0

5 219 260 C1, Cα1 , C2α
1 , C3α

1 C1, Cα1 , C2α
1 , C3α

1 C1, Cα1 , C2α
1 , C3α

1 4 4

Cα+2β
1 , C2β

1 C2β
1 Cα+2β

1 , C2β
1 1 2

Cα−3
1 , C2α+β

1 , C3α−3
1 , Cβ1 C2α+β

1 , Cβ1 0 2

Cα−1
1 , C2α−1

1 , C3β
1 , C−1

1 C3β
1 0 1

C2 C2 C2 1 1

Cα+β2 , Cβ2 Cβ2 Cα+β2 1 1
C2α

2 C2α
2 C2α

2 1 1

C2β
2 C2β

2 0 1
C3, Cα3 C3, Cα3 C3, Cα3 2 2

Cβ3 Cβ3 0 1
C4 C4 C4 1 1

Cα+β−1
1 , C2α+β−1

1 , Cβ−1
1 0 0

Cα+2β−1
1 , C2β−1

1 0 0
Cα−1

2 , C2α−1
2 , C−1

2 0 0

Cα+β−1
2 , Cβ−1

2 0 0
Cα−1

3 , C−1
3 0 0

Cα−2
1 , C2α−2

1 , C3α−2
1 , C−2

1 0 0

Cα+β−2
1 , C2α+β−2

1 , Cβ−2
1 0 0

Cα−2
2 , C2α−2

2 , C−2
2 0 0

Table 8: For the first few d of SPECK for n = 32, the number of degenerate G2 groups
formed compared to the total number of groups (G) when the terms in the carry chains are
fixed is presented. Terms which appear with an even count in X or Y (NX , NY ) have no
effect when the chain value is flipped, while those with an odd count in X or Y propagate
a flip to that equation. Terms with zero count in X and Y are inner terms of higher level
carries which appear with even contribution in the parent carry and do not effect the key
hypothesis in the parent carry when flipped. Similar terms appear for d < 5 for n = 48, 64
with the d = 5 having G = 265.
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The minimum attack count, AC , required to obtain carry chains which define all round
key bits for rounds 0, ..., ic − 1 with ic = min(d− 2,m) is then given as

AC =
|α|
2

⌈
n− |α|
b|α|

⌉
(26)

where 2n is the block size, |α| is the magnitude of the SPECK α shift parameter, and b is
the maximum number of chain terms in the longest two chains offset by an index of one
at the ic level, which is also the number of additional key bits obtained from the chain

relationship knowing one of the key values in the chain. The |α|2 scale factor accounts for
the two equal length carry chains offset by a single index per attack. The number of brute
force permutations of key bits at d−2 is 2|α| and is approximated for the ic rounds as 2ic|α|,
although it may be less as chains corresponding to i < d − 2 have more than two chains
which are also longer than three carry terms each and may provide additional relationships
between round key bit values at those levels. Additional terms may be calculated at more
frequent intervals providing a means of cross checking and error detection. A closed chain
may be formed which gives relationship values for a given key bit with at least two other
key bits, including the key bits that are brute forced thus providing an additional means of
error detection.

If the number of all terms appearing in both X and Y from a particular carry chain is
either even or odd then κA cannot be determined, but κB can be determined in the case of
an empty κC , a condition which applies to d = 2 only. For d ≥ 3, there are combinations of
both even, both odd, or one even and one odd term count in X/Y for a given carry chain.
This results in the inability to determine the relationship between κA, κB , κC . In this case,
all of the useful information is in the carry terms.

The number of degenerate solutions indistinguishable from the correct solution along
with the total number of groups that are formed with all possible carry key hypothesis are
presented in table 9. For all n, the total group size begins to become unmanageable for d ≥ 4,
requiring 227 groups for n = 24 and 230 groups for n = 32, 48, 64. Even if an attack were to
by chance find a group degenerate with Gc, for d ≥ 4 the minimum number of groups that
would need to be examined assuming evenly distributed groups degenerate with Gc would
still not be feasible with 217 groups for n = 24, and 219 groups for n = 32, 48, 64. Grouping
can be performed on the key relationships rather than the key values, resulting in a total
of mGc = Gt

Gc
groups which must be examined. For such an attack, a sufficient number of

events for each group being examined would need to be generated for each bit under attack.
While an attacker capable of constructing plaintext could potentially carry out this attack,
a random plaintext sample would not be expected to have samples which preferentially fell
into some groups more often than others.

n = 24 n = 32 n = 48 n = 64
d Gc Gt mGc Gc Gt mGc Gc Gt mGc Gc Gt mGc

2 21 22 21 21 22 21 21 22 21 21 22 21

3 24 210 26 24 210 26 24 210 26 24 210 26

4 210 227 217 211 230 219 211 230 219 211 230 219

5 218 251 233 219 260 241 219 265 246 219 265 246

6 226 275 249 227 292 265 227 2108 281 228 2112 284

Table 9: The number of degenerate groups indistinguishable from the correct key set in-
cluding the correct case (Gc), the total number of groups (Gt), and the expected minimum
number of groups to be examined before a group in the degenerate correct group set is
observed (mGc = Gt/Gc) assuming an even distribution of the degenerate groups for the
first few d of SPECK.
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For a given key hypothesis, a number of bits of the input plaintext all take the same fixed
value as they are included in the carry terms. The other bits which enter into the equation
are free terms which vary from the random plaintext. Any other bit of the plaintext is
unused in an attack on a single bit. For this reason, an attacker may carefully construct a
sample of random plaintext which only includes bit variations on the free and fixed terms
for |α| contiguous bits.

The special case of d = 2 requires a single pass to group the data into 16 groups (κA, κB
and both key bits of the single carry term), recovering k0 from κB when data is grouped
to fix the single carry term. The found k0 is then used with the already recovered κA to
recover k1 after determining which carry chain group is correct by examining the actual
corresponding k0 relationship. No brute force step is required.

In the cases of d ≥ 3 where κA, κB , κC all have non fixed terms, the chained keys in
the carry terms can be used with a brute force attack on a fraction of bits to obtain key
candidates which must then be tested. For the specific case of d = 3,m = 4 a second cycle
must be examined with each key hypothesis for k0, k1, k2. The d = 2 attack method can
be carried out on each key hypothesis for d = 3,m = 2, 3, 4 with κ0, for d = 4,m = 3, 4
with κ0, κ1, and for d = 4,m = 4 with κ0, κ1, κ2. and which provide C1, C2 for d = 3
and C1, C2, C3 for d = 4 requiring 22|α| and 23|α| guesses respectively to recover complete
probable k∗0 , k

∗
1 and k∗0 , k

∗
1 , k
∗
2 keys. However, once the d − 2 keys are found at a cost of

2(d−2)|α|, the remaining 2 keys can be found with another pass using the d = 2 method.
Once the keys ki+0, ...ki+d−3 have been set via brute force and carry chain key relationships,
the equations for X,Y take the form of coupled equations with inverted hierarchy

Xj
i+d = κjA + κjB + Cji+d−1 + f(Xi,Yi)

j (27)

Y ji+d = κjA + Cji+d−1 + g(Xi,Yi)
j

where the functions f, g include the plaintext component. The solution for the remaining
ki+d−2, ki+d−1 follows the d = 2 solution. In the case of d = 3,m = 4 the attack also needs
to also be performed on the second cycle.

The effective key strength for various configuration is presented in table 10. The case
of d = 3 is found to require a manageable data size of a minimum of 64 groups and a
maximum of 1,000 groups to be examined, each of which must contain a number of random
plaintexts to provide statistically significant samples. For d ≥ 4 although the number of
permutations required is small compared to the expected key complexity, the number of
random data samples required is large enough to make the attack unfeasible. With d = 4, a
minimum of 131k (217) groups must be examined to find a group degenerate with the correct
group. A total of 130 million groups are formed for n = 24 and over one billion groups for
larger n. As each group must contain a number of random plaintexts to provide statistically
significant samples, the carefully formed minimum group set with each group containing at
least ten entries would be comparable to the data set size required for a comparable SIMON
d = 5 attack complexity. That limited number of entries would probably be insufficient for
a statistically significant measurement.
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d m Chain Keys Expected Minimum Needs Needs SPECK 64 SPECK 128
Attack From Key Effective d = 2 Second |α| = 8, n = 32 |α| = 8, n = 64
Count Chains Strength Strength Pass Cycle Attack MES Attack MES

3 2 |α|
2
d(n−|α|

2|α| )e 1 22n 2|α| x - 8 28 16 28

3 |α|
2
d(n−|α|

2|α| )e 1 23n 2|α| x - 8 28 16 28

4 |α|d(n−|α|
2|α| )e 2 24n 22|α| x x 16 216 32 216

4 2 |α|
2
d(n−|α|

2|α| )e 2 22n 22|α| - - 8 216 16 216

3 |α|
2
d(n−|α|

2|α| )e 2 23n 22|α| x - 8 216 16 216

4 |α|
2
d(n−|α|

2|α| )e 2 24n 22|α| x - 8 216 16 216

5 2 |α|
2
d(n−|α|

3|α| )e 2 22n 22|α| - - 4 216 12 216

3 |α|
2
d(n−|α|

2|α| )e 3 23n 23|α| - - 8 224 16 224

4 |α|
2
d(n−|α|

2|α| )e 3 24n 23|α| x - 8 224 16 224

6 2 |α|
2
d(n−|α|

4|α| )e 2 22n 22|α| - - 4 216 8 216

3 |α|
2
d(n−|α|

3|α| )e 3 23n 23|α| - - 4 224 12 224

4 |α|
2
d(n−|α|

2|α| )e 4 24n 24|α| - - 8 232 16 232

Table 10: Details of the advanced attack on SPECK are shown for the number of rounds
computed per cycle, d, and SPECK parameters of m, block size 2n, and the magnitude of
the shift parameter, α. The chain attack count indicates the number of index positions at
which the DGPA δ = 2 attack is carried out by fixing carry terms based on plaintext values
in order to find the correct GC or equivalent degenerate groups required to describe the
bit relationships between the specified number of round keys which are obtained from these
carry chains. The expected key strength is 2mn. For each round key recovered using a chain
which only defines relationships between key bits spaced at a distance of |α|, a brute force
effort is required. Permuting the initial |α| bits of each round key results in a minimum
effective strength (MES) which is substantially reduced from the expected key strength.
When the m round keys are not all recovered in the d− 2 chains, a d = 2 type pass is used
to recover two more round keys. Implementations resulting in m+1 keys recovered after the
d = 2 pass can use the extra key as a lower cost verification of full key recovery with the key
scheduler. A second cycle is required for the d = 3,m = 4 resulting in a doubling of the chain
attack count and bits that must be brute forced, although the d = 2 pass is not required in
the second cycle. The recovered key is then checked against a known plaintext/ciphertext
pair to determine if it is correct. More complicated attacks are possible which perform more
than the stated minimum chain attack count and which use additional chains to verify the
found chain relationships prior to the brute force step. Example chain attack counts and
the minimum effective strength are presented for variants of SPECK 64 and SPECK 128.
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9.1 Pipelined SPECK

Similar to pipelined SIMON, linear key terms cancel resulting in key terms only appearing
in the nonlinear terms. For SPECK d = 1 the signal must be observed at a spacing of at
least two rounds. For all d, all carry terms must still be fixed since they appear in duplicate
in the form of

Cj+1
A,i + Cj+1

B,i = (Wα+j
A,i + kα+ji ) · (ZjA,i + kji ) + (Wα+j

A,i + kα+ji + ZjA,i + kji ) · C
j
A,i (28)

+(Wα+j
B,i + kα+ji ) · (ZjB,i + kji ) + (Wα+j

B,i + kα+ji + ZjB,i + kji ) · C
j
B,i

and they are only fixed when Wα+j
A + ZjA = Wα+j

B + ZjB = kα+ji + kji , thus increasing the
number of random plaintexts required for an attack by a factor of 2.

The remaining terms will have a non zero result for half of the filtered random plaintexts
when Wα+j

A,i = ZjB,i = kα+ji ,Wα+j
B,i = ZjA,i = kji or Wα+j

A,i = ZjB,i = kji ,W
α+j
B,i = ZjA,i =

kα+ji , resulting in

Cj+1
A,i + Cj+1

B,i = kα+ji + kji (29)

In this approach, fixing the carry terms serves to increase the number of plaintexts
required by a factor of 2× for every carry term. The exposed key terms then enter the linear
equation and solving for them is trivial using the methods previously described. For d ≥ 3
key relationships are exposed as κA, κB , κC , and for d = 1, 2 keys are solved for directly. As
a result, the minimum number of groups from table 9 should be multiplied by the exponent
from the G value (corresponding to the number of variables fixed in the carry terms) from
table 8 to account for the increase in plaintexts required when fixing the carry contributions.
This results in a minimum depth requirement still of d ≥ 4 for pipeline SPECK, although
for greater d, the protection is increasingly enhanced.

10 Rekeying Guidance

The periodic updating of an encryption key of a field deployed device can have a side channel
mitigation effect by reducing the sample size of encryptions performed with the same key.

Short of a device receiving a new key from an external source, the device would need to
create a new key on its own. The SIMON and SPECK key schedule algorithms currently have
no means to do this and the definitions of each would need to be extended to accommodate
self key updating. The updated key must be saved as a starting point upon power cycling
or must otherwise be recoverable from the original key. There may be a power cycling
vulnerability associated with key updating if upon power cycling the key state obtained
from a key rotation key scheduler is lost, so any on device key rotation must save state to
nonvolatile memory which may create another opportunity for attack.

A natural starting place for key updating would be to run the key scheduler beyond the
T rounds to obtain the next m round keys which could be used as the next key. However,
a complete cryptanalysis of this approach would need to be carried out and this is beyond
the scope of this project. It has been observed through rekeying tests of many randomly
generated keys that such a direct approach repeats keys after a relatively short number
of rekeyings. Depending on the particular key, a rekeying of this form may increase the
number of data points required to be captured by as much as a factor of one thousand. The
key might be updated after a set number of encryptions or might be updated whenever a
particular state is seen (such as three particular bits in the encrypted X are all ones). An
attack would not be able to gather the necessary number of encryptions prior to the key
change, and would either need to extend the attack to account for different keys obtained
in this manner, or would need to wait until the original key was repeated. It may be useful
to reserve a byte or more of plaintext to contain the number of updates that have occurred.
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This way a decrypting system could iterate through updated keys until a key can successfully
decrypt a cipher text and recover the correct key update count.

Some general guidelines regarding rekeying are presented taking into account the results
of this work. Rekeying should not be performed by transmitting an unencrypted key over an
I/O pin from another device even if the data wire is unexposed because the key power signal
can be read directly as was seen on the Spartan VIO supply. The rekeying process needs to
be encrypted. A possible FPGA solution is a complete or partial reconfiguration through
an encrypted bitstream which takes advantage of the dedicated Spartan AES configuration
protection. The new key can also be encrypted using the old SIMON/SPECK key with the
disadvantage that there is no forward security but the advantage that if the key is changed
frequently enough then an attacker would not be able to acquire the necessary quantity of
data to carry out a simple attack. If the key expansion is not protected with a threshold
implementation then the average power in a computational cycle involving key information
will change upon a rekeying indicating that a rekeying occurred.

The rate of rekeying will be dependent on the algorithm, device, and desired equivalent
strength of the implementation. As an example, a minimum rekeying rate would be that
necessary to limit the recovery of key bits to a portion of the total key. The recovery rate
of the correct groups from DGPA δ = 2 equation pairs used in each step or iteration is
examined for SIMON and SPECK, where a recovery rate of 3

4n, n− 1, and n of the groups,

designated R
3
4n, Rn−1, and Rn, respectively, are used as reference points.

The bit locations of the incorrectly recovered groups or associated key bits are expected
to correspond to lower t values than correctly recovered groups when dealing with high
statistic samples. At lower statistic samples, random fluctuations may place the t value of
an incorrect group higher than a correct group. As inferred from the MSP SPECK 64/128
d = 1 first round key recovery example of figure 3, the largest incorrect t value should be
at or below the average t value of the correctly recovered bits near R

3
4n ≈ 800 plaintexts

and less than the t value of all correctly recovered bits at ≈ 1200 plaintexts which is far
below Rn−1 ≈ 4000 plaintexts. For this discussion, the assumption is made that incorrectly
recovered groups will in the average case have a t value in the lower half of all recovered
groups at R

3
4n and will have a t value in the lower quarter of all recovered groups at Rn−1.

In the best case, the t ordering will be correct and the number of incorrectly recovered
equation pairs will be exactly what is expected based on the number of random plaintext
examined. This results in a correct key recovered for the first possible scenario examined
for d = 1 cases, and simply requires a permutation over the other possible group values
for the identified incorrect locations for d ≥ 2. The worst case scenario assumes that the
incorrectly recovered groups all have t values greater than all correct groups and that the
recovery checks this condition only after exhaustively checking all other possibilities. Both
the worst and average cases assume that the number of incorrect groups may not be exactly
what is expected based on the number of plaintext examined.

The number of choices, CRnw , of the average number of incorrect group locations, nw,
for a block size of 2n at Rn−nw , assuming all incorrect groupings fall in the lowest nt of the
n total t values is

CRn−nw =

(
nt
nw

)
+

∆∑
i=1

[(
nt

nw + i

)
+

(
nt

nw − i

)]
(30)

where ∆ is maximum deviation of the the number of incorrect groups from the expected
average which is calculated at a multiple of the standard deviation, σRn−nw at Rn−nw for
a desired confidence level. Terms in the sum are only included for which nw + i ≤ nt and
nw − i ≥ 0. The average case, CARnw assumes nt = n

2 for R
3
4n and nt = n

4 for Rn−1.
The worst case, CWRnw , assumes nt = n for all nw. From the Spartan 64/128 d = 1 key
recovery rate data used to obtained the fit as shown in table 3, it was also observed that
σ
R

3
4
n ≈ 3, σRn−1 ≈ 1 bits which is used as an assumption throughout these calculations.
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An estimation of the effective key strength taking into account the variance in the ex-
pected number and location of incorrect group recoveries for the event counts corresponding
to R

3
4n, Rn−1, Rn is given in table 11 for SIMON and table 12 for SPECK. SIMON results

use the number of events from the AON X test for d = 1 for R
3
4n, Rn−1, Rn. SPECK results

use the number of events from the G1 determined test for d = 1 for R
3
4n and Rn−1 assuming

a minimum of 10 events per group to obtain R
3
4n which is expected to actually yield slightly

more than 3
4n correct bits (25 bits for n=32, 52 bits for n=64). The Rn events come from

the AON Y d = 1 test. These assumptions are conservative estimates for d ≥ 2 which are
expected to require more events than simply scaling the d = 1 results as the attack meth-
ods should also partially follow the d = 2 results for some steps. Furthermore, the results
obtained from table 3 correspond to the correct number of bits recovered, not the correct
number of groups. Using these values as an approximation results in an overestimation of
the G2 component and thus an underestimation of the effort required.

For both SIMON and SPECK, l loops are performed with l ≡ dmd e. Each loop exam-
ines a different power measurement and provides up to d extracted keys ki, ..., ki+d−1 with
i = 0, 1d, 2d, ..., (l−1)d. Following the one or more DGPA passes and resulting key recoveries
of a given loop, all possible incorrectly recovered groups must be examined with subsequent
loops and corresponding additional DGPA passes being performed for each permutation.
An alternate approach would be to perform the DGPA attack once, and then to perform
the permutations accounting for propagation of error. While this approach is less computa-
tionally intensive per permutation, the number of permutations is greater as the likelihood
of a failed group recovery increases due to the inclusion of incorrectly recovered keys from
previous rounds with the exception of SPECK which has a constant effect for d ≥ 6. Once
a key hypothesis is found it must be tested against a known plaintext/ciphertext. However,
for some instances, a m+ 1 key is also found at no additional cost from a d = 2 type pass,
allowing for a single cycle of the key expansion algorithm to be used to filter out incorrectly
recovered keys more quickly.

Within a SIMON loop, single passes are performed for d = 1, 2 where the keys are
extracted from the κ values in the linear terms. The best case for all d assumes that the
first ordering examined places exactly the expected number of incorrect groups in the last t
value positions. For d = 1, the effective strength is (CRnw )l, where incorrect group locations
correspond to incorrect ki bits are simply flipped. For d = 2, the effective strength is
(3CRnw )l, where incorrect group locations must be permuted to examine the other possible
κA, κB values. For d ≥ 3 a first pass finds the κA, κB terms while subsequent passes probe up
to d−2 nonlinear terms to extract keys ki, ..., kd+i−3. After the nonlinear terms are probed,
the kd+i−2, kd+i−1 keys are extracted from the κ terms obtained in the first pass. The
effective strength is then approximately 3(Cd−1Rnw )l, although once the m keys are recovered,
additional nonlinear terms that might be present are not examined.

The approach differs for SPECK which performs at most two passes per loop. For d = 1,
a single pass is performed with keys extracted from κA giving the same effort as for SIMON
d = 1. For d = 2, a single pass is performed where the data is grouped for κA, κB and
the two key values contained in the single carry term. For d ≥ 3, the first pass performs a
number of attacks, A∗C , where AC ≤ A∗C ≤ n as to obtain the carry chain relationships. This
estimation takes into account the additional number of attacks (A∗C − AC) that must be
performed given that some attacks may fail due to incorrect group recovery. Unlike SIMON
where the incorrectly recovered group locations were permuted to examine the other groups,
this is not feasible with SPECK due to the group size. However, since the attack density is
sparse, and since the recovered chains give many different measurements of key relationships,
it is expected that the incorrectly recovered groups can be identified through inconsistent
relationships and then discarded, with only chains from attacks which provide consistent
relationships being used. In the average case a minimum chain length of 3 (for the d − 2
chain) is used and for the worst case a minimum chain length of 1 is used. The best, average,
and worst cases all include the brute force effort required to make use of the obtained key
relationship information from the carry chains.
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R
3
4
n Rn−1 Rn

d Enc x Bytes B A1σ A2σ W1σ W2σ Enc x Bytes B A1σ A2σ W1σ W2σ Enc x Bytes

SIMON 64/128 MSP n = 32,m = 4

11 804 6KB 0.0 63.5 64.0 111.3 121.0 4351 34KB 0.0 20.8 26.2 36.2 49.7 5500 44KB

SIMON 128/256 MSP n = 64,m = 4

1 804 12KB 0.0 126.6 127.9 214.7 228.4 4351 69KB 0.0 28.4 37.8 44.1 61.7 5500 88KB

SIMON 64/128 PIC n = 32,m = 4

1 75 600B 0.0 63.5 64.0 111.3 121.0 673 5KB 0.0 20.8 26.2 36.2 49.7 930 7KB

SIMON 128/256 PIC n = 64,m = 4

1 75 1KB 0.0 126.6 127.9 214.7 228.4 673 10KB 0.0 28.4 37.8 44.1 61.7 930 14KB

PUR SIMON 64/128 Spartan n = 32,m = 4

1 284 2KB 0.0 63.5 64.0 111.3 121.0 3325 26KB 0.0 20.8 26.2 36.2 49.7 1E4 112KB
2 504 4KB 25.4 34.9 35.2 58.8 63.7 5911 47KB 3.2 13.6 16.2 21.3 28.0 3E4 200KB
3 2019 16KB 25.4 66.7 67.2 114.4 124.2 2E4 189KB 3.2 24.0 29.3 39.4 52.9 1E5 802KB
4 1E4 93KB 12.7 49.2 49.6 85.0 92.3 1E5 1MB 1.6 17.2 21.2 28.7 38.9 6E5 4MB
5 1E5 1MB 12.7 65.1 65.6 112.9 122.6 2E6 12MB 1.6 22.4 27.7 37.8 51.3 6E6 51MB
6 9E5 7MB 12.7 81.0 81.6 140.7 152.9 1E7 86MB 1.6 27.6 34.3 46.8 63.7 5E7 365MB
7 5E7 381MB 12.7 81.0 81.6 140.7 152.9 6E8 4GB 1.6 27.6 34.3 46.8 63.7 2E9 18GB
8 9E8 7GB 12.7 81.0 81.6 140.7 152.9 1E10 88GB 1.6 27.6 34.3 46.8 63.7 5E10 373GB
9 3E10 271GB 12.7 81.0 81.6 140.7 152.9 4E11 3TB 1.6 27.6 34.3 46.8 63.7 2E12 13TB

10 3E11 2TB 12.7 81.0 81.6 140.7 152.9 3E12 25TB 1.6 27.6 34.3 46.8 63.7 1E13 107TB
11 6E13 493TB 12.7 81.0 81.6 140.7 152.9 7E14 5PB 1.6 27.6 34.3 46.8 63.7 3E15 24PB

PUR SIMON 128/256 Spartan n = 64,m = 4

1 314 5KB 0.0 126.6 127.9 214.7 228.4 6704 107KB 0.0 28.4 37.8 44.1 61.7 1E4 200KB
2 558 8KB 50.7 66.5 67.1 110.5 117.4 1E4 190KB 3.2 17.4 22.1 25.2 34.0 2E4 355KB
3 2232 35KB 50.7 129.8 131.1 217.9 231.6 5E4 762KB 3.2 31.6 40.9 47.3 64.8 9E4 1MB
4 1E4 205KB 25.4 96.5 97.5 162.6 172.9 3E5 4MB 1.6 22.9 29.9 34.7 47.8 5E5 8MB
5 1E5 2MB 25.4 128.2 129.5 216.3 230.0 3E6 48MB 1.6 30.0 39.4 45.7 63.3 6E6 91MB
6 1E6 16MB 25.4 159.8 161.4 270.0 287.1 2E7 347MB 1.6 37.1 48.8 56.7 78.7 4E7 647MB
7 5E7 842MB 25.4 159.8 161.4 270.0 287.1 1E9 17GB 1.6 37.1 48.8 56.7 78.7 2E9 33GB
8 1E9 16GB 25.4 159.8 161.4 270.0 287.1 2E10 355GB 1.6 37.1 48.8 56.7 78.7 4E10 662GB
9 4E10 599GB 25.4 159.8 161.4 270.0 287.1 8E11 12TB 1.6 37.1 48.8 56.7 78.7 1E12 23TB

10 3E11 4TB 25.4 159.8 161.4 270.0 287.1 6E12 102TB 1.6 37.1 48.8 56.7 78.7 1E13 190TB
11 7E13 1PB 25.4 159.8 161.4 270.0 287.1 1E15 23PB 1.6 37.1 48.8 56.7 78.7 3E15 43PB

Table 11: The suggested minimum rekeying frequency is presented for SIMON implemen-
tations along with the corresponding amount of data that can be encrypted with a single
key before enough random plaintexts have been accumulated to correctly recovery at least
Rnc of the groups in each DGPA δ = 2 attack for each power measurement examined with
nc = 3

4n, n− 1, n. The inability to fully recover the key is simply due to the limited statistics
of the sample size. The expected number of encryptions, x, required to reach the desired
recovery rate is given along with the corresponding data sample size in bytes. The best
case, B, for all Rnc finds the incorrectly recovered group locations on the first attempt. The
average case, A, assumes that incorrect t values are in the lower half of all t values for R

3
4n

and in the lower quarter for Rn−1. The worst case, W , assumes that the location of the
incorrectly recovered groups is found on the last attempt with all incorrect group t values
being larger than all correct group t values. Average and Worst cases are presented for 1σ
and 2σ confidence levels, where σ reflects the standard deviation from the expected number
of incorrect groups for the number of encryptions examined, taken as σ = 3 bits for R

3
4n

and σ = 1 bit for Rn−1. Best, Average and Worst case results are presented as the effective
number of key bits, ne, which should be compared to mn. Note that in some worst case
scenarios, ne > mn, meaning the result is worst than brute forcing the mn key bits due to
a total of more than m DGPA passes being required. Data size suffixes are in increments of
103 bytes and are B, KB, MB, GB, TB, and PB.



28 Steven Cavanaugh

R
3
4
n Rn−1 Rn

d Enc x Bytes B A1σ A2σ W1σ W2σ Enc x Bytes B A1σ A2σ W1σ W2σ Enc x Bytes

SPECK 64/128 MSP n = 32,m = 4

1 254 2KB 0.0 68.5 69.0 116.3 126.0 2538 20KB 0.0 25.8 31.2 41.2 54.7 5000 40KB

SPECK 128/256 MSP n = 64,m = 4

1 254 4KB 0.0 132.6 133.9 220.7 234.4 2538 40KB 0.0 34.4 43.8 50.1 67.7 5000 80KB

SPECK 64/128 PIC n = 32,m = 4

1 57 456B 0.0 68.5 69.0 116.3 126.0 593 4KB 0.0 25.8 31.2 41.2 54.7 1300 10KB

SPECK 128/256 PIC n = 64,m = 4

1 57 912B 0.0 132.6 133.9 220.7 234.4 593 9KB 0.0 34.4 43.8 50.1 67.7 1300 20KB

PUR SPECK 64/128 Spartan n = 32,m = 4

1 10 80B 0.0 68.5 69.0 116.3 126.0 1387 11KB 0.0 25.8 31.2 41.2 54.7 2E4 132KB
2 20 160B 25.4 74.9 75.3 122.6 132.4 2774 22KB 3.2 32.2 37.5 47.5 61.0 3E4 264KB
3 640 5KB 28.7 93.3 95.4 131.3 140.4 9E4 710KB 17.6 58.4 63.3 72.5 83.5 1E6 8MB
4 5E6 41MB 28.7 55.4 56.5 80.3 86.1 7E8 5GB 17.6 32.6 35.7 41.6 48.8 9E9 69GB
5 2E13 175TB 36.7 47.5 48.5 60.5 63.9 3E15 24PB 25.6 35.4 37.2 40.5 44.3 4E16 291PB
6 4E20 2ZB 32.0 38.0 38.9 39.1 40.0 5E22 409ZB 32.0 36.6 37.0 37.9 38.3 6E23 4YB

PUR SPECK 128/256 Spartan n = 64,m = 4

1 10 160B 0.0 132.6 133.9 220.7 234.4 3653 58KB 0.0 34.4 43.8 50.1 67.7 3E4 523KB
2 20 320B 50.7 138.9 140.2 227.1 240.8 7306 116KB 3.2 40.7 50.1 56.4 74.0 7E4 1MB
3 640 10KB 41.4 142.6 145.4 210.6 222.7 2E5 3MB 17.6 66.1 74.0 80.2 94.2 2E6 33MB
4 5E6 83MB 41.4 87.9 89.5 132.9 140.7 2E9 30GB 17.6 37.4 42.5 46.4 55.6 2E10 274GB
5 7E14 11PB 49.4 64.3 65.5 87.2 91.6 3E17 4EB 25.6 38.3 41.0 43.4 48.2 2E18 36EB
6 2E26 3E27B 32.0 39.0 39.9 40.0 40.9 7E28 1E30B 32.0 37.6 38.0 38.8 39.2 6E29 1E31B

Table 12: The suggested minimum rekeying frequency is presented for SPECK implemen-
tations along with the corresponding amount of data that can be encrypted with a single
key before enough random plaintexts have been accumulated to correctly recovery at least
Rnc of the groups in each DGPA δ = 2 attack for each power measurement examined with
nc = 3

4n, n− 1, n. The inability to fully recover the key is simply due to the limited statistics
of the sample size. The expected number of encryptions, x, required to reach the desired
recovery rate is given along with the corresponding data sample size in bytes. The best case,
B, for all Rnc finds the correct key on the first attempt. The average case, A, assumes that
incorrect t values are in the lower half of all t values for R

3
4n and in the lower quarter for

Rn−1. The worst case, W , assumes that the location of the incorrectly recovered groups
is found on the last attempt with all incorrect group t values being larger than all correct
group t values. Average and Worst cases are presented for 1σ and 2σ confidences, where σ
reflects the standard deviation from the expected number of incorrect groups for the number
of encryptions examined, taken as σ = 3 bits for R

3
4n and σ = 1 bit for Rn−1. Best, Average

and Worst case results are presented as the effective number of key bits which should be
compared to mn. Data size suffixes are in increments of 103 bytes and are B, KB, MB, GB,
TB, PB, EB, ZB, and YB.
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10.1 Continuous Approximation

An additional approach was taken to examine the key recovery effort as a continuous function
dependent on acquired data size for various d. The potential values of the DGPA δ = 2
equation pair as either having zero, one (from either of the equations), or two bits flipped
in the result were modeled as Gaussian functions for each of the four possible outcomes.
Corresponding t2,0-test value distributions were derived as those obtained from the possible
selections of correct or incorrect groupings.

The Gaussian distributions included a fixed systematic error contribution and a statisti-
cal error contribution proportional to 1√

x
, with x being the number of encryptions performed

with random plaintext. The parameters describing these error contributions were selected so
that the cases of 2-bit AON, Coupled Normal Hierarchy, Coupled Inverted Hierarchy, and
G1 all closely matched the fit parameters of table 3. It was then possible to determine the
probability distributions for G2, G1, G0 comprising the selected groups having the largest
t-test values and the expected location of the maximum t-test value corresponding to an
incorrectly recovered group relative to the correctly recovered groups as a function of x.

The effort for each step of the attack was calculated as the combined probability of
finding the locations of each of the different types of incorrectly recovered groups along
with the cost of permuting the appropriate bits to examine the other possible groups. For
instance, if a G1 group is encountered, then one of the two equation results is incorrect
resulting in two candidates for the G2 solution which must be examined. However, if a G0

group is encountered, then both equation results are wrong and the alternative to obtain
G2 is examined in a single step.

The results of this approach are presented both for SIMON 64/128 and SPECK 64/128
in figure 6. As most modes of block cipher operation specify a limit of 2n encryptions to be
performed with a given key to ensure security for a block size of 2n, it is only necessary to
preclude implementations which can feasibly make use of a sample size less than that limit.
A practical limit on the effort required to perform the attack is chosen to be 80-bits of work.
It is seen that DGPA attacks on SIMON 64/128 d ≥ 9 and SPECK 64/128 d ≥ 5 are not
feasible.

This more detailed continuous approximation approach is found to provide results con-
sistent with the previously described estimation.

11 Computational Cost

There are multiple methods of implementing the attacks described in this paper. Divided
into two approaches, an implementation can either gather a quantity of data which is then
processed, or the data can be processed and discarded as it is accumulated. This discussion
assumes an attack on random plaintext, but an attack on random ciphertext follows the
same approach. If the attacker is able to encrypt specifically generated data, then it may
not be necessary to store the plaintext if generated with a known pseudo random function
and seed.

Calculations described in this section assume 16-bit (2 byte) data values for power mea-
surements and associated values (sums, averages, standard deviations), 4 byte integers for
group statistical bin event counters, and 2n

8 bytes for plaintext or ciphertext storage.
In the Gather then Process (GtP) method, a total of x random plaintext are recorded

along with the corresponding dmd e data points corresponding to the first dmd e encryption
cycles. The data storage requirement is then 2n

8 + 2dmd e bytes per encryption. Once a preset
number of encryptions have been recorded, the processing is performed over the x entries
where for each bit of random plaintext and key hypothesis an average and standard devi-
ation of the power for all DGPA groups are calculated. For d > 1, multiple passes may be
required as keys are partially recovered in each pass. Each pass requires temporary space
(reusable with each pass) to store the average/standard deviation values for each bit and key
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hypothesis along with the number of recorded entries for each bin, resulting 6n bytes per key
hypothesis. In the case of two bit DGPA (δ = 2), at most 8 groupings are required for the
key hypothesis resulting in a requirement of 8 · 6n bytes of temporary space. The nonlinear
attacks examine a single group with two groupings using the found κ values. Actual attacks
suitable for use in scaling the results of tables 13 and 14 are obtained using a non-optimized
GtP method implemented in JAVA using BigInteger operations on single core CPU at
2.8GHz which recovered key values from 50k plaintext/power data events in 12, 21, 14, and
20 seconds for SIMON 64/128 d = 1, SIMON 128/256 d = 1, SPECK 64/128 d = 1, and
SPECK 128/256 d = 1, including I/O time. An optimized JAVA version of SIMON 64/128
key recovery measuring only computation time of the recovery performs with an average
time per c per n per x of 1.7E−7s for storing and 3.1E−10s for recovery, which are scale
factors suitable for multiplying the complexities in tables 13 and 14.

Another approach is the Process and Discard (PaD) method where data for each encryp-
tion is processed as it is obtained and then discarded. The storage savings obtained with this
method is offset by the requirement that all possible key hypothesis for each DGPA attack
must be accounted for at the onset. The overall computational complexity is similar where
the group statistic calculation is simply relocated from after data acquisition (for GtP) to
during data acquisition (for PaD). However, this results in a throttling effect where the rate
of data acquisition can be limited due to the cost of storing encryption event data. Data
obtained at a faster rate can either be queued or discarded as required.

Computational and resource cost calculations for both methods are performed for n =
32, 64, m = 4 implementations and are presented in table 13 for SIMON and table 14 for
SPECK. The limits where the attack methods begin to become unfeasible are examined,
which assuming that a single core machine might be limited to 2GB RAM, 1 TB disk,
1GFlop/s and assuming that a large super computer might be limited to 1 PB RAM, 1 EB
storage, 50 PFlop/s. A limit is deemed unfeasible if it cannot fit on the constraints of the
platform or if it is expected to take more than a year of processing. GtP data can be written
to disk while GtP temporary space and PaD data should be held in RAM. The SIMON
PaD method can be performed on either platform for any d and is only throttled in the
rate of data collection. If all of the data is available at once, then SIMON 64/128 becomes
unfeasible for the single core at d = 10 and for the super computer at d = 14. The SIMON
GtP method is unfeasible for both platforms at the same or smaller d. The PaD method for
SPECK 64/128 becomes unfeasible on the single core at d = 5 and on the super computer at
d = 6 from computational and memory constraints. The SPECK GtP method is unfeasible
for both platforms at the same or smaller d.

In the simplest cases, the requirements are small enough that an embedded microcon-
troller operating at about 1MHz along with a peak sensing ADC circuit may be situated
in the field which carries out an attack and which transmits the found key value only af-
ter verifying that it is correct with a known plaintext/ciphertext pair. The SIMON 64/128
d=1/2 GtP requirement is 226/302 KB with less than 4/7 seconds to perform a recovery.
The SIMON 64/128 d=1/2 PaD requirement is 3.6/1.1 KB with total data storage times of
7/4 seconds and less than 1 second to perform a recovery. The SPECK 64/128 d=1/2 GtP
requirement is 265/397 KB with less than 40 seconds to perform a recovery.
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(b) SPECK 64/128

Fig. 6: Results from an estimation of the work required to recover the key of SIMON 64/128
(top) and SPECK 64/128 (bottom) using a Gaussian model of the distribution of bit flips
and t-test values corresponding to the correctly chosen G2 and incorrectly chosen G1, G0

as a function of the number of encryptions of random plaintext captured. The model is
calibrated for the fit parameters obtained from d = 1, 2 Spartan recoveries of SIMON 64/128
and SPECK 64/128 and represents the average case at 1σ for the fraction of expected
correct group recoveries as a function of number of encryptions. The number of plaintexts is
presented as the total number of data bytes encrypted (x-axis) and the effective strength of
the implementation is presented as the number of bits of effort required (y-axis) and should
be compared to the expected key strength of nm = 128 bits. Lines are drawn and labeled
for different d. An exclusion region is shown (shaded area) representing less than 80-bits of
work and less than 2n encryptions. Implementations which pass through this region can be
feasibly attacked. It is seen that attacks against implementations of SIMON 64/128 with
d ≥ 9 and implementations of SPECK 64/128 with d ≥ 5 are not feasible. Note that for
SIMON, d = 1, 3 or d ≥ 5 require at least m DGPA passes and may exceed the brute force
effort of 128 bits with low statistics whereas for SPECK, DGPA with d ≥ 3 cannot be
performed until a sufficient number of samples have been obtained to populate each of the
various groups.
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Storage Bytes Complexity
n m d x c p g Data Temp Key Total Store Store x Recovery

Gather then Process (GtP) SIMON 64/128

32 4 1 1.41E4 4 1 2 2.26E5 512 16 2.26E5 16 2.26E5 3.61E6
32 4 2 2.51E4 2 1 4 3.01E5 1024 16 3.02E5 12 3.01E5 6.42E6
32 4 3 1.00E5 2 2 8 1.20E6 2048 32 1.21E6 12 1.20E6 7.70E7
32 4 4 5.78E5 1 3 16 5.78E6 4096 28 5.78E6 10 5.78E6 7.39E8
32 4 5 6.42E6 1 4 16 6.42E7 4096 28 6.42E7 10 6.42E7 1.15E10
32 4 6 4.56E7 1 5 16 4.56E8 4096 28 4.56E8 10 4.56E8 1.05E11
32 4 7 2.37E9 1 5 16 2.37E10 4096 28 2.37E10 10 2.37E10 5.45E12
32 4 8 4.67E10 1 5 16 4.67E11 4096 28 4.67E11 10 4.67E11 1.08E14
32 4 9 1.68E12 1 5 16 1.68E13 4096 28 1.68E13 10 1.68E13 3.88E15
32 4 10 1.34E13 1 5 16 1.34E14 4096 28 1.34E14 10 1.34E14 3.09E16
32 4 11 3.06E15 1 5 16 3.06E16 4096 28 3.06E16 10 3.06E16 7.06E18

Gather then Process (GtP) SIMON 128/256

64 4 1 1.25E4 4 1 2 3.00E5 1024 32 3.01E5 24 3.00E5 6.40E6
64 4 2 2.22E4 2 1 4 4.44E5 2048 32 4.47E5 20 4.44E5 1.14E7
64 4 3 8.89E4 2 2 8 1.78E6 4096 64 1.78E6 20 1.78E6 1.37E8

Process and Discard (PaD) SIMON 64/128

32 4 1 1.41E4 4 1 14 3584 0 16 3600 448 6.32E6 462
32 4 2 2.51E4 2 1 4 1024 0 16 1040 128 3.21E6 132
32 4 3 1.00E5 2 2 12 3072 0 32 3104 384 3.85E7 396
32 4 4 5.78E5 1 3 24 6144 0 28 6172 768 4.44E8 792
32 4 5 6.42E6 1 4 152 3.89E4 0 28 3.89E4 4864 3.12E10 5016
32 4 6 4.56E7 1 5 152 3.89E4 0 28 3.89E4 4864 2.22E11 5016
32 4 7 2.37E9 1 5 152 3.89E4 0 28 3.89E4 4864 1.15E13 5016
32 4 8 4.67E10 1 5 152 3.89E4 0 28 3.89E4 4864 2.27E14 5016
32 4 9 1.68E12 1 5 152 3.89E4 0 28 3.89E4 4864 8.18E15 5016
32 4 10 1.34E13 1 5 152 3.89E4 0 28 3.89E4 4864 6.52E16 5016
32 4 11 3.06E15 1 5 152 3.89E4 0 28 3.89E4 4864 1.49E19 5016

Process and Discard (PaD) SIMON 128/256

64 4 1 1.25E4 4 1 14 7168 0 32 7200 896 1.12E7 910
64 4 2 2.22E4 2 1 4 2048 0 32 2080 256 5.69E6 260
64 4 3 8.89E4 2 2 12 6144 0 64 6208 768 6.83E7 780

Table 13: The estimated approximate required storage and computational resources to per-
form a full key recovery DGPA attack on PUR SIMON implementations for various block
sizes, 2n, key sizes, mn, and rounds computed per clock cycle, d, assuming x events are
required for full key recovery as obtained from scaled Spartan data. The DGPA requires
at most p passes for each of c power measurements used in the attack. Comparisons are
made between the Gather then Process (GtP) and Process and Discard (PaD) methods,
where GtP stores all plaintext and power data and then performs a single key extraction
operation and where the PaD accumulates and stores group statistic information as to cal-
culate average, standard deviation, and event count groups necessary for the computation
from plaintext and power data which is then discarded. The storage requirement in bytes in-
cludes that for the data (plaintext/power values for GtP and group statistic values for PaD),
temporary space (to calculate group statistic values for GtP), and key storage space to hold
accumulated probably keys and associated κ values. Complexity is given as the number of
operations and should be used as a scaling factor to estimate time cost from experimental
results. Complexity to store a single plaintext/power measurement and to store the total x
necessary samples for complete key recovery is given. The recovery complexity is the cost
of performing statistic calculations for each group value permutation and finding keys (for
GtP), and for finding keys from already calculated group statistics (for PaD). Storage Bytes
and Recovery Complexity (and Storage Complexity for PaD) scale by n, Storage Complexity
(for GtP) includes the addition of a n

8 term, and Storage Bytes and Recovery for GtP scales
by x, allowing for the presented results to be extended to other d and n.
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Storage Bytes Complexity

d x c p

n
g
κ

n
g
C gκgC Ac b Data Temp

K
ey Total Store Store x Rec A Rec B

Gather then Process (GtP) SPECK 64/128 n = 32,m = 4

1 1.66E4 4 1 2 0 4 0 0 2.65E5 32 16 2.65E5 16 2.65E5 0 3.39E7
2 3.31E4 2 1 2 2 16 0 0 3.97E5 128 24 3.97E5 12 3.97E5 0 3.39E7
3 1.06E6 2 2 3 6 512 16 16 1.27E7 4096 40 1.27E7 12 1.27E7 1.22E9 5.56E11
4 8.68E9 1 2 3 19 4.19E6 8 16 8.68E10 3.36E7 28 8.68E10 10 8.68E10 1.06E13 5.83E17
5 3.64E16 1 2 3 41 1.76E13 8 24 3.64E17 1.41E14 28 3.64E17 10 3.64E17 9.56E19 6.26E26
6 6.11E23 1 2 3 65 2.95E20 8 32 6.11E24 2.36E21 28 6.11E24 10 6.11E24 2.54E27 2.79E11

Gather then Process (GtP) SPECK 128/256 n = 64,m = 4

1 3.27E4 4 1 2 0 4 0 0 7.86E5 32 32 7.86E5 24 7.86E5 0 1.34E8
2 6.55E4 2 1 2 2 16 0 0 1.31E6 128 48 1.31E6 20 1.31E6 0 1.34E8
3 2.10E6 2 2 3 6 512 24 16 4.19E7 4096 80 4.19E7 20 4.19E7 3.62E9 2.20E12
4 1.72E10 1 2 3 19 4.19E6 12 16 3.09E11 3.36E7 56 3.09E11 18 3.09E11 3.13E13 2.30E18
5 2.30E18 1 2 3 46 5.63E14 12 24 4.15E19 4.50E15 56 4.15E19 18 4.15E19 1.02E22 7.92E28
6 6.33E29 1 2 3 84 1.55E26 12 32 1.14E31 1.24E27 56 1.14E31 18 1.14E31 5.11E33 3.61E11

Process and Discard (PaD) SPECK 64/128 n = 32,m = 4

1 1.66E4 4 1 2 0 4 0 0 1.10E12 0 16 1.10E12 1.37E11 2.28E15 0 512
2 3.31E4 2 1 2 2 16 0 0 4.20E6 0 24 4.20E6 2.62E5 8.69E9 0 768
3 1.06E6 2 2 3 6 512 16 16 3.52E13 0 40 3.52E13 4.12E11 4.37E17 8.80E12 1.68E7
4 8.68E9 1 2 3 19 4.19E6 8 16 1.07E9 0 28 1.07E9 4864 4.22E13 3.36E7 1.68E7
5 3.64E16 1 2 3 41 1.76E13 8 24 4.50E15 0 28 4.50E15 1.05E4 3.82E20 1.41E14 4.29E9
6 6.11E23 1 2 3 65 2.95E20 8 32 1.89E22 0 28 1.89E22 4160 2.54E27 2.36E21 1.10E12

Process and Discard (PaD) SPECK 128/256 n = 64,m = 4

1 3.27E4 4 1 2 0 4 0 0 2.20E12 0 32 2.20E12 2.75E11 9.00E15 0 1024
2 6.55E4 2 1 2 2 16 0 0 8.40E6 0 48 8.40E6 5.25E5 3.44E10 0 1536
3 2.10E6 2 2 3 6 512 24 16 5.28E13 0 80 5.28E13 6.18E11 1.30E18 1.32E13 3.36E7
4 1.72E10 1 2 3 19 4.19E6 12 16 2.15E9 0 56 2.15E9 9728 1.67E14 5.03E7 3.36E7
5 2.30E18 1 2 3 46 5.63E14 12 24 2.88E17 0 56 2.88E17 2.36E4 5.43E22 6.76E15 8.59E9
6 6.33E29 1 2 3 84 1.55E26 12 32 1.49E28 0 56 1.49E28 8064 5.11E33 1.86E27 2.20E12

Table 14: The estimated approximate required storage and computational resources to per-
form a full key recovery DGPA attack on PUR SPECK implementations for various block
sizes, 2n, key sizes, mn, and rounds computed per clock cycle, d, assuming x events are
required for full key recovery as obtained from scaled Spartan data. The DGPA requires
at most p passes for each of c power measurements used in the attack. For d ≥ 2, carry
chains are obtained from Ac attacks which form ngC groups and which require b bits to be
permuted to obtain the values from the carry chains. The number of groups associated with
the κ terms are ngκ . The total number of grouping permutations is gκgC . The process is re-
peated for c power measurements. Comparisons are made between the Gather then Process
(GtP) and Process and Discard (PaD) methods. The storage requirement in bytes includes
that for the data (plaintext/power values for GtP and group statistic values for PaD), tem-
porary space (to calculate group statistic values for GtP), and key storage space to hold
accumulated probably keys and associated κ values. Complexity is given as the number of
operations and should be used as a scaling factor to estimate time cost from experimental
results. Complexity to store a single plaintext/power measurement and to store the total x
necessary samples for complete key recovery is given. The recovery complexity is the cost
of performing statistic calculations for each group value permutation and finding keys (for
GtP), and for finding keys from already calculated group statistics (for PaD). The first key
recovery step determines the key relationship (Rec A) from the carry chains for d > 2. The
second key recovery step (Rec B) determines key values by permuting the b bits which when
used with the chains recover d− 2 keys for d > 2. If keys are to be recovered from the linear
key terms in a d = 2 type pass, that process is also performed in this step. For c > 1, the
PaD method includes the accounting for all possible key values from prior cycles in both
storage and computational complexity which is Gt from table 9.
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12 Implementing d > 1

The value of d chosen for an implementation will be made to provide the necessary minimum
level of security for an application while satisfying hardware and power constraints. When
implementing SIMON or SPECK with d > 1, there are some considerations to take into
account when d does not divide T . A d′ with d′ > d may be chosen such that d′ divides
T only if sufficient resources are available. In keeping to the standard, simply performing
additional rounds so that an integer multiple of d performs a total of T ′ rounds with T ′ > T
would not be a suitable solution.

An implementation with d′ rounds where d′ > d can use 2n 2:1 multiplexers (MUXs) to
select results from a depth of d0 for the first c0 cycles and then from a depth of d1 for the
last c1 cycles where d0c0 +d1c1 = T . This requires both d0 ≥ d and d1 ≥ d as to provide the
necessary protection. The minimum of d0, d1 is denoted dm and the maximum of d0, d1 is
d′. If c1 ≥ 2 then the key schedule algorithm which is carried out in parallel with the rounds
requires the use of nm additional MUXs to select input values for subsequent cycles. All
possible combinations of d0, d1 were examined for SIMON, requiring d ≥ 9, and for SPECK,
requiring d ≥ 5, and the combinations with the minimum resulting d′ are presented in table
15. As a MUX can generate a signal on a transition which differs when the inputs are either
the same or different values, it is vital to ensure that the MUX inputs correspond to the
round logic state of an inner cycle during the MUX transition. If the MUX transition occurs
while the inputs to the MUX correspond to the computation for the final cycle which is used
to produce the ciphertext, then a signal related to the ciphertext at a distance of d′ − dm
rounds is created. The proper MUX transition can be ensured either through a careful layout
and timing analysis or through the use of two-stage PUR registers which can withhold the
updating of the round logic with the previous cycle result until an additional clock is issued
during which time the MUXs transition while the round logic state remains constant. Any
signal generated in this proper way will correspond to a depth of c1d1 + d′− dm and will be
less useful to the attacker than a dm transition.

The result at T rounds may also be directly extracted from the round logic in the last
clock cycle into a different destination register without the use of MUXs when computing
c cycles of d rounds where cd > T , although this approach requires careful treatment. The
number of extra rounds computed at d is η = d − (T mod d), resulting in the X,Y PUR
registers holding the values of XT+η−d,YT+η−d in the penultimate and XT+η,YT+η in the
final clock cycles. The PUR registers should only be updated in the final cycle if 2η > d as
to maximize the effort of a reduced round cryptanalysis in the event where the final PUR
register values can be determined. In any case, the contents of the PUR registers must be
sanitized prior to overwriting with the plaintext of the next encryption, otherwise signals
at a distance of less than d rounds from the ciphertext may be available. The sanitization
would require overwriting the final value of the PUR registers with a random value and then
clearing those registers prior to loading the next plaintext. Due to the cost and difficulty of
implementing the random value generator, this approach should be avoided.
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SIMON

2n nm T d0 c0 d1 c1 d′ ctot A∝ E∝ E∝/2n W∝ W∝/2n

32 64 32 11 2 10 1 11 3 176 528 16 16 0.5
48 72 36 9 4 - - 9 4 216 864 18 0 0
48 96 36 9 4 - - 9 4 216 864 18 0 0
64 96 42 11 3 9 1 11 4 352 1408 22 64 1
64 128 44 11 4 - - 11 4 352 1408 22 0 0
96 96 52 10 4 12 1 12 5 576 2880 30 384 4
96 144 54 9 6 - - 9 6 432 2592 27 0 0

128 128 68 11 5 13 1 13 6 832 4992 39 640 5
128 128 68 10 5 9 2 10 7 640 4480 35 128 1
128 192 69 10 6 9 1 10 7 640 4480 35 64 0.5
128 256 72 9 8 - - 9 8 576 4608 36 0 0

SPECK

2n nm T d0 c0 d1 c1 d′ ctot A∝ E∝ E∝/2n W∝ W∝/2n

32 64 22 5 3 7 1 7 4 112 448 14 96 3
32 64 22 6 2 5 2 6 4 96 384 12 32 1
48 72 22 5 3 7 1 7 4 168 672 14 144 3
48 72 22 6 2 5 2 6 4 144 576 12 48 1
48 96 23 6 3 5 1 6 4 144 576 12 24 0.5
64 96 26 5 4 6 1 6 5 192 960 15 128 2
64 128 27 5 4 7 1 7 5 224 1120 17 256 4
96 96 28 7 4 - - 7 4 336 1344 14 0 0
96 96 28 6 3 5 2 6 5 288 1440 15 96 1
96 144 29 6 4 5 1 6 5 288 1440 15 48 0.5

128 128 32 5 5 7 1 7 6 448 2688 21 640 5
128 192 33 7 4 5 1 7 5 448 2240 17 128 1
128 256 34 7 4 6 1 7 5 448 2240 17 64 0.5
128 256 34 6 4 5 2 6 6 384 2304 18 128 1

Table 15: Area optimized choices for 2:1 multiplexer (MUX) locations are presented for
computing exactly T rounds in PUR implementations of SIMON and SPECK with block
size 2n and key size nm using round logic having a depth of d′ which is greater than the
minimum d required for security. Minimum d values of d ≥ 9 and d ≥ 5 are used for
SIMON and SPECK, respectively. A total of 2n MUXs are used to select the output of the
round logic at a depth of d0 rounds for the first c0 cycles and then at a depth of d1 rounds
for the final c1 cycles for a total of ctot = c0 + c1 cycles. Solutions with c1 ≥ 2 require
an additional mn corresponding MUXs in the key schedule algorithm which is performed
in parallel with the rounds of the encryption. Best cases for the classes of c1 ≤ 1 and
c1 ≥ 2 are both provided. Scaling values comparing the area cost, A∝ = nd′, approximate
energy cost, E∝ = A∝ctot, approximate energy cost per bit encrypted, E∝/2n, approximate
wasted energy, W∝ = E∝−nT , and approximate wasted energy per bit encrypted, W∝/2n,
are given. Note that the estimations on energy cost do not take into account the SPECK
signal propagation of the addition carry bits. It is seen that in some cases the values of
A∝, E∝, E∝/2n,W∝,W∝/2n may be the same or reduced for larger m and/or n.
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13 Other Attack Methods

Other methods of power analysis may be carried out on PUR SIMON or PUR SPECK
implementations which differ in approach from the DGPA δ = 2 method. Multiple bit PPAs
have a general advantage over single bit PPAs from the aspect of an increased signal to noise
ratio (SNR) when dealing with additive Gaussian noise on quantized power per bit register
state change transitions. This increased SNR generally results in the use of fewer events
to achieve the same level of key recovery. However, when additional bits are examined, the
number of data partitions that must be made will generally stay the same or increase as
more unknown key bits will be present countering the effect of the increased SNR.

In the unrealistic limit of zero noise, it is possible to examine the best case result of a
1-bit PPA or DPA compared to the DGPA δ = 2 method. The number of groups that are
formed under standard 1-bit partitioning based on unknown key bits and that are formed
using a hybrid 1-bit partitioning using the SIMON linear approximation and SPECK carry
chains described in this paper is compared to the DGPA δ = 2 method in table 16. It is seen
that the number of encryptions required for the standard partitioning based on unknown
key bits alone far exceeds that of the DGPA δ = 2. For SIMON, the 1-bit hybrid PPA
method requires half of the partitions, thus reducing the number of encryptions required by
a factor of 1√

2
, although it also requires additional passes for d = 2, 3, 4. This still results in

an attack on SIMON 64/128 d ≥ 9 requiring more encryptions then the limited 2n-bit block
cipher key lifespan of 2n encryptions. For SPECK, the 1-bit hybrid PPA method reduces
the number of required encryptions substantially although increases the number of attacks
required to obtain the key carry chains. Using the bits of X for SPECK 64/128 d = 5, the
number of partitions is 229 and requiring a minimum of 10 encryptions per partition still
puts the data requirement above the 232 encryption limit. SPECK appears to require many
fewer events when attacking X and almost the same when attacking Y. However, when
using only X in a 1-bit PPA, only one key bit, kd−1, can be obtained from the linear term
resulting in an increased brute force effort of min(m, d − 1) terms. This makes d = 3, 4, 5
harder by an effort of 8 additional bits of work over the same d level DGPA δ = 2. The Cd−1
carry term only appears once and does not form a chain as does the Cd−2 terms which form
a chain of 2 terms, resulting in an increased attack count. At d = 5 the brute force effort is
232 instead of 224, and the attack count is tripled. Still conservatively requiring a minimum
of 10 entries per group puts the required data for the SPECK 64/128 hybrid 1-bit PPA
attack using the X register at 43 GB and over 233 encryptions, which are more encryptions
than the key can safely encrypt.

It is also possible to perform multiple 1-bit PPA attacks separately to achieve different
key hypothesis from which inconsistencies are used to identify bits that should be permuted.
This results in essentially the gain which is achieved by coupling the equations and perform-
ing the DGPA δ = 2 or another multi-bit PPA, although without the improved SNR.

Higher n-th order PPA attacks may be used in cases where information contained in
the power consumption of n clock cycles is combined. Such methods are typically used to
circumvent random bit masking countermeasures where the power from the mask application
operation and the power from the use of the masked value can be combined to cancel the
effect of the mask. In the PUR implementations of SIMON and SPECK described here,
the combination of power samples from multiple clock cycles in a higher order attack could
be used to obtain the equivalent power signals of X,Y register overwrites at multiples of
d. Such information is not expected to be more useful in a power analysis than a power
analysis simply performed at d.



DGPA on SIMON and SPECK 37

SIMON 64/128

1-bit PPA S 1-bit PPA H DGPA δ = 2
d Xg Yg Xp Yp Xg Yg Xp Yp (XY )g (XY )p
1 21 21 4 4 21 21 4 4 21 4
2 23 221 2 1 21 21 4 5 22 2
3 27 221 2 1 21 21 5 5 22 4
4 211 251 1 1 21 21 4 5 22 3
5 221 211 1 1 21 21 5 4 22 4
6 232 221 1 1 21 21 5 5 22 5
7 251 232 1 1 21 21 5 5 22 5
8 272 251 1 1 21 21 5 5 22 5
9 298 272 1 1 21 21 5 5 22 5
10 2127 298 1 1 21 21 5 5 22 5
11 2159 2127 1 1 21 21 5 5 22 5

SPECK 64/128

1-bit PPA S 1-bit PPA H DGPA δ = 2
d Xg Yg Xp Yp Xg Yg Xp Yp AC MES (XY )g (XY )p AC MES

1 21 21 4 4 21 21 4 4 - - 23 4 - -
2 23 23 2 2 22 22 2 2 - - 25 2 - -
3 29 211 2 2 26 27 2 2 48 224 28 2 16 216

4 223 230 1 1 215 219 1 1 24 224 221 1 8 216

5 244 259 1 1 230 240 1 1 24 232 243 1 8 224

6 269 291 1 1 248 264 1 1 8 232 267 1 8 232

Table 16: Comparisons of other attack methods to DGPA δ = 2 . The number of partitions
required when using 1-bit from either X or Y register overwrites is given at Xg, Yg with par-
titions for the DGPA given as (XY )g. Similarly, the number of passes required to extract all
of the m key bits is given as Xp, Yp, (XY )p. Traditional standard (S) 1-bit PPA (including
DPA) partitions the data accounting for the various permutations of the unknown key bits.
The number of data partitions grows substantially with d for both SIMON and SPECK
making the required amount of data unmanageable for larger d. The SPECK standard 1-bit
PPA approach does not take into account the additional effort of carry bit accounting. A
hybrid (H) approach uses a a 1-bit PPA but makes use the of the SIMON linear approxima-
tion and the probing of specific non-linear terms and of the SPECK carry chain techniques
as used in the DGPA. Higher order PPA attacks are considered when attacking Y bits for
SIMON d=2,3,4. The SIMON hybrid approach sees a halving of the partitions required
for the DGPA δ = 2 as there is a single κA term rather than the coupled κA, κB . This
results in extra passes being required for d = 2, 3, 4 resulting in more opportunities for a
propagation of error from incorrectly recovered key bits. However, for d ≥ 6 the number of
passes is the same as DGPA resulting in an overall reduction of the number of events to
carry out the attack at the same level of statistical significance by a factor of 1√

2
in the zero

noise limit. Even with this reduction the recommended d ≥ 9 for SIMON 64/128 still holds.
For SPECK, the number of attacks required to extract key carry chain information, AC ,
and the brute force effort required to make use of this information resulting in a minimum
effective key strength (MES) is given. The hybrid approach for SPECK sees a decreased
number of partitions when attacking the X register bits, although the number of attacks
required to build the chains is substantially increased and the brute force effort increases
by a factor of 28 for d = 3, 4, 5. Even with the reduced partition requirement at d = 5, the
data requirement still exceeds 232.
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14 Conclusion

The Degenerate Group Power Analysis (DGPA) was shown to be a special case of the
all or nothing (AON) Partitioned Power Analysis (PPA) which is evaluated as a t-test
allowing for the results to be sorted based on key bit recovery confidence thus minimizing
the effort required to brute force the correct key from a mostly correct recovered key. Specific
advantage is taken of biases in the degenerate groups relating to the equation structure of
both SIMON and SPECK to enhance the recovered key results. Three applications of the
DGPA approach were shown. The inverted hierarchy shows minor improvement over other
2-bit PPA approaches for coupled SIMON X,Y2 equations at d = 5. The identification of
key hypothesis forming groups that are degenerate to the correct key G2 group provides a
method to attack SPECK with limited data without having to categorize data samples for
all possible key hypotheses. The use of overly defined equation pairs identifies particular key
bits which are definitely not recovered in fluctuations of the degenerate G1 group thereby
optimizing brute force attacks on partially recovered keys.

The approaches demonstrated included variants of typical 2-bit AON attacks. All meth-
ods used a single power consumption measurement per clock cycle, thus minimizing the
amount of data processing required when compared with traditional methods of DPA, CPA,
and PPA which examine the entire power trace. It was shown that with minor knowledge
of the algorithm being targeted, a specific clock cycle can be attacked further eliminating
the possibility for errors that appear in other methods such as DPA ghost peaks which are
false signals appearing in the trace in areas where the calculation of interest is not being
performed. The attack is found to recover key bits on the PIC16F in the cycles correspond-
ing to the loading of the W register and the output of the ALU value on the data bus,
on the MSP430 during register overwrites, and on the Spartan 6 during register overwrites
and during changing LUT states. For all attacks attempted, the success is general and not
dependent on the algorithm being attacked or the particular instruction being executed.

As the microcontrollers can only execute a single instruction per clock cycle, mitigation
techniques, which were not addressed in this paper, must be of the type which limit the
number of clocks on which a signal may appear and minimize the effect of any such signal.
The Spartan 6 was shown to minimize the usefulness of a leaked signal in an attack by
performing d rounds per clock cycle resulting in an increased amount of data and compu-
tational resources required to effect full key recovery. Implementations of both SIMON and
SPECK 64/128 were experimentally shown to be vulnerable to full key recovery for d = 1, 2
on the three platforms examined. On the Spartan, full key recovery of SIMON 64/128 d ≤ 4
and SPECK 64/128 d ≤ 3 is achieved in seconds with no more than one million random
plaintexts, supporting the use of larger d for most implementations. As a precaution, all such
implementations should compute at least 5 rounds for SIMON and 4 rounds for SPECK
between register updates to prevent a trivial full key recovery when encrypting less than five
million random plaintexts, although a partial key recovery could be achieved with additional
effort. Other implementations may have different requirements. It is seen that attacks on
SIMON 64/128 d ≥ 9 and SPECK 64/128 d ≥ 5 are not feasible, requiring either more than
80-bits of effort or more than 2n encryptions to be performed with a particular key on the
2n-bit block cipher. An examination of the reduced data requirement of a 1-bit PPA in the
case of zero noise on the power signal finds these limits on d to still require more data than
would be available from the use of a given key. The attack on SIMON 64/128 is expected
to be computationally unfeasible, defined as requiring more than the available resources or
taking more than one year of compute time, at d = 10 for a single core machine (2GB RAM,
1TB Storage, 1GFlop/s) and d = 14 for a super computer (1PM RAM, 1 EB Storage, 50
PFlop/s), while SPECK 64/128 becomes unfeasible at d = 5 for a single core and d = 6 for
a super computer.

The demonstrated DGPA attack made use of the quantized power consumption of a
single register changing state which differed from the power consumption of the same register
element maintaining state. As the attack depends only on the signal from the registers and
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not from the round logic, these results can be extended to all FPGAs and ASICs of similar
design which store the result of d rounds in 2n registers and which have registers that
are subject to power signal leakage on a state change. An attack on the registers using
the methods described on any of the studied implementations which do not have sufficient
sample sizes above the recommended minimums must then target the power consumption
of the first level LUT output or other circuitry which was shown to be a less effective attack
vector on the Spartan.

The success of an attack on a single power measurement per clock cycle supports the
feasibility of new power sidechannel attack hardware which is embedded with the low power
deployed device under attack for small d implementations. While not tested in this work, the
relative simple processing required to calculate the average group power over a single value
per clock cycle suggests that a peak sensing ADC along with a low power microcontroller
would contain the necessary data acquisition and data processing capability required to
perform an attack and to produce a probable key result for exfiltration. The use of expensive
lab quality oscilloscopes and data acquisition hardware, high power computing and data
storage and processing facilities, and similar requirements of existing power sidechannel
attack methods is not required. Calculations of the complexity of such attacks which store
then process data or partially process the data during acquisition supports the feasibility of
these methods being implemented on memory and computationally constrained platforms.
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