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Abstract. We propose definitions and constructions of authenticated encryption (AE) schemes that
offer security guarantees even in the presence of nonce misuse and side-channel leakages. This is part
of an important ongoing effort to make AE more robust, while preserving appealing efficiency prop-
erties. Our definitions consider an adversary enhanced with the leakages of all the computations of
an AE scheme, together with the possibility to misuse nonces, be it during all queries (in the spirit
of misuse-resistance), or only during training queries (in the spirit of misuse-resilience recently intro-
duced by Ashur et al.). These new definitions offer various insights on the effect of leakages in the
security landscape. In particular, we show that, in contrast with the black-box setting, leaking vari-
ants of INT-CTXT and IND-CPA security do not imply a leaking variant IND-CCA security, and that
leaking variants of INT-PTXT and IND-CCA do not imply a leaking variant of INT-CTXT. They also
bring a useful scale to reason about and analyze the implementation properties of emerging modes of
operation with different levels of leakage-resistance, such as proposed in the ongoing NIST lightweight
cryptography competition. Eventually, we propose first instances of modes of operations that satisfy
our most demanding definitions. In order to optimize their efficiency, we aim at modes that support
“leveled implementations” such that the encryption and decryption operations require the use of a
small constant number of evaluations of an expensive and heavily protected component, while the bulk
of the computations can be performed by cheap and weakly protected block cipher implementations.

1 Introduction

Authenticated encryption (AE) has become the de-facto standard primitive for the protection
of secure communications, by offering a robust and efficient alternative to the combination of
encryption and MACs, a combination that is challenging enough to have been the source of security
issues in numerous high-profile systems [APW09, DR11, PA12]. This effort towards robustness has
been intensely pursued and, as a result, a number of strengthened requirements for AE schemes
have been proposed in the literature.

A first focus has been on reducing functional requirements, in order to protect users from their
failure to provide appropriate inputs to the system. The typical requirement of using random IVs
has been lowered to the requirement of providing unique nonces. Further efforts have then been
made to reduce the impact of a repeated nonce, by requiring that such a repetition only makes it
possible to recognize the repetition of a message, which is the strict minimal consequence. These
considerations led Rogaway and Shrimpton to define the central notion of misuse-resistant nonce-
based AE [RS06], which goes even one step further, by requiring ciphertexts to be indistinguishable
of random strings. Satisfying this notion of misuse-resistance is extremely appealing, as it goes as
far as possible in protecting users from their own mistakes or from devices offering poor sources of
randomness. However, it comes with a significant memory penalty (two successive passes are needed
to perform encryption) and, as we will argue, may also be infeasible to achieve in the presence of
many natural types of leakages (e.g., based on the power consumption or electronmagnetic radiation
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of an implementation). More recently, Ashur et al. [ADL17] proposed the relaxed security notion
of misuse-resilience, which requires that nonce misuse does not have an impact on the security of
messages encrypted with a fresh nonce. This notion can be satisfied by much more efficient schemes,
and we will show that it is also compatible with the side-channel attack scenarios mentioned above.

A second line of efforts aims at protecting from weaknesses that implementers could introduce
in an AE scheme, by creating observable behaviors that are not part of its specifications. One type
of implementation weakness comes from the decryption of invalid ciphertexts [BDPS13, ABL+14,
HKR15, MOSW15, ADL17]. While security models usually assume that the decryption of an invalid
ciphertext returns an error signal, the reality is often different, and some implementations return
different messages depending on the step at which decryption fails, or would even go as far as
releasing the partially decrypted message to the adversary, either explicitly, or by treating it as
public garbage.

Another source of weakness coming from implementations is the possibility of side-channel at-
tacks [BKP+18, BMOS17, BPPS17]. Here, the attacker does not (only) exploit explicit software
messages, but extracts information from side-effects such as the computation time, the power con-
sumption, or the electromagnetic radiation of the device performing cryptographic operations. In
this context, the previous focus on decryption failures must be broadened, as side-channel leakages
happen at encryption and decryption times, and happen at decryption time whether a ciphertext
is valid or not.

What can be achieved in the presence of leakages of course depends on the type, the permanence
and the amount of leakages granted to the adversary. As far as the type is concerned, we separate
scalar leakages (like timing) that allow so-called univariate attacks and vector leakages (like the
aforementioned power consumption or electromagnetic radiation) that allow so-called multivariate
attacks. As far as the permanence is concerned, we separate between full leakages (that allow to
leak during all interactions with the device) and partial leakages that exclude the leakages of some
interactions. This leads us to define a first taxonomy of leakages as Vector & Full (VF), Scalar &
Full (SF), Vector and Partial (VP), Scalar & Partial (SP). In the rest of this paper, we are concerned
with the strongest category of VF leakages.

As for the amount of leakage, it is in general hard to quantify and highly depends on the
implementations and measurement devices that are at hand. In this respect, our starting observation
is that the leakage of all secrets makes confidentiality-preserving cryptography impossible, but the
full protection against leakages at the implementation level brings us back to a situation in which
we put a lot of pressure on implementers, who we must completely trust to limit the leakages.
Furthermore, even in that case, this will come at high cost in terms of extra computation time,
energy, or circuit area, since strong protections against side-channel attacks (especially in the case
of VF leakages) typically increase the “code size × cycle count” metric by 2 or 3 orders of magnitude
compared to a non-protected implementation [BGS15, GR17].

This state-of-the-art motivated the design of authentication, encryption and AE schemes al-
lowing “leveled implementations” (or implementations in the leveled leakage setting). By leveled
implementations, we mean that different levels of security are required for different parts of the
computations: some computations must be well protected, while a weaker protection would be suf-
ficient for others. As put forward in [PSV15, BKP+18, BPPS17], this setting usually allows lower
cost or more efficient implementations with symmetric building blocks.

The design of such schemes being guided by the security definitions to target, it can be viewed
as a tradeoff between the pressure on implementers to limit the leakages and the pressure on the
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modes to deal with the remaining leakages. Our following contributions therefore aim at defining
security targets and modes of operation with an effective balance between leakage reduction at the
implementation level and leakage-resistance at the cryptographic mode level, in order to reach AE
with high physical security and a minimum implementation cost.

1.1 Contributions

Our main contributions target deterministic (nonce-based) authenticated encryption with associ-
ated data (AEAD) [Rog02]. We:

(i) Define confidentiality and integrity notions in the presence of nonce misuse and leakages. Our
security notions capture leakages in encryption and decryption and allow the computation of
the “challenge ciphertexts” to leak. Several variants are explored and put in relation.

(ii) Identify the strongest form of security that an AEAD can offer to protect messages in the
presence of nonce misuse and VF leakage, which we call AEML-VF security, as a combination
of black-box misuse-resistance, ciphertext integrity with VF leakage and misuse-resistance and
CCA security with VF leakage, and misuse-resilience. We also argue why CCA security with VF
leakage and misuse-resistance cannot be achieved.

(iii) Propose modes of operation that satisfy our definitions and allow leveled implementations,
using a set of weaker assumptions for the integrity part of the definition and stronger ones for
its confidentiality part, leading to “gradual security degradations”: even if some of the security
requirements for confidentiality are not satisfied, integrity may be preserved.

Inspired by the misuse-resistance vs. misuse-resilience terminology, we denote as leakage-resistant
the modes that aim to cope with full leakage, and as leakage-resilient the modes that aim to cope
with partial leakage.

Security definition. Our definition of AEML-VF security (written more simply as AEML security
when VF is understood) is a combination of three requirements: (i) The AE scheme must be
misuse-resistant (MR) in the black-box setting (without leakages), in the usual sense of Rogaway
and Shrimpton [RS06]. (ii) The AE scheme must offer CIML2 security, which is a natural extension
of ciphertext integrity and nonce misuse-resistance in the presence of (full) leakages, introduced
by Berti et al. [BKP+18, BPPS17]. (iii) The AE scheme must offer CCAmL2 security, which is an
extension of CCA security with nonce misuse-resilience in the presence of (full) leakages that we
propose here. Misuse-resilience and full leakages are reflected by the small m and large L in these
notations.

The first requirement is there to ensure that, for someone who does not have access to leakages,
an AEML scheme is also a traditional MR AE scheme.

In the presence of leakages, we unfortunately cannot just easily extend the Rogaway-Shrimpton
definition of MR AE in any natural way that would uniformly combine confidentiality and in-
tegrity. Indeed, their definition requires that ciphertexts look random as soon as they are produced
from a fresh (nonce, message) pair. But defining the leakage function corresponding to the gen-
eration of such random-looking ciphertexts is difficult, since the very definition of this function is
implementation-dependent. In order to avoid this caveat, we therefore turn back to the original
definitional approach for AE security, as a combination of confidentiality and ciphertext integrity,
which we gradually extend to the leakage world in the presence of nonce misuse. Such a combina-
tion turns out to be especially relevant in the leakage setting where ensuring confidentiality and
integrity may benefit from different types of physical assumptions.
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The extension of INT-CTXT (the hardness to forge a fresh ciphertext that would pass de-
cryption) to the setting of misuse and leakages has been recently proposed as the CIML2 no-
tion [BPPS17]. (The same notion excluding decryption leakages has been proposed beforehand
in [BKP+18] - we denote it as CIML1). This extension can be viewed as natural as it provides the
adversary with full nonce misuse capabilities (as in the black box setting) and leakages from all the
computations performed in encryption and decryption. Furthermore and as will be detailed next, it
can be obtained under quite mild leakage assumptions, making it a particularly desirable property
to reach in practice.

It would be tempting to complete this picture with an extension of CPA security to the misuse
and leakage setting, e.g., based on the notions defined/used in [SPY13, BKP+18]. However, this
leads to guarantees that are weaker than the theoretical limits. While INT-CTXT + IND-CPA
implies (the desired) IND-CCA security in the black box setting [BN08], we show that this is not
true anymore when leakages enter the picture: the implication towards an extension of CCA security
with leakages does not hold, mainly because it does not capture the risks associated to decryption
leakages.

With this difficulty in mind, we introduce the notion of CCAmL2 security as an extension of CCA
security that also offers nonce misuse-resilience [ADL17] in the presence of full leakages: as long
as the nonce used in the test query is fresh, confidentiality must hold. Besides the aforementioned
separation, we also show that leaking variants of INT-PTXT and CCAmL2 do not imply CIML2
security: the alternate definition of AE as INT-PTXT and IND-CCA security [KY00] does not suffice
in the leaking setting either. By the above, we propose to use CCAmL2 in combination with CIML2
(and MR) to define AEML-VF security.

Finally, the reason of our focus on nonce misuse-resilience for CCAmL2 security, rather than on
the stronger requirement of nonce misuse-resistance, is due to the nature of VF leakages. Concretely,
if an implementation of an AE scheme processes a message block-by-block, as it is standard, the
leakages happening during the processing of the first blocks will only depend on these blocks, and
not on all blocks. So, if an adversary asks for an encryption of two messages that have identical
first blocks (but differ otherwise), using a single nonce, the leakages of the computation associated
to these first blocks will be highly similar, something that can be easily observed and trivially
contradicts misuse-resistance. Nonce misuse-resilience is then the natural form of protection against
misuse that can be aimed for in the VF setting. Note that this argument may not hold for scalar
leakages (i.e., in the SF of SP settings): if there is a single scalar leaked for a full message encryption
process, then that scalar may depend on the full message, not just on its first blocks. It also does
not hold in the VP setting since, in that case, the security game does not provide the adversary
with the challenge leakages that can help her to distinguish.

New modes of operation. Based on the above definitions, we propose new modes of operation
for which the driving motivation, and our choice of leakage models, is to push towards the most
effective balance between the pressure on implementers and the pressure on designers of modes
(i.e., trading more complicated leakage-resistant modes for simpler implementations).

Traditional (non leakage-resistant) encryption modes, when intended to be used in a VF leakage
setting, require implementers to offer an implementation that can at least withstand so-called
Differential Power Analysis attacks (DPAs). Informally, DPAs are the most commonly exploited
side-channel attacks and take advantage of the leakages about a secret (e.g., key) obtained from
computations based on different inputs [MOS11]. A DPA reduces the computational secrecy of the
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state manipulated by a device at a rate that is exponential in the number of leakages, by combining
the information of these different inputs (e.g., plaintexts).

Leakage-resistant modes have the potential to considerably lower the costs of physical protection
(in terms of time/energy/code size needed to perform an encryption) by removing, to a large
extent, DPAs from the attack surface (mostly via consistently refreshing internal secrets, so that
it’s impossible to collect multiple traces), leaving the adversary with the more challenging task
of exploiting leakage with Simple Power Analysis attacks (SPAs). SPAs are side-channel attacks
taking advantage of the leakage of a single input, possibly measured multiple times to reduce the
measurement noise, and therefore correspond to a minimum threat that targets the unavoidable
manipulation of the messages to encrypt/decrypt. SPA protection is considerably cheaper than
DPA protection (see [DEM+17]), and it is expected that the overhead coming from the use of
a more demanding encryption mode (e.g., requiring more block cipher calls per message block)
can be compensated by the cheaper physical protections against SPA. This concern is reflected in
the assumptions that we make about leakages. They differ in strength depending on the security
property that we analyze but, based on these assumptions, any mode offering the possibility to
mount a traditional DPA, message block by message block, would be considered insecure.

We define two modes of operation. Our first mode, FEMALE (for Feedback-based Encryption
with Misuse, Authentication and LEakages), offers AEML-VF security. The second one, AEDT, is
CIML2 and CCAmL2 but not MR, a combination which we denote as AEmL-VF (where the lower-
case m indicates that black-box misuse-resistance is abandoned – still, misuse-resilience is offered).
It is proposed for situations in which the processing of the message in two passes (inherent to
misuse-resistance) leads to excessive memory requirements.

FEMALE is a two-pass encryption scheme offering traditional AE security, which is compatible with
leveled implementations: independently of the length of the message and associated data, a strongly
protected block cipher (BC) must be called only twice – which we model as a “leak-free” block cipher
for simplicity. Apart from that, a weakly protected BC must be called 4` + 5 times for a message
of ` blocks. The MR security of FEMALE holds in the standard model. The CIML2 security holds in
the unbounded leakage model [BPPS17], which lets weakly protected components leak their state
completely, hence only relying on the two heavily protected blocks. The CCAmL2 security holds
based on the assumption that leakages are simulatable [SPY13]. Our reduction shows that any
attacker that breaks the CCAmL2 security of FEMALE is either violating the simulatable leakage
assumption, or able to break the eavesdropper security of a very simple encryption scheme that can
only encrypt one single block and has no leak-free component (so in some sense we extend the domain
of the single block encryption in a security-preserving manner and enhance functionality). The
single-block security formally reflects the aforementioned “minimum attack surface” that our modes
aim to provide. It cannot be derived from the simulatable leakage assumption: the leakage of one
single bit of a secret message may not contradict simulatability but break confidentiality [PSV15].
So this approach is as far as one can go based on the current understanding of leakage-resistance
and the fact that accurately defining the confidentiality guarantees offered by a single message
block remains an open problem. Still, it makes the application of DPA attacks impossible by design
(excepted for the calls to a strongly protected block, which we make two times per message to be
encrypted, independently of the length of this message). Also, testing the eavesdropper security of
a single-block encryption scheme is a much simpler target for a side-channel evaluation laboratory
than evaluating the CCAmL2 security of a fully fledged scheme.
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AEDT is a simple variant of the EDT scheme of Berti et al. [BPPS17] which was designed to
support leveled implementations. It is already known to be CIML2 secure, and we show that AEDT
also offers CCAmL2 security (the combination of which gives AEmL-VF). Giving up on black-box
MR security leads to efficiency improvements: AEDT requires two calls of leak-free BC, but only
2`− 1 calls of a weakly protected BC, and the evaluation of a hash function on public values. We
note that, if the hash function proceeds by blocks (as any function based on the Merkle-Damg̊ard
transformation or sponge constructions), then AEDT does not require any latency for producing
ciphertexts, and reduces the memory complexity for encryption to constant instead of requiring
the storage of the message in full as for traditional MR. Still, and as usual, the full ciphertext is
needed before decryption can start. Combining leakage-resistance with modes like in the works of
Fleischmann et al. [FFL12] and Hoang et al. [HRRV15] on on-line misuse-resistance, which explore
weakened notions of misuse-resistance that are compatible with single-pass encryption (but do not
consider the presence of leakages) is an interesting scope for further research.

The properties achieved by these constructions are summarized in Table 1. We do not mention
standard modes that are not designed for leakage-resistance since they do not provide any of
these properties (e.g., the CIML1 security of the SIV construction [RS06] is broken with a DPA
in [BKP+18]).

Table 1. Existing AE designs that support leveled leakage-resistant implementations. LR hash indicates whether
the scheme relies a hash functions that’s resistant to some leakages. AD indicates whether the scheme supports the
processing associated data.

LR hash LF calls AD CIML CCAmL2 MR Ref.

DTE X 2 × 1 × X [BKP+18]

DTE2 X 2 × 2 × X [BPPS17]

EDT × 2 × 2 X × [BPPS17]

FEMALE × 2 X 2 X X new

AEDT × 2 X 2 X × new

Remark on gradual security degradations. As encouraged by our composite definitions, the security
proofs of FEMALE and AEDT are obtained under physical assumptions that differ depending on
whether we target confidentiality or integrity guarantees, as outlined above, and as will be carefully
discussed in Section 5. In this respect, it is important to note that our definitions of AEML and
AEmL security allow expressing gradual security degradations in the sense (present in our modes)
that imperfectly simulatable leakages or strongly leaking single-block encryptions (which would
harm CCAmL2 security) do not affect the CIML2 guarantees. In other words, CIML2 and CCAmL2
should be seen as gradual improvements that modes of operation can bring to better cope with
leakages, with a risk of non-negligible adversarial advantages (especially for CCAmL2) that are in
the same time inherent to physical security issues, and significantly reduced compared to modes of
operations ignoring physical leakages in their design.

1.2 Related works

Recently, Barwell et al. [BMOS17] introduced notions of misuse-resistant and leakage-resilient AE,
and proposed modes of operation satisfying their definitions. We will refer to this work as BMOS, by
the initial of its authors. The BMOS definition captures leakage-resilient AE security as follows (we
just focus on encryption queries for simplicity): they first follow the Rogaway-Shrimpton strategy
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by challenging the adversary to distinguish between non-leaking real or random encryption oracles,
then augment the power of the adversary by giving him access to a leaking encryption oracle
that cannot be queried with inputs identical to those of the non-leaking oracles. As a result, it
is impossible to win their game by exploiting leakages that would reveal information about the
messages that the AE scheme is supposed to hide: leakages are excluded from the “challenge”
queries. In our terminology, BMOS focuses on the VP (Vector & Partial) leakage model, which we
reflect with a small l in our notations.

As a result of the weaker VP leakage model, BMOS can realistically require misuse-resistance to
hold for confidentiality, and not only misuse-resilience (i.e., CCAMl1, CCAMl2), which is in line with
our previous discussions. As such, the BMOS work can be viewed as dual to ours: we consider full
leakages (i.e., leakage-resistance) and as a consequence have to exclude full misuse-resistance; they
consider partial leakages (i.e., leakage-resilience) which makes misuse-resistance possible. On the
positive side, the BMOS authors show that their definition is compatible with strong composition
results. Yet, the VP model may be insufficient in many practical cases: according to the BMOS
definition, an implementation that leaks plaintexts in full during encryption may be considered as
perfectly secure. By contrast, such an implementation would be considered completely insecure in
the VF model, which is our focus here.

A secondary difference is on the modes of operation of BMOS, which require “uniform imple-
mentations” (or an implementations in the uniform leakage setting). In contrast with the leveled
implementations we propose, all the components in their constructions are required to offer the
same strong level of protection against side-channel attacks. This is expected to lead to consider-
ably more expensive implementations. For example, the proposed implementation strategy of the
BMOS modes of operation processes each message block with a pairing-based leakage-resilient PRF
(while we leverage symmetric building blocks).

Note that in general, our approach is motivated by the observation that restricting the misuse
capabilities may be easier to control by implementers than excluding some leakages (which usually
depends on when the target device is monitored – a hard to control parameter). Our following
results therefore focus on this important (and so far unexplored) part of the problem, and analyze
how to deal with adversaries having full leakage capabilities.

Our CCAmL2 definition builds on the notion of misuse-resilience introduced by Ashur, Dunkel-
man and Luykx [ADL17]. The actual definitions and their motivations are quite different, though.
Ashur et al. introduce misuse-resilience to offer a finer grained evaluation of several standard AE
schemes that are not misuse-resistant. They do not consider side-channel leakages. In contrast,
these leakages are the central concern of our security definitions, and they are our motivation for
departing from traditional misuse-resistance in the VF leakage model.

Eventually, we mention the line of works about “after-the-fact” leakages which is complemen-
tary to ours [HL11] and allows the adversary to obtain leakage information after the challenge
ciphertext. While the latter is meaningful in certain scenarios (e.g., in the context of a cold boot
attack [HSH+09], the adversary could first see the encrypted disk – hence getting access to the ci-
phertext – and then try to design a method of measuring the memory for the purpose of decrypting
this ciphertext), it still excludes the leakages during the challenge phase, as will be available in the
context of a side-channel attack based on power consumption leakages, which is our main concern
here.
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1.3 Paper structure

After introducing preliminary notions in Sec. 2, we introduce, in Sec. 3, our definitions of CCAmL2,
AEML and AEmL security. These definitions are analyzed and compared with other leaking variants
of standard authentication, integrity and confidentiality guarantees in Section 4. (These results are
extended to the multi-challenge setting in Appendix A). We then discuss our model and assumptions
on leakages in Section 5, and conclude by describing and proving the AEML (resp., AEmL) security
of FEMALE (resp., AEDT) in Section 6.

2 Preliminaries

Throughout the paper n denotes the security parameter. For any set S, we define S∗ = ∪∞i=1S
i

so that s ∈ S∗ if and only if it exists a non negative integer ` such that s ∈ S`. This notation is
convenient for instance for variable block-length (authenticated) encryption with message spaceM∗,
where messages of M consist of one block.

2.1 Notations

Adversary. We denote by a (q1, . . . , qω, t)-bounded adversary a probabilistic algorithm that has
access to ω oracles, can make at most qi queries to its i-th oracle, and can perform computations
bounded by running time t. For algorithms that have no oracle to access, we simply call them t-
bounded. In this paper, we use subscripts to make a clear distinction between the number of queries
to different oracles: the number of queries to the (authenticated) encryption oracle, decryption
oracle, and leakage oracle L are denoted by qe, qd, and ql respectively. For example, a (qe, qd, ql, t)-
bounded adversary runs in time t, makes qe and qd queries to the encryption and decryption oracles
of the Authenticated Encryption with Associated Data (AEAD) scheme respectively, and makes ql
additional queries to the leakage oracle L.

Leaking algorithm. For an algorithm Algo, a leaking version is denoted LAlgo. It runs both Algo
and a leakage function Lalgo which captures the additional information given by an implementation
of Algo during its execution. LAlgo returns the outputs of both Algo and Lalgo which all take the
same input.

2.2 Definitions of primitives

We first need the following definition of collision-resistant hash function.

Definition 1 (Collision-Resistant Hash Function). A (t, εcr)-collision resistant hash function
H : S × {0, 1}∗ → B for security parameter n is a function that is such that, for every t-bounded
adversary A, the probability that A(1n, s) outputs a pair of distinct bit-strings (m0,m1) such that
Hs(m0) = Hs(m1) is bounded by εcr, where s $←S is selected uniformly at random.

We next need the following definition of range-oriented preimage resistance.

Definition 2 (Range-Oriented Preimage-Resist. Hash Function [AS11]). A (t, εpr)-range-
oriented preimage resistant hash function H : S×{0, 1}∗ → B for security parameter n is a function
such that, for every adversary A running in time t, the probability that A(1n, s, y) outputs a bit-
string m such that Hs(m) = y is bounded by εpr, where s $← S, y $← B are selected uniformly
at random.
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In the following, we assume that the key s is not private, and refer to the hash function simply
as H for simplicity, the key s being implicit.

We also need the following definitions of pseudorandom permutation.

Definition 3 (Pseudorandom Function). A function F : K×M→M is a (q, t, εE)-pseudorandom
function (PRF) for a security parameter n if, for all (q, t)-bounded adversaries A, we have:∣∣∣Pr

[
k $←K : AFk(1n)⇒ 1

]
− Pr

[
f $←F : Af (1n)⇒ 1

]∣∣∣ ≤ εF,
where F denotes the set of all functions from M to M.

The strong pseudorandom permutation notion is as follows.

Definition 4 (Strong Pseudorandom Permutation). A function E : K × M → M is a
(q, t, εE)-strong pseudorandom permutation (SPRP) for a security parameter n if, for all (q, t)-
bounded adversaries A, we have:∣∣∣Pr

[
k $←K : AEk,E

−1
k (1n)⇒ 1

]
− Pr

[
P $←P : AP,P−1

(1n)⇒ 1
]∣∣∣ ≤ εE,

where P denotes the set of all permutations on M.

We will focus on authenticated encryption with the following formalism.

Definition 5 (Nonce-Based AEAD [Rog02]). A nonce-based authenticated encryption scheme
with associated data is a tuple AEAD = (Gen,Enc,Dec) such that, for any security parameter n,
and keys in K generated from Gen(1n):

– Enc : K×N ×AD×M→ C deterministically maps a key selected from K, a nonce value from
N , some blocks of associated data selected from AD, and a message from M to a ciphertext in
C.

– Dec : K×N ×AD×C →M∪{⊥} deterministically maps a key from K, a nonce from N , some
associated data from AD, and a ciphertext from C to a message in M or to a special symbol ⊥
if integrity checking fails.

The sets K,N ,AD,M, C are completely specified by n. Given a key k ← Gen(1n), Enck(N,A,M) :=
Enc(k,N,A,M) and Deck(N,A,M) := Dec(k,N,A,M) are deterministic functions whose imple-
mentations may be probabilistic.

Since we only focus on nonce-based authenticated encryption with associated data in this paper,
we will simply refer to it as authenticated encryption.

2.3 Security definitions

We first recall the definition of Misuse-Resistance (MR) formalized in [RS06].

Definition 6 (MR). A nonce-based authenticated encryption scheme with associated data AEAD =
(Gen,Enc,Dec) is (qe, qd, t, ε) misuse resistant for a security parameter n if, for all (qe, qd, t)-bounded
adversaries A, ∣∣∣Pr

[
k $← Gen(1n) : AEnck,Deck(1n)⇒ 1

]
− Pr

[
A$,⊥(1n)⇒ 1

]∣∣∣ ≤ ε,
where $(N,A,M) outputs and associates a fresh random ciphertext C ← C of appropriate length to
fresh inputs, and the associated C otherwise, and ⊥(N,A,C) outputs ⊥ except if C was associated
to (N,A,M) for some message M , in which case it returns M .
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3 AE with full vectorial leakages

In order to define AEML security, our proposed security notion for authenticated encryption in the
full vectorial leakage setting in the presence of nonce misuse, we start by extending the existing
black-box security notions to the leakage setting. Surprisingly, the combination of our strongest
extensions of confidentiality and integrity is separated from any other combinations unlike the
situation without misuse and leakages. This motivates our definition to be at least as secure as this
strongest combination.

3.1 Variants of black-box notions with misuse and leakages

We first adapt the IND-CPA and the IND-CCA confidentiality notions of nonce-based authenticated
encryption in the setting of nonce misuse and leakages. We focus then on the extension of the
INT-PTXT and INT-CTXT integrity notions.

Confidentiality Contrary to existing confidentiality notions in a leaking setting (e.g., [BMOS17]),
our definition includes leakages during encryption and decryption even on the challenge cipher-
text(s). We first focus on security against chosen-ciphertext attacks with misuse-resilience and
leakages, denoted CCAmL2. Then, we derive the weaker notion of security against chosen-plaintext
attacks with misuse-resilience and leakages, denoted CPAmL2.

Chosen-ciphertext security with misuse and leakages. To capture the CCAmL2 security, as it is mo-
tivated in the introduction, we define the game PrivKCCAmL2,b

A,AEAD,L detailed in Figure 1. This game takes
as parameters an adversary A, a nonce-based authenticated encryption AEAD and a (possibly prob-
abilistic) leakage function pair L = (Lenc, Ldec) resulting from the implementation of the scheme.

During PrivKCCAmL2,b
A,AEAD,L, the adversary A has to guess the bit b of which depend the challenge cipher-

text Cb and the encryption leakages leakbenc, computed as a leaking encryption of (Nch, Ach,M
b),

where the nonce Nch, the associated data Ach and the messages M0,M1 are chosen by A under
certain conditions. All along this game A is also granted unbounded and adaptive access to three
types of oracles: LEnc, a leaking encryption oracle; LDec, a leaking decryption oracle; and Ldecch,
a challenge decryption leakage oracle that provides the leakage of the decryption process, but not
the resulting plaintext.

Overall, this definition follows the general pattern of CCA security. In terms of misuse-resilience,
it only forbids the adversary to reuse a nonce Nch in its challenge query. This captures real situations
where, for instance, a counter providing the nonce has been unintentionally reset or shifted. As long
as the counter recovers increments and provides fresh nonce values, the security of the challenges
should remain unaltered even if the previous encryptions leaked. In terms of leakage-resistance,
both the encryption and the decryption oracles leak (hence the “2” of CCAmL2 for the two leaking
oracles), including during the challenge query. We go one step further with the Ldecch oracle, which
offers the leakages corresponding to the decryption of the challenge ciphertext (but of course not
the corresponding plaintext, as it would offer a trivial win). This addition captures the fact that
the adversary may be allowed to observe the decryption of this challenge ciphertext through side-
channels, which might be valuable in applications such as secure bootloading or firmware update
with a device controlled byA [OC15] (see [BPPS17] for more discussion). We let the adversary query
the Ldecch oracle multiple times, as leakages can be non-deterministic (e.g., contain measurement
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PrivKCCAmL2,b
A,AEAD,L(1n) is the output of the following experiment:

Initialization: generates a secret key k ← Gen(1n) and sets E ← ∅
Pre-challenge queries: AL gets adaptive access to LEnc(·, ·, ·) and LDec(·, ·, ·)

(1) LEnc(N,A,M) computes C ← Enck(N,A,M) and leake ← Lenc(k,N,A,M)
updates E ← E ∪ {N} and finally returns (C, leake)

(2) LDec(N,A,C) computes M ← Deck(N,A,C) and leakd ← Ldec(k,N,A,C)
and returns (M, leakd) – we stress that M = ⊥ may occur

Challenge query: on a single occasion AL submits a tuple (Nch, Ach,M
0,M1)

If M0 and M1 have different (block) length or Nch ∈ E return ⊥
Else compute Cb ← Enck(Nch, Ach,M

b) and leakbe ← Lenc(k,Nch, Ach,M
b)

and return (Cb, leakbe)

Post-challenge queries: AL can keep accessing LEnc and LDec with some restrictions
but it can also get an unlimited access to Ldecch

(3) LEnc(N,A,M) returns ⊥ if N = Nch otherwise computes C ← Enck(N,A,M)
and leake ← Lenc(k,N,A,M) and finally returns (C, leake)

(4) LDec(N,A,C) returns ⊥ if (N,A,C) = (Nch, Ach, C
b) otherwise computes

M ← Deck(N,A,C) and leakd ← Ldec(k,N,A,C) and returns (M, leakd)
(5) Ldecch outputs the leakage trace leakbd ← Ldec(k,Nch, Ach, C

b) of the challenge

Finalization: AL outputs a guess bit b′ which is defined as the output of the game

Fig. 1: The PrivKCCAmL2,b
A,AEAD,L(1n) game.

noise), and A may benefit from the observation of leakages from multiple decryptions of the same
plaintext.

Here, we focus on a single challenge definition but we extend it to the multi-challenge setting
in Appendix A.1 where we establish their equivalence.

Definition 7 (CCAmL2). A nonce-based authenticated encryption with associated data AEAD =
(Gen,Enc,Dec) with leakage function pair L = (Lenc, Ldec) is (qe, qd, qc, ql, t, ε)-CCAmL2 secure for a
security parameter n if, for every (qe, qd, qc, ql, t)-bounded adversary AL,1 we have:∣∣∣Pr

[
PrivKCCAmL2,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKCCAmL2,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

where the adversary AL makes at most qe leaking encryption queries, qd leaking decryption queries,
qc challenge decryption leakage queries and ql leakage evaluation queries on arbitrarily chosen keys.

We will sometimes refer to CCAmL2∗ as a weakened version of CCAmL2 where we drop the challenge
decryption leakage oracle Ldecch from the game of Figure 1.

Chosen-plaintext security with misuse and leakages. Derived from CCAmL2, CPAmL2 is defined
by a game PrivKCPAmL2,b

A,AEAD,L which is exactly as PrivKCCAmL2,b
AL,AEAD

except that we remove A’s access to

the leaking decryption oracle LDec in Figure 1 (Items 2,4). Yet, A is still able to get challenge
decryption leakages leakbd—this corresponds to settings in which a passive adversary tries to break
confidentiality while being able to observe leakages of encryption and decryption operations. In
section 4.1, we will also introduce the CPAmL1 security notion, which can be seen as the CPAmL2

1 The notation of AL indicates that the adversary may query L on chosen inputs including chosen keys selected and
known by A.
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PrivKCIML2
A,AEAD,L(1n) experiment PrivKPIML2

A,AEAD,L(1n) experiment

Initialization:
1. k ← Gen(1n), S ← ∅

Finalization:
1. (N,A,C)← ALEnck,LDeck,L(1n)
2. If (N,A,C) ∈ S, return 0
3. If Deck(N,A,C) = ⊥, return 0
4. Return 1

Leaking encryption: LEnck(N,A,M)
1. C ← Enck(N,A,M)
2. S ← S ∪ {(N,A,C)}
3. Return (C, Lenc(k,N,A,M))

Leaking decryption: LDeck(N,A,C)
1. Return (Deck(N,A,C), Ldec(k,N,A,C))

Initialization:
1. k $←K, S ← ∅

Finalization:
1. (N,A,C)← ALEnck,LDeck,L(1n)
2. M ← Deck(N,A,C)
3. If M = ⊥ or (A,M) ∈ S, return 0
4. Return 1

Leaking encryption: LEnck(N,A,M)
1. C ← Enck(N,A,M)
2. S ← S ∪ {(A,M)}
3. Return (C, Lenc(k,N,A,M))

Leaking decryption: LDeck(N,A,C)
1. Return (Deck(N,A,C), Ldec(k,N,A,C))

Table 2. The CIML2 and PIML2 security games.

variant without Ldecch, corresponding to situations in which an adversary cannot observe any de-
cryption operation, which could happen in settings where keys are dependent of the communication
direction, and the adversary only has physical access to one end of the communication.

Definition 8 (CPAmL2). A nonce-based authenticated encryption with associated data AEAD =
(Gen,Enc,Dec) with leakage function pair L = (Lenc, Ldec) is (qe, qc, ql, t, ε)-CPAmL2 secure for a
security parameter n if, for every (qe, qc, ql, t)-bounded adversary A, we have:∣∣∣Pr

[
PrivKCPAmL2,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKCPAmL2,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

where the adversary AL makes at most qe leaking encryption queries, qc challenge decryption leakage
queries and ql leakage evaluation queries on chosen keys.

Integrity We next adopt the natural and strong extensions of INT-CTXT and INT-PTXT to nonce-
misuse resistance and (full) leakages in encryption and decryption. The INT-CTXT extension, called
Ciphertext Integrity with Misuse and Leakages, noted CIML2, comes from [BPPS17] and is an
earlier proposal CIML1 [BKP+18] extended with with decryption leakage. Based on this definition,
we propose here the corresponding extension of INT-PTXT security, which we call PIML2.

Definition 9 (CIML2, PIML2). An authenticated encryption AEAD = (Gen,Enc,
Dec) with leakage function pair L = (Lenc, Ldec) provides (qe, qd, ql, t, ε)-ciphertext (resp. plaintext)
integrity with nonce misuse and leakages for security parameter n if, for all (qe, qd, ql, t)-bounded
adversaries AL, we have:

Pr
[
PrivKCIML2

A,AEAD,L(1n)⇒ 1
]
≤ ε,

(resp. Pr
[
PrivKPIML2

A,AEAD,L(1n)⇒ 1
]
≤ ε),

where the security game PrivKCIML2
A,AEAD,L (resp. PrivKPIML2

A,AEAD,L) is defined in the left part of Table

2 (resp. right part) when AL makes at most qe leaking encryption queries, qd leaking decryption
queries and ql leakage evaluation queries.
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CIML2

CCAmL2 CIML2 ∧ CPAmL2

PIML2 ∧ CCAmL2

∧MR

∧MR

Fig. 2: Relations among notions. Arrows (resp., barred arrows) denote implications (resp., separa-
tions). Dotted arrows are trivially implied by other relations.

3.2 Overall requirement on AE

We eventually require that a secure AE intended to support nonce misuse and full leakages satisfies
the strongest achievable guarantee presented in the paper: an AEML scheme is expected to offer
CCAmL2 and CIML2 security, together with being a MR AEAD scheme without leakages. This defi-
nition departs from the traditional ones in the black-box setting, which is based on the combination
of CPA and INT-CTXT security [BN08] or CCA and INT-PTXT security [KY00]. We will actually
show that there are important separations between these notions: CCAmL2 + PIML2 + MR 6⇒
CIML2, and CPAmL2 + CIML2 + MR 6⇒ CCAmL2. Furthermore, even if CCAmL2 (resp., CIML2)
implies both IND-CCA and CPAmL2 (resp., INT-CTXT and PIML2), the combination of CCAmL2
and CIML2 security does not imply MR, which is therefore a separate requirement.

Definition 10 (AEML-VF). An AE scheme with security against nonce misuse and full vectorial
leakages (denoted as AEML-VF) is an AE scheme AEAD = (Gen,Enc,Dec) with a leakage function
pair L = (Lenc, Ldec) satisfying the following assertions: (i) AEAD is misuse resistant; (ii) AEAD is
CIML2 secure with leakage function L; (iii) AEAD is CCAmL2 secure with leakage function L.

As indicated above, AEML-VF security will typically be abbreviated as AEML in our paper,
since the VF attack setting is understood.

3.3 Separation results

We now explain why the strong security notions of MR, CCAmL2 and CIML2 are needed to define
AEML, while one could be tempted to make a definition as a combination of weaker notions, which
may be easier to prove. Unfortunately, there is no such equivalence and we show that AEML is
strictly stronger than any other combinations, assuming that AEML-secure AEAD exists.

We summarize even more relations in Figure 2. In contrast to the black-box setting, these
relations show that one cannot choose between different ways to achieve AEML since, for instance,
CCAmL2 ∧ PIML2 6� CPAmL2 ∧ CIML2.

MR ∧ CPAmL2 ∧ CIML2 ; CCAmL2∗. It is not surprising that MR does not imply CCAmL2
since the leakage function L is absent from the black-box notion. Contrarily, L appears both in
CPAmL2 and CIML2. This claim thus says that leakages in decryption may not alter integrity but
may alter confidentiality. To reflect this intrinsic separation of the leakage setting, we show that the
implication does not even hold for CCAmL2∗ where the challenge decryption leakage oracle Ldecch is
unavailable. While the latter leakages are motivated in the context of side-channel attacks [BPPS17],
is is also quite specific to such attacks. So ignoring it in the separation makes our result stronger
and more general.
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Theorem 1. Assuming that there exists an AE scheme which satisfies MR, CPAmL2, and CIML2
in the unbounded leakage setting, then there exists an AE with the same security properties but
which fails to achieve CCAmL2, even without challenge decryption leakages (i.e., CCAmL2∗).

The proof utilizes information leaked by invalid decryption queries, which was also exploited in
the “protocol leakage” setting [BPS15]. The implication does not hold either when starting from
the multiple challenge variant of CPAmL2 (discussed in Section A).

Proof. Let AEAD = (Gen,Enc,Dec) with leakage function L = (Lenc, Ldec) be MR, CPAmL2 with
respect to L and CIML2 with respect to L∗ as such authenticated encryption exists by assumption.
Then we build AEAD′ = (Gen′,Enc,Dec) with leakage L′ = (L′enc, L

′
dec) such that, for a fixed message

M † ∈M:

Gen′(1n): returns k ← Gen(1n) and k′ ← Gen(1n);

L′enc((k, k
′), N,A,M): outputs (leake, C

′, leake′) where leake = Lenc(k,N,A,M) (comes from the
computation of C ← Enck(N,A,M)), the ciphertext C ′ = Enck′(N,A,M) and consequently
leake′ = Lenc(k

′, N,A,M);

L′dec((k, k
′), N,A,C): outputs leakd = Ldec(k,N,A,C) if M 6= ⊥ (which comes from the computa-

tion ofM ← Enck(N,A,C)) and outputs (leakd, C
†, leak†e′) otherwise, where leakd = Ldec(k,N,A,C),

C† ← Enck′(N,A,M
†) and consequently also leak†e′ = Lenc(k

′, N,A,M †).

From a black-box standpoint, k′ does not even exist so AEAD′ is still MR. Therefore, let us focus
on the security notions involving leakages.

CPAmL2. In the PrivKCPAmL2,b
A′,AEAD′,L′(1

n) game, the adversary A′ does not have access to L′dec except

from the challenge decryption leakage through L′decch. But since the challenge ciphertext is valid,

L′decch = Ldecch which returns Ldec(k,Nch, Ach, C
b). Consequently, an adversary A in PrivKCPAmL2,b

A,AEAD,L
can easily simulate the view of A′ simply by picking k′ ← Gen(1n) transmitting all the queries to
its own oracles and just add the encryption leakage (C ′, leake′) if necessary.

CIML2. In the PrivKCIML2
A′,AEAD′,(L′)∗(1

n) game, the adversaryA′ still needs to forge a fresh ciphertext

of AEAD with key k while the additional unbounded leakage given by (L′)∗ only depends k′. Then,
building a reduction to PrivKCIML2

A,AEAD,L∗(1
n) is straightforward.

¬CCAmL2∗. We build a distinguisherA′ against AEAD′. In the security game PrivKCCAmL2,b
A′,AEAD′,L′(1

n),

the adversary queries leaking decryption of (Nch, Ach, C) for any chosen Nch, Ach and C. If the ci-
phertext is valid, it receives some M 6= ⊥ and it sets (M0, C0) = (M,C). If not, it receives

(⊥, (leake, C†, leak†e′)) from LDeck,k′(Nch, Ach, C) and sets (M0, C0) = (M †, C†). In the challenge
phase, A′ sends (Nch, Ach,M

0,M1) for any distinct M1 than M0. Since the pair (Nch, Ach) has never
been queried for (leaking) encryption, A′ does not receive ⊥. In the answer LEnck(Nch, Ach,M

b), A′
gets Cb. If Cb equals the known C0, A′ outputs 0, otherwise it outputs 1. Obviously the distinction
holds with probability 1.

Now, it is easy to see that AEAD′ with leakage L′ fulfills all the desired requirements of the
theorem based on the existence of AEAD. ut

MR∧CCAmL2∧PIML2 ; CIML2. As for the previous assertion, being MR does not say anything
about leakages, so not being CIML2 is obviously compatible. The most interesting part comes from
CCAmL2 and PIML2 which include leakages. This claim exploits the fact that leakages on repeated
queries may degrade ciphertext integrity but neither confidentiality nor plaintext integrity.
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Theorem 2. Assuming that there exists an AE scheme which satisfies MR, CCAmL2, and PIML2
in the unbounded leakage model, then there exists an AE which satisfies the same security properties
but which fails to achieve CIML2 (even if not in the unbounded leakage model).

The proof proceeds by building a ¬CIML2 scheme AEAD′ from an MR ∧ CCAmL2 ∧ PIML2
scheme AEAD. An interesting feature is that this counterexample AEAD′ preserves the tidyness
of AEAD. This deviates from Bellare and Namprempre’s well-known approach for establishing
INT-PTXT ; INT-CTXT, which did utilize non-tidy counterexamples [BN08]. It is possible in our
case due to the presence of leakages.

Proof. Let AEAD = (Gen,Enc,Dec) with leakage function L = (Lenc, Ldec) be MR, CCAmL2 with
respect to L and PIML2 with respect to L∗ as such authenticated encryption exists by assump-
tion. Then we build AEAD′ = (Gen′,Enc,Dec) with leakage L′ = (L′enc, Ldec) as follows, where
N †, A†,M †, N◦, A◦,M◦ below are the outputs of a publicly samplable distribution parametrized by
n:

Gen′(1n): generates k ← Gen(1n). Then, it selects distinct nonces N †, N◦ ∈ N , distinct A†, A◦ ∈
AD and distinct messages M †,M◦ ∈ M. It computes the ciphertext C† ← Enck(N

†, A†,M †)
and splits it into four random shares: it samples three |C†|-bit strings R0, R1, S0 and sets
S1 = C† ⊕R0 ⊕R1 ⊕ S0. It outputs (k, sh) where sh = (R0, R1, S0, S1).

L′enc((k, sh), N,A,M): outputs leake = Lenc(k,N,A,M) (which comes from the computation of the
ciphertext C ← Enck(N,A,C)) as well as the additional value B but only in four cases:
– Case 1.1: (N,A) = (N †, A◦),M 6= M◦: B = R0;
– Case 1.2: (N,A) = (N †, A◦),M = M◦: B = R1;
– Case 2.1: (N,A) = (N◦, A†),M 6= M †: B = S0;
– Case 2.2: (N,A) = (N◦, A†),M = M †: B = S1.

If we drop the leakage functions AEAD′ shows no deviation from AEAD and thus is still MR. It
remains to establish the desired leakage-related claims:

CCAmL2. We prove that if there is a CCAmL2 adversary A′ against AEAD′, then there is an
adversaryA which usesA′ to break the CCAmL2 security of AEAD. In detail, once PrivKCCAmL2,b

A,AEAD,L(1n)

is setup, A(1n) publicly sample N †, A†,M †, N◦, A◦,M◦ and sends to A′ whatever specified by
AEAD′. Even if the ciphertext C† = Enck(N

†, A†,M †) has never been computed its length is fully
determined by n and (N †, A†,M †). Therefore, A picks random |C†|-bit strings R1, S0, S1. Then it

runs A′ and simulates the game PrivKCCAmL2,b
A′,AEAD′,L′ using its own interaction PrivKCCAmL2,b

A,AEAD,L. For each

query from A′, the actions of A are as follows:

Leaking (non-challenge) encryption queries: On input (N,A,M),
(i) If N = N † appears for the first time in a leaking encryption query (and so not in the

challenge query) A queries a leaking encryption on (N †, A†,M †) to its own oracle and gets
back C† and then computes R0 = C† ⊕R1 ⊕ S0 ⊕ S1;

(ii) A queries its own leaking encryption oracle on (N,A,M) and gets back some (C, leake) or
possibly ⊥ (for forbidden queries);

(iii) A checks whether it should append an additional leakage B to (C, leake) depending on
(N,A,M) falls into one of the four cases described above.

A respectively returns (C, leake) or ⊥ or even (C, leake, B) to A′ according to the above situa-
tions.
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Leaking decryption queries: on input (N,A,C), A simply calls its own oracle and reply to A′ with
the answer it received.

Leaking challenge query: on input (Nch, Ach,M
0,M1), A sends it to its leaking challenge oracle

and gets the tuple (Cb, leakbe) or possibly ⊥. If not ⊥,

(i) if (Nch, Ach) = (N †, A◦), A returns (Cb, leakbe, R1). In other words, the additional leakage is
always R1 regardless of the messages M0,M1;

(ii) if (Nch, Ach) = (N◦, A†), A returns (Cb, leakbe, S0) regardless of M0,M1;

(iii) else, A just returns (Cb, leakbe).

Challenge decryption leakage: returns the corresponding decryption leakage of the challenge ci-
phertext.

Eventually, A outputs the bit returned by A′.

Now we explain why A properly emulates the CCAmL2 game in front of A′. First, as long as
C† is returned to A in a leaking encryption queries A′ can not make a leaking challenge query
with Nch = N † and then case (i) in the challenge phase will not occur since A will receive ⊥ and
will send it to A′ as expected by the game. Therefore, B = R0 or B = R1 cannot be among the
encryption leakage of the challenge ciphertext. Second, if N◦ appears at first in a leaking encryption
query, case (ii) of the challenge phase will not occur and B = S0 or B = S1 will never be among
the encryption leakage of the challenge ciphertext as in AEAD′. We stress that R0, R1, S0, S1 might
appear several times in next responses to leaking encryption queries but exactly as in the honest
run of PrivKCCAmL2,b

A′,AEAD′,L′ . Third, if Nch = N † appears for the first time in the challenge phase, case

(i) of the leaking encryption query phase will not occur and A will receive ⊥ and send it to A′ if
A′ queries a leaking encryption involving N † afterwards, which corresponds to the right view of
the game. Therefore, R0 will never be defined and if we also have Ach = A◦ the additional leakage
Bb = R1 will be given in the encryption leakage of the challenge ciphertext. Here it is easy to see,
since A′ will receive a single share among those specified in Case 1.1 and Case 1.2 of L′enc, that this
distribution is exactly as the one expected from AEAD′. Four, if Nch = N◦ appears for the first
time in the challenge phase, a similar argument shows that A′ will only get a single share among
those specified in Case 1.1 and Case 1.2 of L′enc and only if Ach = A† independently of the choice
M0,M1. Once again, this is exactly the right distribution where Bb = S0 is random and remains
independent of the rest of the game. Five, all the previous arguments show that in any of these
situations the potential additional leakage B (Bb included) can be perfectly emulated by A so that
we have

Pr
[
PrivKCCAmL2,b

A,AEAD,L(1n)⇒ 1
]

= Pr
[
PrivKCCAmL2,b

A′,AEAD′,L′(1
n)⇒ 1

]
.

Finally, in any other cases the above conclusion obviously holds as well.

PIML2. We prove that if there is a PIML2 adversary A′ against AEAD′, then there is an adversary
A which uses A′ to break the PIML2 security of AEAD. In detail, once PrivKPIML2,b

A,AEAD,L(1n) is setup,

A(1n) publicly sampleN †, A†,M †, N◦, A◦,M◦ and sends toA′ whatever is specified by AEAD′. Since
it is assumed that the size of C† = Enck(N

†, A†,M †) is known, A can pick random |C†|-bit strings

R0, R1, S0. Then it runs A′ and simulates PrivKPIML2,b
A′,AEAD′,L′ using its own interaction PrivKPIML2,b

A,AEAD,L
such that any query made by A′ is simply relayed by A to its oracles and answered back with the
answer possibly augmented with an additional encryption leakage according to the different four
cases defined in L′enc except in Case 2.2, namely if A′ requests an encryption of (N◦, A†,M †). In
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the latter case, A first queries an encryption of (N †, A†,M †) and gets back C†. Then, A proceeds
as in the other cases but adds the leakage S1 = C† ⊕R0 ⊕R1 ⊕ S0.

It should be straightforwards that the simulation is perfect. Furthermore, as long as A′ does
not get the share S1 all the information in its view is exactly the same as the information A gets
in its PIML2 view and therefore any associated-data/plaintext forgery computed by A′ is a valid
forgery against AEAD. In order to get some information about C†, A′ must receive the four shares
R0, R1, S0, S1 but it means that it queried (N◦, A†,M †) but then C† = R0⊕R1⊕S0⊕S1 is no more
considered as a valid forgery since the pair (A†,M †) is already involved in a leaking encryption
query. As a conclusion A never makes a leaking encryption query involving (A,M) which has never
been among a leaking encryption query made by A′ at the first place.

Note that this reduction works in the unbounded leakage setting as well.

¬CIML2. We mount a ciphertext forgery attack against AEAD′. Let A′ be an adversary which given
N †, A†,M †, N◦, A◦,M◦ sequentially queries a leaking encryption on (N †, A◦,M †), (N †, A◦,M◦),
(N◦, A†,M◦), and (N◦, A†,M †) which fall into the four cases where each one of the sharesR0, R1, S0, S1
are additionally given in the encryption leakage. Then, A′ output C† = R0 ⊕ R1 ⊕ S0 ⊕ S1 which
is a valid encryption of (N †, A†,M †) which has never been received as an answer to some leaking
encryption query. ut

As a side note, (i) it can be seen the leakage functions L′ = (L′enc, L
′
dec) of the counterexample

AEAD′ preserves the deterministicness of the original one L = (Lenc, Ldec); (ii) we never require that
|M| > 2.

4 Completing the definitions’ zoo

To give a complete picture of the different security flavors of AE with misuse-resistance or resilience
and full vectorial leakages, we list all the security definitions that can be derived from our confiden-
tiality and integrity notions. We then study their relations which may be useful in order to guide
future designs with relaxed requirements (e.g., in order to reach better performances). It shows
that, apart from the obvious implications between the different flavors of confidentiality (resp., in-
tegrity), all the notions are separated from each other. In this section we concentrate on the single
challenge notions. The extension to the multi-challenge setting is discussed in Appendix A.

4.1 Security definition list (single challenge setting)

The CCAmL2 security game PrivKCCAmL2,b
A,AEAD,L is defined in Section 3.1, Figure 1. By dropping some

accesses to the distinct oracles of this game, we naturally derive other confidentiality notions. For
instance CPAmL2 is defined by removing items (2) and (4) from the security game. By doing similar
modifications, we can define different integrity notions from the CIML2 security game PrivKCIML2

A,AEAD,L
defined in Section 2.3, Table 2. We next formalize these variants.

Prefix-suffix definitions In all the notions derived from CCAmL2 and CIML2 we only focus on
those capturing full leakages (partial leakage is covered by BMOS). Therefore all the definitions
below keep the large L in their notation. This leads us to consider 16 different notions denoted
as “pre-suf” with prefix pre ∈ {CCA,CPA,CI,PI} and suffix suf ∈ {ML2,ML1,mL2,mL1, L2, L1}: a
large “M” corresponds to misuse resistance, a small “m” corresponds to misuse-resilience and no
“M/m” means that the security game is nonce-respecting (which only restricts leaking encryption
queries).

17



Zoo of confidentiality notions. For pre ∈ {CCA,CPA} we obtain the following 8 notions, by starting
from CCAmL2 and by removing one security layer at a time:

CCAmL2 → CCAmL1,CCAL2,CPAmL2 → CPAmL1,CPAL2,CCAL1→ CPAL1.

Definition 11. A nonce-based authenticated encryption with associated data AEAD = (Gen,Enc,Dec)
with leakages L = (Lenc, Ldec) is (qpre-suf , ql, t, ε)-pre-suf secure for a security parameter n if, for every
(qpre-suf , ql, t)-bounded adversary AL, we have pre ∈ {CCA,CPA} and:∣∣∣Pr

[
PrivKpre-suf,0

A,AEAD,L(1n)⇒ 1
]
− Pr

[
PrivKpre-suf,1

A,AEAD,L(1n)⇒ 1
]∣∣∣ ≤ ε,

where the adversary AL makes at most qpre-suf queries defined in PrivKpre-suf,b
A,AEAD,L below, and ql leakage

evaluation queries on arbitrarily chosen keys.

(i) PrivKCCAmL2,b
A,AEAD,L: qCCAmL2 = (qe, qd, qc) with the CCAmL2 game in Figure 1.

(ii) PrivKCCAmL1,b
A,AEAD,L: qCCAmL1 = (qe, qd) and the CCAmL1 security game “removes 2” from the CCAmL2

game, meaning that Ldec is removed from all the oracles. In other words items (2),(4) become
black-box and (5) disappears.

(iii) PrivKCCAL2,b
A,AEAD,L: qCCAL2 = (qe, qd, qc) and the CCAL2 security game “removes M” from the CCAmL2

game which becomes a nonce-respecting.
(iv) PrivKCPAmL2,b

A,AEAD,L: qCPAmL2 = (qe, qc) and no decryption oracle access is given in Figure 1: items (2)
and (4) are removed but not item (5), hence the 2.

(v) PrivKCPAmL1,b
A,AEAD,L: qCPAmL1 = (qe) and the CPAmL1 game only keeps items (1) and (3) from the

CCAmL2 game, (like the CPAmL2 game without Ldecch).

(vi) PrivKCPAL2,b
A,AEAD,L: qCPAL2 = (qe, qc), the CPAL2 game is a nonce-respecting version of the CPAmL2

and Ldecch is still available in item (5).

(vii) PrivKCCAL1,b
A,AEAD,L: qCCAL1 = (qe, qd) and the CCAL1 is a nonce-respecting version of CCAmL1 (with

black-box dec. and nonce-respecting leaking enc.).

(viii) PrivKCPAL1,b
A,AEAD,L: qCPAL1 = (qe) with only nonce-respecting leaking encryption.

Zoo of integrity notions. For pre ∈ {CI,PI} we obtain the following 8 notions, by starting from
CIML2 and by removing one security layer at a time:

CIML2 → CIML1,CIL2,PIML2 → PIML1,PIL2,CIL1→ PIL1.

Definition 12. A nonce-based authenticated encryption with associated data AEAD = (Gen,Enc,Dec)
with leakages L = (Lenc, Ldec) is (qe, dd, ql, t, ε)-pre-suf secure for a security parameter n if, for every
(qe, qd, ql, t)-bounded adversary AL, we have pre ∈ {CI,PI} and:

Pr
[
PrivKpre-suf

A,AEAD,L(1n)⇒ 1
]
≤ ε,

where the adversary AL makes at most qe encryption queries and qd decryption queries defined in
PrivKpre-suf

A,AEAD,L below, and ql leakage evaluation queries on arbitrarily chosen keys.

(i) PrivKCIML2
A,AEAD,L: the CIML2 game, see Table 2.

(ii) PrivKCIML1
A,AEAD,L: the CIML1 game removes Ldec (i.e., decryption is black-box).
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(iii) PrivKCIL2
A,AEAD,L: the CIL2 game is a nonce-respecting version of CIML2.

(iv) PrivKPIML2
A,AEAD,L: in the PIML2 game the winning condition changed (Table 2).

(v) PrivKPIML1
A,AEAD,L: the PIML1 game removes Ldec from PIML2.

(vi) PrivKPIL2
A,AEAD,L: the PIL2 game is a nonce respecting version of PIML2.

(vii) PrivKCIL1
A,AEAD,L: the CIL1 game is a nonce-respecting version of CIML2 free of Ldec.

(viii) PrivKPIL1
A,AEAD,L: the PIL1 game is a nonce-respecting version of PIML2 free of Ldec.

Connection with previous works Among the above sixteen notions, three of them are equiva-
lent to already defined ones: CPAL1 appeared in [PSV15] under the name of LMCPA, CIML1 was
introduced in [BKP+18] (under the name CIML) and CIML2 was introduced in [BPPS17].

4.2 Relations within the zoo (single challenge setting)

We picture all the 16 notions with their natural implications in Figure 3.

CPAmL2CCAmL2

CPAmL1CCAmL1

CPAL2CCAL2

CPAL1CCAL1

PIML2CIML2

PIML1CIML1

PIL2CIL2

PIL1CIL1

Fig. 3: Single-challenge security notions with various combinations of C/P (Ciphertext/Plaintext),
m/M (misuse), 1/2 (# of leaking oracles). Left: confidentiality notions, right: integrity notions.
Arrows indicate implications.

Theorem 3 (Long diagonals). There exist authenticated encryptions schemes showing that:

CCAmL1 6� CPAL2 CCAL2 6� CPAmL1 CPAmL2 6� CCAL1

CIML1 6� PIL2 CIL2 6� PIML1 PIML2 6� CIL1

As a corollary, all the arrows of Figure 3 are strict. The proof only requires to show 4 of the 6
assertions.

Proof. We are to prove 12 non-implications:

(i) CCAmL1 ; CPAL2,
(ii) CPAL2 ; CCAmL1,

(iii) CCAL2 ; CPAmL1,
(iv) CPAmL1 ; CCAL2,
(v) CPAmL2 ; CCAL1,
(vi) CCAL1 ; CPAmL2,

(vii) CIML1 ; PIL2,
(viii) PIL2 ; CIML1,
(ix) CIL2 ; PIML1,
(x) PIML1 ; CIL2,

(xi) PIML2 ; CIL1,
(xii) CIL1 ; PIML2.
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We first show that a security notion X1 without decryption leakages cannot imply the corre-
sponding notion X2 with decryption leakages. This would establish six separations (i), (iv), (vi),
(vii), (x), and (xii). For this, assume that AEAD is a X1 secure scheme with master-key K. We
define a new scheme AEAD∗, which is the same as AEAD except that its leakages for decryption
queries explicitly include the master-key K. In this way, AEAD∗ is clearly not X2 secure (as the
key is leaked). But it remains X1 secure, since this enhancement of decryption leakage cannot be
observed in the X1 security game.

We then show that a security notion X without supporting nonce-misuse resistance/resilience
cannot imply the corresponding notion XM with misuse resilience. This would establish four sep-
arations (ii), (iii), (viii), and (ix). For this, assume that AEAD = (Gen,Enc,Dec) with leakage
L = (Lenc, Ldec) is a X secure scheme. We define a new scheme AEAD∗ = (Gen′,Enc,Dec) with
leakage L = (L′enc, L

′
dec) as follows:

Gen′(1n): generates two keys k ← Gen(1n) and k′ ← Gen(1n), and selects a public pair (N †, A†).

L′enc((k, k
′), N,A,M): outputs leake = Lenc(k,N,A,M) as well as the additional value B but in

only two cases:

– if N = N † and A = A†, B = k ⊕ k′;
– if N = N † and A 6= A†, B = k′;

Clearly, when multiple encryption queries with the same nonce N † is made, then both k⊕k′ and k′

could be leaked, and the key of the underlying scheme AEAD could be recovered. Therefore, AEAD∗

is not misuse-resistant in any security setting. This is not the case in the nonce-respecting setting,
and it thus remains X secure.

It remains to prove CPAmL2 ; CCAL1 and PIML2 ; CIL1. For this we follow the standard idea
of showing CPA;CCA and INT-PTXT ; INT-CTXT. In detail, consider CPAmL2 ; CCAL1 first,
and assume that AEAD = (Gen,Enc,Dec) is CPAmL2 secure. We define a new scheme AEAD∗ =
(Gen,Enc,Dec′) as follows:

Dec′k(N,A,C): outputs Deck(N,A,C)‖k, i.e. the main key k is appended to the decrypted plain-
text.

This very artificial scheme “gives up” by appending its key to the decrypted message upon any
decryption query. Therefore, it cannot be CCA secure under any reasonable definition. Thus
CPAmL2 ; CCAL1.

For PIML2 ; CIL1, assume that AEAD = (Gen,Enc,Dec) is PIML2 secure. We define a new
scheme AEAD∗ = (Gen,Enc′,Dec′) as follows:

Enc′k(N,A,M): outputs Enck(N,A,M)‖0‖0, i.e., two bits are appended to the ciphertext.
Dec′k(N,A,C): parses C = C ′‖b‖b′, and outputs Deck(N,A,C

′) if and only if b = b′.

Then it’s clear that AEAD∗ is not CIL1 since from any valid ciphertext (N,A,C‖0‖0) obtained
before the adversary could use (N,A,C‖1‖1) as a forgery. Yet, it remains PIML2 secure.

Remark #1. By revisiting the proof for MR∧CCAmL2∧PIML2 ; CIML2 in subsection 3.3, it can be
seen that the exhibited CIML2 adversary only relies on the leaking encryption. This means that it
also breaks the CIML1 security. Therefore, we already know that MR∧CCAmL2∧PIML2 ; CIML1.

20



Remark #2. We discuss the relations between these notions and the Eavesdropper Security with
Decryption Leakages (EavDL) introduced in [BPPS17] (which is implied by AEML) in Appendix B.
We also recall that the treatment of the multi-challenge setting in given in Appendix A.

5 Model and assumptions

Before moving to the description and proof of first modes of operations satisfying the previous
security definitions, we now discuss the physical assumptions that will be required for this purpose
in more detail.

5.1 Assumptions for CIML2

Starting with the authentication and integrity guarantees, the only assumption required for proving
the CIML2 of the following designs is a strongly protected block cipher, that we will formalize as
a leak-free SPRP hiding the long-term key, and that will be used a small constant number of
times (i.e., 2) per message to encrypt, independently of the length of the message. In our current
model, we assume this is perfectly achieved but it is an interesting open problem to investigate how
gracefully the security degrades in case of moderate key leakages. For the rest, CIML2 is proven
in the very liberal unbounded leakage model introduced in [BKP+18]: all the intermediate values
computed by our AE designs (excepted the long term-key) can be leaked in full. Note that the need
of a PRP (and not a PRF) is a strict one. As discussed in [BPPS17], this allows avoiding attacks
where valid tags are produced thanks to the decryption leakages of invalid ciphertexts.2

Concretely, it is expected that the leak-free block is protected with state-of-the-art countermea-
sures such as masking, which reduces the amount of leakages at a level depending on the number
of shares selected by the implementer. For example, [JS17, GPSS18] described how security lev-
els of up to 128 bits can be achieved on ARM Cortex M4/M8 devices, at the cost of significant
performance overheads that our limited use of this strongly protected component aim to limit.

5.2 Assumptions for CCAmL2

Confidentiality guarantees are much harder to obtain with leakages. This was already put forward
by Micali and Reyzin in their seminal paper on physically observable cryptography [MR04], and is
also reflected by the combination of stronger assumptions that we will use to prove the CCAmL2 of
our AE designs.

Precisely, we will need a (slightly) stronger version of the leak-free block cipher required for
CIML2, together with simulatable leakages for the other block ciphers, and will reduce the security
of a full AE implementation to the eavesdropper security of a leaking single-block encryption scheme
(which is therefore part of our assumptions).

Strongly protected block cipher Our proofs of CCAmL2 require a strongly protected SPRP
that hides its master key, as in our proofs of CIML2. Yet, in this case, we will additionally need that
this SPRP hides its output. More precisely, one out of the two strongly protected block ciphers in
our following modes of operation will need to enforce this additional feature, which we can explain

2 We note that such attacks may even prevent to achieve PIL2.
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as follows.3 Given a nonce N , associated data A and message M , the proposals in the next section
start by processing a hash of (N,A) which is then sent to the strongly protected SPRP in order to
generate a pseudorandom ephemeral key. This ephemeral key must be strongly protected as well,
since it will be used to derive all the other keys of the scheme (by contrast, the leakage-restance
of these other keys used in the “re-keying” parts of the modes will only rely on the simulatability
assumption).

Note that, if the strongly protected block cipher is implemented as a masked design, this stronger
requirement is not expected to lead to improved concrete attacks. For example, one could consider
a setup where this cipher outputs several key shares, that are then re-combined as part of the
key scheduling of the following block cipher in our encryption schemes. From the DPA viewpoint,
it is unlikely that XORing these shares provides significantly more information than loading an
unprotected key.

Simulatable leakages Besides the previous idealized components that are, by far, the most ex-
pensive in terms of side-channel countermeasures, our leakage-resilient modes of operation also
require that the bulk of the computation does not leak too much (e.g., does not leak the ephemeral
keys in full in just two executions). For this part of the computation, weaker and cheaper counter-
measures are expected to be sufficient. Various types of limitations on leakages have been proposed
in the literature – see Fuller and Hamlin [FH15] for a review and a comparison (excluding ideal-
ized assumptions such as used in [YSPY10]). For instance, leakages may be required to be limited
in size at each round of computation, as used by Dziembowski and Pietrzak [DP08] and follow
up works [Pie09, DP10, FPS12], or required to be simulatable [SPY13] as we exploit in the next
section.

Admittedly, none of these assumptions is fully convincing. Assuming the leakages to be bounded
in size is known to be unrealistic (i.e., it is hopeless to bound the output of an oscilloscope),
extensions based on preserving the HILL pseudoentropy of the leaking secrets are hard to quan-
tify [SPY+10], while the first instance of simulator proposed in [SPY13] has been falsified in [LMO+14]
and it remains an open problem to propose new (implementations of) simulators that withstand
the correlation distinguisher put forward by Galea et al.

We selected the simulatability assumption since it provides an elegant way to deal with un-
realistic precomputation / future computation attacks (where the leakages in one round provide
exploitable information about a later round) [DP08, SPY+10], and it seems the only standard
model assumption for arguing security of the single-pass fresh rekeying schemes without public
randomness. In a departure, as far as our main goal of minimizing the adversary’s surface is con-
cerned, proofs in the bounded leakage model (or even proofs using idealized assumptions such as
in [YSPY10]) would provide good hints that a mode of operation is well suited to resist side-
channel attacks as well. In general, we leave the security analysis of our constructions under these
complementary leakage assumptions as an important scope for further research.

Formally, the leakage-resistance of FEMALE and AEDT relies on the assumption that leakages
satisfy (p, q)-recyclable-simulatability defined below, and based on the (p, q)-rsim-game in Table 3.
This assumption is an extension of the q-simulatability [SPY13]: (p, q)-recyclable-simulatability is
defined as q-simulatability where each of the q leakages can be obtained p times.

3 For this “output-hidden” ideal component, a PRF would be sufficient.
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Game (p, q)-rsim(A,E, L,S, b).
The challenger selects two random keys k, k∗ $←K. The output of the game is a

bit b′ computed by AL based on th challenger responses to a total of at most qe
adversarial queries of the following type, each repeated at most p times:

Query Response if b = 0 Response if b = 1

Enc(x) Ek(x), L(k, x) Ek(x),SL(k∗, x,Ek(x))

and one query of the following type, repeated at most p times:

Query Response if b = 0 Response if b = 1

Gen(kpre, x) SL(kpre, x, k) SL(kpre, x, k
∗)

Table 3. The (p, q)-rsim-game.

Definition 13 ((p, q)-recyclable-simulatability of leakages). Let E be a PRP with L as its leak-
age function. Then the leakages of E are said to have (qS , tS , ql, t, ε(p,q)-rsim) (p, q)-recyclable-simulatability,

if there exists a (qS , tS)-bounded simulator SL such that, for every (ql, t)-bounded adversary AL

(making at most ql queries to L and running in time t), we have:∣∣∣Pr[(p, q)-sim(A,E, L,S, 1)⇒ 1]− Pr[(p, q)-sim(A,E, L,S, 0)⇒ 1]
∣∣∣ ≤ ε(p,q)-rsim.

The necessity of the recyclable assumption stems from the CCAmL2 game which offers the
challenge decryption leakage oracle Ldecch that was not considered in previous works [BKP+18,
BPPS17] and (in cooperation with the challenge encryption leakages) may result in the same set of
leakages traces being generated more than once. Recyclable simulatability is a stronger assumption
than simulatability, since the typical q one considers in leakage-resilient constructions is 2 and the
p values allowed by decryption leakages are polynomial.

We note that if only CCAmL1 or CCAmL2∗ (i.e., the weakened version of CCAmL2 from Sec-
tion 3.1) is required, in which only challenge encryption leakages are generated (and Ldecch oracle
is not available), the original q-simulatability is sufficient (with q = 2). So overall, what our proofs
demonstrate is that security with only challenge encryption leakages for multiple messages and
blocks can be reduced to the security of a single block with (noisy, unrepeated) leakages under
the assumption that 2 (noisy) leakages can be simulated. By contrast, security with challenge de-
cryption leakages for multiple messages and blocks can only be reduced to the security of a single
block with (noise-free, repeated) leakages under the assumption that 2 (noise-free) leakages can be
simulated.

Concretely, the recommended designs for (recyclable) simulatable block cipher implementations
can be quite different from the strongly protected ones. As already mentioned, leak-free PRPs
will typically be implemented with very high-order masking to resist DPA (and thus can be very
expensive). By contrast, simulatability is expected to be achievable with weakly protected imple-
mentations and essentially requires resistance against SPA with noisy measurements. Similarly,
recyclable simulatability requires resistance against SPA with noise-free measurements and could
for example be obtained with very low latency hardware (e.g., an unrolled AES implementation in
one or two clock cycles [KDH+12], limiting the number of noise-free samples that the adversary
can collect).

Reduction to a single message block & gradual security degradations Eventually, our
proofs reduce the security of multiple (long) messages to the eavesdropper security of the single-
block encryption scheme against CPA, which is not expected to hold with negligible adversarial
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advantage. This is because the current state-of-the-art does not provide tools to prevent some
minimum leakages on plaintext/ciphertext manipulations that inevitably occur when fully leakage-
resilient encryption schemes are considered (i.e., when the leakages of the challenge query is given
to the adversary).

Yet, as mentioned in the Introduction, we achieve security-preserving domain extension of the
single-block encryption (an important direction in theory), and we add mechanisms to render
decryption leakage harmless (to resist CCA rather than mere CPA). There is (clearly) a significant
theoretical difference between such security-preserving modes of operation (as considered next) and
the non-preserving ones. In practice, the former enforce that DPA attacks are hard(er) to mount,
for example thanks to re-keying which is usually instrumental to enable the reductions. This is
what we informally denote as minimizing the adversary’s surface.

In this respect, it is important to mention that the stronger nature of these confidentiality
assumptions is actually the main motivation for the gradual security degradations that our aggre-
gate definition of AEML allows. That is, even if the confidentiality of a message is reduced due
to a powerful side-channel attack against the single-block encryption scheme or the (recyclable)
simulatability assumption, it will have no impact on other messages.

5.3 Leveled leakage setting

The previous descriptions allow us to clarify the meaning of leveled implementations. In general
and informally, leveled implementations mix different types of cipher designs, with different levels of
protections against side-channel attacks. In our specific case, leveled implementations mix two types
of block cipher designs: a minimally used and strongly protected one that has to resist side-channel
adversaries able to collect the leakages corresponding to polynomial number of inputs (i.e., a DPA),
and an intensely used and weakly protected one that only has to resist side-channel adversaries
able to collect the leakages corresponding to a small constant number of inputs (equivalent to an
SPA).

Based on the discussion in this section, a more technical comparison with the work of Barwell
et al. [BMOS17] is available in Appendix C.

6 First instantiations: FEMALE and AEDT

We finally present FEMALE and AEDT, two AE schemes making only two calls to a strongly
protected block cipher and enabling leveled implementations. FEMALE is AEML. AEDT only offers
both CIML2 and CCAmL2 but is more efficient.

6.1 FEMALE design and analysis

FEMALE is named after Feedback-based Encryption with Misuse, Authentication and LEakage as it
starts processing the message blocks using a (re-keying) ciphertext feedback mode (see the top of
Figure 4). The encryption processes the key only twice and the message blocks only once.

Description Given a hash function H : {0, 1}∗ 7→ B and a block cipher E on M = {0, 1} × B as
well as two distinct public constants pA and pB of M, the FEMALE encryption algorithm has 3
stages:
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Fig. 4: FEMALE encryption algorithm. “Leak free” block ciphers are in gray with “*”. E∗,b : B 7→ M is such that
E∗,b(B) := E∗(b,B). Triangles in block ciphers indicate key inputs. If M ∈ M∗ is such that M = (m1, . . . ,m`),
the output ciphertext is C = (V, c, T ) ∈ M`+2. (Top) Generates (U, V ) and d = (d1, . . . , d`), a pre-encryption of
M = (m1, . . . ,m`). (Middle) One-time encryption of d into c = (c1, . . . , c`) with one-time key U and pseudorandom
IV V . (Bottom) Authentication from tag T .

(i) Ephemeral key-IV generation: on input (N,A,M) with M ∈ M∗, derives a pseudorandom
ephemeral key U depending only on (N,A) as well as a pseudorandom IV V depending on the
whole triple. During this process all the blocks mi of M = (m1, . . . ,m`) are “pre-encrypted” as
di, resulting in d = (d1, . . . , d`), where di depends on (N,A,m1, . . . ,mi);

(ii) One-time encryption: on input (V, d) and the ephemeral key U , produces a one-time encryption
c of d with initialized vector V ;

(iii) Authentication: on input (R, V, c), where R = H(0‖N‖A), computes a pseudorandom tag T .

The ciphertext is given by C = (V, c, T ) and it does not include d. To decrypt the ciphertext
(N,A,C), FEMALE first checks (iii) before deriving the one-time key U from (N,A) as in step (i)
in order to decrypt c into d as the reverse process of step (ii). Eventually, (N,A, d) allows retrieving
M at step (i). The full specification of FEMALE is available in Figure 5.

Security Analysis We show that FEMALE satisfies AEML security. In the black-box setting, MR
follows from the fact that V is pseudorandom on (N,A,M) even for a variable-length M . This is
because W remains secret and already depends on all the (ordered) input. Computing and giving
V = Ew(W ) rather than W prevents continuing the computation of the first stage of the encryption
algorithm from multiple encryption queries (and captures the message length).

The CIML2 property mainly stems from the last stage of the encryption algorithm and how this
stage is verified from the tag in the decryption algorithm. The result follows the technique used
in [BPPS17] where tag verifications are made by inverting the SPRP (which is useless to produce
valid fresh tags).

Therefore, our main focus is on CCAmL2 security. To make it formal, we define the leakage
function L = (Lenc, Ldec) of FEMALE as:

– Lenc consists of the leakages that are generated during the encryption:
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Description of FEMALE:

Gen(1n) picks a random key k $←{0, 1}n = K.
Enck(N,A,M) parses M ∈ M∗ into as many blocks as needed as M = (m1, . . . ,m`) for some `. Computes

R← H(0‖N‖A). Then:
1. Ephemeral key-IV generation: (skip step (b) if ` = 0)

(a) Computes s0 ← E∗k(0‖R), w ← Es0(pB), s1 ← Es0(pA), and sets d0 ← pB ;
(b) Computes si+1 ← Esi(pA), yi ← Esi(di−1), di ← yi ⊕mi, for i = 1 to `;
(c) Computes U ← Es`+1(pA), W ← Es`+1(d`), V ← Ew(W ).

2. One-time encryption: first computes k1 ← EU (V ) and then, for i = 1 to ` − 1, computes ki+1 ← Eki(pA),
zi ← Eki(pB), and ci ← zi ⊕ di.

3. Authentication: sets c = c1‖ . . . ‖c`, computes h← H(1‖R‖V ‖c), and computes T ← E∗k(1‖h).
Eventually, returns the ciphertext C = (V, c, T ).

Deck(N,A,C) parses C = (V, c, T ), c = c1‖ . . . ‖c`, then proceeds in four phases:
1. Integrity Checking: computes R ← H(0‖N‖A), h ← H(1‖R‖V ‖c), and h∗ ← trunc((E∗k)−1(T )), where trunc

drops the first bit of its input. Then, if h∗ = h, it enters the next phase, and returns ⊥ otherwise.
2. Ephemeral key extraction: first computes s0 ← E∗k(0‖R) and si+1 ← Esi(pA), for i = 0 to `, and finally

U ← Es`+1(pA).
3. One-time decryption: first computes k1 ← EU (V ) and then, for i = 1 to ` − 1, computes ki+1 ← Eki(pA),

zi ← Eki(pB), and di ← zi ⊕ ci; Set d0 ← pB .
4. Message recovery: for i = 1 to `, computes yi ← Esi(di−1) and mi ← yi ⊕ di.

Eventually, returns the message M = (m1, . . . ,m`).

Fig. 5: The FEMALE AEAD scheme.

• the leakages LE(s, x) generated by all the internal calls to Es(x), and

• the leakages L⊕(a, b) generated by all the internal actions a⊕ b, and

• all the intermediate values involved in the computations of the hash functions (i.e., hash
functions are non-protected, and leak everything).

– Ldec consists of the above that are generated during the decryption.

Our security reduction is made against (i) the simulatability of the leaking blocks, (ii) the security
of the encryption of one single block with a fresh key.

Description of LRSE scheme:

RSGen(1n) picks kch $←{0, 1}n, M, C = {0, 1}n (p0, p1 ∈ {0, 1}n can be chosen by the adversary with p0 6= p1)
RSEnckch(m) returns (kup, c), where c = ych ⊕m, ych = Ekch(p1), and kup = Ekch(p0). (The term “up” is short for

“update”.)
RSDeckch(c) proceeds in the natural way.

The leakage LRSE = (Lrsenc, Lrsdec, kpre) resulting from the LRSE implementation is de-
fined as Lrsenc(kch,m) = (LE(kch, p0), LE(kch, p1), L⊕(ych,m),SL(kpre, p0, kch)), Lrsdec(kch, c) =
(LE(kch, p0), LE(kch, p1), L⊕(ych, c),SL(kpre, p0, kch)) for a fixed random kpre $← {0, 1}n. As usual we denote
LRSEnckch(m) = (RSEnckch(m), Lrsenc(kch,m)).

Fig. 6: Basic unit: the single-block encryption scheme LRSE.

Following Pereira et al.’s approach [PSV15], we consider a Leaking Real Single-block Encryption
scheme LRSE defined in Figure 6 as the basic unit of FEMALE. As motivated in the previous section,
it is introduced to determine the CCAmL2 security bound. Since for each generated key kch LRSE
is used to encrypt a single message m composed of a single block, we assume that given a security
parameter n, LRSE is (p, ql, t, εs-block) secure in the sense that for any (ql, t)-bounded eavesdropper
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adversary ALRSE choosing m0,m1 ∈M, we have:∣∣∣Pr[ALRSE(LRSEnc+kch(m0))⇒ 1]− Pr[ALRSE(LRSEnc+kch(m1))⇒ 1]
∣∣∣ ≤ εs-block, (1)

where LRSEnc+kch(mb) = (LRSEnckch(mb), [Lrsdec(kch, c
b)]p−1, kpre) for (cb, kup) = RSEnckch(mb)—

here the superscript p−1 indicates the adversary could measure the trace p−1 times (this typically
doesn’t give identical traces). The reason why the adversary also gets the auxiliary outputs kpre
and kup is for composability purpose (which appear in the proof).

With the above, our CCAmL2 result is informally given below. The precise bounds (for both
theorems below) can be found in Appendix D.

Theorem 4 (informal). Let H : {0, 1}∗ → B be a (0, t′, εcr)-collision resistant and (qd, t
′, εpr)-

range-oriented preimage resistant hash function. And let E :M×M→M be a (2qe+2qd+2, t′, εE)-
SPRP with two implementations: a strongly protected implementation E∗ is leak free, and a plain
implementation E have leakage function LE that is (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable. Then
the FEMALE implementation with leakage function L = (Lenc, Ldec) is (qe, qd, p − 1, ql, t, εCCAmL2)
CCAmL2-secure, with

εCCAmL2 ≤ O
(
t2

2n

)
+O

(
t(qe + qd)

2n

)
+O

(
σ · t+ σ2

2n

)
+O

(
σ(ε(p,2)-rsim + εs-block)

)
,

where σ denotes the total number of blocks in the challenge messages.

The proof is given in Appendix D. The term O
(
σ(ε(p,2)-rsim + εs-block)

)
corresponds to the security

degradation in the presence of side-channel leakage & the reduction to a single block encryption. The
bound is roughly of birthday type, and it shows FEMALE is secure up to t = 2n/2 · c−1 computation
and encrypting 2n/2 · c−1 message blocks, where c ≥ 1 depends on the side-channel strength of the
concrete (plain) implementation E.

The CIML2 and MR security of FEMALE are finally presented below.

Theorem 5 (informal). Let H : {0, 1}∗ → B be a (0, t′, εcr)-collision resistant and (qd+1, t′, εpr)-
range-oriented preimage resistant hash function. And let E :M×M→M be a (2qe+2qd+2, t′, εE)-
SPRP, with E∗ being its strongly protected leak free implementation. Then:

(1) FEMALE provides (qe, qd, t, εCIML2)-ciphertext integrity with coin misuse and unbounded leakage

on encryption and decryption as long as t ≤ t′ −O(qe + qd), where εCIML2 ≤ O
(
t2

2n + t(qe+qd)
2n

)
;

(2) FEMALE scheme is (qe, qd, t, εmr)-MR as long as t ≤ t′−O(qe+qd), where εMR ≤ O
(
t2

2n+σ·t
2n +σ2

2n

)
,

σ denotes the total number of blocks in the encryption queries.

The proofs are in Appendices D.3 and D.4. Both bounds are roughly birthday.

6.2 AEDT design and analysis

AEDT is a simplified version of FEMALE achieving only AEmL security, that is, dropping the black-
box MR requirement. The AEDT encryption algorithm has only two stages: given (N,A,M) with an
`-block message M , it computes the hash R = H(0‖N‖A), and then just uses E∗k(0‖R) as the initial
key to “start” a one-time encryption of M (in the nonce-respecting case this process will indeed
occur once). Then, AEDT applies the same authentication principle as FEMALE. The encryption
algorithm is depicted in Figure 7.
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Fig. 7: (Top) Initialization and encryption parts of AEDT, with notations to be used in its specification and security
analysis. The meaning of E∗,b is similar to Figure 4. (Bottom) Authentication part of AEDT, with notations consistent
with the top half. The final output is C = (c, T ).

AEDT uses 2 leak-free blocks, just as FEMALE, but is twice more efficient in terms of number
of weakly protected blocks to evaluate. Furthermore, its encryption can be performed “on-the-fly”
by pushing each ciphertext block ci directly into the hash function (if it proceeds block by block).

The CIML2 security of AEDT follows from the one of the EDT mode in [BPPS17]. Its CCAmL2
security is is analyzed in a similar way as FEMALE and is deferred to Appendix E, resulting in
similar bounds.
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A Extention to the multi-challenge setting

We next revisit the confidentiality against chosen-ciphertext and chosen-plaintext adversaries with
partial misuse and full leakages in the multi-challenge setting. We show that the single-challenge and
multi-challenge settings are equivalent for chosen-ciphertext notions, but not for chosen-plaintext
notions.

A.1 Multi-challenge chosen-ciphertext security

PrivKmCCAmL2,b
A,AEAD,L (1n) is the output of the following experiment:

Initialization: generates a secret key k ← Gen(1n) and sets E , Ech ← ∅.
Leaking encryption queries: AL gets adaptive access to LEnc(·, ·, ·),

LEnc(N,A,M) outputs ⊥ if (N, ∗, ∗) ∈ Ech, else computes C ← Enck(N,A,M) and leake ← Lenc(k,N,A,M),
updates E ← E ∪ {N} and finally returns (C, leake).

Leaking decryption queries: AL gets adaptive access to LDec(·, ·, ·),
LDec(N,A,C) outputs ⊥ if (N,A,C) ∈ Ech, else computes M ← Deck(N,A,C) and leakd ← Ldec(k,N,A,C) and
returns (M, leakd); (Where M = ⊥ may occur.)

Challenge queries: on possibly many occasions AL submits (Nch, Ach,M
0,M1),

If M0 and M1 have different (block) length or Nch ∈ E or (Nch, ∗, ∗) ∈ Ech, returns ⊥; Else computes Cb ←
Enck(Nch, Ach,M

b) and leakbe ← Lenc(k,Nch, Ach,M
b), updates Ech ← Ech ∪ {(Nch, Ach, Cb)} and finally returns

(Cb, leakbe);

Decryption challenge leakage queries: AL gets adaptive access to Ldecch(·),
Ldecch(i) takes the i-th challenge ciphertext (Nch, Ach, C

b) ∈ Ech and outputs a leakage trace leakbd ←
Ldec(k,Nch, Ach, C

b);

Finalization: AL outputs a guess bit b′ which is defined as the output of the game.

Fig. 8: The PrivKmCCAmL2,b
A,AEAD,L (1n) game.

A natural extension of the CCAmL2 experiment of Figure 1 to the multi-challenge setting is
given by the mCCAmL2 experiment in Figure 8 . It leads to the following definition.
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Definition 14 (mCCAmL2). (For a security parameter n) a nonce-based authenticated encryp-
tion with associated data AEAD = (Gen,Enc,Dec) with leakage function pair L = (Lenc, Ldec) is
(qe, qd, qc, qm, ql, t, ε)-mCCAmL2 secure if for every (qe, qd, qc, qm, ql, t)-bounded adversary AL, we
have: ∣∣∣Pr

[
PrivKmCCAmL2,0

A,AEAD,L (1n)⇒ 1
]
− Pr

[
PrivKmCCAmL2,1

A,AEAD,L (1n)⇒ 1
]∣∣∣ ≤ ε,

where the adversary AL makes at most qe leaking encryption queries, qd leaking decryption queries,
qc challenge decryption leakage queries, qm leaking challenge queries and ql leakage evaluation
queries on arbitrarily chosen keys.

Equivalent notions If the adversary A in the multi-challenge experiment above is restricted to
qm ≤ 1 challenge query then the mCCAmL2 security and the CCAmL2 security collide. Therefore,
mCCAmL2 security implies CCAmL2 security. The next theorem states that the both notions are
equivalent.

Theorem 6. The CCAmL2 security is equivalent to the mCCAmL2 security. Formally, for any
(qe, qd, qc, qm, ql, t)-bounded adversary AL against the mCCAmL2 security of AEAD for a security
parameter n, if AEAD is (qe + qm − 1, qd + qc, qc, ql, t, εCCAmL2)-CCAmL2 secure for a security pa-
rameter n, we have:∣∣∣Pr

[
PrivKmCCAmL2,0

A,AEAD,L (1n)⇒ 1
]
− Pr

[
PrivKmCCAmL2,1

A,AEAD,L (1n)⇒ 1
]∣∣∣ ≤ qm × εCCAmL2.

Proof. Given an adversary AL against the mCCAmL2 security of AEAD making qm leaking challenge
queries, we build qm adversaries A′i against the CCAmL2 security of AEAD, for i = 1 to qm. To
simulate the mCCAmL2 game in front of AL, each A′i has to emulate the responses to the different

types of queries in PrivKmCCAmL2,b
A,AEAD,L (1n). Therefore, A′i proceeds as follows with E ′i = ∅:

Leaking encryption queries: when AL queries LEnc(N,A,M),
If (N, ∗, ∗) ∈ E ′i, A′i returns ⊥, else A′i queries LEnc(N,A,M) and gets back either ⊥ or (C, leake)
which it sends to AL.

Leaking decryption queries: when AL queries LDec(N,A,C),
If (N,A,C) ∈ E ′i, A′i returns ⊥, else A′i queries LDec(N,A,C) and gets back either ⊥ or
(M, leakd), where M = ⊥ may occur, and sends it to AL.

Challenge queries: for j = 1 to qm, AL queries (N j
ch, A

j
ch,M

0
j ,M

1
j ),

If (N j
ch, ∗, ∗) ∈ E

′
i, A′i returns ⊥, else

– j < i, A′i queries its leaking encryption oracle LEnc(Nch, Ach,M
1) and gets either ⊥ or

(C1
j , leak

1
e,j) which it sends to AL. A′i updates E ′i = E ′i ∪ (N j

ch, A
j
ch, C

1
j );

– j = i, A′i queries its leaking challenge oracle on (N i
ch, A

i
ch,M

0
i ,M

1
i ) and gets either ⊥ or

(Cb, leakbe) which it sends to AL;
– j > i, A′i queries its leaking encryption oracle LEnc(Nch, Ach,M

0) and gets either ⊥ or

(C0
j , leak

0
e,j) which it sends to AL. A′i updates E ′i = E ′i ∪ (N j

ch, A
j
ch, C

0
j ).

Decryption challenge leakage queries: when AL queries Ldecch(j), for j = 1 to qm,
– j 6= i, if A′i sent ⊥ to the j-th challenge query made by AL it sends ⊥, else it queries its

leaking decryption oracle (N j
ch, A

j
ch, C

[j<i]
j ) and gets leak

[j<i]
d,j which it sends to AL;
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– j = i, A′i queries its oracle Ldecch and receives either ⊥ or leakbd which it sends to AL.

Finalization: A′i outputs whatever is the AL’s output bit b′.

The list E ′i = {(N j
ch, A

j
ch, C

[j<i]
j )}qmj=1,j 6=i maintained by A′i serves to identify forbidden query at-

tempts made by AL that would not be deemed as such in the CCAmL2 experiment played by A′i.
The conclusion of the proof easy follows from standard hybrid arguments, the assumption made on
AEAD and by evaluating the efficiency of the adversaries. ut

By removing the decryption challenge leakage oracle Ldecch from the game in Figure 8, we
define the security notion of mCCAmL2∗. It is easy to see that CCAmL2∗ security is equivalent to
mCCAmL2∗ security as well.

A.2 Multi-challenge chosen-plaintext case

A natural extension of the CPAmL2 experiment to the multi-challenge setting is obtained by re-
moving the leaking decryption oracle of the above mCCAmL2 experiment. The resulting experiment
is called the mCPAmL2 experiment, where the 2 highlights the access to the decryption challenge
leakage oracle.

Definition 15 (mCPAmL2). A nonce-based authenticated encryption scheme with associated data
AEAD = (Gen,Enc,Dec) with leakage function L = (Lenc, Ldec) is (qe, qc, qm, ql, t, ε)-mCPAmL2 secure
for a security parameter n if, for every (qe, qc, qm, ql, t)-bounded adversary AL, we have:∣∣∣Pr

[
PrivKmCPAmL2,0

A,AEAD,L (1n)⇒ 1
]
− Pr

[
PrivKmCPAmL2,1

A,AEAD,L (1n)⇒ 1
]∣∣∣ ≤ ε,

when the adversary AL makes at most qe leaking encryption queries, qc challenge decryption leakage
queries, qm leaking challenge queries and ql leakage evaluation queries on arbitrarily chosen keys.

Non equivalent notions In general, while mCPAmL2 security obviously implies CPAmL2 security,
the converse is false.

Theorem 7. Assuming there exists a CPAmL2 secure AE, then there exists CPAmL2 secure au-
thenticated encryption which is not mCPAmL2 secure.

Essentially, in the mCPAmL2 game an adversary can obtain decryption leakages for multiple tuples
(N,A,C) via the multiple challenge queries, whereas in the CPAmL2 game she can obtain such
leakages for only one (challenge) tuple (N,A,C). This difference establishes the separation. By
removing the Ldecch oracle as well, the aforementioned difference disappears, and we find back the
equivalence of CPAmL1 := CPAmL2∗, for the single-challenge notion, with mCPAmL1 := mCPAmL2∗,
for the multi challenge notion.

Proof. Let AEAD = (Gen,Enc,Dec) be a CPAmL2 secure authenticated encryption with leakage
function pair L = (Lenc, Ldec). Then, we build the following authenticated encryption AEAD′ =
(Gen′,Enc,Dec) with leakage function pairs L′ = (Lenc, L

′
dec), where N0, N1 below are the outputs

of a publicly samplable distribution parametrized by n:

Gen′(1n): runs k ← Gen(1n), k0 ← Gen(1n) and computes k1 = k⊕ k0. The secret key is defined as
(k, k0, k1).
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L′dec((k, k0, k1), N,A,C) outputs Ldec(k,N,A,C) and possibly the following additional decryption
leakage:

– If N = N0, gives k0;

– If N = N1, gives k1.

Since an adversary against the CPAmL2 security of AEAD′ will never receive leakage traces for
more than one ciphertext of the form (N,A,C), it will never get both k0 and k1. Since they are
random shares of the key k, the CPAmL2 security still holds from AEAD because we can simulated
the additional leakage by picking k′ ← Gen(1n) and set k0 = k′ or k1 = k′ on-the-fly when needed.
However, an mCPAmL2 adversary simply has to make two challenge queries involving N0 and N1

and then to call the decryption challenge leakage oracle Ldecch on the corresponding challenge
ciphertexts received as answers to get k0 and k1, from which the secret key k = k0 ⊕ k1 can be
efficiently computed. ut

B EavDL and AEML

The notion EavDL was introduced by Berti et al. [BKP+18]. It formalizes message confidentiality in
a context where an adversary can observe decryption leakages but not the corresponding messages.
This setting is motivated by applications such as secure bootloading and bitstream decryption. In
this section, we recall this notion, and make discussion on the links between this notion and the
other ones.

B.1 mEavDL and its extension mEavDL2

The original definition given by Berti et al. is of a single-challenge form. To save space, we concen-
trate on its multi-challenge variant mEavDL, which is based on the experiment in Fig. 9.

PrivK
mEavDL(2),b

AL,AEAD
(1n) is the output of the following experiment.

Initialization: generates a secret key k ← Gen(1n) and sets Ech ← ∅.
Challenge queries: on possibly many occasions AL submits (Nch, Ach,M

0,M1),
If M0 and M1 have different (block) length or Nch ∈ E , returns ⊥; Else updates Ech ← Ech ∪ {Nch} and finally
– PrivKmEavDL,b

AL,AEAD
: computes and returns Cb ← Enck(Nch, Ach,M

b);

– PrivKmEavDL2,b

AL,AEAD
: computes and returns (Cb, leakbe)← LEnck(Nch, Ach,M

b).

Decryption leakage queries: AL gets adaptive access to LDec(·, ·, ·),
LDec(N,A,C) outputs leakd ← Ldec(k,N,A,C).

Finalization: AL outputs a guess bit b′. If b = b′, return 1, else return 0.

Fig. 9: The PrivKmEavDL,b
AL,AEAD

and PrivKmEavDL2,b
AL,AEAD

games.

Note that the challenge nonce has to be respecting for both mEavDL and mEavDL2. If we restrict
the number of challenges to 1 in mEavDL then we recover the original EavDL notion of Berti et
al. [BKP+18]
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Definition 16 (mEavDL: Eavesdropper Security with Decryption Leakage). An authenti-
cated encryption AEAD = (Gen,Enc,Dec) with decryption leakage function Ldec provides (qm, qd, t, ε)-
indistinguishability of ciphertexts against eavesdropping with differential leakage attacks for a secu-
rity parameter n, or is (qm, qd, t, ε)-mEavDL secure for short, if for any adversary A that makes at
most qm challenge queries, qd queries to Ldec, and runs in time t,

Pr
[
PrivKmEavDL,b

AL,AEAD
(1n)⇒ 1

]
≤ 1

2
+ ε

for the PrivKmEavDL,b
AL,AEAD

game defined in Fig. 9.

Stronger variant: mEavDL2 We define a strengthened variant mEavDL2, which is mEavDL en-
hanced with challenge encryption leakages so that the “2” means that both the leaking oracles in
encryption and decryption are available.

Definition 17 (mEavDL2: Eavesdropper Security with Encryption & Decryption Leak-
age). An authenticated encryption AEAD = (Gen,Enc,Dec) with leakage function pair L = (Lenc, Ldec)
provides (qm, qd, t, ε)-indistinguishability of ciphertexts against eavesdropping with differential leak-
age attacks in encryption and decryption for a security parameter n, or is (qm, qd, t, ε)-mEavDL2
secure for short, if for any adversary A that makes at most qm leaking challenge queries, qd queries
to Ldec, and runs in time t,

Pr
[
PrivKmEavDL,b

AL,AEAD
(1n)⇒ 1

]
≤ 1

2
+ ε

for the PrivKmEavDL2,b
AL,AEAD

game defined in Fig. 9.

mCCAmL2 ⇒ mEavDL2 Our definition of mCCAmL2 almost explicitly incorporates the elements
of mEavDL2, and thus mCCAmL2 ⇒ mEavDL2. This means CCAmL2 captures all pre-existing
confidentiality notions.

B.2 mCCAmL2∗ ; EavDL

In this subsection, we show the necessity of including challenge decryption leakage, by showing
that the weakened version mCCAmL2∗ does not imply EavDL (neither EavDL2, of course). The idea
is that if the decryption leakages always leak the decrypted plaintext, then it remains possible to
retain mCCAmL2∗ security; yet, this feature immediately ruins out the possibility of EavDL, since
in the EavDL security game, the challenge plaintext M b has to be hidden from A.

More clearly, let AEAD = (Gen,Enc,Dec) with leakage function L = (Lenc, Ldec) be mCCAmL2∗

secure with respect to L. Then we build AEAD′ = (Gen,Enc,Dec) with leakage L′ = (Lenc, L
′
dec) such

that:

L′dec(k,N,A,C): outputs leakd = Ldec(k,N,A,C) if Deck(N,A,C) = ⊥ and outputs (leakd,M)
otherwise, where leakd = Ldec(k,N,A,C), M = Deck(N,A,C).

It’s not hard to see AEAD∗ remains mCCAmL2∗ secure, since the additional decryption leakage
(the correct message) essentially contains no new information. However, during the EavDL security
game, the challenge plaintext M b is directly given by this leakage, allowing to precisely determine
the value of b.
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B.3 MR ∧ mCPAmL2 ∧ CIML2 ∧ mEavDL2 ; CCAmL2∗

In subsection 3.3 we have proved MR∧CPAmL2∧CIML2 ; CCAmL2∗. In this subsection we prove
an even stronger claim of MR ∧mCPAmL2 ∧ CIML2 ∧mEavDL2 ; CCAmL2∗. The idea stems from
the following observations:

– in the MR game, no leakage traces are given;
– in the mCPAmL2 game, decryption leakage is only available for challenge ciphertexts, and thus

“nonce respecting”;
– in the CIML2 game, additional information unrelated to the key k but only to messages M are

irrelevant;
– in the mEavDL2 game, assuming CIML2 holds, the decryption leakage oracle will essentially be

“nonce respecting”;
– on the other hand, in the CCAmL2∗ game, many valid decryption leakages with respect to a

single are available through trivial leaking decryption query, i.e. from ciphertext returned by
the leaking encryption oracle.

Let AEAD = (Gen,Enc,Dec) be MR, mCPAmL2 ∧ mEavDL2 with respect to leakage function L =
(Lenc, Ldec) and CIML2 with respect to L∗. Then we build AEAD′ = (Gen′,Enc,Dec) with leakage
function L′ = (L′enc, L

′
dec) as follows, where N †, N◦,M † below are the outputs of a publicly samplable

distribution parametrized by n:

Gen′(1n): generates k ← Gen(1n) and samples two random bits t0, t1. It returns (k, sh) where
sh = (t0, t1).

L′enc((k, sh), N,A,M): outputs leake = Lenc(k,N,A,M) as well as the additional value B but only
in two cases:
– Case 1: N = N † and M = M †, then B = t0 ⊕ t1 ⊕ 1;
– Case 2: N = N † and M 6= M †, then B = t0 ⊕ t1.

L′dec((k, sh), N,A,C): outputs leakd = Ldec(k,N,A,C) as well as the additional valueB if Deck(N,A,C) =
M 6= ⊥ and:
– Case 1: N = N◦ and M = M †, then B = t0;
– Case 2: N = N◦ and M 6= M †, then B = t1.

We establish the desired claims in turn:

MR. Both scheme are the same from a black-box perspective.
CIML2. Given a CIML2 adversary A′ against AEAD′, it’s not hard to see a CIML2 adversary

A could use the oracles of AEAD and internally sampled bits t0 and t1 to perfectly simulate the
oracles of AEAD′ in front of A′. By this, AEAD′ is CIML2 as long as AEAD is CIML2.

mCPAmL2. we show that if there is a mCPAmL2 adversary A′ against AEAD′, then there is an ad-
versary A which uses A′ to break the mCPAmL2 security of AEAD. In detail, once PrivKCCAmL2,b

A,AEAD,L(1n)

is setup, A(1n) publicly samples N †, N◦,M † and sends to A′ whatever is specified by AEAD′. A also

picks two random bits t0, t1. Then it runs A′ and simulates PrivKmCPAmL2,b
A′,AEAD′,L′ using its own interaction

PrivKmCPAmL2,b
A,AEAD,L . For each query from A′, the actions of A are as follows:

Leaking (non-challenge) encryption queries: On input (N,A,M),
(i) A queries its own leaking encryption oracle on (N,A,M) and gets back some (C, leake) or

possibly ⊥;
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(ii) If not ⊥, A checks whether it should append an additional leakage B to (C, leake) in the
case (N,A,M) falls into one of the two cases described above.

A respectively returns (C, leake) or ⊥ or even (C, leake, B) to A′ according to the above situa-
tions.

Leaking challenge query: on input (Nch, Ach,M
0,M1), A sends it to its leaking challenge oracle

and gets the tuple (Cb, leakbe) or possibly ⊥. In the latter case it returns ⊥ as well, otherwise

(i) if Nch = N †, regardless of what is encrypted by the challenge oracle, A uniformly samples
a new random bit s∗ and returns (Cb, leakbe, s

∗);

(ii) else, A just returns (Cb, leakbe).

Challenge decryption leakage: on input i, A sends i to its challenge decryption leakage oracle and
gets leakbd. Then,

(i) if the i-th challenge ciphertext contains Nch = N◦, A returns (leakbd, t0);

(ii) else, A just returns leakbd.

Eventually, A outputs the bit returned by A′.

Now we explain why A properly emulates the mCPAmL2 game in front of A′. As long as N † is
never involved in a challenge query, the additional decryption leakage associated to the nonce N◦

is independent of the involved message. Therefore, the simulation is of no deviation.

We next concentrate on the case N † is first involved in a challenge query. Since N † can only
appear once there it means that A will never sees either t0 ⊕ t1 ⊕ 1 or t0 ⊕ t1. By the definition
of mCPAmL2 we know there is at most one challenge query under the nonce N◦. This means that
even A′ would have been received either t0 or t1 in the real game both equally remains uniform. So
when A always gives t0 it makes no difference in the view of A′. Therefore, the distributions of the
transcript of queries and answers obtained in the game PrivKmCPAmL2,b

A,AEAD′,L (1n) and the game simulated
by A are the same, and thus

Pr
[
PrivKmCPAmL2,b

A,AEAD,L (1n)⇒ 1
]

= Pr
[
PrivKmCPAmL2,b

A′,AEAD′,L′(1
n)⇒ 1

]
.

mEavDL2. The proof just follows the same line as the proof for mCPAmL2, except that the
adversary A aborts if the internally ran A′ manages to call the decryption leakage oracle on a valid
ciphertext which is not a challenge ciphertext. Since the probability to abort is bounded by the
probability to create a forgery, the abort probability is at most Pr[PrivKCIML2

A,AEAD,L(1n) ⇒ 1], which
is small since AEAD is CIML2 secure. Now, assuming that abort does not occur we are in the same
situation than in the mCPAL1 argument above.

¬CCAmL2∗. Let A′ be an adversary which given N †, N◦,M † sequentially makes the following
queries for M 6= M †:

(i) (N◦, A,M †) to the leaking encryption oracle and get C†;

(ii) (N◦, A,M) to the leaking encryption oracle and get C;

(iii) (N◦, A,C†) to the leaking decryption oracle and get t0;

(iv) (N◦, A,C) to the leaking decryption oracle and get t1.

A′ finally submits (N †, A,M †,M) and obtains ciphertext Cb and (the additional) leakage bit B.
Now whether B = t0 ⊕ t1 or not allows distinguishing.

This concludes our proof for MR ∧mCPAmL2 ∧ CIML2 ∧mEavDL2 ; CCAmL2∗. ut
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C Relation with BMOS

Despite it is hard to prove that our strongly protected SPRP and our leakage assumptions are
necessary (which is another important and challenging open problem), we observe that the BMOS
work requires very similar ones.

Strongly protected block. The BMOS [BMOS17] security proofs are based on very similar assump-
tions, and require an ideal component that essentially solves the same challenges as ours which can
be viewed as a counterpart to our leak-free SPRP, as we explain next.

Given (N,A,M), the BMOS construction combines an IV-based encryption scheme with a
pseudorandom Hash-then-MAC. To verify a tag T , the proposed implementation described in the
appendices of the long version of [BMOS17] recomputes fresh shares, say T1 and T2, of the right
tag T1 · T2 by applying a PRF on its hashed value, leading to the following observations.

First, the key of this PRF has to be “well protected”. The BMOS authors propose an instan-
tiation based on pairings which is proven in the generic group model for this purpose. Critically,
this instantiation shares the long-term key in two pieces, which are rerandomized after every call.
This creates two security demands: (i) the implementation should be protected well enough so that
the two fresh shares do not gradually leak the single long-term secret key of the PRF, and (ii)
randomness is needed in order to refresh these shares.

As a result, both BMOS’ and our following constructions require the same type of ideal compo-
nent. Yet, it is worth observing that our model and constructions allow a gradual security degra-
dation. That is, the stronger requirement to perfectly hide one of our leak-free PRF’s output only
impacts the CCAmL2 security of our schemes. By contrast, it is already required for integrity guar-
antees in BMOS.

Bounded leakage. For the rest, the BMOS proofs require that each execution of their well protected
PRF only leaks a bounded amount of bits per call (i.e., bounded leakages). As already mentioned,
this requirement is conceptually similar to our requirement of simulatable leakages (i.e., it aims at
avoiding that ephemeral secrets are leaked in full) and analyzing our following constructions under
this complementary leakage assumption is an interesting open problem.4

D FEMALE Security Proofs

We first analyze the CCA security of FEMALE in sections D.1 and D.2, and then prove CIML2 and
MR in sections D.3 and D.4 resp.

D.1 Preparations for CCAmL2 Proof

We are also interested in the mCCAmL2 security, namely our strongest confidentiality notion in
the multi-challenge setting introduced in Appendix A.1. An approach is to first prove the CCAmL2
bound claimed in Theorem 4 and then use the generic result of Theorem 6 to derive the mCCAmL2
bound. However, we prefer an “inverse” direction: we directly prove a mCCAmL2 bound, and then
obtain the CCAmL2 bound by setting qm = 1. This approach could produce a slightly better bound
without the factor qm in some terms. Formally, sections D.1 and D.2 devote to prove the following
theorem.
4 In the case of BMOS, the systematic exploitation of shared computations (based on pairings) also prevents the

issue of precomputation / future computation attacks that is typical of symmetric constructions (which is an
additional motivation for using the simulatability assumption in our analyzes).
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Theorem 8. Let H : {0, 1}∗ → B be a (0, t′, εcr)-collision resistant and (qd, t
′, εpr)-range-oriented

preimage resistant hash function. And let E : M×M → M be a (2qe + 2qd + 2qm, t
′, εE)-SPRP

with two implementations: a strongly protected implementation E∗ is leak free, and a plain im-
plementation E have leakage function LE that is (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable. Then
the FEMALE implementation with leakage function L = (Lenc, Ldec) defined before is (qe, qd, p −
1, qm, ql, t, εmCCAmL2) mCCAmL2-secure, where

εmCCAmL2 ≤ 2εE + εcr + εpr +
∑qm

i=1 εFEMALE-eav(`i),

`i is the number of blocks in the i-th challenge message, and εFEMALE-eav(`i) is the upper bound
on the eavesdropper advantage of (ql, t

′)-bounded adversaries against FEMALE on messages with `i
blocks. Concretely, we have:

εFEMALE-eav(`i) ≤ (6`i + 8)(εE + ε(p,2)-rsim) + `i · εs-block +
6`i + 4

2n
.

Here t′ = t + (qe + qd + qm)(t$ + t1−pass), t1−pass is the maximum running time of FEMALE upon
a single (encryption or decryption) query, and t$ is the time needed for randomly sampling a value
from M.

As mentioned, setting qm = 1 yields the exact CCAmL2 bound which was interpreted as

O

(
t2

2n

)
+O

(
t(qe + qd)

2n

)
+O

(
σ · t+ σ2

2n

)
+O

(
σ(ε(p,2)-rsim + εs-block)

)
in Theorem 4. To further clarify, the first two terms correspond to εcr and εpr. The term σ·t+σ2

2n is
different from the classical non-rekeying modes (which typically only contains the term t

2n ), and

it stems from O(σ · εE) in
∑qm

i=1 εFEMALE-eav(`i): since t′ = t + O(σ), we have εE = t+O(σ)
2n , and

thus O(σ · εE) = O(σ·t+σ
2

2n ). As mentioned, the term O
(
σ(ε(p,2)-rsim + εs-block)

)
corresponds to the

security degradation due to side-channel & the reduction to a single block encryption.
It will be apparent in the proof that FEMALE actually satisfies an even stronger notion of

mCCAmL2. Since the encryption starts with R← H(0‖N‖A), only the pairs (N,A)’s must be fresh
in the challenge phase to derive the security instead of each of these nonces N ’s.

The analysis proceeds in five steps, each corresponding to a subsubsection. As the first step,
we prove a useful “indistinguishablity-like” lemma for our leaking setting. Then is a preparation:
we define a model named Leaking, Idealized, Single-block Encryption scheme LISE with encryption
and decryption leakages. This is actually the idealized version of the LRSE scheme defined in Fig.
6, and could be proved indistinguishable from LRSE (Lemma 2). It will be used in the 4th step (see
below), constituting a bridge in the reduction.

Third, (informally speaking) we prove indistinguishability result for the two systems (FEMALE(M), LFEMALE(M))
and ($,SFEMALE(M)), for a single messageM (Lemma 3). In other words, (FEMALE(M), LFEMALE(M)),
the process of using FEMALE to encrypt a single message, is indistinguishable from an idealized
process that produces random outputs $ and simulated leakages SFEMALE(M). This shows the design
of FEMALE is good in the sense that it achieves nice confusion and diffusion (so that it produces
somewhat pseudorandom outputs).

Yet, the conclusion of step 3 says nothing about the message confidentiality—or eavesdrop-
per security—of FEMALE(M), since the leakages LFEMALE(M) or its indistinguishable counter-
part SFEMALE(M) may leak M completely. To remedy this, we focus on the idealized process

38



($,SFEMALE(M)), and show how to relate its eavesdropper security to the eavesdropper secu-
rity of applying LISE—the single-block encryption scheme—to independently encrypt |M | blocks.
Since we’ve established the indistinguishability of LISE and LRSE, the eavesdropper security of
(FEMALE(M), LFEMALE(M)) can be established via the following chain:

eavesdropper security of LRSE (our assumption, see (1))

⇒eavesdropper security of LISE (using indistinguishability of LRSE and LISE)

⇒eavesdropper security of the idealized process ($,SFEMALE(M))

⇒eavesdropper security of (FEMALE(M), LFEMALE(M)).

Eventually, based on the eavesdropper security of (FEMALE(M), LFEMALE(M)), we establish the
mCCAmL2 security (this step is in subsection D.1). Roughly, the proof relies on the following
features of FEMALE:

(i) Every invalid decryption query only leaks a pseudorandom value, i.e. (E∗k)
−1(T ) for some T . So

the encryption can be seen as independent from these values;

(ii) For each challenge encryption query, since the nonce is used only once during the experiment, the
process starts from a ephemeral key s0 that is different from any other ephemeral key of the other
encryption queries. By this, encryption of this challenge is quite independent from the other
encryption queries, and we can view the entire experiment as an eavesdropper adversary against
(FEMALE(M), LFEMALE(M)) with a lot of offline computations (i.e. all the other encryptions are
turned into offline computations).

Indistinguishability of Real-Leaking and Ideal-Simulating Worlds Standaert et al. proved
that based on the pseudorandom security of E and the simulatability of the leakage, (roughly) the
“real-leaking world” (Ek(p), L(k, p)) is indistinguishable from the “ideal-simulating” world ($,SL(k, p, $)) [SPY13].
A similar intermediate result could be obtained in our R-simulatability framework. For convenience
of applying later in our analysis, we focus on the case q = 2. Moreover, we write [leak1, . . . , leak`]

p

for the vector of `p leakages, which consist of ` (probably distinct) leakages, and each is obtained p
times. We stress that trying to obtain the same leakage for p times would not result in completely
identical traces: each time L(x) is queried for some input x, the trace would be mixed with random
noise, and would probably deviate from the traces generated by previous queries to L(x).

Lemma 1. Let E :M×M→M be a (2, t, εE)-PRP, whose implementation has a leakage function
LE having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-
bounded leakage simulator. Then, for every kpre, p0, p1, z ∈ M and every (ql − q∗, t − t∗)-bounded

distinguisher DL, the following holds:

∣∣Pr[kch $←M : DL(Ekch (p0),Ekch (p1), [LE(kch, p0), LE(kch, p1),S
L(kpre, z, kch)]

p)⇒ 1]

− Pr[kch, cA, cB
$←M, cA 6= cB iff. p0 6= p1 :

DL(cA, cB , [SL(kch, p0, cA),SL(kch, p0, cB),SL(kpre, z, kch)]p)⇒ 1]
∣∣ ≤ εE + ε(p,2)-rsim.

Here q∗ = 3p · qS , while t∗ = Max{tr, tsim}, in which tr is equal to 3p · tS augmented with the
time needed to make 2 oracle queries to the PRP challenger and select a uniformly random key in
M, and tsim is the time needed to relay the content of 2p Enc and p Gen queries from and to a
(p, 2)-rsim challenger.
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Proof. The proof consists of two simple transitions: we first replace the real leakages by with simu-
lated ones, relying on the recyclable-simulatability assumption, then replace Ekch(p0) and Ekch(p1)
by two distinct random values to obtain the target inputs, relying on the assumption that E is a
PRP.

It’s not hard to see the claim remains valid if E is a PRF rather than PRP. To save space we
concentrate on the latter case (that will be used in our proof).

Single-Block One-Time Encryption Scheme This is actually an extension of the analogue
introduced in [PSV15]. In detail, the use of E for computing kup and ych is replaced by sampling
random values. And we adapt the corresponding leakage traces using SL. The resulted algorithm
is defined in Fig. 10.

Description of LISE: (tool for the proof)

ISGen(1n) picks kch $←M, M, C =M (p0, p1 ∈M can be chosen)
ISEnckch(m) returns (kup, c), where c = ych ⊕m, and kup, ych $←M, kup 6= ych as long as p1 6= p0 (and kup = ych

otherwise).
ISDeckch(c) proceeds in the natural way.

The leakage LISE = (Lisenc, Lisdec, kpre) resulting from the LISE implementation is defined
as Lisenc(kch,m) = (SL(kch, p1, kup),SL(kch, p0, ych), L⊕(ych,m),SL(kpre, p1, kch)), Lisdec(kch, c) =
(SL(kch, p1, kup),SL(kch, p0, ych), L⊕(ych, c),SL(kpre, p1, kch)) for a fixed random kpre $←M.

Fig. 10: The ideal single-block encryption scheme ISEnc.

We also define LISEnc+kch(m) = (LISEnckch(m), [Lisdec(kch, c)]
p−1, kpre) for (c, kup) = ISEnckch(m).

Similarly to Pereira et al. [PSV15], our ISEnc scheme is indistinguishable from its real version RSEnc.

Lemma 2. Let E :M×M→M be a (2, t, εE)-PRP, whose implementation has a leakage function
LE having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-
bounded leakage simulator. Then, for every p0, p1 ∈M, p0 6= p1, and every (ql− q∗, t− t∗)-bounded
distinguisher DL, the following holds:

|Pr[DLRSE(m, LRSEnc+kch(m))⇒ 1]− Pr[DLISE(m, LISEnc+kch(m))⇒ 1]| ≤ εE + ε(p,2)-rsim.

Here q∗ = 3p · qS + p, while t∗ = Max{tr, tsim}, in which tr is equal to 3p · tS + 2t⊕ augmented with
the time needed to make 2 oracle queries to the PRP challenger and select a uniformly random key
in M, t⊕ is the time needed to evaluate the ⊕ action on an n-bit input, and tsim is the time needed
to relay the content of four Enc and two Gen queries from and to a (p, 2)-rsim challenger.

Proof. The proof just follows the same line as Lemma 1. Note that to generate the leakage L⊕(ych, c)
p− 1 times, one does not need to evaluate ⊕ for that many times; instead, one just needs to make
p− 1 queries L.

It’s not hard to see Lemma 2 actually holds even if p0 = p1. However, as we remarked before, when
the input p1 equals p0, neither RSEnc not ISEnc ensures eavesdropper security. To highlight this
issue and avoid confusion, we put this restriction in Lemma 2.

On the other hand, for the scheme ISEnc we do not enforce the constraint p1 6= p0, since the
case of p1 = p0 would be used in some of our arguments below (of course, these arguments do not
rely on the eavesdropper security of ISEnc in the case of p1 = p0).
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LRFSM and LIFSM: FEMALE on a Single Message, and its Ideal Version We first formally
describe two algorithms (L)RFSM and (L)IFSM, which denote the processes of using (Leaking)
Real/Idealized FEMALE to encrypt a Single Message respectively (without generating the tag).
The algorithm LRFSM is described in Fig. 11, while LIFSM is in Fig. 12.

Description of RFSM:

– Gen picks s0 $←M
– RFSMk0(m1, . . . ,m`) proceeds in four steps:

(i) Initializes an empty list leak for the leakage;
(ii) Computes s1 ← Es0(pA) and w ← Es0(pB), and adds [LE(s0, pA)]p and LE(s0, pB) to the list leak. Here the

two constants pA and pB are those used in FEMALE.
(iii) For i = 1, . . . , `, computes si+1 ← Esi(pA), yi ← Esi(di−1), and di ← yi⊕mi, and adds LE(si, pA), LE(si, di−1),

L⊕(yi,mi), and [LE(si, pA), LE(si, di−1), L⊕(yi, di)]
p−1 to the list leak;

(iv) Computes U ← Es`+1(pA), W ← Es`+1(d`), V ← Ew(W ), and k1 ← EU (V ); and adds LE(s`+1, pA),
LE(s`+1, d`), LE(w,W ), LE(U, V ), and [LE(s`+1, pA), LE(U, V )]p−1 to the list leak;

(v) for i = 1, . . . , `, computes ki+1 ← Eki(pA), zi ← Eki(pB), and ci ← zi ⊕ di, and adds LE(ki, pA), LE(ki, pB),
L⊕(zi, di), and [LE(ki, pA), LE(ki, pB), L⊕(zi, ci)]

p−1 to the list leak.
RFSMk0(m1, . . . ,m`) eventually returns (V, c), where c = (c1, . . . , c`).

We define LRFSMk0(m) = (RFSMk0(m), leak), where leak is the list of traces standing at the end of the computation.

Fig. 11: The RFSM scheme and the involved leakages.

Description of IFSM:

– IFSMk0(m1, . . . ,m`) proceeds in four steps:
(i) Initializes an empty list leak for the leakage;

(ii) Samples s1 $←M, and adds [SL(s0, pA, s1)]p to the list leak;
(iii) For i = 1, . . . , `, samples si+1

$← M and yi $← M such that si+1 6= yi as long as di−1 6= pA
(si+1 = yi otherwise), sets di ← yi ⊕ mi, and adds SL(si, pA, si+1), SL(si, di−1, yi), L⊕(yi,mi), and
[SL(si, pA, si+1),SL(si, di−1, yi), L⊕(yi, di)]

p−1 to the list leak;
(iv) Samples U $←M, W $←M, U 6= W iff. d` 6= pA; w $←M, w 6= s1; V $←M, and k1 $←M; and adds SL(s`+1, pA, U),

SL(s`+1, d`,W ), SL(s0, pB , w), SL(w,W, V ), SL(U, V, k1), [SL(s`+1, pA, U),SL(U, V, k1)]p−1 to the list leak;
(v) For i = 1, . . . , `, samples ki+1

$←M, zi $←M, and ci ← zi ⊕ di, and adds SL(ki, pA, ki+1), SL(ki, pB , zi),
L⊕(zi, di), and [SL(ki, pA, ki+1),SL(ki, pB , zi), L⊕(zi, ci)]

p−1 to the list leak.
IFSMk0(m1, . . . ,m`) eventually returns (V, c), where c = (c1, . . . , c`).

We define LIFSMk0(m) = (IFSMk0(m), leak) for the list leak standing at the end of the computation.

Fig. 12: The IFSM scheme and the involved leakages.

We then prove that LRFSM and LIFSM are indistinguishable, by relying on the (p, 2)-recyclable-simulatability
assumption and the cryptographic strength of E.

Lemma 3. Let E :M×M→M be a (2, t, εE)-PRP, whose implementation has a leakage function
LE having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-
bounded leakage simulator. Then, for every `-block message m, every pA 6= pB, and every (ql − p ·
qr − q∗, t− p · tr − t∗)-bounded distinguisher DL (that makes at most ql− p · qr − q∗ queries to L and
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runs in time t− p · tr − t∗), the following holds:∣∣Pr[DL(m, LRFSMs0(m))⇒ 1]− Pr[DL(m, LIFSMs0(m))⇒ 1]
∣∣

≤2(`+ 2)(εE + ε(p,2)-rsim) +
2`+ 2

2n
.

Here qr = (4`+ 5)(qS + 1) + 2`, q∗ and t∗ are as defined in Lemma 1, and tr = (4`+ 5)(tE + t$ +
tS) + 2` · t⊕, where tE is the time needed for evaluating E once, t$ is the time needed for randomly
sampling a value from M, and t⊕ is the time needed for evaluating ⊕ once.

Proof. We define G0,1 as the security game in which DL receives LRFSMs0(m) as the input, and G∗`
as the game in which DL receives LIFSMs0(m) as the input.

We show that G0,1 could be transited to G∗` via a sequence of games

G0,G1, . . . ,G`,G`+1,G`+2,G`+3 = G∗0,G
∗
1, . . . ,G

∗
`−1.

The first half sequence G0, . . . ,G`,G`+1,G`+2, and G`+3 “idealizes” the Ephemeral key-IV gen-
eration phase of the encryption. In detail, we first consider G0,1, and replace the two intermediate
values Es0(pA) and Es0(pB) by two distinct random values s1 and w. We also replace the leakages
[LE(s0, pA)]p and LE(s0, pB) with [SL(s0, pA, s1)]

p and SL(s0, pB, w). This yields the game G0.
We next derive an upper bound for |Pr[(DL)G0 ⇒ 1] − Pr[(DL)G0,1 ⇒ 1]|. For this, we assume

a (ql − p · qr − q∗, t − p · tr − t∗)-bounded distinguisher DL against G0 and G0,1, and we build
a distinguisher DL′ against the real-leaking-world and the ideal-simulation-world. Concretely, DL′

uses p0 = pA, p1 = pB, and z = pA to get his challenge tuple, and we assume that DL′ receives

(cA, cB, [leak1, leak2,SL(·, pA, kch)]p)

as inputs, with cA 6= cB. DL′ proceeds in two steps:

(1) DL′ first uses [leak1]
p and leak2 as the leakages of the first iteration;

(2) DL′ then sets s1 ← cA and w ← cB, and emulates all the remaining actions of LRFSM encryption.
Eventually, it serves the obtained ciphertext V ‖c1‖ . . . ‖c` as well as the leakage traces to DL,
and outputs whatever DL outputs.

It can be seen depending on whether the inputs to DL′ follow real-leaking or ideal-simulating
distribution, DL is eventually interacting with G0,1 or G0. We show that to perform the additional
operations, DL′ makes at most p · sr additional queries to L and spend p · tr additional time. To this
end, we note that the encryption process of LRFSM involves 4`+ 5 calls to E and 2` xor operations.
Moreover,

– in the real world, each call to E costs 1 query to L and tE running time;
– in the ideal world, each “idealized” call to E is translated into sampling a random value and

making a call to S, which costs qS queries to L and (t$ + tS) running time;
– each xor operation costs 1 query to L and t⊕ running time.

Therefore, to emulate the “hybrid” encryption process once, DL′ needs at most (4`+5)(qS+1)+2` =
qr queries to L and (4`+5)(tE+t$+tS)+2`·t⊕ = tr running time. To obtain the required decryption
leakage traces, DL′ has to additionally perform the “hybrid” decryption process for p − 1 times,
which contributes to (p − 1)qr more queries and (p − 1)tr more time. Therefore, as claimed, DL′
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makes at most p · qr additional queries to L and spends p · tr additional time for the additional
operations. By the above and Lemma 1 we have

|Pr[(DL)G0 ⇒ 1]− Pr[(DL)G0,1 ⇒ 1]| ≤ εE + ε(p,2)-rsim.

Then, for 1 ≤ i ≤ `, to obtain Gi, we modify the game Gi−1 by replacing the two inter-
mediate values Esi(pA) and Esi(di−1) with two values si+1 and yi, such that si+1 is uniform,
and yi is uniform and yi 6= si+1 when di−1 6= pA, and yi = si+1 otherwise; and further re-
placing the leakages [LE(si, pA), LE(si, di−1)]

p, L⊕(Esi(di−1),mi), and [L⊕(Esi(di−1), di)]
p−1 with

[SL(si, pA, si+1),SL(si, di−1, yi)]
p, L⊕(yi,mi), and [L⊕(yi, di)]

p−1. To show the indistinguishability
of Gi and Gi−1, we build DL′ which proceeds in five steps (to ease description, we define d−1 = pB
and y0 = w):

(1) DL′ first uniformly samples s0;

(2) For j = 0, . . . , i − 2, DL′ uniformly samples random values sj+1, yj such that sj+1 6= yj iff.
dj−1 6= pA, simulates the traces [SL(sj , pA, sj),SL(sj , dj−1, yj)]

p,5 computes dj ← yj ⊕m0
j and

m0
j ← yj ⊕ dj and obtains the traces L⊕(yj ,m

0
j ) and [L⊕(yj , dj)]

p−1;6

(3) Then, if di−2 6= pA, it uniformly samples yi−1, computes di−1 ← yi−1⊕mi−1, mi−1 ← yi−1⊕di−1;
(4) Uses p0 = pA, p1 = pB, and z = pA to get the challenge tuple

(cA, cB, [leak1, leak2,SL(·, pA, kch)]p)

with cA 6= cB. Then, it sets si+1 ← cA and yi ← cB, computes di ← yi ⊕ mi, and simulates
[SL(si−1, pA, kch),SL(si−1, di−2, yi−1)]

p, L⊕(yi−1,mi−1), [L⊕(yi−1, di−1)]
p−1 as the traces of the i-

th iteration,7 while [leak1, leak2]
p, L⊕(yi,mi), [L⊕(yi, di)]

p−1 as the leakage of the i+1 th iteration
in the first pass;

(5) Takes si+1 and di as the starting points and emulates the remaining part of the execution of
LRFSM encryption. Eventually, DL′ serves the obtained ciphertext V ‖c1‖ . . . ‖c` as well as the
leakage traces to DL, and outputs whatever DL outputs.

It can be seen that depending on the input tuple received by DL′ is real-leaking or ideal-simulation,
DL is interacting with Gi−1 or Gi, unless:

– di−2 6= pA, yet yi−1 = kch, or

– di−2 = pA.

Therefore, denoting this event by Badi, we have

Pr[(DL)Gi ⇒ 1]− Pr[(DL)Gi−1 ⇒ 1] ≤ Pr[Badi] + εE + ε(p,2)-rsim.

It can be seen that:

– for i = 3, . . . , `, Pr[di−2 = pA] = 1
2n , and Pr[yi−1 = kch] = 1

2n . Therefore, Pr[Badi] = 2
2n ; and

– for i = 1, 2, di−2 = pB 6= pA, while Pr[yi−1 = kch] = 1
2n . So Pr[Badi] = 1

2n .

5 When j = 0 the second part of the leakages is SL(s0, pB , w) without repeating.
6 These xor actions are omitted when j = 0.
7 When i = 1, these xor operations are omitted. More clearly, DL′ uniformly samples w, and uses [SL(s0, pA, kch)]p

and SL(s0, pB , w) as the traces of the 1st iteration.
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The hop from G` to G`+1 is slightly different, as no message block would be xored with Es`+1
(d`).

In detail, we replace the two intermediate values Es`+1
(pA) and Es`+1

(d`) by two random values U
and W such that W = U iff. d` = pA, and replace the leakage [LE(s`+1, pA)]p and LE(s`+1, d`)
by [SL(s`+1, pA, U)]p and SL(s`+1, d`,W ). By an analysis similar to the argument above, DL′ could
consistently simulate Gi−1/Gi against DL unless d`−1 = pA or y` = kch (denoted Bad`+1). Therefore,

|Pr[(DL)G`+1 ⇒ 1]− Pr[(DL)G` ⇒ 1]| ≤ Pr[Bad`+1] + εE + ε(p,2)-rsim

≤ 2

2n
+ εE + ε(p,2)-rsim.

We then replace the intermediate value Ew(W ) by a random V , and replace the leakage LE(w,W )
by SL(w,W, V ). This yields Gl+2. In a similar vein to the above, we have

|Pr[DG`+2 ⇒ 1]− Pr[DG`+1 ⇒ 1]| ≤ Pr[d−1 = pA ∨ w = kch] + εE + ε(p,2)-rsim

≤ 1

2n
+ εE + ε(p,2)-rsim.

We then replace the intermediate value EU (V ) by a random k1, and replace the leakage [LE(U, V )]p

by [SL(U, V, k1)]
p. This yields Gl+3 = G∗0. We have

|Pr[DG`+3 ⇒ 1]− Pr[DG`+2 ⇒ 1]| ≤ Pr[d` = pA] + εE + ε(p,2)-rsim

≤ 1

2n
+ εE + ε(p,2)-rsim.

Therefore,

|Pr[(DL)G`+3 ⇒ 1]− Pr[(DL)G0,1 ⇒ 1]| ≤ 2`+ 2

2n
+ (`+ 4)(εE + ε(p,2)-rsim).

Then, for j from 1 to `, we modify the game G∗j−1 to obtain G∗j . The modifications are sim-
ilar to those made for Gj−1: we replace the two intermediate values Ekj (pA) and Ekj (pB) by two
distinct random values kj+1 and zj (note that we always have pB 6= pA), and replace the leakage
[LE(kj , pA), LE(kj , pB)]p, L⊕(Ekj (pB), dj), and [L⊕(Ekj (pB), cj)]

p−1 by [SL(kj , pA, kj+1),SL(kj , pB, zj)]
p,

L⊕(zj , dj), and [L⊕(zj , cj)]
p−1. We again have |Pr[DG∗j ⇒ 1]−Pr[DG∗j−1 ⇒ 1]| ≤ εE + ε(p,2)-rsim. By

these, we eventually obtain the ideal game G∗l .

Gathering all the above, we have

|Pr[DG∗` ⇒ 1]− Pr[DG0,1 ⇒ 1]|
=(|Pr[DG∗` ⇒ 1]− Pr[DG∗0 ⇒ 1]|) + (|Pr[DG`+3 ⇒ 1]− Pr[DG0,1 ⇒ 1]|)

≤`(εE + ε(p,2)-rsim) +
2`+ 2

2n
+ (`+ 4)(εE + ε(p,2)-rsim)

≤2(`+ 2)(εE + ε(p,2)-rsim) +
2`+ 2

2n

as claimed.
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From 1-Block to `-Block Security We now evaluate the (eavesdropper) security of an `-block
encryption with LIFSM by comparison with the security of ` encryptions with LISEnc performed
with independent keys, block by block.

Lemma 4. For every pair of `-block messages m0 and m1 and (ql, t)-bounded adversary AL, there
exists a (ql + p · qr, t+ p · tr)-bounded adversary AL′ such that

|Pr[AL(LIFSMs0(m0))⇒ 1]− Pr[AL(LIFSMs0(m1))⇒ 1]|

≤ 2`

2n
+
∑̀
i=1

|Pr[AL′(LISEnc+si−1
(m0

i ))⇒ 1]− Pr[AL′(LISEnc+si−1
(m1

i ))⇒ 1]|,

where s0, . . . , s`−1 are chosen uniformly at random, the p1 value of LISEnc+si−1
(mb

i) is di−1, d0 = p1,

d1, . . . , d`−1 are chosen uniformly at random and d1, . . . , d`−1 6= p0, and m0
i and m1

i are the i-th
block of m0 and m1 respectively. Here qr = (4`+ 5)qS + 2` and tr = (4`+ 5)(t$ + tS) + 2` · t⊕, where
tE, t$, and t⊕ are as assumed in Lemma 3.

Proof. We start by building a sequence of ` + 1 messages mh,0, . . . ,mh,` starting from the “left”
message m0 and modifying its blocks one by one until obtaining the “right” message m1. That is,
mh,i := m0

1‖ . . . ‖m0
`−i‖m1

`−i+1‖ . . . ‖m1
` .

We proceed to argue there exists a (ql + p · qr, t+ p · tr)-bounded adversary A′ such that

|Pr[AL(LIFSMs0(mh,i−1))⇒ 1]− Pr[AL(LIFSMs0(mh,i))⇒ 1]|

≤ 2

2n
+ |Pr[AL′(LISEnc+s`−i

(m0
`−i+1))⇒ 1]− Pr[AL′(LISEnc+s`−i

(m1
`−i+1))⇒ 1]|.

This along with a simple summation would imply the main claim.
The arguments on mh,i−1 and mh,i for all i are similar in general. To make it clearer, we take

the first two messages, i.e.,

mh,0 = m0
1‖ . . . ‖m0

`−1‖m0
` , and mh,1 = m0

1‖ . . . ‖m0
`−1‖m1

` ,

as example. For this, assuming a (ql, t)-bounded adversaryAL against LIFSMs0(mh,0) and LIFSMs0(mh,1),
we build a (ql + p · qr, t + p · tr)-bounded adversary AL′ against LISEnc. In detail, AL′ proceeds in
six steps:

(1) AL′ uniformly samples s0, s1, w, such that s1 6= w, and obtains the simulated leakage traces
[SL(s0, pA, s1)]

p and SL(s0, pB, w);
(2) for j = 1, . . . , ` − 3, AL′ uniformly samples random values sj+1, yj such that sj+1 6= yj iff.

dj−1 6= pA, obtains traces [SL(sj , pA, sj),SL(sj , dj−1, yj)]
p, computes dj ← yj ⊕m0

j and obtains

the traces L⊕(yj ,m
0
j ) and [L⊕(yj , dj)]

p−1;

(3) AL′ samples d`−1 6= pA, and computes y`−1 ← d`−1 ⊕m0
`−1. AL′ then sets the p0 value of its

eavesdropper security challenger of LISEnc to pA while p1 to d`−1, and submits m0
` , and m1

` to
the challenger to obtain the tuple

((kup, c
b
ch), ([leak1, leak2]p, L⊕(ych,m

b
ch), [L⊕(ych, c

b
ch)]p−1, [SL(kpre, pA, kch)]p, kpre)

as outputs (which is produced by either LISEnc+kch(m0
` ) or LISEnc+kch(m1

` )).

(4) if d`−3 = pA then AL′ sets y`−2 ← kpre, otherwise samples y`−2 such that y`−2 6= kpre. It then
computes d`−2 ← y`−2⊕m0

`−2. At this stage, AL′ aborts, if either of the following two conditions
is fulfilled:
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– d`−2 = pA, yet y`−1 6= kch;

– d`−2 6= pA, yet y`−1 = kch.

Otherwise,AL′ uses the leakage traces [SL(s`−2, pA, kpre),SL(s`−2, d`−3, y`−2)]
p, L⊕(y`−2,m

0
`−2), [L⊕(y`−2, d`−2)]

p−1

as the leakages in `−1 th iteration, and those [SL(kpre, pA, kch),SL(kpre, d`−2, y`−1)]
p, L⊕(y`−1,m

0
`−1), [L⊕(y`−1, d`−1)]

p−1

as leakages in the ` th iteration in the first pass;

(5) sets s`+1 ← kup and d` ← cbch, and uses [leak1, leak2]
p, L⊕(ych,m

b
ch), [L⊕(ych, c

b
ch)]p−1 as the

corresponding leakage traces (now the message absorbing phase of the first pass has been com-
pleted);

(6) Then, AL′ takes s`+1 and d` as the starting points, and emulates the remaining actions of LIFSM
encrypting the message m0

1‖ . . . ‖m0
`−1‖mb

ch to obtain c01‖ . . . ‖c0`−1‖cb`. Note that this requires AL′

to uniformly sample z` and further compute cb` ← z` ⊕ d` = z` ⊕ cbch and generates the traces
L⊕(z`, c

b
ch) and [L⊕(z`, c

b
`)]

p−1 at the end of the second pass. Eventually, AL′ serves the ciphertext
V ‖c01‖ . . . ‖c0`−1‖cb` as well as all the generated simulated leakages to AL, and outputs whatever

AL outputs.

It can be seen that as long as AL′ does not abort (the probability of which is at most 2/2n since
both d`−2 and y`−1 are uniform), depending on whether the input tuple received by AL′ captures
LISEnc encrypting m0

` or m1
` , the inputs to AL capture LIFSM encrypting m0

1‖ . . . ‖m0
`−1‖m0

` or

m0
1‖ . . . ‖m0

`−1‖m1
` . Moreover, AL′ is indeed (ql + p · qr, t + p · tr)-bounded if AL is (ql, t)-bounded.

These complete the proof.

Gathering Lemmas 2, 3, and 4, we obtain Lemma 5 which shows the eavesdropper security
bound of LRFSM (which, in fact, is also the eavesdropper bound of FEMALE).

Lemma 5. Let E :M×M→M be a (2, t, εE)-PRP, whose implementation has a leakage function
LE having (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-
bounded leakage simulator. Then, for every pair of `-block messages m0 and m1 and (ql − p · qr −
q∗, t− p · tr − t∗)-bounded adversary AL, it holds∣∣Pr[AL(LRFSMs0(m0))⇒ 1]− Pr[AL(LRFSMs0(m1))⇒ 1]

∣∣
≤(6`+ 8)(εE + ε(p,2)-rsim) + ` · εs-block +

6`+ 4

2n
,

where qr, tr are as defined in Lemma 3, and q∗, t∗ are as defined in Lemma 2.

Proof.

|Pr[AL(LRFSMs0(m0))⇒ 1]− Pr[AL(LRFSMs0(m1))⇒ 1]|
≤ |Pr[AL(LIFSMs0(m0))⇒ 1]− Pr[AL(LIFSMs0(m1))⇒ 1]|︸ ︷︷ ︸

A

+
∑
b=0,1

|Pr[AL(LRFSMs0(mb))⇒ 1]− Pr[AL(LIFSMs0(mb))⇒ 1]|︸ ︷︷ ︸
≤2

(
(2`+4)(εE+ε(p,2)-rsim)+ 2`+2

2n

)
(by Lemma 3)

.
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For the involved term A, by Lemma 4 there exists a (ql − q∗, t − t∗)-bounded adversary AL′ that
satisfies

A ≤ 2`

2n
+
∑̀
i=1

|Pr[AL′(LISEnc+si−1
(m0

i ))⇒ 1]− Pr[AL′(LISEnc+si−1
(m1

i ))⇒ 1]|

≤
∑̀
i=1

|Pr[AL′(LRSEnc+si−1
(m0

i ))⇒ 1]− Pr[AL′(LRSEnc+si−1
(m1

i ))⇒ 1]|︸ ︷︷ ︸
≤`·εs-block (by (1))

+
2`

2n
+ 2`(εE + ε(p,2)-rsim) (by Lemma 2).

The claim thus follows.

Theorem 4, the CCAmL2 security of FEMALE, could then be derived from Lemma 5. The
argument is in the next subsection.

D.2 Proof of Theorem 8

We define trivial decryption queries: if the adversary queries Enck(N,A,M) → C and makes the
decryption query Deck(N,A,C) later on, the latter is called trivial. Trivial decryption queries are
usually deemed useless in black-box models. However, with leakage, such queries may give new
information to the adversary. We will have explicit arguments for handling such queries.

Then we step into the proof. We start by defining G0 as the game PrivKCCAmL2,0
AL,FEMALE

, and G∗0

as the game PrivKCCAmL2,1
AL,FEMALE

. We show that they are indistinguishable from two games G1 and G∗1
respectively, the gap between which is the eavesdropper security bound of LRFSM plus an additional
loss.

To this end, we first introduce the game G1, which is obtained from G0 by replacing all the
occurrences of E∗k and its inverse function by a random permutation π and its inverse. To upper
bound |Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]|, we build a (2qe + 2qd + 2qm, tD)-bounded distinguisher DSPRP
against the SPRP security of E∗ (more precisely, E, since the crypto strength of E∗ stems from E).
The challenger DSPRP picks all the necessary constants itself, and emulates the encryption and
decryption oracles to interact with AL as follows. On each query made by AL, DSPRP emulates all
the actions described by FEMALE, except for the computations involving E∗, which is replaced by
calls to its own permutation oracle O (which is either Ek or π). When AL outputs its guess bit,
DSPRP returns that bit as its own guess. It’s clear that depending on whether DSPRP is interacting
with Ek or π, AL is playing G0 or G1. Therefore, any difference between Pr[G1 ⇒ 1] and Pr[G0 ⇒ 1]
leads to the same difference in DSPRP distinguishing Ek from π. During the emulation, the simulated
FEMALE scheme receives qe + qm encryption queries and qd decryption queries. Therefore, DSPRP
is a (2qe+ 2qd+ 2qm, t

′)-bounded adversary against E, making at most 2qe+ 2qd+ 2qm queries to O
and running in time at most t+ (qe + qd + qm)t1−pass ≤ t′. Thus |Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ εE∗

follows from the assumption that E is a (2qe + 2qd + 2qm, t
′, εE)-SPRP.

Similarly, we replace E∗ by π to turn G∗0 into G∗1, which also introduces a gap of εE.

We then prove∣∣Pr[(AL)G1 ⇒ 1]− Pr[(AL)G
∗
1 ⇒ 1]

∣∣ ≤ εcr + εpr +
∑qm

i=1 εFEMALE-eav(`i),
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where `i is the number of blocks in the ith challenge message, and the bound on εFEMALE-eav(`i) is as
defined in Theorem 5 but where `i corresponds to the block-length of the i-th challenge messages.
This plus the above gap 2εE∗ yields the claimed bound. To this end, we denote the qm challenge
tuples by

(Nc1, Ac1,Mc01,Mc11), . . . , (Ncqm , Acqm ,Mc0qm ,Mc1qm).

Then, we note that in G1, the qm messages being encrypted by the challenge encryption oracle
are Mc01, . . . ,Mc0qm , while those encrypted in G∗1 are Mc11, . . . ,Mc1qm . We use qm hops to replace
Mc01, . . . ,Mc0qm by Mc11, . . . ,Mc1qm in turn, to show that G1 can be transited to G∗1. For convenience,
we define G2,0 = G1, and define a sequence of games

G2,1,G2,2, . . . ,G2,qm ,

such that in the i-th system G2,i, the first i messages processed by the challenge encryption oracle
are Mc01, . . . ,Mc0i , while the remaining qm − i messages being processed are Mc1i+1, . . . ,Mc1qm . It
can be seen actually G2,qm = G∗1.

We then show that for i = 1, . . . , qm, G2,i−1 and G2,i are indistinguishable for AL. For this,
from AL we build an adversary AL′ , such that if AL distinguishes G2,i−1 and G2,i then AL′ breaks
the eavesdropper security of LRFSM. In detail, AL′ keeps a pair of tables (Π,Π−1) to simulate the
random permutation π (via lazy sampling). And it runs AL, and reacts as follows:

– Upon an encryption query (Ni, Ai,Mi) from AL, AL′ computes Ri ← H(0‖Ni‖Ai). Then:

• if 0‖Ri /∈ Π, AL′ samples s
(i)
0

$←M\Π−1, sets Π(0‖Ri) ← s
(i)
0 and Π−1(s

(i)
0 ) ← 0‖Ri,

and then runs LRFSM
s
(i)
0

(Mi) to get the ciphertext (Vi, ci) and leakages. AL′ then computes

hi ← H(1‖Ri‖V ‖ci) and Ti ← Π(1‖hi) (if 1‖hi /∈ Π then AL′ defines Π(1‖hi) as a value
newly sampled from M\Π−1). Finally, AL′ returns the outputs (Vi, ci, Ti) and the leakages
to AL;
• if 0‖Ri ∈ Π, AL′ simply runs LRFSMΠ(0‖Ri)(Mi), performs the tag generation action hi ←

H(1‖Ri‖Vi‖ci) and Ti ← Π(1‖hi) on the obtained Vi and ci, and returns (Vi, ci, Ti) and the
leakages to AL.

– Upon a trivial decryption query (Nj , Aj , Cj) from AL (cf. the beginning of this subsection for the
meaning of “trivial”), AL′ computes Rj ← H(0‖Nj‖Aj). Since (Nj , Aj , Cj) is trivial, 0‖Rj ∈ Π
necessarily holds. Therefore, AL parses Cj = (Vj , cj , Tj), runs LRFSM.Dec(Π(0‖Rj), cj), and
relays the outputs to AL.

– Upon a non-trivial decryption query (Nj , Aj , Cj) from AL, AL′ parses Cj = (Vj , cj , Tj), and
computes Rj ← H(0‖Nj‖Aj) and hj ← H(1‖Rj‖Vj‖cj). Then,
• if Tj /∈ Π−1, AL′ samples Zj

$←M\Π, and sets Π(Zj)← Tj and Π−1(Tj)← Zj ;
• if Tj ∈ Π−1, AL′ simply sets Zj ← Π−1(Tj).

Now AL′ defines h∗j = trunc(Zj), aborts if hj = h∗j (this type of abortion is defined as BadDec),

and returns (⊥, h∗j ) to AL.

– Upon AL submitting the j-th challenge tuple (Ncj , Acj ,Mc0j ,Mc1j ), AL′ computes Rcj ←
H(0‖Ncj‖Acj). Then, if 0‖Rcj ∈ Π, AL′ aborts (this type of abortion is defined as BadChall);
otherwise, its action depends on j:

• When j < i, it simply encrypts Mc0j and returns. In detail, AL′ samples sc
(j)
0

$←M\Π−1, sets

Π(0‖Rcj)← sc
(j)
0 and Π−1(sc

(j)
0 )← 0‖Rcj , and then runs LRFSMΠ(0‖Rcj)(Mc0j ), performs

the tag generation action hcj ← H(1‖Rcj‖V cj‖ccj) and Tcj ← Π(1‖hcj) on the obtained
V cj and ccj , and returns (V cj , ccj , T cj) and the leakages to AL.
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• When j = i, it relays Mc0j and Mc1j to its eavesdropper security challenger to obtain

(V cbj , cc
b
j) and leakages leakenc and [leakdec]

p−1, and then computes Tcj ← Π(1‖H(1‖Rcj‖V cbj‖ccbj))
(possibly defines a new entry in Π) and returns Cbch = (V cbj , cc

b
j , T cj) to AL. Note that this

means the relation Π(0‖Rci) = sch0 is implicitly fixed, where sch0 is the secret key generated
inside the eavesdropper security challenger;

• When j > i, it simply encrypts Mc1j and returns. The details are similar to the described
case j < i.

– Upon AL making the λ-th query to Ldecch(j) (1 ≤ λ ≤ p− 1),

• When j 6= i, AL′ performs a corresponding decryption process (decrypting (Ncj , Acj , Cc
0
j )

when j < i, and (Ncj , Acj , Cc
1
j ) when j > i) and returns the obtained leakages to AL;

• When j = i, AL′ simply returns the λ-th trace in the vector [leakdec]
p−1 as the answer.

Moreover, whenever new entries are added to Π, AL′ aborts if 0‖Rcj ∈ Π (so that the implicit
relation Π(0‖Rci) = sch0 never causes inconsistency).

It can be seen that the whole process is the same as either G2,i−1 or G2,i depending on whether
b = 0 or 1, given that:

(i) BadDec never occurs, and

(ii) BadChall never occurs.

On the other hand, besides running AL, AL′ samples at most 2(qe + qd + qm) random values (to
emulate π) and internally processes qe + qd + qm queries. Therefore, the running time of AL′ is at
most tAL′ ≤ t+(qe+qd+qm)(2t$+t1−pass) (while AL′ makes ql queries to L, which is the same as AL).

We need to bound the probabilities of the defined events to complete the proof. They are as
follows.

Lemma 6. Pr[BadDec ∨ BadChall] ≤ εcr + εpr.

Proof. To show this, we introduce two other events as follows:

– CollH: during the interaction between AL′ and the eavesdropper security challenger, there ap-
pears two calls to H(x) and H(x′) such that x 6= x′ while H(x) = H(x′);

– PreimgH: during the interaction between AL′ and the eavesdropper security challenger, there
appears a decryption query (Nj , Aj , (Vj , cj , Tj)) such that Tj /∈ Π−1 before this query is made,
yet after Π−1(Tj) is defined, it holds H(x) = trunc(Π−1(Tj)) for any hash-call H(x) occurring
during the game.

If CollH happens, then from AL we are able to build a collision adversary Acr against H: Acr just
simulates the eavesdropper security challenger and interacts with AL′ , and waits for CollH to occur.
It’s clear that the running time of Acr is no more than tAL′ plus the time needed to emulate the
eavesdropper challenger, which turns out t+ (qe + qd + qm)(2t$ + t1−pass) = t′ in total. Therefore,
by the assumption on the collision resistance of H, we obtain Pr[CollH] ≤ εcr.

On the other hand, if PreimgH happens, then from AL′ we are able to build a preimage ad-
versary against H. To this end, note that by the definition of PreimgH, if it happens with respect
to a decryption query (Nj , Aj , (Vj , cj , Tj)), then Tj /∈ Π−1 before this query is made. Accord-
ing to the description of AL′ , Π−1(Tj) will be defined to a randomly sampled value, and thus

49



H(1‖Rj‖Vj‖cj) = trunc(Π−1(Tj)) exactly fits into the definition of range-oriented preimage resis-
tance. Therefore, we could use an adversary Apr to emulate the interaction between AL′ and the
eavesdropper security challenger, and if PreimgH happens then Apr turns out a preimage adversary
against the hash function H. Since Apr’s running time is also at most t′, and there are at most qd
such decryption queries, we have Pr[PreimgH] ≤ εpr by the assumption that H is (qd, t

′, εpr)-range-
oriented preimage resistance. This further yields Pr[CollH ∨ PreimgH] ≤ εcr + εpr.

We now prove Pr[BadDec∨BadChall | ¬(CollH∨PreH)] = 0 to complete the proof. Assume that
BadDec occurs, and let (Ni, Ai, (Vi, ci, Ti)) be the decryption query with the smallest index that
passes the integrity checking. We distinguish several cases:

(i) Case 1: upon this decryption query, it holds Ti /∈ Π−1. Then Π−1(Ti) will be defined random
and H(1‖Ri‖Vi‖ci) = trunc(Π−1(Ti)) implies the occurrence of PreimgH.

(ii) Case 2: upon this decryption query it holds Ti ∈ Π−1, and Π−1(Ti) was defined due to an
earlier backward call to π−1. Then it’s the same as Case 1.

(iii) Case 3: contrary to Case 1 & 2, and Π−1(Ti) = 0‖Zi for some Zi ∈ B. Then the entry Π(0‖Zi)
was defined due to the “first” leak free call E∗k(0‖·). Then H(1‖Ri‖Vi‖ci) = trunc(Π−1(Ti)) means
during the game there exists N ′, A′ such that H(0‖N ′‖A′) = Zi = H(1‖Ri‖Vi‖ci), indicating
CollH.

(iv) Case 4: contrary to Case 1 & 2, and Π−1(Ti) = 1‖Zi for some Zi ∈ B. Then the entry Π(1‖Zi)
was defined in an earlier encryption query, due to the “second” leak free call E∗k(1‖·). Assume that
this encryption query was (Nj , Aj ,Mj), and the corresponding response was Cj = (Vj , cj , Tj).
Clearly it has to be Tj = Ti. Since we are considering non-trivial decryption queries, this means
(Nj , Aj , Vj , cj) 6= (Ni, Ai, Vi, ci). Now, if Vj‖cj 6= Vi‖ci then it holds Rj‖Vj‖cj 6= Ri‖Vi‖ci;
otherwise, either Nj 6= Ni or Aj 6= Ai would imply Rj 6= Ri by ¬CollH, which by ¬CollH further
implies Zi = H(1‖Rj‖Vj‖cj) 6= H(1‖Ri‖Vi‖ci).

Therefore, Pr[BadDec | ¬(CollH ∨ PreH)] = 0.
Conditioned on that BadDec does not occur, entries of the form Π(0‖R) may be defined due to

two events:

– First, the “first” leak free call E∗(0‖R) that occurs during an encryption query (not possible in
decryption queries by ¬BadDec);

– Second, the “second” backward leak free call (E∗)−1 during a decryption query.

If BadChall due to the first type of entries, then there necessarily exists an encryption query
(N,A,M) such that H(0‖N‖A) = H(0‖Nci‖Aci). According to the requirements of the CCAmL2
security game, it has to be (N,A) 6= (Nci, Aci); therefore, H(0‖N‖A) = H(0‖Nci‖Aci) would
contradict ¬CollH. If BadChall due to the second type of entries, then it means H(0‖Nci‖Aci) =
trunc(Π−1(T )) for T specified in some decryption query. By the assumption on this type of entries,
trunc(Π−1(T )) is defined to random, and thus this case contradicts ¬PreimgH. Thus the claim.

By all the above, define
Bad = BadDec ∨ BadChall,

then we have

Pr[(AL)G2,i ⇒ 1]− Pr[(AL)G2,i−1 ⇒ 1]

≤Pr[(AL)G2,i ⇒ 1 ∧ Bad]− Pr[(AL)G2,i−1 ⇒ 1 ∧ Bad] + εFEMALE-eav(`i).
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This means

|Pr[(AL)G
∗
1 ⇒ 1]− Pr[(AL)G1 ⇒ 1]| ≤ Pr[(AL)G2,qm ⇒ 1]− Pr[(AL)G2,0 ⇒ 1]

≤
qm∑
i=1

(
Pr[(AL)G2,i ⇒ 1]− Pr[(AL)G2,i−1 ⇒ 1]

)
≤ εcr + εpr +

∑qm
i=1 εFEMALE-eav(`i).

These complete the proof.

Influence of Empty Message. It’s meaningless to use empty message for (m)CCAmL2 challenge mes-
sage, as otherwise it’s not possible to pick two distinct challenges. Therefore, in the (m)CCAmL2
game, they can only appear in decryptions and non-challenge encryptions. Our proof has cov-
ered both cases (without specific treatment): for such decryptions, it can be seen the arguments
around the bad events (in particular, BadDec) remains valid; for such non-challenge encryptions,
the adversary AL′ remains able to simulate the corresponding actions.

D.3 Proof for CIML2

Since the main body only contains an informal theorem we give the formal one as follows.

Theorem 9. Let H : {0, 1}∗ → B be a (0, t′, εcr)-collision resistant and (qd + 1, t′, εpr)-range-
oriented preimage resistant hash function. And let E :M×M→M be a (2qe+2qd+2, t′, εE∗)-SPRP
with E∗ being its strongly protected leak free implementation. Then FEMALE provides (qe, qd, t, εCIML2)-
ciphertext integrity with coin misuse and unbounded leakage on encryption and decryption as long
as t ≤ t′ − (qe + qd + 1)t1−pass, where t1−pass is the maximum running time of FEMALE upon a
single (encryption or decryption) query, and

εCIML2 ≤ εE∗ + εcr + εpr.

The claim can be established by some intermediate results obtained during the proof of Theorem
4. To see this, let’s revisit these results:

– First, define G0 as the real CIML2 security game between the adversary and FEMALE. Then
replacing E∗k by a random permutation π, we obtain a game G1, with a gap of εE;

– Second, as long as neither of the two bad events CollH and PreimgH happens during the execution
of G1, every non-trivial decryption query would yield ⊥ as the answer. And we have Pr[CollH∨
PreimgH] ≤ εcr + εpr.

Note that the above steps do not rely on additional leakage assumptions. Therefore, the claim holds
in the unbounded leakage model. And as remarked in the previous subsection, our proof has covered
empty messages.

D.4 Proof for MR

Also we give the formal theorem as follows.
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Theorem 10. Let H : {0, 1}∗ → B be a (0, t′, εcr)-collision resistant and (qd + 1, t′, εpr)-range-
oriented preimage resistant hash function. Let E : M×M → M be a (2qe + 2qd, t

′, εE∗)-SPRP.
Then the FEMALE scheme is (qe, qd, t, εMR)-MR as long as t ≤ t′ − (qe + qd)(t1−pass + (4` + 4)t$),
where t1−pass is the maximum running time of FEMALE upon a single (encryption or decryption)
query, t$ is the time needed for randomly sampling a value from M, and:

εMR ≤ εE + εcr + εpr + (2`+ 4)qeεE +
2(`+ 1)qe + (qe + qd)

2 + q2e
2n+1

.

Let A be a (qe, qd, t, εMR)-bounded adversary against the misuse resistance of FEMALE, and
assume A never makes “redundant” queries, i.e.

– A never repeats queries, and
– A never decrypts the ciphertext produced by previous encryption queries.

Furthermore, we write the encryption queries as

(N1, A1,M1), (N2, A2,M2), . . . , (Nqe , Aqe ,Mqe);

and we assume the length of Mi is `i ≤ `. We stress that N1‖A1, . . . , Nqe‖Aqe are not necessarily
distinct since we are in misuse setting.

We will use a sequence of hybrid games, beginning with the real game, named G0, where A
interacts with Enck and Deck, and ending with random-and-invalid game, named Gqe+1, where A
interacts with $ and ⊥. Then, using the adversary A we show that any transition can be reduced
to an efficient adversary against one of the assumptions. For convenience, we name Ei the event
that A outputs 1 at the end of Gi.

We start from G0 = AEnck,Deck . The first two steps are similar to those appeared in the proof
of Theorem 4:

(i) we first replace all the occurrences of E∗k by a random permutation π to obtain the first inter-
mediate game G0,1. And we introduce two abort conditions CollH and PreimgH into G0,1: the
former is fulfilled if there exists two calls to H(x) and H(x′) such that x 6= x′ yet H(x) = H(x′),
while the latter is fulfilled if there exists a hash-call H(x) and an fresh inverse call π−1(T ) such
that H(x) = trunc(π−1(T )). It can be seen Pr[G0,1 aborts] ≤ εcr+εpr, otherwise a corresponding
adversary running in time at most t′ ≤ t+ (qe + qd)t1−pass can be built against H;

(ii) It holds |Pr[E0]−Pr[E0,1 | G0,1 does not abort]| ≤ εE, otherwise from A we can build an SPRP
adversary DSPRP against Ek, and DSPRP makes at most 2(qe + qd) queries and runs in time at
most t′.

We next define `0 = 1, and consider the second intermediate game G∗0,`0 , which is the same as
G0,1 except that all decryption queries are simply answered by ⊥. In a similar vein to the proof of
Theorem 4, we know that if neither of the two games abort, then they would have no difference.
Therefore, Pr[E0,1 | G0,1 does not abort] = Pr[E∗0,`0 | G

∗
0,`0 does not abort].

We then consider the encryption queries in turn, and use a sequence of games

G1,−1 = G∗0,`0 ,G1,1, . . . ,G1,`1 ,G1,`1+1,G1,`1+2 = G∗1,0,G
∗
1,1, . . . ,G

∗
1,`1 ,G2,−1,

. . .

Gqe,−1 = G∗qe−1,`qe−1
, . . . ,Gqe,`qe ,Gqe,`qe+1,Gqe,`qe+2 = G∗qe,0,G

∗
qe,1, . . . ,G

∗
qe,`qe

,
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to show that the ciphertexts are indistinguishable from uniform. In detail, for i = 1, . . . , qe, we
start from G∗i−1,`i−1

= Gi,−1, and transit to G∗i,`i . In this game, the tuple (Ni, Ai) would give rise to

Ri = H(0‖Ni‖Ai) and s
(i)
0 = π(0‖Ri). We distinguish two cases:

Non-reuse Case: (Ni, Ai) never appeared before. Then conditioned on ¬CollH, Ri never appeared be-

fore, and thus s
(i)
0 must be distinct from all the already appeared intermediate values s

(1)
0 , . . . , s

(i−1)
0

since π is a permutation. In the first phase of the transition, for j = 0, . . . , `i + 1, we consider the
game Gi,j−1, and replace all the subsequently appearing calls of the form E

s
(i)
j

(x) by calls to a

new random permutation Pi,j(x). This yields Gi,j . It holds |Pr[Ei,j ] − Pr[Ei,j−1]| ≤ εE, other-
wise a PRP adversary BE against E could be built by emulating the common part of Gi,0 and
Gi,−1. In detail, BE interacts with A, and simulates the previously appeared random permutations

P1,0, P1,1, . . . , Pi,0, . . . , Pi,j−1 by lazy sampling, till the intermediate values s
(i)
j and d

(i)
j−1 being com-

puted.8 Then, BE supplies pA and d
(i)
j−1 to its challenge oracle O (which is either Ek for a secret

key k or the random permutation Pi,j), and uses the obtained s
(i)
j+1 ← O(pA) to continue emulating

the process of real FEMALE encryption. Moreover, to ensure consistency, for queries received in
future with (Ni, Ai) as the involved nonce, BE uses Pi,0, . . . , Pi,j−1,O for the first j + 1 calls to E.
To emulate these, BE makes at most 2qe queries to O, and the running time of BE is clearly at most
t′. Thus BE’s advantage does not exceed εE.

Then, consider the game Gi,`i+1, and let w(i) = Pi,0(pB). We replace all the subsequently ap-
pearing calls of the form Ew(i)(x) by calls to a new random permutation Pi,`i+2(x), to obtain the
game Gi,`i+2. Similarly to the above, |Pr[Ei,`+2]− Pr[Ei,`+1]| ≤ εE. We further replace all the sub-
sequently appearing calls of the form EU(i)(x) by calls to a new random permutation Pi,`i+3(x),
to obtain the game Gi,`i+3 = G∗i,0, with |Pr[Ei,`+3] − Pr[Ei,`+2]| ≤ εE. By this, the newly derived

initial key k
(i)
1 = Pi,`i+3(V

(i)) for the one-time encryption is uniform.

Then in the second phase, for j = 1, . . . , `i, we replace all the subsequently appearing calls
to E

k
(i)
j

by corresponding calls to a new random permutation P ′i,j , and this yields G∗i,j . The gap

between each pair of games (G∗i,j−1,G
∗
i,j) is at most εE. We also have |Pr[E∗i,j ]− Pr[E∗i,j−1]| ≤ εE.

It can be seen that in the last game G∗i,`i , the intermediate value V (i) as well as the ciphertext

blocks c
(i)
1 , . . . , c

(i)
` resulted from the encryption query (Ni, Ai,Mi) are random. The next paragraph

would discuss the nonce-reuse case.

Reuse Case: (Ni, Ai) has appeared before. Assume that α is the smallest index such that (Nα, Aα) =
(Ni, Ai). We further distinguish two cases:

– Case 1: the length `i does not exceed the maximum length of the messages already processed with
the pair (Ni, Ai). Then it can be seen that in the game Gi,−1, when processing the encryption
query (Ni, Ai,Mi), all the calls to E during the first pass have been replaced by calls to random
permutations Pα,0, . . . , Pα,`i+3. Therefore, we simply let G∗i,0 = Gi,−1.

– Case 2: Mi is the longest message among the messages encrypted with the pair (Ni, Ai). Assume
that the calls E

s
(α)
0

, . . . ,E
s
(α)
β

have been replaced by random permutations Pα,0, . . . , Pα,β (note

8 Similarly to the proof of Lemma 3, when j = 0 we take d
(i)
−1 = pB and w(i) as the corresponding output to ease

the language.
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that s
(α)
β = U (j) for some j < i), and let s

(i)
β+1 = Pα,β(pA). Define Gi,β = Gi,β. Then, for

j = β+ 1, . . . , `i + 2, we replace all the subsequently appearing calls of the form E
s
(i)
j

(x) (taking

s
(i)
`i+2 = U (i)) by calls to a new random permutation Pi,j(x). This yields Gi,j+1. For convenience

we also write Pα,j for the permutation Pi,j . These steps eventually yield the game Gi,`i+3 = G∗i,0.

Unlike the non-reuse case, we introduce three abort conditions into the game G∗i,0. In detail,
G∗i,0 aborts, if at least one of the following occurs during its execution:

– the event CollDi, which happens if there exists j < i such that Nj‖Aj = Ni‖Ai and `i = `j for

the j-th encryption query (Nj , Aj ,Mj), and there exists an index γ such that m
(i)
1 ‖ . . . ‖m

(i)
γ 6=

m
(j)
1 ‖ . . . ‖m

(j)
γ , yet d

(i)
γ = d

(j)
γ ;

– the event CollWi, which happens if there exists j < i such that Nj‖Aj = Ni‖Ai for (Nj , Aj ,Mj),
and W (i) = W (j).

To analyze the events, we consider every index j < i. If Nj‖Aj 6= Ni‖Ai, then neither CollDi nor
CollWi could happen with respect to j. If Nj‖Aj = Ni‖Ai and `i 6= `j , then CollDi could happen.
In this case, assume that α is the smallest index such that (Nα, Aα) = (Ni, Ai). Then by our
convention, we have

W (i) = Pα,`i+1(d
(i)
`i

), and W (j) = Pα,`j+1(d
(j)
`j

),

with Pα,`i+1 and Pα,`j+1 being two independent random permutations. Moreover, if abortion does
not happen, then conditioned on the transcripts of queries and answers obtained so far, the values

Pα,`i+1(d
(i)
`i

) and Pα,`j+1(d
(j)
`j

) remain uniform, since

– the ciphertexts in the transcript are clearly independent of these two values, and
– the values V (1), . . . , V (i−1) in the transcripts are outputs of the permutations P1,`1+2, . . . , Pi−1,`i−1+2,

thus also independent of these two values.

Therefore, it holds

Pr[W (i) = W (j)] ≤ 1

2n
.

When Nj‖Aj = Ni‖Ai and `i = `j , then both CollDi and CollWi could happen. In this case,
it necessarily be Mi 6= Mj since A does not repeat queries. Wlog assume that γ is the smallest

index such that m
(j)
γ 6= m

(i)
γ . Then it can be seen d

(j)
γ−1 = d

(i)
γ−1. Moreover, Nj‖Aj = Ni‖Ai implies

s
(i)
0 = s

(j)
0 , . . . , sγ(i) = s

(j)
γ , and thus the first γ random permutations used for processing the two

queries are the same ones. Assume that α is the smallest index such that (Nα, Aα) = (Ni, Ai). Then

by our convention, these γ random permutations are Pα,0, . . . , Pα,γ . Then it can be seen d
(j)
γ 6= d

(i)
γ ,

since m
(j)
γ 6= m

(i)
γ implies

Pα,γ(d
(j)
γ−1)⊕m

(j)
γ 6= Pα,γ(d

(i)
γ−1)⊕m

(i)
γ .

As discussed, conditioned on the transcripts of queries and answers obtained so far, the values

Pα,γ+1(d
(j)
γ ) and Pα,γ+1(d

(i)
γ ) remain uniform. By these,

Pr[d
(j)
γ+1 = d

(i)
γ+1] = Pr[Pα,γ+1(d

(j)
γ )⊕m(j)

γ+1 = Pα,γ+1(d
(i)
γ )⊕m(i)

γ+1] ≤
1

2n
.

Following the same line, we obtain Pr[d
(j)
γ+2 = d

(i)
γ+2] ≤ 1

2n , . . ., Pr[d
(j)
`j

= d
(i)
`i

] ≤ 1
2n , and Pr[W (j) =

W (i)] ≤ 1
2n . Therefore, for such an index j, the probability that either CollDi or CollWi happens is
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at most `i+1
2n ≤

`+1
2n .

By the above, in any case, the following holds:

Pr[CollDi ∨ CollWi | ¬CollH] ≤ `+ 1

2n
.

If G∗i,0 does not abort, then the produced intermediate value W (i) is distinct from all the previous

value W (j) for Nj‖Aj = Ni‖Ai. This means the further generated V (i) are also distinct from these

V (j), and further k
(i)
1 6= k

(j)
1 . On the other hand, for the previous queries with Nj‖Aj 6= Ni‖Ai,

conditioned on ¬CollH we have Rj 6= Ri, and thus the subsequent processes utilize completed in-
dependent random permutations. This means for such index j the produced one-time encryption

initial key k
(j)
1 is independent from k

(i)
1 . In all, the produced initial key k

(i)
1 is a new random value

independent from all the appeared keys k
(1)
1 , . . . , k

(i−1)
1 . Therefore, we start from G∗i,0 and make `i

hops that are similar to those described in the non-reuse case. These hops yield G∗i,`i at the end,

with |Pr[E∗i,`i ]− Pr[E∗i,0]| ≤ `εE∗ + `+1
2n .

Finally, in the game G∗qe,`qe , it can be seen that every intermediate value is derived via a call to
a corresponding random permutation. And it can be seen

Pr[G∗qe,`qe aborts] ≤
qe∑
i=1

Pr[CollDi ∨ CollWi ∨ CollH ∨ PreimgH] ≤ (`+ 1)qe
2n

+ εcr + εpr,

and
Pr[E∗qe,`qe | G

∗
qe,`qe

does not abort]− Pr[E∗0,`0 ] ≤ (2`+ 4)qeεE.

The latter follows from the fact that during the transitions, the number of keys used for calling E
is at most (2`+ 4)qe.

We then consider Pr[Eqe+1] = Pr[A$,⊥ ⇒ 1], and derive an upper bound for Pr[Eqe+1] −
Pr[E∗qe,`qe | G

∗
qe,`qe

does not abort]. First, conditioned on that CollDi never happened for any i, for

any two intermediate values W (i) and W (j) we have:

– if their nonce values are the same, i.e. Ni‖Ai = Nj‖Aj , then W (i) 6= W (j). Therefore, the
two further derived values V (i) = Pi,`i+2(W

(i)) and V (j) = Pi,`j+2(W
(j)) are two random and

independent values;
– if Ni‖Ai 6= Nj‖Aj , then W (i) and W (j) are random and independent, since they are the outputs

of two independent random permutations. This also means the further derived V (i) and V (j)

are random and independent.

Thus the qe outputs V (1), . . . , V (qe) are random and independent. Yet, some of them may be the
outputs of the same random permutation (in the extreme case, i.e. all the nonce values are identical,
all of them are the outputs of the same random permutation), and will thus be distinct. By this,
the statistical distance between V (1), . . . , V (qe) and uniform is at most q2e/2

n+1.

Following the same line, the further derived qe initial keys k
(1)
1 , . . . , k

(qe)
1 for the one-time encryp-

tion are also uniform and independent. This indicates the
∑qe

i=1 `i blocks in the subsequent qe key
streams are given by

∑qe
i=1 `i independent random permutations, i.e. P ′1,1, . . . , P

′
1,`i

for i = 1, . . . , qe,
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and thus uniform and independent. Thus for the qe ciphertexts (c
(1)
1 , . . . , c

(1)
` ), . . . , (c

(qe)
1 , . . . , c

(qe)
` )

the distribution is also uniform.

Finally, we argue that during each encryption query (Ni, Ai,Mi), when the computation pro-
ceeds to the tag generation phase hi ← H(1‖Ri‖Vi‖ci) and Ti ← π(1‖hi), the random permutation
query π(1‖hi) is fresh, i.e. it never happened before, and no previous inverse query resulted in hi
(in this case, the subsequently generated tag Ti is not random either). To this end, we exclude two
possibilities:

– If the entry π(1‖hi) is non-fresh due to a previous inverse query π−1(T ), then hi = trunc(π−1(T ))
contradicts ¬PreimgH;

– Otherwise, the query Π(1‖Zi) was necessarily made in an earlier encryption query, due to its
“second” leak free call E∗(1‖·). Assume that this encryption query is (Nj , Aj ,Mj). This means
H(1‖Ri‖Vi‖ci) = H(1‖Rj‖Vj‖cj). If Ri 6= Rj , or ci 6= cj , then this clearly contradicts ¬CollH.
Otherwise, if Ni‖Ai 6= Nj‖Aj then H(0‖Ni‖Ai) = Ri = Rj = H(0‖Nj‖Aj) also contradicts
¬CollH. If Ni‖Ai = Nj‖Aj and ci 6= cj then (Ni‖Ai‖Mi) = (Nj‖Aj‖Mj), and it contradicts the
assumption that A never repeats queries;

– there exists an earlier decryption query (Nj , Aj , (cj , Tj)) such that hi = trunc(π−1(Tj)). How-
ever, this would contradict ¬PreimgH.

By these, the qe tags T1, . . . , Tqe are distinct and random values, and deviate from the at most qd
tags specified in the decryption queries. Therefore, the statistical distance between the distribution
of T1, . . . , Tqe and uniform is at most (qe + qd)

2/2n+1.

Gathering the above, we have

Pr[Eqe+1]− Pr[E∗qe,`qe | G
∗
qe,`qe

does not abort] ≤ (qe + qd)
2 + q2e

2n+1
.

To conclude, we summarize the gaps as follows:

(i) |Pr[E0]− Pr[E0,1 | G0,1 does not abort]| ≤ εE∗ ;
(ii) Pr[E0,1 | G0,1 does not abort] = Pr[E∗0,`0 | G

∗
0,`0 does not abort];

(iii) Pr[E∗qe,`qe | G
∗
qe,`qe

does not abort] − Pr[E∗0,`0 | G
∗
0,`0 does not abort] is upper-bounded by (2` +

4)qeεE;

(iv) Pr[Eqe+1]− Pr[E∗qe,`qe | G
∗
qe,`qe

does not abort] ≤ (qe+qd)
2+q2e

2n+1 ;

(v) Pr[G∗qe,`qe aborts] ≤ (`+1)qe
2n + εcr + εpr.

Thus in total, |Pr[E0]− Pr[Eqe+1]| is bounded by

εE∗ + εcr + εpr + (2`+ 4)qeεE +
2(`+ 1)qe + (qe + qd)

2 + q2e
2n+1

as claimed.

Empty Messages. can be handled by the proof in this subsection without specific treatment. In
detail, for the empty messages appearing in decryption queries the case resembles subsection D.2.
When empty messages appear in the encryption queries, it can handle as well: for example, in
the non-reuse case, with `i = 0 the calls to Es0 and Es1 would be rightfully replaced by random
permutations.
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Description of AEDT:

Gen(1n) picks a random key k $←{0, 1}n, N ,M, C = {0, 1}n.
Enck(N,A,M) parses M ∈ M∗ into as many blocks as needed as M = (m1, . . . ,m`) for some `. Computes

R← H(0‖N‖A) and proceeds in three steps:
1. One-time encryption: First computes k0 ← E∗k(0‖R), then, for i = 1 to ` − 1, computes ki ← Eki−1(pA),

zi ← Eki−1(pB), and ci ← zi ⊕mi. Eventually, computes z` ← Ek`−1(pB) and c` ← z` ⊕m`.
2. Authentication: sets c = c1‖ . . . ‖c`, and computes T ← E∗k(1‖H(1‖R‖c)).

Eventually, returns the ciphertext C = (c, T ).
Deck(N,A,C) parses C = (c, T ), c = c1‖ . . . ‖c`, then proceeds in four phases:

1. Integrity Checking: computes R = H(0‖N‖A) and h∗ ← trunc((E∗k)−1(T )). Then, if h∗ = H(1‖R‖c), it enters
the next phase, and returns ⊥ otherwise.

2. One-time decryption: first computes s0 ← E∗k(0‖R), then, for i = 1 to ` − 1, computes ki ← Eki−1(pA),
zi ← Eki−1(pB), and mi ← zi ⊕ ci. Eventually, computes z` ← Ek`−1(pB) and m` ← z` ⊕ c`.

Eventually, returns the message M = (m1, . . . ,m`).

Fig. 13: The AEDT AEAD scheme.

E CCAmL2 security of AEDT

We didn’t formally describe AEDT in the main body: this gap is filled in Fig. 13.

For its (m)CCAmL2 analysis, the leakage function L = (Lenc, Ldec) of AEDT is defined similarly to
the one of FEMALE, i.e., including all the “bounded” leakages generated by the underlying actions.

Theorem 11. Let H : {0, 1}∗ → B be a (0, t′, εcr)-collision resistant and (qd, t
′, εpr)-range-oriented

preimage resistant hash function. And let E :M×M→M be a (2qe + 2qd + 2, t′, εE)-SPRP with
two implementations: a strongly protected implantation E∗ is leak free, and a plain implementation
E have leakage function LE that is (qS , tS , ql, t, ε(p,2)-rsim) (p, 2)-R-simulatable. Then the AEDT im-
plementation with leakage function L = (Lenc, Ldec) defined before is (qe, qd, p−1, qm, ql, t, εmCCAmL2)
mCCAmL2-secure, where

εmCCAmL2 ≤ 2εE + εcr + εpr +
∑qm

i=1 εAEDT-eav(`i),

and εAEDT-eav(`i) is the upper bound on the eavesdropper advantage of (ql, t
′)-bounded adversaries

on AEDT with `i block messages:

εAEDT-eav(`i) ≤ 4`i(εE + ε(2,2)-rsim) + `i · εs-block,

and `i is the number of blocks in the i-th challenge messages and εs-block is as defined in equation
(1). Here t′ = t+ (qe + qd + qm)(t$ + t1−pass), t1−pass is the maximum running time of AEDT upon
a single (encryption or decryption) query, and t$ is the time needed for randomly sampling a value
from M.

The proof follows the same line as sections D.1 and D.2. We first formally describe the two algo-
rithms RESM and IESM, which denote the processes of using Real/Idealized AEDT to encrypt a
Single Message respectively. They are described in Fig. 14 and 15 respectively.

Lemma 7 (Indistinguishability of LRESM and LIESM). Let E : {0, 1}n × {0, 1}n → {0, 1}n
be a (2, t, εE)-PRP, whose implementation has a leakage function LE having (qS , tS , ql, t, ε(2,2)-rsim)

(2, 2)-R-simulatable leakages, and let SL be an appropriate (qS , tS)-bounded leakage simulator. Then,
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Description of RESM:

– Gen picks k0 $←{0, 1}n
– RESMk0(m1, . . . ,m`) proceeds in two steps:

(1) Initializes an empty list leak for the leakage;
(2) for i = 1, . . . , `, computes ki ← Eki−1(pA), zi ← Eki−1(pB), and ci ← zi ⊕ mi, and adds

[LE(ki−1, pA), LE(ki−1, pB)]p, L⊕(zi,mi), and [L⊕(zi, ci)]
p−1 to the list leak. Here the two constants pA and

pB in use are the same as those in AEDT.
RESMk0(m1, . . . ,m`) eventually returns (c1, . . . , c`).

We define LRESMk0(m) = (RESMk0(m), leak) for the list leak standing at the end of the above process.

Fig. 14: The RESM scheme.

Description of IESM:

– IESMk0(m1, . . . ,m`) proceeds in two steps:
(1) Initializes an empty list leak for the leakage;
(2) for i = 1, . . . , `, samples ki $← {0, 1}n and zi $← {0, 1}n such that ki 6= zi, sets ci ← zi ⊕ mi, and adds

[SL(ki−1, pA, ki),SL(ki−1, pB , zi)]
p, L⊕(zi,mi), and [L⊕(zi, ci)]

p−1 to the list leak. Here the two constants pA
and pB in use are the same as those in AEDT.

IESMk0(m1, . . . ,m`) eventually returns (c1, . . . , c`).

We define LIESMk0(m) = (IESMk0(m), leak) for the list leak standing at the end of the above process.

Fig. 15: The IESM scheme.

for every `-block message m, every pA, pB, and every (ql−2qr−q∗, t−2tr−t∗)-bounded distinguisher
DL, the following holds:

|Pr[DL(m, LRESMk0(m))⇒ 1]− Pr[DL(m, LIESMk0(m))⇒ 1]| ≤ `(εE + ε(2,2)-rsim).

Here qr = `(2qS + 3), q∗ and t∗ are as defined in Lemma 2, and tr = 2`(tS + t$ + tE) + ` · t⊕, where
tE, t$, and t⊕ are as assumed in Lemma 3.

Proof. We define G0 as the security game in which AL receives LRFSMs0(m) as the input, and G`
as the game in which AL receives LIFSMs0(m) as the input. We show that G0 could be transited
to G` via a sequence of intermediate games G1,G2, . . . ,G`−1, which resemble the games G∗1, . . . ,G

∗
`

appeared in the proof of Lemma 3. In detail, for j from 1 to `, we consider the game Gj−1: we replace
the two intermediate values Ekj−1

(pA) and Ekj−1
(pB) by two distinct random values kj and zj , and

replace the leakages [LE(kj−1, pA), LE(kj−1, pB)]p, L⊕(Ekj−1
(pB),mj), and [L⊕(Ekj−1

(pB), cj)]
p−1 by

[SL(kj−1, pA, kj),SL(kj−1, pB, zj)]
p, L⊕(zj ,mj), and [L⊕(zj , cj)]

p−1. This yields the game Gj . Clearly,

Pr[DGj ⇒ 1]− Pr[DGj−1 ⇒ 1] ≤ εE + ε(2,2)-rsim.

Therefore, the ` transitions eventually yield∣∣Pr[DG` ⇒ 1]− Pr[DG0 ⇒ 1]
∣∣ ≤ `(εE + ε(2,2)-rsim)

as claimed.

We then show the eavesdropper security of LIESM encrypting an `-block message relies on the
security of ISEnc.
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Lemma 8. For every pair of `-block messages m0 and m1 and (ql, t)-bounded adversary AL, there
exists a (ql + 2qr, t+ 2tr)-bounded adversary AL′ such that

|Pr[AL(LIESMk0(m0))⇒ 1]− Pr[AL(LIESMk0(m1))⇒ 1]|

≤
∑̀
i=1

|Pr[AL′(LISEnc+ki−1
(m0

i ))⇒ 1]− Pr[AL′(LISEnc+ki−1
(m1

i ))⇒ 1]|,

where k0, . . . , k`−1 are chosen uniformly at random, the pB value used in the scheme LISEnc+ki−1
(m1

i )

is pB, and m0
i and m1

i are the i-th block of m0 and m1 respectively. Here qr = `(2qS + 1) and
tr = `(2tS + 2t$ + t⊕), where tE, t$, and t⊕ are as assumed in Lemma 3.

Proof. Following the same line as the proof of Lemma 3, we start by building a sequence of ` + 1
messages mh,0, . . . ,mh,` starting from m0 and modifying its blocks one by one until obtaining m1.
That is, mh,i := m0

1‖ . . . ‖m0
`−i‖m1

`−i+1‖ . . . ‖m1
` . It can be shown

|Pr[AL(LIESMk0(mh,i−1))⇒ 1]− Pr[AL(LIESMk0(mh,i))⇒ 1]|

≤|Pr[AL′(LISEnc+k`−i(m
0
`−i+1))⇒ 1]− Pr[AL′(LISEnc+k`−i(m

1
`−i+1))⇒ 1]|.

Taking a summation yields the main claim.

Lemmas 2, 7, and 8 cinch the eavesdropper security on AEDT.

Lemma 9. Let E : {0, 1}n × {0, 1}n → {0, 1}n be a (2, t, εE)-PRP, whose implementation has a
leakage function LE having (qS , tS , ql, t, ε(2,2)-rsim) (2, 2)-R-simulatable leakages, and let SL be an
appropriate (qS , tS)-bounded leakage simulator. Then, for every pair of `-block messages m0 and
m1 and (ql − 2qr − q∗, t− 2tr − t∗)-bounded adversary AL, it holds

|Pr[AL(LRESMk0(m0))⇒ 1]− Pr[AL(LRESMk0(m1))⇒ 1]|
≤4`(εE + ε(2,2)-rsim) + ` · εs-block,

where qr, tr are as defined in Lemma 7, and q∗, t∗ are as defined in Lemma 2.

Proof. In a similar vein to Lemma 5.

And then Theorem 11 (the CCAmL2 security of AEDT) could be derived. Briefly speaking, we
note that the designs of AEDT and FEMALE share the following in common:

– First, their authentication components are the same;
– Second, their invalid decryption queries only leak some outputs of (E∗k)

−1, which are indistin-
guishable from meaningless random values.

Therefore, the proof just follows the same line as that of Theorem 4.

On Empty Message. At the end of this section, we again consider the case the scheme is used on an
empty message M = ⊥. In that case, it can be seen AEDT collapses to a hash-then-MAC function,
i.e., C = E∗k(1‖H(1‖R)), where R = H(0‖N‖A). Clearly, this provides authentication for A.

On the other hand, although it appears wasting to hash the input twice, it may not be wise to
drop the second call for this special case: on one hand, this would require the scheme to incorporate
a sub-mechanism to handle this case, resulting in an increased complexity; on the other hand, the
existing CIML2 security proof for AEDT may not hold for the “reduced” authentication function.
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