
Cost-Effective Private Linear Key Agreement With Adaptive CCA
Security from Prime Order Multilinear Maps and Tracing Trai tors

Mriganka Mandal and Ratna Dutta
Department of Mathematics, Indian Institute of TechnologyKharagpur, Kharagpur-721302, India

{mrigankamandal, ratna}@maths.iitkgp.ernet.in

Keywords: broadcast encryption, private linear key agreement, traitor tracing, multilinear maps, indistinguishability
obfuscation.

Abstract: Private linear key agreement(PLKA) enables a group of users to agree upon a common session key ina
broadcast encryption (BE) scenario, whiletraitor tracing (TT) system allows a tracer to identify conspiracy
of a troop of colluding pirate users. This paper introduces akey encapsulationmechanism inBE that provides
the functionalities of bothPLKA andTT in a unifiedcost-effectiveprimitive. OurPLKA based traitor tracing
offers a solution to the problem of achievingfull collusion resistanceproperty andpublic traceabilitysimul-
taneously with significant efficiency and storage compared to a sequential improvement of thePLKA based
traitor tracing systems. OurPLKA builds on aprime ordermultilinear group setting employing indistinguisha-
bility obfuscation (iO) and pseudorandom function (PRF). The resulting scheme has a fair communication,
storage and computational efficiency compared to that ofcompositeorder groups. OurPLKA is adaptively
chosen ciphertext attack(CCA)-secure and based on the hardness of the multilinear assumption, namely, the
Decisional Hybrid Diffie-Hellman Exponent (DHDHE) assumption in standard model and so far a plausible
improvement in the literature. More precisely, ourPLKA design significantly reduces the ciphertext size,
public parameter size and user secret key size. We frame a traitor tracing algorithm withshorterrunning time
which can be executedpublicly.

1 INTRODUCTION

A private linear key agreement(PLKA) under key
encapsulation framework requires the broadcaster to
broadcast a common message, called header, for
a specific type of user sets[i] ∈ S where S =

{[1], . . . , [N]} ⊂ 2[N] and[i] = {1, . . . , i} is the collec-
tion of users. Each user is assigned a private key by
a group manager (GM). TheGM is a trusted third
party and the role of a broadcaster may be played by
theGM or by a seperate entity depending on applica-
tions. The header along with the user’s pre-assigned
private key enables users in[i] to extract a session key
common to all the users in[i]. On the other hand,
a PLKA based broadcast encryption (BE) empowers
a content broadcaster to broadcast an encrypted mes-
sage under a common session key for[i] ∈ S so that
a useru∈ [i] can decrypt the ciphertext using his pri-
vate key. The users outside[i] obtain nothing even
if they collude for both the key encapsulation model
and broadcast model ofPLKA. The first construc-
tion for PLKA was designed by (Boneh et al., 2006;
Boneh and Waters, 2006) followed by a number of

works (Garg et al., 2010; Boneh and Zhandry, 2014;
Nishimaki et al., 2016).
Consider a traditional cable TV system where the
broadcaster broadcasts a classified digital content en-
crypted under a publicly known key to a set of le-
gitimate users. Each legitimate user, having a valid
private key embedded within a set-top box provided
by theGM, can successfully decrypt and recover the
classified content. Any user, who has paid to get his
private key from theGM, might make a reprint to re-
sell his private key or even publish it on the Inter-
net. This allows unauthorized users to decrypt the
classified content without having a legal authoriza-
tion, causing the broadcaster a massive financial loss.
Consequently, the broadcaster will attempt to identify
those rouge user.
A Traitor tracing (TT) system is devised to aid con-
tent broadcasters to identify conspiracy of defraud-
ers who create apirate decoderbox. A coalition of
traitors might make a conspiracy to create the pirate
decoder containing an arbitrarily complex and even
obfuscated malicious program and is capable of de-
crypting the encrypted digital content. The traitors

Table 1: comparison summary of communication, storage and other functionality

Scheme Group Type |PP| |sku| |CT| Traceability Complexity Assumptions

(Boneh and Waters, 2006) composite,BL 9
√

N+5 (
√

N+1) in G 6
√

N in G,
√

N in GT public D3DH, DHSD, BSD

(Boneh et al., 2006) composite,BL 4
√

N+3 1 in G 5
√

N in G,
√

N in GT secret D3DH, DHSD, BSD

(Garg et al., 2010) prime,BL 4
√

N+1 (
√

N+1) in G 6
√

N in G,
√

N in GT public D3DH, XDH

(Boneh and Zhandry, 2014) − poly(logN,η) η poly(logN,η) public iO & FE security

(Nishimaki et al., 2016)−I − poly(η) poly(n) poly(n, |m|) public iO & FE security

(Nishimaki et al., 2016)−II − poly(logn) poly(n) |m|+poly(logn) public iO security

(Garg et al., 2016) composite,ML poly(logN) poly(logN) poly(logN) public FE security

Ours prime,ML poly(logN,η) 1 in G~ρ 2 inG~ρ , 3η, log(N) public DHDHE andiO security

|PP| = public parameter size,|sku| = user secret key size,|CT| = ciphertext size,BL = bilinear,ML = multilinear,FE = functional encryption,D3DH =

Decision (modified) 3-party Diffie-Hellman,DHSD=Diffie-Hellman Subgroup Decision,BSD= Bilinear Subgroup Decision,XDH=External Diffie-Hellman,

DHDHE= Decisional Hybrid Diffie-Hellman Exponent assumptions,G = Bilinear source group,GT = Bilinear target group,G~ρ = Multilinear intermediate

group,n= arbitrary bit-length of user identity,|m|= message-bit length,N = total number of users in the system and,η = security parameter.

might alter their private keys in such a way that the al-
tered keys cannot be linked with their original private
keys. A traitor tracing system runs an efficienttracing
algorithm that interacts with the pirate decoder con-
sidering it as ablack-box oracleand outputs at least
one identity of the traitors in the coalition who was
involved to create the malicious program using his
own private key. Pirate cable TV, set-top decoders,
encrypted satellite radio, pirate decryption software
posted on the Internet etc. are few examples of pirate
decoder box.
A naive approach to address this problem is the fol-
lowing. For a system havingN users, the broadcaster
broadcastsN ciphertext underN different public keys
whereby a legitimate user can decrypt the ciphertext
corresponding to his own secret key. Consequently,
given any pirate decoder, it is easy to pinpoint at least
one traitor whose secret key is used to fabricate the
pirate decoder. However, this solution is inefficient as
the ciphertext size is linear inN. Although aPLKA
system has the capability of fraud detection, it is not
always possible to switch a generalBE scheme into
a tracing scheme. Designing aPLKA traitor tracing,
with shorter size ciphertext, public parameter and the
user secret key is a challenging task.
Related work. Traitor tracing was formally intro-
duced by (Chor et al., 1994), followed by a several
works in different flavors (Kiayias and Yung, 2001;
Boneh and Waters, 2006; Boneh et al., 2006; Garg
et al., 2010; Boneh and Zhandry, 2014; Nishimaki
et al., 2016; Garg et al., 2016).
In 2001, (Kiayias and Yung, 2001) proposedt-
collusion resistant tracing mechanism with ciphertext
size linear int. A collusion of at mostt-users are al-
lowed to construct a pirate decoder in such system.
The first fully collusion resistantPLKA with traitor
tracing was proposed by (Boneh and Waters, 2006;
Boneh et al., 2006) in composite order bilinear group
with sublinear size parameters. Later, (Garg et al.,

2010) developed a similar variant on prime order bili-
nar group setting. Depending on the tracing author-
ity, traitor tracing systems fall into two categories−
(a) publicly traceablethat does not require any se-
cret inputs except the public parameter in the trac-
ing algorithm (Boneh and Waters, 2006; Garg et al.,
2010; Boneh and Zhandry, 2014; Nishimaki et al.,
2016; Garg et al., 2016), and (b)secretly traceable
which uses a secret tracing key to identify rogue users
(Boneh et al., 2006; Kiayias and Yung, 2001). In
2014, (Boneh and Zhandry, 2014) constructed a fully
collusion resistantPLKA traitor tracing with public
traceability utilizing the constrained pseudorandom
functions (cPRFs) and indistinguishability obfusca-
tion (iO). All the aforementionedPLKA schemes use
theHybrid Coloringtracing approach of (Kiayias and
Yung, 2001). AdoptingiO, (Nishimaki et al., 2016)
exhibited that aPLKA traitor tracing is an immediate
consequence of functional encryption (FE). In (Garg
et al., 2016), aFE scheme is designed incompos-
ite order asymmetric multilinear group setting with-
out iO and provides another indirect construction of
traitor tracing. As pointed out by (Garg et al., 2010),
the communication, storage, and computational effi-
ciency ofprime order groups are much higher com-
pared to that ofcompositeorder group. None of the
schemes (Nishimaki et al., 2016; Garg et al., 2016)
provide explicit construction ofPLKA traitor tracing.
Our main focus in this work is to build aPLKA traitor
tracing scheme overprime order multilinear groups
(Coron et al., 2015; Gentry et al., 2015) achieving
order-of-magnitude improvements in efficiency and
storage without any security breach.

Our contribution. We design aPLKA construction
coupling pseudorandom function (PRF) of (Goldre-
ich et al., 1986) with indistinguishability obfuscation
(iO), and adopting multilinear maps overprime or-
der group. Note that several recent attacks have bro-
ken many assumptions on known multilinear maps

Table 2: Comparative summary of computation and tracing time

PLKA Pairing Exponentiation Product Running Time of Tracing Algorithm

(Boneh and Waters, 2006) 3
√

N+4 (bilinear) 3N+(N+15)
√

N+4 4N+5
√

N+4 O(N3)

(Boneh et al., 2006) 2
√

N+3 (bilinear) 2N+10
√

N+1 N+3
√

N+4 O(N3)

(Garg et al., 2010)
√

N+8 (bilinear) 3N+24
√

N 3
√

N+11 O(N3)

Ours 2 (multilinear) 3N+8 2N+3 poly((logN)2,η)

N = total number of users in the system,η = security parameter.

(Coron et al., 2015; Gentry et al., 2015). Recently,
(Gu, 2015) constructed a new variant of the multi-
linear maps which seemed to thwart known attacks.
We skillfully integrate the tracing mechanism of (Ki-
ayias and Yung, 2001) in ourPLKA, yielding thefirst
fully collusion resistant andpublicly traceablePLKA
traitor tracing in key encapsulation framework over
primeorder multilinear group setting with tracing al-
gorithm havingshorterrunning time. We summarize
below our main findings in this work:
• Our PLKA construction significantly reduces the
parameter sizes as exhibited by Table 1. The pub-
lic parameter size in our construction ispolylogarith-
mic in N while the ciphertext size islogarithmic in
N. Here,N is the total number of users in the system.
More interestingly, user secret key is a single multi-
linear group element in ourPLKA.
• We emphasize that our scheme isadaptively cho-
sen ciphertext attack(CCA)-secure under the Deci-
sional Hybrid Diffie-Hellman Exponent (DHDHE)-
assumption instandard securitymodel and relies on
iO security. Note that recentlyiO is aggregately con-
structible from the puncturable secret key functional
encryption (Kitagawa et al., 2018). Our tracing al-
gorithm enables to trace the conspiracy of an arbi-
trary number of defrauders using the public parame-
ter only. On a more positive note, we have shown that
although we follow the tracing approach of (Kiayias
and Yung, 2001), the run time of our tracing algorithm
is poly((logN)2,η), whereη is the security parame-
ter. Running time of tracing algorithms isO(N3) for
all the existingPLKA traitor tracing schemes based
on Hybrid Coloring tracing mechanism of (Kiayias
and Yung, 2001). In sum, we achieve apublicly
traceableand fully collusion resistanttraitor tracing
scheme withshorterrunning time.
• The PLKA design of (Boneh and Waters, 2006;
Boneh et al., 2006; Garg et al., 2010) uses bilin-
ear maps while that of (Boneh and Zhandry, 2014)
is constructed using the security ofiO and cPRFs
(Boneh and Waters, 2013). The work of (Nishi-
maki et al., 2016; Garg et al., 2016) are based on
FE. CouplingiO with the one way function, (Nishi-
maki et al., 2016) constructed aFE scheme and fur-
nished an idea to transform it into a traitor tracing
scheme. They set up with the exponentially large

identity space and embedded user’s arbitrary informa-
tion in their secret key. As a result, the user iden-
tily bit-length become arbitrarily large. As shown
in Table 1, the size of ciphertext and the user secret
key in their works grow with the identity bit-length
which is arbitrarily large, and also the ciphertext size
depends on the message-bit length. The size of the
parameters in ourPLKA construction are indepen-
dent of identity bit-length as well as the message-
bit length. OurPLKA has similar parameter sizes
as that of thePLKA of (Boneh and Zhandry, 2014)
which stance upon fourcPRFs in generic forms show-
ing only the input-output behaviour. Additionally, the
work of (Boneh and Zhandry, 2014) utilizes the mul-
tilinear map basedcPRF of (Boneh and Waters, 2013)
which are themselves based on multilinear maps that
requires at leastO(logN) symmetric multilinear pair-
ing operations which are known to be very expensive.
In contrast, we use only twoPRFsof (Goldreich et al.,
1986) which are efficient due to their inherent tree
structures.
• Table 2 shows the computation comparison in terms
of number of pairings, exponentiations, multiplica-
tions and run time of the tracing algorithm. We
exclude (Garg et al., 2016; Nishimaki et al., 2016;
Boneh and Zhandry, 2014) from Table 2 as suitable
FE schemes and multiparty key exchange protocols
are the primary requirements in these works rather
than direct constructions for traitor tracing. To trace
all the traitors, (Nishimaki et al., 2016) proposed an
oracle jump finding(OJF) problem and showed that
anyPLKA is sufficient for traitor tracing employing
OJF problem. However, to run the tracing algorithm,
the works of (Nishimaki et al., 2016) requires the to-
tal numberq of traitors belonging to the pirate de-
coderD as an extra input and run time ofOJF al-
gorithm ispoly(logN,q,η) which is faster than our
PLKA construction. For the bounded collusion resis-
tant schemes,q is publicly known. In many real life
scenarios, the tracing algorithm is givenblack-boxin-
teractions withD and findingq at prior not always
possible. Unlike this, our tracing algorithm does not
require any prior knowledge of parameters likeq and
runs inpoly((logN)2,η) time using only the public
parameter as the inputs.

2 PRELIMINARY

Notation. Let, [j] = {1, . . . , j} be the set of all pos-
itive integers from 1 toj. Given any setS, x ∈R S
stands forx drawn uniformly at random fromS. For
a randomized algorithmRandA, y← RandA(z) rep-
resents output byRandA on inputz. A probabilistic
polynomial time algorithm is denoted byPPT andη
is the security parameter.

Definition 1. (Negligible Function) A functionΨ :
N→ R is said to be negligible in N, if for every pos-
itive integer c there exists an integer Nc such that
|Ψ(N)|< 1

Nc for all N > Nc.

Definition 2. (Chernoff Bound) Let, X =
n
∑

i=1
Xi ,

where Xi independent random variables for i=
1, . . . ,n. LetXi = 1 with probability pi , Xi = 0 with

probability1− pi and µ= E(X) =
n
∑

i=1
pi is the expec-

tation. Then, Pr[|X −µ| ≥ a]≤ 2e
−2a2

n , where a= µδ
is an arbitrary constant and0< δ < 1.

Definition 3. (Pseudorandom Function(PRF)) A
PRF (Blum and Micali, 1984) is a function denoted
byPRF : K ×X → Y , that can be computed by a de-
terministic polynomial time algorithm which on input
a fixed but randomly chosen key k∈ K and any point
x ∈ X , outputsPRF(k,x) ∈ Y such thatPRF(k, ·) is
indistinguishable from a random function.

Henceforth,PRFk(·) refers toPRF(k, ·) for a random
keyk∈ K .

Definition 4. (Indistinguishability Obfuscator) A
uniform probabilistic polynomial time machineiO for
a circuit class{Cη}, with circuits of size at mostη, is
called an indistinguishability obfuscator (iO) (Kita-
gawa et al., 2018) if it amuses the following proper-
ties.
• Functionality Preserving: For all security parame-
tersη ∈ N, for all circuit C ∈ {Cη} and for all inputs
x, iO(η,C) preserves the functionality of the circuit C
under the obfuscation, i.e., Pr[∀x,C′(x) =C(x) : C

′←
iO(η,C)] = 1.
• Indistinguishability: For all pairs of probabilis-
tic polynomial time adversariesA = (D1,D2),
there exists a negligible functionζ(η) such
that, if Pr[∀x,C0(x) = C1(x) : (C0,C1,σ) ←
D1(η)] > 1 − ζ(η) then |Pr[D2(σ, iO(η,C0)) =
1] − Pr[D2(σ, iO(η,C1)) = 1]| < ζ(η). In other
words, if two circuits C0,C1 ∈ {Cη} have the same
functionality, then the obfuscated circuitsiO(η,C0)
and iO(η,C1) are also indistinguishable, where the
probability is taken over the random coins ofD2 and
the obfuscatoriO.

Note that if no confusion arises, we will omitη as an
input to iO and as a subscript forC .

2.1 Asymmetric Multilinear Map and
Complexity Assumption

A (leveled) asymmetric multilinear mapaM M =
(aM M .Setup,e~ϑ1,~ϑ2

) of (Coron et al., 2015; Gentry
et al., 2015) consists of the following two algorithms.
• (aPPM)← aM M .Setup(1η,~ρ): It takes as input
the security parameter 1η and sets up~ρ-leveled linear
map, where~ρ is some positive vector of lengthκ+1.
It outputs a description of all possible groupsG~ϑ for

all the vectors~ϑ ∈ (N∪{0})κ+1 with the restriction
that~ϑ ≤~ρ (with component-wise comparison). For
all such vectors~ϑ, it outputs the canonical generators
g~ϑ ∈G~ϑ. Let~ei , i = 0, . . . ,κ be thei-th standard basis
vector, with 1 at positioni and 0 elsewhere. Define
G~ei as thei-th source group,G~ρ as the target group,
and rest ofG~ϑ as the intermediate groups and all the
groups have same large prime orderp> 2η. As there
are uncountable numbers of such vectors, it is hard to
publish all. Instead, one can publish a public parame-
teraPPM= (κ,g~e0, . . . ,g~eκ) consisting of only source
groups’ canonical generators.
• (gab

~ϑ1+~ϑ2
)← e~ϑ1,~ϑ2

(ga
~ϑ1
,gb

~ϑ2
): On input elements

ga
~ϑ1
∈ G~ϑ1

, gb
~ϑ2
∈ G~ϑ2

with ~ϑ1 +~ϑ2 ≤~ρ, ~ϑ1,~ϑ2 ∈R

(N∪{0})κ+1, for all a,b∈R Zp and it outputs an ele-
ment ofG~ϑ1+~ϑ2

such thate~ϑ1,~ϑ2
(ga

~ϑ1
,gb

~ϑ2
) = gab

~ϑ1+~ϑ2
.

Note that if no confusion arises, we often omit the
subscripts and just writee. We can also gener-
alize e to multiple inputs ase(h(1),h(2), . . . ,h(ζ)) =
e(h(1),e(h(2), . . . ,h(ζ))). The following assumption is
from (Boneh et al., 2014).

– It runs the algorithmaM M .Setup(1η,2~ρ) to
generateaPPM = (κ,g~e0, . . . ,g~eκ) and e is
the description of the multilinear map

– It picks randomt and ξ from Zp and com-

putesV = gt
~ρ, Γ0 = (g~e0)

ξ, Γ1 = (g~e1)
ξ2

, . . .,

Γκ−1 = (g~eκ−1)
ξ2κ−1

, Γκ = (g~eκ)
ξ2κ+1

– It setsT0 = (g2~ρ)
tξ2κ

, T1 = R∈R G2~ρ

– It returnsχµ = (e,aPPM, Γ0, . . . , Γκ−1,Γκ,
V,Tµ)

Figure 1:κ-DHDHE instance generatorGκ−DHDHE
µ

κ-Decisional Hybrid Diffie-Hellman Exponent As-

sumption (κ-DHDHE). Theκ-DHDHE problem is to
guessµ∈ {0,1} givenχµ= (e,aPPM,Γ0,. . ., Γκ,V,Tµ)

generated by the generatorGκ−DHDHE
µ given in Figure

1.

Definition 5. (κ-DHDHE Assumption) The κ-
DHDHE assumption is thatAdvκ−DHDHE

B (η) is at
most negligible for allPPT algorithmsB .

2.2 Hybrid Coloring

A Hybrid Coloringof the user population, introduced
by (Kiayias and Yung, 2001), is a partition of the total
number of users[N] in a broadcast encryption (BE)
system. A random ciphertextCR induces aHybrid
Coloringover[N] as follows.
• Let D be a pirate decoder (PD) box. We
define an equivalence relationover the user se-
cret key space as follows: for all u,u

′ ∈
[N] and a negligible quantityε, pku ≡ pku′ iff
Pr
[
D(1η,pku,CR) 6= D(1η,pku′ ,CR)

]
≤ ε.

• Assume thatCm be a ciphertext corresponding to
a valid messagem. Then, with overwhelming high
probability D(1η,pku,Cm) = D(1η,pku,Cm), for all
u,u

′ ∈ [N]. In that case, we get a unique equivalence
class. Consequently, all the users will get the same
color. Let,CiphrR be the set of all random cipher-
texts such that for allC

′ ∈CiphrR,C
′
induces a unique

equivalence class. Then, the set of all valid cipher-
texts constitute a subset ofCiphrR.
• A BE scheme induces aHybrid Coloring if there
exist an algorithm that produces a ciphertextC such
thatC induces a partition over the user population.

One important observation regarding the tracing
algorithm of (Kiayias and Yung, 2001) is formally
stated by the following lemma.

Lemma 1. (Kiayias and Yung, 2001) The tracing pro-
cedure using theHybrid Coloringhas time complexity
O(N3 log2N) and identify a traitor with high proba-
bility.

3 OUR PLKA TRACING SCHEME

Our PLKA consists of three randomized algorithms
PLKA.Setup, PLKA.Enc, PLKA.Dec and an external
tracing algorithmPLKA.TraceD which are described
below.
• (plparams,(plsk1,. . .,plskN))← PLKA.Setup(η,κ):
The group manager (GM) takes as input the length
κ of the identities along with the security parame-
ter η and proceeds as follows. The identity space is
I D = {0,1}κ\{0κ} and the total number of users the
system can allow isN = (2κ−1).

(i) TheGM first constructs~ρ = (1, . . . ,1), a (κ+
1)-length vector with all 1’s, and runs the setup al-
gorithmaM M .Setup(1η,2~ρ) for the multilinear map
described in section 2.1 to generate the public param-
eteraPPM= (κ,g~e0, . . . ,g~eκ) whereg~ei is the canoni-
cal generator of thei-th source groupG~ei for 0≤ i ≤ κ
and G2~ρ is the target group. All the groups have
the same large prime orderp > 2η. It generates the
canonical generatorsg~ρ andg2~ρ of the groupsG~ρ and
G2~ρ respectively by the repeated multilinear pairing
operations usingaPPM.

(ii) Two GGM tree (Goldreich et al., 1986) based
secure pseudorandom functionsPRFrand : {0,1}2η→
{0, . . . ,N} andPRFauth : {0,1}2η× [N]→{0,1}η are
selected by theGM whererand, auth are keys ran-
domly chosen from the key spaceK = {0,1}η. It also
picksPRG : {0,1}η→ {0,1}2η, the length doubling
pseudorandom generator (Blum and Micali, 1984).

(iii) The GM choosesξ,τ ∈R Zp, sets the pro-
gramsPTEnc (Figure 2),PTDec (Figure 3) and obfus-
cate these to generate obfuscated programsP̃TEnc =

iO(PTEnc), P̃TDec = iO(PTDec) respectively using
a secure indistinguishability obfuscatoriO. The
program PTEnc(j ∈ [N], t ∈ Zp,s ∈ {0,1}η) has
(PRFrand,PRFauth,(ξ, τ),κ,g~ρ,g2~ρ) hard-coded in it
and runs on inputj, t,s to generate a header-session
key pair(Hdr= (r ∈ {0,1}2η, C1 ∈ [N], C2 ∈ {0,1}η,

C3 ∈G~ρ, C4 ∈G~ρ), KPLKA = (g2~ρ)
tξ2κ

).

Inputs: j ∈ [N], t ∈ Zp, s∈ {0,1}η

Constants:PRFrand, PRFauth, (ξ,τ), κ, g~ρ, g2~ρ

1. Compute:

(a) r = PRG(s)
(b) C1 = (PRFrand(r)+ j) mod(N+1)
(c) C2 = PRFauth(r,C1)

(d) C3 = (g~ρ)
t andC4 = (g~ρ)

t

{
τ+

j
∑

i=1
ξ2κ−i

}

2. Set:KPLKA = (g2~ρ)
tξ2κ

3. Output:(Hdr = (r,C1,C2,C3,C4),KPLKA)

Figure 2: The programPTEnc

On the other hand, the programPTDec(Hdr, u∈ [N],
plsku ∈ G~ρ) has PRFrand,PRFauth,(ξ,τ),κ,g~ρ,g2~ρ
hard-coded in it and runs on inputsHdr, u, plsku to
generate the correct session keyKPLKA. The obfus-
cated programs̃PTEnc and P̃TDec behave in a sim-
ilar manner asPTEnc andPTDec respectively. That
is, on the same input,PTEnc andP̃TEnc generate the

same output. Similarly,PTDec and P̃TDec provide
the same output on the same input. Note that in step
1(b) of PTEnc, from the GGM tree based construc-
tion PRFrand(r) is anη-bit string which is converted
to an integer and added toj modulo(N+1) to gen-
erate header componentC2. Similarly, in step 1(a) of
PTDec, to recoverj from the header componentC1 we
consider the integer representation of theη-bit string
PRFrand(r).

Inputs: Hdr =(r ∈ {0,1}2η, C1 ∈ [N],
C2 ∈ {0,1}η, C3 ∈ G~ρ, C4 ∈ G~ρ), u ∈ [N],
plsku ∈G~ρ

Constants:PRFrand, PRFauth, (ξ,τ), κ, g~ρ, g2~ρ

1. Compute:

(a) j = (C1−PRFrand(r)) mod(N+1)
(b) x= PRG(PRFauth(r,C1))

(c) y= (g~ρ)
τξu

2. Check that (u≤ j) ∧ (x= PRG(C2)) ∧
(y= plsku)

(a) If check fails, output⊥ and stop
(b) Otherwise, compute:

i. Λ2κ−i+u = (g~ρ)
ξ2κ−i+u

for all i ∈ [j], i 6= u

andΛu = (g~ρ)
ξu

ii. KPLKA =
e(Λu,C4)

e

(plsku ·

j
∏
i=1
i 6=u

Λ2κ−i+u),C3

3. Output:KPLKA

Figure 3: The programPTDec

(iv) The GM finally publishes the pri-
vate linear public parameter plparams=

(PRFrand,PRFauth,PRG,P̃TEnc,P̃TDec). For each
user u ∈ [N], it computes the user secret key
plsku = (g~ρ)

τξu
and sendsplsku to useru through a

secure communication channel between theGM and
the useru.
• (Hdr,KPLKA)← PLKA.Enc(plparams, j ∈ [N]): On
input an integerj ∈ [N] and the public parameter
plparams, the encryptor executes the following steps.

(i) It chooses elementst ∈R Zp ands∈R {0,1}η.
(ii) It generates(Hdr = (r,C1,C2,C3,C4),KPLKA)

by running the programP̃TEnc, extracted from
plparams, on input (j ∈ [N], t ∈ Zp, s ∈ {0,1}η),
whereHdr=(r,C1,C2,C3,C4) is the ciphertext header
andKPLKA is the session key for all the users in the set

[j].
(iii) Finally, it publishesHdr as the ciphertext and

keepsKPLKA as secret to itself.

Algorithm 1 Traitor tracing programTraceD

1: Input: plparams, ε
2: for i = 0 toN do
3: success← 0

4: for j = 1 to 2
(

logN
ε

)2
do

5: (Hdr(i),K(i)
PLKA)←PLKA.Enc(plparams, i)

6: K(i
′
)

PLKA←D(Hdr(i))

7: if K(i)
PLKA = K(i

′
)

PLKA then
8: success← success+1
9: end if

10: end for
11: Y obsrv

i ← success
12: end for
13: return T

TTS =
{

i : Y obsrv
i −Y obsrv

i−1 ≥ 4(logN)2

ε

}

•(KPLKA∨⊥) ← PLKA.Dec(plparams,u ∈
[N],plsku,Hdr = (r,C1,C2,C3,C4)): A user u ∈ [N]

uses secret keyplsku = (g~ρ)
τξu

to recover the
session key KPLKA from the ciphertext header
Hdr = (r,C1,C2,C3,C4) as follows.

(i) It runs the programP̃TDec, extracted from
plparams, on input(Hdr=(r,C1,C2,C3,C4),u,plsku).

(ii) If it passes all the checking conditions in step
2 of the programP̃TDec = iO(PTDec) in Figure 3, it
gets the correct keyKPLKA as the output; otherwise
gets⊥.
• TTTS ← PLKA.TraceD(plparams,ε): The tracer
takes as input the public parameterplparams, a pa-
rameterε which is polynomially related to the secu-
rity parameterη. It runs theTraceD program of Fig-
ure 1, on input the public parameterplparams and
the parameterε. It outputs the set of usersTTTS ⊆
{1, . . . ,N} as the traitor users.
The proof of our tracing algorithm is given by the
Theorem 2.
Correctness. Let, u, j ∈[N] and 1≤u≤ j≤ N. Let,
(plparams,(plsk1,. . .,plskN))←PLKA.Setup(η,κ),
where plparams= (PRFrand,PRFauth,PRG,P̃TEnc,
P̃TDec) and plsku = (g~ρ)

τξu
. Let (Hdr,KPLKA =

(g2~ρ)
tξ2κ

) ← PLKA.Enc(plparams, j ∈ [N]), where
Hdr = (r,C1,C2,C3,C4) with

C1 = (PRFrand(r)+ j) mod(N+1), C3 = (g~ρ)
t ,

C2 = PRFauth(r,C1), C4 = (g~ρ)
t

{
τ+

j
∑

i=1
ξ2κ−i

}

.

A user u, with its secret keyplsku = (g~ρ)
τξu

runs
PLKA.Dec(plparams,u,plsku,Hdr). If u passes all
the conditions in step 2 of the program in Figure 3
in executing the program̃PTDec in plparams, then we
show below thatu can recover the correct session key

KPLKA = (g2~ρ)
tξ2κ

by extractingC3 andC4 from Hdr
and proceeding as follows.

As, Λ2κ−i+u = (g~ρ)
ξ2κ−i+u

and Λu = (g~ρ)
ξu

are
given inPTDec, we have

e(Λu,C4)

/
e

plsku ·

j

∏
i=1
i 6=u

Λ2κ−i+u,C3

=

e

(g~ρ)

ξu
,(g~ρ)

t

{
τ+

j
∑

i=1
ξ2κ−i

}

e

(g~ρ)τξu ·

j

∏
i=1
i 6=u

(g~ρ)ξ2κ−i+u
,(g~ρ)t

=
(g2~ρ)

ξut
j

∑
i=1

ξ2κ−i

(g2~ρ)

t
j

∑
i=1
i 6=u

ξ2κ−i+u

= (g2~ρ)
tξ2κ

= KPLKA

Remark 1. As the set systemS = {[1], . . . , [N]} has
only a polynomial number of recipient sets in it, ac-
cording to (Boneh and Zhandry, 2014), the selective
and the adaptive security are equivalent.

4 SECURITY ANALYSIS

Theorem 1. (Security of Indistinguishability) As-
suming secureiO, our PLKA scheme, presented in
section 3, achieves adaptiveCCA-security under the
κ-DHDHE assumption.

Proof. Proof. We assume that there exists an ad-
versaryA that can break theCCA-security of our
PLKA scheme. We will construct an adversaryB that
breaks theκ-DHDHE assumption usingA as a sub-
router. As the recipient set in ourPLKA is of the form
S = {[1], . . . , [N]}, i.e., only a polynomial number of
recipient sets inS , the selective and adaptive security
are equivalent. Therefore, we can assume thatA com-
mits to a target set before seeing the public parameter
or the secret keys for the users.

− Initialization : At the beginning of the game, a poly-
nomial sized set[j∗] from S is selected byA and sub-
mitted to B . Here,B works as a challenger in the
PLKA CCA-security game.

− Setup : The adversaryB obtains the challenge in-
stanceχµ = (e,aPPM,Γ0, . . . ,Γκ−1,Γκ,V,Tµ), from
the κ-DHDHE challenger CDHDHE, where e =
description of the multilinear map,aPPM =
(κ, g~e0, . . . , g~eκ), V = (g~ρ)

t , Γ0 = (g~e0)
ξ,Γ1 =

(g~e1)
ξ2
, . . . ,Γκ−1 = (g~eκ−1)

ξ2κ−1

andΓκ = (g~eκ)
ξ2κ+1

.
Also,

Tµ =

{
(g2~ρ)

tξ2κ
if µ= 0

a random elementR of G2~ρ if µ= 1

Here, t andξ are random elements chosen fromZp
by CDHDHE. The adversaryB executes the following
sequence of games to correctly generate the public pa-
rameterplparams.

The adversaryB selects two random keysrand∗,
auth∗ ∈R {0,1}η, which are different from the keys
chosen in the original protocol, for the two pseudo-
random functionsPRFrand∗ : {0,1}2η → {0, . . . ,N}
andPRFauth∗ : {0,1}2η× [N]→ {0,1}η respectively.
By the security of thePRF, the output ofPRFrand

in the original protocol andPRFrand∗ as well as the
outputs ofPRFauth and PRFauth∗ , on the same in-
puts, are computationally indistinguishable. It also
picks PRG : {0,1}η → {0,1}2η, a length doubling
pseudorandom generator (Blum and Micali, 1984).
Then,B chooses a random elements∗ from {0,1}η

and sets the challenge ciphertext header-session key
pair as (Hdr∗ = (r∗,C∗1,C

∗
2,C

∗
3,C

∗
4),K

∗
PLKA = Tµ),

wherer∗ = PRG(s∗), C∗1 = (PRFrand∗(r∗)+ j∗) mod
(N+1), C∗2 = PRFauth∗(r∗,C∗1), C∗3 =V andC∗4 =Vβ,
andβ is randomly chosen fromZp. It also computes

∆ =

(
(g~ρ)

β

/
j∗

∏
i=1

Λ2κ−i

)
= (g~ρ)

τ (1)

by implicitly setting τ = β −
j∗

∑
i=1

ξ2κ−i and com-

puting Λ2κ−i = (g~ρ)
ξ2κ−i

for all i ∈ [j∗] where
g~ρ = e(g~e0, . . . ,g~eκ) is computed usingaPPM =

(e,κ,g~e0, . . . ,g~eκ). Also, by pairing various{Γi}κ
i=0

together,B can build all theΛu for u≤ 2κ−1 = N. In

particular, ifu=
κ−1
∑

i=0
ui2i is the binary representation

of u, then

Λu = e
(

Γu0
0 g1−u0

~e0
, . . . ,Γuκ−1

κ−1 g
1−uκ−1
~eκ−1

,g~eκ

)
(2)

To computeΛu for u≥ 2κ+1 = N+ 2, setu
′
= u−

(2κ +1) =
κ−1
∑

i=0
u
′
i2

i . Then,B can write

Λu = e

(
Γu
′
0

0 g
1−u

′
0

~e0
, . . . ,Γu

′
κ−1

κ−1 g
1−u

′
κ−1

~eκ−1
,Γκ

)
(3)

Note that the parametersaPPM, {Γi}κ
i=0, V and Tµ

are extracted fromκ-DHDHE instanceχµ. SinceV =
(g~ρ)

t ,

Vβ = (g~ρ)
tβ = (g~ρ)

t

{
τ+

j∗
∑

i=1
ξ2κ−i

}

therebyC∗3 andC∗4 are valid ciphertext header compo-
nents and henceHdr∗ = (r∗,C∗1,C

∗
2,C

∗
3,C

∗
4) is a valid

ciphertext header for the challenge set[j∗]. Observe
thatK∗PLKA is a correct session key for this ciphertext
header ifµ= 0.

The adversaryB slightly changes the above game
by choosing the challenge componentr∗ as a ran-
dom value in{0,1}2η. This game is indistinguishable
from the above game by the security ofPRG. Now,
with high probability,r∗ is not in the image ofPRG.
Since, B generates the challenge ciphertext header
Hdr∗ = (r∗,C∗1,C

∗
2,C

∗
3,C

∗
4) before givingA the pub-

lic parameter,B can puncture the encryption program
atHdr∗, meaning that if the encryption program gen-
erates a ciphertext header which is equal to the chal-
lenge ciphertext headerHdr∗, then the program will
set the session key as a random element of the group
G2~ρ which has exactly the same distribution as the
original session key inG2~ρ.

Input: j ∈ [N], t ∈ Zp, s∈ {0,1}η

Constants: PRFrand∗ ,PRFauth∗ ,κ,g~ρ,g2~ρ,

{Γi}κ
i=0 ,Hdr

∗ = (r∗,C∗1,C
∗
2,C

∗
3,C

∗
4),A,∆

1. Compute:

(a) r = PRG(s)
(b) C1 = (PRFrand∗(r)+ j) mod(N+1)
(c) C2 = PRFauth∗(r,C1)

(d) C3 = (g~ρ)
t and C4 =

(
∆ ·

j
∏
i=1

Λ2κ−i

)t

,

whereΛ2κ−i = (g~ρ)
ξ2κ−i

for 1≤ i ≤ j are
computed using{Γi}κ

i=0 by repeated mul-
tilinear operations as explained in equation
2 and 3.

2. Set:

KPLKA =

{
W ∈R G2~ρ if Hdr∗ = Hdr

At otherwise

3. Output:(Hdr = (r,C1,C2,C3,C4),KPLKA).

Figure 4: The programPT∗Enc

The adversaryB sets the modified encryp-
tion program PT∗Enc shown in Figure 4. We

mark the portions in PT∗Enc that differ from
original encryption programPTEnc (in Figure
2) using rectangular boxes. To be more spe-
cific, the programPT∗Enc(j, t,s) has parameters
(PRFrand∗ ,PRFauth∗ ,κ,g~ρ,g2~ρ,β,{Γi}κ

i=0 ,Hdr
∗ =

(r∗,C∗1,C
∗
2,C

∗
3,C

∗
4),A, ∆) hard-coded in it and runs

on inputs j ∈ [N], t ∈ Zp and s ∈ {0,1}η to gen-
erate a header-session key pair(Hdr,KPLKA). The
main difference betweenPTEnc and PT∗Enc is that
(ξ, τ) are random inPTEnc, whereas those are
implicitly set in PT∗Enc using {Γ}κ

i=0 (extracted
from κ-DHDHE instanceχµ) and settingβ as in
equation 1. The programPT∗Enc has a parameter
A hard-coded which is computed byB by setting
A = e(A

′
,A
′
) whereA

′
= e(g~e0, . . . ,g~eκ−1,Γκ−1,g~eκ).

Since Γκ−1 = (g~eκ−1)
ξ2κ−1

, B has A
′
= (g~ρ)

ξ2κ−1

and KPLKA = At = (g2~ρ)
tξ2κ

. Consequently,KPLKA

has the same distribution overG2~ρ in both PT∗Enc
(Figure 4) andPTEnc (Figure 2). Also, the ciphertext
componentC4 in step 1.(d) of PT∗Enc (Figure 4) has
the same distribution as that inPTEnc(Figure 2), as

C4 =

(
∆ ·

j

∏
i=1

Λ2κ−i

)t

=

(
(g~ρ)

τ ·
j

∏
i=1

Λ2κ−i

)t

=
(
g~ρ
)t
{

τ+
j

∑
i=1

ξ(2κ−i)

}

.

Note thatτ is implicitly sets as in equation 1 andβ is
random, therebyτ is random.

Observe that both the programsPTEnc in Figure
2 andPT∗Enc in Figure 4 have size at most polyloga-
rithmic in the total number of users and the security
parameter of the system, i.e.,poly(logN,η). Also, B
has punctured the programPT∗Enc at the challenge ci-
phertext headerHdr∗ = (r∗,C∗1,C

∗
2,C

∗
3,C

∗
4) in step 2.

Thus, outputs of̃PTEnc andP̃T
∗
Enc differ only when

Hdr = Hdr∗, sinceKPLKA = (g2~ρ)
tξ2κ

in PTEnc while
KPLKA = W in PT∗Enc, whereW is randomly chosen
from G2~ρ. However,Hdr 6= Hdr∗ with overwhelm-
ing high probability by the security ofPRG. Hence,

by the indistinguishability property ofiO, P̃T
∗
Enc =

iO(PT∗Enc) andP̃TEnc = iO(PTEnc) are computation-
ally indistinguishable.

This game is identical to the previous game ex-
cept the manner in which the decryption program
is constructed. The adversaryB ’s goal is to punc-
ture the decryption program at the pointHdr∗ =
(r∗,C∗1,C

∗
2,C

∗
3,C

∗
4) and the naive way to accomplish

this is to set random elements ofG~ρ as a se-
cret key for all useru ≤ j∗ and hard-codeplsku =(
(Λu)

β

/
j∗

∏
i=1

Λ2κ−i+u

)
into the decryption program.

Inputs: r ∈{0,1}2η,C1∈ [N],C2∈ {0,1}η,C3∈
G~ρ, C4 ∈G~ρ, u∈ [N], plsk ∈G~ρ

Constants: PRFrand, PRFauth, κ, g~ρ, g2~ρ,

{Γi}κ
i=0, j∗, β

1. Compute:

(a) j = (PRFrand(r)−C1) mod(N+1).
(b) x= PRG(PRFauth(r,C1)).

(c) If u< m output⊥ and stop.

else, y =
(Λu)

β

j∗

∏
i=1

Λ2κ−i+u

, where Λu and

for 1 ≤ i ≤ j∗, Λ2κ−i+u computed using
{Γi}κ

i=0 by repeated multilinear pairing op-
erations.

2. Check that (u≤ j) ∧ (x= PRG(C2)) ∧
(y= plsk).

(a) If check fails, output⊥ and stop.
(b) Otherwise, compute:

i. Λ2κ−i+u = (g~ρ)
ξ2κ−i+u

for all i ∈ [j], i 6= u

andΛu = (g~ρ)
ξu

.

ii. KPLKA =
e(Λu,C4)

e((plsk ·
j

∏
i=1
i 6=u

Λ2κ−i+u),C3)

3. Output:KPLKA

Figure 5: The programPT∗(m)·Dec
for m= 1, . . . , j∗+1.

ThenB can replace eachplsku for u≤ j∗, embedded
in the decryption program, with a truly random ele-
ment ofG~ρ, and with high probability none of these
will be equal to the originalplsku, belongs toG~ρ. This
will allow B to add a check thatu> j∗ at the begin-
ning of the decryption program (as in step 1.(c) in
Figure 5, wherem= 1, . . . , j∗+ 1) and stop the pro-
gram if the check fails. This does not change the func-
tionality of the program. Since in Figure 5, the pro-
gram checks thatj∗ < u≤ j and aborts if not and on
the challenge ciphertext header. On the challenge ci-
phertext header, wherej = j∗, it either fails to satisfy
step 1.(c) or step 2. So that the program will never
reach step 2.(b). Thus,B can puncture the decryp-
tion program at step 2.(b) by adding an extra checking
condition. The problem is thatB hard-codedj∗ dif-
ferentplsku values in the decryption program, mak-
ing the program size potentially linear inN and this
makes the public key size linear in total number of
usersN.

In order to keep the size of the program small,B
will have to add one user secret keyplsku for u≤ j∗

at a time. The adversaryB defines a sequence of hy-
brid decryption programsPT∗(m)·Dec andPT∗

(m+ 1
2)·Dec

as in Figure 5 and 6, where the programPT∗
(m+ 1

2)·Dec

includes asinglehard-coded valueRm, randomly cho-
sen fromG~ρ, used in step 1.(c). Each of these pro-
gram is at mostpoly(logN,η) in size, as of the orig-
inal decryption programPTDec in Figure 3 and the
original programPTDec is functionally equivalent to
PT∗(1)·Dec as

y= (Λu)
β

/
j∗

∏
i=1

Λ2κ−i+u = (g~ρ)
βξu−

j∗
∑

i=1
ξ2κ−i+u

= (g~ρ)

(
τ+

j∗
∑

i=1
ξ2κ−u

)
ξu−

j∗
∑

i=1
ξ2κ−i+u

= (g~ρ)
τξu

.

(4)

The programPT∗
(m+ 1

2)·Dec
(in Figure 6) can be punc-

tured at the pointu= m by adding a truly random el-
ementRm of G~ρ and with overwhelmingly high prob-
ability, this Rm is not equal to any user’s secret key.
Then indistinguishability of obfuscation allows mov-
ing fromPT∗(m)·Dec andPT∗

(m+ 1
2)·Dec

without the ad-

versary detecting the change. SinceRm is not equal to
any user’s secret key, thenPT∗

(m+ 1
2)·Dec

will always

output⊥ (fails to satisfy step 2), soB can modify the
check in step 1.(b) to abort if u < m+ 1, obtaining
the programPT∗(m+1)·Dec. Thus, so long asm≤ j∗,
the indistinguishability of obfuscator letsB to move
from the programPT∗

(m+ 1
2)·Dec

to PT∗(m+1)·Dec with-

outA detecting any change.
In summary,B can define a sequence of hybrids,

the first of which is the original game, and in the last
of which B givesA the obfuscated version of the de-
cryption programPT∗(j∗+1)·Dec, and each hybrid is in-
distinguishable from the previous hybrid. Also ob-

serve that,y =

(
(Λu)

β

/
j∗

∏
i=1

Λ2κ−i+u

)
in step 1.(c)

of PT∗(j∗+1)·Dec, while y= (g~ρ)
τ(ξ)u in the original de-

cryption programPTDec. As B has implicitly setτ as

in equation 1, hencey =

(
(Λu)

β

/
j∗

∏
i=1

Λ2κ−i+u

)
=

(g~ρ)
τξu

as shown in equation 4.
Note that y has exactly the same distribution

in both PTDec and PT∗(j∗+1)·Dec as explained in
equation 4. Hence, the outputKPLKA has the
same distribution in the target groupG2~ρ in both
PTDec andPT∗(j∗+1)·Dec. Furthermore, ifPTDec and
PT∗(j∗+1)·Dec differ in size, thenB will pad some
dummy bits to maintain the same size. Now, the

Inputs: r ∈{0,1}2η,C1∈ [N],C2∈ {0,1}η,C3∈
G~ρ, C4 ∈G~ρ, u∈ [N], plsk ∈G~ρ

Constants: PRFrand, PRFauth, κ, g~ρ, g2~ρ,

{Γi}κ
i=0, j∗, β, Rm

1. Compute:

(a) j = (PRFrand(r)−C1) mod(N+1).
(b) x= PRG(PRFauth(r,C1)).

(c) If u< m output⊥ and stop.
else,

y=

Rm if u= m
(Λu)

β

j∗
∏

i=1
Λ2κ−i+u

otherwise

whereΛu and for 1≤ i ≤ j∗, Λ2κ−i+u com-
puted using{Γi}κ

i=0 by repeated multilin-
ear pairing operations.

2. Check that (u≤ j) ∧ (x= PRG(C2)) ∧
(y= plsk).

(a) If check fails, output⊥ and stop.
(b) Otherwise, compute:

i. Λ2κ−i+u = (g~ρ)
ξ2κ−i+u

for all i ∈ [j], i 6= u

andΛu = (g~ρ)
ξu

.

ii. KPLKA =
e(Λu,C4)

e((plsk ·
j

∏
i=1
i 6=u

Λ2κ−i+u),C3)

3. Output:KPLKA

Figure 6: The programPT∗
(m+ 1

2
)·Dec

for m= 1, . . . , j∗.

program PT∗(j∗+1)·Dec outputs⊥ on encryption to
the set [j∗], since it checksu ≥ j∗ + 1 at step
1.(c) and also checku ≤ j∗ at step 2. Therefore,
since B generates the challenge ciphertext header
Hdr∗ = (r∗,C∗1,C

∗
2,C

∗
3,C

∗
4) before giving the adver-

sary the public parameter,B can puncture the pro-
gramPT∗(j∗+1)·Dec at step 2.(b) by adding an extra
checking condition without changing the functional-
ity of the program. In other words,B constructs the
modified programPT∗(j∗+1)·Dec, whereKPLKA is a ran-
dom element ofG2~ρ if Hdr∗ = (r,C1,C2,C3,C4), oth-
erwise, it is same as before.

As a result, B can simulate the entire view
of the adversaryA and then the challenge key
K∗PLKA = Tµ is indistinguishable from a truly ran-

dom key. Now, the adversaryB computesP̃T
∗
Dec =

iO(PT∗(j∗+1)·Dec) and by the indistinguishability prop-

erty of iO, the outputs ofP̃TDec and P̃T
∗
Dec are

computationally indistinguishable. Finally,B gives
A the simulated public parameterplparams∗ =

(PRFrand∗ ,PRFauth∗ ,PRG, P̃T
∗
Enc, P̃T

∗
Dec). Note that

the indistinguishability property ofiO and the security
of PRF, PRG imply that the original public parameter
plparams = (PRFrand,PRFauth,PRG, P̃TEnc, P̃TDec)
and the simulated public parameterplparams∗ =

(PRFrand∗ ,PRFauth∗ ,PRG, P̃T
∗
Enc, P̃T

∗
Dec) are compu-

tationally indistinguishable.

− KeyQuery : The adversaryA submits selective key
query toB for polynomially many user indicesu∈ [N]
of its choice with the restriction thatu must not belong
to the challenge set[j∗]. In response,B computes

Λ2κ−i+u = (g~ρ)
ξ2κ−i+u

for all i ∈ [j∗] andΛu = (g~ρ)
ξu

by using repeated multilinear operations of{Γi}κ
i=0

(extracted fromκ-DHDHE instanceχµ) as shown in
equation 2 and 3 and returns toA

plsku = (Λu)
β

/(
j∗
∏
i=1

Λ2κ−i+u

)

As theτ is implicitly set as in equation 1, hence the
simulated secret keyplsku has the same distribution
as that in the original protocol, shown in equation 4.

− ChosenCiphertextQuery : The adversaryA sub-
mits polynomially many chosen ciphertext queries to
B and obtains the corresponding session key. For
a chosen ciphertext query,A send a user indexi ∈
[N], a subset[j] ∈ S such thati ∈ [j] with the re-
striction j 6= j∗ and a ciphertext headerHdr(j) =

(r(j),C(j)
1 ,C(j)

2 ,C(j)
3 ,C(j)

4). In turn, B responds with

K(j)
PLKA← P̃T

∗
Dec(r

(j),C(j)
1 ,C(j)

2 ,C(j)
3 ,C(j)

4 , i,plski).

− Guess : Finally, A returns toB a guess bitb
′ ∈

{0,1} for µ, which B passes to theκ-DHDHE chal-
lengerCDHDHE.

Note that the adversaryB perfectly simulates the
entire view ofA in the above security game. Thus
the advantage ofA in breaking theCCA-security of
our PLKA scheme is same as the advantage ofB
in solving the givenκ-DHDHE instance, which is
negligible byκ-DHDHE assumption. In other words,

Advκ−DHDHE
B (η)

= |Pr[B(1η,χ0)→ 1]−Pr[B(1η,χ1)→ 1]|
= |Pr[A(1η,Hdr∗,T0)→ 1]−Pr[A(1η,Hdr∗,T1)→ 1]|

= |Pr[A(1η,Hdr∗,KPLKA = (g2~ρ)
tξ2κ

)→ 1]

−Pr[A(1η,Hdr∗,KPLKA = R)→ 1]|
= AdvCCA−PLKAA (η)

Therefore, ourPLKA construction is secure under the
hardness ofκ-DHDHE assumption. Hence the theo-
rem.

Theorem 2. (Security of Traceability) Suppose that
our PLKA scheme, presented in section 3, is adap-
tive CCA-secure. Then, the publicly treceable
PLKA.TraceD algorithm outputs identity of all the
traitors.

Proof. Consider thePLKA scheme for the recipient
set systemS = {[0], . . . , [N]}. To generate ciphertext
for the set[0] ∈ S , one can choose a random element
Hdr(0) from the ciphertext header space and hence no
user, belonging to[N], is able to compute the session
key from Hdr(0). On the other hand, every user in
[N], having a legal secret key, is able to construct the
session key from the ciphertext headerHdr(N). The
construction details of traitor tracing algorithm from
ourPLKA scheme is given below.
− Let, at the beginning the adversaryA outputs

a pirate decoder boxD. For i = 0, . . . ,N consider
the experimentTrExpi of Figure 7 using theHy-
brid Coloring technique shown in section 2.2. Let,
pi = Pr[Hi = success] be the success probability in
the above experimentTrExpi for i = 0, . . . ,N. Clearly,
the experimentTrExp0 has the success probability
p0 = 0, whereas in the experimentTrExpN the suc-
cess probability ispN = 1 and hence the difference
between the success probability in the experiment
TrExpN and in the experimentTrExp0 is |pN− p0|=
1.

(i) The tracer generates header-session key pair
(Hdr(i),KPLKA

(i))←PLKA.Encrypt(plparams,i),
whereplparams is the public parameter gener-
ated usingPLKA.Setup algorithm of ourPLKA
scheme.
(ii) Then, tracer interacts with the pirate decoder
D, giving Hdr(i) as an input toD, and in return

tracer will getK(i
′
)

PLKA←D(Hdr(i)). Here,D acts
as ablack-boxoracle for this interaction.
(iii) Finally, tracer sets the success or failureHi
as follows

Hi =

{
success if KPLKA

(i) = K(i
′
)

PLKA

failure otherwise

Figure 7: Tracing ExperimentTrExpi for i = 0, . . . ,N.

− Consider that userj ∈ [N] is not a traitor user.
Then, the secret keyplsk j of user j is not embedded
into the pirate decoder boxD. Note that ifplskk is

embedded intoD for somek < j, thenH j = Hk =
success and consequently|p j − pk|= 0. On the other
hand, if j ∈ [N] is the least positive integer such that
plsk j is embedded intoD, thenH j = success butHk =
failure for 1 ≤ k ≤ j − 1. In this case,|p j − pk| ≥
1
N . More precisely, for two consecutive user indices
j, j−1∈ [N], the following four cases will arrive.

CaseI: The pirate decoderD has bothplsk j−1 and
plsk j . In this case, we haveH j−1 = success and also
H j = success. Hence,|p j − p j−1| = 0, a negligible
quantity.

CaseII : The pirate decoderD has plsk j , but
not plsk j−1. In this case, we haveH j = success,
but H j−1 = failure and consequently the difference
between the success probability in the experiments
TrExp j andTrExp j−1 is non-negligible in the total
number of usersN. Therefore,|p j − p j−1| ≥ 1

N .
CaseIII : The pirate decoderD hasplsk j−1, but

notplsk j . Then, this case is same ascaseIand hence
|p j − p j−1|= 0, a negligible quantity.

CaseIV : The pirate decoderD has neither
plsk j−1, norplsk j . In this case, we haveH j−1 = H j =
failure and hence,|p j − p j−1|= 0, a negligible quan-
tity.

From the above four cases, one can conclude that an
adversaryA , who has formed the pirate decoder box
D, can not distinguish the ciphertext headersHdr(j)

andHdr(j−1) without having the knowledge ofplsk j ,
even if A has the secret keyplskk for 1≤ k≤ j −1.
So that the difference between the success probabil-
ity in the experimentTrExp j−1 and in the experiment
TrExp j is negligible in the total number of userN.
Therefore,|p j−1− p j | is negligible inN.
− Since |pN − p0| = 1, using the triangular in-

equality we can write

|pN− p0| ≤ |pN− pN−1|+ |pN−1− pN−2|+ . . .

+|p j − p j−1|+ · · ·+ |p1− p0|

Above inequality implies that there must exists at
least one userit ∈ [N] such that|pit − pit−1| ≥ 1

N . In
that case, the success probability difference between
the two experimentsTrExpit andTrExpit−1 is at least
1
N (non-negligible). Let the advantage of breaking
the indistinguishability security ofPLKA scheme is
ε = AdvCCA−PLKAA (η). If |pit − pit−1| ≥ 1

N ≥ ε, then
this indicate thatplskit is embedded intoD with prob-
ability at leastε (according to aboveCaseIII) and
hence the userit must be a traitor. Observe that user
it − 1 can not be a traitor. If bothit and it − 1 are
traitors, thenHit = success as well asHit−1 = success,
asD havingplskit−1 can return correct session keys

corresponding to bothHdr(it) andHdr(it−1). Note that

D can decrypt the ciphertext headerHdr(j) for any
j > it − 1 if plskit−1 is embedded inD. To ensure
perfectly that the userit is a traitor user, one has to
to repeat the experimentTrExpit more than a single
time.
− Assume that for eachi = 0, . . . ,N, the tracer

repeats the experimentTrExpi independentlyup toℜ
trials. We define a random variableYi as total number
of success that were returned byD duringℜ trials of
the experimentTrExpi .
− If it is a traitor user, then for one trial|pit −

pit−1| ≥ ε. Therefore, forℜ trials theexpecteddiffer-
ence between the random variableYit andYit−1 is at
leastεℜ. To perfectly ensure that the userit is a traitor
user, we have to make sure that the observed values of
the random variablesYk, denoted byY obsrv

k , is suffi-
ciently closed to their expected valuesµk = pkℜ for
k= it , it −1.
− Using theChernoff bound, we obtain the fol-

lowing relation betweenY obsrv
k and its expected value

µk = pkℜ for k = it , it −1, takingδ = 1
2, and setting

a= εℜ
2 :

Pr

[
|Y obsrv

k −µk| ≥
εℜ
2

]
≤ 2(e)

−ε2ℜ
2 = 2(N

1
logN)

−ε2ℜ
2

≤ 2N− logN

if ℜ≥ 2(logN
ε)2. Observe that this probability is neg-

ligible in N using the Definition 1, as logN is an pos-
itive function.
− Again from theChernoff bound, we can write

µk− εℜ
2 ≥ Y obsrv

k ≥ µk+
εℜ
2 . Hence,Y obsrv

k ≥ µk+
εℜ
2

and−Y obsrv
k ≥−µk+

εℜ
2 .

− If it is a traitor, then forit andit −1, the differ-
ence between two observed valuesY obsrv

it andY obsrv
it−1

(repeat each up toℜ times) is given by

(Y obsrv
it −Y obsrv

it−1)≥ µit +
εℜ
2
−µit−1+

εℜ
2

≥ εℜ+(µit −µit−1)≥ εℜ+(pit − pit−1)ℜ≥ 2εℜ

Hence, for the traitor userit , the difference be-
tweenY obsrv

it andY obsrv
it−1 is at least 2εℜ, whereℜ ≥

2(logN
ε)2. The complete tracing mechanism is given

in Algorithm 1.

5 CONCLUSION

In this work, couplingiO with the PRF of (Gol-
dreich et al., 1986) under theprime order multi-
linear group setting, we have designed aadaptively
CCA-securePLKA traitor tracing whose security re-
lied on the hardness of standardDHDHE-assumption.
Adopting the prime order multilinear group setting,

we have constructed thefirst full collusion resistance
andpublicly traceabletracing algorithm withshorter
run time. As pointed out by (Garg et al., 2010), the
communication, storage and computational efficiency
of prime order group setting are much higher com-
pared to that ofcompositeorder with an equivalent
level of security. More precisely, our design signif-
icantly reduces the ciphertext size, public parameter
size and user secret key size, which is so far a plausi-
ble improvement in the literature. Consequently, our
PLKA traitor tracing is highlycost-effectiveandeffi-
cient compared to existing private linear traitor trac-
ing schemes in the literature.

REFERENCES

Blum, M. and Micali, S. (1984). How to generate cryp-
tographically strong sequences of pseudorandom bits.
SIAM journal on Computing, 13(4):850–864.

Boneh, D., Sahai, A., and Waters, B. (2006). Fully collusion
resistant traitor tracing with short ciphertexts and pri-
vate keys. InAdvances in Cryptology-EUROCRYPT
2006, pages 573–592. Springer.

Boneh, D. and Waters, B. (2006). A fully collusion resistant
broadcast, trace, and revoke system. InProceedings of
the 13th ACM conference on Computer and communi-
cations security, pages 211–220. ACM.

Boneh, D. and Waters, B. (2013). Constrained pseudo-
random functions and their applications. InInterna-
tional Conference on the Theory and Application of
Cryptology and Information Security, pages 280–300.
Springer.

Boneh, D., Waters, B., and Zhandry, M. (2014). Low over-
head broadcast encryption from multilinear maps. In
Advances in Cryptology–CRYPTO 2014, pages 206–
223. Springer.

Boneh, D. and Zhandry, M. (2014). Multiparty key
exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. InAdvances in
Cryptology–CRYPTO 2014, pages 480–499. Springer.

Chor, B., Fiat, A., and Naor, M. (1994). Tracing traitors. In
Annual International Cryptology Conference, pages
257–270. Springer.

Coron, J.-S., Lepoint, T., and Tibouchi, M. (2015). New
multilinear maps over the integers. InAdvances in
Cryptology–CRYPTO 2015, pages 267–286. Springer.

Garg, S., Gentry, C., Halevi, S., and Zhandry, M. (2016).
Functional encryption without obfuscation. InThe-
ory of Cryptography Conference, pages 480–511.
Springer.

Garg, S., Kumarasubramanian, A., Sahai, A., and Waters,
B. (2010). Building efficient fully collusion-resilient
traitor tracing and revocation schemes. InProceed-
ings of the 17th ACM conference on Computer and
communications security, pages 121–130. ACM.

Gentry, C., Gorbunov, S., and Halevi, S. (2015). Graph-
induced multilinear maps from lattices. InTheory of
Cryptography Conference, pages 498–527. Springer.

Goldreich, O., Goldwasser, S., and Micali, S. (1986). How
to construct random functions.Journal of the ACM
(JACM), 33(4):792–807.

Gu, C. (2015). An improved multilinear map and its ap-
plications.International Journal of Information Tech-
nology and Web Engineering (IJITWE), 10(3):64–81.

Kiayias, A. and Yung, M. (2001). On crafty pirates and
foxy tracers. InSecurity and Privacy in Digital Rights
Management, pages 22–39. Springer.

Kitagawa, F., Nishimaki, R., and Tanaka, K. (2018). Ob-
fustopia built on secret-key functional encryption.
EUROCRYPT 2018 (to appear).

Nishimaki, R., Wichs, D., and Zhandry, M. (2016). Anony-
mous traitor tracing: How to embed arbitrary informa-
tion in a key. InAnnual International Conference on
the Theory and Applications of Cryptographic Tech-
niques, pages 388–419. Springer.

