
Towards KEM Unification

Daniel J. Bernstein1 and Edoardo Persichetti2

1 Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematical Sciences

Florida Atlantic University
Boca Raton, FL 33431, USA

epersichetti@fau.edu

Abstract. This paper highlights a particular construction of a correct
KEM without failures and without ciphertext expansion from any correct
deterministic PKE, and presents a simple tight proof of ROM IND-CCA2
security for the KEM assuming merely OW-CPA security for the PKE.
Compared to previous proofs, this proof is simpler, and is also factored
into smaller pieces that can be audited independently. In particular, this
paper introduces the notion of “IND-Hash” security and shows that this
allows a new separation between checking encryptions and randomizing
decapsulations. The KEM is easy to implement in constant time, given
a constant-time implementation of the PKE.

Keywords: PKE, OW-CPA, OW-Passive, IND-Hash, rigid, KEM, IND-
CCA2, ROM

1 Introduction

Out of the 45 encryption/key-exchange submissions to NIST’s post-quantum
competition (not counting submissions that have been withdrawn at the time of
this writing), at least nine—BIG QUAKE [6], Classic McEliece [9], DAGS [5],
NTRU-HRSS-KEM [22], NTRU Prime [10], NTS-KEM [3], Odd Manhattan
[34], pqRSA [12], and RQC [2]—specify correct KEMs, i.e., KEMs where valid

Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. This work was supported by the European
Commission under Contract ICT-645622 PQCRYPTO; by the Netherlands Or-
ganisation for Scientific Research (NWO) under grant 639.073.005; and by the
U.S. National Science Foundation under grant 1314919. “Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Sci-
ence Foundation” (or other funding agencies). Permanent ID of this document:
7502421bbf40a3bf0ad27d5b50c6bdbd75d970f7. Date: 2018.05.28.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

2 Daniel J. Bernstein and Edoardo Persichetti

ciphertexts are always correctly decrypted.1 Thanks to Gustavo Banegas for help
in collecting this data.

Each of these correct KEMs can be viewed as having two parts:

• A correct PKE is applied to a random input to obtain a ciphertext.
• The KEM does more work aiming for a strong security goal, IND-CCA2.

The underlying PKE has a relatively weak security goal.

This might sound straightforward. There is a long tradition of building a correct
KEM with strong security goals starting from a correct PKE with weak security
goals. The classic example is Shoup’s “Simple RSA”, also known as “RSA-KEM”
[40, Section 20], which sends a ciphertext r65537 mod N encapsulating the session
key H(r). Here N is the public key; r is a uniform random integer modulo N ;
and the function r 7→ r65537 mod N is the underlying PKE. The only extra work
in Simple RSA, beyond the PKE, is computing a hash H(r) as a session key.

However, post-quantum PKEs almost always have complications such as in-
valid ciphertexts. These complications require care in the PKE-to-KEM conver-
sions. See [11, Appendix K] and [13] for recent examples of chosen-ciphertext
attacks against post-quantum KEMs2 that simply hash a random PKE input, as
in Simple RSA. The NIST submissions mentioned above use a variety of different
PKE-to-KEM conversions that are intended to stop such attacks.

Our basic goal in this paper is to simplify the problem of auditing these PKE-
to-KEM conversions, and in particular the proofs that are claimed for these
conversions. To avoid gaps between what cryptanalysts are studying and what
theorems assume, we focus on “tight” proofs starting from minimal PKE security
goals. We want these proofs to be as simple as possible. We want the proofs to
be factored as compositions of simpler theorems that can be audited separately.
We want the proofs to be spelled out in full detail to support manual verification
and, hopefully, formal verification.

Trying to cover all the different conversions that have been used before is not
one of our goals. On the contrary: because we want auditing to be as simple as
possible, we recommend having the community come to consensus on a single
PKE-to-KEM conversion, and “tweaking” submissions as necessary to use that
conversion.

Tweaking submissions to unify the KEM constructions is allowed by the NIST
process and will allow a simpler competition among the underlying PKEs. Before
the deadline for round-1 submissions to NIST, one of us (Persichetti) wrote

My idea is that submitters should not worry too much about which
conversion is used at this stage (unless it is weak/breakable, of course)
and, exactly as you say, what matters the most is the inherent strength
of the underlying one-way function.

1 A tenth submission, LIMA, originally claimed to be correct (“remove the issue of
decryption failures” [42, page 49, under “Advantages”]), but later credited Leixiao
Cheng and Yunlei Zhao for discovering an apparently unfixable error in the analysis
(“This does not work” [41, page 8]).

2 One of the two attacked KEMs is a correct KEM; the other is only partially correct.

Towards KEM Unification 3

correct
deterministic

PKE

ReEnc

��

OW-Passive
attack

low probability nothing

PrefixCipher

��

OW-Passive
attack

Theorem 6.4

KS

rigid correct
deterministic

PKE

ImplicitRejection
��

ROM PRF
attack

Theorem 11.5

KS

ROM cipher

--

ROM
IND-Hash

attack

Theorem 8.2

KS

correct
quiet

ROM KEM

ROM
IND-CCA2

attack

Theorem 13.3

KS[c

Fig. 1.1. Modules in the construction and security analysis of SimpleKEM. OW-
Passive is the same as OW-CPA. All theorems are tight, with a total probability loss
of q/#Plaintexts + 2q/#CipherKeys; see Theorem 14.3.

NIST’s Dustin Moody responded “That certainly seems reasonable to us. These
type of issues could be addressed later on in the process when submissions are
allowed minor changes (tweaks).” See [33] and [29].

Here is an example of how we are are prioritizing simplicity for auditors: we
categorically recommend “implicit rejection”, where invalid ciphertexts produce
pseudorandom results rather than failures. Submissions using explicit rejection
can simply switch to implicit rejection, and then auditors no longer have to
worry about explicit rejection. Our reasons for recommending implicit rejection
rather than explicit rejection are explained in Section 16.

More specifically, we highlight the following KEM conversion, which we call
SimpleKEM, producing a correct quiet KEM from a correct deterministic PKE:

• Encapsulation generates a uniform random plaintext p, the corresponding
ciphertext C = Encrypt(p,K), and a session key H(1, p, C). Here K is the
public key for the PKE.

• Decapsulation computes p = Decrypt(C, k) and verifies C = Encrypt(p,K).
If both steps succeed then decapsulation outputs the session key H(1, p, C);
otherwise it outputs H(0, r, C). Here k is the private key for the PKE, and
r is an independent secret stored as part of the KEM private key.

Note that decapsulation always outputs a session key, never ⊥; this is what
“quiet” means.

4 Daniel J. Bernstein and Edoardo Persichetti

Our proof works when H(1, p, C) is replaced by H(1, p) or, more generally,
H(1, p, any function of C). Also, H(0, r, C) can be replaced by the output of any
cipher with secret key r and input C. We recommend H(1, p, C) and H(0, r, C)
because this combination simplifies the task of producing constant-time imple-
mentations; see Section 15.

A special case of the H(1, p) variant of SimpleKEM, for a particular code-
based PKE, was introduced by Persichetti in [32, Section 5.3], modulo minor
details. In particular, implicit rejection was introduced in [32, Table 5.4, “pseu-
dorandom function” used in “Dec”]. The H(1, p) and H(1, p, C) variants were
stated for any PKE by Hofheinz, Hövelmanns, and Kiltz in [20] under the names
“U 6⊥m” and “U 6⊥” respectively, again modulo minor details.

We give a counterexample (see Appendix A) to the security claim in [20] for
“U 6⊥m”. Our proof avoids this problem because we factor it via a different security
property, which we call “rigidity”. Our proof is simpler than [20], more general
than [32], and factored into smaller pieces, as summarized in Figure 1.1. See
Section 2 for a more detailed discussion of the history and of what is new here.

2 Background and contributions

“PKE” is an abbreviation for “public-key encryption scheme”. The simplest
security property of PKEs—and the security property most closely studied by
cryptanalysts—is “one-wayness against chosen-plaintext attacks” (“OW-CPA”).
This means that an attacker cannot recover a uniform random plaintext, given
a random public key and the corresponding ciphertext.

The “chosen-plaintext attacks” terminology is misleading: it suggests, incor-
rectly, that the attacker is permitted to choose plaintexts. We suggest renaming
“OW-CPA” as OW-Passive.

Compared to a PKE with OW-Passive security, the traditional view is that
users need PKEs with

• additional functionality, namely handling variable-length strings as inputs
(whereas the simplest PKEs have a limited set of plaintexts); and

• much more security, namely IND-CCA2 security—which also requires PKEs
to be randomized (whereas it is simpler for PKEs to be deterministic).

Fujisaki and Okamoto [17] proposed a generic construction starting from any
correct PKE secure against OW-Passive attacks, along with secure symmetric
tools, and obtaining a correct variable-input-length PKE secure against a class
of IND-CCA2 attacks, namely ROM IND-CCA2 attacks. This result was not the
end of the story, for several reasons:

• The proof was not “tight”: it allowed ROM IND-CCA2 attacks to be faster
than OW-Passive attacks by a considerable polynomial factor, essentially
the number of hash queries carried out by the attacker.

• There could be IND-CCA2 attacks faster than any ROM IND-CCA2 attacks.
This is not a hypothetical concern in a post-quantum world: even the best,

Towards KEM Unification 5

most thoroughly reviewed b-bit hash function allows high-probability preim-
age attacks in essentially 2b/2 operations by Grover’s algorithm, whereas
ROM preimage attacks require essentially 2b operations.

• It is not clear how thoroughly the proof has been verified. For comparison,
Shoup in [39] announced a serious bug in a heavily cited security claim
published seven years earlier regarding another construction of public-key
encryption. Shoup also gave strong reasons to believe that the claim could
not be proven without additional assumptions.

• Further complicating the picture is that there is some new attention to
PKEs that are only partially correct—e.g., 99.999999999999999995% cor-
rect. See [20].

Sections 2.1 and 2.2 review steps forward in verifiability and tightness by Shoup,
Dent, and Hofheinz–Hövelmanns–Kiltz. Section 2.3 explains our improvements in
verifiability for tight conversions from PKEs secure against OW-Passive attacks
to KEMs secure against ROM IND-CCA2 attacks. Our work also appears to be
relevant to QROM IND-CCA2 attacks (see Section 2.4), although this is not our
main focus.

As for correctness, we follow the traditional simplification of focusing on cor-
rect PKEs. Correctness simplifies auditing, and correct PKEs are already used
in quite a few NIST submissions, so this is an important case to consider. Fur-
thermore, most—although not all—other NIST submissions can easily change
parameters to provide correctness at a tolerable cost in performance. The study
of correct PKEs is also a natural starting point for generalizations to cover PKEs
that are only partially correct, if those PKEs are of long-term interest.

2.1. Modularity. Shoup in [38, Section 4.2] and [40, Section 3] proposed
building a variable-input-length PKE in two steps: first, build a KEM—a “key-
encapsulation mechanism”; second, combine the KEM with symmetric tools to
build a variable-input-length PKE. This approach has a small disadvantage, a
small advantage, and a much more important advantage:

• The small disadvantage is that KEM ciphertexts do not communicate any
user data. More complicated direct constructions of a PKE sometimes have
shorter ciphertext lengths, packing some of the user data into the asymmetric
part of the ciphertext.

• The small advantage is that the session key communicated by a KEM can be
used directly to encrypt and authenticate any number of messages back and
forth in the session. This requires the symmetric tools to be authenticated
ciphers rather than merely “DEMs”, but there are many thoroughly vetted
choices of authenticated ciphers.

• The much more important advantage is that constructing a KEM is simpler
than constructing a variable-input-length PKE. Shoup thus factored the task
of building the final PKE into three simpler subtasks that can be audited
independently: constructing a KEM, constructing an authenticated cipher,
and combining a KEM with an authenticated cipher.

6 Daniel J. Bernstein and Edoardo Persichetti

Our goal for the rest of this paper is to build a correct KEM with IND-CCA2
security, starting from a correct PKE with OW-Passive security; we do not say
anything else about using the KEM.

2.2. Tightness. Dent in [15] presented proofs that various PKE-to-KEM con-
versions produce ROM-IND-CCA2-secure KEMs, under various assumptions re-
garding the underlying PKE. Some of these conversions are tight.

One of Dent’s tight conversions, [15, Theorem 8], is particularly attractive
because its security assumption for the PKE is merely OW-Passive security. This
conversion requires the PKE to be deterministic. This means that encryption is
deterministic; equivalently, decryption recovers all of the randomness used in
producing a ciphertext. Not all PKEs in the literature are deterministic, but
there are enough3 deterministic PKEs to justify attention to this case, and we
focus on this case in this paper.

As in Simple RSA, Dent uses a hash of the PKE plaintext as a session key.
Unlike Simple RSA, Dent sends another hash of the PKE plaintext along with
the PKE ciphertext. Following [11, Section 2.3] and [9, Section 4.3], we refer
to this additional hash as “plaintext confirmation”, by analogy to the “con-
firmation” hashes communicated in various key-exchange protocols. Plaintext
confirmation makes clear that whoever generated a ciphertext knows the PKE
plaintext; Dent’s proof follows this intuition.

Hofheinz, Hövelmanns, and Kiltz in [20] presented several further tight con-
versions. Three of these start from OW-Passive security of the PKE:

• “S`” produces much larger ciphertexts, which we do not discuss further.
• “U 6⊥”, essentially SimpleKEM, has a tight theorem stated and proven in [20,

Theorem 3.4]. This theorem starts from “OW-PCA” security, but it is easy
to obtain an OW-PCA PKE from a deterministic OW-Passive PKE.

• “U 6⊥m”, essentially the H(1, p) variant of SimpleKEM, has a tight theorem
claimed in [20, Theorem 3.6], again assuming that the PKE is deterministic.
No proof is given.

We give a counterexample to [20, Theorem 3.6]; see Appendix A. We also give a
counterexample to [20, Theorem 3.5], where a proof was given. This illustrates
the importance of having proofs presented in detail and checked carefully. We
identify an extra KEM-construction step that ensures security, that is used in
SimpleKEM, and that does not appear in [20, Theorems 3.5 and 3.6].

To summarize, at this point in the story there are two different strategies to
tightly obtain KEMs with ROM IND-CCA2 security starting from deterministic
PKEs with OW-Passive security. One strategy is plaintext confirmation, as in
[15]. The other strategy is implicit rejection, as in [32] and [20].

3 Seven of the nine NIST submissions above—BIG QUAKE, Classic McEliece, DAGS,
NTRU-HRSS-KEM, NTRU Prime, NTS-KEM, and pqRSA—naturally include de-
terministic PKEs. Two of these, BIG QUAKE and DAGS, artificially introduce
extra randomness to be able to use a particular strategy for tight IND-CCA2 proofs,
but this strategy requires the PKE to target IND-CPA security rather than merely
OW-Passive security.

Towards KEM Unification 7

2.3. Contributions of this paper. Given any correct deterministic PKE with
OW-Passive security, we prove tight ROM IND-CCA2 security for a correct quiet
KEM with the same ciphertext length. This was already done in [20], but our
proof has the following advantages:

• We factor the proof of IND-CCA2 security via a security notion that we
call “IND-Hash”. This produces a natural separation between (1) checking
encryptions of oracle queries, to relate IND-Hash security of the PKE to
OW-Passive security of the PKE; and (2) handling decapsulation queries, to
relate IND-CCA2 security of the KEM to IND-Hash security of the PKE.

• As in [32] and [36], we handle decapsulation queries in a simple way, starting
from a uniform random decapsulation function and then easily building a
uniform random hash function to match.

• We also factor out two further pieces: (3) “ReEnc”, which checks cipher-
text validity during decapsulation, and (4) “Derandomize”, which converts
a randomized PKE into a deterministic PKE, and which we do not need since
we start from a deterministic PKE. For comparison, in [20], both of these
tasks are handled by one “T” conversion; “T” is factored out of the other
proofs, but ReEnc is not factored out of “T”. This is important because the
theorems stated for “T” are not tight.

• We spell out proofs in full detail, with the goal of supporting verification.
For comparison, the previous literature often claims theorems with proofs
that are omitted or merely sketched, causing problems for auditors.

• As a smaller point, our SimpleKEM deviates slightly from “U 6⊥” in its hash
inputs: we use separate hash input spaces for valid ciphertexts and invalid
ciphertexts. This simplifies the proofs.

• We also allow CipherKeys, the set of (equally likely) possibilities for r, to be
larger than Plaintexts, the set of possibilities for p. For example, in Classic
McEliece [9], CipherKeys is the set of bit vectors of a particular length, and
Plaintexts is the set of low-weight bit vectors of a particular length.

Compared to the special case handled earlier in [32], our proofs have the same
simplicity, more generality, and more modularity.

We believe that the ROM situation has now reached a satisfactory conceptual
state for the important case of correct deterministic PKEs. We recommend our
ROM proofs as targets for formal verification.

2.4. Quantum reductions. The central proof technique used by Fujisaki and
Okamoto is to inspect each hash query from an IND-CCA2 attacker, checking
whether the query encrypts to the challenge ciphertext—in which case the query
breaks OW-Passive security. The same technique is repeated in the other proofs
mentioned above. However, a quantum algorithm attacking IND-CCA2 can call
the hash function on a superposition of queries—perhaps a superposition of all
possible plaintexts—and then it is not clear what to inspect.

Targhi and Unruh in [43] showed that plaintext confirmation allows a QROM
IND-CCA2 security proof. There are two caveats here:

8 Daniel J. Bernstein and Edoardo Persichetti

• The plaintext-confirmation hash is required to map to a space as large as the
plaintext space, as emphasized in [21, Section 5]. This produces a 141-byte
expansion in the ciphertexts in [21].

• Even with a hash of this size, the theorem is far from tight.

The lack of tightness was quantified in [20]. One source of looseness, as in the
non-quantum case, is handling randomized PKEs (see [20, Theorem 4.4]); we
focus on the deterministic case, where this issue disappears. A more problematic
source of looseness, specific to the quantum case, is Unruh’s “one-way to hiding”
lemma; see [20, Lemma 4.1, Theorem 4.5, and Theorem 4.6]. Quantitatively, un-
der the reasonable assumption that the attacker can afford 264 hash queries, an
OW-Passive attack that succeeds with probability merely 2−128—not a particu-
larly attractive target for cryptanalysts—is consistent with an IND-CCA2 attack
that succeeds with probability 1. Hamburg has sketched an approach to improve
2−128 to 2−64, but this is still far below 1.

Saito, Xagawa, and Yamakawa in [36] showed that implicit rejection allows
a tight QROM IND-CCA2 security proof, assuming that the underlying PKE is
deterministic. However, this theorem starts with a ciphertext-unrecognizability
security assumption stronger than OW-Passive: roughly, indistinguishability of
the legitimate ciphertexts for a particular public key from a much larger space
of ciphertexts. There are some citations in [36] to previous statements of spe-
cial cases of this assumption, but this again raises questions regarding what
cryptanalysts have actually studied.

Jiang, Zhang, Chen, Wang, and Ma in [23], independently of [36], showed that
implicit rejection allows a QROM IND-CCA2 security proof starting from OW-
Passive security, without a plaintext-confirmation hash. However, this theorem
is still not tight.

To summarize, the QROM situation is still in flux and has not reached a
satisfactory state. The only known way to avoid considerable looseness is to
assume something beyond OW-Passive security for the underlying PKE.

We point out that a ROM version of the main theorem of [36] factors into
two parts:

• Implicit rejection plus ROM IND-Hash security tightly implies ROM IND-
CCA2 security. See Section 13.

• Ciphertext unrecognizability tightly implies ROM IND-Hash security.

This modularization allows auditing of [36] to share work with auditing of our
theorems. We expect the tight QROM analysis of [36] to factor similarly via
QROM IND-Hash security. These observations suggest that further QROM ef-
forts can and should focus on ways to obtain QROM IND-Hash security. An
interesting possibility to consider is the following: QROM IND-Hash security
cannot be tightly obtained from OW-Passive security; QROM IND-Hash secu-
rity is the closest approximation to OW-Passive security that allows a tight con-
nection to QROM IND-CCA2 security; QROM IND-Hash security is the right
target for future cryptanalysis.

Towards KEM Unification 9

3 Notation and conventions

3.1. Truth values. The [S] notation means 1 if the statement S is true, other-
wise 0.

3.2. Functions. When X and Y are sets, XY is the set of functions from Y to
X.

3.3. Lazy evaluation of uniform random functions. When we write “Gen-
erate a uniform random element H ∈ XY ”, where X is a nonempty finite set
and Y is a finite set, we do not mean that we immediately take the time to
generate and record a uniform random value H(y) ∈ X for each y ∈ Y . Instead
we delay generating H(y) until it is needed.

In other words, H is an oracle that maintains an associative array of pairs
(y,H(y)) ∈ Y ×X where each index y has been previously queried. If y is queried
and is an index in the array, the oracle returns the same H(y). If y is queried
and is not already an index in the array, the oracle generates a uniform random
element H(y) of X, adds (y,H(y)) to the array, and returns H(y).

In cost metrics that account for storage, one should eliminate the array of H
values (as in [8, “Notes on low-memory attacks”] and [4]) and instead simulate
a uniform random H as the output of a cipher using a uniform random key.
Handling a cipher key is cheaper than handling a possibly very large array of
uniform random values, and if the cipher is secure then the results are indistin-
guishable. We state theorems for the uniform random case, and leave it to the
reader to deduce theorems regarding these simulations.

3.4. Lazy evaluation of more general functions. If we define, e.g., G ∈
(X × X)Y by G(y) = (H(y), H(y)) with H as above, we do not mean that all
G(y) values are immediately tabulated. Instead we delay generating each G(y)
until it is needed.

3.5. Oracles and other inputs. When we pass a function such as the above H
or G as an input to an algorithm, we again do not mean that values of H and G
are immediately tabulated. Instead we give the algorithm access to oracles that
compute H and G on demand.

Similarly, we delay reading other inputs until they are needed. The exact order
of operations does not matter for any of the analysis in this paper (although
it does matter for some cost metrics, such as storage). When we refer to one
operation happening before another (as in Definition 7.3), we mean that there
is data flow from one to the other.

3.6. Reductions. We follow the recommendations of [14, Appendix B.6] to state
“provable-security theorems in a way that minimizes the hassle of switching to
a new cost metric”. Specifically, we maintain a separation between (1) theorems
analyzing success probabilities of reductions, (2) definitions of the reductions
before the theorems, and (3) analyses of the costs of the same reductions.

All of our reductions—CheckEncrypt in Section 8, RandomDecap in Sec-
tion 13, and IR in Section 13—have some overhead beyond the costs of the

10 Daniel J. Bernstein and Edoardo Persichetti

original algorithms. The overhead is bounded by a linear number of simple oper-
ations. “Linear” is a small constant per query plus a small constant for initializa-
tion; “simple” includes hashing, computing the provided PKE operations such
as Encrypt, computing the function F defined later, generating uniform random
elements of specified sets such as SKeys, and comparing elements of these sets.

We have not stated formal cost theorems in this paper. We caution the reader
that simple-sounding operations can be extremely expensive, depending on the
cost metric and on details of the operations. For example, it is an easy exercise
to define a nonempty finite set of short strings for which nobody knows a feasible
way to generate any element of that set, never mind a uniform random element.
Despite these caveats, we assert that the simple operations used in our reductions
are reasonably cheap for typical examples of PKEs.

4 Correct deterministic PKEs

This section reviews the definition of a PKE, for the important special case
of PKEs that are correct and deterministic. Deterministic refers to the fact
that Encrypt (see below) is deterministic. Correct refers to the fact that
Decrypt(Encrypt(p,K), k) always outputs p.

Definition 4.1 (correct deterministic PKE). A correct deterministic
PKE is defined as a tuple

(PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt)

where

• PublicKeys, PrivateKeys, Plaintexts, Ciphertexts are nonempty finite sets;
• ⊥ /∈ Plaintexts;
• KeyGen is an algorithm mapping {()} to PublicKeys× PrivateKeys;
• Encrypt is a deterministic algorithm mapping Plaintexts × PublicKeys to

Ciphertexts;
• Decrypt is an algorithm mapping Ciphertexts×PrivateKeys to Plaintexts∪{⊥};

and
• Decrypt(Encrypt(p,K), k) = p for every (K, k) output by KeyGen() and every
p ∈ Plaintexts.

5 OW-Passive (“OW-CPA”) security for a PKE

This section reviews “OW-CPA” security, which we call “OW-Passive” security
as explained earlier. Informally, OW-Passive security of a PKE X means that
PrPassive(X,A) defined below is small for every feasible attack A, i.e., that
A has trouble finding a uniform random plaintext given a public key and the
corresponding ciphertext. “OW-Passive security” is an abbreviation for “one-
wayness against passive attacks”. For theorems we work directly with PrPassive.

Towards KEM Unification 11

It is tempting to write simply “OW”, but the literature also uses “OW” to
describe variants of the same notion that give more power to the attacker. For
example, “one-wayness against plaintext-checking attacks” (“OW-PCA”) gives
the attacker access to an oracle for the function (p, C) 7→ [Decrypt(C, k) = p].
For a correct deterministic PKE, Decrypt(C, k) is guaranteed to be p if C =
Encrypt(p,K), but it could also be p for other choices of C, so OW-PCA security
could be easier to break than OW-Passive security. This gap disappears for
“rigid” correct deterministic PKEs; see Section 6 below.

Definition 5.1 (RunPassive and PrPassive). Let

X = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt)

be a correct deterministic PKE. Let A be an algorithm. Then PrPassive(X,A) is
defined as Pr[RunPassive(X,A) = 1], where RunPassive(X,A) is defined as the
following algorithm:

• Compute (K, k)← KeyGen().
• Generate a uniform random p∗ ∈ Plaintexts.
• Compute C∗ ← Encrypt(p∗,K).
• Output [A(K,C∗) = p∗].

Note that Decrypt is not used in the definitions of RunPassive and PrPassive.
One could define these security notions for a streamlined PKE concept that
omits Decrypt and omits private keys. Similar comments apply to Section 7.

6 Rigidity and reencryption

The “T” transformation from [20] converts a correct PKE with OW-Passive
security to a correct deterministic PKE with “OW-PCA” security. This section
observes that “T” has a stronger property, and then factors “T” into two parts,
with useful consequences for simplicity and tightness:

• The stronger property is that the output of “T” is what we call a “rigid” cor-
rect deterministic PKE. “Rigid” means that Decrypt(C, k) = p ∈ Plaintexts
if and only if Encrypt(p,K) = C. OW-PCA security is then the same as
OW-Passive security, so one can avoid defining and discussing OW-PCA
security.

• The factorization of “T” is as follows. First, “Derandomize” converts a cor-
rect PKE into a correct deterministic PKE, by using a hash of the input as
the randomness for encryption. Second, “ReEnc” converts a correct deter-
ministic PKE into a rigid correct deterministic PKE. In this paper, we start
with a correct deterministic PKE, so we have no need for Derandomize: we
simply apply ReEnc.

• The reductions known for the “T” transformation in general (see [20] and
[36]) are not tight. However, when the input is a correct deterministic PKE,
one can tightly obtain a rigid correct deterministic PKE by simply applying
ReEnc. The reduction here is trivial: see Theorem 6.4 below.

12 Daniel J. Bernstein and Edoardo Persichetti

One can also view ReEnc as a special case of “T”, namely the case that the
original PKE is already deterministic, so Derandomize has no effect.

For some PKEs, rigidity can be achieved at lower cost than ReEnc: there are
speedups for the decryption in ReEnc, or the private key can be compressed. A
notable example is the McEliece code-based encryption scheme. See generally
[9, Section 2.5], in particular the explanation of why testing “C0 = He” does
not take “quadratic space”.

Definition 6.1 (rigidity). Let

X = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt)

be a correct deterministic PKE. X is rigid if Encrypt(p,K) = C for every (K, k)
output by KeyGen(), every C ∈ Ciphertexts, and every p ∈ Plaintexts output by
Decrypt(C, k).

The definition places requirements on any plaintext returned by Decrypt(C, k).
It does not prohibit Decrypt(C, k) returning ⊥: on the contrary, it has the effect
of requiring Decrypt(C, k) to return ⊥ unless C has the form Encrypt(p,K). In
other words, Decrypt returns ⊥ as often as it can without sacrificing correctness,
and is thus entirely determined by Encrypt for this key pair: Decrypt(C, k) is the
unique p ∈ Plaintexts such that Encrypt(p,K) = C, or ⊥ if no such p exists.

Definition 6.2 (ReEnc). Let

X = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt)

be a correct deterministic PKE. Then ReEnc(X) is defined as

(PublicKeys,PrivateKeys′,Plaintexts,Ciphertexts,KeyGen′,Encrypt,Decrypt′)

where PrivateKeys′ = PrivateKeys × PublicKeys; KeyGen′() computes (K, k) ←
KeyGen() and then outputs (K, k′) where k′ = (k,K); and Decrypt′(C, k′) is the
following algorithm:

• Write k′ as (k,K) where k ∈ PrivateKeys and K ∈ PublicKeys.
• Compute p← Decrypt(C, k).
• If p = ⊥, output ⊥ and stop.
• If Encrypt(p,K) 6= C, output ⊥ and stop.
• Output p.

Theorem 6.3 (correctness and rigidity of Reencrypt). Let X be a correct
deterministic PKE. Then ReEnc(X) is a rigid correct deterministic PKE.

Proof. As before write

X = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt).

PublicKeys,PrivateKeys,Plaintexts,Ciphertexts are nonempty finite sets by as-
sumption, so PublicKeys,PrivateKeys′,Plaintexts,Ciphertexts are nonempty finite
sets.

Towards KEM Unification 13

⊥ /∈ Plaintexts by assumption.
KeyGen maps {()} to PublicKeys×PrivateKeys by assumption, so KeyGen′ maps

{()} to PublicKeys× (PrivateKeys× PublicKeys) = PublicKeys× PrivateKeys′.
Encrypt is a deterministic algorithm mapping Plaintexts × PublicKeys to

Ciphertexts by assumption.
Decrypt is an algorithm mapping Ciphertexts×PrivateKeys to Plaintexts∪{⊥},

so Decrypt′ is an algorithm mapping Ciphertexts×PrivateKeys′ to Plaintexts∪{⊥}.
To see correctness, observe that if C = Encrypt(p,K) for p ∈ Plaintexts then

Decrypt(C, k) = p since the original PKE is correct, and then Encrypt(p,K) again
outputs C since the original PKE is deterministic, so Decrypt′(C, k) outputs p.

To see rigidity, observe that the only way for Decrypt′(C, k) to output p ∈
Plaintexts is for p to be output by Decrypt(C, k) with Encrypt(p,K) = C. ut

Theorem 6.4 (security of Reencrypt). Let X be a correct deterministic
PKE. Let A be an algorithm. Then PrPassive(X,A) = PrPassive(ReEnc(X), A).

In other words, the OW-Passive security of ReEnc(X) is the same as the
OW-Passive security of X.

Proof. RunPassive does not use Decrypt (or Decrypt′) or k (or k′), and ReEnc(X)
is otherwise identical to X. ut

7 IND-Hash security for a PKE

This section defines “ROM IND-Hash” security, compares ROM IND-Hash at-
tacks to OW-Passive attacks, and briefly discusses QROM IND-Hash security.
We have not found IND-Hash security in the literature.

Informally, ROM IND-Hash security of a PKE X relative to a set SKeys
means that the quantity DistHash(X,A,SKeys) defined below is small for every
feasible non-cheating attack A. DistHash, in turn, measures the ability of A to
distinguish a session key from random, where the session key is obtained by
hashing a ciphertext. A is given the ciphertext and access to the hash function
(D below), but is not allowed to apply the hash function to the ciphertext after
seeing the ciphertext—this would be cheating. A is also given the public key and
access to another function (H below) that encrypts an input and then applies
the first hash function to the result—even if the result is the ciphertext that A
has seen; this is not cheating.

DistHash is automatically 0 in the trivial case #SKeys = 1: i.e., ROM IND-
Hash security is automatic when there is only one possible session key. Our
concern is with ROM IND-Hash security for much larger #SKeys.

Definition 7.1 (RunHash and DistHash). Let

X = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt)

be a correct deterministic PKE. Let A be an algorithm. Let SKeys be a nonempty
finite set. Then DistHash(X,A,SKeys) is defined as

|Pr[RunHash1(X,A,SKeys) = 1]− Pr[RunHash0(X,A,SKeys) = 1]|

14 Daniel J. Bernstein and Edoardo Persichetti

where RunHashb(X,A,SKeys) is the following algorithm:

• Compute (K, k)← KeyGen().
• Generate a uniform random p∗ ∈ Plaintexts.
• Compute C∗ ← Encrypt(p∗,K).
• Generate a uniform random D ∈ SKeysCiphertexts.
• Define H ∈ SKeysPlaintexts as follows: H(p) = D(Encrypt(p,K)) for each
p ∈ Plaintexts.

• Generate a uniform random s0 ∈ SKeys.
• Compute s1 ← D(C∗).
• Return A(H,K,D,C∗, sb).

7.2. Cheating. Consider the following algorithm A: on input (H,K,D,C, s),
output [s = D(C)]. Then RunHash1(X,A,SKeys) always outputs 1, while
RunHash0(X,A,SKeys) outputs 1 only if s0 = s1, which occurs with proba-
bility 1/#SKeys. Thus DistHash(X,A,SKeys) = 1− 1/#SKeys ≥ 1/2, assuming
#SKeys > 1.

As mentioned above, ROM IND-Hash security considers only non-cheating at-
tacks, where “cheating” is defined as follows. This type of definition is (modulo
input positioning) typically integrated into the definition of IND-CCA2 advan-
tage, but we prefer to factor the definition out of both IND-Hash and IND-CCA2.

Definition 7.3 (cheating). Let A be an algorithm. We define A as cheating
if, after reading its fourth input or its fifth input, it uses its fourth input as a
query to its third input.

7.4. Comparing IND-Hash to OW-Passive. The obvious way to attack
IND-Hash security is to attack OW-Passive security. Given an OW-Passive at-
tack B, consider the following IND-Hash attack A:

• Input (H,K,D,C, s).
• Compute p← B(K,C).
• Output [Encrypt(p,K) = C and H(p) = s].

This is a non-cheating attack, since A does not use the D oracle. If B suc-
ceeds, i.e., if Encrypt(p,K) = C, then H(p) = D(Encrypt(p,K)) = D(C) = s1.
Hence RunHash1(X,A,SKeys) = 1 with probability PrPassive(X,B), while
RunHash0(X,A, SKeys) = 1 with probability PrPassive(X,B)/#SKeys; so
DistHash(X,A,SKeys) = PrPassive(X,B)(1− 1/#SKeys).

Intuitively, there is very little gap between OW-Passive security and IND-
Hash security. Both s0 and s1 = D(C∗) = H(p∗) are generated uniformly at
random; swapping s0 with s1 is invisible to an attack that does not call D on
input C∗ and that does not call H on input p∗. The only way for an attack to
call D on input C∗ (without cheating) is to blindly guess before seeing C∗, and
the only way for an attack to call H on input p∗ is to break OW-Passive security.
The proof in Section 8 follows this intuition.

Towards KEM Unification 15

7.5. Quantum queries. Our focus is ROM security but we briefly sketch an
analogous QROM IND-Hash definition. The only difference is that A is allowed
to query its first input, H, in superposition. A is not allowed to query its third
input, D, in superposition. In our application to IND-CCA2 security, H is a
hash that the attacker can compute privately, while D is the legitimate user’s
decapsulation oracle.

8 CheckEncrypt: ROM IND-Hash security from
OW-Passive security

The point of this section is that a ROM IND-Hash attack implies an OW-Passive
attack, with similar speed and almost exactly the same success probability.

Definition 8.1 (CheckEncrypt). Let

X = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt)

be a correct deterministic PKE. Let SKeys be a nonempty finite set. Let A be
an algorithm. Then CheckEncrypt(X,A,SKeys) is defined as the following algo-
rithm:

• Input K ∈ PublicKeys.
• Input C∗ ∈ Ciphertexts.
• Generate a uniform random s ∈ SKeys.
• Generate a uniform random D ∈ SKeysCiphertexts.
• Define H ∈ SKeysPlaintexts as follows: H(p) = D(Encrypt(p,K)) for each
p ∈ Plaintexts.

• Run A(H,K,D,C∗, s).
• For each query p that A makes to H: If Encrypt(p,K) = C∗, output p and

stop.

Theorem 8.2 (IND-Hash security from OW-Passive security). Let X
be a correct deterministic PKE. Let SKeys be a nonempty finite set. Let A be a
non-cheating algorithm that performs at most q queries to its third input. Define
B = CheckEncrypt(X,A,SKeys). Then

DistHash(X,A,SKeys) ≤ PrPassive(X,B) +
q

#Plaintexts
.

Proof. Recall that RunPassive(X,B) computes (K, k) ← KeyGen(), generates
a uniform random p∗ ∈ Plaintexts, computes C∗ ← Encrypt(p∗,K), and checks
whether p∗ is the output of B(K,C∗).

By definition, B(K,C∗) runs A(H,K,D,C∗, s) for a uniform random
D ∈ SKeysCiphertexts, a uniform random s ∈ SKeys, and H(p) defined as
D(Encrypt(p,K)). The output of B(K,C∗) (if any) is the first query p to H
such that Encrypt(p,K) = C∗, i.e., such that Encrypt(p,K) = Encrypt(p∗,K),
i.e., such that p = p∗ (since X is a correct deterministic PKE). In other words,
RunPassive(X,B) outputs 1 if and only if A(H,K,D,C∗, s) queries H on p∗.

For comparison, RunHash0(X,A,SKeys) is the following algorithm:

16 Daniel J. Bernstein and Edoardo Persichetti

• Compute (K, k)← KeyGen().
• Generate a uniform random p∗ ∈ Plaintexts.
• Compute C∗ ← Encrypt(p∗,K).
• Generate a uniform random D ∈ SKeysCiphertexts.
• Define H ∈ SKeysPlaintexts as follows: H(p) = D(Encrypt(p,K)) for each p ∈

Plaintexts.
• Generate a uniform random s0 ∈ SKeys.
• Return A(H,K,D,C∗, s0).

The event that A queries H on p∗ inside RunHash0(X,A,SKeys) is exactly the
event that RunPassive(X,B) outputs 1: the algorithms are the same, except for
relabeling s as s0.

The probability that RunHash0(X,A,SKeys) returns 1 is at most the sum of
the following three probabilities:

• The probability that it returns 1 with A querying H on p∗. This probability
is at most PrPassive(X,B).

• The probability that it returns 1 with A querying D on C∗. This probability
is at most q/#Plaintexts: since A is non-cheating, it cannot query D on C∗

after seeing C∗ or s0, and before this its queries are independent of p∗, so p∗

matches each query with probability at most 1/#Plaintexts.
• The probability that it returns 1 without A querying H on p∗ and without
A querying D on C∗. Define δ as this probability.

RunHash1(X,A,SKeys) works the same way, except that it calls
A(H,K,D,C∗, s1) instead of A(H,K,D,C∗, s0). Both s0 and s1 = D(C∗) =
H(p∗) are uniform random elements of SKeys, independent of all other values
of D and H, so the only way for A to tell the difference is to query D on
C∗ or query H on p∗. The probability that A queries H on p∗ is again at
most PrPassive(X,B), the probability that A queries D on C∗ is again at most
q/#Plaintexts, and the probability that RunHash1(X,A,SKeys) returns 1 with-
out these two types of queries is the same δ as before.

Both Pr[RunHash0(X,A,SKeys)] and Pr[RunHash1(X,A,SKeys)] are thus
between δ and δ + PrPassive(X,B) + q/#Plaintexts. The absolute difference
DistHash(X,A, SKeys) is at most PrPassive(X,B) + q/#Plaintexts. ut

9 Correct quiet KEMs

This section reviews the definition of a ROM KEM, in particular for KEMs that
are correct and “quiet”.

Correct refers to the fact that decapsulating C always outputs s whenever
encapsulation outputs (C, s). This is analogous to the correctness concept for
PKEs in Section 4.

The literature generally permits KEM decapsulation to output a symbol ⊥
outside SKeys, the same way that PKE decryption can return a symbol ⊥ outside

Towards KEM Unification 17

Plaintexts. We consider only quiet KEMs, meaning that the output of decapsu-
lation is always in SKeys; this restriction simplifies the KEM interface. We have
not found previous terminology for this concept.

Choosing a particular deterministic algorithm H mapping HashInputs to
SKeys, and substituting this into Encap and Decap, produces a simpler type
of object, also called a KEM. This paper analyzes ROM security, i.e., the chance
of breaking a uniform random function H given oracle access to H; beware that
there could be faster attacks against any particular choice of H.

Definition 9.1 (correct quiet ROM KEM). A correct quiet ROM KEM
is defined as a tuple

(HashInputs,PublicKeys,PrivateKeys,SKeys,Ciphertexts,KeyGen,Encap,Decap)

where

• HashInputs,PublicKeys,PrivateKeys,SKeys,Ciphertexts are nonempty finite
sets;

• KeyGen is an algorithm mapping {()} to PublicKeys× PrivateKeys;
• Encap is an algorithm mapping SKeysHashInputs × PublicKeys to Ciphertexts×

SKeys;
• Decap is an algorithm mapping SKeysHashInputs×Ciphertexts×PrivateKeys to

SKeys; and
• Decap(H,C, k) = s for every H ∈ SKeysHashInputs, every (K, k) output by

KeyGen(), and every (C, s) output by Encap(H,K).

10 IND-CCA2 security for a KEM

This section reviews the definition of ROM IND-CCA2 security. Informally, ROM
IND-CCA2 security of a ROM KEM Y means that DistCCA(Y,A) defined below
is small for every feasible non-cheating attack A. DistCCA(Y,A), in turn, is the
chance that A can distinguish a session key from uniform. A is given access to the
public key, the ciphertext generated by the same encapsulation that generated
the session key, and a decapsulation oracle. For theorems we work directly with
the definition of DistCCA. Non-cheating has the same definition as in Section 7.

Definition 10.1 (RunCCA and DistCCA). Let

Y = (HashInputs,PublicKeys,PrivateKeys,SKeys,Ciphertexts,

KeyGen,Encap,Decap)

be a correct quiet ROM KEM. Let A be an algorithm. Then DistCCA(Y,A) is
defined as

|Pr[RunCCA1(Y,A) = 1]− Pr[RunCCA0(Y,A) = 1]|,

where RunCCAb(Y,A) is defined as the following algorithm:

18 Daniel J. Bernstein and Edoardo Persichetti

• Generate a uniform random H ∈ SKeysHashInputs.
• Compute (K, k)← KeyGen().
• Define D ∈ SKeysCiphertexts by D(C) = Decap(H,C, k) for each C ∈

Ciphertexts.
• Compute (C∗, s1)← Encap(H,K).
• Generate a uniform random s0 ∈ SKeys.
• Output A(H,K,D,C∗, sb).

IND-CCA2 security is often called “IND-CCA” security. However, this risks
confusion with the weaker concept of “IND-CCA1” security, in which the at-
tacker is not permitted any access to the decapsulation oracle D after receiving
the challenge ciphertext.

Sometimes the literature defines IND-CCA2 success probabilities (modulo no-
tation) as Pr[RunCCAb(Y,A) = b]−1/2, where b is chosen uniformly at random.
This produces a result between −1/2 and 1/2, exactly half of the difference
Pr[RunCCA1(Y,A) = 1] − Pr[RunCCA0(Y,A) = 1]. We prefer working with
the absolute difference, which is always between 0 and 1. We have also defined
IND-Hash in this way.

11 ROM ciphers, ROM PRF security, and PrefixCipher

Implicit rejection can use any cipher to generate pseudorandom results from
invalid ciphertexts. We recommend a particular choice of cipher to simplify
constant-time implementations, as noted in Section 1 and explained in Sec-
tion 15: specifically, we will use a hash function for valid ciphertexts, and we
recommend using the same hash function with a secret prefix as a cipher. This
recommendation is almost identical to how implicit rejection is handled in [20],
except for the slight deviation mentioned in Section 1.

Even though we are recommending a particular cipher, we still modularize the
security analysis of this cipher so that it can be audited separately. Formally, this
is the analysis of “ROM security” of a “ROM cipher”, which is not exactly the
same as analysis of security of a cipher: the cipher and the attacker are permitted
access to a uniform random hash function. We emphasize that a ROM cipher is
much more general than what the literature calls an “ideal cipher”: for example,
AES is a ROM cipher (making no use of the supplied hash function) and is
certainly not an ideal cipher.

Secretly prefixed hash functions are often criticized in the literature as allow-
ing “length-extension attacks” for “Merkle–Damg̊ard” hash functions such as
SHA-256. Two convincing ways to avoid this problem are (1) to encode cipher-
texts as constant-length strings and (2) to use SHA-3 instead of SHA-2: e.g.,
SHA3-256 or SHAKE256 instead of SHA-256.

Definition 11.1 (ROM cipher). A ROM cipher is defined as a tuple

(HashInputs,CipherKeys, Inputs,Outputs,Map)

Towards KEM Unification 19

where HashInputs, CipherKeys, Inputs, Outputs are nonempty finite sets and Map
is a deterministic algorithm mapping OutputsHashInputs × CipherKeys × Inputs to
Outputs.

Definition 11.2 (RunPRF and DistPRF). Let

R = (HashInputs,CipherKeys, Inputs,Outputs,Map)

be a ROM cipher, and let A be an algorithm. Then DistPRF(R,A) is defined as

|Pr[RunPRF1(R,A) = 1]− Pr[RunPRF0(R,A) = 1]|,

where RunPRFb(R,A) is defined as the following algorithm:

• Generate a uniform random H ∈ OutputsHashInputs.
• Generate a uniform random r ∈ CipherKeys.
• Define E1 ∈ OutputsInputs by E1(x) = Map(H, r, x) for each x ∈ Inputs.
• Generate a uniform random E0 ∈ OutputsInputs.
• Output A(H,Eb).

Definition 11.3 (PrefixCipher). Let CipherKeys, Inputs,Outputs be nonempty
finite sets. Then PrefixCipher(CipherKeys, Inputs,Outputs) is defined as the tuple

(HashInputs,CipherKeys, Inputs,Outputs,Map)

where HashInputs = CipherKeys× Inputs and Map(H, r, x) = H(r, x).

Theorem 11.4 (PrefixCipher correctness). Let CipherKeys, Inputs,Outputs
be nonempty finite sets. Define R = PrefixCipher(CipherKeys, Inputs,Outputs).
Then R is a ROM cipher.

Proof. CipherKeys × Inputs is a nonempty finite set, and Map is a deterministic
algorithm mapping OutputsHashInputs × CipherKeys× Inputs to Outputs. ut

Theorem 11.5 (PrefixCipher security). Let CipherKeys, Inputs,Outputs be
nonempty finite sets. Define R = PrefixCipher(CipherKeys, Inputs,Outputs). Let
A be an algorithm that performs at most q queries to its first input. Then
DistPRF(R,A) ≤ q/#CipherKeys.

Proof. By definition E1(x) = Map(H, r, x) = H(r, x). This is the only informa-
tion that A obtains regarding r inside RunPRF1(R,A).

In particular, the first hash query is independent of r and thus has chance only
1/#CipherKeys of using r, i.e., having the form (r, . . .). If this does not occur,
then the next query has conditional probability at most 1/(#CipherKeys−1), and
thus absolute probability at most 1/#CipherKeys, of using r. Et cetera. Overall
A has probability at most q/#CipherKeys of using r in a hash query. The same
is true inside RunPRF0(R,A).

Write δ for the probability that A outputs 1 without using r in a hash query.
This probability is the same in RunPRF1(R,A) and RunPRF0(R,A): if r is not
used in a hash query then the query results are independent of all E1 outputs,
and also independent of all E0 outputs.

Hence Pr[RunPRFb(R,A) = 1] is between δ and δ + q/#CipherKeys. The
distance between b = 0 and b = 1 is at most q/#CipherKeys. ut

20 Daniel J. Bernstein and Edoardo Persichetti

12 Implicit rejection

This section combines a rigid correct deterministic PKE and a ROM cipher
into a correct quiet ROM KEM. The KEM has a further parameter, a function
mapping plaintext-ciphertext pairs to a set HashExtras; this unifies “U 6⊥” and
“U 6⊥m” from [20].

Definition 12.1 (ImplicitRejection). Let

X = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt)

be a rigid correct deterministic PKE. Let HashExtras and SKeys be nonempty
finite sets. Let

R = (HashInputs,CipherKeys, Inputs,Outputs,Map)

be a ROM cipher with Inputs = Ciphertexts, Outputs = SKeys, and HashInputs ⊇
Plaintexts×HashExtras. Let F be a deterministic algorithm mapping Plaintexts×
Ciphertexts to HashExtras. Then ImplicitRejection(X,R, F) is defined as

(HashInputs′,PublicKeys,PrivateKeys′,SKeys,Ciphertexts,KeyGen′,Encap,Decap)

where the components are defined as follows:

• HashInputs′ = {0, 1} × HashInputs.
• PrivateKeys′ = PrivateKeys× CipherKeys.
• KeyGen′() computes (K, k) ← KeyGen(), generates a uniform random r ∈

CipherKeys, defines k′ = (k, r), and outputs (K, k′).
• Encap(H,K) generates a uniform random p ∈ Plaintexts, computes C ←

Encrypt(p,K), and outputs (C,H(1, p, F (p, C))).
• Decap(H,C, k′) parses k′ as (k, r); computes p ← Decrypt(C, k); outputs

Map(H0, r, C) if p = ⊥, where H0(. . .) = H(0, . . .); otherwise outputs
H(1, p, F (p, C)).

12.2. Examples of extra hash inputs. In the situation of Definition 12.1,
write Y = ImplicitRejection(X,R, F). We highlight three special cases of interest
for the function F :

• F (p, C) = (), with HashExtras = {()}. Then Y uses H(1, p) as a session key.
This is similar to “U 6⊥m” from [20], except that Y handles implicit rejection
by a separate cipher instead of by hashing.

• F (p, C) = C, with HashExtras = Ciphertexts. Then Y uses H(1, p, C) as a
session key. This is similar to “U 6⊥” from [20].

• F (p, C) is an intermediate result in recomputing C from p, but not an in-
termediate result that is easy to compute from C alone: consider, e.g., a
PKE that computes C by rounding an intermediate result. What makes this
choice of F potentially interesting is that it would force implementors to
compute this intermediate result, reducing the incentives for implementors
to avoid the recomputation required by ReEnc from Section 6.

Towards KEM Unification 21

The proof techniques also apply to a further generalization in which F takes the
public key K as an additional input, and in which Map allows a function of K
as an additional input.

Theorem 12.3 (correctness of ImplicitRejection). In the setting of Defi-
nition 12.1, ImplicitRejection(X,R, F) is a correct quiet ROM KEM.

Proof. Sets. PublicKeys,PrivateKeys,Plaintexts,Ciphertexts are nonempty fi-
nite sets by definition of PKE; HashInputs,CipherKeys,Outputs = SKeys are
nonempty finite sets by definition of cipher; so HashInputs′ = {0, 1}×HashInputs
and PrivateKeys′ = PrivateKeys× CipherKeys are also nonempty finite sets.

Key generation. KeyGen() produces K ∈ PublicKeys and k ∈ PrivateKeys, so
KeyGen′() produces K ∈ PublicKeys and k′ = (k, r) ∈ PrivateKeys×CipherKeys =
PrivateKeys′.

Encapsulation. Say H ∈ SKeysHashInputs′ and K ∈ PublicKeys. Then
Encap(H,K) outputs an element of Ciphertexts× SKeys:

• p ∈ Plaintexts by construction.
• Encrypt maps Plaintexts×PublicKeys to Ciphertexts by definition of PKE, so
C = Encrypt(p,K) ∈ Ciphertexts.

• F maps Plaintexts × Ciphertexts to HashExtras by hypothesis, so F (p, C) ∈
HashExtras.

• (p, F (p, C)) ∈ Plaintexts× HashExtras ⊆ HashInputs.
• (1, p, F (p, C)) ∈ HashInputs′.
• H(1, p, F (p, C)) ∈ SKeys.
• (C,H(1, p, F (p, C))) ∈ Ciphertexts× SKeys.

Decapsulation. Say H ∈ SKeysHashInputs′ , C ∈ Ciphertexts, and k′ = (k, r) ∈
PrivateKeys′, where k ∈ PrivateKeys and r ∈ CipherKeys. Then Decap(H,C, k′)
outputs an element of SKeys:

• Decrypt maps Ciphertexts × PrivateKeys to Plaintexts ∪ {⊥} by definition of
PKE, so p ∈ Plaintexts ∪ {⊥}.
• If p ∈ Plaintexts then Decap(H,C, k′) outputs H(1, p, F (p, C)) ∈ SKeys.
• Otherwise H0 ∈ SKeysHashInputs, and Decap(H,C, k′) outputs Map(H0, r, C) ∈
SKeys.

Correctness. If (K, k′) ← KeyGen′() and (C, s) ← Encap(H,K), then
Decap(H,C, k′) = s. Indeed, k′ has the form (k, r) where (K, k)← KeyGen(), and
C = Encrypt(p,K) for the p ∈ Plaintexts generated in Encap, so Decrypt(C, k) = p
by definition of (correct) PKE, so Decap(H,C, k′) = H(1, p, F (p, C)) = s. ut

13 RandomDecap: ROM IND-CCA2 security from ROM
IND-Hash security

This section derives the ROM IND-CCA2 security of ImplicitRejection(X,R, F)
tightly from the ROM IND-Hash security of X and the ROM PRF security of
R. The point of the proof is that the following two procedures produce the same
distribution of the pair (H,D):

22 Daniel J. Bernstein and Edoardo Persichetti

• H is a uniform random function, and D is the corresponding IND-CCA2
decapsulation oracle that (1) for valid ciphertexts, decrypts and applies H;
(2) for invalid ciphertexts, generates uniform random results.

• D is a uniform random function, and H is the corresponding IND-Hash hash
function that encrypts and applies D.

We emphasize that this proof does not check whether encryptions match a chal-
lenge ciphertext—a separate proof technique used in Theorem 8.2 to relate IND-
Hash to OW-Passive.

Specializing Theorem 13.3 to R = PrefixCipher(CipherKeys, Inputs,Outputs)
guarantees ROM PRF security of R by Theorem 11.5, assuming #CipherKeys
is large enough. The special case F (p, C) = C, which we recommend, produces
essentially [20, Theorem 3.4], but we use IND-Hash security and ROM PRF
security to factor the proof into three conceptually separate parts. The special
case F (p, C) = () fills in a proof of essentially [20, Theorem 3.6].

We highlight two differences between our assumptions and the assumptions in
[20]. First, our proofs rely on the assumption thatX is rigid, while [20, Theorems
3.4 and 3.6] do not make this assumption; see Appendix A for a counterexample
to [20, Theorem 3.6] exploiting this. Second, [20] allows partially correct PKEs,
while we focus on the simpler case of correct PKEs, as noted earlier.

Definition 13.1 (RandomDecap). In the setting of Definition 12.1, let A be
an algorithm. Then RandomDecap(A) is defined as the following algorithm:

• Input H ′,K,D,C∗, s.
• Define H1(p, x) as H ′(p) if p ∈ Plaintexts and x = F (p,Encrypt(p,K)).
• Generate each other H1(. . .) uniformly at random.
• Generate a uniform random H0 ∈ SKeysHashInputs.
• Define H(0, . . .) = H0(. . .) and H(1, . . .) = H1(. . .).
• Output A(H,K,D,C∗, s).

Note that RandomDecap(A) is non-cheating if A is non-cheating.

Definition 13.2 (IR). In the setting of Definition 12.1, let A be an algorithm.
Then IRb(A) is defined as the following algorithm:

• Input H0 ∈ SKeysHashInputs.
• Input E ∈ SKeysCiphertexts.
• Generate a uniform random H1 ∈ SKeysHashInputs.
• Define H(0, . . .) = H0(. . .) and H(1, . . .) = H1(. . .).
• Compute (K, k)← KeyGen().
• Define D ∈ SKeysCiphertexts as follows: D(C) = E(C) if Decrypt(C, k) = ⊥;

otherwise D(C) = H1(p, F (p, C)) where p = Decrypt(C, k).
• Generate a uniform random p∗ ∈ Plaintexts.
• Compute C∗ ← Encrypt(p∗,K).
• Compute s1 = H1(p∗, F (p∗, C∗)).
• Generate a uniform random s0 ∈ SKeys.
• Output A(H,K,D,C∗, sb).

Towards KEM Unification 23

Theorem 13.3 (IND-CCA2 security from IND-Hash security). In the
setting of Definition 12.1, define Y = ImplicitRejection(X,R, F). Let A be a
non-cheating algorithm. Define A′ = RandomDecap(A). Then DistCCA(Y,A) ≤
DistHash(X,A′,SKeys) + DistPRF(R, IR0(A)) + DistPRF(R, IR1(A)).

Proof. Substitute the definition of ImplicitRejection(X,R, F) into the defini-
tion of RunCCAb(Y,A), and note that generating a uniform random H ∈
SKeys{0,1}×HashInputs is equivalent to generating independent uniform random
H0, H1 ∈ SKeysHashInputs. The conclusion is that RunCCAb(Y,A) works as fol-
lows:

• Generate a uniform random H0 ∈ SKeysHashInputs.
• Generate a uniform random H1 ∈ SKeysHashInputs.
• Define H(0, . . .) = H0(. . .) and H(1, . . .) = H1(. . .).
• Compute (K, k′)← KeyGen′(): i.e., compute (K, k)← KeyGen(), generate a

uniform random r ∈ CipherKeys, and define k′ = (k, r).
• Define D ∈ SKeysCiphertexts by D(C) = Decap(H,C, k′) for each C ∈

Ciphertexts; i.e., D(C) = Map(H0, r, C) if Decrypt(C, k) = ⊥; otherwise
D(C) = H1(p, F (p, C)) where p = Decrypt(C, k).

• Compute (C∗, s1) ← Encap(H,K); i.e., generate a uniform random
p∗ ∈ Plaintexts, compute C∗ ← Encrypt(p∗,K), and compute s1 =
H1(p∗, F (p∗, C∗)).

• Generate a uniform random s0 ∈ SKeys.
• Output A(H,K,D,C∗, sb).

This is, by definition of IRb, the same as the following:

• Generate a uniform random H0 ∈ SKeysHashInputs.
• Generate a uniform random r ∈ CipherKeys.
• Define E1 ∈ SKeysCiphertexts by E1(C) = Map(H0, r, C) for each C ∈

Ciphertexts.
• Output IRb(A)(H0, E1).

This is exactly RunPRF1(R, IRb(A)). To summarize so far, RunCCAb(Y,A) =
RunPRF1(R, IRb(A)). Hence

DistCCA(Y,A)

= |Pr[RunCCA1(Y,A) = 1]− Pr[RunCCA0(Y,A) = 1]|
= |Pr[RunPRF1(R, IR1(A)) = 1]− Pr[RunPRF1(R, IR0(A)) = 1]|.

Furthermore, Pr[RunPRF1(R, IRb(A)) = 1] is within DistPRF(R, IRb(A)) of
Pr[RunPRF0(R, IRb(A)) = 1]; recall that RunPRF0 is the same as RunPRF1

except that E1 is replaced by a uniform random E0 ∈ SKeysCiphertexts. Hence

DistCCA(Y,A) ≤ δ + DistPRF(R, IR0(A)) + DistPRF(R, IR1(A))

where δ = |Pr[RunPRF0(R, IR1(A)) = 1]− Pr[RunPRF0(R, IR0(A)) = 1]|. We
will finish the proof by showing that δ is exactly DistHash(X,A′,SKeys). For
reference we restate RunPRF0(R, IRb(A)):

24 Daniel J. Bernstein and Edoardo Persichetti

• Generate a uniform random H0 ∈ SKeysHashInputs.
• Generate a uniform random E0 ∈ SKeysCiphertexts.
• Generate a uniform random H1 ∈ SKeysHashInputs.
• Define H(0, . . .) = H0(. . .) and H(1, . . .) = H1(. . .).
• Compute (K, k)← KeyGen().
• Define D ∈ SKeysCiphertexts as follows: D(C) = E0(C) if Decrypt(C, k) = ⊥;

otherwise D(C) = H1(p, F (p, C)) where p = Decrypt(C, k).
• Generate a uniform random p∗ ∈ Plaintexts.
• Compute C∗ ← Encrypt(p∗,K).
• Compute s1 = H1(p∗, F (p∗, C∗)).
• Generate a uniform random s0 ∈ SKeys.
• Output A(H,K,D,C∗, sb).

Observe that, for each (K, k), different inputs to D cannot produce col-
liding inputs to H1: if (p, F (p, C)) = (p′, F (p′, C ′)) where p = Decrypt(C, k)
and p′ = Decrypt(C ′, k) then in particular p = p′ (no matter what F is) so
C = Encrypt(p,K) = Encrypt(p′,K) = C ′. This is where we are using the hy-
pothesis that X is rigid.

Consequently, inside RunPRF0(R, IRb(A)), the values of D are the values on
distinct inputs of E0 and H1, which are independent uniform random functions.
Hence D is a uniform random element of SKeysCiphertexts. This is independent
of the uniform random element H1 ∈ SKeysHashInputs, except for the relationship
D(C) = H1(p, F (p, C)) where p = Decrypt(C, k), i.e., D(C) = H1(p, F (p, C))
where C = Encrypt(p,K).

Now replace the constructions of E0, H1, D by the following steps:

• Generate a uniform random D ∈ SKeysCiphertexts.
• Define H ′(p) = D(Encrypt(p,K)) for each p ∈ Plaintexts.
• Define H1(p, x) as H ′(p) if p ∈ Plaintexts and x = F (p,Encrypt(p,K)).
• Generate each other H1(· · ·) uniformly at random.

This generates the same distribution of pairs (D,H1): two uniform random func-
tions that are independent except for the relationship H1(p, F (p, C)) = D(C)
where C = Encrypt(p,K). There is no effect on the probability that the algorithm
outputs 1.

This replacement changes RunPRF0(R, IRb(A)) into the following algorithm:

• Compute (K, k)← KeyGen().
• Generate a uniform random p∗ ∈ Plaintexts.
• Compute C∗ ← Encrypt(p∗,K).
• Generate a uniform random D ∈ SKeysCiphertexts.
• Define H ′(p) = D(Encrypt(p,K)) for each p ∈ Plaintexts.
• Generate a uniform random s0 ∈ SKeys.
• Compute s1 = D(C∗).
• Define H1(p, x) as H ′(p) if p ∈ Plaintexts and x = F (p,Encrypt(p,K)).
• Generate each other H1(. . .) uniformly at random.
• Generate a uniform random H0 ∈ SKeysHashInputs.

Towards KEM Unification 25

• Define H(0, . . .) = H0(. . .) and H(1, . . .) = H1(. . .).
• Output A(H,K,D,C∗, sb).

This algorithm is exactly RunHashb(X,A
′,SKeys), with H in the definition of

RunHashb renamed H ′. The chance that this algorithm outputs 1 has distance
exactly DistHash(X,A′,SKeys) between the cases b = 0 and b = 1. ut

14 SimpleKEM

This section formally defines SimpleKEM, and combines the previous theorems
to show that ROM IND-CCA2 security for SimpleKEM follows tightly from
OW-Passive security for the underlying PKE.

Definition 14.1 (SimpleKEM). Let SKeys and CipherKeys be nonempty finite
sets. Let

X = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt)

be a correct deterministic PKE with Plaintexts ⊆ CipherKeys. Then
SimpleKEM(X,SKeys,CipherKeys) is defined as

(HashInputs′,PublicKeys,PrivateKeys′′,SKeys,Ciphertexts,

KeyGen′′,Encap,Decap)

where

• HashInputs′ = {0, 1} × CipherKeys× Ciphertexts.
• PrivateKeys′′ = PrivateKeys× PublicKeys× CipherKeys.
• KeyGen′′() computes (K, k) ← KeyGen(), generates a uniform random r ∈

CipherKeys, defines k′′ = (k,K, r), and outputs (K, k′′).
• Encap(H,K) generates a uniform random p ∈ Plaintexts, computes C ←

Encrypt(p,K), and outputs (C,H(1, p, C)).
• Decap(H,C, k′′) parses k′′ as (k,K, r); computes p ← Decrypt(C, k); out-

puts H(1, p, C) if p ∈ Plaintexts and Encrypt(p,K) = C; otherwise outputs
H(0, r, C).

Theorem 14.2 (SimpleKEM decomposition). Let SKeys and CipherKeys be
nonempty finite sets. Let

X = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt)

be a correct deterministic PKE with Plaintexts ⊆ CipherKeys. Define
HashExtras = Ciphertexts. Define F ∈ HashExtrasPlaintexts×Ciphertexts by F (p, C) =
C. Define R = PrefixCipher(CipherKeys,Ciphertexts,SKeys). Then

SimpleKEM(X,SKeys,CipherKeys) = ImplicitRejection(ReEnc(X), R, F),

and SimpleKEM(X,SKeys,CipherKeys) is a correct quiet ROM KEM.

26 Daniel J. Bernstein and Edoardo Persichetti

The decomposition via PrefixCipher, ReEnc, and ImplicitRejection is overkill
for the conclusion that SimpleKEM(X,SKeys,CipherKeys) is a correct quiet
ROM KEM, but the same decomposition is also reused for the security anal-
ysis.

Proof. Define X ′ = ReEnc(X). Recall that

X ′ = (PublicKeys,PrivateKeys′,Plaintexts,Ciphertexts,KeyGen′,Encrypt,Decrypt′)

where PrivateKeys′ = PrivateKeys × PublicKeys; KeyGen′() computes (K, k) ←
KeyGen() and then outputs (K, k′) where k′ = (k,K); and Decrypt′(C, k′) out-
puts the p returned by Decrypt(C, k) if p ∈ Plaintexts and Encrypt(p,K) = C,
otherwise ⊥. By Theorem 6.3, X ′ is a rigid correct deterministic PKE.

Ciphertexts is a nonempty finite set by definition of PKE, and SKeys is a
nonempty finite set by hypothesis, so by definition

R = (HashInputs,CipherKeys, Inputs,Outputs,Map)

where Inputs = Ciphertexts, Outputs = SKeys, HashInputs = CipherKeys ×
Ciphertexts, and Map(H, r, x) = H(r, x); and R is a ROM cipher by Theo-
rem 11.4.

The conditions of Definition 12.1 are satisfied: X ′ is a rigid correct determin-
istic PKE; HashExtras = Ciphertexts is a nonempty finite set by definition of
PKE; SKeys is a nonempty finite set by assumption; R is a ROM cipher with
Inputs = Ciphertexts, Outputs = SKeys, and HashInputs ⊇ Plaintexts×HashExtras.
By definition ImplicitRejection(X ′, R, F) is

(HashInputs′,PublicKeys,PrivateKeys′′,SKeys,Ciphertexts,

KeyGen′′,Encap,Decap)

where

• HashInputs′ = {0, 1} × HashInputs = {0, 1} × CipherKeys× Ciphertexts.
• PrivateKeys′′ = PrivateKeys′ × CipherKeys = PrivateKeys × PublicKeys ×

CipherKeys.
• KeyGen′′() computes (K, k′) ← KeyGen′(), generates a uniform random r ∈

CipherKeys, defines k′′ = (k′, r), and outputs (K, k′′). Internally KeyGen′()
computes (K, k)← KeyGen() and sets k′ = (k,K), so k′′ = (k,K, r).

• Encap(H,K) generates a uniform random p ∈ Plaintexts, computes C ←
Encrypt(p,K), and outputs (C,H(1, p, F (p, C))) = (C,H(1, p, C)).

• Decap(H,C, k′′) parses k′′ as (k′, r); computes p ← Decrypt′(C, k′); outputs
H(1, p, F (p, C)) if p ∈ Plaintexts; otherwise outputs Map(H0, r, C), where
H0(. . .) = H(0, . . .). In other words, it parses k′′ as (k,K, r); computes p←
Decrypt(C, k); outputs H(1, p, C) if p ∈ Plaintexts and Encrypt(p,K) = C;
otherwise outputs H0(r, C) = H(0, r, C).

This is exactly SimpleKEM(X,SKeys,CipherKeys). Finally, by Theorem 12.3,
this is a correct quiet ROM KEM. ut

Towards KEM Unification 27

Theorem 14.3 (SimpleKEM security). In the setting of Theorem 14.2, de-
fine X ′ = ReEnc(X) and Y = SimpleKEM(X,SKeys,CipherKeys). Let A be
a non-cheating algorithm that performs at most qHash0 queries of the form
(0, . . .) to its first input and at most qDecap queries to its third input. Define
A′ = RandomDecap(A) and B = CheckEncrypt(X ′, A′,SKeys). Then

DistCCA(Y,A) ≤ PrPassive(X,B) +
qDecap

#Plaintexts
+

2qHash0

#CipherKeys
.

Proof. Y = ImplicitRejection(X ′, R, F) by Theorem 14.2. The hypotheses of
Theorem 13.3 are satisfied, so DistCCA(Y,A) ≤ DistHash(X ′, A′,SKeys) +
DistPRF(R, IR0(A)) + DistPRF(R, IR1(A)).

The only way for IRb(A) to query its first input, H0 in Definition 13.2, is for
A to query its first input on (0, . . .). This occurs at most qHash0 times. Hence
DistPRF(R, IRb(A)) ≤ qHash0/#CipherKeys by Theorem 11.5.

The only way for A′ = RandomDecap(A) to query its third input is for A
to query its third input. This occurs at most qDecap times. Also note that A′ is
non-cheating. Hence

DistHash(X ′, A′,SKeys) ≤ PrPassive(X ′, B) +
qDecap

#Plaintexts

by Theorem 8.2; and PrPassive(X ′, B) = PrPassive(X,B) by Theorem 6.4. ut

15 Constant-time algorithms

This section presents an algorithm for SimpleKEM(X, . . .) that follows the stan-
dard discipline—verified by existing tools—of avoiding data flow from secrets to
array indices and branch conditions. This section assumes that such algorithms
are already provided for the underlying PKE X and the hash function H. The
techniques here are standard, but the details of the resulting algorithms are
important for comparison to alternatives.

There is no difficulty in key generation and encapsulation. The task here is to
eliminate the two branches in decapsulation. First, p← Decrypt(C, k) could fail,
i.e., p could be⊥. Second, even if decryption succeeds, the test C = Encrypt(p,K)
could fail.

We assume that elements of CipherKeys, including elements of Plaintexts, are
encoded as constant-length byte strings. We also assume that the output of
Decrypt(C, k) in Plaintexts ∪ {⊥} is encoded as an element (b, x) of {0, 1} ×
Plaintexts: specifically, p ∈ Plaintexts is encoded as (1, p), and ⊥ is encoded as
(0, z) for a standard choice of z ∈ Plaintexts.

Whether or not b = 1, we perform each of the following steps, using a constant-
time algorithm for each step:

• Compute C ′ = Encrypt(x,K).
• Compute c = [C = C ′]. There are various well-known algorithms for

constant-time comparison: e.g., computing C ⊕ C ′ where ⊕ is xor of a rep-
resentation as constant-length byte strings; then or’ing the resulting bits
together; then complementing the result.

28 Daniel J. Bernstein and Edoardo Persichetti

• Set b ← bc. At this point b = 1 if and only if decryption and reencryption
both succeeded.

• Replace x with r if b = 0 in constant time. There are various well-known
algorithms for constant-time conditional moves: e.g., setting x← b(x⊕r)⊕r,
where b(x⊕ r) means using b to mask each bit of x⊕ r.

• Compute H(b, x, C).

For comparison, a constant-time algorithm for explicit rejection would have

• the same main computations: Decrypt, Encrypt, H;
• minor simplifications: it would skip the replacement of x with r if b = 0, and

would skip the generation and storage of r; and
• minor complications: it would replace the output with a standard choice of
z′ ∈ SKeys if b = 0, and it would have b as an additional output.

A variable-time algorithm for explicit rejection can skip the management of b in
favor of storing the same information in the instruction pointer: it immediately
returns ⊥ if Decrypt(C, k) does, and it immediately returns ⊥ if C 6= C ′. We
do not recommend this algorithm: the leak of information through timing is
dangerous.

16 The case for implicit rejection

Many NIST submissions cite [20], which gives proofs for both implicit rejection
and explicit rejection. These submissions are split between choosing implicit
rejection (Frodo, KINDI, Kyber, LAC, Lizard, NewHope, Round2, Saber, SIKE,
and Titanium) and choosing explicit rejection (BIG QUAKE, DAGS, EMBLEM,
HQC, Lepton, LIMA, LOCKER, RQC, and ThreeBears). We have found only a
few brief discussions of the reasons for these choices.

This section analyzes various arguments for and against implicit rejection. Our
overall assessment is that implicit rejection has a much stronger case. ThreeBears
intentionally selected explicit rejection (see below), but all other use of explicit
rejection appears to be explainable by the fact that implicit rejection is quite
new. We have not found any reference to implicit rejection before [32] in 2012,
and the first direct comparison between implicit and explicit rejection was [20]
in 2017.

16.1. Arguments for implicit rejection. We have three central reasons for
recommending implicit rejection. First, implicit rejection enables various proof
strategies and theorems that are not known to be achievable with explicit re-
jection, while there is nothing the other way around. In particular, tight KEM
constructions with explicit rejection appear to require ciphertext expansion (for
plaintext confirmation) with more complicated proofs, or stronger assumptions
than OW-Passive for the underlying PKE.

Second, quiet KEMs cannot use explicit rejection. Quiet KEMs have a simpler
API than non-quiet KEMs. Quiet KEMs remove the need for applications to
check for KEM failures: as the Kyber submission comments, a KEM with implicit

Towards KEM Unification 29

rejection is “safe to use even if higher level protocols fail to check the return
value”.

Third, explicit rejection provides a noticeable incentive for implementors to
switch from constant-time algorithms to simpler variable-time algorithms. This
is a bad incentive, since variable-time algorithms complicate auditing and pre-
sumably create security problems. This incentive is smaller for implicit rejection.
See Section 15.

16.2. Arguments for explicit rejection, and counterarguments. Better
proofs are not necessarily correlated with better security against attacks. We
consider five arguments that explicit rejection could be more secure, or otherwise
more desirable, than implicit rejection:

• Implicit rejection outputs more information than explicit rejection, namely
cipher output under a secret key. One could argue that this is a risk.

• Explicit rejection has been studied for many more years than implicit rejec-
tion.

• Implicit rejection is another “target for side-channel analysis”.
• Explicit rejection is “faster” than implicit rejection.
• Explicit rejection is “simpler” than implicit rejection.

The last three items are stated in the ThreeBears submission [18, page 21]; [23]
also comments that explicit rejection has “relatively simple decapsulation”.

We now comment on each of these arguments.
Regarding the extra outputs: The central cipher security goal is indistin-

guishability of the output from uniform, implying that this extra information
is useless—something that the attacker could simply have generated at random.
There is a long history of using standard hash functions as ciphers and con-
jecturing that they meet the indistinguishability goal; see, e.g., [7]. The risk of
these conjectures being disproven appears to be far less probable than commonly
accepted risks in public-key cryptography.

Regarding age: There are many successful chosen-ciphertext attacks that, in
retrospect, exploited explicit rejection and would have been stopped by implicit
rejection. The question is not merely whether something has been studied, but
how well it has resisted attack.

Regarding side-channel attacks: The bigger picture is that decapsulation han-
dles secret data (the private key; private-key-dependent failure conditions; secret
plaintexts) and must be defended against side-channel attacks in environments
that allow such attacks. There is extensive literature on defenses, and we have
not heard reasons to believe that implicit rejection changes the difficulty of de-
fending the computation. Note that valid computations apply the same hash
function to secret data, so the hashing needs to be defended in any case.

Regarding speed: There is a slight speedup, but it is not clear why this speedup
is beneficial. Rejection occurs only when one is under attack (plus rare occa-
sions that an accidental bit flip was not caught by the network’s error-correcting
codes), and there is no obvious benefit to giving the attacker faster rejections.

30 Daniel J. Bernstein and Edoardo Persichetti

Finally, regarding simplicity: Constant-time implementations are no simpler
for explicit rejection than for implicit rejection. See Section 15. Variable-time
implementations are slightly simpler, but this is not a positive feature; see our
third argument for implicit rejection.

17 Plaintext confirmation

The general strategy of a chosen-ciphertext attack is to (1) modify the target
ciphertext in various ways and (2) inspect the results of decapsulation of the
modified ciphertexts. The two different tight ROM proof strategies mentioned
in Section 1, plaintext confirmation and implicit rejection, correspond to two
different defenses against these attacks, on top of the basic defenses provided by
rigidity and hashing:

• Rigidity means that a modified ciphertext cannot produce the same plain-
text.

• Sometimes a modified ciphertext produces a modified plaintext. The result-
ing session keys—strong hashes of the modified plaintexts—look random,
having no obvious relationship to the target session key. (The role of hash-
ing here is emphasized in [38].)

• Sometimes modified ciphertexts are invalid. Implicit rejection also produces
random-looking session keys in these cases, so it hides the pattern of valid
ciphertexts from the attacker.

• Plaintext confirmation stops an earlier stage of the attack. With plaintext
confirmation, the only way for the attacker to produce a new valid ciphertext
is to already know the plaintext, and decapsulation simply provides the same
plaintext again, fed through a public hash function. The pattern of valid
modified ciphertexts is thus nonexistent.

One can use both defenses together. For example, Classic McEliece [9] com-
bines plaintext confirmation with implicit rejection. The original PKE X is
first extended with a plaintext-confirmation hash H2 to produce a new PKE
“X2 = ConfirmPlaintext(X,H2)”, and then X2 is fed through SimpleKEM to
produce a KEM.

OW-Passive security of X tightly implies OW-Passive security of X2, which
in turn implies (by our theorems) ROM IND-CCA2 security for the KEM. For
comparison, OW-Passive security of X also implies (again by our theorems)
ROM IND-CCA2 security for the KEM obtained by applying SimpleKEM di-
rectly to X. This comparison does not show any advantages for the dual-defense
construction in [9].

On the other hand, the actual goal is more than ROM IND-CCA2 security.
Perhaps combining both defenses allows a tight proof of QROM IND-CCA2
security; this would add confidence that is missing without such a proof. Given

• the fact that the defenses target different aspects of attacks,
• the small costs of computing and communicating an extra hash, and

Towards KEM Unification 31

• the current lack of understanding of QROM security,

it seems difficult to justify a recommendation against the dual-defense construc-
tion.

References

[1] Carlisle Adams, Jan Camenisch (editors), Selected areas in cryptography—SAC
2017, 24th international conference, Ottawa, ON, Canada, August 16–18, 2017,
revised selected papers, Lecture Notes in Computer Science, 10719, Springer, 2018.
ISBN 978-3-319-72564-2. See [11].

[2] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Gilles Zémor, Rank Quasi-
Cyclic (RQC), “Documentation describing the scheme” (2017). URL: http://

pqc-rqc.org/documentation.html. Citations in this document: §1.
[3] Martin Albrecht, Carlos Cid, Kenneth G. Paterson, CJ Tjhai, Martin Tomlinson,

NTS-KEM, “The main document submitted to NIST” (2017). URL: https://
nts-kem.io/. Citations in this document: §1.

[4] Benedikt Auerbach, David Cash, Manuel Fersch, Eike Kiltz, Memory-tight reduc-
tions, in Crypto 2017 [26] (2017), 101–132. Citations in this document: §3.3.

[5] Gustavo Banegas, Paulo S. L. M. Barreto, Brice Odilon Boidje, Pierre-Louis
Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiécoumba Gueye, Richard
Haeussler, Jean Belo Klamti, Ousmane N’diaye, Duc Tri Nguyen, Edoardo Per-
sichetti, Jefferson E. Ricardini, DAGS: key encapsulation from dyadic GS codes,
“Specification” (2017). URL: https://www.dags-project.org/#files. Citations
in this document: §1.

[6] Magali Bardet, Elise Barelli, Olivier Blazy, Rodolfo Canto-Torres, Alain Cou-
vreur, Philippe Gaborit, Ayoub Otmani, Nicolas Sendrier, Jean-Pierre Tillich,
BIG QUAKE: BInary Goppa QUAsi-cyclic Key Encapsulation, “Submitted ver-
sion” (2017). URL: https://bigquake.inria.fr/documentation/. Citations in
this document: §1.

[7] Mihir Bellare, Ran Canetti, Hugo Krawczyk, Keying hash functions for message
authentication, in Crypto 1996 [28] (1996), 1–15. URL: https://cseweb.ucsd.
edu/~mihir/papers/hmac.html. Citations in this document: §16.2.

[8] Daniel J. Bernstein, Extending the Salsa20 nonce, Workshop Record of Symmet-
ric Key Encryption Workshop 2011 (2011). URL: https://cr.yp.to/papers.

html#xsalsa. Citations in this document: §3.3.
[9] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki,

Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nico-
las Sendrier, Jakub Szefer, Wen Wang, Classic McEliece: conservative code-based
cryptography, “Supporting Documentation” (2017). URL: https://classic.

mceliece.org/nist.html. Citations in this document: §1, §2.2, §2.3, §6, §17,
§17.

[10] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Christine van
Vredendaal, NTRU Prime, “Supporting Documentation” (2017). URL: https://
ntruprime.cr.yp.to/nist.html. Citations in this document: §1.

[11] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, Christine van
Vredendaal, NTRU Prime: reducing attack surface at low cost, in SAC 2017 [1]
(2018), 235–260. URL: https://ntruprime.cr.yp.to/papers.html. Citations in
this document: §1, §2.2.

http://pqc-rqc.org/documentation.html
http://pqc-rqc.org/documentation.html
https://nts-kem.io/
https://nts-kem.io/
https://www.dags-project.org/#files
https://bigquake.inria.fr/documentation/
https://cseweb.ucsd.edu/~mihir/papers/hmac.html
https://cseweb.ucsd.edu/~mihir/papers/hmac.html
https://cr.yp.to/papers.html#xsalsa
https://cr.yp.to/papers.html#xsalsa
https://classic.mceliece.org/nist.html
https://classic.mceliece.org/nist.html
https://ntruprime.cr.yp.to/nist.html
https://ntruprime.cr.yp.to/nist.html
https://ntruprime.cr.yp.to/papers.html

32 Daniel J. Bernstein and Edoardo Persichetti

[12] Daniel J. Bernstein, Josh Fried, Nadia Heninger, Paul Lou, Luke Va-
lenta, Post-quantum RSA (2017). URL: https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions. Citations in this docu-
ment: §1.

[13] Daniel J. Bernstein, Leon Groot Bruinderink, Tanja Lange, Lorenz Panny, HILA5
Pindakaas: On the CCA security of lattice-based encryption with error correction,
in Africacrypt 2018 [24] (2018), 203–216. Citations in this document: §1.

[14] Daniel J. Bernstein, Tanja Lange, Non-uniform cracks in the concrete: the power
of free precomputation, in Asiacrypt 2013 [37] (2013), 321–340. URL: https://
eprint.iacr.org/2012/318. Citations in this document: §3.6.

[15] Alexander W. Dent, A designer’s guide to KEMs, in [31] (2003), 133–151. URL:
https://eprint.iacr.org/2002/174. Citations in this document: §2.2, §2.2,
§2.2.

[16] Wieland Fischer, Naofumi Homma (editors), Cryptographic hardware and em-
bedded systems—CHES 2017—19th international conference, Taipei, Taiwan,
September 25–28, 2017, proceedings, Lecture Notes in Computer Science, 10529,
Springer, 2017. ISBN 978-3-319-66786-7. See [21].

[17] Eiichiro Fujisaki, Tatsuaki Okamoto, Secure integration of asymmetric and sym-
metric encryption schemes, in Crypto 1999 [44] (1999), 537–554. Citations in this
document: §2.

[18] Mike Hamburg, Post-quantum cryptography proposal: ThreeBears (2017).
URL: https://csrc.nist.gov/projects/post-quantum-cryptography/

round-1-submissions. Citations in this document: §16.2.
[19] Martin Hirt, Adam D. Smith (editors), Theory of cryptography—14th interna-

tional conference, TCC 2016-B, Beijing, China, October 31–November 3, 2016,
proceedings, part II, Lecture Notes in Computer Science, 9986, Springer, 2016.
ISBN 978-3-662-53643-8. See [43].

[20] Dennis Hofheinz, Kathrin Hövelmanns, Eike Kiltz, A modular analysis of the
Fujisaki-Okamoto transformation, in TCC 2017-1 [25] (2017), 341–371. URL:
https://eprint.iacr.org/2017/604. Citations in this document: §1, §1, §1, §2,
§2.2, §2.2, §2.2, §2.2, §2.2, §2.2, §2.2, §2.3, §2.3, §2.4, §2.4, §2.4, §6, §6, §11, §12,
§12.2, §12.2, §13, §13, §13, §13, §13, §13, §16, §16, §A, §A, §A.1, §A.2, §A.2, §A.2,
§A.2, §A.2, §A.3, §A.3, §A.3, §A.3, §A.3, §A.3, §A.3, §A.3, §A.4, §A.4, §A.4.

[21] Andreas Hülsing, Joost Rijneveld, John M. Schanck, Peter Schwabe, High-speed
key encapsulation from NTRU, in CHES 2017 [16] (2017), 232–252. Citations in
this document: §2.4, §2.4.

[22] Andreas Hülsing, Joost Rijneveld, John M. Schanck, Peter Schwabe,
NTRU-HRSS-KEM: algorithm specifications and supporting documentation
(2017). URL: https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions. Citations in this document: §1.

[23] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, Zhi Ma, Post-quantum
IND-CCA-secure KEM without additional hash (2017). URL: https://eprint.
iacr.org/2017/1096. Citations in this document: §2.4, §16.2.

[24] Antoine Joux, Abderrahmane Nitaj, Tajjeeddine Rachidi (editors), Progress in
cryptology—AFRICACRYPT 2018—10th international conference on cryptology
in Africa, Marrakesh, Morocco, May 7–9, 2018, proceedings, Lecture Notes in
Computer Science, 10831, Springer, 2018. ISBN 978-3-319-89338-9. See [13].

[25] Yael Kalai, Leonid Reyzin (editors), Theory of cryptography—15th international
conference, TCC 2017, Baltimore, MD, USA, November 12–15, 2017, proceedings,
part I, Lecture Notes in Computer Science, 10677, Springer, 2017. ISBN 978-3-
319-70499-9. See [20].

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2012/318
https://eprint.iacr.org/2012/318
https://eprint.iacr.org/2002/174
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2017/604
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2017/1096
https://eprint.iacr.org/2017/1096

Towards KEM Unification 33

[26] Jonathan Katz, Hovav Shacham (editors), Advances in cryptology—CRYPTO
2017—37th annual international cryptology conference, Santa Barbara, CA, USA,
August 20–24, 2017, proceedings, part I, Lecture Notes in Computer Science,
10401, Springer, 2017. ISBN 978-3-319-63687-0. See [4].

[27] Joe Kilian (editor), Advances in cryptology—CRYPTO 2001, 21st annual inter-
national cryptology conference, Santa Barbara, California, USA, August 19–23,
2001, proceedings, Lecture Notes in Computer Science, 2139, Springer, 2001. ISBN
3-540-42456-3. MR 2003d:94002. See [39].

[28] Neal Koblitz (editor), Advances in cryptology—CRYPTO ’96, 16th annual inter-
national cryptology conference, Santa Barbara, California, USA, August 18–22,
1996, proceedings, Lecture Notes in Computer Science, 1009, Springer, 1996. ISBN
3-540-61512-1. See [7].

[29] Dustin Moody, Re: qrom security etc. (2017). URL: https://groups.google.

com/a/list.nist.gov/d/msg/pqc-forum/WxRmVPhAENw/I5yhtr9dAgAJ. Cita-
tions in this document: §1.

[30] Jesper Buus Nielsen, Vincent Rijmen (editors), Advances in cryptology—
EUROCRYPT 2018—37th annual international conference on the theory and ap-
plications of cryptographic techniques, Tel Aviv, Israel, April 29–May 3, 2018,
proceedings, part III, Lecture Notes in Computer Science, 10822, Springer, 2018.
ISBN 978-3-319-78371-0. See [36].

[31] Kenneth G. Paterson (editor), Cryptography and coding, 9th IMA international
conference, Cirencester, UK, December 16–18, 2003, proceedings, Lecture Notes
in Computer Science, 2898, Springer, 2003. ISBN 3-540-20663-9. See [15].

[32] Edoardo Persichetti, Improving the efficiency of code-based cryptography, Ph.D.
thesis, 2012. URL: http://persichetti.webs.com/Thesis%20Final.pdf. Cita-
tions in this document: §1, §1, §1, §2.2, §2.3, §2.3, §16.

[33] Edoardo Persichetti, Re: qrom security etc. (2017). URL: https://groups.

google.com/a/list.nist.gov/d/msg/pqc-forum/WxRmVPhAENw/4cI-7n9cAgAJ.
Citations in this document: §1.

[34] Thomas Plantard, Odd Manhattan’s algorithm specifications and sup-
porting documentation (2017). URL: https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions. Citations in this docu-
ment: §1.

[35] Bart Preneel (editor), Advances in cryptology—EUROCRYPT 2000, interna-
tional conference on the theory and application of cryptographic techniques,
Bruges, Belgium, May 14–18, 2000, proceeding, Lecture Notes in Computer Sci-
ence, 1807, Springer, 2000. ISBN 3-540-67517-5. See [38].

[36] Tsunekazu Saito, Keita Xagawa, Takashi Yamakawa, Tightly-secure key-
encapsulation mechanism in the quantum random oracle model, in Eurocrypt 2018
[30] (2018), 520–551. URL: https://eprint.iacr.org/2017/1005. Citations in
this document: §2.3, §2.4, §2.4, §2.4, §2.4, §2.4, §2.4, §6.

[37] Kazue Sako, Palash Sarkar (editors), Advances in cryptology—Asiacrypt 2013—
19th international conference on the theory and application of cryptology and
information security, Bengaluru, India, December 1–5, 2013, proceedings, part II,
Lecture Notes in Computer Science, 8270, Springer, 2013. ISBN 978-3-642-42045-
0. See [14].

[38] Victor Shoup, Using hash functions as a hedge against chosen ciphertext attack,
in Eurocrypt 2000 [35] (2000), 275–288. Citations in this document: §2.1, §17.

[39] Victor Shoup, OAEP reconsidered, in Crypto 2001 [27] (2001), 239–259. URL:
http://shoup.net/papers/oaep.pdf. Citations in this document: §2.

https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/WxRmVPhAENw/I5yhtr9dAgAJ
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/WxRmVPhAENw/I5yhtr9dAgAJ
http://persichetti.webs.com/Thesis%20Final.pdf
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/WxRmVPhAENw/4cI-7n9cAgAJ
https://groups.google.com/a/list.nist.gov/d/msg/pqc-forum/WxRmVPhAENw/4cI-7n9cAgAJ
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2017/1005
http://shoup.net/papers/oaep.pdf

34 Daniel J. Bernstein and Edoardo Persichetti

[40] Victor Shoup, A proposal for an ISO standard for public key encryption, ver-
sion 2.1 (2001). URL: http://shoup.net/papers/iso-2_1.pdf. Citations in this
document: §1, §2.1.

[41] Nigel P. Smart, LIMA: a PQC encryption scheme, talk slides (2018). URL:
https://csrc.nist.gov/CSRC/media/Presentations/Lima/images-media/

LIMA-April2018.pdf. Citations in this document: §1.
[42] Nigel P. Smart, Martin R. Albrecht, Yehuda Lindell, Emmanuela Orsini, Valery

Osheter, Kenneth G. Paterson, Guy Peer, LIMA: a PQC encryption scheme,
“PDF” under “Submission” (2017). URL: https://lima-pq.github.io/. Cita-
tions in this document: §1.

[43] Ehsan Ebrahimi Targhi, Dominique Unruh, Post-quantum security of the Fujisaki-
Okamoto and OAEP transforms, in TCC 2016-B [19] (2016), 192–216. Citations
in this document: §2.4.

[44] Michael J. Wiener (editor), Advances in cryptology—CRYPTO ’99, 19th annual
international cryptology conference, Santa Barbara, California, USA, August 15–
19, 1999, proceedings, Lecture Notes in Computer Science, 1666, Springer, 1999.
ISBN 3-540-66347-9. See [17].

A The importance of rigidity

This appendix gives counterexamples to [20, Theorem 3.6] and [20, Theorem
3.5]. We make the plausible assumption that there exists some efficient correct
deterministic PKE with OW-Passive security.

A.1. The example. Let

X = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts,KeyGen,Encrypt,Decrypt)

be a correct deterministic PKE with #Plaintexts ≥ 2. We build a non-rigid
correct deterministic PKE

X ′ = (PublicKeys,PrivateKeys,Plaintexts,Ciphertexts′,KeyGen,Encrypt′,Decrypt′)

as follows:

• Ciphertexts′ = {0, 1} × Ciphertexts.
• Encrypt′(p,K) = (0,Encrypt(p,K)).
• Decrypt′((0, C), k) = Decrypt(C, k).
• Decrypt′((1, C), k) = Decrypt(C, k).

This is non-rigid because the encryption of p, namely (0, C) where C =
Encrypt(p,K), is not the only ciphertext that decrypts to p: the ciphertext (1, C)
also decrypts to p.

The “U⊥m” and “U 6⊥m” transformations in [20], given X ′ as input, produce
KEMs with the following behavior on legitimate inputs:

• Encapsulation chooses a uniform random plaintext p, outputs H(p) as a
session key, and outputs Encrypt′(p,K) = (0,Encrypt(p,K)) as a ciphertext.

http://shoup.net/papers/iso-2_1.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Lima/images-media/LIMA-April2018.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Lima/images-media/LIMA-April2018.pdf
https://lima-pq.github.io/

Towards KEM Unification 35

• Decapsulation of C produces H(p) as a session key, where p = Decrypt′(C, k),
assuming p ∈ Plaintexts.

The transformations vary in how decapsulation handles invalid inputs, but we
will not need any invalid inputs for the following attack.

The attack, given a challenge ciphertext C∗ = (0,Encrypt(p∗,K)), decap-
sulates the different ciphertext C = (1,Encrypt(p∗,K)). This ciphertext also
decrypts to p∗, so decapsulation produces H(p∗). The attack outputs 1 if the
output of decapsulation matches the challenge session key, otherwise 0. This
breaks IND-CCA2 with probability 1− 1/#SKeys.

This attack can be generalized beyondX ′: all one needs is the ability to modify
a ciphertext to produce another ciphertext decrypting to the same plaintext.
This ability is naturally provided by, e.g., various lattice-based PKEs. One can
also loosen the correctness assumption: occasional decryption failures do not
noticeably affect the attack.

A.2. Easy to stop, but still important. SimpleKEM applies ReEnc to con-
vert a correct deterministic PKE into a rigid correct deterministic PKE, and
then applies ImplicitRejection to obtain a KEM. The ReEnc step prevents any
other ciphertext from decrypting to the same plaintext, so it stops the above
attack.

Similarly, if one feeds the above PKE X ′ through “T” from [20] before ap-
plying “U 6⊥m”, then the attack disappears, since “T” also prevents any other
ciphertext from decrypting to the same plaintext.

However, [20, Theorem 3.6] claims security properties for “U 6⊥m” by itself (the
same way that we claim security properties for ImplicitRejection by itself), with-
out the extra protection provided by first applying “T”. If a KEM designer is
starting from a deterministic PKE and sees [20, Theorem 3.6], which claims ap-
plicability to any deterministic PKE, then why should the KEM designer bother
to use “T”? The attack shows that skipping “T” is dangerous, but this is not
what [20, Theorem 3.6] says.

Even if a KEM designer does use both “T” and “U 6⊥m”, there is an auditing
problem. Auditors should be able to separately audit the security properties
claimed for “T” by itself, the security properties claimed for “U 6⊥m” by itself,
and the composition of those properties; but the security properties claimed for
“U 6⊥m” by itself are not correct.

A fix is to change the interface between “T” and “U 6⊥m”: define rigidity, ob-
serve that the output of “T” is rigid, and add rigidity as an assumption to [20,
Theorem 3.6]. Of course, an auditor will still want to see a proof of the theorem.

A.3. Details of [20, Theorem 3.6]. We now review the details of [20, paper
version “September 26, 2017”, Theorem 3.6], along with the underlying defini-
tions, to show that our example is a counterexample.

A “public-key encryption scheme PKE = (Gen,Enc,Dec)” is defined in [20,
page 7] as consisting of “three algorithms and a finite message space M (which
we assume to be efficiently recognizable)”:

36 Daniel J. Bernstein and Edoardo Persichetti

• Gen outputs “a key pair (pk, sk), where pk also defines a randomness space
R = R(pk)”. We define Gen1 as KeyGen from our deterministic PKE X, and
R1 = {()}.

• Enc, given pk and m ∈ M, outputs “an encryption c ← Enc(pk,m) of m
under the public key pk”. We define M = Plaintexts and Enc1(pk,m) =
Encrypt′(m, pk) = (0,Encrypt(m, pk)).

• Dec, given sk and a ciphertext c, outputs “either a message m = Dec(sk, c) ∈
M or a special symbol ⊥ /∈M”. We define Dec1(sk, c) = Decrypt′(c, sk).

There is then a definition of “δ-correct” saying that the probability of
Dec(sk, c) 6= m given c← Enc(pk,m), maximized over plaintexts and then aver-
aged over keys, is at most δ. We start with a correct PKE, so we take δ1 = 0.

“U 6⊥” is defined in [20, page 5] as follows:

• Start from “an encryption scheme PKE1 and a hash function H”. We take
PKE1 to be specifically the (Gen1,Enc1,Dec1) defined above, and we take
H to be an RO mapping to a set SKeys of size at least 3, so the IND-CCA
attack stated above works with probability at least 2/3.

• Encapsulation, given pk, computes c ← Enc1(pk,m) and K ← H(c,m),
where “m is picked at random from the message space”. Later “U 6⊥m”, which
we focus on, is defined as replacing “K = H(c,m)” with “K = H(m)”: i.e.,
it computes ciphertext c = Enc1(pk,m) = (0,Encrypt(m, pk)) and session
key H(m).

• Decapsulation, given sk and c, returns “H(c,m)” if “m 6= ⊥”, where m =
Dec1(sk, c); it also has a definition when m = ⊥, which does not matter for
us. Again “U 6⊥m” replaces H(c,m) with H(m).

Notice that decapsulation does not reencrypt m, so it behaves the same way for
ciphertext (0,Encrypt(m, pk)) and ciphertext (1,Encrypt(m, pk)).

Formally, these definitions of “U 6⊥” and “U 6⊥m” are incorrect, since they gloss
over the inclusion of a random seed in the private key. This is fixed in the formal
definition of “U 6⊥” in [20, page 16, Figure 12]. The definitions of “U⊥” and “U⊥m”
are also formally presented as figures, and reencryption does not appear in any of
these three figures. The definition of “U 6⊥m” is not formally presented, but there
is nothing to suggest that it should include reencryption. The composition of
“T” with “U 6⊥m” is reviewed in [20, page 21, Figure 18]; this composition includes
reencryption because “T” does. Beware that implicit rejection for “U 6⊥m” is stated
incorrectly in [20, page 21, Figure 18].

[20, Theorem 3.6] makes the following assumptions:

• PKE1 is δ1-correct. This is true for us with δ1 = 0, as noted above, since we
start from a correct PKE.

• Various “q” quantities are upper bounds on how frequently various types of
queries occur. Except for qD mentioned below, all of these are multiplied by
δ1, which is 0 in our case, so we skip the details.

• Enc1 is deterministic. This is true for us, since we start from a deterministic
PKE.

Towards KEM Unification 37

• B is an IND-CCA adversary against the resulting KEM. We take the attack
described above.

• B issues at most qD decapsulation queries. We take qD = 1: the attack issues
one decapsulation query.

The conclusion is that “there exists an OW-CPA adversary A against PKE1”,
with running time “about that of B”, where the IND-CCA advantage of B is at
most the OW-CPA advantage of A, plus qd/|M| = 1/#Plaintexts, plus δ1 = 0
times various quantities.

In our case the IND-CCA advantage of B is at least 2/3, so what the theorem
claims is that the OW-CPA advantage of A is at least 1/6; this is where we
use #Plaintexts ≥ 2. This in turn implies an OW-CPA attack against X with
advantage at least 1/6: given a challenge ciphertext for X, simply insert a leading
0 to obtain a challenge ciphertext for PKE1.

To summarize: The theorem, applied to our example, claims that there is
an efficient OW-CPA attack with advantage at least 1/6 against any correct
deterministic PKE with at least 2 plaintexts. Formally, efficiency (e.g., the word
“about” in the theorem) is undefined, but there is no reasonable definition for
which this claim is plausible, never mind proven.

A.4. Details of [20, Theorem 3.5]. We have focused on “U 6⊥m”; but, as noted
above, the attack does not depend on the difference between “U⊥m” and “U 6⊥m”,
i.e., the difference between explicit rejection and implicit rejection.

Security for “U⊥m” is claimed in [20, Theorem 3.5], which makes a stronger
assumption than OW-CPA security for PKE1. Specifically, it assumes “OW-VA”
security, which gives the attacker the same type of challenge as OW-CPA security
plus access to a “ciphertext-validity oracle” that reveals whether PKE1 decrypts
a ciphertext (other than the challenge ciphertext) to a valid plaintext.

To produce a counterexample, we tweak decryption in our definition of PKE1

to be as far as possible from rigidity. Specifically, fix a plaintext z; whenever
Decrypt returns ⊥, redefine Dec1 to return z rather than ⊥. This has no impact
on the IND-CCA2 attack, since Decrypt never returns ⊥ inside the attack. A
ciphertext-validity oracle for PKE1 is now trivial to construct—all ciphertexts
are valid—so an OW-VA attack implies an OW-CPA attack; and an OW-CPA
attack for the tweaked system implies an OW-CPA attack for the original system,
since changes in decryption are invisible to OW-CPA.

Presumably the proof claimed for [20, Theorem 3.5] somehow uses rigidity.
We have not taken the time to check the proof. Reducing the number of KEM
constructions will improve auditability, as noted in Section 1, and in particular
we recommend focusing on implicit rejection.

A.5. Other transformations. The attack does not apply to “U 6⊥”, where the
session key is a hash of both plaintext and ciphertext: modifying the ciphertext
produces a random-looking session key. This might indicate an additional rea-
son, beyond Section 15, to include the ciphertext in the hash, as SimpleKEM
does. Perhaps proof techniques for hashed ciphertexts, in combination with proof
techniques for plaintext confirmation and proof techniques for implicit rejection,
are a path towards stronger QROM results.

