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Abstract

Homomorphic encryption is an emerging form of encryption that provides the ability to compute on encrypted
data without ever decrypting them. Potential applications include aggregating sensitive encrypted data on a cloud
environment and computing on the data in the cloud without compromising data privacy. There have been several
recent advances resulting in new homomorphic encryption schemes and optimized variants. We implement and
evaluate the performance of two optimized variants, namely Bajard-Eynard-Hasan-Zucca (BEHZ) and Halevi-
Polyakov-Shoup (HPS), of the most promising homomorphic encryption scheme in CPU and GPU. The most
interesting (and also unexpected) result of our performance evaluation is that the HPS variant in practice scales
significantly better (typically by 15%-30%) with increase in multiplicative depth of the computation circuit than
BEHZ, implying that the HPS variant will always outperform BEHZ for most practical applications. For the
multiplicative depth of 98, our fastest GPU implementation performs homomorphic multiplication in 51 ms for
128-bit security settings, which is faster by two orders of magnitude than prior results and already practical for
cloud environments supporting GPU computations. Large multiplicative depths supported by our implementations are
required for applications involving deep neural networks, logistic regression learning, and other important machine
learning problems.

Index Terms

Secure Computation, Lattice-based Cryptography, Homomorphic Encryption, Residue Number System, BFV
SHE, Parallel Processing.

I. INTRODUCTION

HOMOMORPHIC encryption (HE) has been a topic of active research since the first design of a Fully
Homomorphic Encryption (FHE) scheme by Gentry in 2009 [1]. FHE allows performing arbitrary secure

computations over encrypted data without ever decrypting them. One of the potential applications is to upload
encrypted data to a public cloud computing environment and then outsource computations over these data to the
cloud without sharing secret keys or compromising data privacy by decrypting the data in the cloud.

At a high level, FHE is based on a Somewhat Homomorphic Encryption (SHE) scheme that provides at least
two homomorphic operations: addition and multiplication. The encryption and homomorphic operations require
adding some “noise” to guarantee a certain level of security based on the underlying hardness assumption, e.g.,
Ring Learning With Errors. This noise grows at some controlled rate with each homomorphic operation. As long
as the noise is under a certain level, the decryption returns the correct result for a given computation circuit.

The literature includes a number of FHE and SHE schemes that vary in construction, functionality and perfor-
mance [2], [3], [4], [5], [6], [7]. One of the most promising schemes is the Fan-Vercauteren variant of Brakerski’s
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scale-invariant scheme [3], [5], which we refer to as BFV in this paper. The scheme has an elegant/simple structure
and provides promising practical performance [8].

One common aspect of many HE schemes is the need to manipulate large algebraic structures with multi-precision
coefficients. In BFV, this multi-precision arithmetic is performed for polynomials of large degrees (several thousand)
with relatively large integer coefficients (several hundred bits). Implementing the necessary multi-precision modular
arithmetic is computationally expensive. A way to make these operations faster is to use the Residue Number System
(RNS) to decompose large coefficients into vectors of smaller, native (machine-word-size) integers. RNS allows
some arithmetic operations to be performed completely in parallel using native instructions and data types, thus
potentially improving the efficiency.

Recently, two RNS variants of the BFV scheme have been proposed to reduce the computational complexity of
decryption and homomorphic multiplication1: Bajard-Eynard-Hasan-Zucca (BEHZ) [9] and Halevi-Polyakov-Shoup
(HPS) [10]. Both variants share a common design but differ in some aspects such as implementation complexity,
effect on noise growth, and performance. The BEHZ variant employs integer arithmetic and RNS techniques
to provide an asymptotically better performance over the textbook BFV scheme [5] at the expense of higher
noise growth. The HPS variant employs a combination of integer and floating-point arithmetic in addition to
RNS techniques. HPS is relatively simpler to implement and has essentially the same noise growth as the BFV
scheme [10].

There are multiple publications on software implementations of the BFV scheme. For instance, SEAL is an
open source C++ library implementing the BFV scheme and its RNS variant BEHZ [11]. Earlier versions of
SEAL used RNS for some operations of the BFV scheme but relied on multi-precision arithmetic for decryption
and homomorphic multiplication. The latter require the divide-and-round and base decomposition operations that
are incompatible with RNS and require a computationally expensive conversion to the positional (multi-precision)
representation. However, the recent versions of SEAL (> v2.3.0) provide a full RNS implementation of the BEHZ
variant [9].

Other implementations of the BFV scheme can be found in PALISADE [12], an open source C++ lattice
cryptography library that includes the implementations of multiple HE and proxy re-encryption schemes [13];
digital signature, identity-based encryption, and attribute-based encryption constructions [14], [15]; and conjunction
obfuscation scheme [16]. Starting with v1.1, PALISADE provides an implementation of the HPS variant.

The BFV scheme has also become a subject for hardware acceleration studies. For instance, Al Badawi et al. [17]
provide a GPU-accelerated implementation of BEHZ. Another recent effort dealt with accelerating the textbook
BFV performance using FPGA [18].

In this work we evaluate and compare the practical performance of BEHZ and HPS. Although Halevi et al. provide
a theoretical comparison [10], it is not clear from that analysis how the noise growth and performance compare
in practical implementations. As seen later in this paper, each variant employs different elementary operations that
cannot be compared easily without experiments in the same settings.

A. Our Contributions

In this work we implement the BEHZ variant and present an optimized implementation of the HPS scheme in
PALISADE. We also implement the HPS variant in GPU. The new algorithmic optimizations added to the HPS
implementations in both CPU and GPU include lazy reduction and several precomputations.

We examine the RNS techniques of both variants and compare their computational complexity and theoretical
noise growth. We also provide recommendations for achieving the best practical performance of both variants.

We evaluate the performance of both variants in CPU and GPU. Our analysis suggests that the HPS decryption
and homomorphic multiplication runtimes are typically smaller (up to 30%) than those for BEHZ for most settings.

We discover from the analysis of experimental noise growth that the HPS variant scales significantly better with
increase in multiplicative depth of the computation circuit than BEHZ: the depth supported by the HPS variant
is typically 15%-30% larger for the same values of parameters. We provide an interpretation of the faster noise
growth for the BEHZ variant.

The comparison of the homomorphic multiplication runtimes of the HPS variant for CPU and GPU demonstrates
that our best GPU performance results are 3x-33x faster than our best multi-threaded results for a modern server

1Homomorphic multiplication is known to be the most performance-critical primitive in HE schemes
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CPU environment. This implies that we improve the prior implementation results for the HPS variant [10] by more
than one order of magnitude.

For the multiplicative depth of 98, we are able to reduce the decryption time to 0.5 ms and homomorphic
multiplication to 51 ms for 128-bit security settings, which is already practical for cloud environments supporting
GPU computations. Large multiplicative depths supported by our implementations are required for applications
involving deep neural networks [19], logistic regression learning [20], and other important machine learning
problems. Our best runtime results are at least two orders of magnitude faster than all previous results for the
BFV scheme in the literature.

B. Organization

The paper is organized as follows: Section II provides some preliminaries on the RNS tools and textbook
BFV scheme. Sections III and IV review, analyze, and theoretically compare the decryption and homomorphic
multiplication procedures of both RNS variants. Implementation details are discussed in Section V. In Section VI,
we benchmark both variants and analyze their performance for different platforms. Finally, Section VII concludes
the work and marks out the future work.

II. PRELIMINARIES

A. Cyclotomic Rings

The BFV scheme implemented in our work employs the polynomial ring R = Z[X]/(Xn + 1), where the ring
dimension n is a power of 2. The ring can be viewed as a set of polynomials of degree less than n. The arithmetic
in R is always done modulo (Xn + 1). In some BFV primitives, the polynomials are sampled from predefined
distributions. We use the symbol a U←− S to refer to uniform sampling of a from the set S, whereas the symbol
a
G←− S is used to denote sampling from a Gaussian distribution.
The plaintext space in BFV is Rt, where t ≥ 2 is an integer plaintext modulus. The polynomials in plaintext

space are reduced both modulo t and (Xn + 1). A plaintext is normally a single element in Rt encoding the
original plaintext message. Likewise, the ciphertext space Rq has q � t as the coefficient modulus. For practical
implementations, q is usually a k-smooth number, s.t. q =

∏k
i=1 pi, where pi is a prime that fits in the underlying

machine word. Similar to Rt, polynomials in Rq are reduced modulo q as well. We remark that unlike a plaintext,
a ciphertext c is a pair of two elements in Rq, denoted by (c[0], c[1]).

B. Residue Number System and Chinese Remainder Theorem

a) Residue Number System: RNS is a non-positional numbering system in which a number is represented by
a tuple of residues modulo some predefined pairwise co-prime moduli, known as the RNS base. RNS is used to
distribute a computation in some relatively large domain to a set of smaller sub-domains. Computations in sub-
domains are completely independent and, therefore, can be performed in parallel. Moreover, the problem size in
sub-domains can be highly controlled so that the computation can be done without using multi-precision arithmetic.
The results of independent computations in sub-domains can be interpolated via the Chinese Remainder Theorem
(CRT) to construct a solution to the problem in the original domain. Although this approach is more complicated
and less intuitive, as compared to a direct solution, it typically provides better performance [9], [10].

To use RNS, we need to first define the RNS base B = {m1, . . . ,mk}, with k moduli s.t. mi is an integer
and gcd(mi,mj) = 1,∀i 6= j. The latter condition is required to guarantee the number system is not redundant
and to allow using the CRT for RNS-to-positional-number-system conversion. An integer x can be represented in
RNS with base B via the tuple x = {x1, . . . , xk}, where xi = x (mod mi), also denoted by [xi]mi

. The quantity
M =

∏k
i=1mi is known as the RNS dynamic range. As long as x < M , or d−M/2e ≤ x < bM/2c as in our

case, there is a unique RNS representation of x.
b) Chinese Remainder Theorem: CRT can be used to do the backward conversion, i.e., converting a number

represented in RNS to its equivalent in a positional numbering system. Equation (1) can be used to perform this
conversion. We remark that this procedure is not only serial, but also requires multi-precision arithmetic. Equation (1)
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can be reformulated into two forms as shown in equations (2) and (3). It is straightforward to show that v and v′,
which represent the extra multiples of M , have the upper bounds of k and k ·max{mi}, respectively.

[x]M =

[
k∑
i=1

[
xi ·

(M
mi

)−1]
mi

· M
mi

]
M

(1)

x =

(
k∑
i=1

[
xi ·

(M
mi

)−1]
mi

· M
mi

)
− v ·M (2)

x =

(
k∑
i=1

xi ·
[(M
mi

)−1]
mi

· M
mi

)
− v′ ·M (3)

C. Elementary Operations

In complexity analysis, we only focus on two elementary operations: Modular Multiplication (MM) and Floating-
Point (FP) operations. We compute the total number of elementary operations in core procedures. We use Single
Precision (SP) to refer to elementary operations that fit in one word, and Double Precision (DP) for those that
require two words.

D. Efficient RNS Base Extension

As seen later, BFV requires division and rounding in decryption and homomorphic multiplication. Since these
operations are incompatible with RNS, they are handled by base extension techniques. In this subsection, we
introduce two different techniques to extend an RNS base. Both techniques form the bases of the BFV RNS
variants.

1) Base Extension via Integer Arithmetic: The first method utilizes Equation (2) as shown in Equation (4).

FastBaseConv I(x,B,B′) =

[
k∑
i=1

[
xi ·

(M
mi

)−1]
mi

· M
mi

mod m′j

]
m′
j∈B′

(4)

The conversion is fast since it does not require multi-precision operations, given that the quantities Mmi
−1

(mod m′j),∀m′j ∈ B′ are precomputed. FastBaseConv I can be thought of as computing the CRT without reduction
modulo the dynamic range M . This means that the converted value may have multiples of M as an overflow, i.e.,
FastBaseConv I(x,B,m′j) = x+ v ·M (mod m′j). The overflow can be controlled and sometimes eliminated via
the techniques described in later sections. FastBaseConv I forms the basic building block of BEHZ [9].

a) Complexity: FastBaseConv I requires for each residue two modular multiplications: one modulo mi ∈ B

and another modulo m′j ∈ B′. Note that the quantity
[
xi ·

(
M

mi

)−1 ]
mi

can be temporarily stored and reused.

Hence, the overall complexity is (kk′ + k) MM, where k′ denotes the number of moduli in base B′.
b) A Practical Note: We note that one may invoke a sequence of multiplications and additions without modulo

reduction, deferring the latter to as late as possible. Eventually, a reduction should be applied. The length of the
sequence can be determined if the moduli sizes are known in advance, which is typically the case. This optimization
is similar to Harvey’s lazy reduction [21] used to improve the computation of Number Theoretic Transform (NTT).

2) Base Extension via Integer and Floating-Point Arithmetic: The second method also utilizes Equation (2).
However, instead of doing approximate conversion (conversion with overflow), it estimates v and uses the estimated
value for exact conversion. One can reformulate Equation (2) to find v as follows:

v =

⌊ k∑
i=1

1

mi

[
xi ·

[(
M

mi

)−1]
mi

]
mi

⌉
Given that v is estimated correctly, we can directly apply Equation (2) modulo m′j to do exact conversion as follows:

FastBaseConv F(x,B,B′) =

[( k∑
i=1

[
xi

[(
M

mi

)−1]
mi

]
mi

M

mi

)
− v · [M ]m′

j

]
m′
j∈B′

. (5)
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The key issue in this method is to ensure that the estimated v is correct. Since v is estimated via floating-point
operations, errors due to limited precision may occur and produce an off-by-one value of v. However, such cases
can be controlled, detected, and corrected [22], [23], [10]. This base extension method forms the basic building
block of HPS [10].

a) Complexity: FastBaseConv F can be decomposed into two steps: 1) estimating v, and 2) base extension to
the new RNS base. Estimating v is done once and requires k MM and k+1 FP. On the other hand, base conversion
requires k′ · (k + 1) MM. Overall complexity is: (kk′ + k + k′) MM + (k + 1) FP.

b) A Practical Note: While computing v, the numerator can be temporarily stored and reused in the compu-
tation of Equation (5).

c) Comparison: It is straightforward to notice that FastBaseConv I is slightly more efficient than FastBaseC-
onv F. However, it introduces extra multiples of base B, therefore, a correction procedure needs to be applied
afterwards. On the other hand, FastBaseConv F does not require any correction step given that enough precision is
used in estimating v. Our experiments later in this paper show that the correction techniques significantly increase
the total runtime.

E. The Textbook BFV

The textbook BFV scheme, described in [5], is a tuple of 5 procedures: key generation, encryption, decryption,
homomorphic addition and multiplication. The scheme defines a set of parameters as follows:
• λ: security parameter.
• w: a decomposition base used to express a polynomial in Rq in terms of l + 1 polynomials in base w ∈ Z,

where l = blogqwc.
• Xerr: a zero-mean discrete Gaussian distribution used to sample error polynomials. The distribution is param-

eterized by the standard deviation σ and error bound βerr.
• t ≥ 2: a plaintext modulus.
• q � t: a ciphertext modulus.
The main five procedures of the scheme are as follows:

• KeyGen(λ,w): The Secret Key (sk) is a ternary polynomial sk U←− R2 taking values from the set {−1, 0, 1}.
The Public Key (pk) is a pair of polynomials (pk0, pk1) = (−[a · sk + e]q, a), where a U←− Rq and e G←− Xerr.
The Evaluation Key (evk) is a set of (l+ 1) pairs of polynomials generated as follows: for 0 ≤ i ≤ l, sample
ai
U←− Rq and ei

G←− Xerr. evk[i] = ([wis2− (ai ·sk+ei)]q, ai). The procedure outputs the tuple: (sk, pk, evk).
• Enc(m, pk): takes a plaintext message m ∈ Rt, and samples u U←− R2 and e1, e2

G←− Xerr. It produces the
ciphertext ct = ([∆m+ pk[0]u+ e1]q, [pk[1]u+ e2]q), where ∆ = bq/tc.

• Dec(ct, sk): computes m =
[⌊

t
q [ct[0] + ct[1]sk]q

⌉]
t
.

• EvalAdd(ct0, ct1): homomorphic addition takes two ciphertexts and produces: ctadd = ([ct0[0]+ct1[0]]q, [ct0[1]+
ct1[1]]q).

• EvalMul(ct0, ct1, evk): homomorphic multiplication takes two ciphertexts and performs
1) Tensoring: compute cτ , with τ ∈ {0, 1, 2}, such that:

c0 =
[⌊ t
q
ct0[0] · ct1[0]

⌉]
q
,

c1 =
[⌊ t
q

(ct0[0] · ct1[1] + ct0[1] · ct1[0])
⌉]
q
,

c2 =
[⌊ t
q
ct0[1] · ct1[1]

⌉]
q
.

2) Relinearization:
2.1) decompose c2 in base w as c2 =

∑l
i=0 c

(i)
2 wi.

2.2) return ctmul[j], with j ∈ {0, 1}, such that:

ctmul[j] =
[
cj +

l∑
i=0

evk[i][j]c
(i)
2

]
q
.
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Key generation, encryption and homomorphic addition can be computed easily in RNS. In contrast, decryption
and homomorphic multiplication are more involved as they require scaling by the ratio t/q and rounding. The
second step in homomorphic multiplication, known as base decomposition, is incompatible with RNS and requires
a computationally expensive conversion to the positional (multi-precision) representation. The variants studied in
our work employ different techniques to overcome these problems.

III. EFFICIENT RNS VARIANTS OF BFV DECRYPTION

A. Scaling in Decryption

Decryption includes scaling by the factor t/q followed by rounding. Both operations require special treatment
so that they can be performed directly in RNS. We show below how BEHZ and HPS tackle them.

1) RNS Decryption in BEHZ: BEHZ uses an efficient simple scaling procedure to compute an approximate
value of decrypted result. The approximation affects the noise threshold for successful decryption. Note that, in the
textbook BFV, decryption works as long as ‖e‖∞ < (∆− |q|t)/2, where e is a polynomial representing the noise
contained in the ciphertext.

The main objective is to compute [bt/q · [x]qe]t, where x = ct[0] + ct[1]sk. In BEHZ, exact flooring is used
instead of rounding as follows: ⌊

t

q
[x]q

⌋
=
t[x]q − |t · x|q

q
.

This converts the problem into integer division that is compatible with RNS. Since we are computing modulo t,
the term t[x]q cancels out. Then they compute the term −|t · x|q/q using FastBaseConv I from base q to t. Since
the conversion is not exact, multiples of q may be generated. The BEHZ variant introduces a redundant modulus γ
to remove this overflow. Moreover, γ helps in correcting the errors due to the use of flooring instead of rounding.
Algorithm 1 shows the RNS decryption function. The reader should note that the notation | · |m is represented by
the standard interval {0, . . . ,m− 1}, whereas [·]m is represented by the centered interval {d−m/2e, . . . , bm/2c}.

Algorithm 1 DecRNS: BEHZ RNS decryption [9]

Input: ciphertext ct, secret key sk and a redundant modulus γ ∈ Z.
Output: the plaintext message [m]t.

1: for j ∈ {t, γ} do
2: s(j) ← FastBaseConv I(|γt · (ct[0] + ct[1]sk)|q, q, j)× | − q−1|j (mod j)

3: s̃(γ) ← [s(γ)]γ
4: m(t) ← [(s(t) − s̃(γ))× |γ−1|t]t
5: return m(t)

a) Correctness: Algorithm 1 works as long as ‖e‖∞ ≤ ∆(
1

2
− k

γ
) − |q|t

2
. To ensure that noise threshold is

close to that in the textbook BFV, γ can be chosen much larger than k so that the quantity k/γ approaches 0.
b) Complexity: Algorithm 1 requires the invocation of FastBaseConv I on two moduli t and γ. It also requires

one extra modular multiplication by |γ−1|t. The overall complexity is 3k + 3 MM for each coefficient.
2) RNS Decryption in HPS: HPS employs a simpler decryption variant that does not introduce an auxiliary

modulus. It utilizes Equation (3) as follows:⌊
t

q
[x]q

⌉
=

[⌊( k∑
i=1

xi ·
[( q
qi

)−1]
qi

· t
qi

)⌉]
t

(6)

Note that, the term v′ · t cancels out due to the reduction modulo t. The procedure computes the summation
of residues multiplied with precomputed floating-point constants. For maximum precision, the authors suggest to

split the floating-point quantities into integer and fractional parts, i.e.,
[( q
qi

)−1]
qi

· t
qi

= ωi + θi with wi ∈ Zt and

θi ∈ [−1/2, 1/2).
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a) Correctness: RNS decryption works as long as the rounding errors due to floating-point operations are
controlled. This can be done by limiting the size of qi’s, the number of qi’s and the precision used to store θi’s.
Given that θ′i is a limited-precision approximation of the actual value of θi, the approximation error is given by
εi = θ′i − θi. If the total approximation error less than 1/4, the decryption procedure works correctly. Halevi et al.
provide a detailed analysis of the approximation error. We provide concrete bounds on the number and size of qi’s.

Let y = b
∑

i xiθie and y′ = b
∑

i xi(θi+εi)e, then the total error term ε =
∑

i xiεi. Let ν denote the precision used
to store θi’s, i.e., εi < 2−ν . We know that |xi|∞ < qi/2, hence the total error ‖ε‖∞ < 2−ν

∑
i

qi
2
< 2−ν−1k·max(qi).

As we need to ensure that ‖ε‖∞ < 1/4, the constraint for qi can be written as qi ≤ 2ν−1/k for the case when
the modular arithmetic is implemented using signed integers. It can be similarly shown that in the case of an
unsigned-integer implementation, the constraint changes to qi ≤ 2ν−3/k.

There is a trade-off between ν, max(qi), and k. A higher precision ν implies costlier computations. The values
of k and max(qi) limit the highest value of q the implementation can support. For a given ciphertext modulus q,
it is better to minimize k as much as possible to reduce the number of NTT invocations. In order to optimize the
performance of floating-point operations, we identify four cases, as shown in Table I.

Table I: Common C++ floating-point data types, total size in bits, floating-point precision (ν) in bits, bit size (logqi2 ) and maximum number
(K) of supported moduli for HPS decryption (for a signed-integer implementation of modular arithmetic).

C++ data type size ν logqi2 K

float 32 24 16 128
double 64 53 44 64
long double 80 65 59 32
double double 128 113 107 32

We remark that float, double and long double are native data types in C++ 1999 standard and im-
plemented natively (in hardware) in modern systems. On the other hand, double double is not supported in
hardware, and is usually implemented in software. In our implementation, we utilize Shoup’s NTL quad_float
data type [24]. We also remark that our CPU implementation supports 30 ≤ logqi2 ≤ 60 bits, and we use an
unsigned-integer implementation of modular arithmetic, i.e., we employ quad_float only when logqi2 > 57 bits.
Our GPU implementation, on the other hand, supports only 30-bit moduli and hence uses only double.

b) Complexity: The procedure requires k MM and (k + 1) FP operations for each coefficient.

B. Comparison and Evaluation of RNS Decryption

We have seen how each variant handles the scaling problem in decryption. The appealing feature in BEHZ is the
use of integer arithmetic, therefore; one does not need to worry about rounding errors as in HPS. However, it has
some drawbacks since it requires a redundant modulus which triples the computation since we work in different
rings: Zqi , Zt, and Zγ . It also affects the noise level for correct decryption due to the use of FastBaseConv I and
flooring instead of rounding. In contrast, HPS does not require an extra modulus nor it affects the noise level.
HPS is also more efficient when native precision floating-point operations are used, as seen in Figure 1. The main
drawback, however, is the need for high-precision (double double) floating-point operations when the moduli
size is higher than 57 (59) bits. Table II shows the computational complexity of decryption for each variant.

Table II: Decryption computational complexity for BEHZ and HPS.

BEHZ HPS

n(3k + 3) MM nk MM + n(k + 1) FP

Now, we compare the storage complexity of precomputed constants for both RNS variants. Although this may
not be important in CPU implementations, it is crucial for GPU. The reason is that we use the constant memory in
GPU to store any precomputed quantities in our implementation. The GPU constant memory is very fast but limited
in size. Current devices typically include 64 KB of constant memory [25]. In addition, the size of any allocated
buffer in constant memory must be defined at compile time. Hence, we limit our GPU implementations to 64 CRT
moduli. Table III lists the precomputed quantities and their sizes for the decryption in each RNS variant.
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Figure 1: Effect of floating-point precision on decryption performance in PALISADE. C++ data types double, long double, and NTL
double double are used with 30-bit, 45-bit, and 60-bit moduli, respectively. The horizontal axis represents log2 of polynomial degree
(n) and ciphertext modulus (q). Note that the vertical axes are in log-scale.

Table III: Decryption precomputed constants in both RNS variants.
Size is given in terms of number of words and K denotes the maximum
number of CRT moduli supported. {·} denotes a fraction of ·

Quantity # of words Required by
BEHZ

Required by
HPS

t · γ · [(q/qi)−1]qi K 3 -
q/qi mod t K 3 -
q/qi mod γ K 3 -

b t · [(q/qi)
−1]qi

qi
c K - 3

{ t · [(q/qi)
−1]qi

qi
} K - 3

We see that in most cases HPS requires less memory for precomputed constants. However, if double double
is used to store the floating-point quantities, then both procedures have the same storage complexity.

In order to show the effect of using a different floating-point precision on performance, Figure 1 shows decryption
runtimes for the CPU implementations at various CRT moduli sizes. Three main ranges of CRT moduli sizes are
identified for our CPU implementation of HPS: 1) < 45, 2) 45−57, and 3) 58−60 bits. HPS decryption is faster for
the CRT moduli range of 30− 57 bits. However, for larger moduli sizes, the HPS performance degrades due to the
use of NTL double double, and BEHZ becomes faster. A logical observation is that the HPS performance is
faster as long as native floating-precision data types are used. We remark that the choice of parameters corresponds
to at least 128 bits of security. The parameter selection is discussed in more detail in Section VI.

IV. EFFICIENT RNS VARIANTS OF BFV HOMOMORPHIC MULTIPLICATION

A. Scaling in Homomorphic Multiplication

Homomorphic multiplication is more complex than decryption and includes two main steps: (1) multiplication
itself and (2) relinearization.

Step 1 in multiplication requires tensoring the input ciphertexts and scaling by the factor t/q, followed by
rounding. Unlike decryption, the result should also be in base q, therefore, an RNS scaling algorithm is needed.
Tensoring requires lifting the ciphertexts first from base q to a larger base. For that reason, an auxiliary RNS base
q′ with k′ moduli is introduced, which is roughly as big as q. More concretely, q · q′ should be large enough to
include the largest coefficients of tensored ciphertexts without any modular reduction. Lifting can be done using
the RNS base extension techniques described previously. Next, the extended tensored ciphertexts are scaled down
by q, which represents a subset of the moduli in the extended RNS base {q ∪ q′}. An RNS scaling algorithm can
be used for this purpose. Note that the scaled-down result is represented in base q′, therefore, another round of
RNS base extension should be carried out to retain the result in base q.

In Step 2, relinearization is performed to reduce the ciphertext size. For relinearization, Bajard et al. [9] suggested
to use the RNS representation of ciphertexts in base q instead of the standard digit decomposition procedure using
the positional base ω. The idea is that qi’s and ω are of the same size in practice; therefore, they can control
the noise growth (due to relinearization) similarly. As ciphertexts are already represented in the RNS base q, the
decomposition is free. However, the evaluation key must be modified to be compatible with RNS relinearization.
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Input: cτ = {[cτ ]q, [cτ ]q′∪msk} in extended base q ∪ q′ ∪msk, and plaintext modulus t

Output: [c∗τ ]q′∪msk , with c∗τ =

⌊
t

q
c′
⌉
+ bτ in q′ ∪msk, where ‖bτ‖∞ ≤ k, and τ ∈ {0, 1, 2}

Operations in base q Operations in base q′ ∪msk

0: [cτ ]q [cτ ]q′∪msk
1: t · [cτ ]q t · [cτ ]q′∪msk
2: FastBaseConv I([t · cτ ]q, q, q′ ∪msk) → [|t · cτ |q + vτq]q′∪msk

3: −
[t · cτ ]q′∪msk − (|t · cτ |q + vτq)

q

Figure 2: Fast RNS flooring in BEHZ

This can be done at the initialization phase without additional cost. We remark that HPS employs a similar approach
for this step, but with minor optimizations.

The above logic is used as the blueprint for RNS homomorphic multiplication. Both variants follow this blueprint
but rely on different RNS base extension techniques.

Algorithm 2 SmMRqm̃: Small Montgomery Reduction mod q [9]

Input: polynomial c′′ = [m̃c]q + v · q in q′ ∪ {msk, m̃}

Output: c′ in q′ ∪msk, with c′ ≡ c′′m̃−1 (mod q), ‖c′‖∞ ≤
‖c′′‖∞
m̃

+
q

2
.

1: rm̃ ← [−c′′m̃ · q−1]m̃
2: for j ∈ q′ ∪msk do
3: c′j ← |(c′′j + qrm̃)m̃−1|j
4: return c′ in q′ ∪msk

1) Lift-and-Scale in BEHZ: Lift-and-scale in BEHZ is performed in 5 steps as follows:
1) Base extension from base q to base q′ ∪ {msk, m̃}: FastBaseConv I(cti[j], q, q′ ∪ {msk, m̃}), ∀ 0 ≤ i, j < 2

is used to do the conversion efficiently. Since this may generate additional multiples of q (referred to as
q-overflows), namely v · q, the redundant modulus m̃ is introduced for correction. Note that the correction
procedure requires the input ciphertexts to be multiplied by m̃ before the fast base conversion.

2) q-overflow correction: This procedure is known as the small Montgomery reduction (shown in Algorithm 2).
Basically, the m̃ residue is used to find v. Then we subtract v · q (mod q′i) from q′ ∪msk residues. The result
is a corrected extended RNS representation but with an extra term affecting the noise growth. Note that the
choice of m̃ is not arbitrary. It should satisfy Equation (7). In terms of complexity, Algorithm 2 requires
2(k′ + 1) + 1 MM for each coefficient.

m̃ρ ≥ 2k + 1. (7)

We remark that in our implementation, we use a standard CRT modulus for m̃, i.e., similar in size to the CRT
moduli in q and q′. Therefore, ρ tends to approach 0. As will be shown later, ρ is used to estimate the noise
growth due to the fast conversion.

3) Computation of tensor product: At this point, we have the ciphertexts in base {q ∪ q′ ∪msk}. Hence we can
perform polynomial multiplication in Zq·q′·msk

/(Xn+1). We remark that 2(k+k′+1) NTT and (k+k′+1) INTT
invocations are required for each polynomial multiplication. Namely, we need 4 polynomial multiplications but

they can be reduced to 3 using the Karatsuba algorithm. Note that ‖cτ‖∞ ≤ δ
q2

2
(1 + ρ)2, where τ ∈ {0, 1, 2}

and δ = sup‖a · b‖∞/(‖a‖∞ · ‖b‖∞) is known as the ring expansion factor. Following a conservative (worst-
case) approach, δ is set to n; however, in practical settings δ can often be set to 2

√
n if the requirements for

the Central Limit Theorem are met [10].
4) Approximate rounding in base q′: This step is used to scale down cτ by the factor t/q. This gives us flooring

9



instead of rounding, i.e., b t
q
cτc. Although this produces approximate results, Bajard et al. show that the error

due to approximation is very small. This procedure works as shown in Figure 2. In terms of complexity, the
procedure is invoked 3 times. In each invocation, FastBaseConv I is invoked (k′+1) times. The multiplication
by t incurs (k + k′) modular multiplications. Lastly, (k′ + 1) modular multiplications are required for the
flooring. Note that the above is repeated for each coefficient.

5) Base extension from base q′ to base q: This step is similar to step (1) above to convert to the original RNS
base. The extra modulus msk is used to correct the overflows generated by FastBaseConv I. This is done via
Shenoy-Kumaresan exact base extension [26].
a) Remarks: The choice of ρ, m̃,msk, and γ is not quite straightforward. For instance, one may choose ρ ≈ 2k

to avoid the usage of Algorithm 2. However, this can only be applied to a limited number of circuits where the
multiplicative depth is small. On the other hand, higher values of ρ proportionally increase the noise growth and
may reduce the multiplicative depth. Another aspect one needs to consider is that some choices of m̃ may require
very large values of msk and γ, which may not fit in the machine word size. In our implementation, we choose
m̃, msk, and γ as regular CRT moduli, i.e., close in size to qi’s.

2) Lift-and-Scale in HPS: HPS lift-and-scale follows the same blueprint as BEHZ. However, it is much simpler
and requires no correction tools. The reason is that base extension is exact and does not generate extra multiples of
the dynamic range. Therefore, the small Montgomery reduction algorithm is not required. Likewise, the Shenoy-
Kumaresan CRT extension is not necessary in step 5. One only needs to worry about the rounding errors due to
floating-point operations. Below we provide an overview of the lift-and-scale in HPS.

Lift-and-scale in HPS is performed in 4 steps as follows:
1) Base extension from base q to q′: FastBaseConv F (cti[j], q, q

′), ∀ 0 ≤ i, j < 2 is used to lift the ciphertexts
to a larger RNS base q′.

2) Computation of tensor product: This step is similar to step 3 in BEHZ. We remark that the number of NTTs
in this step is less by 7, as compared to BEHZ, since there is no redundant modulus msk.

3) Exact rounding in base q′: In this step, cτ is scaled down by the factor t/q. This can be done by a procedure
similar to the one used in HPS decryption. cτ is bounded by qq′/2t2. The scaling is done by replacing t
and q in Equation (6) by tq′ and qq′ respectively. Applying Equation (6) gives us [btq′/qq′ · cτe]q′ . Since cτ
is bounded by qq′/2t, then btq′/qq′ · cτe ∈ [−q′/2, q′/2). The complete procedure is given in Equation (8),

where x is a single coefficient in cτ . Note that the quantity
1

qi
· tq′
[(qq′
qi

)−1]
qi

is precomputed and broken into

integral and fractional parts. The same applies to
[
t
(qq′
q′j

)−1 · q′
q′j

]
q′j

. In terms of complexity, this procedure

requires (k + 1) FP + k′(k + 1) MM for each coefficient.

[bt/q · xe]q′j =

[⌊ k∑
i=1

xi ·
1

qi
· tq′

[(qq′
qi

)−1]
qi

⌉
+ x′j ·

[
t
(qq′
q′j

)−1 · q′
q′j

]
q′j

]
q′j

(8)

4) Exact base extension from base q′ to base q using FastBaseConv F. Note that there is no extra correction step
here.

B. Comparison and Evaluation of RNS Lift-and-Scale

a) Complexity: It is not straightforward to compare the computational complexity between the variants. The
employed tools use different elementary operations. However, we provide below an estimated analysis of the
computational complexity, leaving the more precise empirical analysis for Section VI.

We only evaluate the lift-and-scale complexity as both variants use the same relinearization procedure. Table IV
summarizes the computational complexity of the RNS and tensoring operations in the lift-and-scale procedure for
BEHZ and HPS. We assume that the Karatsuba multiplication algorithm is used in tensoring, hence the factor 3
instead of 4 in tensoring, RNS rounding, and FastBaseConv(x′, q′, q). Note that FastBaseConv(x′, q′, q) in BEHZ
includes the computational complexity of the Shenoy-Kumaresan algorithm as well.

2Note that t in the denominator is due to plaintext scaling in encryption.
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Table IV: The computational complexity of the RNS tools in lift-and-scale (assuming the Karatsuba multiplication technique is used in
tensoring).

Proc BEHZ HPS

FastBaseConv(x, q, q′) 4nk(k′ + 2) MM 4n(k(k′ + 1) + k′) MM + 4n(k + 1) FP
SmMRqm̃ 4n(2(k′ + 1) + k + 1) MM −
Tensoring 7(k + k′ + 1) NTT + 3n(k + k′ + 1) MM 7(k + k′) NTT + 3n(k + k′) MM
RNS Rounding 3n(k′(k + 2) + 2(k + 1)) MM 3nk′(k + 1) MM + 3n(k + 1) FP
FastBaseConv(x′, q′, q) 3n(k(k′ + 1) + 2k′ + 1) MM 3n(k′(1 + k) + k) MM + 3n(k′ + 1) FP

Total n(10k′k + 24k + 23k′ + 24) MM + n(10k′k + 10k + 13k′) MM +
7(k + k′ + 1) NTT 7(k + k′) NTT + n(7k + 3k′ + 10) FP

Table IV suggests that the number of modular multiplications for HPS is less by n(14k + 10k′ + 24) and the
number of NTTs is less by 7. However, HPS has a floating-point cost of n(7k + 3k′ + 10) operations. We discuss
the effect of these differences on homomorphic multiplication runtime in Section VI.

b) Effect on Noise Growth: Noise growth can be analyzed using the same logic as applied to the textbook
BFV in [8] and YASHE in [27]. Both the BEHZ and HPS papers provide a detailed noise analysis. We only review
some closed-form solutions that describe the noise growth in each variant.

Noise growth in BEHZ [9]: Initial noise in a fresh ciphertext is V = βerr(1+2δβkey). To ensure the correctness

of a depth-L binary tree multiplication, the maximum noise CL1 V +LCL−11 C2 must be less than
q

t
(
1

2
− k

γ
)− |q|t

2
,

where

C1 = δ2t(1 + ρ)βkey + δt(4 + ρ) +
δ

2
,

C2 = (1 + δβkey)(δt|q|t
(1 + ρ)

2
+ δβkey(k +

1

2
))+

2δt|q|t + k(2δβerrlω,2νω + 1) +
1

2
(3 + |q|t).

Here, lω,2ν is the number of base-w digits in a CRT modulus qi (for the second level of decomposition in
relinearization).

Noise growth in HPS [10]: To guarantee the correctness of a depth-L binary tree multiplication for HPS, the
maximum noise C ′L1 V + LC ′L−11 C ′2 must be less than (∆− rt(q)) /4, where rt(q) = t (q/t−∆) and

C ′1 = (1 +
5

δβkey
)δ2tβkey,

C ′2 = δ2βkey((1 + 2||εs||∞)βkey + t2) + δβerrlω,2νωk.

This constraint is similar to the textbook BFV case [8]; HPS adds at most two extra bits to the textbook BFV
constraint, as shown in [10].

Noise Growth Comparison: The most significant quantity in noise growth is C1 (or C ′1 for HPS). In BEHZ,
an extra factor of (1 + ρ) is introduced, which can be minimized if ρ is small. This can be controlled by choosing
a large m̃ using Equation (7). Note that βkey = 1. We use the noise growth bounds above to find the maximum
multiplicative depth L◦ supported under a given parameter set as shown in Table V. Note that in this experiment, we
set δ = n, which corresponds to the worst-case analysis. It can be seen that the BEHZ and HPS RNS techniques
have almost no effect on L◦ for these settings. Note that the behavior in BEHZ is attributed to our choice of
the redundant moduli, which is different from the parameter selection in [9]. We use standard CRT moduli for
all redundant moduli to minimize the effect of the moduli on noise growth. We remark that the practical noise
growths observed in our experiments are significantly different, as discussed later in this paper. We remark that we
performed the same comparison of BEHZ and HPS noise growth as in Table V for 60-bit moduli, and we found
the results to be very similar to the 30-bit case.

c) Precomputed Constants: The number of precomputed constants for homomorphic multiplication is quite
large. Due to space constraints, we only list the numbers of vectors and matrices required by each variant in Table VI.
Note that our GPU implementations include other precomputed constants related to CRT and NTT computation.
We maximized K to use the largest amount of the GPU constant memory. It can be seen that BEHZ includes a
larger number of parameters but requires less storage.
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Table V: Parameters of the BFV scheme and its RNS variants with plaintext modulus t, and maximum theoretical multiplicative depth L◦ for
each variant. Parameters are generated to provide at least 128 bits of security, with the worst-case bound for the expansion factor δ = n.
The choice of t = 65537 is motivated by the fact that the plaintext space for most of the practical settings can be decomposed into linear
factors modulo 65537, which provides maximum number of slots for SIMD-like execution.

logn2 dlogq2e t L◦

BEHZ HPS Textbook

12 60 2
65537

1
0

1
0

1
0

13 120 2
65537

3
2

3
2

3
2

14 360 2
65537

11
7

11
7

11
7

15 600 2
65537

18
12

18
12

18
12

16 1020 2
65537

29
20

29
20

29
20

16 1770 2
65537

52
36

52
36

52
36

V. IMPLEMENTATION

A. CPU Implementation

We implemented the BEHZ variant in the PALISADE library, which already provides an implementation of HPS
(starting with version 1.1). We added the parameter generation, decryption, and homomorphic multiplication and
RNS tools for the BEHZ variant. Other primitives, such as key generation, encryption, and homomorphic addition,
were borrowed from the existing HPS implementation. The details of the HPS implementation are provided in [10].
Our implementation of the BEHZ variant is publicly accessible (included in PALISADE starting with version 1.2).

Table VI: Memory requirement for precomputed constants used in homomorphic multiplication. K denotes the largest number of CRT moduli
supported by the GPU implementation. Memory size is given in KB.

Item BEHZ HPS

K 64 61

# of vectors 12 7
size 3 KB 1.67 KB

# of matrices 2 3
size 32 KB 43.61 KB

total size 35 KB 45.27 KB

Multi-threading in our CPU implementations is achieved via OpenMP3. The loop parallelization in the scaling
and RNS base extension operations is applied at the level of single-precision polynomial coefficients (w.r.t. n). The
loop parallelization for NTT and component-wise vector multiplications (polynomial multiplication in the evaluation
representation) is applied at the level of CRT moduli (w.r.t. k).

We also added a new optimization in this work to improve the performance of both BEHZ and HPS in PALISADE:
a) Lazy Reduction: Lazy reduction can be used to reduce the number of modular reductions in a sum of

products. Suppose we have a summation
∑

i a · b (mod p). If we can determine the upper bound of a · b, we
may use regular multiplications and additions as long as the bound is not reached. As soon as we approach the
bound, we can apply one modular reduction modulo p and continue. In PALISADE, the largest efficient CRT
modulus is 60 bits long, i.e., a and b are also 60-bit numbers. If we use a 128-bit multiplier, we can do 128
multiply-add (MULADD) operations before we overflow a 128-bit register. Thus, a single modular reduction after
128 MULADDs is sufficient to compute the sum. To use lazy reduction, we extended PALISADE by adding two

3http://www.openmp.org/
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Algorithm 3 128-bit Barrett reduction modulo 60-bit integer.

Input: 128-bit a ∈ Z+, 60-bit p ∈ Z+ , and µ = b2128/pc.
Output: r = a (mod p).

1: lhi = Mul128(alo, µlo)� 64
2: m = Mul128(alo, µhi)
3: (s0, cout) = AddwCarry(mlo, lhi) . addition with carry
4: s1 = mhi + cout
5: m = Mul128(ahi, µlo)
6: (NULL, cout) = AddwCarry(mlo, s0) . check carry
7: lhi = mhi + cout
8: s0 = ahi ∗ µhi + s1 + lhi
9: r = alo − s0 ∗ p

10: while (r >= p) do
11: r -= p

12: return r

procedures: a 64-bit–by–64-bit multiplier to produce a 128-bit result, and a 128-bit modular reducer using Barrett
algorithm. Although we replace a 64-bit modular MULADD with a 128-bit MULADD, experiments show that the
latter is more efficient. Algorithm 3 shows our 128-bit Barrett reduction algorithm.

B. GPU Implementation

The GPU library, referred to as DSI BFV [17], already includes a full implementation of BEHZ. We report here
some of the recent features added to DSI BFV and details of our implementation of HPS.

DSI BFV includes two main components: 1) lattice cryptography library and 2) implementation of BEHZ. We
should note that a key feature in DSI BFV is that it executes the entire BFV computation on GPU. The CPU is
merely responsible for launching kernels and memory allocations/deallocations. Even the cryptographic keys are
computed on GPU. This is slightly different from the normal processor-coprocessor model where only intensive
tasks are offloaded to coprocessor. As we saw previously, BFV and its RNS variants include a large level of
parallelism that is suitable for vector processors such as GPUs. We avoid frequent costly memory copying between
CPU and GPU by performing the entire computation on GPU. This paradigm is also suitable for cluster GPUs
where the CPU may distribute a large homomorphic circuit to multiple GPUs.

The lattice library in DSI BFV includes a set of tools described as follows.
a) CRT/RNS: Currently, for CRT/RNS, DSI BFV includes 30-bit moduli generated in a special form to support

lazy reductions in NTT computations [21]. It also employs fixed-size primes generated according to the design in
NFLlib [28]. For CRT reconstruction, DSI BFV uses Garner’s mixed radix algorithm since it requires less memory
for precomputed constants and is faster than the classic CRT reconstruction [17]. For RNS arithmetic, we launch
k · n threads over 2D thread blocks to exploit the maximum parallelism provided by RNS, which is a scalable
solution that can benefit from as many computational cores as are available in the GPU.

We decided to support only 30-bit CRT moduli on GPU for the following reasons:
• GPUs support natively 32-bit instructions as the internal register size is 32 bits. Though 64-bit operations are

supported, they are simulated via 32-bit instructions [29].
• Certain types of memory in NVIDIA GPUs are optimized for 32-bit words. For instance, shared memory in

GPU is optimized for 32-bit access. 64-bit access can cause shared memory bank conflicts. Although these
bank conflicts can be eliminated by padding extra unused shared memory, this will consume more hardware
resources and limit the number of concurrent thread blocks. Note that our GPU implementation uses heavily
this special type of memory to facilitate intra-block communication among threads in a block.

• GPUs do not include a native 128-bit data type that can be used to multiply 64-bit operands. Hence, this
should be implemented manually and simulated via 32-bit operations. Efficient implementation would require
an optimized PTX (assembly-like) instructions that are complex, error prone and not hardware-oblivious.
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b) Discrete Galois Transform (DGT): The DGT is used for efficient polynomial multiplication using negacyclic
convolution. It was found suitable for GPUs and memory-bound platforms as it cuts the transform length into half
and requires less amount of memory for precomputed twiddle factors. The DGT algorithm was originally proposed
by Crandall [30] for fast negacyclic convolution. It works in the field GF (p2) where p is a Gaussian prime, i.e.,
p ≡ 3 (mod 4). Unfortunately, NFLlib primes are non-Gaussian and hence they are not compatible with vanilla
DGT. However, Al Badawi et al. [31] showed how to extend Crandall’s DGT algorithm to work with non-Gaussian
primes as well. We remark that the current version of DSI BFV includes the NTT optimizations from David
Harvey [21] adapted for DGT computations.

c) Uniform and Gaussian Random Samplers: Random polynomials are generated on GPU using CUDA
cuRAND. We need to sample polynomials from three random distributions: 1) X2, 2) Xq, and 3) Xerr. The first two
are uniform distributions while the third is a discrete Gaussian. DSI BFV includes efficient parallel implementations
for these distributions.

d) Memory Pool: DSI BFV includes a GPU memory pool. Memory allocations are done once when needed,
and the used memory is deallocated only when the program terminates. This is important for performance since
we are dealing with large polynomials that require substantial amounts of memory. Frequent memory allocations
and deallocations on GPU are costly and should be avoided whenever possible.

e) Implementation of HPS: The main component of HPS is FastBaseConv F. For a polynomial of degree
n, we launch n threads to extend a polynomial coefficient in base B to base B′. The required constants are
precomputed and stored in the GPU constant memory. We note here that although HPS requires less precomputed
parameters, their size is larger than that required by BEHZ. We had to reduce K from 64 to 61 in order to fit
the precomputed parameters in the GPU constant memory. Since we are only dealing with 61 30-bit CRT moduli,
we use the native C++ double for floating-point operations. This provides enough precision as shown in Table I.
Our FastBaseConv F kernel launches n threads, one for each coefficient residue. We also apply the lazy reduction
technique similar to the CPU implementation. The only difference is that we work with 30-bit moduli; therefore, the
GPU Barrett reduction algorithm is simpler than Algorithm 3. Key generation, encryption, homomorphic addition,
and relinearization procedures are borrowed from the implementation of BEHZ that is already included in DSI BFV.

f) Performance Tuning: In order to explain our performance fine-tuning methodology for GPU, we first provide
an overview of some concepts related to CUDA programming and NVIDIA GPU hardware. A GPU card includes
a set of streaming multi-processors (SMs), for example, V100 includes 80 SMs. Each SM is essentially a vector
processor that comprises a set of scalar processors (SPs) (each SM in V100 includes 64 SPs), register file and shared
memory. The SPs are the GPU cores, or hardware threads, that perform mathematical and logical operations.

An important performance metric in CUDA is the achieved occupancy factor [32] defined as the ratio between
the active warps4 and the maximum active warps a device can support. The latter is a hardware specification that
cannot be controlled, whereas the former depends on the availability of hardware resources, memory instructions
that stall warps, the number of thread blocks launched and thread block size (number of threads per block). What
can generally be controlled among these factors are the number of blocks and their size. For each kernel, one should
aim at maximizing the achieved occupancy until at some point the performance starts degrading (since more active
warps may limit the resources a thread can use). In our implementation, we fine-tuned the GPU kernels to ensure
optimum performance on both V100 and K80. The fine-tuning is a manual process that can be done by intensive
profiling studies while varying the number of blocks used and their dimensions, and observing the performance.

We provide below an example showing an estimate for the average number of cores used over all kernels for
V100. We profiled the implementation for running the five HPS primitives (KeyGen, Enc, Dec, EvalAdd and
EvalMul) under the settings (n, log q, t) = (216, 1770, 216 + 1). The average achieved occupancy was found to
be 0.628, i.e., 40.192 active warps per a SM (since the maximum active warps for V100 is 64). Hence we have
40.192 ∗ (warp size = 32) ≈ 1286 concurrent threads on average per SM. Note that 1286 > (number of SPs in
a SM, that is, 64 in V100), which suggests that cores on average are fully utilized and they are all being used.
Moreover, we can conclude that increasing the number of cores (with proportionally added hardware resources) is
expected to improve the performance.

4A warp is a bundle of 32 threads that forms the minimal execution unit in CUDA.
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VI. PERFORMANCE EVALUATION

A. Methodology

We report the execution times for decryption and homomorphic multiplication. On CPU, we measure the time
via the C++ library chrono. On GPU, CUDA events are used instead.

We perform experiments in different platform settings. For CPUs, we use single-threaded and multi-threaded
(OpenMP) settings. For GPUs, we run our experiments on one GPU card.

B. Experimental Setup

Our GPU implementation was developed via CUDA 9.0 on a 64-bit server equipped with 2 sockets, 26 cores
per socket and 2 logical CPUs per core, i.e., 104 CPU threads in total. The machine also hosts two NVIDIA cards:
1) Tesla K80 and 2) V100-PCIe. Table VII describes the hardware configuration of both CPU and GPU.

The OS was ArchLinux version (4.15.13-1-ARCH), and the compilers were g++ (GCC) 7.3.1 and nvcc (8.0.61).
We disabled the PALISADE library OpenMP support in single-threaded experiments and used 26 threads in multi-
threaded experiments.

Table VII: CPU and GPU hardware configurations

Feature CPU GPU

K80 V100

Model Intel(R) Xeon(R) Platinum K80 V100-PCIe

# Cores 104 2496 5120

Frequency 2.10 GHz 0.82 GHz 1.380 GHz

RAM 187.5 GB 12 GB 16 GB

C. Parameter Selection

To choose the ring dimension n, we ran the Learning With Errors security estimator5 (commit f59326c) [33]
to find the lowest security levels for the uSVP, decoding, and dual attacks following the standard homomorphic
encryption security recommendations [34]. We selected the least value of the number of security bits λ for all 3
attacks on classical computers based on the estimates for the BKZ sieve reduction cost model.

Table VIII: Decryption latency in (milliseconds) of BFV RNS variants for single- and muli-threaded CPU settings, and GPUs with different
moduli sizes (ν).

Configuration Variant (logn, log q)

(12,60) (13,120) (14,360) (15,600) (16,1020) (16,1770)

Single-threaded CPU (ν = 30) BEHZ 0.535 2.079 13.330 48.547 196.266 336.617
HPS 0.472 1.857 11.374 43.334 172.916 318.942

Multi-threaded CPU (ν = 30) BEHZ 0.298 0.831 3.799 12.397 49.850 88.845
HPS 0.302 0.819 3.607 12.042 49.741 87.774

Single-threaded CPU (ν = 60) BEHZ 0.401 1.153 7.379 26.389 103.034 173.313
HPS 0.504 1.632 8.735 30.314 120.576 195.398

Multi-threaded CPU (ν = 60) BEHZ 0.278 0.64 2.311 7.189 24.204 46.708
HPS 0.273 0.669 2.392 7.475 25.811 48.195

K80 GPU (ν = 30) BEHZ 0.115 0.139 0.304 0.558 1.564 2.630
HPS 0.111 0.123 0.235 0.455 1.207 2.025

V100 GPU (ν = 30) BEHZ 0.057 0.063 0.101 0.134 0.329 0.516
HPS 0.054 0.059 0.087 0.111 0.298 0.457

5https://bitbucket.org/malb/lwe-estimator
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Table IX: Homomorphic multiplication (including relinearization) latency in (milliseconds) of BFV RNS variants in single- and muli-threaded
CPU settings, and GPUs with different moduli sizes (ν).

Configuration Variant (logn, log q)

(12,60) (13,120) (14,360) (15,600) (16,1020) (16,1770)

Single-threaded CPU (ν = 30) BEHZ 10.157 40.675 382.149 1899.136 11761.077 35173.622
HPS 10.065 41.417 385.057 1873.935 10815.283 27229.210

Multi-threaded CPU (ν = 30) BEHZ 4.270 10.838 74.716 351.296 1986.586 5697.640
HPS 4.054 10.179 74.420 351.140 1984.211 5553.058

Single-threaded CPU (ν = 60) BEHZ 6.952 23.300 155.365 670.946 3526.113 9260.904
HPS 6.326 22.088 154.350 673.132 3464.492 8605.612

Multi-threaded CPU (ν = 60) BEHZ 3.343 7.325 32.244 124.117 585.080 1653.966
HPS 2.844 6.834 31.744 126.945 603.554 1667.919

K80 GPU (ν = 30) BEHZ 2.166 2.754 9.603 25.885 112.062 307.531
HPS 1.977 2.517 7.834 21.924 96.151 255.502

V100 GPU (ν = 30) BEHZ 0.997 1.178 2.412 5.705 22.848 59.473
HPS 0.859 1.012 2.010 4.826 18.725 50.779
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Figure 3: Speedup factors of homomorphic multiplication on different platforms (CPU single-threaded (ST), CPU multi-threaded (MT), and
GPU) for different parameter sets: (log2 n, log2 q) = (12, 60) [low], (14, 360) [medium], (16, 1770) [large]. Upper three are for BEHZ,
while the lower three are for HPS. Note that vertical axes are in log-scale.

The secret-key polynomials were generated using discrete ternary uniform distribution over {−1, 0, 1}n. In all
of our experiments, we selected the minimum ciphertext modulus bitwidth that satisfied the correctness constraint
for the lowest ring dimension n corresponding to the security level λ ≥ 128.

We set the Gaussian distribution parameter σ to 8/
√

2π [34], the error bound Be to 6σ, and the lower bound
for q′ to 2tnq. In the relinearization procedure, we utilized only the CRT decomposition (and did not use the
second-level digit decomposition of residues).

D. Benchmarking

Tables VIII and IX show the results for decryption and homomorphic multiplication, respectively, in BEHZ and
HPS. As PALISADE supports CRT moduli sizes ν ∈ {30, . . . , 60} bits, we include the runtimes for ν = 30 and
ν = 60. Note that DSI BFV only supports 30-bit moduli.

It can be clearly seen that HPS outperforms BEHZ in decryption for ν = 30 bits on all platforms. When
ν = 60 bits, HPS decryption performance degrades due to the use of quad-float (double double) floating-point
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arithmetic. Given that HPS performs faster in three different platforms when ν = 30 bits, it can be concluded that
HPS’s decryption function requires less computational overhead compared to BEHZ (unless quad-float or higher-
precision floating-point arithmetic is needed). More concretely, HPS decryption can achieve the following speedup
factors: 1.06 to 1.17 (CPUST, ν = 30), 0.71 to 0.89 (CPUST, ν = 60), 0.99 to 1.05 (CPUMT, ν = 30), 0.94 to 1.02
(CPUMT, ν = 60), 1.04 to 1.30 (GPUK80, ν = 30), and 1.06 to 1.21 (GPUV100, ν = 30), as compared to BEHZ.

For homomorphic multiplication, HPS typically outperforms BEHZ in all platforms regardless of ν. Significant
improvements can be noticed for large parameters. For instance, in CPUST and ν = 30 bits, a 7.95-second difference
is recorded. More concretely, HPS homomorphic multiplication can achieve the following speedup factors: 0.98 to
1.29 (CPUST, ν = 30), 1.00 to 1.10 (CPUST, ν = 60), 1.00 to 1.06 (CPUMT, ν = 30), 0.97 to 1.18 (CPUMT, ν = 60),
1.09 to 1.23 (GPUK80, ν = 30), and 1.16 to 1.22 (GPUV100, ν = 30), as compared to BEHZ. The fluctuations in
the runtimes for the multi-threaded CPU experiments can be attributed to specifics of the OpenMP setup in our
benchmarking environment.

Tables VIII and IX suggest that the use of ν = 60 bits provides roughly 0.9x to 2x (resp. 1.5x to 3.9x)
improvements for decryption (resp. homomorphic multiplication) on 64-bit machines. This is logical since these
machines perform 64-bit operations natively. It can also be noticed that V100 outperforms K80 by 2x to 5x for both
decryption and homomorphic multiplication. This can be attributed to a combined effect of multiple factors, such
as compute capability (3.7 for K80) vs. (7.0 for V100), number of cores and clock rate (2,496 cores at 824MHz for
K80 vs 5,120 cores at 1,380MHz for V100) and memory technology and bandwidth (GDDR5 240 GB/sec for K80
vs. HBM2 900GB/sec for V100). It should be noted that K80 and V100 were released by NVIDIA in November
2014 and June 2017, respectively [35].

To examine the improvements that can be achieved from parallel implementations on different platforms, Figure 3
shows the speedup factors computed as the ratio of CPUST and either CPUMT or GPU. We use the best performance
between ν = 30 bits and ν = 60 bits for multi-threaded speedups and the best between K80 and V100 for GPU
speedups. We observe that GPU can improve the performance by one to two orders of magnitudes whereas a
multi-threaded CPU implementation can hardly achieve one order of magnitude. It should be remarked that the
multi-threaded CPU implementation achieved a sub-linear speedup because (1) the loop parallelization for NTTs was
done at the CRT level by executing each CRT channel in a separate CPU thread, i.e., no intra-NTT parallelization
was exploited in PALISADE, and 2) the workloads were not equally distributed between the CPU sockets.

We remark that our best GPU results, namely the homomorphic multiplication runtime of 51 ms for n = 216 and
log2 q = 1, 770 and 18.7 ms for n = 216 and log2 q = 1, 020, are more than two orders of magnitude faster than
best previously reported runtimes for other implementations of the BFV scheme. For instance, the FPGA-
based implementation HEPCloud in [18] of the textbook BFV scheme computed a homomorphic multiplication for
n = 215 and log2 q = 1, 228 in 26.67 seconds (with 3.36 seconds spent on the computation and the rest on the
off-chip memory access). The BEHZ variant NFLlib CPU implementation in [9] ran a homomorphic multiplication
for n = 215 and log2 q = 1, 590 in 4.9 seconds.

E. Practical Noise Growth

We showed previously that BEHZ and HPS can theoretically achieve the same multiplicative depth (see Table V)
as the textbook BFV scheme. The noise analysis provided for both variants was conservative (worst-case) and used
δ = n to estimate the noise growth. However, in practice it was shown [10] that a lower value of δ can be used,
specifically, δ = 2

√
n. The authors used the Central Limit Theorem (CLT) to derive a practical heuristic estimate

of noise growth. We ran an experiment to verify this analysis and measure the maximum multiplicative depth each
variant can achieve.

We wrote a simple procedure that encrypts a plaintext message µ and iteratively multiplies it with an encryption
of 1. In each iteration, we decrypt the product and check if it is equal to µ counting the number of sequential
multiplications. Table X shows the lowest value of the maximum multiplicative depth that can be reached without
decryption failures by each variant in this experiment vs. the maximum depth estimated using the heuristic CLT-
based technique of [10] for the same parameters. It suggests that HPS can achieve a higher multiplicative depth
than BEHZ for almost all parameters. The HPS multiplicative depth conforms to the heuristic noise analysis having
δ = O(

√
n), where the constant is always less than two (which corresponds to the column “Max. Est. L◦” in

Table X), whereas the BEHZ depth requires a higher value for δ. We found by fitting the experimental results to
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Table X: Maximum multiplicative depth L◦ experimentally observed for each RNS variant (λ◦ ≥ 128) over 1024 runs vs. maximum heuristic
estimate for δ = 2

√
n for the same lattice parameters.

logn2 dlogq2e t Max. Est. L◦ Max. Exp. L◦

BEHZ HPS

12 60 2
65537

1
0

2
0

2
1

13 120 2
65537

5
2

5
2

6
3

14 360 2
65537

18
10

16
9

21
10

15 600 2
65537

31
16

26
15

35
19

16 1020 2
65537

51
28

43
25

56
30

16 1770 2
65537

90
50

75
44

98
52

the noise expression that δ ≈ O(n0.7) provides an adequate estimate of practical noise growth in BEHZ. We ran
each experiment 210 times. Hence the practical maximum depth numbers presented in Table X correspond to an
estimated decryption failure probability of 2−10. For the heuristic correctness constraint of HPS, the authors used a
much lower probability estimate [10] (close to 2−40 for all products of random polynomials), which explains why
the HPS correctness constraint gives more conservative depth estimates. We remark that we performed the same
comparison of practical noise growth for both schemes as in Table X for 60-bit moduli, and we found the results
to be very similar to the 30-bit case.

Our interpretation of this behavior is that the RNS techniques used in the BEHZ variant transform the ciphertexts
in such a way that CLT is no longer valid, i.e., we no longer deal with sums of zero-centered independent
random variables in certain polynomial multiplications. We claim that the deviation from uncorrelated zero-centered
random distribution is introduced by the step described in (Lemma 4 in [9]), i.e., by the small Montgomery
representation/reduction shown in Algorithm 2. In the textbook BFV and HPS variants, ciphertexts are uncorrelated
and zero-centered (with respect to the interval d−q/2e ≤ x < bq/2c). When we introduce the overflow (q · v)
term, where ‖v‖∞ ≤ k, in fast base conversion, we get ciphertexts that are no longer zero-centered but are biased
(correlated). Therefore, the noise growth is faster than what CLT predicts (except for the case of k = 2 at t = 2 in
Table X, when the overflow term contribution is the smallest). In contrast to the HPS case, we cannot use heuristic
(average-case) estimates for BEHZ and can guarantee the correctness only with worst-case estimates, i.e., δ = n.

To verify this interpretation, we experimentally examined the distribution of v for different RNS bases. The
variable v can be best approximated by a generalized Pareto (power-law) distribution that is not only different
from the uniformly random distribution of coefficients in the ciphertext polynomials, but also depends on these
coefficients. This violates the conditions for the independence between random variables required for CLT analysis,
and hence the square-root average-case noise growth cannot be achieved in this case.

This implies there is a major practical difference between BEHZ and HPS, which is far more significant than
the incremental performance improvements we observed when comparing the runtimes for same lattice parameters.
Although the effect of ρ is small for large m̃ (for the worst-case analysis), the deviation from zero-centered random
distribution has a more profound effect in practice. We note that this behavior has been observed in both our CPU
and GPU implementations of BEHZ. We also observed a similar noise growth behavior in the SEAL implementation
of BEHZ (SEAL version 2.3.0-4).

VII. CONCLUSION

Our work presents the implementation and performance evaluation of two RNS variants (BEHZ [9] and HPS [10])
of the BFV SHE scheme. We have analyzed the performance of both variants theoretically and experimentally
using several flavors of implementations (CPU single- and multi-threaded, and GPU). Our analysis shows that HPS
outperforms BEHZ in almost all settings on different platforms (for same values of lattice parameters). However,
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HPS decryption is outperformed by BEHZ when the moduli size is 60 bits, which is due to the multi-precision
(double double) floating-point operations in HPS.

Our experiments show that our multi-threaded CPU implementation using OpenMP can hardly attain a one-
order-of-magnitude improvement over the single-threaded setting, whereas GPUs can achieve up to two orders of
magnitude.

We have also demonstrated that the practical noise growth in BEHZ is much faster than that of HPS, which
can significantly increase the runtime and storage requirements, and also limit the maximum multiplicative depth
supported by BEHZ. We provide a possible explanation for this behavior; however, a more careful analysis of
BEHZ noise growth would be needed to characterize this behavior formally.
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Key-Policy ABE Scheme. IEEE Transactions on Information Forensics and Security, 13(5):1169–1184, May 2018.

[16] D. B. Cousins, G. Di Crescenzo, K. D. Gür, K. King, Y. Polyakov, K. Rohloff, G. W. Ryan, and E. Savaş. Implementing Conjunction
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