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Abstract. The division property method is a technique to determine integral
distinguishers on block ciphers. While the complexity of finding these distinguishers
is higher, it has recently been shown that MILP and SAT solvers can efficiently
find such distinguishers. In this paper, we provide a framework to automatically
find those distinguishers which solely requires a description of the cryptographic
primitive. We demonstrate that by finding integral distinguishers for 30 primitives
with different design strategies.
We provide several new or improved bit-based division property distinguishers
for ChaCha, Chaskey, DES, GIFT, LBlock, Mantis, Qarma, RoadRunner,
Salsa and SM4. Furthermore, we present an algorithm to find distinguishers with
lower data complexity more efficiently.
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1 Introduction

Block ciphers, stream ciphers, and hash functions are the fundamental symmetric cryp-
tographic primitives that are at the base of almost all cryptographic protocols. One of
the most successful set of techniques to evaluate their security are techniques based on
higher-order derivatives.

Higher-order derivatives were first considered in the context of symmetric cryptography
by Xuejia Lai [Lai94] and shown by Lars R. Knudsen [Knu95] to attack weaknesses not
covered by differential cryptanalysis, and successfully used to break a cipher design [JK97].
A higher-order derivative in the context of cryptography is the discrete equivalent of
higher-order derivatives of multivariate continuous functions. The cryptographic primitive
can be seen as a vectorial Boolean function where a higher-order derivative evaluates this
function at a given point with respect to some directions/subspace. Such a derivative can
for example be used to find the coefficients of the monomials of the algebraic normal form
(ANF) of a cryptographic primitive.

An important category of higher-order attacks is integral cryptanalysis. This type of
cryptanalysis appeared first in the Square attack [DKR97a], and was later generalised to
be apply to other ciphers as well ([KW02,BS10]). In integral cryptanalysis, the goal is to
find a set of input bits and a set of output bits, such that when taking the sum over a set
of input messages taking all possible values in the selected input bits and arbitrary but
constant values in the other input bits, the sum will be balanced in the selected output
bits. This can be described as a higher-order derivative that can be taken at any point
and evaluates to zero in the specified output bits.

Originally such property was derived using arguments based on the structure of the
primitive but Yosuke Todo demonstrated in his EUROCRYPT 2015 paper [Tod15b] a novel
method to derive integral distinguishers using the so-called division property formalism
whose effectiveness he demonstrated with an attack on full-round Misty [Tod15a]. The
technique originally being used on words of at least four bits, has since been applied to
bit-based designs as well, albeit at a higher computational cost [TM16].



Another type of higher-order attacks are so-called cube attacks [Vie07,DS09]. In these
attacks the cryptographic primitive is viewed as a vectorial Boolean function in both public
and secret input bits. By finding coefficients of terms in the public bits that are linear in
the secret bits, it is possible to derive a set of linear equations that we can solve to extract
the secret input bits. This technique has successfully been applied to stream ciphers and
hash functions [DS11,DMP+15].

Contributions This paper presents a new framework to analyse the security of crypto-
graphic primitives with respect to the bit-based division property by providing a simple way
to find distinguishers and testing the number of rounds required for no such distinguisher
to exist. We take a look at how finding division property distinguishers can be efficiently
automated. To this end, we elaborate how the bit-based division property can be mapped
to conditions on the state bits which in turn maps easily to a SAT problem.

Our tool focuses especially on the usability and allows to describe the cryptographic
primitives at a high level by providing commonly used operations like S-boxes, linear layers,
bit-permutations or modular addition. This completely removes the need of constructing
any domain specific models like previous search strategies [XZBL16,SWW17,ZR17].

In order to demonstrate the usability of our tool we implemented 30 primitives following
different design strategies. We then use our tool to find several new integral distinguishers,
provide a bound for which number no such distinguishers exist in our model and also
evaluate for which design strategies our approach becomes computationally infeasible.

In particular we find the following new results:

– We provide the first bit-based integral distinguishers for the permutations used in
ChaCha (6 rounds), Chaskey (4 rounds) and Salsa (6 rounds). We further show
that for one more round no distinguisher of this type exists.

– For DES we show that by using the bit-based division property we can improve upon
the word-based division property distinguishers by Todo [Tod15b] and add one round.
We also show that for 8 rounds no such distinguishers exist.

– We present the first integral distinguisher for both Mantis (3 forward, 2 backward
rounds) and several variants of Qarma (2 forward, 2 backward rounds).

– For the SM4 block cipher we can show a distinguisher for 12 rounds and that no
bit-based division property distinguisher exists for 13 rounds. This improves the best
previously known integral distinguisher by 4 rounds [LJH+07].

– We find a distinguisher for 17 rounds of LBlock, which improves the best previously
known results by one round [XZBL16].

– We present 9-round distinguishers for GIFT-64 which improve upon the data com-
plexity of the distinguishers provided by the designers [BPP+17].

– For RoadRunner we are able to extend the distinguishers found by the authors [BS15]
by one additional round.

For several other primitives we provide a bound at which no bit-based division property
distinguishers exists in our model. Furthermore, we present an efficient algorithm to find
distinguishers with reduced data complexity by only covering the search space which can
actually lead to distinguishers.

Software. We place the tool developed for this paper into the public domain and it is
available at https://github.com/kste/solvatore.

Related Work The division property has been applied to a large variety of crypto-
graphic primitives and has led to significant improvements [Tod15b,Tod15a] over classical
integral attacks in some cases. With the extension of the division property to bit-based
designs [TM16] the technique can be applied to a larger class of cryptographic primitives.

https://github.com/kste/solvatore


However finding distinguishers with this approach is a difficult task and requires a lot of
effort.

The first automated approach for finding bit-based division property distinguishers
was presented in [SWW16] and is based on reducing the problem to mixed integer linear
programming (MILP). This simplifies the search for distinguishers and allows to apply
the bit-based division property to a larger class of cryptographic primitives. Another
automated approach based on constraint programming has been proposed in [SGL+17] to
find integral distinguishers for Present. In the paper the authors show that this approach
can have a better performance than the MILP based technique. The search for ARX and
word-based division property has been dealt with in [SWW17] by using SAT resp. SMT
solvers.

2 Division property and division trails

The methodology of division properties was devised by Yosuke Todo in his EUROCRYPT
2015 paper [Tod15b]. We elaborate this methodology here in the setting where the words
are single bits, i.e., when applied as bit-based division property. While using the original
formalism, we will look at it from a slightly different angle to simplify the discussion. For
the division property over larger word sizes, we refer to the original paper.

2.1 Background

The formalism of division properties belongs to the family of attack vectors collectively
named integral cryptanalysis. The goal of integral cryptanalytic techniques is to find a set
of input texts such that the sum of the resulting output texts evaluates to zero in some of
the bits. If such a property can be found it directly yields a distinguisher which often can
be turned into a key recovery attack.

The most common sets of input texts that are used are those that are equal in some
bit positions and take all possible combination of values in the remaining bit positions.
The first attack that successfully used this attack vector is the Square attack [DKR97b] on
the block cipher Square that is equally applicable to the Advanced Encryption Standard
(AES).

There are two main methods that are used to derive an integral distinguisher: structural
properties and algebraic degree bounds. In the Square attack and subsequent generalizations
[BS01] the integral property could be derived by only looking at structural properties of
the cipher such as the SPN or Feistel structure without taking much of the cipher details
into consideration (such as concrete S-box, concrete linear layer).

Later it was recognised that these kinds of integral distinguishers correspond to discrete
derivatives [Lai94] where the derivative is taken with respect to the active input bits, i.e.,
those that are varied. As such the structural techniques are a way to determine output
bits whose polynomial representations do not contain terms that include all active input
bits simultaneously. Taking the derivative with respect to these active input bits will thus
necessarily evaluate to zero in these output bits.

The second major technique that is used to derive integral distinguishers uses this view
of integral distinguishers as derivatives. By determining upper bounds on the algebraic
degree of the polynomials of the output bits, we can determine that derivatives of sufficient
degree have to evaluate to zero. Similar to the structural method, the methods used to
bound the degree usually ignore large parts of the implementation details, for example by
just looking at the degree of rounds and multiplying these.

The division property is an improvement with respect to this situation as it manages
to take more implementation details of the cipher into consideration. The downside to this
is an increased cost of finding the distinguishers.



2.2 Formalism of bit-based division properties

In the bit-based division property methodology, the goal is to find, given a set of chosen
active input bits, those output bits whose polynomial representations do not contain terms
that feature all of these active bits simultaneously. While this could principally be done
by simply calculating the exact polynomial representations of the output bits, this is
computationally infeasible in all but toy examples. With division properties we use an
approximation instead that guarantees to only find valid distinguishers but might fail to
find all distinguishers.

In this approximation, we continually track which bits of the state would need to be
multiplied to generate a bit whose polynomial representation can contain terms of all
active bits. Let us consider an initial state of four bits (x0, x1, x2, x3) where we activate
bits x1 and x2, i.e., we are interested in which state bits we would need to multiply to
create a term that contains both bits. For this initial state the minimal way of generating
such a term is by multiplying those two bits directly. We write this combination as the
choice vector (0, 1, 1, 0).4

If we now add x1 to x3, we get the new state (x0, x1, x2, x3 +x1). Now we can generate a
term that contains both x1 and x2 in two different minimal ways: first again by multiplying
the second and third bit or by multiplying the third and the last bit. These correspond to
the choice vectors (0, 1, 1, 0) and (0, 0, 1, 1).5 The only original choice vector (0, 1, 1, 0) has
thus been transformed to two choice vectors by the application of the addition.

If we now applied another operation to this state, each of the choice vectors is trans-
formed to other minimal choice vectors, and by iterating this process a tree of minimal
choice vectors is spanned whose final nodes are the minimal choice vectors of output bits
whose multiplication can create a term that contains all active input bits.

To determine whether a minimal choice vector can be reached from the initial choice
vector of active bits, we need to determine whether a path exists in this tree from the
initial choice vector to the output choice vector. We will refer to such path as a division
trail. In particular, to determine whether a specific output bit is zero when evaluating the
derivative with respect to the active bits, we need to determine whether the choice vector
that only chooses this output bit is reachable. If it is not reachable, we know that this
output bit cannot have terms in its polynomial representation that contain all active bits
simultaneously and thus the derivative has to evaluate to zero. Should the choice vector
be reachable though, nothing definite can be said about the derivative.

2.3 Rules of choice vector propagation

To trace a division trail of minimal choice vectors, we need to know how these minimal
choice vectors of state bits are transformed to new choice vectors under the application
of operations. In the following we will shortly discuss the application of XOR, AND,
bit-copying and S-boxes. As the influence of the operations is local, it is sufficient to restrict
the discussion to those bits involved in the operation.

Bit-Copying Let us take a look at the scenario where we have two state bits, and the
value of the first bit is copied to the second bit. There are four possible original choice
vectors: (0, 0), (1, 0), (0, 1), and (1, 1). The first choice vector implies that to generate a
term that can contain all active bits, we don’t need to multiply any of the two bits. So
clearly we still do not need to multiply any of the bits after copying the first bit onto the
second, leading to the transition (0, 0)→ (0, 0).

4 In the original paper, this was written slightly more verbosely as D4
(0,1,1,0).

5 In the original paper, this would be written as D4
(0,1,1,0),(0,0,1,1).



In the case of (1, 0), we need the first bit in the product to generate a term with all
active bits but the second one is not required. Thus after copying, we can choose either
the first or the second bit (both would also be possible but not minimal). We thus have
the two transitions: (1, 0)→ (1, 0) and (1, 0)→ (0, 1).

Now in the case of (1, 0) and (1, 1), the second bit is needed in the product to create
a term with all active bits. As it is copied over, it is no longer possible after copying to
create this term and thus no valid transitions exist.

XOR Now for the case where there are two state bits and the first is XORed onto the
second. Again we have to look at the four cases (0, 0), (1, 0), (0, 1), and (1, 1). As with bit
copying, in the case of (0, 0), the bits are not necessary in the product, so they are not
necessary after the addition as well. This leads to the transition (0, 0)→ (0, 0).

In the case of (1, 0), the first bit value is needed in the product. After the addition, the
bit value is also present as part of the sum in the second bit. We can thus either choose
the first or the second bit in the product, leading to the transitions (1, 0) → (1, 0) and
(1, 0)→ (0, 1).

When we have the case (0, 1), the second bit value is needed in the product. As it is
still only present in the second bit after the addition, the only valid transition here is
(0, 1)→ (0, 1).

Finally, in the case of (1, 1), the product of both bits is needed to create a term with
all active bits. Although the second bit contains both original bit values after the addition,
it only does so as a sum while we need the product of both. Thus also after the addition,
we have to choose both bits, leading to the transition (1, 1)→ (1, 1).

AND If we now have again two state bits and we multiply the first onto the second,
the situation is analogous to the case of the XOR except if the choice vector before the
multiplication is (1, 1). In this case the product of both bit values is needed to create a
term of all active bits. As the multiplication creates exactly this product in the second bit,
the only minimal transition here is (1, 1)→ (0, 1).

S-boxes The easiest way to see how choice vectors are transformed by an S-box is to look
at the polynomial representation of the S-box, i.e., the algebraic normal form (ANF). It is
tedious but straightforward to deduce the valid output choice vectors for a given input
choice vector using the ANF. It can hence be easily automated and we only need to do
this once for an S-box.

3 Solvatore - Automated Finding of Integral Properties

Finding integral distinguishers using division properties is a difficult task. Especially for
bit-based designs the analysis often requires extensive manual work which is prone to errors.
Automatic tools can be very useful and simplify the analysis of cryptographic primitives,
allowing us to explore a larger set of attack vectors. On the other hand they can also be
very useful in the design process of cryptographic primitives, to optimise parameters and
quickly test different design strategies.

In the following, we present our automated tool Solvatore, which simplifies the search
for bit-based division property distinguishers by providing a framework for implementing
a large variety of cryptographic primitives. One of the main focuses of the framework
is to not only automate finding the bit-based division property distinguishers, as done
in previous work [XZBL16,SWLW16,SWW17], but also to completely abstract away the
need for dealing with generating models for the primitives or requiring any domain specific
knowledge. This makes it much simpler and less error-prone compared to other approaches



to add new primitives to the framework and in general it is far easier to implement a
primitive in our tool than writing a standard C implementation as many details can be
omitted.

Currently our framework supports the following operations to construct cryptographic
primitives:

– Bit operations: bit-copying, and, and xor.
– Arbitrary S-boxes.
– Linear layers using matrix multiplication over arbitrary fields.
– Modular Addition.
– Bit-permutations.
– Generic cell permutations for ShiftRows or Midori-like constructions.

As an example the full description of Present is given in section A which only requires
to define the S-box, bit-permutation and on which bits those are applied. In order to
analyse the security of Present against the bit-based division property our tool provides
functions for checking whether an output bit is balanced for a given choice vector.

In the following we show how we can reduce the problem of finding a division trail to a
satisfiability problem. For this we have to construct a Boolean formula which is satisfiable
if and only if it forms a valid division trail.

3.1 Modeling division property propagation with SAT

The Boolean satisfiability problem (SAT) is a well known problem from computer science.
The problem is to decide whether there exists an assignment of variables in a Boolean
formula in conjunctive normal form (CNF) such that the formula evaluates to true. While
the problem is known to be NP-complete, the SAT instances we will construct here are
very structured and can often be solved quickly in practice by modern SAT solvers. In the
following we show how to reduce the problem of finding division trails to a SAT problem
and how this can be useful in the cryptanalysis of cryptographic primitives.

First, we introduce a variable for each bit of the choice vector Si = (s0, . . . , sn−1) after
the ith operation applied to the state where n is the size of the state. The next step is
to define how the choice vector can propagate through different Boolean functions which
occur in the round functions of cryptographic primitives. The rules for this have been
explained in subsection 2.3 and have also been studied in [Tod15a,Tod15b]. We therefore
focus here on how we can construct a Boolean formula in CNF which is SAT if and only if
the assignment of the variables forms a valid transition of choice vectors.

Bit-Copying. The copy operation copies a bit a to an output bit b, and all valid transitions
of choice vectors are given by

copy(aold, bold)→ {(anew, bnew)}
copy(0, 0) 7→ {(0, 0)}
copy(1, 0) 7→ {(1, 0), (0, 1)}.

The set of clauses Ccopy which form a Boolean formula which is SAT iff (aold, bold) copy−−−→
(anew, bnew) is given by

Ccopy = {(¬bold), (¬aold ∨ bnew ∨ anew), (aold ∨ ¬bnew),
(aold ∨ ¬anew), (¬anew ∨ ¬bnew)}.

(1)



And. The and operation corresponds to the result of a ∧ b→ b. The valid transitions are
given by

and(aold, bold)→ {(anew, bnew)}
and(0, 0) 7→ {(0, 0)}
and(0, 1) 7→ {(0, 1)}
and(1, 0) 7→ {(1, 0), (0, 1)}
and(1, 1) 7→ {(0, 1)}.

Just as for the copy operation, translating this to a SAT sentence is straightforward and
gives the following set of clauses

Cand = {(aold ∨ ¬anew), (¬bold ∨ bnew), (¬bnew ∨ ¬anew),
(¬aold ∨ bnew ∨ anew), (aold ∨ bold ∨ ¬bnew).

(2)

Xor. The xor operation corresponds to the result of a⊕ b→ b. The valid transitions are
given by

xor(aold, bold)→ {(anew, bnew)}
xor(0, 0) 7→ {(0, 0)}
xor(0, 1) 7→ {(0, 1)}
xor(1, 0) 7→ {(1, 0), (0, 1)}
xor(1, 1) 7→ {(1, 1)}

which corresponds to the following clauses

Cxor = {(aold ∨ ¬anew), (¬bold ∨ bnew), (bold ∨ ¬bnew ∨ ¬anew),
(¬aold ∨ anew ∨ bnew), (bold ∨ aold ∨ ¬bnew),
(¬bold ∨ ¬aold ∨ anew).

(3)

S-boxes. As described in subsection 2.3, the transition rules for S-boxes can easily be
deduced automatically. The rules create a truth table for involved variables which can be
transformed to a CNF using standard methods.

Linear Layers. Many popular designs, like the AES, use a complex linear layer in order to
get good diffusion. These linear layers are often represented as d× d matrices over some
field Fk

2 . In order to model the trail propagation we can represent these transformations as
kd × kd matrices over F2, which then can be decomposed into the basic copy and xor
operations.

In order to simplify the description of such linear layers in our tool, we implemented
this decomposition and it is only required to provide the irreducible polynomial for the
field Fk

2 and the matrix. From the irreducible polynomial it is possible to deduce the k × k
matrices that represent the elements of Fk as matrices over F2. Substituting these matrices
in the original matrix over Fk now creates the nk × nk binary matrix.

Modular Addition. Modular addition is used as a non-linear component in ARX-ciphers like
HIGHT, LEA, and SPECK. We can use the same approach as [SWLW16] to decompose
the modular addition into xor and and. Let z, x, y be n bit-variables with zi, yi, xi as the
ith bits, counting from the least significant bit, and z = x � y. The modular addition
modulo 2n is given by:



zi = xi ⊕ yi ⊕ ci

where
ci = xi−1yi−1 ⊕ (xi−1 ⊕ yi−1)ci−1 for i > 0
c0 = 0

So far we have assumed that both x, y are variables, however in some ciphers one of
them is a constant, e.g. a round key. Since we can ignore xor and and with a constant we
get the following expressions.

zi = xi ⊕ ci

where
ci = xi−1 ⊕ xi−1ci−1 for i > 0
c0 = 0

Similar, if we want to find a distinguisher on a cipher like Bel-T or the inverse of an
ARX-cipher we also need modular subtraction. To do modular subtraction we can use the
fact that

x� y = x� (−y) = x� (2n − y) = x� ((2n − 1)− y) � 1 = x� y � 1 (4)

Since the NOT operation has no effect on whether a bit is balanced or not we can omit
it to get x � y = x � y � 1. This means that we can do modular subtraction with one
modular addition and one constant addition.

3.2 Finding integral distinguishers

In order to find useful integral properties of a cipher, we have to propagate an initial choice
vector S0 and check whether it is impossible to reach certain choice vectors Sr after r
rounds. If we can show that an output choice vector that is everywhere zero except for a
single 1 in one bit is unreachable, we know that this bit has to be balanced.

In particular we are often interested in whether any bit in the output will be balanced.
This corresponds to showing that at least one of the vectors in the set

Sr ∈ {w ∈ Fn
2 | hw(w) = 1}. (5)

is unreachable, where hw(x) is the Hamming weight of the vector.
Contrarily, we can also use this approach to show the absence of a bit-based division

property distinguisher in our model. Checking all possible options for the starting choice
vector would be (for most primitives) computationally infeasible. Fortunately it is sufficient
to show for all starting choice vectors in the set

S0 ∈ {w ∈ Fn
2 | hw(w) = n− 1}. (6)

that all choice vectors in the set in Equation 5 are reachable. This works because the
balancedness of the output bits is preserved when we exchange the input choice vector
with any vector greater than it (with respect to the above ordering).

We will use the following notation to simplify the description of the distinguishers
found later in the paper. The set of active bits will be denoted as

A = {i | S0
i = 1, i = 0, . . . , n− 1} (7)



and correspondingly the set of constant bits as

A = {i | S0
i = 1, i = 0, . . . , n− 1} = {i | S0

i = 0, i = 0, . . . , n− 1}. (8)

The set of bits which are balanced at the output is denoted as B. We can now describe a
distinguisher, for a function f , as

A
f−→ B. (9)

If a valid division trail from A to B exists we will also use the more compact notation
DP(A) = B if the function is clear from context.

Note that while the notation for the set of active bits at the input and the balanced
bits at the output looks very similar it conveys a very different meaning in the context of
the division property. For a range of bits si, si+1, . . . , sj we will use the notation si−j .

4 Distinguishers and Bounds

We implemented a variety of cryptographic primitives in Solvatore to demonstrate the
versatility of our tool and the ease of adding primitives with different design principles.

– SPN: Gift, LED, Midori, Photon, Present, Skinny, Spongent
– ARX: BelT, ChaCha, Chaskey, LEA, HIGHT, Salsa, Sparx, Speck
– Feistel: DES, LBlock, Misty, Roadrunner, Skipjack, SM4, Twine
– Reflection: Mantis, Prince, Qarma
– Bit-sliced: Ascon, Rectangle
– LFSR-based: Bivium, Trivium, Kreyvium

We will first go over the general methodology and after that over the results on the
different primitive classes obtained using Solvatore. This includes both bit-based division
property distinguishers and finding the number of rounds at which no such distinguisher
exists anymore. All results have been obtained on an Intel Core i7-4770S running Ubuntu
17.10 using the Python interface to CryptoMiniSat 5.0.1. Several examples for distinguishers
we found are given in section B.

4.1 Methodology

Finding a Bound. As a first step we try to find the number of rounds r∗ at which no
bit-based division property distinguisher in our model exists. This is done by testing all
set of active bits of type

Aj = {i | i ∈ Zn \j} ∀j ∈ Zn . (10)

This corresponds to all vectors where a single bit is constant. If for all possible choices the
set of balanced bits Bj = DP(Aj) is empty we know that no such distinguisher exists for
r∗ rounds.

Reducing Data Complexity. In order to reduce the data complexity for the distinguishers
covering the most rounds we use different strategies. The naive approach would be to
increase the number of constant bits c, try out all possible combinations and check whether
the resulting set of balanced bits B is not empty. This might work in some cases however
the complexity increases very quickly as we have to test all

(
n
c

)
possible choices.

This can be improved by only testing those combinations of constant bits which can
actually lead to non-empty sets B. First, we compute the set of constant bits

G1 = {j | DP(Aj) = Bj ∧ (|Bj | > 0) ∀j ∈ Zn} (11)



for which at least one of the bits after r rounds is balanced, similar to the case where we
try to find the bound. Next, we look at all combinations of two elements of G1 which share
at least one balanced bit

G2 = {{i, j} | (i 6= j) ∧ (|DP(Ai) ∩DP(Aj)|) > 0,∀i, j ∈ G1}. (12)

We can continue the last step in a similar way until Gi is empty by testing all combinations
of the sets of bits in Gi repeatedly. Note that in the next step we would not have single
indices but sets of indices and we therefore look whether the union of these sets of constant
bits lead to a non-empty set B. Another advantage of this approach is that we only need
to test those bits for the balancedness property which were already balanced in the last
iteration.

In each step the elements in Gi are a set of constant bits which will have at least one
balanced bit in the output after r rounds. This approach improves the complexity of finding
distinguishers with lower data complexity significantly, but often it is still computationally
infeasible to find an optimal distinguisher. For more structured designs it often helps to
look at the word level and only look at maximizing the number of constant words as there
are fewer combinations which we have to check.

4.2 SPN

Table 1. Results from the optimised search for Spongent-88. Combinations are the number of
pairs (i, j) in the sets Gi which share bits in their corresponding sets Bi and Bj .

G1 G2 G3 G4 G5

Size (|G|) 43 40 25 1 0
Combinations 878 643 234 0 -

We will use 9 rounds of Spongent-88 as an example to show the benefits of the
optimised search for a distinguisher with lower data complexity. In order to estimate the
complexity we will count for how many choice vectors we would have to compute the set of
balanced bits B. Using the optimised search we only have to test 1819 choice vectors (see
Table 1) to find distinguishers with up to 4 constant bits and exclude any distinguisher
with 5 constant bits. Using the naive approach we would have to test 679120 choice vectors
to find all distinguishers up to 4 bits and check

(128
5

)
combinations to exclude the existence

of any further distinguishers.
For Skinny-64 we can find a distinguisher with the same data complexity as the

one given by the authors [BJK+16] with one additional balanced bit and show that no
distinguishers exist for 11 rounds.

For GIFT-64 we use our optimal approach and no better distinguisher exists. We
can find a 9-round distinguisher similar to the one by the authors [BPP+17], but also
distinguishers with a lower data complexity. For GIFT-128 finding distinguishers takes
significantly longer and we were only able to find a distinguisher with high data complexity
similar to the original one.

For several variants of PHOTON we can find distinguishers with low data complexity
by searching for combinations of constant words. However for more rounds the search time
increases quickly and we are not able to improve any results. The complex linear layer
generates a large number of clauses which seems to be the main limiting reason.



Table 2. Overview of our distinguishers and bounds for SPN-based designs.

Cipher Rounds Active Bits Balanced Bits

GIFT-64

9 61 5
9 62 11
9 63 30
10 No Distinguisher

GIFT-128 11 127 32
12 No Distinguisher

LED 5 60 64
8 No Distinguisher

Midori-64 6 48 16
8 No Distinguisher

Midori-128 5 104 128

PHOTON-100 4 12 100
5 99 100

PHOTON-144 4 24 144
PHOTON-196 4 28 196
PHOTON-256 4 32 256

Present 9 60 1
10 No Distinguisher

Skinny-64 10 48 9
11 No Distinguisher

Spongent-88
9 84 3
9 87 54
10 No Distinguisher

Spongent-136
10 132 8
10 135 93
11 No Distinguisher

Spongent-176 12 No Distinguisher

4.3 ARX

First we look at the permutation used in the Chaskey MAC [MMH+14]. We can find a
distinguisher for 3 rounds with only two constant words, one with high complexity for 4
rounds and show that no bit-based division property distinguishers for 5 rounds exist. This
confirms the claim by the authors that Chaskey is likely to resist this type of attacks.
Considering the construction used for the MAC it seems infeasible to mount an attack
based on the 4-round distinguisher.

The large state of Salsa and ChaCha make it difficult to adopt our approach for
reducing the data complexity. We therefore keep whole words constants and try to find the
maximum number. For 6 rounds of Salsa the only distinguisher which exists keeps the
first word constant and the one for ChaCha has only a single constant bit. In both cases
no distinguisher exists for 7 rounds. On the actual mode in which Salsa and ChaCha
are used as a stream cipher we can only control the 64-bit nonce in a single block. In this
setting there are no bit-based division property distinguisher for 4 rounds of Salsa and 2
rounds of ChaCha.

We can also confirm the results from [SWW17] using our optimal search algorithm
for Hight, LEA and Speck. We noticed that Solvatore performs significantly better
for finding these distinguishers even though we use the same SAT solver. It only took us
28/195/51 seconds compared to 15/30/6 minutes for finding the optimal distinguishers for



Table 3. Overview of our distinguishers and bounds for ARX-based designs.

Cipher Rounds Active Bits Balanced Bits

ChaCha 6 511 138
7 No Distinguisher

Chaskey
3 64 6
4 127 5
5 No Distinguisher

LEA
8 126 16
8 118 1
9 No Distinguisher

HIGHT 18 63 2
19 No Distinguisher

Salsa 6 480 129
7 No Distinguisher

Speck-32 6 31 1
7 No Distinguisher

Speck-48 6 45 1
7 No Distinguisher

Speck-64 6 61 1
7 No Distinguisher

Speck-96 6 93 1
7 No Distinguisher

Speck-128 6 125 1
7 No Distinguisher

BelT 2 45 5
3 No Distinguisher

SPARX-64 3 32 32
4 No Distinguisher

SPARX-128 4 96 64
5 No Distinguisher

Hight/LEA/Speck. This gap could be explained by the slightly different model resp.
using a better search strategy.

Bel-T is a block cipher which has been adopted as a national standard in the Republic
of Belarus and combines S-boxes with modular addition. There is only a very limited
amount of cryptanalysis available [JP15] (also provides an English description of the
algorithm). We provide the first analysis with respect to integral attacks for Bel-T and
can find a fairly efficient distinguisher for 2 rounds while showing that none exist for 3
rounds.

In the case of Sparx we can confirm the results by the authors [DPU+16]. The full
summary of the results for ARX-based primitives can also be found in Table 3.

4.4 Feistel

For DES we improve the best bit-based division property distinguisher [Tod15b] by
one round. The original distinguisher for DES also uses the division property but only
word-based which makes this improvement possible.

One of the most successful applications of the division property is the full break of
Misty [Tod17]. It is also based on the analysis on the word level so one might suspect
that it can be improved by looking at the bit-based division property. We tried to find the



Table 4. Overview of our distinguishers and bounds for Feistel networks.

Cipher Rounds Active Bits Balanced Bits

DES 7 60 8
8 No Distinguisher

LBlock 17 63 4
18 No Distinguisher

Misty 3 32 64

Roadrunner 5 58 8
6 No Distinguisher

SKIPJACK
19(A8B8A3) 47 16
20(A8B8A4) 56 8
21(A8B8A5) No Distinguisher

Simon32 14 31 16
15 No Distinguisher

Simon48 16 47 24
17 No Distinguisher

Simon64 18 63 22
19 No Distinguisher

Simon96 22 95 5
23 No Distinguisher

Simon128 26 127 3
27 No Distinguisher

Simeck32 15 31 7
16 No Distinguisher

Simeck48 18 47 5
19 No Distinguisher

Simeck64 21 63 5
22 No Distinguisher

SM4 12 126 32
13 No Distinguisher

TWINE 16 63 32
17 No Distinguisher

same distinguishers as in the original attack automatically however the complexity seems
too high without further optimizations. We could only find a distinguisher for 3 rounds.

The best integral distinguisher on SM4 covers 8 rounds [LJH+07]. By using the bit-
based division property we can improve those distinguishers to 12 rounds, although at a
high complexity. We further can show that no such distinguishers exist for 13 rounds.

In the case of LBlock we are able to extend the distinguisher found with MILP [XZBL16]
by one additional round and for Roadrunner we can find a 5-round distinguisher which
also covers one more round than the best known distinguisher [BS15].

For all variants of Simon and Simeck we can reproduce the results from [XZBL16],
show that these have the lowest data complexity and that there are no distinguisher in
our model for more rounds.

4.5 Reflection

Block ciphers based on the reflection design strategy, introduced by PRINCE, are a
popular choice for low-latency designs. We will denote the number of rounds as f + b,



Table 5. Results on reflection ciphers.

Cipher Rounds Active Bits Balanced Bits

MANTIS
2 + 2 12 16
3 + 2 32 16
3 + 3 No Distinguisher

PRINCE

1 + 1 12 64
2 + 1 32 64
1 + 2 32 64
2 + 2 No Distinguisher

QARMA-64/σ0
2 + 2 48 16
3 + 3 No Distinguisher

QARMA-64/σ1
2 + 2 52 64
3 + 3 No Distinguisher

QARMA-64/σ2
2 + 2 52 64
3 + 3 No Distinguisher

QARMA-128/σ0
2 + 2 96 128
3 + 3 No Distinguisher

QARMA-128/σ1
2 + 2 96 128
3 + 3 No Distinguisher

QARMA-128/σ2
2 + 2 120 128
3 + 3 No Distinguisher

Table 6. Results on bit-sliced ciphers.

Cipher Rounds Active Bits Balanced Bits

Ascon 5 16 320

Rectangle 9 60
10 No Distinguisher

where f are the rounds before the middle layer and b the rounds after the middle layer
(see Table 5).

For PRINCE we can find a bit-based division property distinguisher with the same
complexity as the best higher-order differential given in [RR16] and show that for one
additional round none exist. Very similar distinguisher also exist for MANTIS with the
only difference being that one can extend those by one round in forward and backwards
direction. The distinguishers for QARMA can cover a similar number of rounds although
at a much higher data complexity.

4.6 Bit-sliced

In this category we look at two LS-designs (see Table 6). The permutation used in the
authenticated encryption scheme Ascon and the block cipher Rectangle. For Ascon
we can improve the data complexity of the 5 round distinguisher [Tod15b] by a factor of 4,
however for more rounds we could not improve any results as the computations takes too
long. For Rectangle we are able to show that no distinguisher exists for 10 rounds and
find the already known 9-round distinguisher from [XZBL16].

4.7 LFSR-based

We looked at three LFSR-based stream ciphers which share a similar structure. The active
bits are taken over the choice of IV and our distinguishers here checks whether the output



Table 7. Results on LFSR-based stream ciphers.

Cipher Rounds Active Bits Balanced Bits

Bivium 681 79 1

Trivium 707 79 1

Kreyvium 713 127 1

bit of the key stream is balanced after r rounds. It is very likely that there are more bits
balanced in the state, but we can only distinguish the key stream if the resulting key
stream bit is also balanced.

While we could find some distinguishers the time it takes to find a balanced output bit
of the keystream quickly increases and other approaches seem to be more promising for
constructing distinguisher based on the division property for this type of ciphers [TIHM17].

4.8 Overview

Using Solvatore we were able to demonstrate several new distinguishers, reduce the data
complexity and show at which number of rounds a primitive becomes resistant against
bit-based division property. In Figure 1 we give an overview of the number of rounds
required before no bit-based division property distinguisher exists in relation to the full
number of rounds of the primitive. It can be seen that most ciphers provide a fairly large
security margin against these type of attacks and also for many of these designs there
are indeed better distinguishers based on other techniques like differential and linear
cryptanalysis.
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Fig. 1. Overview of the fraction of rounds required before we can show that no bit-based division
property distinguishers exist in our model.

The performance of Solvatore varies a lot from the designs and for some it is not
feasible to find good distinguishers. For instance we also implemented both AES and
Keccak in our tool, but we could only obtain very limited results which could not improve
upon the state-of-the-art.



5 Conclusion and Future Work

In this work we presented a new framework to automatically find division property
distinguishers for a large class of cryptographic primitives by reducing the problem to SAT.
We also provide a cryptanalysis tool implementing this approach, providing a simple way
to describe primitives, allowing both designers and cryptanalysts to evaluate cryptographic
primitives against this attack vector.

Using this tool we present several new or improved bit-based division property distin-
guishers for ChaCha, ChasKey, DES, GIFT, LBlock, Mantis, Qarma, RoadRunner,
Salsa and SM4.

Furthermore, we provide an improved algorithm for finding distinguisher with an
optimal data complexity and show for several primitives that no bit-based division property
distinguisher can exist for more rounds.
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A Implementation of Present

The following example shows how one can implement the Present cipher in our framework
to analyse its properties against bit-based division property attacks.
from cipher_description import CipherDescription

present_sbox = [0xC , 0x5 , 0x6 , 0xB , 0x9 , 0x0 , 0xA , 0xD ,
0x3 , 0xE , 0xF , 0x8 , 0x4 , 0x7 , 0x1 , 0x2]

present_permutations = [\
[’s1 ’, ’s16 ’, ’s4 ’], [’s2 ’, ’s32 ’, ’s8 ’], [’s3 ’, ’s48 ’, ’s12 ’],
[’s5 ’, ’s17 ’, ’s20 ’],[’s6 ’, ’s33 ’, ’s24 ’], [’s7 ’, ’s49 ’, ’s28 ’],
[’s9 ’, ’s18 ’, ’s36 ’], [’s10 ’, ’s34 ’, ’s40 ’], [’s11 ’, ’s50 ’, ’s44 ’],
[’s13 ’, ’s19 ’, ’s52 ’], [’s14 ’, ’s35 ’, ’s56 ’], [’s15 ’, ’s51 ’, ’s60 ’],
[’s22 ’, ’s37 ’, ’s25 ’], [’s23 ’, ’s53 ’, ’s29 ’], [’s26 ’, ’s38 ’, ’s41 ’],
[’s27 ’, ’s54 ’, ’s45 ’], [’s30 ’, ’s39 ’, ’s57 ’], [’s31 ’, ’s55 ’, ’s61 ’],
[’s43 ’, ’s58 ’, ’s46 ’], [’s47 ’, ’s59 ’, ’s62 ’]]

present = CipherDescription (64)
present . add_sbox (’S-box ’, present_sbox )
for i in range (16):

bits = ["s{}". format (4*i + 0) ,
"s{}". format (4*i + 1) ,
"s{}". format (4*i + 2) ,
"s{}". format (4*i + 3)]

present . apply_sbox (’S-box ’, bits , bits)
for p in present_permutations :

present . apply_permutation (p)

Using this description of the Present block cipher we can mount our analysis. The
following code checks whether no bit-based division property distinguisher exists for 10
rounds of Present.
from itertools import combinations
from solvatore import Solvatore
from cipher_description import CipherDescription
from ciphers import present

cipher = present . present
rounds = 10

solver = Solvatore ()
solver . load_cipher ( cipher )
solver . set_rounds ( rounds )

# Look over all combination for one non active bit
for bits in combinations ( range (64) , 1):

nonactive_bits = bits
active_bits = {i for i in range (64) if i not in nonactive_bits }

# Find all balanced bits
balanced_bits = []
for i in range ( cipher . state_size ):

if solver . is_bit_balanced (i, rounds , active_bits ):
balanced_bits . append (i)

if len( balanced_bits ) > 0:
print (" Found distinguisher !")
print ( active_bits , balanced_bits )

B Overview of Distinguishers

In the following we list some of the new distinguishers we found.

B.1 ChaCha

{0} 6-round−−−−−→ {32− 68, 192− 223, 352− 415, 424− 428} (13)



B.2 Chaskey

{64− 127} 3-round−−−−−→ {80− 85} (14)

{96} 4-round−−−−−→ {80− 81} (15)

B.3 DES

{50− 52, 63} 7-round−−−−−→ {0, 3, 9, 10, 18, 19, 25, 28} (16)

B.4 GIFT-64

{0− 2} 9-round−−−−−→ {3, 7, 27, 43, 59} (17)

B.5 LBlock

{34} 17-round−−−−−→ {2, 3, 30, 31} (18)

B.6 Mantis

{0− 7, 16− 23, 40− 47, 56− 63} 3 + 2 rounds−−−−−−−−→{2, 6, 10, 14, 18, 22, 26, 30
34, 38, 42, 46, 50, 54, 58, 62}

(19)

B.7 QARMA

QARMA-64/σ0

{0− 3, 20− 23, 40− 43, 60− 63} 2 + 2 rounds−−−−−−−−→{1, 5, 9, 13, 17, 21, 25, 29,
33, 37, 41, 45, 49, 53, 57, 61}

(20)

QARMA-64/σ1

{0− 3, 20− 23, 40− 43} 2 + 2 rounds−−−−−−−−→ {0− 63} (21)
QARMA-64/σ2

{0− 3, 20− 23, 40− 43} 2 + 2 rounds−−−−−−−−→ {0− 63} (22)
QARMA-128/σ0

{0− 15, 32− 47} 2 + 2 rounds−−−−−−−−→ {0− 127} (23)
QARMA-128/σ1

{0− 15, 32− 47} 2 + 2 rounds−−−−−−−−→ {0− 127} (24)
QARMA-128/σ2

{0− 7} 2 + 2 rounds−−−−−−−−→ {0− 127} (25)

B.8 RoadRunner

{0, 1, 8, 9, 16, 17} 5-round−−−−−→ {32, 33, 40, 41, 48, 49, 56, 57} (26)

B.9 Salsa

{0− 31} 6-round−−−−−→ {128− 255, 295} (27)

B.10 SM4

{96, 97} 12-round−−−−−→ {0− 31} (28)
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