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Abstract. Almost perfect nonlinear (APN) functions over fields of charac-

teristic 2 play an important role in cryptography, coding theory and, more
generally, information theory as well as mathematics. Building new APN fam-

ilies is a challenge which has not been successfully addressed for more than

seven years now.
The most general known equivalence relation preserving APN property in char-

acteristic 2 is CCZ-equivalence. Extended to general characteristic, it also

preserves planarity. In the case of quadratic planar functions, it is a particular
case of isotopic equivalence. We apply the idea of isotopic equivalence to trans-

form APN functions in characteristic 2 into other functions, some of which can

be APN. We deduce new quadratic APN functions and a new quadratic APN
family.

1. Introduction

This paper is concerned with functions, and hence polynomials, over finite fields.
Let p be a prime, n ∈ N, and q = pn. We use Fq to denote the finite field of order q,
and follow the well-established convention of using F?q to denote its multiplicative
group. Throughout, ζ denotes a primitive element of Fq, so that F?q = 〈ζ〉. It is an
important fact that any function defined on Fq can be represented uniquely by an
element of the polynomial ring Fq[x] of degree less than q. One can easily prove
this via Lagrange interpolation, for example. Generally, we shall use function and
polynomial interchangeably, unless we wish to rely specifically on the form of the
polynomial, in which case we will be precise.

Let F ∈ Fq[x]. The value set of F over Fq is denoted by V(F ), i.e.

V(F ) = {F (c) : c ∈ Fq}.

We also denote the set of roots of F (x) over Fq by ker(F ). The polynomial F is
a permutation polynomial (PP) over Fq if V(F ) = Fq, and is a complete mapping
over Fq if both F and F (x) + x are PPs.

We define the difference operator of F , denoted ∆F ∈ Fq[x, y], by

∆F (x, y) = F (x+ y)− F (x)− F (y).

When there is no ambiguity about which F we are referring to, we simply use ∆.
Note that ∆F is symmetric in x and y. We refer to DaF (x) = ∆(x, a) + F (a) as
the derivative of F in the direction of a.

This paper was presented in part at SETA 2018.
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Fix δ ∈ N. A function F is called differentially δ-uniform if for a, b ∈ Fq, a 6= 0,
the equation ∆(x, a) = b admits at most δ solutions x ∈ Fq. Differential unifor-
mity measures the contribution of a function, used as a substitution box (S-box)
inside a block cipher, to the resistance of the cryptosystem to differential crypt-
analysis, with small values of δ corresponding to better resistance. Consequently,
1-uniform functions are optimal; for such a function, all of its non-zero derivatives
are permutations. In cryptographic applications these functions were coined perfect
nonlinear (PN) by Nyberg [20], while they were earlier introduced as planar func-
tions by Dembowski and Ostrom [15] in their seminal work on projective planes
allowing a collineation group acting transitively on the affine points. The existence
of an involution in the additive group means such functions cannot exist in even
characteristic; here, the best resistance belongs to functions that are differentially
2-uniform. Such “(n, n)-functions” having optimal differential uniformity are called
almost perfect nonlinear (APN), see Nyberg [21]. They play a prominent role in
the design of block ciphers and their study by Nyberg has allowed the Advanced
Encryption Standard (AES) to have good S-boxes. Their study is also closely re-
lated to important questions on error correcting codes, since it is shown in [10] that
any (n, n)-function F such that F (0) = 0 is APN if and only if the linear code

admitting for parity check matrix H =

[
1 ζ ζ2 . . . ζ2n−2

F (1) F (ζ) F (ζ2) . . . F (ζ2n−2)

]
has minimum distance 5, where ζ is a primitive element of the field F2n , and where
each symbol stands for the column of its coordinates with respect to a basis of the
F2-vector space F2n . And the construction in the late 50’s of the 2-error correcting
BCH codes by Bose, Ray-Chaudhuri and Hocquenghem relies on the APNness of
the power function x3 (even if, at that time, the notion had not been yet intro-
duced). Moreover, the code of generator matrix H above has Hamming weights

0, 2n−1 − 2
n−1
2 , 2n−1 and 2n−1 + 2

n−1
2 if and only if F is almost bent (a stronger

notion than APNness, see [11]).
APN functions also play a role in algebraic manipulation detection (AMD), in ap-
plied cryptography and coding, see [14].

Further special classes of polynomials that play a central role in our work are
defined as follows. For F ∈ Fq[x]:

• F is linear if F (x) =
∑
i aix

pi . Also known as linearised polynomials. The
set of all linear polynomials of degree less than q is in 1-to-1 correspondence
with the set End(n, p) of all linear transformations of Fq, when viewed as
a vector space over Fp. Consequently, when F is linear, both V(F ) and
ker(F ) are subspaces of Fq.The set of all reduced degree linear PPs under
composition modulo xq−x corresponds to the general linear group GL(n, p),
the group of all non-singular linear transformations. One can (and we do)
talk of linear functions over Fq × Fq also.
• F is affine if it differs from a linear polynomial by a constant.

• F is a Dembowski-Ostrom (DO) polynomial if F (x) =
∑
i,j aijx

pi+pj .
• F is quadratic if it differs from a DO polynomial by an affine polyno-

mial. Quadratic polynomials can be categorised as those polynomials whose
derivatives are all affine, see Coulter and Matthews [13], Theorem 3.1.

Note that a quadratic function F is APN over Fq if and only if for all a ∈ F?q ,
ker(∆F (x, a)) = {0, a}.
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There are several equivalence relations that preserve differential uniformity; we
list them below. Let F, F ′ ∈ Fq[x]. Then F and F ′ are:

• affine equivalent if there exist affine permutations A1, A2 ∈ Fq[x] for which
F ′ ≡ A1 ◦ F ◦A2 mod (xq − x).
• extended affine equivalent (EA-equivalent) if there exist affine permutations
A1, A2 ∈ Fq[x] and an affine map A ∈ Fq[x] for which F ′ ≡ (A1 ◦F ◦A2) +
A mod (xq − x).
• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) [10] if there exists an

affine permutation L of Fq × Fq that maps the graph of F onto the graph
of F ′, L(GF ) = GF ′ , where the graph of F is the set GF = {(x, F (x)) : x ∈
Fpn}.

These relations are related to each other. Indeed, affine equivalence is obviously a
particular case of EA-equivalence, which is itself a particular case of CCZ-equivalence
[10]. As the addition of a constant term does not alter the APN or PN property, for
ease of discourse, we assume throughout the paper that any APN or PN function
F has zero constant term, i.e F (0) = 0.

The concept of isotopic equivalence was originally defined by Albert [1] in the
study of presemifields and semifields. A presemifield is a ring with no zero divisor,
and whose operations satisfy left and right distributivity. A semifield is a presemi-
field containing a multiplicative identity. Presemifields need not be commutative
nor associative, though in the finite case associativity implies commutativity by
Wedderburn’s Theorem [22]. In [18], Section 2.4, Knuth gives a simple proof that
the additive group of a finite presemifield is necessarily elementary Abelian. Con-
sequently, any finite presemifield must have order a prime power q, and can be
represented by S = (Fq,+, ?) with field addition and the multiplication ? given by
x ? y = φ(x, y), where φ ∈ Fq[x, y] is linear in each variable.

Given two presemifields S1 = (Fq,+, ?) and S2 = (Fq,+, ∗), they are called
isotopic if there exist three linear permutations T,M,N ∈ Fq[x] such that

T (x ∗ y) = M(x) ? N(y),

for any x, y ∈ Fq. If M = N , then S1 and S2 are called strongly isotopic. It was
shown by Coulter and Henderson [12] that there is a 1-to-1 correspondence between
commutative presemifields of odd order and planar DO polynomials. Indeed, given
a quadratic planar function F ∈ Fq[x], a commutative presemifield SF = (Fq,+, ?)
is defined by the multiplication x ? y = ∆F (x, y). Conversely, given a commutative
presemifield SF = (Fq,+, ?) of odd order, the function F (x) = 1

2 (x ? x) necessarily
defines a planar DO polynomial. It is natural, then, to extend the notion (at least
in odd characteristic) of isotopic equivalence to quadratic PN functions, where two
quadratic PN functions are isotopic if and only if their corresponding presemifields
are isotopic. Furthermore, it is known that CCZ-equivalence is a particular case of
isotopic equivalence. Indeed, Budaghyan and Helleseth [8] showed that two planar
DO polynomials F and F ′ are CCZ-equivalent if and only if the corresponding
commutative semifields SF and SF ′ are strongly isotopic.

In this paper we move to study isotopic equivalence with respect to APN func-
tions in characteristic 2. In particular, we shall introduce a new construction
method for APN functions based on isotopic equivalence. We make the follow-
ing formal definition, which is the central concept considered in this article (and
which will appear natural after we state Theorem 2.1).
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Definition 1.1. Let F,L ∈ Fq[x]. The isotopic shift of F by L, denoted by FL, is
the polynomial given by

FL(x) = ∆F (x, L(x)) = F (x+ L(x))− F (x)− F (L(x)). (1)

The paper is organized as follows. In Section 2 we show how isotopic shifts
arise naturally in the study of planar functions. This result acts as motivation for
studying isotopic shifts in the parallel area of APN functions. Before narrowing our
scope to APN functions, we make some general observations in Section 3 concerning
isotopic shifts. We then restrict ourselves to considering isotopic shifts of APN
functions. Firstly, in Section 4, we consider how we may obtain the same function
by isotopically shifting a given APN function F in characteristic 2 by different L.
Then, in Section 5, we begin our main study, that of isotopic shifts of quadratic
APN functions by linear maps (in particular in characteristic 2). We show that
only bijective or 2-to-1 linear maps can possibly produce an APN function from
the isotopic shift of a quadratic APN. As an aside, we show how to construct all
q-to-1 maps on Fqn . We then proceed in Section 6 to concentrate specifically on
isotopic shifts of Gold functions in characteristic 2. Highlights of our results are as
follows:

• A new family of APN functions defined over F2km is determined, see Theo-
rem 6.3, and for k = m = 3, this family produces an APN function that is
not equivalent to any APN function belonging to an already known class,
see Section 7.2. This is the first time since seven years that such family is
found (since [24]).
• We show that an isotopic shift of an APN function can lead to APN func-

tions CCZ-inequivalent to the original function, even if we shift only Gold
functions by linear monomials, see Lemma 6.5.
• We show that every quadratic APN function over F26 is EA-equivalent to

an isotopic shift of x3, see Table 2; and also EA-equivalent to an isotopic
shift of x3 + ζ−1 Tr(ζ3x9), see Table 3.

We also provide much computational data in the last section of the paper.

2. Isotopic equivalence for planar quadratic functions revisited

Our first result shows that the concept of isotopic shifts is, in fact, a very natural
concept. Recall that istopic shifts FL are defined in (1).

Theorem 2.1. Let F, F ′ ∈ Fq[x] be quadratic planar functions (null at 0). If F
and F ′ are isotopic equivalent then F ′ is EA equivalent to some isotopic shift FL
of F by a linear permutation polynomial L ∈ Fq[x].

Proof. By definition, quadratic planar functions are isotopic equivalent if the pre-
semifields defined by them are isotopic. That is, the presemifields defined by mul-
tiplications ? and ∗, with

x ? y = ∆F ′(x, y) and x ∗ y = ∆F (x, y),

respectively, are isotopic. Note that the linear parts of F and F ′ do not play a
role in these operations. In the calculations below, we replace then the quadratic
functions by their DO parts (that is, we erase their linear parts, without loss of
generality up to EA equivalence).

According to Fermat’s little theorem, we have 2p ≡ 2 [mod p] and therefore 2p
j+pk ≡



CONSTRUCTING APN FUNCTIONS THROUGH ISOTOPIC SHIFTS 5

4 [mod p] for every non-negative integers j, k, and thanks to the fact that we erased
the linear parts of F and F ′, we have x ? x = 2F ′(x) and x ∗ x = 2F (x). For some
linear permutations T,M,N ∈ Fq[x], we have

T (x ? y) = M(x) ∗N(y), (2)

for all x, y ∈ Fq. Hence,

T (x ? x) = T (2F ′(x)) = 2T (F ′(x))

and

T (x ? x) = M(x) ∗N(x) = ∆F (M(x), N(x)),

which leads to

2T (F ′(M−1(x))) = ∆F (x,N(M−1(x))).

As this holds for all x ∈ Fq, we see that this is, in fact, a polynomial identity, and
F ′ is EA equivalent to FL with L = N ◦M−1, a linear permutation. �

Theorem 2.1 shows that, for isotopic equivalent quadratic planar functions, what
takes us beyond CCZ-equivalence is the isotopic shift by a linear permutation L. For
linear shifts of APN functions, we do not restrict L to be a permutation. As with
planar quadratic functions, we will see that an isotopic shift of an APN function
can lead to APN functions CCZ-inequivalent to the original function.

3. Generic results on isotopic shifts

With regards to isotopic shifts, an easy first observation is that for any F ∈ Fq[x]
and any permutation L ∈ Fq[x], we have

FL(L[−1](x)) ≡ FL[−1](x) mod (xq − x), (3)

where L[−1] is the compositional inverse of L. In particular, thanks to EA-equivalence,
if L is a linear permutation polynomial, then FL and FL[−1] have the same differ-
ential uniformity. Along similar lines, we have the following theorem.

Theorem 3.1. Let F, F ′ ∈ Fq[x] be arbitrary polynomials. If F and F ′ are affine
equivalent, say F (x) ≡ A1(F ′(A2(x))) mod (xq − x), where A1, A2 ∈ Fq[x] are
linear permutations, then for L ∈ Fq[x], FL is affine equivalent to F ′M where M =

A2 ◦ L ◦A[−1]
2 .

Proof. Since F = A1 ◦F ′ ◦A2 with A1, A2 linear permutation polynomials, we have

FL(x) = ∆F (x, L(x))

= F (x+ L(x))− F (x)− F (L(x))

= A1 (F ′(A2(x) +A2(L(x)))− F ′(A2(x))− F ′(A2(L(x))))

= A1 (F ′(A2(x) +M(A2(x)))− F ′(A2(x))− F ′(M(A2(x))))

= A1(∆F ′(A2(x),M(A2(x))))

= A1(F ′M (A2(x))),

and this completes the proof. �

Let GL = GL(n, p) and S be the set of all polynomials in Fq[x] of degree
less than q. Then GL has a natural conjugation action on S given by F · L =
L(F (L[−1](x))) mod (xq − x) for F ∈ S and L ∈ GL (here F · L means F is being
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acted on by L by the conjugation action). In the most general sense, we are in-
terested in isotopic shifts of arbitrary polynomial F ∈ S by arbitrary polynomial
L ∈ S. Set NGL(L) to be the stabiliser of L under the action. Then Theorem 3.1
shows that isotopic shifts of F by elements of S splits naturally into affine equiva-
lent “conjugacy classes” of the action of GL as FL and F ′L will be affine equivalent

whenever F ′ = M ◦ F ◦M [−1] and M ∈ NGL(L). More generally, we will be inter-
ested in isotopic shifts of elements of S by elements of End = End(Fnp ) (the larger
set of endomorphisms, i.e. linear transformations). Note that the action of GL on
S may be restricted to an action on End.

We will be mainly concerned with the case where F is a quadratic APN function
and L is linear. We note that, for F a quadratic,

FL + FM = FL+M (4)

for arbitrary choices of polynomials L,M .

4. Isotopic shifts of APN functions

Throughout this section, q = 2n for some n ∈ N. We first consider how an
isotopic shift of an APN function may generate the zero polynomial. (We remind the
reader that throughout the paper, we assume any APN function has zero constant
term.)

Theorem 4.1. Let F ∈ Fq[x] be an APN function and L ∈ Fq[x]. Then FL is
the zero function if and only if L(a) ∈ {0, a} for all a ∈ F?q . Furthermore, if L is
linear, then FL is the zero function if and only if L is either the zero polynomial or
the polynomial x.

Proof. Suppose FL(x) = 0. As F is APN, we know that for all a ∈ F?q , ∆F (x, a) = 0
if and only if x ∈ {0, a}. Now FL(x) = ∆F (x, L(x)), so that for all a ∈ F?q ,
L(a) ∈ {0, a} is forced.
Conversely, if L(a) ∈ {0, a} for all a ∈ F?q , then clearly FL(a) = ∆F (a, L(a)) = 0,
while FL(0) = ∆F (0, L(0)) = 0. Hence FL(x) = 0.
Now suppose L is linear. Since L(a) ∈ {0, a} for all a ∈ Fq, we have Fq = V(L) ⊕
ker(L). Suppose 0 < dim(ker(L)) < n. Then there exist v ∈ V(L) (which implies
v = L(v)) and z ∈ ker(L) with vz 6= 0 and v + z 6= 0. Thus

v = v + 0 = L(v) + L(z) = L(v + z) ∈ {0, v + z},

a contradiction. Hence ker(L) = Fq or ker(L) = {0}. In the former case, L(x) = 0,
while in the latter case L(x) = x. �

Our motivation for establishing this result is not directly related to being con-
cerned with generating the zero polynomial, but with the more practical problem
of understanding how distinct L can yield the same isotopic shift of a given DO
APN function.

Corollary 4.2. Let F ∈ Fq[x] be a DO APN function and L,M ∈ Fq[x]. The
following statements hold.

(i) FL = FM if and only if L(a) +M(a) ∈ {0, a} for all a ∈ F?q .
(ii) Suppose L,M are linear. Then FL = FM if and only if L = M or L(x) =

M(x) + x as polynomials.
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Proof. We have from (4) that FL = FM if and only if FN (x) = 0, where N = L+M .
Both results now follow from Theorem 4.1. �

A consequence of Corollary 4.2 is that there is a sort of duality that occurs
among isotopic shifts, between L(x) and L(x) + x. That is, any conditions derived
on L for the isotopic shift FL to be APN apply equally to both L(x) and L(x) + x.

5. Isotopic shifts of quadratic APN functions

In this section, we restrict ourselves to isotopic shifts of quadratic APN func-
tions by linear polynomials. In the planar case, for the isotopic shift to be planar
we require the linear polynomial involved to be a permutation polynomial. The
corresponding result for the APN case is as follows. Here we assume q = 2n for
some n ∈ N.

Theorem 5.1. Let F ∈ Fq[x] be a quadratic APN function and L ∈ Fq[x] be linear.
Set M(x) = L(x) + x. If FL is APN, then the following statements hold.

(i) L is either a permutation or 2-to-1, and L is injective on V(L).
(ii) M is either a permutation or 2-to-1, and M is injective on V(M).

Proof. We need only establish (i), as the duality spelled out in Corollary 4.2(ii) will
then imply (ii). As F is a quadratic polynomial, ∆F (x, a) is a linear operator for
all a ∈ F?q . Consequently, ∆FL

(x, a) is also linear, and FL being APN is equivalent
to ker(∆FL

(x, a)) = {0, a} for all a ∈ F?q . Applying the linear operator identity to
the difference operators involved one can show that, for any a ∈ F?q ,

∆FL
(x, a) = ∆F (x, L(a)) + ∆F (a, L(x)). (5)

Suppose L is not a permutation polynomial, so that there exists some z ∈ ker(L)
with z 6= 0. Then ∆FL

(x, z) = ∆F (z, L(x)). Clearly, any x ∈ ker(L) satisfies
∆FL

(x, z) = 0, so that

{0, z} ⊆ ker(L) ⊆ ker(∆FL
(x, z)) = {0, z}.

Thus ker(L) = {0, z} is forced and L is 2-to-1. Furthermore, since ∆FL
(x, z) =

∆F (z, L(x)) and ∆F (z, z) = 0, we must have z 6∈ V(L). Thus, viewed as a vector
space over F2, we have Fq = V(L)⊕ 〈z〉. Since L(x+ z) = L(x) for all x ∈ Fq, we
must have L(V(L)) = V(L). �

We have the following corollary, which eliminates some possibilities for L when
the field has square order.

Corollary 5.2. Set q to be an even power of 2. Let F ∈ Fq[x] be a quadratic APN
function and L ∈ F2[x] be linear. If FL is APN over Fq, then L is 2-to-1.

Proof. Set M(x) = L(x) + x. Suppose, by way of contradiction, that FL is APN
over Fq and L is a permutation polynomial. Then L(1) = 1 is forced. Thus
M(1) = M(0) = 0. Now F4 = {0, 1, γ, γ+1} is a subfield of Fq, and since L ∈ F2[x]
is a permutation polynomial, we must have either L(γ) = γ or L(γ) = γ + 1.

If L(γ) = γ, then M(γ) = 0, so that M has more than two roots, and this
contradicts Theorem 5.1 (ii). If L(γ) = γ + 1, then M(γ) = 1, and so 1 ∈ V(M).
But then 0, 1 ∈ V(M) and M(0) = M(1), so that M is not injective on V(M), again
contradicting Theorem 5.1 (ii). Thus, L cannot be a permutation polynomial. �
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In light of Theorem 5.1, understanding how to construct 2-to-1 mappings would
be of some utility. We therefore take a brief interlude from considering the role of
isotopic shifts in the theory of APN functions to develop some theory on 2-to-1, or
more generally q-to-1, functions.

5.1. On q-to-1 Fq-linear maps. For this subsection, q is an arbitrary prime
power. We begin with a proposition.

Proposition 5.3. The number of Fq-linear q-to-1 maps over Fqn is given by

qn − 1

q − 1

n−2∏
i=0

(qn − qi).

Proof. Any linear map over Fqn can be viewed as a linear transformation, and so to
count the number of q-to-1 maps, it suffices to determine the number of Fq-linear
maps over Fqn for which the image space has dimension n−1. We proceed in much
the same way as one counts the number of non-singular linear transformations, but
with a small twist.

Choose a basis β1, . . . , βn for Fqn over Fq. To construct a q-to-1 Fq-linear map
L we proceed as follows: For β1, there are two choices: either L(β1) ∈ span(0)
or L(β1) 6∈ span(0). In the former case, span(L(β2), . . . , L(βn)) must then have
dimension n− 1, and we can do this in N ways where

N =

n−2∏
i=0

(qn − qi). (6)

Otherwise, we have qn−1 choices for β1. Now for β2, we have L(β2) ∈ span(L(β1))
or L(β2) 6∈ span(L(β1)). In the former case, there are q choices for L(β2) and as
span(L(β1), L(β3), L(β4), . . . , L(βn)) must have dimension n− 1, we have qN ways
of constructing L in this case. Otherwise, there are qn − q choices for L(β2), and
we proceed to L(β3). The argument is now clear, and we find the number of q-to-1
Fq-linear maps over Fqn is given by N + qN + q2N + . . .+ qn−1N , as claimed. �

Theorem 5.4. A Fq-linear map L ∈ Fqn [x] is q-to-1 if and only if L(bx) ≡M(xq−
x) mod (xq

n − x) for some Fq-linear permutation M ∈ Fqn [x] and some b ∈ F?qn .

Proof. Firstly, suppose L(bx) ≡ M(xq − x) mod (xq
n − x) for some linear permu-

tation M and some b. It is clear L is a Fq-linear map. To prove L(bx) is q-to-1,
it suffices to show ker(M(xq − x)) = Fq. The only zero in Fqn of M is 0, as M is
assumed to be a linear permutation. Thus the only elements of ker(M(xq −x)) are
the roots of xq − x, and this is precisely Fq.
Now suppose L is a q-to-1 Fq-linear map over Fqn . Then ker(L) = 〈b〉 for some
b ∈ F?qn . Set L1(x) = L(bx), so that ker(L1) = Fq. Then xq − x divides L1(x), and
consequently, L1(x) = M(xq −x) for some Fq-linear map over Fqn , see for example
Lidl and Niederreiter [19], Exercise 3.68. If M is a permutation, then there is noth-
ing further to prove. So suppose M is not a permutation. Since ker(xq − x) = Fq
and xq − x is a Fq-linear map, the image set V(xq − x) is a subspace of Fqn over
Fq of dimension n − 1. Furthermore, ker(M) ∩ V(xq − x) = {0}, as otherwise L1

would not be q-to-1. Since ker(M) ⊕ V(xq − x) is a subspace of Fqn over Fq, it
follows that ker(M) = 〈z〉 for some z ∈ F?qn and Fqn = V(xq − x) ⊕ 〈z〉. Now
M(x) = M(y) if and only if y−x ∈ 〈z〉. Consequently, M is injective on V(xq−x).
Set S = V(M(xq − x)) = M(V(xq − x)). Then S is a subspace of Fqn over Fq of
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dimension n−1. Set Fqn = S⊕〈w〉 for some w ∈ F?qn \S. We define a new Fq-linear
map M1 over Fqn as follows:

M1(y) =

{
M(y) if y ∈ V(xq − x),

cw if y = cz for some c ∈ Fq.

It now follows that M1 is a Fq-linear permutation on Fqn and M(xq−x) = M1(xq−
x) for all x ∈ Fqn . Thus L(bx) ≡ M1(xq − x) mod (xq

n − x) for some Fq-linear
permutation M1, as required. �

We have the following corollary, showing it is also not particularly difficult to
construct 2-to-1 linear maps satisfying Theorem 5.1(i).

Corollary 5.5. Let n be a positive integer, L be a linear permutation over F2n and
z ∈ F?2n . Set M(zx) = L(x2 + x). The following statements hold.

(i) M is 2-to-1 with ker(M) = {0, z}.
(ii) For y ∈ F2n we have L(y) 6∈ V(M) if and only if x2 + x + y is irreducible

over F2n . In particular, z 6∈ V(M) if and only if x2 + x + y is irreducible
over F2n , where y ∈ F?2n is the unique pre-image of z under L.

Proof. Part (i) is immediate from Theorem 5.4. For (ii), L(y) ∈ V(M) if and only
if there exists u ∈ F2n satisfying L(u2 +u) = L(y), but this is equivalent to u being
a root of x2 + x+ y. �

6. Isotopic shifts of Gold functions

For the remainder of this paper we fix q = 2n. The DO monomials in charac-
teristic 2 which are APN are, up to composition by Frobenius automorphism, the

so-called Gold functions Gi(x) = x2i+1 over F2n with gcd(i, n) = 1. First studied by
Gold [17] in context of sequence design and rediscovered in 1993 by Nyberg in [21],
Gold functions have played an important role in the study of APN functions, and,
in particular, in understanding CCZ-equivalence [7]. For Gi and any L ∈ Fq[x], we
use Gi,L to denote the isotopic shift of Gi by L; that is

Gi,L(x) = x2i

L(x) + xL2i

(x). (7)

It is an easy observation that Gi and Gn−i are linearly equivalent. In fact, this is a
necessary and sufficient condition for Gold functions to be linear equivalent, and if
they are not linear equivalent, then they are not CCZ-equivalent [23]. This linear
equivalence extends to isotopic shifts as

Gi,L(x)2n−i

≡ Gn−i,L(x) mod (xq − x).

6.1. General restrictions on L. We expand on (7) further. Let the linear poly-

nomial L be represented as L(x) =
∑n−1
j=0 bjx

2j

. Then expanding in (7) we have

Gi,L(x) =

n−1∑
j=0

(
bjx

2i+2j

+ b2
i

j x
2i+j+1

)
.
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We first note

Gi,L(x2n−1

)2 =

n−1∑
j=0

(
b2jx

2i+2j

+ b2
i+1

j x2i+j+1
)

= x2i

M(x) + xM2i

(x)

= Gi,M (x),

where M(x) =
∑n−1
j=0 b

2
jx

2j

. We also have, with ζ a primitive element,

ζ−(2i+1)Gi,L(ζx) = ζ−(2i+1)
n−1∑
j=0

(
bjζ

2i+2j

x2i+2j

+ b2
i

j ζ
2i+j+1x2i+1+1

)

=

n−1∑
j=0

(
bjζ

2j−1x2i+2j

+ b2
i

j ζ
2i(2j−1)x2i+1+1

)

=

n−1∑
j=0

(
bjζ

2j−1x2i+2j

+ (bjζ
2j−1)2i

x2i+1+1
)

= x2i

N(x) + xN2i

(x)

= Gi,N (x),

where N(x) =
∑n−1
j=0 bjζ

2j−1x2j

.
From the above two equivalences we can perform a restriction over one non-zero

coefficient of the linear function L(x). Fixing an integer j such that 0 < j ≤ n− 1,
then we can restrict the search of all possible linear functions L(x) with bj 6= 0 to
those with bj = ζk with 0 ≤ k < 2j − 1 and k either 0 or odd. We summarise with
the following statement.

Proposition 6.1. Let q = 2n, Fq = 〈ζ〉 and Gi = x2i+1 be APN over Fq. Suppose

Gi,L as (7) is constructed with L(x) =
∑n−1
j=0 bjx

2j

. Then Gi,L is linear equivalent

to Gi,M , where M(x) =
∑n−1
j=0 (bjζ

k(2j−1))2t

x2j

for any k, t integers.

Our next result is related to Theorem 5.1 and shows that in certain situations
we may obtain, for Gold functions, slightly stronger restrictions on L than those

outlined in Theorem 5.1. We say L is a q-polynomial over Fqn if L(x) =
∑
bix

qi .
Any q-polynomial over Fqn is a linear transformation of Fqn over Fq.

Theorem 6.2. Let q = 2m, with m > 1, and suppose Gi = x2i+1 is APN over
Fqn . If Gi,L as in (7) is APN over Fqn with L a q-polynomial, then L is a complete
mapping over Fqn .

Proof. Set ∆a(x) = ∆Gi,L(x, a), with a ∈ F?qn . Since Gi,L(x) is a quadratic APN
function, we have ker(∆a(ax)) = {0, 1}. For x ∈ F?q , we have L(ax) = xL(a). So,
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if x ∈ F?q \ {0, 1}, then we have

0 6= ∆a(ax)

= axL(a)2i

+ aL(ax)2i

+ (ax)2i

L(a) + a2i

L(ax)

= axL(a)2i

+ ax2i

L(a)2i

+ (ax)2i

L(a) + a2i

xL(a)

= axL(a)
(
L(a)2i−1 + x2i−1L(a)2i−1 + a2i−1x2i−1 + a2i−1

)
= axL(a)

(
L(a)2i−1 + a2i−1

)
(x2i−1 + 1).

As Gi is APN over Fqn , we know gcd(2i − 1, qn − 1) = 1, so that z 7→ z2i−1 is a

bijection. Consequently, x2i−1 = 1 if and only if x = 1, which we have excluded.

Hence, for all a ∈ F?qn , we must have L(a) 6= 0 and L(a)2i−1 6= a2i−1. This latter

condition is equivalent to L(a) 6= a for all a ∈ F?qn , again because z 7→ z2i−1 is a
bijection. Since L is a linear transformation, we conclude L is a complete mapping
over Fqn . �

We now prove a theorem that leads to new examples of APN functions.

Theorem 6.3. Let n = km and d = gcd(q − 1, q
k−1
q−1 ), where q = 2m. Let d′ be

the positive integer having the same prime factors as d, each being raised at the

same power as in qk−1
q−1 , hence such that gcd(q− 1, qk−1

(q−1)d′ ) = 1. Let U = 〈ζd′(q−1)〉

be the multiplicative subgroup of F?qk of order
(
qk−1

(q−1)d′

)
and consider the set W =

{yζj ; j = 0, . . . , d′−1, y ∈ U}. Let L ∈ Fqk [x] be a q-polynomial and let Gi = x2i+1

be an APN Gold function over Fqk (i.e. such that gcd(i, n) = 1). Then Gi,L as in
(7) is APN over Fqk if and only if the following conditions are satisfied:

(i) for any u ∈W , L(u) 6∈ {0, u};
(ii) if n is even then |{L(u)

u : u ∈W} ∩ F22 | ≤ 1;

(iii) for distinct u, v ∈W satisfying u2i

L(v) + vL(u)2i 6= 0, we have

v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i 6∈ F?q .

Proof. Any element x ∈ F?qk can be expressed in the form x = ut with u ∈ W and

t ∈ F?q . Indeed, since F?qk = 〈ζ〉, we have x = ζd
′z+j , for some integers z and j

where 0 ≤ j ≤ d′ − 1. For ease of notation, set l = qk−1
(q−1)d′ . Since gcd(q − 1, l) = 1,

for any such z, there exist integers r and s such that z = r(q − 1) + sl. Hence we
have

x = ζd
′z+j = ζd

′r(q−1)ζjζd
′sl = ut, (8)

where, denoting y = ζd
′r(q−1) ∈ U , we have u = yζj ∈W and t = ζd

′sl = ζs(
qk−1
q−1 ) ∈

F?q . Since |W×F?q | = |W |·|F?q | = (d′|U |)·(q−1) = d′ · q
k−1

d′(q−1) ·(q−1) = qk−1 = |F?qk |,
two distinct elements in F?qk cannot have the same representation, u and t are

unique. Using the representation (8) for x, we have L(x) = tL(u).
Let a ∈ Fqk and ∆a(x) = ∆Gi,L(x, a) so that

∆a(x) = x2i

L(a) + L(x)a2i

+ xL(a)2i

+ L(x)2i

a.
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Then Gi,L is APN over Fqk if and only if ker(∆a) = {0, a} for all a ∈ F?qk . Now

apply the representation (8) for both x = ut and a = vs with u, v ∈W and t, s ∈ Fq.
Then

∆a(x) = u2i

t2
i

sL(v) + v2i

s2i

tL(u) + uts2i

L(v)2i

+ vst2
i

L(u)2i

= ts
(
t2

i−1
(
u2i

L(v) + vL(u)2i
)

+ s2i−1
(
v2i

L(u) + uL(v)2i
))

.

So in this representation, Gi,L is APN over Fqk if and only if the only solutions to
∆vs(ut) = 0 are t = 0, or u = v and t = s.

Assume Gi,L is APN over Fqk . Then L is a complete mapping on Fqk by Theorem
6.2; hence Condition (i) is satisfied. For showing Condition (ii), suppose that n is

even and |{L(u)
u : u ∈ W} ∩ F22 | > 1. Since L is a complete linear mapping,

the elements of {L(u)
u : u ∈ W} ∩ F22 | cannot be in F?2 and since |{L(u)

u : u ∈
W} ∩ F22 | > 1 these elements are then α and α2, where α is a primitive element of
F?22 . There exist then two (distinct) elements u, v ∈ W such that L(u) = αu and

L(v) = α2v. In this case we have u2i

L(v)+vL(u)2i

= u2i

α2v+vα2u2i

= 0, because

i being odd (n being even), we have α2i

= α2, and similarly v2i

L(u) +uL(v)2i

= 0.
Hence ∆vs(ut) = 0 for any s, t ∈ Fq. Therefore Condition (ii) must hold. To

establish Condition (iii), assume u2i

L(v) + vL(u)2i 6= 0. As ker(∆vs) = {0, vs}, we
know that for all t ∈ F?q , we must have

t2
i−1 + s2i−1

(
v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i

)
6= 0.

As Gi is APN over Fqk by hypothesis, we know gcd(2i − 1, q − 1) = 1, and so t2
i−1

ranges over all of F?q as t does. Consequently, we must have

v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i 6∈ F?q ,

which is Condition (iii).
Conversely, assume that Conditions (i), (ii) and (iii) hold. Since L(ut) = tL(u),

we have that L is a complete mapping by (i). Assume that ∆vs(ut) = 0. We must
show t = 0, or u = v and t = s. Assume that t 6= 0, we have:

t2
i−1
(
u2i

L(v) + vL(u)2i
)

+ s2i−1
(
v2i

L(u) + uL(v)2i
)

= 0. (9)

Firstly, suppose u = v. Then (9) becomes(
t2

i−1 + s2i−1
)(

u2i

L(u) + uL(u)2i
)

= 0.

Thus t2
i−1 = s2i−1 or u2i

L(u) = uL(u)2i

. By (i), L(u) 6= 0, so the latter reduces

further to L(u)2i−1 = u2i−1. But this is equivalent to L(u) = u, which cannot hold

by (i). Thus t2
i−1 = s2i−1, from which we deduce t = s, as required.

It remains to show that ∆vs(ut) = 0 has no solutions when t 6= 0 and u 6= v.

Suppose x = ut is a solution such that u2i

L(v) + vL(u)2i

= 0. Then (9) forces

v2i

L(u) + uL(v)2i

= 0 also. So we have

L(v)

v
+
L(u)2i

u2i = 0 and
L(u)

u
+
L(v)2i

v2i = 0.
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Combining, we find

L(u)

u
=
L(u)22i

u22i ,

so L(u)
u ∈ F22i . If n is odd we have F22i ∩ F2n = F2, which implies that L(u)

u is
equal to 0 or 1. This is not possible due to Condition (i). On the other hand,

if n is even then F22i ∩ F2n = F22 . Hence L(u)
u = α, primitive element in F?22 ,

and L(v)
v =

(L(u)
u

)2i

= α2i

= α2. This leads to a contradiction for Condition

(ii). Hence, if x = ut is a solution, then u2i

L(v) + vL(u)2i 6= 0. Now dividing by

u2i

L(v) + vL(u)2i

in (9) yields

t2
i−1 + s2i−1

(
v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i

)
= 0.

However, there are no solutions to this equation by (iii). This proves Gi,L is APN
over Fqk . �

The case where n = 3m with m ≥ 3 will be of particular interest. As we shall
discuss later in the computational results section, applying Theorem 6.3 in this case
leads to a new APN function CCZ-inequivalent to known APN families.

We conclude this section with the following result for linear function L having
coefficient in F2.

Proposition 6.4. Set q = 2n with n an even integer. Suppose Gi = x2i+1 is APN
over Fq. Then for any L ∈ F2[x] linear Gi,L defined as in (7) is not APN.

Proof. Let L(x) =
∑
j∈J x

2j

, for some J ⊆ {0, ..., n− 1}. Then

Gi,L(x) =
∑
j∈J

[x2j+i+1 + x2j+2i

].

Let ∆1(x) = ∆Gi,L(x, 1) so that

∆1(x) =
∑
j∈J

[(x2j+i

+ x) + (x2j

+ x2i

)].

It is easy to check that F4 ⊂ ker(∆1). Indeed, let F4 = {0, 1, α, α + 1}, we have

that 0, 1 ∈ ker(∆1). Since Gi is APN then i is odd, α2i

= α+ 1 and

(α2j+i

+ α) + (α2j

+ α2i

) = ((α+ 1)2j

+ α) + (α2j

+ α+ 1) = 0.

Thus, ∆1(α) = 0, which implies F4 ⊂ ker(∆1). �

6.2. Restricting L to having 1 term. First we consider the case when the linear

map is just a monomial, L(x) = ux2j

. It follows from (3) that we need only consider
j where j ≤ n/2.

Lemma 6.5. Let Gi = x2i+1 be APN over Fq, q = 2n, L(x) = ux2j ∈ Fq[x] and
Gi,L as in (7). The following statements hold.

(i) If j = 0 and u ∈ F2n \ F2, then Gi,L is linearly equivalent to Gi.
(ii) If n is odd, j = i, and u ∈ F?2n , then Gi,L is linearly equivalent to G2i and

(provided n > 3) CCZ-inequivalent to Gi.
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(iii) If n = 2j, then Gi,L is linearly equivalent to G|j−i| whenever ux2i

+u2i

x2j+i

is a permutation. In such cases, Gi,L is CCZ-equivalent to Gi if and only if
j = 2i or 2i− j = n.

(iv) If gcd(j, n) = 1, then Gi,L is not APN over Fq. Except for the case when n
odd and j = i.

(v) If gcd(j + i, |j − i|, n) > 1, then Gi,L is not APN over Fq. In particular, if
n is even and j is odd Gi,L is not APN.

Proof. Firstly, set L(x) = ux with u 6∈ F2. Then Gi,L = (u+u2i

)Gi, which is clearly

linearly equivalent to Gi. Now let L(x) = ux2j

, u ∈ F?2n . Then

Gi,L(x) = ux2i+2j

+ u2i

x2i+j+1. (10)

If i = j, then (10) becomes Gi,L(x) = ux2i+1

+ u2iG2i(x), which is APN and
equivalent to G2i provided gcd(2i, n) = 1; i.e. provided n is odd. It was shown by
Budaghyan, Carlet and Leander [4] that these two functions are CCZ-inequivalent
provided n > 3. This proves (ii). For (iii), it is easily checked that

Gi,L(x) ≡ (ux2i

+ u2i

x2j+i

) ◦ G|j−i|(x) mod (xq − x).

The statement in (iii) on equivalence is clear.

Now, let gcd(j, n) = 1. Then Gi,L(x) = ux2j+2i

+ u2i

x2j+i+1. For a ∈ F?q , set
∆a(x) = ∆Gi,L(x, a). Then

∆a(ax) = ua2j+2i

(x2j−i

+ x)2i

+ u2i

a2j+i+1(x2j+i

+ x).

Now, Gi,L is APN if and only if ker(∆a(ax)) = {0, 1} for all a ∈ F?q . Let L1(x) =

x2j−i

+ x and L2(x) = x2j+i

+ x, so that

∆a(ax) = ua2j+2i

L1(x)2i

+ u2i

a2j+i+1L2(x).

If n is even, j and i are odd numbers and the obtained function cannot be APN
since F4 ⊆ ker(L1) ∩ ker(L2), and for all x ∈ ker(L1) ∩ ker(L2) we have that x is
a solution of ∆a(ax) = 0. If n is odd, from (ii) we have that for j = i, Gi,L is
APN. Then, let us consider j 6= i. In this case, ker(L1) ( Fq and ker(L2) ( Fq
since 0 < |j − i| < n and 0 < j + i < n, so there exists some element x̄ ∈ F?q \ {1}
(note that F2 ⊆ ker(L1) ∩ ker(L2)) such that L1(x̄)L2(x̄) 6= 0. Now ∆a(ax) = 0 is
equivalent to

L1(x)2i

+ u2i−1a(2j−1)(2i−1)L2(x) = 0.

Since a 7→ a(2j−1)(2i−1) is a permutation of Fq (both i and j are coprime with n),

there exists a such that a(2j−1)(2i−1) = L1(x̄)2
i

u2i−1L2(x̄)
, implying x̄ ∈ ker(∆a(ax)). So

Gi,L is not APN. Then, statement (iv) is proved.
Let us consider statement (v). From the proof of (iv), we have that for all

x ∈ ker(L1)∩ker(L2), x is a solution of ∆a(ax) = 0. Then, since gcd(j+i, |j−i|, n) =
d > 1, for some integer d, we have F2d ⊆ ker(L1) ∩ ker(L2) and so Gi,L cannot be
APN. �

6.3. Restricting L to having 2 terms. We now move to considering L being a
linear binomial.
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Lemma 6.6. Let m be a positive integer, q = 2n with n = 2m, and

L(x) = ux2m

+ vx, (11)

with u, v ∈ F?q and v 6= 1. Set z = v + v2i

. If Gi,L is APN, then Gi,M is an APN
function EA-equivalent to Gi,L for the following choices of linear M ∈ Fq[x]:

(i) M(x) = uζ2m−1x2m

+ vx.

(ii) M(x) = ux2m

+ wx, where w + w2i

= z2m

;

(iii) M(x) = u2x2m

+ wx where w + w2i

= z2.

Proof. Given linear L as in (11), equation (7) is of the form

Gi,L(x) = u2i

x2m+i+1 + ux2m+2i

+ zx2i+1. (12)

We want to prove that in each case the obtained function is EA-equivalent to the
original map.

Case (i). If instead of u we consider uζ2m−1 in (12), then we obtain

Gi,M (x) = u2i

ζ2i(2m−1)x2m+i+1 + uζ2m−1x2m+2i

+ zx2i+1,

which is linear equivalent to Gi,L as Gi,M (ζ−1x) = ζ−2i−1Gi,L(x).
Case (ii). For M as specified, we have

Gi,M (x) = u2i

x2m+i+1 + ux2m+2i

+ z2m

x2i+1,

and

Gi,M (u−2m

x2m

)2m

= u−2i−1Gi,L(x).

Hence Gi,M is linear equivalent to Gi,L.
Case (iii). In this last case we obtain the function

Gi,M (x) = u2i+1

x2m+i+1 + u2x2m+1 + w2x2i+1,

and Gi,M (x2)22m−1

= Gi,L(x).

�

Lemma 6.7. Let m be an even positive integer and q = 2n with n = 2m. Suppose

Gi is APN over Fq. Set L(x) = ux2m

+ vx with v ∈ Fq satisfying v + v2i

= 1 and

u = w2m−1 for w ∈ F?q . Then Gi,L is an APN function over Fq EA-equivalent to
Gm−i.

Proof. In this case the isotopic shift of Gi by L is given by

Gi,L(x) = u2i

x2m+i+1 + ux2m+2i

+ x2i+1

= w2m+i−2i

x2m+i+1 + w2m−1x2m+2i

+ x2i+1.

Now note w−2i−1Gi,L(xw−1) = x2m+i+1 + x2m+2i

+ x2i+1, and this latter function

was shown to be EA-equivalent to x2m−i+1 by Budaghyan, Helleseth, Li and Sun
[9]. �

We end this subsection by deriving a necessary condition for Gi,L in certain
restricted settings.
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Lemma 6.8. Let m be a positive integer, n = 2m, and q = 2n. Let u, v ∈ F?q . If

Gi,L is APN over Fq with L(x) = ux2m

+ vx, then

u2i

x2i

+ ux+ v2i

+ v = 0

has no solution x such that x2m+1 = 1.

Proof. From the given L we obtain in (7) that

Gi,L(x) = u2i

x2m+i+1 + ux2m+2i

+ (v2i

+ v)x2i+1.

If Gi,L is APN, then

a−(2i+1)∆a(ax) = (ua2m−1)2i

(x2m+i

+x)+(ua2m−1)(x2m

+x2i

)+(v2i

+v)(x2i

+x) 6= 0

for any a 6= 0 and x 6= 0, 1. Assume x ∈ F2m . Then we have

a−(2i+1)∆a(ax) =
(
u2i

a(2m−1)2i

+ ua2m−1 + v2i

+ v
)

(x2i

+ x) 6= 0

Let y = a2m−1. Then,

u2i

y2i

+ uy + v2i

+ v 6= 0

for all y ∈ Fq such that y2m+1 = 1. �

In particular when we consider the Gold function G1 = x3 we obtain the follow-
ing.

Lemma 6.9. Let m be an even positive integer, n = 2m, and q = 2n. Set u = ζi,
with 0 ≤ i < 2m − 1. If v ∈ Fq is such that v(v + 1) = ζj(2

m+1) for some

0 ≤ j < 2m − 1 and G1,L is APN over Fq with L(x) = ux2m

+ vx, then

ζ(2m+1)(2j−i) + ζi(2
m+1) 6= 1.

Moreover, if there exists a positive integer l such that ζi+l(2
m−1)+ζ2mi+l(1−2m) = 1,

then i 6= j.

Proof. From the given L we obtain in (7) that

G1,L(x) = ζ2ix2m+1+1 + ζix2m+2 + ζj(2
m+1)x3.

If G1,L is APN, then

a−3∆a(ax) = (ζia2m−1)2(x2m+1

+ x) + (ζia2m−1)(x2m

+ x2) + ζj(2
m+1)(x2 + x) 6= 0

for any a 6= 0 and x 6= 0, 1. Assume x ∈ F2m . Then we have

a−3∆a(ax) = ((ζia2m−1)2 + ζia2m−1 + ζj(2
m+1))(x2 + x) 6= 0.

Let a = ζl for a positive integer l. Then

a−3∆a(ax) = (ζ2(i+l(2m−1)) + ζi+l(2
m−1) + ζj(2

m−1))(x2 + x) 6= 0. (13)

Suppose that ζ(2m+1)(2j−i) +ζi(2
m+1) +1 = 0. Multiplying this equality by ζi(2

m+1)

and then taking its 2n−1th power we get

ζi(2
m+1) + ζ2n−1i(2m+1) + ζj(2

m+1) = 0.

For l = 2n−1i, we have i+ l(2m − 1) = i2n−1(2m + 1), and so we have a choice of a
for which a−2∆a(ax) = 0, contradicting the hypothesis.
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Assume now that there exists an integer l such that ζi+l(2
m−1)+ζ2mi+l(1−2m) = 1.

Then using (13) we find

0 6=ζ2(i+l(2m−1)) + ζ(i+l(2m−1)) + ζj(2
m−1) =

ζi+l(2
m−1)(ζi+l(2

m−1) + 1) + ζj(2
m+1) =

ζi+l(2
m−1)ζ2mi+l(1−2m) + ζj(2

m+1) =

ζi(2
m+1) + ζj(2

m+1),

implying i 6= j. �

6.4. Restricting L to having 3 terms. From the computational analysis per-
formed for the Gold function G1(x) = x3, see Section 7 below, we observed that,
when L has 3 terms and n = 3m, the linear polynomial

L(x) = ax22m

+ bx2m

+ cx (14)

is a good generator of APN functions via shifts of G1. In this case, we have

G1,L(x) = a2x22m+1+1 + b2x2m+1+1 + ax22m+2 + bx2m+2 + (c2 + c)x3. (15)

As proved in Proposition 6.1, the polynomial L(x) generates an isotopic shift of Gi
equivalent to the one generated by

M(x) = (aζ(22m−1)j)2k

x22m

+ (bζ(22−1)j)2k

x2m

+ c2
k

x. (16)

Consideration of this case led to Theorem 6.3. The case with q = 2m, n = 3m
with m odd, in Theorem 6.3 is exactly the situation that we observed in our com-
putational results that led to Theorem 6.3. As we shall note in Section 7, this
specific case leads to the construction of a new APN function n = 9 which is
CCZ-inequivalent to any known APN function.

7. Computational results

Using the software algebra package MAGMA [2] we studied the possible linear
functions L(x) for which Gi,L, as in (7), is an APN function over F2n . The obtained
APN functions have been compared, using CCZ-equivalence, to those presented in
tables of [16]. There, the authors listed all known APN functions for n ∈ {6, 7, 8, 9}.
For purposes of comparison, we will refer to the numbering given in those lists.

Due to the classification of the linear functions L based on the number of terms,
we do not consider in the computational analysis linear function with x as term.

Indeed, if a function L(x) =
∑n−1
j=1 bjx

2j

+ x has d terms then it will construct the

same isotopic shift constructed by the function L(x) + x that has one term less.

7.1. Data for Gi,L where L has 1 or 2 terms. When L has just one term, all

possible cases with 3 ≤ n ≤ 12 considering all APN Gold functions Gi = x2i+1,
with gcd(i, n) = 1, have been analysed and the only APN functions arising are
those presented in Lemma 6.5.

When L has exactly two terms, we determined those isotopic shifts of Gi by L
that are APN over F2n for 6 ≤ n ≤ 11. Apart from the n = 6 case, we obtained
APN functions only for n = 2m and L(x) = ux2m

+ vx. For n ∈ {12, 14, 16}
we only considered L of the form ux2m

+ vx. In particular, we found that if
n ∈ {8, 12, 16}, then Gi,L from (7) is either equivalent to Gi or to Gm−i. In the
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other cases, n ∈ {10, 14}, the obtained APN maps are all equivalent to the original
Gold function Gi.

When n = 6, with F?26 = 〈ζ〉, considering isotopic shifts of the Gold function
G1 = x3 more cases occur:

• For L(x) = ux8 +vx = ux2m

+vx it is possible to construct APN functions
equivalent to G1 or to function number 2.1 in [16, Table 5] (x3 +x10 +ζx24).
• For L(x) = ux16 +vx, where u is not a cube and v+v2 = 1, the constructed

function is APN and equivalent to number 1.2 in [16, Table 5] (x3 +ζ11x6 +
ζx9).

• For L(x) = ux16 + vx4, where u is not a cube and v = u26, the constructed
function is APN and again equivalent to number 1.2 in [16, Table 5].

7.2. Data for Gi,L where L has 3 terms and new APN functions. When
the function L has 3 terms, none of them equal to x, we analysed Gi,L for the cases
n ∈ {6, 7, 8, 9} and obtained the following results.

n = 6: for G1,L the only valid trinomial is of the form ax24

+ bx22

+ cx and can
construct APN functions equivalent to G1 and to number 1.2 in [16, Table
5](x3 + ζ11x6 + ζx9).

n = 7: no valid trinomial was found.
n = 8: for G1,L the only valid trinomial is of the form ax26

+ bx24

+ cx22

and can
construct APN functions equivalent to number 1.2 in [16, Table 9](x3 +
Tr(x9));

for G3,L the only valid trinomial is of the form ax26

+ bx24

+ cx22

and can
construct APN functions equivalent to number 1.11 in [16, Table 9](x9 +
Tr(x3)).

n = 9: for G1,L the only valid trinomial is of the form ax26

+ bx23

+ cx and can
construct APN functions not equivalent to any function from the known
APN families; for G2,L and G4,L no valid trinomials were found.

The cases obtained for n = 8 are instances of Theorem 6.3 where k=4 and m=2.
In particular with L = ζ106x26

+ ζ175x24

+ ζx22

, G1,L is equivalent to x3 + Tr(x9),
function discovered by Dillon et al. in 2006 [3], and with the same L G3,L is
equivalent to x9 + Tr(x3).
For n = 9, G1,L leads us to an inequivalence result. For this reason we focused on
functions of this particular form and noticed that, for m = 9

3 ,

L(x) = ax26

+ bx23

+ cx = ax22m

+ bx2m

+ cx.

Hence, for n = 3m, we analysed the possible APN functions G1,L as in (7) con-

structed using the linear function L(x) of the form ax22m

+ bx2m

+ cx. Due to
Proposition 6.1, we restricted the search to those linear polynomials for which
b = ζt with 0 ≤ t < 2m − 1 and t either zero or odd. Setting to d = c2 + c, we
obtained the following results:

n = 6: If

[a, b, d] ∈
{

[ζ3, 1, ζ35], [ζ9, 1, ζ9], [ζ11, 1, ζ28], [ζ, ζ, ζ39],
[ζ10, ζ, ζ56], [ζ12, ζ, ζ18], [ζ18, ζ, ζ30], [ζ27, ζ, ζ28]

}
,

then G1,L is equivalent to Gi. Otherwise, if [a, b, d] = [ζ5, ζ, 1], then G1,L is
equivalent to x3 + ζ−1 Tr(ζ3x9).
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n = 9: Just one function was found, with [a, b, d] = [ζ424, ζ, ζ34]. As mentioned
above, G1,L is not equivalent to any APN function from the known APN
families.

n = 12: If

[a, b, d] ∈
{

[ζ1962, ζ3, ζ1365], [ζ290, ζ, ζ2184], [ζ904, ζ5, ζ546]
}
,

then G1,L is equivalent to G1. Indeed, let us denote by F1, F2 and F3

the functions relative to [ζ1962, ζ3, ζ1365], [ζ290, ζ, ζ2184] and [ζ904, ζ5, ζ546],
respectively. We have that

F1(x) = ζ3924x513 + ζ1962x258 + ζ6x33 + ζ3x18 + ζ1365x3,

and L1(x)3 = L2(F1(x)/ζ1365), with

L1(x) = ζ1416x22m

+ ζ1914x2m

+ x, L2(x) = ζ153x22m

+ ζ1647x2m

+ x.

F2(x) = ζ580x513 + ζ290x258 + ζ2x33 + ζax18 + ζ2184x3,

and L1(x)3 = L2(F2(x)/ζ2184), with

L1(x) = ζ3566x22m

+ ζ3277x2m

+ x, L2(x) = ζ2508x22m

+ ζ1641x2m

+ x.

F3(x) = ζ1808x513 + ζ904x258 + ζ10x33 + ζ5x18 + ζ546x3,

and L1(x)3 = L2(F3(x)/ζ546), with

L1(x) = ζ1723x22m

+ ζ824x2m

+ x, L2(x) = ζ1074x22m

+ ζ2472x2m

+ x.

Therefore, combining the computational result obtained for n = 9 with the n = 3m
instance of Theorem 6.3, we are able to present a new family of APN functions
defined over F23m for an integer m. Indeed the function

G1,L(x) = a2x22m+1+1 + b2x2m+1+1 + ax22m+2 + bx2m+2 + dx3,

with the restrictions as set out in Theorem 6.3, is APN and when m = 3 this
function is not equivalent to any APN function belonging to an already known
family.

In Table 1 there are listed, up to CCZ-equivalence, the APN maps defined over
F29 belonging to known families. To this list we added the new function found with
Theorem 6.3.

Table 1. CCZ inequivalent APN polynomials over F29

Functions Families no. Table 11 in [16]

x3 Gold 1.1

x5 Gold 2.1

x17 Gold 3.1

x13 Kasami 4.1

x241 Kasami 6.1

x19 Welch 5.1

x255 Inverse 7.1

Tr91(x9) + x3 [5] 1.2

Tr93(x18 + x9) + x3 [6] 1.3

Tr93(x36 + x18) + x3 [6] 1.4

x3 + x10 + ζ438x136 – 8.1

ζ337x129 + ζ424x66 + ζ2x17 + ζx10 + ζ34x3 the function from Theorem 6.3 –



20 BUDAGHYAN ET AL

Consequentially we extended the computations performed to the case of shifts

of the general Gold function Gi = x2i+1. For 6 ≤ n ≤ 8 and Gi not equivalent to
G1 no linear trinomials L were found that can construct APN functions.

7.3. The cases 3 ≤ n ≤ 5. Exhaustive searching was carried out for small dimen-
sions. Shifts of G1 (and G2 in n = 5) that produced APN functions in all cases
produced APN functions equivalent to the Gold functions G1 (and G2 in n = 5).
We give some additional details below for completeness.

n = 3: All obtained APN functions are equivalent to G1. Valid linear functions
were:

– monomials as described in Lemma 6.5 (i) and (ii), and their com-
positional inverses. In this case, this amounts to all possible linear

monomials ux2j

with j ∈ {0, 1, 2} and u ∈ F8 \ F2.
– binomials resulting from the monomial examples above via Corollary

4.2 (ii).
– trinomials, there were 126 distinct linear trinomials L for which G1,L

was APN.
There are a total of 462 linear functions that are either permutation polyno-
mials or 2-to-1 maps over F8. Of these, a total of 162 yields APN functions.
Of course, as n increases the ratio of successful shifts drops sharply.

n = 4: All obtained APN functions are equivalent to G1. Valid linear functions
were:

– monomials as described in Lemma 6.5 (i) and (iii).
– binomials as described in Lemma 6.6, along with those resulting from

the monomials above via Corollary 4.2 (ii).
– trinomials, there were a total of 600 distinct linear trinomials L for

which G1,L was APN.
– quadrinomials, there were 2880 distinct linear quadrinomials L for

which G1,L was APN.
n = 5: For shifts of G1 all obtained APN functions are equivalent to G1 or G2. Valid

linear functions were:
– monomials as described in Lemma 6.5 (i) (for G1) and (ii) (for G2).
– binomials.

For G1, of the form ζix16 + ζ17ix8.
For G2, of the form ux4 + vx2, ux8 + vx2 (31 examples in each case),
along with those resulting from the monomials above via Corollary 4.2
(ii).

– trinomials.
For G1, of the form ζix16 + ζ17ix8 + ζ29ix2, along with those resulting
from the binomials above via Corollary 4.2 (ii).
For G2, of the form ux8 + vx4 + wx2, ux16 + vx4 + wx2 (31 examples
in each case), along with those resulting from the binomials above via
Corollary 4.2 (ii).

– quadrinomials, there were a total of 2201 distinct linear quadrinomials
L for which G1,L was APN and equivalent to G1, and 3317 distinct
linear quadrinomials L for which G1,L was APN and equivalent to G2.

– pentanomials, there were a total of 15190 distinct linear pentanomials
L for which G1,L was APN and equivalent to G1, and 11625 distinct
linear pentanomials L for which G1,L was APN and equivalent to G2.
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For shifts of G2 all obtained APN functions are equivalent to G1 or G2.
Valid linear functions were:

– monomials as described in Lemma 6.5 (ii) (for G1) and (i) (for G2).
– binomials.

For G1, of the form ζix4 + ζ21ix2, ζix8 + ζ9ix2.
For G2, of the form ζix16 + ζ17ix8,
along with those resulting from the monomials above via Corollary 4.2
(ii).

– trinomials.
For G1, of the form ζix8 + ζ27ix4 + ζ9ix2, of the form ux16 +vx4 +wx2

(186 examples), along with those resulting from the binomials above
via Corollary 4.2 (ii).
For G2, of the form ζix16 +ζ17ix8 +ζ29ix2, of the form ux16 +vx4 +wx
(155 examples), along with those resulting from the binomials above
via Corollary 4.2 (ii).

– quadrinomials, there were a total of 3100 distinct linear quadrinomials
L for which G1,L was APN and equivalent to G1, and 2635 distinct
linear quadrinomials L for which G1,L was APN and equivalent to G2,
along with those resulting from the trinomials above via Corollary 4.2
(ii).

– pentanomials, there were a total of 13330 distinct linear pentanomials
L for which G1,L was APN and equivalent to G1, and 13950 distinct
linear pentanomials L for which G1,L was APN and equivalent to G2,
along with those resulting from the quadrinomials above via Corollary
4.2 (ii).

7.4. The case n = 6. For n = 6 we checked G1,L over general linear functions
L(x) satisfying the restriction outlined in Theorem 5.1. The results obtained, up
to CCZ-equivalence, are summarized in Table 2. With such a construction we were
able to obtain, for every quadratic APN function listed in [16, Table 5], a CCZ-
equivalent APN function G1,L. Moreover, each function in the mentioned list is
CCZ-equivalent to

• G1,L where L is a linear permutation; and
• G1,L where L is 2-to-1.

We also found that similar results can be obtained when we consider isotopic shifts
of the APN function x3 + ζ−1 Tr(ζ3x9); these results are summarized in Table 3.

7.5. Additional data for isotopic shifts of x3 + Tr(x9). We have also carried
out some additional analysis for the quadratic APN function

F (x) = x3 + Tr(x9). (17)

In this case, the isotopic shift of F by a linear function L is of the form

fL(x) = xL(x)(x+ L(x)) + Tr(xL(x)(x7 + L7(x))). (18)

We may immediately observe some trivial constructions.
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Table 2. Linear functions L(x) for which G1,L as in (7) is APN
over F26 = 〈ζ〉, up to CCZ-equivalence, and their comparison with
Table 5 in [16]. We also specify if L(x) is 1-to-1 or 2-to-1

#-to-1 L(x) no. in Table 5 [16]

1-to-1 ζx (or x16 + ζ3x4 + ζ17x) 1.1

2-to-1 x32 + x16 + x8 + x4 + x2 + ζ21x 1.1

1-to-1 ζx16 + ζ21x 1.2

2-to-1 x32 + ζx16 + ζ27x8 + ζ46x4 + ζ18x2 + ζ33x 1.2

1-to-1 x32 + ζ13x16 + x8 + ζ30x4 + ζx2 + ζ20x 2.5

2-to-1 x32 + ζ9x16 + ζ31x8 + ζ16x4 + ζ57x2 + ζ29x 2.5

1-to-1 x16 + ζ5x8 + ζ8x4 + ζ34x2 + ζ57x 2.12

2-to-1 x16 + ζ5x8 + ζ8x4 + ζ34x2 + ζ20x 2.12

1-to-1 x8 + ζ5x 2.1

2-to-1 x32 + ζx16 + ζ9x8 + ζ39x4 + ζ7x2 + ζ31x 2.1

1-to-1 x32 + ζx16 + ζ25x8 + ζ8x4 + ζ42x2 + ζ31x 2.2

2-to-1 x32 + ζx16 + ζ41x8 + ζ49x4 + ζ5x2 + ζ5x 2.2

1-to-1 ζx16 + x8 + ζ50x4 + x2 + ζ47x 2.6

2-to-1 x32 + ζx16 + ζ16x8 + ζ26x4 + ζ14x2 + ζ14x 2.6

1-to-1 x32 + ζx16 + ζ23x8 + ζ53x4 + ζ52x2 + ζx 2.7

2-to-1 x32 + ζx16 + ζ23x8 + ζ53x4 + ζ52x2 + ζ56x 2.7

1-to-1 x32 + ζ23x8 + ζ31x4 + ζ46x2 + ζ50x 2.3

2-to-1 x32 + x16 + ζ15x8 + ζ42x4 + ζ15x2 + ζ16x 2.3

1-to-1 x32 + ζx16 + ζ26x8 + ζ50x4 + ζ57x2 + ζ34x 2.8

2-to-1 x32 + ζ13x8 + ζ57x4 + ζ36x2 + ζ31x 2.8

1-to-1 x16 + ζ9x8 + ζ9x4 + ζ47x2 + ζ50x 2.9

2-to-1 x32 + x16 + ζ5x8 + ζ50x4 + ζ8x2 + ζ60x 2.9

1-to-1 x32 + ζx16 + ζ42x8 + ζ3x4 + ζ14x2 + ζ22x 2.4

2-to-1 x32 + ζx16 + ζ7x8 + ζ51x4 + ζ33x2 + ζ14x 2.4

1-to-1 x32 + ζx16 + ζ20x8 + ζ28x4 + ζ23x2 + ζ36x 2.10

2-to-1 x32 + ζx16 + ζ6x8 + ζ8x4 + ζ26x2 + ζ21x 2.10

• For n even, set L(x) = ux with u a primitive cubed root of unity in Fq, so
that u2 + u+ 1 = 0. Then we have

fL(x) = u(u+ 1)x3 + Tr(u(u7 + 1)x9)

= (u2 + u)x3 + Tr((u8 + u)x9)

= x3 + Tr((u2 + u)x9)

= x3 + Tr(x9).
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Table 3. Linear functions L(x) for which the isotopic shift of
x3 + ζ−1 Tr(ζ3x9) is APN over F26 = 〈ζ〉, up to CCZ-equivalence,
and their comparison with Table 5 in [16]. We also specify if L(x)
is 1-to-1 or 2-to-1

#-to-1 L(x) no.

1-to-1 ζ9x 1.1

2-to-1 x32 + ζ12x16 + ζ24x8 + ζ24x4 + ζ30x2 + ζ47x 1.1

1-to-1 ζ21x 1.2

2-to-1 ζ31x16 + ζ60x4 + ζ11x2 + ζ30x 1.2

1-to-1 ζ10x16 + ζ11x8 + ζ35x4 + ζ27x2 + ζ26x 2.5

2-to-1 ζ10x16 + ζ11x8 + ζ35x4 + ζ27x2 + ζ6x 2.5

1-to-1 ζ19x16 + ζ3x8 + ζ29x4 + ζ39x2 + ζ24x 2.12

2-to-1 ζ28x16 + ζx8 + ζ31x4 + ζ51x2 + ζ4x 2.12

1-to-1 x8 + ζ9x 2.1

2-to-1 ζ11x8 + ζ61x4 + ζ51x2 + ζ33x 2.1

1-to-1 ζ15x16 + ζ6x8 + ζ47x4 + ζ21x2 + ζ48x 2.2

2-to-1 x16 + ζ14x8 + ζ49x4 + ζ13x2 + ζ4x 2.2

1-to-1 x32 + ζ19x16 + ζ23x8 + ζ38x4 + ζ16x2 + ζ58x 2.6

2-to-1 x32 + ζ19x16 + ζ23x8 + ζ38x4 + ζ16x2 + ζ25x 2.6

1-to-1 x16 + ζ7x8 + ζ52x4 + ζ7x2 + ζ25x 2.7

2-to-1 ζ2x16 + ζ8x8 + ζ40x4 + ζ38x2 + ζ5x 2.7

1-to-1 ζ3x8 + ζ43x4 + ζ23x2 + ζ9x 2.3

2-to-1 ζx16 + ζx8 + ζ4x4 + ζ46x 2.3

1-to-1 x16 + ζ8x8 + ζ7x4 + ζ49x2 + ζ46x 2.8

2-to-1 x16 + ζ8x8 + ζ7x4 + ζ49x2 + ζ22x 2.8

1-to-1 ζx8 + ζ14x4 + ζ13x2 + ζ43x 2.9

2-to-1 ζx8 + ζ14x4 + ζ13x2 + ζ37x 2.9

1-to-1 ζ11x8 + ζ22x4 + ζ22x2 + ζ50x 2.4

2-to-1 ζ3x16 + ζ15x8 + ζ15x4 + ζ40x2 + ζ11x 2.4

1-to-1 ζ6x16 + ζ16x8 + ζ52x4 + ζ20x2 + ζ52x 2.10

2-to-1 ζx16 + ζ16x8 + ζ36x4 + ζ61x2 + ζ36x 2.10

• For n a multiple of 3, set L(x) = ux with u a primitive 7th root of unity.
Then we have

fL(x) = u(u+ 1)x3 + Tr(u(u7 + 1)x9)

= u(u+ 1)x3.

Observation 7.1. For n a multiple of 3, the APN function x3 can be obtained as
an isotopic shift of x3 + Tr(x9).

Computational results for this case can be summarized as follows.
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• When the function L has 1 term.
n = 7: Only two linear functions were found: L(x) = x8 and L(x) = x16. Both

functions obtained are CCZ-equivalent to number 2.2 in [16, Table 7]
(x3 + x17 + x33 + x34).

n = 8: Two types of linear functions yielded APN shifts:
∗ L(x) = ζ85x and L(x) = ζ170x. This is the cube root of unity

case observed above.
∗ L(x) = ζix16, i = 9 · 2r, 85 · 2r, 111 · 2r. The functions obtained

are CCZ-equivalent to x9 + Tr(x3).
n = 9: L(x) = ζix, i = 73 × j. This is the 7th root of unity case observed

above.
n = 10: L(x) = ζix, i = 341, 682. This is the cube root of unity case observed

above.
n = 11: No valid monomial was found.
n = 12: Two types of linear functions yielded APN shifts:

∗ L(x) = ζix, i = 1365, 2730. This is the cube root of unity case
observed above.

∗ L(x) = ζix64, i = 585 × j. This is the 7th root of unity case
observed above.

• When the function L has 2 terms, different from x.
n = 7: No valid binomial was found.
n = 8: L(x) = ζix16 + ζjx, (j = 17 and i = 35, 50, 140, 200), or (j = 34

and i = 25, 70), or (i = 0, j = 85, 170). The functions obtained are
CCZ-equivalent to number 1.2 in [16, Table 9] (x9 + Tr(x3)).

7.6. Restricting the coefficients of L to F2. Proposition 6.4 shows that a linear
function L with coefficients in F2 cannot generate an APN function from isotopic
shift of Gold functions over extension fields of even degree. This was investigated
further computationally, over extension fields of odd degree. We looked at Gi,L for
valid Gi and L ∈ F2[x] to see when APN functions are obtained. The results are
presented in Table 4.

It can be seen from the table that linear 2-to-1 functions occur when n = 5
but otherwise we only obtained APN functions from Gi,L for L a permutation
polynomial.

We also looked at isotopic shifts of x3 + Tr(x9) by linear L ∈ F2[x]. For 7 ≤
n ≤ 12, the only linear functions for which APN functions were obtained were for
n = 7, with L(x) = x8 or L(x) = x16. In both cases, the obtained APN function
was equivalent to x3 + x17 + x33 + x34, number 2.2 in [16, Table 7].
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