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Abstract. We introduce a new homomorphic encryption scheme that
is natively capable of computing with complex numbers. This is done by
generalizing recent work of Chen, Laine, Player and Xia, who modified
the Fan–Vercauteren scheme by replacing the integral plaintext modulus
t by a linear polynomial X − b. Our generalization studies plaintext
moduli of the form Xm + b. Our construction significantly reduces the
noise growth in comparison to the original FV scheme, so much deeper
arithmetic circuits can be homomorphically executed.

1 Introduction

The goal of homomorphic encryption is to allow for arbitrary arithmetic opera-
tions on encrypted data, such that the decrypted result equals the outcome of
the same calculation carried out in the clear. Since the publication of Gentry’s
seminal Ph.D. work [15], this research area has evolved rapidly and is on the
verge of reaching a first degree of maturity, as was recently demonstrated e.g. by
practical implementations of privacy-enhanced electricity load forecasting [3, 2],
digital image processing [1, 10], and medical data management [12, 18, 7]. Most
of the current focus lies on somewhat homomorphic encryption (SHE), where
the schemes are capable of homomorphically evaluating an arithmetic circuit
having a certain predetermined computational depth. The leading proposals for
realizing this goal are the Brakerski-Gentry-Vaikunthanathan (BGV) scheme [4]
and the Fan-Vercauteren (FV) scheme [13].

In actual applications, the input to the homomorphic evaluation of an arith-
metic circuit C needs to be preprocessed in two steps. The first step is encoding,
where one’s task is to represent the actual ‘real world data’ as elements of the
plaintext space of the envisaged SHE scheme. This plaintext space is a certain
commutative ring, and the encoding should be such that real world arithmetic
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agrees with the corresponding ring operations, up to the anticipated computa-
tional depth.

In the original descriptions of BGV and FV, the plaintext space is a ring
of the form Rt = Z[X]/(t, f(X)) where t ≥ 2 is an integer and f(X) ∈ Z[X]
is a monic irreducible polynomial. Throughout this paper we will stick to the
common choice of 2-power cyclotomics f(X) = Xn + 1, where n = 2k for some
integer k ≥ 1. Encoding numerical input is typically done by taking an integer-
digit expansion with respect to some base b, then replacing b by X and finally
reducing the digits modulo t. Decoding then amounts to lifting the coefficients
back to Z, for instance by choosing representatives in (−t/2, t/2], and evaluating
the result at X = b. Thanks to the relation X−1 ≡ −Xn−1 it is possible to allow
the expansions to have a fractional part. In this case the decoding step must be
preceded by replacing the monomials Xi of degree i > B by −Xi−n, for some
appropriate point of separation B. All these parameters need to be chosen in
such a way that the evaluation of C on the encoded data decodes to the right
outcome. At the same time one wants t to be as small as possible, because its size
highly affects the efficiency of the resulting SHE computation. Selecting optimal
parameters is a tedious application-dependent balancing act to which a large
amount of recent literature has been devoted, see e.g. [20, 12, 8, 6, 18, 11, 2].

Because in practice n is of size at least 1024, the plaintext spaces Rt can a pri-
ori host an enormous range of data, even for very small values of t. Unfortunately
this is hindered by their structure, which is not a great match with numerical
input data types like integers, rationals or floats. For example, if t = 2 then it is
not even possible to add a non-zero element to itself without incorrect decoding.
Because of such phenomena, values of t are required that typically consist of
dozens of decimal digits, badly affecting the efficiency. An idea to remedy this
situation has been around for a while [17, 4, 14] and uses a polynomial plaintext
modulus, rather than just an integer. Recently the first detailed instantiation
of this idea was given by Chen, Laine, Player and Xia [6], who adapted the FV
scheme to plaintext moduli t = X−b for some b ∈ Z≥2. In this case the plaintext
space becomes Rt = Z[X]/(X − b,Xn + 1) = Z[X]/(X − b, bn + 1) ∼= Zbn+1,
whose structure is a much better match with the common numerical input data
types. This allows for much smaller plaintext moduli (norm-wise), with benefi-
cial consequences for the efficiency, or for the depth of the circuits C that can be
handled [6, Section 7.2].

This paper further explores the paradigm that the structure of the plaintext
space Rt should match the input data type as closely as possible. Concretely,
we focus on complex-valued data types, such as cyclotomic integers and floating
point complex numbers. We study this setting mainly in its own right, but note
that complex input data has been considered in homomorphic encryption before,
e.g., in the homomorphic evaluation of the Discrete Fourier Transform studied
by Costache, Smart and Vivek [10] in the context of digital image processing,
where the input consists of cyclotomic integers.
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Representing complex numbers. One naive way to encode a complex num-
ber z would be to view it as a pair of real numbers, for instance using Cartesian
or polar coordinates. These can be fed separately to the SHE scheme, which is
now used to evaluate two circuits. A more direct way is to use a complex base
b. For instance, one could take b = eπi/n, as was done by Cheon, Kim, Kim and
Song [8], albeit in a somewhat different context. This choice has the additional
feature that f(b) = 0, so that wrapping around modulo f(X) = Xn+1 does not
lead to incorrect decoding. However, finding an integer-digit base b expansion
with small norm which approximates z sufficiently well is an n-dimensional lat-
tice problem, which is practically infeasible. To get around this Costache, Smart
and Vivek [10] instead use b = ζ := eπi/m for some divisor m | n, which is small
enough for finding short base ζ approximations, while preserving the feature
that wrapping around modulo f(X) is unharmful. But in their approach, a huge
portion of plaintext space is left unused. Indeed, the encoding map is

Z[ζ]→ Rt : z =

m−1∑
i=0

zib
i 7→

m−1∑
i=0

ziY
i,

where Y = Xn/m, t ≥ 2 is an integral plaintext modulus and zi is the reduction
of zi mod t, so that all plaintext computations are carried out in the subring
Z[Y ]/(t, Y m + 1), which is of index tn−m in Rt. Our proposal is to resort to
a plaintext modulus of the form t = Xm + b for some small integer b, with
|b| ≥ 2. In this case, for m < n, we have RXm+b = Z[X]/(Xm + b,Xn + 1) =
Z[X]/(bn/m + 1, Xm + b). An additional assumption (which is discussed in more
detail in the next section), is that

there exists an α ∈ Zbn/m+1 such that b = αm, (1)

where b denotes the reduction of b modulo bn/m + 1. Throughout we fix such an
α and let β be its multiplicative inverse, which necessarily exists. This implies
that (β̄X)m + 1 = 0, therefore we have a well-defined ring homomorphism

Z[ζ]→ RXm+b :

m−1∑
i=0

ziζ
i 7→

m−1∑
i=0

ziβ
i
Xi (2)

which is surjective with kernel (bn/m+1). In other words, while Costache, Smart
and Vivek restrict their computations to an injective copy of Z[ζ]/(t) inside Rt,
we can view RXm+b as an isomorphic copy of Z[ζ]/(bn/m + 1). Essentially, our
approach transfers the unused part of the plaintext space coming from the large
dimension n into a larger integral modulus, reflected in the exponent n/m.

In the remainder of this paper, we explain how this observation can be used to
efficiently process complex-valued input data in homomorphic encryption. First,
in Section 2 we explain how to encode and decode elements of the ring Z[ζ] of
2mth cyclotomic integers and discuss the assumption (1), with special attention
to the case m = 2 where Z[ζ] = Z[i] is the ring of Gaussian integers. Next in
Section 3 we explain how this can be used to encode other data types such as
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cyclotomic rationals or complex floats, either by resorting to LLL as in [10] or
by using Chen et al.’s fractional encoder from [6]. In Section 4 we discuss how
to adapt the FV scheme so that it can cope with plaintext spaces of the form
RXm+b. Finally, in Section 6 we discuss the performance of this adaptation in
comparison with previous approaches. In short we can reach a depth at least 5
times that of the best approach which directly encrypts encodings of complex
numbers [10]. We can also reach very similar depths to the state of the art
where one encrypts the real and imaginary parts separately [6]. However, since
we natively encrypt complex numbers our ciphertexts are two times smaller and
hence our approach is more efficient by roughly a factor two in time and three
in space.

2 Encoding and decoding elements of Z[ζ]

Encoding Encoding an element of Z[ζ] happens in two steps. The first step
applies the map (2) yielding a polynomial of degree less than m which typically
has very large coefficients. The second step is comparable to the hat encoder of
Chen et al. [6] and switches to another representant by spreading this polynomial
across the range 1, X, . . . ,Xn−1 while making the coefficients a lot smaller. The
result will then be lifted to R = Z[X]/(Xn + 1) and fed to our adaptation of
the FV scheme, where the smaller coefficients are important to keep the noise
growth bounded.

Here is how this second step is carried out in practice: we think of the coef-

ficients ziβ
i

as being represented by integers between −bbn/m/2c and dbn/m/2e.
We then expand these integers to base b using digits ai,j from the range −bb/2c,
. . . , bb/2c to find

ziβ
i

= ai,n/m−1b
n/m−1

+ . . .+ ai,1b+ ai,0.

There is a minor caveat here, namely if b is odd then there are more integers
modulo bn/m + 1 than there are balanced b-ary expansions of length at most
n/m. This is easily resolved by allowing the last digit to be one larger. For even

b the situation is opposite: since ziβ
i

is represented by an integer of size at most
bn/m/2 = b/2 · bn/m−1 we have a surplus of base-b expansions. Here it makes
sense to choose an expansion with the shortest Hamming weight (e.g., if b = 2
then we simply pick the non-adjacent form). We denote the maximal number of
non-zero coefficients that can appear in a fresh encoding by Nb.

Given such base-b expansions of the coefficients, we replace each occurrence of
b by −Xm and then substitute the results in the image of (2). We end up with

an expansion
∑n−1
i=0 ciX

i where the ci are represented by integers of absolute
value at most bb/2c, or in fact b(b+ 1)/2c if we take into account the caveat.

Decoding In order to decode a given expansion
∑n−1
i=0 ciX

i we walk through
the same steps in reverse order. First we pick another representant by reducing
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the expansion modulo Xm + b, in order to end up with

m−1∑
i=0

c′iX
i ∈ Z[X]/(bn/m + 1, Xm + b).

This can be rewritten as
∑m−1
i=0 c′iα

iβ
i
Xi so we decode as

∑m−1
i=0 ziζ

i ∈ Z[ζ]
where zi is a representant of c′iα

i taken from the range −bbn/m/2c, . . . , dbn/m/2e.

On the assumption (1) Usually n and m are determined by security consid-
erations and the concrete application. To apply our encoding method we want
to find a small value of b for which condition (1) is met. This is easiest if n/m
is small or m is small. If no satisfactory value of b can be found then one can
try to enlarge m and view Z[ζ] as a subring of a higher degree cyclotomic ring.
Below we give two lemmas constraining the possible choices for b given m and
n; still assuming we are working with 2-power cyclotomic f .

One choice for b which is always possible is 2m/2, since defining α as

α = 2n/8
(

2n/4 − 1
)
, (3)

then it easy to verify that α2 ≡ 2 mod 2n/2 + 1 and hence

αm ≡ 2m/2 mod 2
m
2

n
m + 1.

If m is small then this results in a reasonably slow coefficient growth. On the
other hand if m is large compared to n then the modulus bn/m + 1 is smaller
and it is apparently easier to have condition (1) satisfied, as is confirmed by
experiment.

Lemma 1. Let n > m > 1. A necessary condition for (1) is that for every odd
prime p | bn/m + 1 we have 2n | p− 1.

Proof. First we show that b has multiplicative order 2n/m in Zbn/m+1. Clearly

we have bn/m ≡ −1 mod bn/m+1 so that b2n/m ≡ 1 mod bn/m+1. This shows
that the order of b divides 2n/m so is a power of 2 and hence it is equal to 2n/m.

Since 2 | n/m and x2 ≡ 1 mod 4 for any odd x we have that if b is odd
bn/m + 1 ≡ 2 mod 4 while if b is even bn/m + 1 is odd. Thus that we can write

bn/m + 1 = 2ρpe11 . . . p
ej
j

where the pi, 1 ≤ i ≤ j are distinct odd primes and ρ = b mod 2.
Now we can see via the Chinese Remainder Theorem that there exists an α

such that αm ≡ b mod bn/m + 1 if and only if there exist αi such that αmi ≡ b
mod peii for every i. Further we must have bn/m ≡ −1 mod peii so that b has
order 2n/m modulo peii . This implies αi has order m · 2n/m = 2n modulo peii
and since (Z/peii Z)× is cyclic of order pei−1i (pi − 1) we see that 2n | (pi − 1) by
Lagrange’s Theorem for each 1 ≤ i ≤ j.
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Lemma 2. Let g be an element of order n in Z×4n and let t be an element of
order 2 not in 〈g〉 so that Z×4n = 〈t〉 × 〈g〉. If condition (1) is satisfied for odd
b > 1 and m > 1 then b mod 4n is an element of the subgroup 〈t〉 × 〈gm〉. In
particular this implies that b ≡ ±1 mod 4m.

In fact, one may always take g = 3 and t = −1 in the above lemma.

Proof. Using Lemma 1 and the notation from its proof we can write each pi as
2nci + 1 for some natural number ci. This implies that

bn/m + 1 = 2

j∏
i=1

(2nci + 1)ei ≡ 2 mod 4n

and hence bn/m ≡ 1 mod 4n. Therefore the order of b as an element of Z×4n
divides n/m.

Now we have Z×4n = 〈t〉 × 〈g〉 so that for b mod 4n to have an order dividing
n/m it must be an element of the subgroup 〈t〉 × 〈gm〉. This is because this
subgroup certainly only contains elements whose order divides n/m. Further,
Z×4n has exactly 2n/m such elements but this is the size of the subgroup so the
subgroup is exactly all such elements.

For the final part we note, as stated after the lemma, that g = 3 and t = −1
can be taken and that 3m ≡ 1 mod 4m which gives the desired result. We remark
that for any b ≡ ±1 mod 4m it is always the case that bn/m ≡ 1 mod 4n so from
this condition we cannot determine anything more about b modulo 4m but the
condition given modulo 4n is stronger.

Lemma 3. Suppose b, n and m satisfy (1), then so does −b, n,m.

Proof. Since (−b)n/m + 1 = bn/m + 1 when n is a power of two and m < n, we
must show that −1 has an mth root modulo bn/m + 1; we show that αn/m is
such an mth root. We have (αn/m)m = (αm)n/m ≡ bn/m ≡ −1 mod bn/m + 1 as
required. Hence we see that (αn/m+1)m = αnαm = −1 · b as required.

We note that the above proof only required n/m to be even and not equal
to a power of two so applies somewhat more generally.

Our method is particularly friendly towards Gaussian integers. Indeed if m =
2 then one can always take b = 2, as we have seen that α2 = 2 where α is as in (3).
The map (2) then defines an isomorphism between RX2+2 and Z[i]/(2n/2 + 1).
If this ring is not large enough to ensure correct decoding, then one can move to
slightly larger values of b. The next choice which always works is b = 4, where
one can simply take α = 2. Here the ring becomes Z[i]/(2n + 1).

3 Encoding complex-valued input data

In this section we look at the more general problem of encoding floating point
complex numbers. Our approach will be to approximate these complex numbers
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by suitable cyclotomic rationals and then proceed as in Section 2. We have
many choices for such approximations including the choice of m which defines
which root of unity we are working with. We also have the choice between using
integer or rational coefficients for the approximation. Perhaps the most obvious
and straightforward approach is to consider our complex number z written in
terms of its real and imaginary parts, say z = x + yi for some real numbers
x and y. We can then approximate x and y by rationals depending on how
much precision we require. This leads us to considering the case m = 2 and the
question then arises of how to encode fractional coefficients.

3.1 Fractional encoding

Here we consider how to encode a rational number into the space Z/pZ for
some integer p, so that it can then be expanded using the technique in Section
2. This problem was considered by Chen, Laine, Player and Xia in [6, Section
6]. Their approach is to define a finite subset P of Q along with an encoding
map Enc : P → Z/pZ and a decoding map Dec : Enc(P)→ P. The maps should
satisfy, firstly, correctness: Dec(Enc(x/y)) = x/y for x/y ∈ P and secondly, Enc
should be both additively and multiplicatively homomorphic so long as it still
encodes an element of P. The natural choice for the map Enc is Enc(x/y) = xy−1

mod p where the inverse of y is computed modulo p. Care thus needs to be taken
to ensure that y has such an inverse, which is ensured with a careful choice of
P.

In our setting the coefficient modulus p is of the form bn/2 + 1, thus if one
wants roughly the same precision for the integer and fractional parts one can
take for an odd base b

P =

{
c+

d

bn/4
: c, d ∈

[
−b

n/4 − 1

2
,
bn/4 − 1

2

]
∩ Z
}

;

while for even b one can choose

P =

{
c+

d

bn/4−δ
: |c| ≤ (bn/4+δ−1 − 1)b

2(b− 1)
; |d| ≤ (bn/4−δ − 1)b

2(b− 1)
; c, d ∈ Z

}
,

where δ ∈ {0, 1} depending on whether you want one more base-b digit in the
fractional (δ = 0) or integer (δ = 1) part.

The encoding of an element e ∈ P is then computed as −ebn/2 mod bn/2 + 1.
The important thing to note about using this encoding is that for decoding to
work the result of the computations must lie in P. If your input data are complex
numbers and you approximate them using n/4 fractional b-ary digits then it is
likely that after one multiplication the result is no longer in P. Thus one must
appropriately choose the precision with which to encode the data, depending
primarily on the depth of the circuit to be evaluated and the final precision
required. The only constraint is that the precision should be a divisor of bn/4 so
that −ebn/2 is an integer.
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We note that the fractional encoder need not require m to be 2. However
in this case there appears to be no straightforward way to find a good rational
approximation with small numerators and denominators except when the de-
nominators are all equal, in this case if this denominator is r then we simply
require an approximation of rz in Z[ζ] subject to some constraint on the coeffi-
cients. However, the problem of finding such an approximation to our complex
number itself, rather than a scaling, is interesting in its own right as it avoids
the need for encoding fractional values and tracking the denominator inherently
present in such encodings.

3.2 Integer coefficient approximation

The task of finding a cyclotomic integer closely approximating an arbitrary com-
plex number was considered by Costache, Smart and Vivek in [10]. Here the idea
is to solve an instance of the closest vector problem (CVP) in the (scaled) lattice
Z[ζ], where the power basis is scaled and split into real and complex part, which
are approximated by integers. In detail: we choose a scaling constant C > 0, and
define the constants ai and bi for i = 0, . . . ,m − 1, where ai = d<(Cζi)c and
bi = d=(Cζi)c. The lattice we then consider is given by the m rows of the matrix1 0 a0 b0

. . .
...

...
0 1 am−1 bm−1

 .

The target vector in our CVP instance will then be the appropriately scaled real
and complex parts of the complex number z we wish to approximate. Concretely,
this vector is (0, . . . , 0, d<(Cz)c, d=(Cz)c).

If (z0, . . . , zm−1, A,B) is a solution to the CVP instance then we must have

d<(Cz)c ≈ A =

m−1∑
i=0

ziai ≈ <

(
C

m−1∑
i=0

ziζ
i

)

and similarly for the imaginary part. We therefore see that
∑m−1
i=0 ziζ

i is a good
approximation to z. Further, C gives some control over the quality of the approx-
imation, larger C gives a finer-grained lattice but also increases the size of the
last two coefficients of the basis vectors which may lead to a larger distance be-
tween the target vector and the closest lattice point, which in turn makes solving
the CVP instance harder and negatively affects the quality of our approximation
of Cz.

In [10] the authors solve this CVP instance using the embedding technique.
Namely they attempt to solve the shortest vector problem in the lattice spanned
by the rows of 

1 0 a0 b0 0
. . .

...
...

...
0 1 am−1 bm−1 0
0 · · · 0 d<(Cz)c d=(Cz)c T


8



for some non-zero constant T . With suitable parameter choices, performing LLL
reduction on this lattice will return a basis of short vectors for this lattice, among
which at least one has ±T in the final coordinate. The remaining coefficients then
give plus or minus the target vector minus a close vector.

One issue with the embedding technique is that each new instance of the
CVP problem requires performing lattice reduction which for large m is rather
time-consuming. In typical applications we want to approximate many different
complex numbers, using the same C so only the target vector changes. A more
efficient approach therefore is to perform lattice reduction on the CVP lattice
itself and since this is independent of the target vector it needs only to be done
once so we can spend significantly more time in this step to find a good basis
of this lattice. We can then apply a technique such as Babai’s nearest plane
algorithm, or Babai’s rounding algorithm, with this reduced basis to find an
approximate closest vector.

4 Adapting the Fan-Vercauteren SHE scheme

In this section we construct a variant of the FV scheme [13] with plaintext
modulus Xm + b following the blueprint given in [6]. We prove correctness of
this scheme and analyze the noise growth induced by homomorphic arithmetic
operations.

4.1 Basic scheme

Writing R = Z[X]/(Xn + 1), the ciphertext space is defined by Rq = R/(q)
for some positive integer q, while the plaintext space is RXm+b = R/(Xm + b).
We will assume that b� q. Recall that in the original FV scheme the plaintext
space is R/(t) for some positive integer t� q. We define the scaling parameter
∆b as

∆b =

⌊
q

Xm + b
mod (Xn + 1)

⌉
=

− q

bn/m + 1

n/m∑
i=1

(−b)i−1Xn−im

 .
Obviously, ∆b is the analogue of the scalar ∆ = bq/tc in the original FV scheme.
Other parameters are the error distribution χe = D(σ2) on R (coefficient-wise
with respect to the power basis, with standard deviation σ) and the key distribu-
tion χk = U3 which uniformly generates elements of R with ternary coefficients
(with respect to the power basis). We also define the decomposition base w and
denote ` = blogw qc.

The new encryption scheme ComFV is then defined in the same way as FV

where t and ∆ are replaced by Xm + b and ∆b, respectively.

• ComFV.KeyGen( ): Let s ← χk and e, e0, . . . e` ← χe. Uniformly sample ran-
dom a, a0, . . . , a` ∈ Rq and compute bi =

[
−(ais+ ei) + wis2

]
q
. Output the

secret key sk = s, the public key pk =
(

[−(as+ e)]q , a
)

and the evaluation

key evk = {(bi, ai)}`i=0.
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• ComFV.Encrypt(pk,msg): Sample u← χk and e0, e1 ← χe. Set p0 = pk[0] and
p1 = pk[1], and compute c0 = [∆b ·msg + p0u+ e0]q and c1 = [p1u+ e1]q.
Output ct = (c0, c1).

• ComFV.Decrypt(sk, ct): Return msg′ =
⌊
Xm+b
q [c0 + c1s]q

⌉
mod (Xm + b).

The security of this scheme is based on the same argument as of the orig-
inal FV scheme. In particular, it is hard to distinguish the public key pk and
ciphertext pairs from uniform tuples according to the decision version of the
Ring-LWE problem [19]. The evaluation key evk does not leak any information
about the secret key as long as a circular security assumption holds [13].

For an element a ∈ K := Q[x]/(f(x)) the canonical (infinity) norm of a is
defined as

‖a‖can∞ =
∥∥(a(ζ), a(ζ3), . . . , a(ζ2n−1)

)∥∥
∞ .

In Appendix A we state some properties of the canonical norm which will be used
throughout this section. To verify correctness we use the notion of invariant noise
introduced in [6]. The invariant noise of a ciphertext ct = (c0, c1) encrypting a
plaintext msg ∈ RXm+b is an element v ∈ K with the smallest canonical norm
such that

Xm + b

q
· [c0 + c1s]q = msg + v + g(Xm + b) (4)

for some g ∈ R. Then decryption works correctly when ‖v‖can∞ < 1/2 that is
supported by the following theorem.

Theorem 1 (Decryption noise). Let ct be an encryption of the plaintext
element msg ∈ RXm+b such that its invariant noise v satisfies ‖v‖can∞ < 1/2.
Then ComFV.Decrypt(sk, ct) = msg.

Proof. Computing ComFV.Decrypt(sk, ct), we have using the definition of the
invariant noise

msg′ =

⌊
Xm + b

q
[ct[0] + ct[1] · s]q

⌉
mod (Xm + b)

= bmsg + v + g(Xm + b)e mod (Xm + b)

= msg + bve

for some g ∈ R and since ‖v‖∞ ≤ ‖v‖
can
∞ < 1/2 we have bve = 0. Thus

msg′ = msg.

To show that v is small enough, we need an upper bound on the initial
invariant noise size depending on the scheme parameters. For this purpose, we
use the heuristic approach of Gentry et al. [16]. This approach relies on the
average distributional analysis, which estimates the expected size of the invariant
noise in the canonical embedding norm.

Recall that the Hamming weight of a plaintext msg ∈ RXm+b is bounded by
Nb. In addition, ‖msg‖∞ ≤ b/2 for even b and ‖msg‖∞ ≤ (b+1)/2 for odd b with
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at most one coefficient reaching this bound. Hence, ‖msg‖can∞ ≤ Nb(b+1)/2. Now,
we have all the ingredients to define the scheme parameters supporting correct
decryption.

Fresh noise heuristic. Let ct = ComFV.Encrypt(pk,msg) be a fresh ciphertext.
Set c0 = ct[0], c1 = ct[1], and p0 = pk[0], p1 = pk[1]. We have, working modulo
(Xm + b), that

Xm + b

q
· [c0 + c1s]q =

Xm + b

q
· (∆b ·msg + p0u+ e0 + p1us+ e1s) (5)

For some polynomial g ∈ K with ‖g‖∞ ≤ 1/2,

∆b(X
m + b)

q
=

(
q

Xm + b
+ g

)
· X

m + b

q
= 1 +

g(Xm + b)

q
.

Thus we can take ρ = g(Xm + b) ∈ K and

‖ρ‖can∞ = ‖g(Xm + b)‖can∞ ≤ (b+ 1)
√

3n, (6)

where the last inequality holds with very high probability due to g(X)← Urnd;
see Appendix A. Now, we can expand (5) as follows

Xm + b

q
· [c0 + c1s]q = msg ·

(
1 +

ρ

q

)
+
Xm + b

q
· (p0u+ e0 + p1us+ e1s)

= msg +
ρ

q
·msg +

Xm + b

q
· ((−as− e)u+ aus+ e1s)

= msg +
ρ

q
·msg +

Xm + b

q
· (−eu+ e1 + e2s)

Here, the noisy term is v = (ρ ·msg + (Xm + b) · (−eu+ e1 + e2s))/q. Given
(6) and the canonical norm analysis in Appendix A, it follows that

‖v‖can∞ ≤ 1

q
·
(

(b+ 1)Nb
√

3n · b+ 1

2
+ 6(b+ 1)

√
n
√
σ2(4n/3 + 1)

)
=
b+ 1

q
·

(√
3n

2
· (b+ 1)Nb + 2σn

√
12 +

9

n

)
.

4.2 Homomorphic operations

In this section we show how homomorphic addition and multiplication are per-
formed in the new scheme. We prove correctness of these operations and estimate
the invariant noise growth. Throughout this section, Ct(msg, v) denotes a cipher-
text encrypting message msg ∈ RXm+b with invariant noise v.

Addition is the coordinate-wise sum of corresponding ciphertext components:

• ComFV.Add(ct0, ct1): Return ([ct0[0] + ct1[0]]q , [ct0[1] + ct1[1]]q).

11



It follows immediately from (4) that the invariant noise grows additively as
in the lemma below.

Lemma 4 (Addition noise). Given two ciphertexts ct1 = Ct(msg1, v1) and
ct1 = Ct(msg2, v2), the function ComFV.Add(ct1, ct2) returns a ciphertext ctAdd =
Ct(msg1 + msg2, vAdd) with ‖vAdd‖can∞ ≤ ‖v1‖can∞ + ‖v2‖can∞ .

Multiplication consists of two steps. The first one, denoted ComFV.BMul, re-
turns the coefficients of the ciphertext product when expressed as of a polynomial
in s, namely of (ct0[0] + ct0[1]s)(ct1[0] + ct1[1]s). The second step then maps
the degree two term back to degree one using the relinearization technique.

• ComFV.BMul(ct0, ct1): Compute c0 =
[⌊

Xm+b
q · ct0[0] · ct1[0]

⌉]
q
,

c1 =
[⌊

Xm+b
q · (ct0[0] · ct1[1] + ct0[1] · ct1[0])

⌉]
q

and c2 =
[⌊

Xm+b
q · ct0[1] · ct1[1]

⌉]
q
.

Return ctBMul = (c0, c1, c2) .
• ComFV.Relin(ctBMul, evk): Writing ctBMul = (c0, c1, c2), expand c2 in base w,

namely c2 =
∑`
i=0 c2,iw

i with c2,i ∈ Rw. Compute

c′0 =

[
c0 +

∑̀
i=0

evk[i][0] · c2,i

]
q

, c′1 =

[
c1 +

∑̀
i=0

evk[i][1] · c2,i

]
q

and output cRelin = (c′0, c
′
1).

• ComFV.Mul(ct0, ct1, evk): Return cMul = ComFV.Relin(ComFV.BMul(ct0, ct1), evk).

To estimate the noise growth of multiplication, we analyze each step above
separately. First, we provide a heuristic upper bound on the noise introduced by
ComFV.BMul.

Noise heuristic after ComFV.BMul. Given two ciphertexts ct1 = Ct(msg1, v1) and
ct1 = Ct(msg2, v2), the function ComFV.BMul(ct1, ct2) returns a triple ctBMul =
(c0, c1, c2) According to the description of ComFV.BMul, every component ci of
ctBMul contains a rounding error ri, ‖ri‖∞ ≤ 1/2. Thus, decrypting ctBMul leads
to

Xm + b

q
·
[
c0 + c1s+ c2s

2
]
q

=

(
Xm + b

q

)2

· ct1(s) · ct2(s) + r + g(Xm + b),

where r = (Xm + b)(r0 + r1s + r2s
2)/q and g ∈ R. According to Appendix A,

the variance of
∥∥r0 + r1s+ r2s

2
∥∥can
∞ is equal to n/12 +n2/18 +n3/27. It follows

that

‖r‖can∞ ≤ b+ 1

q
6
√
n/12 + n2/18 + n3/27

=
b+ 1

q

√
3n+ 2n2 + 4n3/3
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Since (Xm + b) · cti(s)/q = msgi + vi + gi(X
m + b) for some gi ∈ R, expanding

the previous expression results in

Xm + b

q
·
[
c0 + c1s+ c2s

2
]
q

= msg1 ·msg2 + v2(msg1 + g1(Xm + b))

+ v1(msg2 + g2(Xm + b))

+ v1v2 + r

+ (msg1 · g2 + msg2 · g1 + g)(Xm + b)

+ g1g2(Xm + b)2

= msg1 ·msg2 + vBMul + h(Xm + b).

Notice that cti[0] and cti[1] should be indistinguishable from samples generated
by Uq according to the decision Ring-LWE problem. The variance of cti[0] +
cti[1] · s is thus q2n/12 + q2n2/18. Hence, it follows

‖msgi + gi(X
m + b)‖can∞ =

∥∥∥∥Xm + b

q
· cti(s)− vi

∥∥∥∥can
∞

≤ b+ 1

q
· q
√

3n+ 2n2 + ‖vi‖can∞

= (b+ 1)
√

3n+ 2n2 + ‖vi‖can∞ .

Hence, the noisy term vBMul satisfies

‖vBMul‖can∞ ≤ ‖v2‖can∞ ·
(

(b+ 1)
√

3n+ 2n2 + ‖v1‖can∞
)

+ ‖v1‖can∞ ·
(

(b+ 1)
√

3n+ 2n2 + ‖v2‖can∞
)

+ ‖v1‖can∞ · ‖v2‖can∞ +
b+ 1

q

√
3n+ 2n2 + 4n3/3.

Finally, we obtain

‖vBMul‖can∞ ≤ (b+ 1)
√

3n+ 2n2 (‖v1‖can∞ + ‖v2‖can∞ ) + 3 ‖v1‖can∞ · ‖v2‖can∞ (7)

+
b+ 1

q

√
3n+ 2n2 + 4n3/3

with very high probability.

Next, we provide a heuristic upper bound on the noise introduced after re-
linearization.

Noise heuristic after ComFV.Relin. Given a triple ct = (c0, c1, c2) encrypting
a message msg and containing noise v, the relinearization function returns a
ciphertext ctRelin = Ct(msg, vRelin). As above, we scale down the output of
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relinearization

Xm + b

q
· [ctRelin(s)]q =

Xm + b

q
· [c′0 + c′1s]q

=
Xm + b

q
·

(
c0 + c1s+ c2,i

∑̀
i=0

evk[i][0] + evk[i][1] · s

)
+ g(Xm + b)

=
Xm + b

q
·

(
c0 + c1s−

∑̀
i=0

eic2,i + s2
∑̀
i=0

wic2,i

)

+

(∑̀
i=0

gic2,i + g

)
(Xm + b).

Recall that by definition
∑
i w

ic2,i = c2. Thus, replacing
∑
i gic2,i + g by g̃, we

obtain for some h ∈ R

Xm + b

q
· [ctRelin(s)]q =

Xm + b

q
·

(
c0 + c1s+ c2s

2 −
∑̀
i=0

eic2,i

)
+ g̃(Xm + b)

= msg + v − Xm + b

q
·
∑̀
i=0

eic2,i + (g̃ + h)(Xm + b)

As a result, vRelin = v − Xm+b
q ·

∑`
i=0 eic2,i. Given that c2,i’s look uniformly

random in Rw, the variance of
∑`
i=0 eic2,i is equal to (`+ 1)(wσn)2/12. Hence,

we obtain

‖vRelin‖can∞ ≤ ‖v‖can∞ +
b+ 1

q
·
∑̀
i=0

‖eic2,i‖can∞

≤ ‖v‖can∞ +
b+ 1

q
· 6σnw

√
`+ 1

12
.

As a result, the relinearization noise satisfies

‖vRelin‖can∞ ≤ ‖v‖can∞ +
b+ 1

q
· σnw

√
3(`+ 1) (8)

with very high probability.

Noise heuristic after ComFV.Mul. Combining the two previous heuristics (7)
and (8), we deduce the total noise growth after homomorphic multiplication.
Given two ciphertexts ct1 = Ct(msg1, v1) and ct1 = Ct(msg2, v2), the function
ComFV.Mul(ct1, ct2, evk) outputs a ciphertext ctMul = Ct(msg1 ·msg2, vMul) with

‖vMul‖can∞ (b+ 1)
√

3n+ 2n2 (‖v1‖can∞ + ‖v2‖can∞ ) + 3 ‖v1‖can∞ · ‖v2‖can∞

+
b+ 1

q

√
3n+ 2n2 + 4n3/3 +

b+ 1

q
· σnw

√
3(`+ 1)
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with very high probability. We note that the dominating term here is the first
term and not the term containing the product of the canonical norms of the
multiplicands since the canonical norms are smaller than 1/2 when the ciphertext
can be decrypted correctly.

5 Application to Image Processing

In this section we apply the ComFV scheme to the image processing use case [10].
For this application, as with any other, we need to take into account two con-
straints regarding computation correctness. Firstly, the coefficients of encrypted
encodings can increase in absolute value after arithmetic operations and reach
some bound, say, B. To decode these resulting encodings, B must be smaller
than (bn/m + 1)/2 as described in Section 3. Secondly, the invariant noise of
encryptions grows as well according to the heuristic estimates of Section 4. To
decrypt the resulting output, this noise should be smaller than 1/2 as shown in
Theorem 1.

Homomorphic Discrete Fourier Transform. We calculate the parameters of the
new scheme which are compatible with the image processing pipeline given
in [10].

The circuit takes input images as 8-bit integer vectors a ∈ Zd for some
d | m. Then, it performs the discrete Fourier transform (DFT), F , that maps

a = (a0, . . . , ad−1) to a vector a′ ∈ Zd such that a′[j] =
∑d−1
i=0 aiζ

ij
d , where ζd is

a primitive d-th root of unity. The resulting vector is then multiplied coordinate-
wise by some encrypted 8-bit integers and mapped back to Zd via the inverse
DFT.

Using the ComFV scheme, decoding is correct as long as bn/m + 1 > 217d2, for
details see [10]. Notably, scalar multiplication by a root of unity is no longer noise
preserving as in [10], where ζim is encoded by some power of X. According to (2),
ζim is mapped to some polynomials z(X) such that ‖z‖can∞ ≤ bn/2m. Therefore,
the canonical norm of the invariant noise is increasing after every multiplication
by ζim.

Computing F and F−1, we resort to the mixed Fourier transform (MFT)
method that combines both the fast Fourier transform (FFT) and the naive
Fourier transform (NFT). In the NFT, the input vector is multiplied by a ma-

trix F =
(
ζijd

)
i,j

that needs O(d2) multiplications and only one multiplicative

level. The FFT method calls recursively smaller size DFT’s such that the ith
coordinate of the DFT output is then given as

F(a)[i] = F(a0, . . . , ad/2−1) + ζid · F(ad/2, . . . , ad−1).

The FFT reduces the number of multiplications to O(d log d) but needs O(log d)
multiplicative levels. Thus, the FFT introduces more noise than the NFT but
it is computationally faster. The MFT approach consists in computing the FFT
recursion up to some dimension d̃ ≤ d and then computing NFT.
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We applied the ComFV scheme to 6 DFT dimensions d given in [10]. As shown
in Table 1, the ciphertext size is reduced in all cases. However, only the FFT
method was used in [10] while we resort sometimes to a slower MFT circuit for
d ∈ 28, 212, 213.

Table 1. Ciphertext size comparison between our encoding and [10]. All parameters
are taken to be compatible with a d-dimensional DFT circuit and the security level λ.

d d̃ b n log q λ ct size ct size[10]

24 1 30 212 149 119 149 kB 300 kB
26 1 30 212 149 119 149 kB 300 kB
28 24 30 213 147 438 294 kB 300 kB
210 1 132 213 222 206 444 kB 768 kB
212 28 472 214 180 1004 720 kB 768 kB
213 213 ' 222 214 172 1082 688 kB 768 kB

6 Comparison with FV: regular circuits

To estimate the performance of ComFV in a general setting and fairly compare
it with the original FV scheme and the work of [6], we resort to regular circuits
as introduced in [11]. These circuits have already been used in [6] for the same
purpose.

A regular circuit consists of D computational levels where each level contains
A ∈ {0, 3, 10} addition levels, requiring 2A inputs, followed by one multiplication.
Therefore in total the number of inputs required is 2D(A+1). Each circuit input
is given by a complex number with real and imaginary parts from (−U,U) for
some U ∈ {28, 216, 232, 264}. We will always use a precision of 16 fractional bits
in this paper which in the case of a complex number refers to both the real and
complex parts independently.

Our aim is to compare ComFV to the previously best known scheme allowing
native complex inputs as well as to the state of the art when encoding the
real and imaginary parts separately [6]. We will compare this method with our
method where we use the same encoding of the complex number as a cyclotomic
integer. We chose m = 4 as this is the minimal m for which Z[ζ] is dense in C
and it allows us to use b = 4h for some h ∈ N, taking α = 2h/2 if h is even and
α = 2(h(n+4)−4)/8(2hn/4 − 1) if h is odd. We also use m = 4 when using FV and
one may wonder if taking a larger m is better. However, we found that using
larger m in this case gave the same depths and only increased the time to encode
a complex number.

For the current state of the art we use the scheme of Chen et al. [6], which
we call CLPX, and encode the real and imaginary parts of our complex number
separately. Thus an encryption now consists of two ciphertext pairs and addition
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is performed component-wise while we use the Karatsuba algorithm to perform
multiplication using only three calls to the multiplication algorithm of the un-
derlying scheme. We use the same values for n and q for comparison so that
ciphertexts will be twice as large compared to our work. The fractional encoder
is used to encode the real and imaginary parts so we use m = 2 in this case.
For the optimal value of b we restrict our search space to powers of 2, since we
require a precision of 2−16, the simplest way to ensure correct decoding at depth
D is to require 216D | bn/4 so taking b a power of two looks a good fit. We again
compare this approach with ours, in this case we also use the fractional encoder.

We computed the theoretical and heuristic maximal depth of a regular circuit
which can be reached using FV, the CLPX approach of using plaintext modulus
X − b and our ComFV with parameters n, q, σ given in the SEAL library [5] and
the relinearization base w = 232. Our results are presented in Tables 2 and 3.
In the tables we also give a value for b (or t) which allows one to reach this
maximal depth, this b is very often not unique and in this case we give the
smallest b for which there is a decryption error at the next level. To find a
heuristic estimate of the maximal depth that can be reached in each scheme we
take a carefully chosen complex number and use this as the complex number
given for all inputs of the circuit. One reason for this can be seen in the table of
results, Table 3, where we see that for A = 10, depths of 14 can be achieved, this
requires 214·11 = 2154 inputs, meaning using different inputs would be completely
infeasible in practice. Another good reason for choosing all inputs to be the same
is that during addition there is no cancellation occurring, indeed the A levels of
addition simply become the worst case of scaling by 2A. The precise complex
number we chose depends on the encoding scheme but essentially one finds one
with an encoding which has many large coefficients. If the fractional encoder is
used then we take the complex number to be (U −2−16)(1 + i) while when using
the cyclotomic integer approximation approach it is a matter of trial and error
but this need only be done once for each U and m.

From Table 3 we see that in all cases our methods greatly outperform the best
scheme natively encrypting complex numbers. At a minimum we can achieve 5
times the depth and for larger n our method becomes even more efficient as the
amount of plaintext space not being efficiently used only grows in the current
solution. The CLPX method on the other hand is able to achieve slightly larger
depths than our scheme, at most one more for the largest n we consider. Where
our method improves is on efficiency, we effectively halve the ciphertext size and
are expected to be roughly three times faster due to the fact that we can use one
multiplication operation per level whereas the CLPX approach requires three.

7 Conclusion

We constructed a new encoding algorithm for complex data values and a corre-
sponding somewhat homomorphic encryption scheme by utilizing a polynomial
plaintext modulus of the form Xm + b. This choice allows for a much better
use of the available plaintext space and much slower noise growth compared to
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Table 2. Maximal theoretical regular circuit depths of FV (DO) with the approximation
encoding, the CLPX approach encrypting the real and imaginary parts separately
(DM ), ComFV with the approximation encoding (DA) and the fractional encoding (DF )
depending on input size (U), number of additions per level (A), n and q. Corresponding
t and b’s are provided.

n 4096 8192 16384 32768
log q 116 226 435 889

A 0 3 10 0 3 10 0 3 10 0 3 10

U
=

2
8

DO 1 0 0 1 1 1 2 2 1 3 3 2
tO 234 − − 234 240 254 268 286 254 2135 2177 2128

DM 4 3 3 9 8 6 12 12 11 15 14 14
bM 2 2 2 23 22 2 29 29 25 233 217 217

DA 5 4 3 9 8 6 11 11 10 14 13 12
bA 22 22 22 26 24 22 210 212 210 234 224 220

DF 5 4 3 9 8 7 11 11 10 14 14 13
bF 2 2 2 25 23 22 29 29 28 233 233 229

U
=

2
1
6

DO 1 0 0 1 1 1 2 2 1 3 3 2
tO 234 − − 234 240 254 267 285 254 2134 2176 2127

DM 4 3 3 9 8 6 12 12 11 14 14 14
bM 2 2 2 23 22 2 29 29 25 218 218 218

DA 5 4 3 9 8 6 11 11 10 14 13 12
bA 22 22 22 26 24 22 210 212 210 234 224 220

DF 5 4 3 9 8 7 11 11 10 14 13 12
bF 2 2 2 25 23 23 29 212 210 234 223 219

U
=

2
3
2

DO 0 0 0 1 1 1 1 1 1 2 2 2
tO − − − 265 271 285 265 271 285 2130 2148 2190

DM 4 3 3 8 8 6 11 11 10 14 14 13
bM 2 2 2 23 23 2 29 29 25 234 234 217

DA 5 4 3 8 8 6 11 10 9 13 13 12
bA 22 22 22 26 26 22 218 210 28 234 240 228

DF 5 4 3 8 8 6 11 10 9 13 13 12
bF 22 2 2 25 25 22 217 210 27 233 239 227

U
=

2
6
4

DO − − − 0 0 0 1 1 1 2 1 1
tO − − − − − − 2129 2135 2149 2258 2135 2149

DM 4 3 3 8 7 6 10 10 10 13 13 12
bM 2 2 2 25 23 22 29 29 29 233 233 217

DA 4 4 3 7 7 6 10 10 9 12 12 11
bA 22 22 22 26 26 24 218 218 212 234 236 222

DF 4 4 3 7 7 6 10 10 9 12 12 11
bF 22 22 2 25 25 23 217 218 211 233 236 222

existing solutions encrypting complex numbers. As a result, for the same cipher-
text modulus q and degree n, we can homomorphically evaluate between 5 and
12 times deeper circuits compared to existing solutions based on FV and na-
tively encoding complex numbers. In comparison to the state of the art, which
encrypts the real and imaginary parts of the complex numbers separately, our
method reduces the size of ciphertexts by a factor of 2 making our scheme at
least twice as efficient in time and three times more efficient in space.
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A The canonical norm

This appendix closely follows Appendix A.5 of the ePrint version of [6].
Let K = Q[X]/(f(X)) be a cyclotomic number field where, as usual, f(X) =

Xn + 1 is the 2n-cyclotomic polynomial, n a power of two. We denote the ring
of integers of K by R, i.e. R = Z[X]/(f(X)). Let Ra be the reduction of R
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modulo an ideal (a). If a is a natural number Ra = Za[X]/(f(X)) and we take
representatives of Z/aZ from the half-open interval [−a/2, a/2).

For any a =
∑
i aiX

i ∈ K, the infinity norm ‖a‖∞ is defined as maxi |ai|.
We denote by δR the upper bound on ‖ab‖∞ / ‖a‖∞ · ‖b‖∞ for any a, b ∈ R. This
bound is called the expansion factor of R. For a our ring of cyclotomic integers
R, the expansion factor is δR = n. Let ζ is a complex primitive 2n-th root of
unity. We define the canonical norm as

‖a‖can∞ =
∥∥(a(ζ), a(ζ3), . . . , a(ζ2n−1)

)∥∥
∞ .

It is easy to check that the canonical norm satisfies

‖a‖∞ ≤ ‖a‖
can
∞ , ‖a+ b‖can∞ ≤ ‖a‖can∞ + ‖b‖can∞ , ‖ab‖can∞ ≤ ‖a‖can∞ · ‖b‖can∞ .

The last inequality implies that the canonical norm leads to tighter bounds than
the infinity norm [19].

Canonical norm of random polynomials We will need to bound the canoni-
cal norm of random polynomials whose coefficients are generated from a discrete
Gaussian or uniform distributions. We follow a heuristic approach given in [16,
A.5], which was already used in [9, 5, 6] for an analysis of the FV scheme.

Let a ∈ R be a polynomial such that its coefficients are chosen independently
from some zero-mean distribution with standard deviation σ. For this purpose,
we use the following distributions

– a discrete Gaussian distributionD(σ2) with PMF proportional to exp(− |x|
2

2σ2 ),

– the uniform distribution U3 over the ternary set {−1, 0, 1},
– the uniform distribution Uq over Zq,
– the uniform distribution Urnd over the interval (−1/2, 1/2].

By the definition of the canonical norm, we need to compute a(ζi2n). The
evaluation a(ζi) is the inner product between the coefficient vector of a and the
fixed vector

(
1, ζi, . . . , ζi(n−1)

)
, which has Euclidean norm

√
n. Hence, the ran-

dom variable a(ζi2n) has variance V = σ2n by the Cauchy-Schwartz inequality.

When ai ← D(σ2) then the coefficients have variance ' σ2 and thus the
variance of a(ζi2n) is VD ' σ2n. If ai ← U3 then the coefficients have variance
2/3 and thus the total variance is VU3 = 2n/3. By analogy, VUq . q2n/12 as
the ai has variance roughly q2/12. Finally, the variance of ai ← Urnd is equal to
1/12, so VUrnd

= n/12.

Since a(ζi2n) is the sum of independently distributed complex variables, by
the law of large numbers it is distributed similarly to a complex Gaussian random
variable of variance V . Therefore, given that erfc(6) ' 2−55, we can use 6

√
V

as a high-probability bound on a(ζi2n). Since in practice n ≥ 212, this bound is
good enough to claim that ‖a‖can∞ ≤ 6

√
V with very high probability. For the

21



distributions above, we get

‖a‖can∞ ≤ 6σ
√
n, ai ← D(σ2),

‖a‖can∞ ≤ 2
√

6n, ai ← U3,

‖a‖can∞ ≤ q
√

3n, ai ← Uq,

‖a‖can∞ ≤
√

3n, ai ← Urnd.

We also need to bound the canonical norm of a product of two random
polynomials a and b whose coefficients are independently sampled from zero-
mean distributions with variances σ2

1 , σ
2
2 , respectively. Writing the product ab

mod (Xn + 1) with relation to the power basis of R, we obtain a0 −an−1 . . . −a1
...

...
...

an−1 an−2 . . . a0


 b0

...
bn−1

 =

 g0
...

gn−1

 .

Hence, the product coefficients are equal to

gk =

k∑
i=0

aibk−i −
n−1∑
i=k+1

aibk+n−i.

for any k ∈ [0, . . . , n−1]. Since the coefficient distributions are independent and
have zero mean, the product of any pair ai, bj has variance σ2

1σ
2
2 and zero mean.

Hence, the variance of each coefficient gk is equal to nσ2
1σ

2
2 . Following the above

reasoning, the canonical norm of g(ζi) is thus bounded by

‖ab‖can∞ ≤ 6nσ1σ2.

This means that the variance of the coefficients of ue where u ← χk and
e ← χe is approximately 2σ2n/3. We can now give the variance of the term
appearing in the analysis of the decryption noise.

Let e, e1, e2 ← χe and u, s← χk. We have just seen that the variance of the
coefficients of both −eu and e2s is approximately 2σ2n/3 while the variance of
the coefficients of e1 is approximately σ2. Because they are independent, we can
sum the variances to obtain σ2(4n/3 + 1).
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