
Appears in the proceedings of the 26th Network and Distributed System Security Symposium (NDSS), 2019

Data Oblivious ISA Extensions for Side
Channel-Resistant and High Performance Computing

Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, Christopher W. Fletcher
University of Illinois at Urbana-Champaign

{jiyongy2, ljhsiun2, melhajj2, cwfletch}@illinois.edu

Abstract—Blocking microarchitectural (digital) side channels
is one of the most pressing challenges in hardware security today.
Recently, there has been a surge of effort that attempts to block
these leakages by writing programs data obliviously. In this model,
programs are written to avoid placing sensitive data-dependent
pressure on shared resources. Despite recent efforts, however,
running data oblivious programs on modern machines today is
insecure and low performance. First, writing programs obliviously
assumes certain instructions in today’s ISAs will not leak privacy,
whereas today’s ISAs and hardware provide no such guarantees.
Second, writing programs to avoid data-dependent behavior is
inherently high performance overhead.

This paper tackles both the security and performance aspects
of this problem by proposing a Data Oblivious ISA extension
(OISA). On the security side, we present ISA design principles
to block microarchitectural side channels, and embody these
ideas in a concrete ISA capable of safely executing existing data
oblivious programs. On the performance side, we design the OISA
with support for efficient memory oblivious computation, and
with safety features that allow modern hardware optimizations,
e.g., out-of-order speculative execution, to remain enabled in the
common case.

We provide a complete hardware prototype of our ideas, built
on top of the RISC-V out-of-order, speculative BOOM processor,
and prove that the OISA can provide the advertised security
through a formal analysis of an abstract BOOM-style machine.
We evaluate area overhead of hardware mechanisms needed to
support our prototype, and provide performance experiments
showing how the OISA speeds up a variety of existing data
oblivious codes (including “constant time” cryptography and
memory oblivious data structures), in addition to improving their
security and portability.

I. INTRODUCTION

With the rise of cloud computing and internet services,
digital or microarchitectural side channel attacks [1] have
emerged as a central privacy threat. These attacks exploit
how victim and adversarial programs share hardware/virtual
resources on shared remote servers (e.g., an amazon EC2 cloud).
Simply by co-locating to the same platform, researchers have
shown how attackers can learn victim program secrets through
the victim’s virtual memory accesses [2], [3], hardware memory
accesses [4], [5], branch predictor usage [6], [7], arithmetic
pipeline usage [8], [9], [10], speculative execution [11], [12]
and more. Given the many avenues to launch an attack, it
is paramount for researchers to explore holistic and efficient
defensive strategies.

Recently, there has been a surge of work that attempts to
block all digital side channels, on commercial machines, by
writing and compiling programs in a data oblivious fashion
(e.g., [13], [14], [15], [1], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [8], [25]). Data oblivious code, a.k.a. “constant

1 x = 0, y = 64
2 if (secret)
3 x = y
4 z = Memory[x]

(a) Insecure code.

1 x = 0, y = 64
2 z = Memory[x]
3 tmp = Memory[y]
4 z = (secret) ? tmp : z

(b) Equivalent data oblivious code.

Fig. 1: Non-oblivious (1a) and equivalent data oblivious codes (1b).
The word secret denotes private data.

time” or “running programs as circuits,” blocks side channels
by disallowing private data-dependent control flow. Figure 1
gives an example. Figure 1a leaks private information over
microarchitectural side channels—namely, program execution
time (the ‘if-taken’ case executes more instructions) and
memory footprint (if x and y touch different lines in cache).
To block these leakages, a data oblivious program will evaluate
both sides of the branch as shown in Figure 1b. A ternary
operator—e.g., implemented as the x86 cmov instruction or
bitwise operations—chooses the correct final result (Figure 1b,
Line 4). Since executing each side of the branch is independent
of the secret, and the ternary operator does work independent
of the secret, running the code data obliviously does not leak
the secret.

A. Challenges

Despite the promise of data oblivious programs to block
side channels, future progress faces two key challenges.

Security: Existing Instruction Set Architectures (ISAs) provide
no guarantees that instructions used in data oblivious codes
can block leakages over microarchitectural side channels.
For example, if cmov (assumed to be a “secure” ternary
operator in [1], [23], [17], [19]) was ever implemented as
the microcode sequence branch+mov, the secret condition
would leak through branch predictor state and whether hardware
speculation results in a squash. Being ISA-invisible, these
changes can occur at any time. Case in point, Intel has stated
that cmov’s behavior w.r.t. speculation may change in future
processors ([26], Section 3.2).

Beyond cmov, the larger problem is that commercial
ISAs such as x86 give engineers significant rope to perform
data-dependent optimizations during program execution. For
example, it is well known that arithmetic units can sometimes
take data-dependent time [8], [9]. We provide a comprehensive
background on related vulnerabilities in Section III-B. Any
of these software-invisible optimizations can undermine the
security of prior and future work that attempts to write data
oblivious programs.

Performance: Data oblivious codes can incur large per-

1

formance overheads. The reason, once again, is that data
obliviousness does not have ISA-level support. As a result,
programmers are forced to use only the simplest instructions
to achieve data oblivious execution, out of fear that other
instructions will leak privacy. For example, data oblivious codes
must make two memory accesses in Figure 1b out of fear that
a single access will reveal the address through the processor
cache, or other, side channel. This overhead scales with deeper
data-dependent control flow and larger data sizes.

B. This Paper

In this paper, we tackle both the security and performance
aspects of this problem by developing a novel type of ISA
extension which we call a Data Oblivious ISA extension (OISA).
To our knowledge, this represents the first foundation for writing
and executing secure, portable and performant data oblivious
code on commercial-class (out-of-order, speculative) processors.
To this end we make the following contributions:

1.) Design principles for OISA design. Our key idea is to
explicitly specify security guarantees at the ISA level, while
decoupling those guarantees from the implementation details
of a particular processor. Our abstraction is two parts. First,
the ISA denotes data to be Public or Confidential. Second, the
ISA denotes each instruction operand to be Safe or Unsafe.
If an instruction with Safe operands consumes Confidential
data, processor implementations (microarchitectures) must hide
attacker-observable data-dependent side effects stemming from
that instruction’s execution. If an instruction with Unsafe
operands consumes Confidential data, the hardware must throw
an exception before data-dependent behavior can occur. If either
type of operand consumes Public data, the hardware is free to
apply optimizations to improve performance.

Importantly, how protecting Safe operands is implemented
is left to the hardware designer, who can devise efficient pro-
tections depending on each microarchitecture (e.g., by breaking
the instruction into simpler data oblivious instructions [8]
or using hardware partitioning [27] or using cryptographic
techniques [23]). In all cases, the programmer works with a
simple, portable guarantee.

2.) Design of a concrete OISA. With these principles, we
define a set of instructions that can serve as the foundation
for the rich line of ongoing work in data oblivious program-
ming [14], [13], [17], [18], [19], [20], [24], [23], [22], [1], [21],
[8], [25]. Beyond Turing completeness and security, we also
want to reduce the performance overhead common with data
oblivious code. To that end, we provide additional instructions
that implement efficient memory oblivious computation [23],
[21] (featuring loads/stores with private addresses). Given the
principles above, this extension is conceptually simple: instead
of emulating memory obliviousness with dummy memory
operations (Figure 1b), we designate a new load instruction
whose address operand is Safe, which gives hardware designers
the ability to build secure and efficient implementations, e.g.,
using partitioning, for that specific operation.

Load instructions with Safe addresses are just one example
of how to accelerate data oblivious code with an OISA. A
key insight is that many data oblivious codes share common
kernels (e.g., sorting [23], [19], [28]) that often become
performance bottlenecks due to the cost of implementing them

obliviously with simple instructions. By encapsulating those
larger operations into new instructions with Safe operands,
an OISA can achieve constant factor or even asymptotic
performance improvements. For example, a sort implemented
obliviously with simple instructions may cost O(n∗ log2 n) time
if implemented as a bitonic sort [29]. On the other hand, if sort
is specified as an instruction in the OISA, an implementation
based on hardware partitioning can achieve O(n∗ logn) time
if implemented as a constant time merge sort.

3.) Hardware prototype on an out-of-order, speculative
processor. To show that our ideas are practical, we prototype
all hardware changes needed to support our ISA on top of
the RISC-V BOOM processor (for “Berkeley Out-of-Order
Machine”) [30]. BOOM is the most sophisticated open RISC-V
processor, featuring modern performance optimizations such
as speculative and out-of-order execution, and is similar to
commercial machines that run data oblivious code today.1

4.) Formal analysis: non-interference on out-of-order, spec-
ulative execution-class processors. In parallel to our hardware
prototype, we develop a formal analysis that models an abstract
BOOM-class processor (out-of-order, speculative, superscalar),
and describe how to map the abstract BOOM to our concrete
BOOM prototype. A key insight enabling (and simplifying)
this analysis is that with the OISA, speculative execution need
not be handled as a new case. In particular, our OISA requires
the hardware to perform local permissions checks on each
instruction as it executes, and these checks need not be aware
of whether each instruction is speculative, executed out-of-
order, etc. Through this formalism, we prove that the OISA
provides a basis to satisfy strong security definitions such as
non-interference [34] on advanced machines. Importantly, we
achieve this result while allowing high performance hardware
optimizations (e.g., out-of-order, speculative execution) to
remain enabled in the common case and without ever requiring
hardware flushes to structures such as the cache or branch
predictors [35], [36].

5.) Evaluation. We evaluate our proposal in terms of hardware
area and performance over a range of existing data oblivious
programs (including linear algebra, data structures, and graph
traversal). Area-wise, our proposal takes < 5% the area of the
unmodified BOOM processor. Performance-wise, our ISA and
hardware implementation provides an 8.8×/1.7× speedup on
small/large data sets, respectively, relative to data oblivious code
running on commodity machines (and with the security and
portability benefits stated before). We also show case studies,
where our ISA speeds up constant time AES [37], [38] by 4.4×
and the memory oblivious ZeroTrace [23] library by 4.6× to
several orders of magnitude, depending on parameters.

We have open-sourced our prototype design on the RISC-V
BOOM processor at https://github.com/cwfletcher/oisa.

1We note that prior work [31], [32], [33] requires the use of discrete co-
processors with simple microarchitecture. To match modern cloud deployments,
our goal is to support concurrent execution of many processes on advanced
microarchitectures.

2

https://github.com/cwfletcher/oisa

II. BACKGROUND AND THREAT MODEL

A. Hardware Terminology

1) Out-of-order execution: Modern commercial processors
such as the RISC-V BOOM [30] dynamically schedule and
execute data-independent instructions in parallel and out of
program order to improve performance. Instructions are fetched
and issued (enter the scheduling system) in program order,
execute (perform their operations and produce their results)
possibly out of program order, and finally retire (make their
operation externally visible by irrevocably modifying the
architected system state) in program order.

2) Speculative execution: Speculative execution improves
performance by executing instructions whose validity is un-
certain instead of waiting to determine their validity. If such
a speculative instruction turns out to be valid, it is eventually
retired; otherwise, it is squashed and the processor’s state is
rolled back to a valid state. (As a byproduct, all following
instructions also get squashed.) That is, a squash causes a large
pipeline disturbance. There are multiple ways an instruction
stream can be speculative—e.g., due to branches, memory
accesses [39], or even arithmetic instructions [40]—discussed
further in Section III-B.

More details on commodity out-of-order pipeline designs
(BOOM as an example) are given in Section V-A.

B. Threat Model

We consider the setting where a victim program runs on
a shared machine in the presence of adversarial software.
The adversary’s goal is to learn private data in the victim
program through digital side channels. For example, private
inputs contributed by another party or secret program state
(e.g., a cryptographic key). The program itself is considered
public. We trust the processor hardware and that the victim
program is correctly using the OISA.

We defend against two classes of adversary: supervisor-
level (Ring-0) or user-level (Ring-3) software. In both cases,
we strive to block digital side channels that could be exploited
by the standard Intel SGX adversary used in prior work on data
oblivious programming [19], [1], [23], [24], [16], [17], [18],
[21]. This adversary is supervisor-level software that controls
when victim threads run, and therefore can monitor/influence
the victim’s hardware resource utilization (e.g., monitor/prime
the cache/branch predictors [4], [12], [36]) at near-perfect
resolution (e.g., via [41], [2], [3]). By extension, this adversary
can monitor the victim’s termination time, and determine when
a precise exception [1], [42] or system call [43] occurs. We
don’t make assumptions on where the victim runs relative to
adversarial code (e.g., as an adjacent SMT context, adjacent
core, etc.). If the adversary is actually user-level software, our
threat model is strictly conservative.2

In the case of a supervisor-level adversary, we assume the
victim is running within a virtual shielding system, such as an
SGX enclave [45], [46], to prevent direct inspection/tampering
on victim data. The OISA is orthogonal to which virtual
shielding system is used, in the sense that shielded programs can

2Note that even user-level adversaries have been shown to be surprisingly
powerful in their ability to monitor digital side channels [44].

execute oblivious instructions regardless of the exact shielding
system implementation. We will therefore only discuss the
OISA, independent of the shielding system, for the rest of the
paper.

Non-goals. Physical side channels (e.g., power [47] or EM [48])
are out of scope. Similar to previous works on data oblivious
programming, we also do not consider integrity of computation.
Integrity relies on orthogonal mechanisms, e.g., traditional or
SGX-augmented process/memory isolation.

III. DATA OBLIVIOUS EXECUTION

We now give background on data oblivious execution and
give examples for where prior work on commercial ISAs (e.g.,
x86) and modern machines (e.g., speculative, out-of-order) is
vulnerable to attack.

A. Security Definition

Data oblivious execution satisfies computational indistin-
guishably3 of program traces, once the trace is projected by
an appropriate observability function.

Definition III.1. (Confidential input privacy). Given a pro-
gram λ with Public (non-sensitive) input x and Confidential
(sensitive) input y, O(µArch(λ (x,y))) = X = {X0,X1, . . . ,XM}
represents the program’s observable execution trace (projected
through function O) when running on a processor µArch. What
information is contained in each Xt (for each time step t)
depends on the observability function O. W.l.o.g. we will treat
x and y as fixed-size arrays, thus λ can accept an arbitrary
number of Public and Confidential inputs. Privacy for the
Confidential inputs then requires:

∀x ∈ DataP, ∀y,y′ ∈ DataC :
O(µArch(λ (x,y)))' O(µArch(λ (x,y′)))

where ' denotes computational indistinguishability, and DataP
and DataC denote the space of Public and Confidential inputs,
respectively.

We denote Definition III.1 parameterized by an observability
function O (which models the adversary’s view) and a specific
microarchitecture µArch as Oblivious[O,µArch], dropping
µArch when it is clear which microarchitecture we are referring
to.

Existing data oblivious programs written for commodity
machines demand a rich observability function that reveals fine-
grain details about processor state [14], [13], [17], [18], [19],
[20], [24], [23], [22], [1], [21], [25]. The reason is that machines
today are shared, and adversaries from Section II-B can monitor
internal activity such as caches and pipeline behavior. It is
therefore useful to define the most conservative observability
function that could apply to adversaries from Section II-B:

Definition III.2. (BitCycle observability: Security labels at bit-
level spatial granularity, cycle-level temporal granularity). Let
St = {0,1}N denote the processor state during clock cycle
t, where state includes all on-chip storage (e.g., flip-flops,

3Here, computational indistinguishability (adopted from the Oblivious RAM
literature [49]) is synonymous with computational non-interference [50], and
the definition can be easily changed to require strict non-interference [34] if
the program does not require computational assumptions.

3

SRAM). Si
t denotes the value of the i-th bit in cycle t. Given

a program execution λ (x,y), BitCycle(µArch(λ (x,y))) = X =
{X0,X1, . . . ,XM} where Xt = {0,1}N and X i

t = 1 indicates Si
t

contains an explicit flow4 of Confidential data in cycle t (X i
t = 0

otherwise).

The idea with this definition is to model an adversary that
cannot directly inspect the logic value in each memory cell,
but can measure resource usage (i.e., when each cell is or is
not being used for another program’s execution). For example,
writing data d to the processor cache at address a in cycle
t sets bits in Xt , corresponding to cache memory cells at a,
if either d or a were computed based on Confidential data.
BitCycle, specifically, implies the adversary can monitor every
possible hardware resource pressure (e.g., flip-flop level pipeline
utilization, cache footprint, etc.) every cycle. Courser models
are also possible depending on the anticipated adversary or
existing defense mechanisms (e.g., [27]). This paper’s goal is
to provide a basis for programs to achieve Oblivious[BitCycle],
or a courser model, on advanced commercial-class machines.

B. Security Issues in Existing Data Oblivious Code

Existing data oblivious codes are written extremely con-
servatively to remove code constructs that blatently violate
Oblivious[BitCycle]. For example, prior works rely solely
on a carefully chosen subset of arithmetic operations (e.g.,
bitwise operations), conditional moves, branches with data-
independent outcomes, jumps with public destinations, and
memory instructions with data-independent addresses [13], [14],
[15], [1], [16], [17], [18], [19], [20], [21], [22], [23], [24], [8],
[25].

It is important to understand when this isn’t sufficient for
security. To that end, we now detail 11 possible attack vectors
on today’s data oblivious code. Importantly, we do not list many
popular attacks (e.g., prime+probe in the cache [4]) as these are
defeated by writing programs in the style described above. Yet,
attacks can still occur because the hardware can apply invisible
optimizations to undermine software-level transformations.
In the following, we describe attack vectors known to be
implemented today, and also proposals whose implementation
status is unknown. However, importantly, each optimization
could be implemented at any time, breaking existing codes.

Vectors 1, 2, 3: branch, jump, memory speculation: While
transient execution attacks [12], [11] are known to impact
general purpose code, their impact on data oblivious code has
not been adequately studied. We make an important observation
that data oblivious code security is undermined even by ‘honest’
speculative execution. By ‘honest’, we mean the speculation
is not intentionally being controlled in a malicious way, e.g.,
as in [12]. The root problem is that modern ISAs have limited
resources (e.g., ISA-level registers) and executing unintentional
instructions can cause secrets stored in aliased resources to be
exposed accidentally.

4Formally: Let each memory cell Si take two inputs: data (ini) and write
enable (wei) where both are functions (combinational logic) taking a subset of
bits in S as input. For time t = 0: S0 (i.e., at t = 0) is initialized with starting
program state, X i

0 = 1 iff Si
0 is Confidential data. For time t > 0: X i

t = 1 if
(a) wei outputs 0 in cycle t and X i

t−1 = 1 or (b) wei outputs 1 in cycle t and
X j

t−1 = 1 for some j in the inputs to Si (ini or wei). We note that implicit
flows [51] are accounted for once BitCycle is applied to Definition III.1.

Consider a toy example for data oblivious decryption,
exploiting conditional branch misprediction (denoted Vector
1):

1 for (i = 0; i < NUM_ROUNDS; i++)
2 state = OblDecRound(state, rkey[i])
3 declassify(state)

A legal data oblivious code can implement decryption round
logic data obliviously, with the round keys rkey considered
Confidential (Definition III.1), and wrap the round in a data-
independent branch to reduce code footprint. Once decryption
is complete, the program may use the plaintext in a non-
oblivious way, e.g., by using it as an address to lookup a
record in cache (denoted declassify(state)). Such a
non-oblivious operation can reveal information related to the
decryption key on a speculative machine. Specifically, if the
branch mispredicts “not taken” (e.g., while the predictor is
training), state is prematurely exposed before all rounds
complete, allowing an attacker to perform cryptanalysis on
encryption round intermediate state.

Removing branches or disabling branch speculation is not
sufficient to fix this issue, as other forms of speculation (e.g.,
unconditional branches/jumps, memory disambiguation [11]—
denoted Vectors 2 and 3) cause similar issues on legal data
oblivious code.

Vectors 4, 5: sub-address optimizations: Numerous data
oblivious codes, e.g., “constant time” cryptography [52], [53],
make an assumption that modulating certain bits in a memory
address (e.g., the bits indicating offset within a cache line) does
not create observable behaviors. This assumption doesn’t hold
on some microarchitectures due to hardware optimizations such
as speculative store forwarding (Vector 4) and cache banking
(Vector 5), and attacks exploiting these features have been
shown to lead to full cryptographic breaks [54], [55].

Vector 6: input-dependent arithmetic: It is well known that
complex arithmetic operations (e.g., multiply/divide, floating
point square root) exhibit observable data-dependent timing
based on their operands [9], [8]. While prior work can
mitigate these threats by re-writing complex arithmetic using
bitwise operations, this can incur over an order of magnitude
performance overhead depending on the operation [8].

Vector 7: microcode: Even simple instructions may be
decomposed into simpler instructions, called micro-ops, before
being executed. In some cases, micro-op conversion can
create data-dependent behavior. For example, cmov (which
implements conditionals based on Confidential values [1], [23],
[17], [19]) can be broken into a branch+mov. There is
evidence to suggest that this transformation will be applied in
future Intel processors ([26], Section 3.2). This breaks privacy:
the branch direction will be speculatively guessed and whether
a misprediction occurs changes program timing due to the
squash (Section II-A).

Vectors 8, 9, 10, 11: data-based compression, data-based
speculation, silent stores: Finally, there are a number of pro-
posals whose implementation status on commercial machines
is unknown. In register file [56] and cache [57] compression
(analogous to OS-level page de-duplication [58]), register file
and cache pressure is a function of program data (Vectors 8 and
9, respectively). Value prediction [40] (Vector 10) speculates

4

on the result of a memory load or long-running arithmetic
operation, causing a squash if the prediction is incorrect
(Section II-A). Finally, silent stores [59] (Vector 11) remove
redundant store operations (impacting cache pressure) when the
hardware detects the memory already contains the same value
at the same address. What all of the above have in common
is that they are program data-centric optimizations that don’t
discriminate between Public and Confidential data. Thus, they
can undermine any data oblivious code written in any style.

Takeaway: Not only is writing data oblivious code difficult,
it is fraught with danger due to subtle ISA-invisible optimiza-
tions such as those given above. Our proposed OISA gives
hardware the visibility it needs to decide when and when not
to apply leaky performance optimizations (such as those above)
and enables richer hardware support for data oblivious code to
speedup core operations such as oblivious memory.

IV. DATA OBLIVIOUS ISAS

We now describe data oblivious ISA (OISA) design prin-
ciples and give an example concrete OISA that we will later
implement on top of the RISC-V BOOM.

A. Design Principles

We had two primary goals in designing an OISA. First, the
ISA should expose security guarantees in a microarchitecture-
independent way. A single ISA may be embodied in many
different microarchitectures (within and across processor gen-
erations), each with different organizations and optimizations.
It isn’t reasonable to ask software to reason about each
microarchitecture: a developer who writes a data oblivious
code correctly once should have confidence that security will
hold on each microarchitecture. Second, the ISA should not pre-
clude modern hardware performance techniques, except when
those techniques have a chance to leak privacy. Specifically,
we want to be compatible with wide (multiple instructions
fetched per cycle), speculative, out-of-order commercial-class
machines, e.g., those described in Section II-A, and also point
optimizations (e.g., banked caches, data-dependent arithmetic;
c.f. Section III-B) that, left unchecked, cause security problems.

To achieve these goals, an OISA adds a two-part abstraction
to an existing ISA, which we summarize here. First, the
ISA denotes data to be Public or Confidential. Second, the
ISA denotes each instruction operand to be Safe or Unsafe.
If an instruction with Safe operands consumes Confidential
data, processor implementations (microarchitectures) must hide
attacker-observable data-dependent side effects stemming from
that instruction’s execution. If an instruction with Unsafe
operands consumes Confidential data, the hardware must throw
an exception before data-dependent behavior can occur. If either
type of operand consumes Public data, the hardware is free to
apply optimizations to improve performance.

We now describe more detail for how hardware can enforce
both of these components.

1) Dynamic tracking for Confidential (sensitive) data:
We use hardware-based dynamic information flow tracking
techniques (DIFT, similar to [60], [61]) to track how Confi-
dential data propagates through the processor as the program
executes. Conceptually, all data in the processor is labeled

Confidential/Public at some granularity (e.g., word-level).5 This
gives hardware the ability to decide when to apply optimizations
to data in use (e.g., attack Vectors 6-7, 10-11; c.f. Section III-B)
and at rest (e.g., Vectors 8-9).

Prior work does not specify precise rules for when data
labeled Confidential can be processed relative to when its label
is resolved. A conservative strategy is to require all {data, label}
state to correspond to program order, which would preclude
speculative, out-of-order execution. A more aggressive strategy
is to allow speculation, and to further allow data to be used
before its label is resolved.6 Based on our use of DIFT, it will
be clear the latter approach is not secure. Instead, we adopt
(and prove secure in Section VI) a middle ground which we
call coherent labels.

Rule IV.1. (Coherent labels) When reading an operand, its
label must be resolved with respect to the dynamic sequence
of speculative/non-speculative instructions (which does not
necessarily follow program order) that have executed so far to
generate that operand.

A simple implementation that satisfies Rule IV.1 is to
physically extend each data word with a label bit, which allows
normal processor dependency tracking to ensure labels are
resolved on time. We use this strategy for our implementation
in Section V.

2) Instruction operand-level security specifications: In an
OISA, instruction definitions specify, for each operand, whether
that operand can accept Public or both Public/Confidential data.
We call the former an Unsafe operand and the latter a Safe
operand. Once specified, the hardware designer must handle
the following cases.

Rule IV.2. (Confidential → Safe) When Confidential data
is sent to a Safe operand: the hardware designer must
add mechanisms to enforce Definition III.1, for a specified
observability function, despite that instruction’s execution. For
example, by disabling performance optimizations, scrubbing
side effects and masking exceptions that occur as a function of
Confidential operands.

Rule IV.3. (Confidential → Unsafe) When Confidential data
is presented to an Unsafe operand: the hardware must stop
(squash) that instruction’s execution as soon as the label is
resolved. This event is called a label violation #LV. Due
to Rule IV.1, #LV will be signaled immediately after regis-
ter/memory read, and before the execute stage begins. If the
violating instruction is the next instruction to retire (i.e., is
non-speculative), terminate the program. This event is called a
label fault #LF.

That is, Rule IV.3 is similar to rules that handle badly typed
programs, extended to speculative execution. Label violations
(#LV) are caused by transient conditions, e.g., imperfect
prediction (Section III-B, Vector 1), and are correctable. Label
faults (#LF) indicate a program bug or illegal typing. Fixing
bugs is outside of our scope, so we will focus on #LV.

5‘Public’ and ‘Confidential’ semantics are equivalent to the lattice {L,H}
({low, high} security) where Lv H [62], [63].

6For example, [61] proposes storing labels in the page table. If the processor
supports speculative store-forwarding [54] (Vector 4), data will be used before
the label lookup completes.

5

An important question is whether #LV creates a side channel
based on when it is triggered. We prove in Section VI-B that
it does not, and further prove that #LV signals enable the
OISA to block multiple additional attacks (Vectors 1-5; c.f.
Section III-B), e.g., speculation that can reveal Confidential
data, on top of the vectors blocked from Section IV-A1. Finally,
Public data is handled as:

Rule IV.4. (Public → Safe/Unsafe) When Public data is sent
to Safe or Unsafe operands, no special treatment is needed
and execution can proceed without protection.

As the above definitions apply at operand granularity, the
OISA permits optimizations that are functions of individual
operands. For example, zero-skip multiply can be enabled if a
Public operand is 0, regardless of whether other operands are
Confidential.

Specifying each instruction operand as Safe/Unsafe at the
ISA level is a key design feature, and provides significant
flexibility to both the ISA and hardware designer while
simplifying programmer-level reasoning about security. At the
ISA level, an ISA designer can decide which instructions are
sufficiently important to warrant Safe operands. These choices
should be made carefully: On one hand, Safe operands impose
a burden on hardware designers as the processor must support
mechanisms to uphold Definition III.1 for those operands. On
the other hand, Safe operands do not specify an implementation
strategy. Hardware designers can implement a given operation
using simpler data oblivious instructions (e.g., [8]), hardware
partitioning (e.g., [27]) or cryptographic techniques (e.g., [23])—
depending on what is efficient given public parameters and the
specific microarchitecture. In either case, programmers work
with a simple guarantee: Confidential values will not be at risk
when consumed by Safe operands, and dynamic execution will
be terminated when violations to this policy are detected.

B. Concrete OISA Specification

Using the principles from the previous section, we now
present a concrete OISA that we will implement on top of
the RISC-V BOOM processor. Figure 2 shows data oblivious
instruction encodings, supported instruction types, and the
Safe/Unsafe characteristics for each operand (Section IV-A2).

1) Label propagation: Our ISA requires word-granularity
labels, tracked in the register file and memory. In most cases,
label update logic follows standard taint tracking rules, given the
2-level security lattice {Public, Confidential} [62], as shown
in Figure 2. When the result is fully determined by Public
operands, regardless of other operands (e.g., zero-skip multiply),
the result label is set to Public (as done in GLIFT [65], but
not shown in Figure 2 for simplicity).

2) Label declassification: Declassification—downgrading
data marked Confidential to Public—is a rare but necessary
task needed to, e.g., return results. Our ISA supports a
single serializing declassification instruction called ounseal.
Serializing instructions are not executed until all older in-flight
instructions retire. This is necessary for security: declassification
is the only mechanism to demote Confidential to Public, and
this action under malicious speculative execution could be used
to bypass label checking.

3) Instruction set: Our ISA supports the following in-
struction types, which we chose to maximize compatibility
with existing data oblivious codes and minimize hardware
changes. First, all RISC-V integer and floating point arithmetic
with Safe operands. This means programmers can implement
floating point directly, without invoking bitwise libraries [8].
Second, random number generation, as many randomized data
oblivious codes require private random numbers (e.g., [66], [67],
[68], [23], [21]). Third, a cmov-style ternary/conditional move
operator with a Safe predicate for implementing conditionals,
and branches/jumps with Unsafe operands to reduce code
footprint. Fourth, load/store operations (orld and orst) with
Unsafe address operands.

Lastly, we support a second flavor of load/stores (with Safe
address operands) which can be used to implement oblivious
memory using Confidential addresses (Section IV-B6).

4) Mixing in non-oblivious instructions: Oftentimes, only a
small program region should be made data oblivious (e.g., the
inner branch in modular exponentiation) to prevent unnecessary
performance overheads. To support these situations, we support
mixing data oblivious instructions with instructions from the
original ISA. All operands for all original instructions are
considered Unsafe. All data oblivious instructions are encoded
on top of the normal RISC-V ISA by modifying existing
instruction fields (e.g., the opcode and func [64]).

5) Putting it all together: To summarize the section, we
show a version of Figure 1b written using our OISA in
Figure 3a. The programmer need only specify what data is
Confidential via oseal. The ISA and hardware will prevent
%x3 from being processed by subsequent speculative/non-
speculative Unsafe operands. For example, specifying %x3
as an address to a speculative/non-speculative orld triggers a
#LV/#LF, respectively.

6) Oblivious memory extension: A common bottleneck in
existing data oblivious code is the inability to use Confidential
data as memory addresses [23], [1], [27], [21]. For example,
Figure 3a needed to execute two orld instructions. More
generally, looking up an array with a Confidential address
requires a memory scan.

To accelerate these operations, our OISA exposes two new
instructions ocld and ocst, which are analogous to orld/orst
(Section IV-B3) except with Safe address operands, and a new
variant of CPUID ocpuid which returns a microarchitecture-
specific constant OSZ (“oblivious memory partition size”).

Each microarchitecture is responsible for providing OSZ
bytes of “fast” oblivious storage, called the oblivious memory
partition (OMP), which only ocld and ocst can read/write.
This storage can be used to speedup data oblivious code. For
example, if x and y in Figure 1b both fall within the OMP,
then Figure 3a can be rewritten as Figure 3b (saving a memory
access).

How much storage is provided (the value of OSZ) and
how that storage is implemented—e.g., a dedicated scratchpad,
flexible cache partition, etc.—is left to hardware designers and
can be decided on an implementation-by-implementation basis.
(Our prototype in Section V-B uses ways in a cache.) We note
that the hardware constrains addresses sent to ocld/ocst to fall
within bounds 0 to OSZ-1.

6

Oblivious Memory extension:

rs1 (S)

rs1 (S)rs2 (S)

Instruction functionality

R[rd] <- R[rs1] op R[rs2]

Base Data Oblivious ISA:

Arithmetic (R-type) rs2 (S) rs1 (S)

Arithmetic (I-type) rs1 (S)

Declassify (I-type) (serializing) rs1 (S)

Classify (I-type) rs1 (S)

Load (I-type) rs1 (U)

Store (S-type)

rs1 (U)rs2 (U)Branch (B-type)

Jump register (I-type) rs2 (U)

RNG (J-type)

R[rd] <- R[rs1] op ext(imm)

Oblivious Load (I-type)

Oblivious Store (I-type)

R[rd] <- R[rs1]

R[rd] <- R[rs1]

M[R[rs1] + ext(imm)] <- R[rs2]

R[rd] <- rand()

R[rd] <- M[addr]

M[addr] <- R[rs2]

Operand label constraints
(S = Safe, U = Unsafe)

if (R[rs1] op R[rs2]) PC = PC + imm

R[rd] = PC + 4; PC = PC + imm

R[rd] <- M[R[rs1]+ext(imm)]

rs1 (U)rs2 (S)

Label propagation

Lr[rd] <- Lr[rs1] | Lr[rs2]

Lr[rd] <- Lr[rs1]

Lr[rd] <- 0

Lr[rd] <- 1

Lr[rd] <- 0

Lr[rd] <- 1

Lr[rd] <- Lm[R[rs1]+ext(imm)]

Lm[R[rs1]+ext(imm)] <- Lr[rs2]

Lr[rd] <- 1

-

rs2 (S) rs1 (S)Conditional move (R-type) R[rd] <- (R[rs1]) ? R[rs2] : R[rd] Lr[rd] <- Lr[rs1] | Lr[rs2] | Lr[rd]

let addr := R[rs1]+ext(imm) % OSZ

Notation (assembly)

ounseal %rd, %rs1

oseal %rd, %rs1

ocmov %rd, %rs1, %rs2

orng %rd

orld %rd, imm(%rs1)

orst %rs2, imm(%rs1)

ocld %rd, imm(%rs1)

ocst %rs2, imm(%rs1)

CPUID (J-type) R[rd] <- OSZ ocpuid %rd-

-

Fig. 2: Data Oblivious ISA extension. R/Lr, M/Lm denote register file data/labels, memory data/labels, respectively. The label Public is
denoted logic 0, Confidential logic 1. rs1 and rs2 denote operand registers in RISC-V instructions while rd denotes destination register. R, I, B,
J, S-type refers to standard RISC-V instruction formats [64]. ext extends the immediate to the word width. If assembly notation is unspecified,
it follows RISC-V with an ‘o’ prefix (e.g., add becomes oadd). OSZ refers to the microarchitecture-specific oblivious memory partition size
(Section IV-B6). Note that all locations in the partition are implicitly marked Confidential at all times.

1 oaddi %x1, %x0, 0
2 oaddi %x2, %x0, 64
3 oseal %x3, secret
4 orld %x1, 0(%x1) //Mem
5 orld %x2, 0(%x2) //Mem
6 ocmov %x1, %x3, %x2

(a) Data obl. Fig. 1b.

1 oaddi %x1, %x0, 0
2 oaddi %x2, %x0, 64
3 oseal %x3, secret
4 ocmov %x1, %x3, %x2
5 ocld %x1, 0(%x1) //Mem

(b) Data obl. Fig. 1b w/ OMP.

Fig. 3: Data oblivious code, using the OISA, implementing Figure 1b.
The word secret denotes Confidential data. %x... are RISC-V
general purpose registers. %x0 is a RISC-V idiom for constant 0.

To make data oblivious code portable across machines (each
of which can specify a different OSZ), we provide the following
software/programmer-level functions:

• Unsafe OblObj∗ obl alloc(Unsafe int size)
• void obl free(Unsafe OblObj∗o)
• Safe int obl read(Unsafe OblObj∗o, Safe int addr)
• void obl write(Unsafe OblObj∗o, Safe int addr, Safe int data)

Safe/Unsafe qualifiers are implied based on how these
functions are implemented. That is, size must be Public.
obl alloc/free dynamically allocate/free an oblivious memory
object OblObj which exposes type, base and bound fields.
type= {OMP,ORAM,SCAN} and is determined by obl alloc
under the hood using the following rules:

1) If the new object will completely fit into the OMP, based
on the size argument, previous allocations, and OSZ: set
type= OMP.

2) Else: depending on remaining space in the OMP and the
size argument, set the type as ORAM or SCAN. Heuristics
to select which are described below.

Post-allocation, users perform reads and writes to OblObjs
through obl read and obl write, which instrument each oper-

ation based on the allocator’s prescribed type, as shown in
Figure 4. We describe the ORAM type below.

1 int obl_read(OblObj* o, int addr) {
2 #oblivious {
3 int ret; int tmp;
4 switch (o->type)
5 case OMP:
6 asm ("oaddi %0, %1, %2":
7 "=r" (tmp): "r" (addr), "r" (o->base));
8 asm ("ocld %0, 0(%1)":
9 "=r" (ret): "r" (tmp));

10 break;
11 case ORAM:
12 ret = oram("read", o, addr); break;
13 case SCAN:
14 for (int j = o->base, j < o->bound; j+=4) {
15 asm ("orld %0, 0(%1)":
16 "=r" (tmp): "r" (j));
17 asm ("ocmov %0, %1, %2)":
18 "+r" (ret): "r" (j==addr), "r" (tmp));
19 } break;
20 return ret; } }

Fig. 4: obl read implementation (obl write is analogous).
#oblivious is short-hand to indicate that the body consists only
of data oblivious instructions. oram’s implementation is discussed in
Section IV-B6. “=r”,“+r” denotes output register; “r” denotes input.

obl alloc decides on each allocation’s type based on
information returned by ocpuid. In the current design, ocpuid
returns OSZ, the implementation-specific size of the OMP.
Future implementations may also return richer information,
such as machine cache sizes/etc. to make more informed
decisions. Since size and branches/jumps in our OISA are
Unsafe, the strategy selected for each allocation depends only
on the program (which is Public) and the machine architecture.
Lastly, we note that since the allocator makes decisions based
on the order of previous allocations, more performance-sensitive

7

objects should be allocated first.

ORAM and SCAN types. When the oblivious object does
not fit into the OMP, the allocator may implement it as an
Oblivious RAM [49] (ORAM) or memory scan. ORAMs are
randomized algorithms which implement oblivious memory
in poly-logarithmic time. For ORAM, we use the ZeroTrace
library [23] which is a data oblivious ORAM client written
in our threat model. Depending on remaining OMP space,
ZeroTrace’s internal sub-structures (e.g., the ORAM stash and
position map [23]) can be placed in the OMP, which we show
can speedup the original ZeroTrace by > 4× (Section VII-C6).
SCAN is a fallback that emulates oblivious memory using
normal memory, and is implemented as a sequence of orld and
ocmov instructions (Figure 4).

Pointed out by [1], when scan vs. ORAM is more efficient
depends on the memory size and the allocator should take this
into account based on the allocation size parameter.

C. Process-OS Interface

Processes interact with the OS through exception handling,
context switching and system calls. We design the OISA to
cause minimal friction with the existing OS-process interface.

1) Exceptions: Exceptions leak data-dependent conditions
(e.g., when a divide by zero occurs) in programs [42], [1]. When
an exception occurs on instructions with all Public operands, it
is handled like a normal exception. When an exception occurs
on an instruction with a Confidential operand, the hardware
must mask that exception (e.g., by replacing the result with
a canonical value and leaving the label unchanged). In this
design, the adversary may learn an exception has occurred only
if resulting data is explicitly declassified with ounseal.

2) Context switching: In the current design, the OMP
(Section IV-B6) and register file labels are added as thread
state. Labels in memory are mapped to pages in a region
of virtual memory that cannot be accessed directly by the
program (Section V-C1). While adding the OMP to thread
state doesn’t make context switching performance-prohibitive
for the OMP sizes we consider in Section VII, it will for
sufficiently large OMPs. We leave integrating the OMP into
normal process virtual memory (e.g., by using the RISC-V
VLS technique [69]), as future work. Finally, if the adversary
is supervisor-level (Section II-B), we rely on the shielding
system, e.g., SGX, to protect program data during context
switches. For example, in an SGX setup [45], all data (Public
and Confidential) would be stored within the SGX ELRANGE.

3) System calls: We rely on orthogonal software techniques
to sanitize system call arguments [70], [43].

V. IMPLEMENTATION

This section describes how we prototyped our OISA on
the RISC-V BOOM microarchitecture. Our design augments
BOOM ‘v2,’ which is the most recent iteration of the BOOM
design [30]. We give the exact parameters used for the
architecture in Table II, which corresponds to the block diagram
in Figure 5 and is a default BOOM configuration.

Rename +
Issue windows

Register
files (RF)

int RF

fp RF

exe1

exe2

exe3

exe4

exe5

dcache

omp

SAQ

SDQ

LAQ

dTLB

iTLB

icache

fetch decode

brnch/jmp
predict

b
yp

a
ss

ROB

Branch/jump outcomes

Wire carrying data + label
Added storage
Label station

Legend
Wire carrying data + label
Added storage
Label station

Legend

#LV
(to ROB)

11

22 33

44

55

Fig. 5: RISC-V ‘BOOM v2’ pipeline [30]. ‘exeXX’ are execution
units, and contain arithmetic/branch/etc units stated in Table II.
Hardware modifications needed to support the OISA (Figure 2) are
shown in the legend. No modifications are needed before the int/fp
register files. Label stations are discussed in Section V-C2. ‘omp’ is
the oblivious memory partition (Section V-B).

A. RISC-V BOOM Summary

We first summarize unmodified BOOM (referencing Fig-
ure 5). These details will be used for our implementation (this
section) and formal analysis (Section VI).

First, multiple instructions are fetched each cycle ¶. Based
on the current program counter (PC) and decoded instructions,
multiple levels of branch/jump predictors issue predictions for
fetched branches/jumps. Mispredicted branches/jumps are dis-
covered in the execute stage, and cause subsequent speculatively
decoded instructions to squash (Section II-A). Once decoded,
instructions are added to the issue windows · where they
wait for their operands to be ready, at which point they are
scheduled (possibly out-of-order) to execution units. Operands
become ready when they are written (or written back) to one
of two register files (RFs, for floats and integers) ¸, or when
an execution unit finishes early and bypasses the result directly
to the consumer instruction. RFs contain speculative and non-
speculative data.

BOOM supports a configurable number of execution units
¹, each of which contains a configurable number of primitive
arithmetic/branch/etc. units, shown in Table II. Each execution
unit receives dedicated read/write ports to the RFs. Primitive
arithmetic blocks may be pipelined (have input-independent
latency) or un-pipelined (have input-dependent latency). Lastly,
a load/store unit interfaces to the cache and decides whether
load data should be read from the cache or store data queue
(SDQ) which contains speculative stores (store-load forwarding).
Loads may speculatively execute after stores whose address
has not resolved [39]; address alias violations are caught and
squashed at retire time. Finally, a reorder buffer (ROB) º
tracks in-flight instructions in-order to facilitate in-order commit
(Section II-A).

The current BOOM does not currently support SMT/hyper-
threading. We note that our OISA is compatible with an SMT-
enabled machine and that the hardware mechanisms discussed
below need not change to support SMT.

8

B. Support for New Instructions

Discussed in Section IV-B, most instructions in the OISA
have exact counterparts in RISC-V, but with additional semantic-
s/dynamic checks for Safe/Unsafe operands. These instructions
reuse existing RISC-V encodings and have altered opcode/func
fields to be identified during the decode stage. Several excep-
tions are oseal, unseal, orng, ocmov, ocld/ocst/ocpuid which
don’t have RISC-V counterparts (Figure 2).

We implement oseal and ounseal as the RISC-V addi
instruction with the immediate field set to 0 (functionally a
move operation), but with modified logic to set/clear label
bits. As discussed in Section IV-B, ounseal must also serialize
(execute non-speculatively) to prevent malicious declassification.
Since BOOM already implements serializing instructions, we
reuse that functionality for ounseal. Our prototype implements
orng as a cryptographic PRNG (iterative AES core), although
a hardware TRNG [71] may be used for a production design.

ocmov presents a challenge, as conditional move requires
three operands (predicate, new value and old value) whereas
no RISC-V integer instruction requires three input operands.
To minimize ISA-level changes, we design a single ALU (in
one execution unit) to serve ocmov instructions, and add a
new RF port for that execution unit. We design this ALU to
support bypassing. This design is low overhead and efficient.
Having one execution unit support ocmov means we only need
to add a single read port to the RF (not +1 per execution
unit). Through bypassing, our design can execute back-to-back
dependent ocmovs, one per cycle.

Finally, our current implementation implements the obliv-
ious memory partition (OMP) for ocld/ocst as a quarantined
region of the first-level data cache. We isolate a region of
the cache using way partitioning techniques [72], which are
a low-complexity mechanism to divide the cache into non-
interferring regions as long as the region size is a multiple of
the associativity (our first-level cache is 16-way; Table II). This
design has low hardware overhead. If no process has allocated
oblivious objects (Section IV-B6), OMP storage can be used
as normal cache memory. While an ocld/ocst instruction is
looking up the OMP, all concurrent cache lookups are stalled
to avoid cache bank contention [55].

C. Tracking and Checking Labels

An important component in our OISA is checking and
tracking Public/Confidential labels as data flows through the
pipeline and signalling #LV when violations occur. Noted in
Section IV-B, we track labels at word granularity.

1) Label storage: Labels must be stored alongside each
word, where-ever each word resides in the processor. This
includes the RF, the SDQ, the data cache hierarchy, and
intermediate pipeline registers. In all of the above structures,
we treat data label as an extra bit in each word. This makes
it simpler to satisfy Rule IV.1: whenever a speculative or non-
speculative instruction reads an operand, normal out-of-order
processor dependency checking ensures the label is resolved.

Unfortunately, this strategy would require large changes to
the DRAM/below memory levels because wider words would
require wider DRAM lines and larger page tables. Thus, at
the DRAM level, we store data and labels in separate disjoint

pages and modify the hardware DRAM controller to join data
and label into a widened cache line when on-chip (a similar
scheme was used in [60]). This means any DRAM access in
our system turns into two DRAM accesses.

2) Label checks: To satisfy Rules IV.2 and IV.3: once a
consumer instruction indicates its intent to use an operand, that
operand’s label must be checked against the instruction opcode/-
func fields, before the use occurs. We design a parameterizable
hardware module called a label station, which wraps each
BOOM execution unit, to administer these checks. The main
observation enabling the label station design is that in BOOM,
all operand-dependent processor state updates are signalled
from the execution units. This makes it possible to implement
a shim at the input of each execution unit to perform label
checks, handle label violations/faults, and disable hardware
optimizations on Confidential inputs.

#LV (to ROB)

(Labeled)
operands

Operation
metadata Result label

Arithmetic
unit

Counter

Check
label

12

3

In/out buffers

Data
Label

Fig. 6: Label station (Section V-C2) for an execution unit with one internal
arithmetic unit. A real execution unit may contain multiple arithmetic units
(Table II), in which case this logic is replicated as needed. Added hardware is
shaded.

Specifically, the label station (visualized in Figure 6):

À (Rule IV.2: Confidential → Safe) Blocks access to/from
arithmetic units so that any operation processing Safe operands
takes the worst case time. This is implemented using input/out-
put buffers (e.g., flip-flops), a timer (counter), and operand/label
decode logic (“Check label” in the figure). Variable-time
arithmetic units and their worst-case times are given in Table II.
Lastly, any status bits set as a function of Confidential operands
are set to canonical values.

Á (Rule IV.3: Confidential → Unsafe) Checks each incom-
ing operation for illegal label-operand violations, and signals
#LV when violations are detected. All checks are performed
before operands are forwarded to the execution unit. If any
violation is detected, the execution unit does not receive the
operation and an #LV signal is sent to the ROB, where it is
interpreted as a violation (squash) or a fault (termination, #LF),
respectively.

Â (Label propagation) Computes the result label based on
operand labels and stages the label to travel with the result
when it writes back to the RF or exits early via bypass.

Label stations are parameterized at design-time based on
what functionality is actually needed. For example, Execution
unit 2 (Table II) only supports Safe-operand arithmetic and
therefore doesn’t need logic to enforce Rule IV.3 (Confidential
→ Unsafe). Hence, this logic is pruned away at hardware
synthesis time.

9

VI. SECURITY ANALYSIS

We will show that the OISA provides a basis for satisfying
Oblivious[BitCycle] (Section III-A) by proving its security over
an abstract out-of-order, speculative machine (AOOM), and
arguing that this abstract machine can be reduced to real
hardware such as the BOOM.

A. Takeaways and Main Insights

The takeaway from the analysis is that the OISA provides
a basis to prove (computational) non-interference on an out-
of-order processor with speculative execution. Importantly, we
achieve this result while allowing hardware optimizations, such
as branch predictors, to remain enabled and without requiring
those structures to be partitioned or periodically flushed.

Informally, for this result to hold we need to show that (a)
each instruction’s visible execution and (b) the sequence of
instructions that are executed is independent of Confidential
data. (a) follows by definition, given Rules IV.2-IV.4, and is
enforced by label stations in our implementation (Section V-C2).
A key insight is that by performing these local checks, the
hardware is also able to satisfy (b), and further that neither
the hardware nor the analysis needs to treat transient and non-
transient [11] instructions differently. This is non-trivial. Even
given a correctly written program, prediction, speculation and
subsequent squashes cause the dynamic sequence of executed
instructions to depend on extra-program, even adversarially
directed, effects (e.g., priming predictors [12]).

We give intuition on how to address (b) here; details follow
in later subsections. To start, the OISA guarantees by design
that the inter-instruction program counter (PC) never becomes
a function of (“tainted by”) Confidential data.7 We likewise
assume that predictor structures start off in a state that does
not depend on Confidential data. Then, in the absence of an
active adversary, we can prove that program behavior (with all
hardware optimizations, such as speculative execution, enabled)
is independent of Confidential data. Finally, we can model active
adversaries without changing the analysis: since the program
in isolation satisfies (a) and (b), the adversary’s strategy in how
to influence program behavior (e.g., by priming predictors)
must also only depend on Public information, meaning that
predictors/etc. remain untainted despite the adversary’s strategy.
Putting it together, we can show that none of the OISA, the
adversary, or other Public events on the processor taint the PC,
implying (b) as a corollary.

B. ISA Level

The following analysis assumes the OISA disables the
ounseal instruction (Section IV-B) unless otherwise stated.

1) Abstract machine basics: The functional model for
AOOM is given in Algorithm 2, with notations/helper functions
explained in Table I and Algorithm 1. Our goal was to
keep the model as simple as possible, while capturing core
features. Specifically, the abstract machine: (1) has a 3-stage
pipeline {Fetch,Execute,Retire} where each stage is atomic
and takes one unit of time, (2) has four instruction types
{Arithmetic,Branch,MemLoad,MemStore}, (3) has infinite

7This follows from the semantics of Safe operands. Similar requirements
on not tainting the PC govern prior work [65].

TABLE I: Notations and simple helper functions.

|T | Returns number of elements in T
T [i : j] Returns items with index i to j (inclusive)
λ Public program
Fetch,Execute,Retire Instruction stages
Arithmetic,Branch MemLoad/Store Instruction types
stage,pc,squash,update Trace entry format
Write(addr,data, label) Token denoting write to program memory
Proj(T) Trace with updates removed
argi(pc,λ),dest(pc,λ) Returns instruction operand/dest fields
op(pc,λ) Returns instruction’s implied arithmetic op
T.append(e) Append e to end of of T
type(pc,λ) Return instruction at pc’s type (Branch, etc)
done(e,λ) Returns true if e.stage= Retire and e.pc is

the stop PC given λ

SCHEDULE, PREDICT Instruction scheduler and predictor functions

fetch bandwidth and execution units, (4) can be parameterized
as an in-order or out-of-order/speculative machine. Which
instruction types support Safe/Unsafe operands are encoded
as conditionals checking operands for label violations (#LV).
We explain how to extend the model (e.g., to account for
variable latency instructions, cache, limited execution units,
more pipeline stages, etc.) in Section VI-C.

2) Execution traces: The abstract machine AOOM takes
as input a program λ , Public input x and Confidential input y
and generates a trace T where each entry Tt tracks a stage of
each instruction as it executes on the machine. That is, the t-th
element in T is a 4-tuple:

Tt = (staget ,pct ,squasht ,updatet).

staget denotes the instruction’s stage {Fetch,Execute,Retire}.
pct denotes the instruction address/program counter. Different
stages for the same logical instruction share the same pc. If
staget = Execute, squasht = {true, false} denotes whether the
instruction caused a squash during speculation (Section II-A)
or due to a label violation #LV (Section IV-A2). If staget 6=
Execute, squasht = false. updatet = Write(addr,data, label)
where Write is a token denoting whether program memory was
written, and with what addr, data and label. The Public label
is logic 0, Confidential is logic 1. If no write occurs, addr=⊥.

3) Modeling time: In our abstraction, entries in T are
ordered in time as time(Ti) ≤ time(Ti+ j) for i, j ≥ 0 where
time is a metric for real time (e.g., clock cycles). That is,
multiple events may occur in the same clock cycle (as in a
real processor) or be separated far apart. Therefore, staget and
type(pct ,λ) allows us to model contention in different pipeline
stages for different instruction types.

4) Modeling out-of-order and speculative execution: A key
feature in our analysis is that AOOM is parameterized by
two functions, SCHEDULE and PREDICT. SCHEDULE represents
control logic in a real processor and decides which stage of
which instruction should be evaluated next. It takes as input
the program λ and Proj(T), a projection of T that removes
update from each entry, i.e.,

Proj(T) = {e.stage,e.pc,e.squash for e ∈ T}

Importantly, Proj(T) constrains scheduling to not be a function
of program data (i.e., e.update) beyond the sequence of
present/past fetched instructions (e.stage, e.pc) and whether
those instructions result in a squash (e.squash). SCHEDULE

10

outputs an index idx ∈ [0, |T |) or ⊥. If idx=⊥, the machine
will fetch the next instruction. If idx 6= ⊥, the machine will
evaluate the next stage for the instruction at T [idx]. PREDICT
represents branch/jump predictor logic, takes the same inputs
as SCHEDULE and outputs the predicted next PC. W.l.o.g. we
assume SCHEDULE and PREDICT are deterministic.8

Importantly, SCHEDULE and PREDICT are representative of
modern processors and allow us to model simple in-order
processors to advanced out-of-order speculative processors
(details on this claim related to BOOM are in Section VI-C).
The only assumption we will make is that SCHEDULE respects
in-order Fetch and Retire, as done by machines today.

5) Modeling machine state: The current machine state at
some point idx in the trace is determined based on the trace
prefix from 0 to idx. This includes program state (register file,
cache, etc.) and intermediate pipeline/machine state. Program
state is calculated based on mem (Algorithm 1). We merge
the register file and other memory into a single memory for
simplicity. Data always travels with its label, which models
Rule IV.1. As mentioned in Section VI-B2, pipeline state (e.g.,
flip-flops/SRAM not included in program state) is modeled by
the sequence of PCs and stages in the trace.

6) Proof of Security: We now prove that the abstract model
AOOM satisfies Definition III.1 with respect to the following
observability function WordStage.

Definition VI.1. (WordStage observability: Public data and
labels at word-spatial granularity, instruction stage-level
temporal granularity) Given T = AOOM(λ ,x,y),

WordStage(T) = {e.stage,e.pc,e.squash,h(e) for e ∈ T}

where h(e) returns e.update (unmodified) if e.update.label=
false, and returns Write(e.addr,⊥, true) otherwise.

That is, WordStage only removes write data from the
trace if the label corresponding to that data is Confidential.
Satisfying Definition III.1 with the WordStage function implies
the strongest level of privacy with respect to our abstract
machine, and implies that the machine’s pipeline utilization,
PC sequence, set of squash events, and state w.r.t. Public
data is independent of Confidential data. We proceed to show
Theorem 1:

Theorem 1. Oblivious[WordStage,AOOM] holds.

Proof: Let T = AOOM(λ ,x,y) and T ′ = AOOM(λ ,x,y′)
where x is an array of Public data and y,y′ are arrays of Confi-
dential data. We must show WordStage(T)'WordStage(T ′).
We proceed using induction. Line numbers refer to Algorithm 2.
The base case holds throughout meminit (Line 1, defined in
Algorithm 1) since |y| = |y′|. Now assume WordStage(T [0 :
n])'WordStage(T ′[0 : n]). We know SCHEDULE (Line 3) will
return the same idx for both executions because Proj(T [0 :
n]) = Proj(T ′[0 : n]) by the induction hypothesis and λ is fixed
(Section VI-B4). We now proceed by cases depending on idx:

Case 1 (idx=⊥). A new instruction will be fetched for both
executions. We know PREDICT (Line 5) will return the same PC

8Heuristics based on randomness can be modeled with an additional seed
input.

Algorithm 1: Helper functions meminit and mem.
/* fill memory w/ Public x, Confidential y */
function: meminit(x,y)

1 T := [];
2 for xi ∈ x do
3 T.append((Execute,⊥, false,Write(i,xi, false)))

4 for yi ∈ y do
5 T.append((Execute,⊥, false,Write(|x|+ i,yi, true)))

6 return T ;
7
/* return coherent memory snapshot, given T.

Note, an instruction that is squashed by
another instruction may still create visible
state changes in the window of time before
the other instruction reaches Execute. */

function: mem(T)
8 T ′ = T with all squashed instructions (trace entries) removed.

That is, remove from T any entry that occurs in between the
Fetch and Execute stage of an instruction I if I satisfies
I.stage = Execute∧ I.squash (inclusive);

9 mem := [⊥ for t ∈ T ′]; // |T ′| upper-bounds mem size
10 for xi ∈ T ′ do
11 up := xi.update;
12 if up.addr 6=⊥ then
13 mem[up.addr] = up.data,up.label;

14 return mem;

across both executions, following the same logic as SCHEDULE.
By Line 6, it is clear the induction step holds.

Case 2 (T [idx].stage= Fetch). The instructions at idx in T and
T ′ will be executed. There are 4 cases in Execute, depending on
the instruction type type(pc,λ), and a careful inspection shows
that each satisfies the induction step. Of note, the only possible
deviation between T and T ′ is over update.data, in the case of
Arithmetic and MemStore instructions when update.label =
true, which is allowed by Definition VI.1.

Case 3 (T [idx].stage= Execute). The instructions at idx in T
and T ′ will be retired. By Line 13, it is clear the induction
step holds.

7) Extensions to randomized cryptographic algorithms:
It is straightforward to extend the above analysis to support
randomized cryptographic algorithms such as ORAM [49],
[23]. For example, ORAM client logic can be written data
obliviously to satisfy Oblivious[WordStage,AOOM] [23], [73].
What is left is to show how the visible ORAM access pattern—
which forms a subset of the trace—satisfies computational
indistinguishability [49]. This reduces to the security of the
ORAM protocol itself and to the OISA’s mechanism to
declassify private data, i.e., ounseal. For the latter, since ounseal
is a serializing instruction, we know private randomness will
be exposed if and only if it is intended by the protocol.

C. Implementation Level

We now map our ISA-level security analysis (Sections IV-B
and VI-B) to our prototype on BOOM (Section V), referred to
as BOOM.

11

Algorithm 2: Abstract machine definition. As in Figure 2, the
Public label is logic 0, Confidential is logic 1.

function: AOOM(λ ,x,y)
1 T := meminit(x,y); // initialize memory
2 while !done(T [|T |−1],λ) do
3 idx := SCHEDULE(Proj(T),λ);
4 if idx =⊥ then // Fetch new instr
5 pc := PREDICT(Proj(T),λ);
6 T.append((Fetch,pc, false,Write(⊥,⊥, false)));

7 else
8 pc := T [idx].pc;
9 stage := T [idx].stage;

10 if stage = Fetch then // Execute instr
11 T.append(execute(Execute,pc,T,λ));

12 else if stage = Execute then // Retire instr
13 T.append((Retire,pc, false,Write(⊥,⊥, false)));

14 return T ;
15

function: execute(stage,pc,T,λ)
16 update := Write(⊥,⊥, false); squash := false;
17 arg0,data,arg0,label := mem(T)[arg0(pc,λ)];
18 arg1,data,arg1,label := mem(T)[arg1(pc,λ)];
19 if type(pc,λ) = Arithmetic then
20 data := arg0,data op(pc,λ) arg1,data;
21 label := arg0,label∨arg1,label;
22 update := Write(dest(pc,λ),data, label);

23 else if type(pc,λ) = Branch then
24 if arg0,label∨arg1,label then
25 squash := true; // #LV: Confidential->Unsafe

26 else
27 fidx := index of Fetch for current instr in T ;
28 guess := direction for PREDICT(Proj(T [0 : fidx]),λ);
29 actual := arg0,data op(pc,λ) arg1,data;
30 squash := guess 6= actual; // mispredict

31 else
32 if arg0,label then
33 squash := true; // #LV: Confidential->Unsafe

34 else
35 if type(pc,λ) = MemLoad then
36 data, label := mem(T)[arg0,data];
37 addr := dest(pc,λ)

38 else if type(pc,λ) = MemStore then
39 data, label := arg1,data,arg1,label;
40 addr := arg0,data

41 update := Write(addr,data, label)

42 return stage,pc,squash,update;

1) Threat vectors in unmodified BOOM: Unmodified
BOOM hardware (Section V-A) supports speculation over
branches, jumps and unresolved store instructions (Vectors 1-
3; c.f. Section III-B) as well as arithmetic units with input-
dependent timing (Vector 6, Table II).9 Our implementation
of the OMP (Section V-B) is also susceptible to cache bank
contention (Vector 5) because it uses space in the data cache.

9We note BOOM also supports load/store forwarding but is not susceptible
to Vector 4 because the data TLB is accessed sequentially before checking the
SAQ (Section V-A).

2) Securing BOOM: Recall, the primary hardware mecha-
nisms we added to get security are dynamic information flow
tracking (Section V-C1), label stations per execution unit to
implement Safe/Unsafe operand semantics (Section V-C2), and
logic to isolate the OMP (Section V-B).

In Section VI-B, we proved Oblivious[WordStage,AOOM].
We show how to use the proof to argue Oblivious[BitCycle,
BOOM]—i.e., cycle-level security of our implementation—
which implies that Vectors 1-3 and 5-6 are blocked. There
are two steps: (1) mapping AOOM to BOOM and (2) mapping
WordStage to BitCycle. We argue these reductions should
go through, below, but with the caveat that our argument
is best effort since we have only performed a careful by-
hand inspection of the BOOM design. Using formal/automated
methods to improve design confidence is important future work.

Step 1: mapping AOOM to BOOM. We kept AOOM simple
to illustrate key points for presentation, but can make the model
more sophisticated to better represent our actual implementation.
In particular: relative to BOOM, AOOM has (a) an idealized
SCHEDULE/PREDICT, (b) an unlimited number of execution
units without dependencies, (c) less instruction types, (d) less
pipeline stages, (e) fixed latency (“atomic”) arithmetic/memory
operations, (e) no support for jump/memory speculation, and
(f) no support for the OMP.

For (a): we note that BOOM’s actual scheduler/predictors
operates over a subset of the inputs given to SCHEDULE and
PREDICT. For example, BOOM’s branch/jump predictors take
as input the sequence of fetched PCs (speculative and non-
speculative) and branch outcomes for retired instructions [30].
The sequence of PCs is contained in Proj(T) and branch out-
comes can be extrapolated from Proj(T) given the program λ

(Section VI-B4). The issue/scheduler logic is similar: employing
data-independent information such as instruction age in the
window and public instruction dependencies.

For (b): limited execution units (structural hazards) and
instruction dependencies (data hazards) can be modeled as
additional rules in the SCHEDULE function. For example,
SCHEDULE may not consider executing an in-flight instruction
until its dependencies given in-flight instructions (recent trace
entries) have executed. Note that when an instruction is executed
with Confidential data, the operand consuming that data is either
Safe (in which case execution behavior is independent of the
data) or results in #LV (which causes an exception independent
of the data).

For (c) and (d): it is straightforward to add extra stages
(e.g., BOOM’s issue stage) and instruction types. We note that
the 4 types (Arithmetic, etc.) in the analysis cover the major
cases in OISA (Section IV-B).

For (e): variable arithmetic can be modeled by creating
additional execute stages Executei for i < L. To match our
label station hardware (Section V-C2), the limit L can be set to
a constant based on the operand label and the instruction type.
Caches can similarly be modeled by allowing L to become
a function of the sequence of previous memory addresses.
Additional types of speculation (e.g., jump and memory
speculation) can be modeled using Branch type instructions.

For (f): it is easy to model the OMP (Section IV-B6) in a
fashion analogous to MemLoad and MemStore, as hardware

12

mechanisms moderating access to the OMP ensure that the
OMP satisfies non-interference w.r.t. other cache lookups.

Note, we also don’t model RF or cache compression
(Vectors 8-9) as these optimizations don’t appear in BOOM.
They can similarly be modeled with addition #LV checks on
data at rest.

Step 2: mapping WordStage to BitCycle. It is straightforward
to extend Theorem 1 to include time (Section VI-B3), meaning
the analysis can satisfy a “WordCycle” observability function
as opposed to WordStage. We have performed a careful
audit of our BOOM hardware prototype (analyzing logic
paths through major flows in the processor at cycle level) to
ensure intermediate storage elements (e.g., pipeline flip-flops)
correspondingly carry Confidential data in data-independent
cycles. We have not found violations to this rule outside of
one exception (given below).

The main insight that enables the correspondence is that
stages (e.g., Fetch, Execute) in our abstract model (Sec-
tion VI-B2) correspond to intermediate storage elements. That
is, each instruction stage corresponds to storage elements, e.g.
pipeline registers in functional units, and the proof shows how
the sequence of stages in the trace is invariant to Confidential
input. This means that modeling AOOM with additional
stages/sub-stages (e.g., rename, issue, Executei, etc.) provides
a basis for modeling complex machines at the flip-flop and
cycle level. We leave automated analyses on the design (e.g.,
using [63]) as future work.

The one exception (noted above) is label stations. We
assume label stations are implemented correctly, meaning a
software adversary cannot view flip flop-level label state within
a label station, while that unit is processing Confidential data, or
within the OMP. This is a minor detail, handled in the analysis
by removing state bits in BitCycle when units are processing
Confidential data. A similar principle is applied in showing
security for Execution Leases [27].

Lastly, we note that WordCycle is equivalent to BitCycle
in modern processors, including the BOOM. In modern ISAs
like RISC-V, operations occur at word granularity meaning that
labels only need to be tracked at word granularity.

VII. EVALUATION

We now evaluate the OISA in terms of area overhead
(given our prototype on RISC-V BOOM) and performance
over data oblivious workloads. We also show two case studies,
showing how the OISA secures and accelerates constant time
cryptographic code and memory oblivious libraries.

A. Methodology

We evaluate our system through hardware prototyping
to show area overheads and software simulation to show
performance.

1) Hardware prototyping: We build on top of the open-
source BOOM design [30] which is written in the Chisel
hardware description language [74]. We parameterized the
prototype according to Table II and synthesized the design
using a 32 nm commercial process and the Synopsys flow. We

TABLE II: RISC-V BOOM parameters we use for our prototype and
evaluation. Arithmetic units with a ‘(xx)’ next to their name are un-
pipelined (variable latency), where ‘xx’ denotes the worst-case latency.
The prefix ‘i’ denotes integer, ‘f’ denotes floating point. CondMove
and Omp denote logic for ocmov and the oblivious memory partition
(Section IV-B), respectively, and are only present on our modified
BOOM.

Core µarch out-of-order, speculative
Fetch/issue width 4 instructions fetched/issued per cycle
Execution unit 1 iALU, Branch, iMul, iDiv (6-66)
Execution unit 2 iALU, CondMove
Execution unit 3 IntToFP casting
Execution unit 4 fAdd, fMul, fDiv (5-21), fSqrt (5-29), FPToInt casting
Execution unit 5 Load/store + Omp (memory unit)
L1 I/D cache 32 KB, 4 way/64 KB, 16 way; 64 B cache lines
I/D TLB 16/32 entries

report standard cell (logic cell) area for logic and flip-flops post-
synthesis, and report SRAM area using the widely used Cacti
tool [75]. BOOM maps the instruction/data caches/TLBs and
branch predictor tables to SRAM. Remaining storage structures
(e.g., the SDQ, RFs) are mapped to flip-flops. The BOOM
word width is 64 bits.

2) Software simulation: The BOOM hardware only features
a single-level cache, whereas commercial machines feature
two- or three-level caches to reduce traffic to DRAM. Thus, to
measure more realistic performance figures for our system we
use Multi2Sim [76], parameterized to match Table II as closely
as possible. For all experiments, we use a 256 KB 4-way level
2 cache (that is shared by data and instructions) and a 2 MB
16-way level 3 cache. This configuration is similar to a single
slice on an Intel Skylake machine.

3) OMP usage: We use a 32 KB OMP (Section IV-B6) that
is built into the level 1 data cache. This is sufficient to store
ORAM sub-structures (Section IV-B6) and also big enough to
fit tables for constant time cryptographic routines (e.g., AES
T-tables and RSA multiplier tables). Some workloads do not
benefit from the OMP (e.g., some do not have data-dependent
memory access patterns). In this case, a bit in thread state
disables the OMP to recover cache space.

B. Hardware Prototyping and Area Results

We show area results for unmodified BOOM and BOOM
extended to support our OISA in Table III. Our prototype
supports all instructions in Section IV-B and Figure 2. The main
hardware components needed to support the OISA are storage
for DIFT, logic/storage for label stations, logic to partition the
OMP, and a random number generator for orng (Section V).
For structures that need to store labels, we store those labels
alongside the data in whatever medium the data was stored
in. That is, labels in data cache are stored in SRAM, labels in
the SDQ and register files are stored in flip-flops. The largest
single area overhead comes from an iterative AES core that we
downloaded from OpenCores [77] to implement orng. This unit
has area 10,935 um2 (3% of the logic area for the unmodified
BOOM), and can be replaced by a hardware TRNG (whose
area is negligibly small [71]) in a production design.

The takeaway is that hardware overheads are tolerable, both
on the logic and SRAM side, showing the practicality of the
proposal on advanced commercial-class machines.

13

TABLE III: Area (um2) for baseline and modified BOOM cores.

BOOM BOOM + OISA Overhead

Logic 363,900 388,658 6.80%
SRAM 384,232 391,291 1.84%
Total 748,132 779,949 4.25%

TABLE IV: Benchmarks and input data sizes for comparing insecure,
oisa and oisa omp.

Name Implementation Data size (small / large)
mat. mult data oblivious by default 256x256 / 1024x1024
neural network “” 64-1K-8 / 1024-32K-256 (2 layers)
findmax “” 8K / 1M integers
sort bitonic-sort (oisa), data obl.

merge-sort (oisa omp)
4K / 256K integers

pagerank GraphSC [28] 1K / 16K nodes
binary search memory scan (oisa), obl.

memory (oisa omp)
8K / 16M integers

kmeans obl. memory for histogram 64/256 clusters, 4K/32K points
heap push ODS [68] 8K / 32M integers in heap
heap pop ODS [68] 8K / 32M integers in heap
sparse dijkstra ObliVM [66] 256 / 4K vertices

C. Performance Results

We now perform studies to evaluate the performance
overhead of running data oblivious code securely, with and
without the oblivious memory partition.

1) Comparison systems: We compare two systems—oisa
and oisa omp—to a baseline insecure system. All three systems
use the same microarchitecture (Table II). Benchmarks run
on insecure are written in a non-data oblivious fashion (i.e.,
without the constraints in Section III-B). Benchmarks run on
oisa are data oblivious, and written using only instructions in
Figure 2 except ocld/ocst (the oblivious memory extension; c.f.
Section IV-B6). Thus, oisa will be similar performance-wise to
existing data oblivious codes, e.g., Raccoon [1], which don’t
have access to an OMP. Benchmarks run on oisa omp use all
instructions in Figure 2 including ocld/ocst.

2) Workloads: We evaluate a suite of common workloads
(Table IV) which have previously been written and evaluated
data obliviously [1], [68], [28], [66] on existing x86 machines.
These codes are divided into three categories. First, codes
that are nearly data oblivious in their default form (mat mult,
neural network, findmax). Second, codes that rely heavily on
data oblivious sort as a subroutine (sort and pagerank). Third,
codes that rely heavily on oblivious memory (binary search,
kmeans, heap, dijkstra). We will also perform case studies
showing our proposal’s applicability in two additional important
settings—constant time cryptography and oblivious memory—
in Sections VII-C5 and VII-C6.

3) Data set sizes: For each benchmark, we evaluate ‘small’
and ‘large’ data sizes. ‘small’ indicates the largest input size
that wholly fits into the 32 KB OMP (Section VII-A). We use
this configuration for two reasons. First, to show the benefit of
having an OMP. Second, to performance compare against prior
work (Raccoon [1], which uses similar data sizes). Finally, we
show the ‘large’ data size to illustrate overheads where program
data does not completely fit into the OMP. In that case, we
fallback to ORAM or SCAN as described in Section IV-B6.

4) Results: Figure 7 shows the overhead of {oisa,
oisa omp} × {small, large} relative to insecure. The main

Fig. 7: Performance comparison between oisa and oisa omp relative
to insecure for small/large data sets.

takeaway is that oisa omp achieves significant (8.8×/1.7×
for small/large data sizes) speedup over oisa. Furthermore,
oisa omp has only 3.2×/40.4× slowdown relative to insecure
on the same data sizes. This shows that our OISA makes data
oblivious computing practical in cases where data fits in the
OMP.

There are two avenues for future work. First, enhance the
OMP to support larger sizes (e.g., beyond the level 1 data
cache, see Section IV-C2). As we see on the large data set
size, overhead for both oisa and oisa omp can be large for
workloads that depend on oblivious memory, as large data sizes
cannot fit into the OMP. Second, engineer more sophisticated
instructions supporting Safe operands. For example, sort is an
important kernel in multiple data oblivious codes [78], [28],
[19], [66]. An OISA can support an osort instruction with
Safe operands directly, and use techniques such as hardware
partitioning to speedup that operation.

5) Case study: constant time AES: An important com-
mercial use-case for data oblivious code today is “constant
time” cryptography. Many papers have demonstrated how un-
protected codes—e.g., T-table AES [37] and naive modular
exponentiation for RSA—leak privacy over microarchitectural
side channels [4], [55], [54]. As a result, practitioners use slower
codes to improve security—e.g., S-box or bitslice AES [38]
and montgomery ladder exponentiation for RSA.10

Our OISA provides a basis for running high-performance
cryptography securely. To demonstrate the benefit, we compare
the performance of T-table AES [37] (high performance, low
security) vs. bitslice AES [38] (low performance, high security).
For this study, we retrofit T-table AES using our ISA and store
the T-tables in the OMP to prevent cache attacks (the rest
of the code is naturally data oblivious). This gives us a high
performance, high security code. The OISA can securely run
both the fully unrolled code or a variant with a loop over the
number of rounds, regardless of branch prediction accuracy
(Section III-B). We argue that on commodity machines today,
highly sensitive applications will have to resort to codes like
bitslice AES.

Both codes are compiled with gcc using -03 optimizations.
Relative to an insecure T-table AES code (insecure), our data

10Discussed in Section III-B, even hardened codes may be insecure due to
subtle hardware optimizations.

14

oblivious T-table AES (oisa omp) has a 2.17× slowdown,
while bitslice AES has a 9.6× slowdown against the same
baseline. Our slowdown relative to insecure is caused by
the compiler not optimizing code around ocld instructions.
Thus, oisa omp can achieve even lower slowdown with better
compiler support.

6) Case Study: ZeroTrace [23]: Beyond encryption, there
is a rich literature to accelerate data structure operations
data obliviously [68], [66], [21]. These schemes typically use
oblivious memory as a subroutine. We now demonstrate how the
OISA can speedup this subroutine by comparing our oblivious
memory API to the original ZeroTrace [23] proposal. Discussed
in Section IV-B6, our library combines ZeroTrace with the OMP
to achieve speedup for different oblivious memory sizes.

Fig. 8: Comparison between oblivious memory primitives. Scan
is the SCAN code from Figure 4, shown for completeness. non-
recursive/recursive Path ORAM are baseline ZeroTrace [23].

Results are shown in Figure 8. oisa omp provides signif-
icant speedup in all size regimes. For small data, oisa omp
places the entire memory in the OMP, providing O(1) (> 1000×
speedup) time access to that data. For larger data, oisa omp
uses SCAN or ORAM, depending on which strategy yields
best performance, and places the ORAM stash in the OMP in
the latter case. An important finding in the ZeroTrace paper
is that stash management, written data obliviously, creates a
performance bottleneck.11 Since the stash does not grow as a
function of the ORAM capacity, we can use the OMP to store
the stash and manage it more efficiently, which allows us to
improve over baseline ZeroTrace by ≥ 4.6× in all regimes.

VIII. RELATED WORK

Data oblivious stack. Beyond data oblivious code written for
today’s ISAs, there is a rich literature to improve algorithm/data
structure [49], [29], [78], [28], [79], [80], [66], [81], [82], [68]
performance in the software circuit abstraction. Additionally,
there is rich literature to write (e.g., [67], [83]) and compile

11We note that an alternate ORAM, Circuit ORAM [73], was designed to
avoid stash management overheads. Unfortunately, Circuit ORAM has worse
bandwidth—12∗ logn vs. 8∗ logn and 3.5∗ logn for data size n—than Path
ORAM, which relies on a stash. Since our oblivious memory extensions make
stash management essentially free, our scheme based on Path ORAM will
outperform Circuit ORAM.

(e.g., [66], [84], [81]) programs to software circuits. An
important observation is that, although many of these works
target cryptographic backends such as garbled circuits, their
underlying programming abstraction (software circuits) is very
similar to the data oblivious abstraction. For example, bitwise
crypto can be easily mapped to integer-wide operations. Thus,
our proposal can be used as a secure hardware backend for
these works.

Secure co-processors. Secure co-processor proposals
Ghostrider [32] and Ascend [31] have the same security goal
(Definition III.1) as this paper, but assume a course-grain
observability function that only captures the processor’s
external pin activity (whereas this paper considers fine-grain
observability; c.f. Section III-A). These proposals also assume
simple processor pipelines and scheduling (e.g., one process
per chip at a time). Relative to these works, our goal is to
show how to retrofit existing high-performance machines to
concurrently run sensitive and non-sensitive programs, which
matches how programmers are writing data oblivious code
today.

Architecture to mitigate side channels. There is a significant
body of work aimed at blocking specific side channels inside
(e.g., [85], [86]) and outside (e.g., [87], [88]) of speculative
execution. We view these works as complementary in that
they are implementations which can be used to realize various
instructions with Safe operands. We note that these works
typically do not satisfy Definition III.1 at cycle granularity as
is, nor do they provide a composable method to block all (as
opposed to specific) side channels without an additional layer
such as an OISA.

ISAs for security, type systems for information flow guar-
antees. ISAs for security are not new; further Safe/Unsafe
operands and the use of DIFT can be viewed as performing
runtime checks between a simple type system and security
lattice (e.g., see [89], [65], [63], [27]). Relative to these lines of
work, we view our conceptual contribution as introducing new
ISA abstractions and design principles that allow software/hard-
ware designers to trade-off efficiency with implementation
complexity, while leaving programmers with simple, portable
security guarantees. We note that our choice of lattice and types
was done for simplicity; an OISA may be combined with a
more sophisticated lattice and set of operand functionalities.

Finally, we view GLIFT [65], [27] as a spiritual predecessor
to this work. One of GLIFT’s major insights is that at the logic
gate level, implicit and explicit flows look very similar. We
observe that the same is true in the data oblivious abstraction
at the program level. This allows insight from GLIFT to carry
over to our domain (e.g., GLIFT’s bit-level checks/transition
functions perform a similar purpose for bits as label stations
perform for words; c.f. Section V-C2).

IX. CONCLUSION

This paper proposes an Oblivious ISA extension to enable
secure and high-performance data oblivious computing in the
data oblivious abstraction. We propose ISA principles, a con-
crete ISA, a complete prototype on an advanced microprocessor,
and accompanying formal analyses for all of the above. Long
term, we hope this paper serves as a step for writing and

15

running safe, portable and performant data oblivious code for
sensitive applications.

Acknowledgements. We thank the anonymous reviewers for
their feedback, and Mohit Tiwari for many interesting discus-
sions. This work was funded through NSF awards #1725734
and #1816226, and an Intel ISRA.

REFERENCES

[1] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in Security’15.

[2] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in S&P’15.

[3] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in SGX,” CoRR’17.

[4] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of aes,” in CT-RSA’06.

[5] Y. Yarom and K. Falkner, “Flush+reload: a high resolution, low noise,
l3 cache side-channel attack,” in Security’14.

[6] O. Aciicmez, J.-P. Seifert, and C. K. Koc, “Predicting secret keys via
branch prediction,” IACR’06.

[7] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
“Branchscope: A new side-channel attack on directional branch predictor,”
in ASPLOS’18.

[8] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On subnormal floating point and abnormal timing,” in
S&P’15.

[9] J. Großschädl, E. Oswald, D. Page, and M. Tunstall, “Side-channel
analysis of cryptographic software via early-terminating multiplications,”
IACR’09.

[10] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and N. Tuveri,
“Port contention for fun and profit.” IACR’18.

[11] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses.” CoRR’18.

[12] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in SP’19.

[13] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in
PKC’06.

[14] D. J. Bernstein, “The poly1305-aes message-authentication code,” in
FSE’05.

[15] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program
counter security model: Automatic detection and removal of control-flow
side channel attacks,” IACR’05.

[16] D. B. S. G. Ben A. Fisch, Dhinakaran Vinayagamurthy, “Iron: Functional
encryption using intel sgx,” in CCS’17.

[17] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning on
trusted processors,” in Security’16.

[18] Z. L. L. K. Fahad Shaon, Murat Kantarcioglu, “Sgx-bigmatrix: A
practical encrypted data analytic framework with trusted processors,” in
CCS’17.

[19] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in NSDI’17.

[20] S. Eskandarian and M. Zaharia, “An oblivious general-purpose SQL
database for the cloud,” CoRR’17.

[21] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An
efficient oblivious search index,” in S&P’18.

[22] S. Tople and P. Saxena, “On the trade-offs in oblivious execution
techniques,” in Detection of Intrusions and Malware, and Vulnerability
Assessment (M. Polychronakis and M. Meier, eds.), Springer’17.

[23] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace : Oblivious memory
primitives from intel sgx,” in NDSS’18.

[24] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Obliviate: A data
oblivious filesystem for intel sgx,” in NDSS’18.

[25] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in S&P’09.

[26] “Speculative execution side channel mitigations.” https:
//software.intel.com/sites/default/files/managed/c5/63/336996-
Speculative-Execution-Side-Channel-Mitigations.pdf. Revision
1.0, January 2018.

[27] M. Tiwari, X. Li, H. M. G. Wassel, F. T. Chong, and T. Sherwood,
“Execution leases: A hardware-supported mechanism for enforcing strong
non-interference,” in MICRO’09.

[28] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi,
“Graphsc: Parallel secure computation made easy,” in S&P’15.

[29] “Bitonic sort.” https://en.wikipedia.org/wiki/Bitonic sorter.

[30] C. Celio, P.-F. Chiu, B. Nikolic, D. A. Patterson, and K. Asanovi,
“Boom v2: an open-source out-of-order risc-v core,” tech. rep., EECS
Department, University of California, Berkeley, 2017.

[31] C. Fletcher, M. Van Dijk, and S. Devadas, “A secure processor
architecture for encrypted computation on untrusted programs,” in
STC’12.

[32] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi, “Ghostrider:
A hardware-software system for memory trace oblivious computation,”
SIGPLAN Not., vol. 50, pp. 87–101, Mar. 2015.

[33] K. Nayak, C. W. Fletcher, L. Ren, N. Chandran, S. Lokam, E. Shik, and
V. Goyal, “Hop: Hardware makes obfuscation practical,” in NDSS’17.

[34] J. Mclean, “Security models,” in Encyclopedia of Software Engineering,
Wiley & Sons, 1994.

[35] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order
execution,” in Security’18.

[36] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in 26th USENIX Security Symposium (USENIX Security 17), (Vancouver,
BC), pp. 557–574, USENIX Association, 2017.

[37] “T-table AES (OpenSSL).” https://github.com/openssl/openssl/blob/
master/crypto/aes/aes core.c.

[38] “Bitslice AES (Bitcoin).” https://github.com/bitcoin-core/ctaes.

[39] G. B. Bell and M. H. Lipasti, “Deconstructing commit,” in ISPASS’04.

[40] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and load
value prediction,” SIGPLAN Not., vol. 31, pp. 138–147, Sept. 1996.

[41] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How SGX
amplifies the power of cache attacks,” CoRR’17.

[42] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating
controlled-channel attacks against enclave programs,” February 2017.

[43] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data,” in OSDI’16.

[44] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games – bringing
access-based cache attacks on aes to practice,” in S&P’11.

[45] Intel, “Intel Software Guard Extensions Programming Reference.”
software.intel.com/sites/default/files/329298-001.pdf, 2013.

[46] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia, “A
formal foundation for secure remote execution of enclaves,” in CCS’17.

[47] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
CRYPTO’99.

[48] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “Eddie:
Em-based detection of deviations in program execution,” in ISCA’17.

[49] E. Stefanov, M. van Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren,
X. Yu, and S. Devadas, “Path oram: An extremely simple oblivious ram
protocol,” CCS’13.

[50] M. Backes and B. Pfitzmann, “Computational probabilistic noninterfer-
ence,” International Journal of Information Security, 2004.

[51] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE Journal on Selected Areas in Communications, vol. 21,
pp. 5–19, Jan 2003.

16

https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://en.wikipedia.org/wiki/Bitonic_sorter
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c
https://github.com/bitcoin-core/ctaes
software.intel.com/sites/default/files/329298-001.pdf

[52] S. Gueron, “Efficient software implementations of modular exponentia-
tion,” IACR’11.

[53] Intel, “Intel Software Guard Extensions Software Development Kit.”
https://software.intel.com/en-us/sgx-sdk.

[54] A. Moghimi, T. Eisenbarth, and B. Sunar, “Memjam: A false dependency
attack against constant-time crypto implementations,” CoRR’17.

[55] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: A timing attack
on openssl constant time rsa,” IACR’16.

[56] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz, “A novel
renaming scheme to exploit value temporal locality through physical
register reuse and unification,” in MICRO’98.

[57] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression for
high-performance processors,” SIGARCH Comput. Archit. News, vol. 32,
pp. 212–, Mar. 2004.

[58] C. A. Waldspurger, “Memory resource management in vmware esx
server,” SIGOPS Oper. Syst. Rev., vol. 36, pp. 181–194, Dec. 2002.

[59] K. M. Lepak and M. H. Lipasti, “Silent stores for free,” in MICRO’00.
[60] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible informa-

tion flow architecture for software security,” SIGARCH Comput. Archit.
News, vol. 35, pp. 482–493, June 2007.

[61] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” SIGARCH Comput.
Archit. News, vol. 32, pp. 85–96, Oct. 2004.

[62] D. E. Denning, “A lattice model of secure information flow,” Commun.
ACM, vol. 19, pp. 236–243, May 1976.

[63] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” SIGPLAN Not.,
vol. 50, pp. 503–516, Mar. 2015.

[64] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi, “The risc-v
instruction set manual, volume i: User-level isa, version 2.0,” Tech.
Rep. UCB/EECS-2014-54, EECS Department, University of California,
Berkeley, May 2014.

[65] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
SIGARCH Comput. Archit. News, vol. 37, pp. 109–120, Mar. 2009.

[66] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A
programming framework for secure computation,” in S&P’15.

[67] D. Darais, C. Liu, I. Sweet, and M. Hicks, “A language for probabilisti-
cally oblivious computation,” CoRR’17.

[68] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” IACR’14.

[69] H. Cook, K. Asanovi, and D. A. Patterson, “Virtual local stores: En-
abling software-managed memory hierarchies in mainstream computing
environments,” tech. rep., 2009.

[70] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox
for portable, untrusted x86 native code,” in S&P’09.

[71] V. Fischer, “Random number generators for cryptography (design and
evaluation.” https://summerschool-croatia.cs.ru.nl/2014/slides/Random%
20Number%20Generators%20for%20Cryptography.pdf.

[72] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
“Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks,” TACO’12.

[73] X. Wang, H. Chan, and E. Shi, “Circuit oram: On tightness of the
goldreich-ostrovsky lower bound,” IACR’14.

[74] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis,
J. Wawrzynek, and K. Asanovic, “Chisel: constructing hardware in a
scala embedded language,” in DAC’12.

[75] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A tool to
understand large caches.”

[76] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “ Multi2Sim: A
Simulation Framework for CPU-GPU Computing ,” in PACT’12.

[77] “Open cores.” https://opencores.org/.
[78] M. Blanton, A. Steele, and M. Alisagari, “Data-oblivious graph algo-

rithms for secure computation and outsourcing,” in ASIA CCS’13.
[79] J. Doerner, D. Evans, and abhi shelat, “Secure stable matching at scale,”

IACR’16.

[80] T.-H. H. Chan, Y. Guo, W.-K. Lin, and E. Shi, “Cache-oblivious and
data-oblivious sorting and applications,” IACR’17.

[81] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and F. Koushan-
far, “Tinygarble: Highly compressed and scalable sequential garbled
circuits,” in S&P’15.

[82] S. Zahur and D. Evans, “Circuit structures for improving efficiency of
security and privacy tools,” in S&P’13.

[83] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer, Y. Huang, R. Jhala,
and D. Stefan, “Fact: A flexible, constant-time programming language,”
SecDev’17.

[84] S. Zahur and D. Evans, “Obliv-c: A language for extensible data-
oblivious computation,” IACR’15.

[85] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “Invisispec: Making speculative execution invisible in the
cache hierarchy,” in MICRO’18.

[86] V. Kiriansky, I. A. Lebedev, S. P. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in MICRO’18.

[87] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in HPCA’16.

[88] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa,
“Strong and efficient cache side-channel protection using hardware
transactional memory,” in Security’17.

[89] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh, “Hyperflow: A
processor architecture for nonmalleable, timing-safe information flow
security,” in CCS ’18.

17

https://software.intel.com/en-us/sgx-sdk
https://summerschool-croatia.cs.ru.nl/2014/slides/Random%20Number%20Generators%20for%20Cryptography.pdf
https://summerschool-croatia.cs.ru.nl/2014/slides/Random%20Number%20Generators%20for%20Cryptography.pdf
https://opencores.org/

	Introduction
	Challenges
	This Paper

	Background and Threat Model
	Hardware Terminology
	Out-of-order execution
	Speculative execution

	Threat Model

	Data Oblivious Execution
	Security Definition
	Security Issues in Existing Data Oblivious Code

	Data Oblivious ISAs
	Design Principles
	Dynamic tracking for Confidential (sensitive) data
	Instruction operand-level security specifications

	Concrete OISA Specification
	Label propagation
	Label declassification
	Instruction set
	Mixing in non-oblivious instructions
	Putting it all together
	Oblivious memory extension

	Process-OS Interface
	Exceptions
	Context switching
	System calls

	Implementation
	RISC-V BOOM Summary
	Support for New Instructions
	Tracking and Checking Labels
	Label storage
	Label checks

	Security Analysis
	Takeaways and Main Insights
	ISA Level
	Abstract machine basics
	Execution traces
	Modeling time
	Modeling out-of-order and speculative execution
	Modeling machine state
	Proof of Security
	Extensions to randomized cryptographic algorithms

	Implementation Level
	Threat vectors in unmodified BOOM
	Securing BOOM

	Evaluation
	Methodology
	Hardware prototyping
	Software simulation
	OMP usage

	Hardware Prototyping and Area Results
	Performance Results
	Comparison systems
	Workloads
	Data set sizes
	Results
	Case study: constant time AES
	Case Study: ZeroTrace ZeroTrace

	Related work
	Conclusion
	References

