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ABSTRACT
We introduce a simple, yet efficient digital signature scheme which

offers post-quantum security promise. Our scheme, named TACHYON,
is based on a novel approach for extending one-time hash-based

signatures to (polynomially bounded) many-time signatures, using

the additively homomorphic properties of generalized compact

knapsack functions. Our design permits TACHYON to achieve several
key properties. First, its signing and verification algorithms are the

fastest among its current counterparts with a higher level of security.

This allows TACHYON to achieve the lowest end-to-end delay among

its counterparts, while also making it suitable for resource-limited

signers. Second, its private keys can be as small as κ bits, where κ
is the desired security level. Third, unlike most of its lattice-based

counterparts, TACHYON does not require any Gaussian sampling

during signing, and therefore, is free from side-channel attacks

targeting this process. We also explore various speed and storage

trade-offs for TACHYON, thanks to its highly tunable parameters.

Some of these trade-offs can speed up TACHYON signing in exchange

for larger keys, thereby permitting TACHYON to further improve its

end-to-end delay.
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1 INTRODUCTION
Ever since Shor [53] published polynomial-time quantum algo-

rithms for factoring and discrete logarithm, the threat of quantum

computation has loomed ominously over public-key cryptography.

Since traditional public-key cryptography is broken by quantum

attacks, alternative schemes with post-quantum (PQ) security must

be identified before quantum computers become practical.

Recently, the NSA has announced an advisory on the possibility

of transitioning to PQ-secure cryptography in the near future [46].

To avoid a hasty transition from current conventional cryptosys-

tems to PQ-secure systems, NIST has already initiated the first

round of standardizations for PQ cryptography
1
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1.1 The State of the Art and Limitations
Lamport [35] proposed the first PQ-secure one-time signature

scheme based on the idea of committing to secret keys via one-

way functions. Later, Bos and Chaum [13] and Reyzin and Reyzin

[51] proposed different variants of Lamport’s signature with the

aim of minimizing the public key and signature size, respectively.

Today, digital signatures based on lattices, hash functions, codes,

multivariates and symmetric primitives are the leading practical

candidates with PQ security.

• Lattice-based Signatures: There are two main categories of lattice-

based signature schemes. One is focusing on hardness of worst-

case to average-case problems with standard lattices (e.g., [39, 49]).

While they provide a strong security, they suffer from very large

parameter sizes (in the orders of a few MBs). Another direction,

with more focus on efficiency, is based on ring analogs of standard

lattice problems (e.g., [1, 19, 20]). Most of these efficient schemes,

however, suffer from costly sampling operations with high precision

over some normal distribution (e.g., Gaussian sampling) during the

signing. Relaxation of this requirement, by only sampling over

integers, permitted more efficient constructions like BLISS [19],

which is based on the Fiat-Shamir transform [23].

Gaussian sampling not only incurs a performance penalty, but its

implementation is also prone to side-channel attacks. For instance,

BLISS [19] has been targeted with a number of side-channel attacks

[22, 26]. At the moment, avoiding such side channels in implemen-

tation is considered to be highly challenging and error-prone [20].

The first efficient construction of lattice-based signatures via

the "Fiat-Shamir with Aborts" was proposed in [38] based on the

hardness of the Ring-SIS problem. A more efficient variation based

on the combination of the Ring-SIS and Ring-LWE problems was

later proposed in [39]. The schemes proposed in [5, 27] mainly

improved the signature sizes of these schemes. Recently, a more im-

proved and efficient version of these schemes called Dilithium was

proposed [20]. Dilithium avoids Gaussian sampling during signing

and its security is based on the learning with errors (LWE) and

short integer solution (SIS) problems in ideal lattices. We provide

a discussion in the similarities between our construction and this

line of work in Subsection 3.3.

qTESLA [12] is another lattice-based signature scheme proposed

to the first round of NIST standardization for PQ cryptography.

qTESLA is based on the decisional ring learning with errors (R-

LWE) problem. While similar to Dilithium [20] , qTESLA avoids
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using Gaussian Sampling during signature generation, but it suffers

from a higher end-to-end delay.

pqNTRUSign [29] is an instantiation of modular lattice signa-

ture (over the NTRU lattice). Signatures can be generated using a

(bimodal) Gaussian or a uniform sampler. Similar to Dilithium [20],

pqNTRUSign employs rejection sampling to avoid the leakage of

the private key components. However, with the current suggested

parameters, the scheme suffers from a high signing time that is due

to the high rejection rate.

While other lattice-based primitives, such as key-exchange pro-

tocols, have undergone some real-world testing and evaluations

(e.g., [14]), the current precarious state of lattice-based approaches

has hindered the development of PQ-secure signatures.

• Hash-Based Signatures: Hash-based signatures can be proven se-

cure in the standard model under the very well-studied properties

of hash functions such as pre-image resistance. The combination of

Merkle trees [43] with early one-time hash-based signatures (e.g.,

Lamport [35]) results in very efficient stateful schemes which are se-

cure for a number of signatures. Traditional hash-based schemes are

stateful, to ensure that the signer does not reuse some of the private

key materials. Recently, stateless signatures (e.g., SPHINCS [11])

have been proposed. SPHINCS has a tight security reduction to the

security of its building blocks such as hash functions and PRNGs.

Unfortunately, these schemes have large signatures (≈ 41 KB) and

very costly signature generation, especially on low-end devices [31].

• Code-Based Signatures: Code-based cryptography has been largely
affected by the Syndrome Decoding Problem [10]. Since McEliece

cryptosystem [42], which is based on binary Goppa codes, there

have been a lot of efforts in balancing security and efficiency of

such systems. The most well-studied and provably secure approach

to obtain signature schemes is applying the Fiat-Shamir transform

[23] on the identification scheme proposed by Véron [56] and Stern

[54]. pqsigRM [36] is a new code-based signature scheme based

on punctured Reed-Muller (RM) submitted to the first NIST post-

quantum standardization conference. pqsigRM can be considered

as a highly improved version of the scheme in [18], where most of

the improvements are due to the replacement of Goppa Codes in

[18] with punctured RM codes. While pqsigRM has significantly

improved the overall parameters sizes in [18], the key sizes are still

larger than its lattice-based and hash-based counterparts.

•Multivariate-Based Signatures : There are a number of multivariate-

based signatures submitted to the NIST standardization of PQ cryp-

tography. For instance, GeMSS [15] can be considered as an im-

provement of its predecessor QUARTZ [47], that is based on the

Hidden Field Equations cryptosystems. GeMSS enjoys from an effi-

cient verification algorithm and very compact signatures, however,

the signing algorithm is significantly slower than its hash-based

counterparts (e.g., SPHINCS+ [30]).

• Symmetric Key Based Signatures: PICNIC [16] is another novel

construction which is based on the problems related to symmetric

key cryptography. PICNIC is obtained by applying the Fiat-Shamir

transform on an efficient zero-knowledge proof which results in

very short public key and private key sizes. However, the scheme

suffers from large signature sizes with relatively slow (as compared

to lattice-based schemes) signing and verification algorithms.

1.2 Our Contribution
We propose a simple and efficient PQ-secure signature scheme,

TACHYON, based on well-studied primitives. We outline a compari-

son between TACHYON and some of its other PQ-secure counterparts

in Table 2 (see Section 5), and further elaborate on its desirable prop-

erties below:

• New Algorithmic Design: TACHYON can be viewed as a novel modi-

fication of the HORS construction [51], which is based on one-way

functions. We harness the HORS approach with the generalized
compact knapsack (GCK) of Micciancio [44]. The additively ho-
momorphic property of GCK provides two benefits: It allows us to

compress the signature size as compared to one-time signatures,

and more importantly, it leads to a totally new paradigm for extend-

ing few-time hash-based signatures to stateless schemes supporting

polynomially-bounded number of signatures.

The security of our scheme is based on the one-wayness of GCK

function family. These properties reduce to the worst-case hardness

of problems in cyclic lattices [40, 44].

• Improved Side-Channel Resiliency: It has been shown that Gaussian
sampling is prone to side-channel attacks (e.g., [26, 50]). Since side

channels are a property of an algorithm’s implementation, they can

be somewhat mitigated with suitable implementation techniques.

However, the process of eliminating side channels in Gaussian sam-

pling algorithms (e.g., in BLISS [19]) is known to be arduous and

error-prone [20]. TACHYON does not require any variants of Gauss-

ian sampling. Instead, it uses uniform sampling over a bounded

domain, and rejection sampling to check for an outputted signature

to be in a safe range.

• Fast Verification: The verification algorithm of TACHYON is very

efficient, involving only two hash function calls, a GCK one-way

function call, and vector additions. This makes TACHYON the most

verifier computationally efficient alternative among its counterparts.

For example, using TACHYON with 256-bit security, it is possible to

verify 35,714 messages per second on commodity hardware (e.g.,

Intel 6th generation i7 processor), which is up to 3.7× faster than

Dilithium [20], one of its fastest alternatives.

• Fast Signing: Signature generation of TACHYON does not require
any costly operations (e.g., Gaussian sampling) but only a GCK

function call (which is demonstrated to be fast [41]), along with a

small constant number of pseudorandom function (PRF) calls and a

small number of vector additions. This makes the signature genera-

tion of TACHYON the fastest as compared to its counterparts.

• Small Private Key: The private keys in TACHYON are as small as

κ-bit, which is the smallest among existing PQ-secure schemes.

Furthermore, unlike some other schemes (e.g., [19]), the signer does

not need to store a pre-computed table to be used in the sampling
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process. Along with the signer computational efficiency, this prop-

erty makes TACHYON a feasible alternative for low-end devices.

• Tunable Parameters: Our new algorithmic design allows us to

offer various speed and storage trade-offs based on the parameter

choices. For instance, one can pre-compute and store some inter-

mediate values at the signer’s side in exchange for a faster signing,

reduce the public key and/or signature size but with an increase in

the end-to-end delay, or increase the signature size to offer lower

rejection sampling rates for a faster signing. Some of these possible

trade-offs are further elaborated in Subsection 5.2.

Limitations: All of these desirable properties of TACHYON come

at the cost of a larger public key. For instance, the public key in

TACHYON-256 is as large as 2976 KB, whereas it is only 1760 bytes

in Dilithium[20]. Yet, we believe there are many use-cases where

storing a larger public key is tolerable. For instance, a resourceful

command center that verifies a large number of signatures from

sensors can store such a public key. However, if the verifier is strictly

memory-limited and cannot afford to store large public keys, then

schemes with a smaller public key, such as Dilithium, should be

considered.

2 PRELIMINARIES
Notation.Wework over a ringR = Zq [x]/(f ) (in this paper f (x) =

(xN + 1)), where N is a power of two, and q is a prime such that

1 ≡ q mod 2N . We denote vectors as bold letters (i.e., v), while

scalars are denoted as non-bold letters (i.e., u). x
$

← S denotes that

x is being randomly selected from set S. |x | denotes the bit length

of a number x , i.e., |x | = log
2
x . AO1 ...On (·) denotes algorithm

A is provided with access to oracles O1 . . .On . For a vector w =
(w1, . . . ,wN ) we define ∥w∥∞ = max{|wi | : i = 1, . . . ,N }.

2.1 Digital Signatures
Definition 2.1. A digital signature scheme is a tuple of three

algorithms SGN = (Kg,Sig,Ver) defined as follows.

– (sk, PK) ← SGN.Kg(1κ ): Given the security parameter κ, it
outputs a private/public key pair (sk, PK).

– σ ← SGN.Sig(M, sk): Given a message M and private key

sk, it outputs a signature σ .
– {0, 1} ← SGN.Ver(M,σ , PK): Given a message-signature

pair (M,σ ), and PK , it outputs b ∈ {0, 1}.

We say that SGN is correct if for all (sk, PK) ← SGN.Kg(1κ ),
SGN.Ver(M, SGN.Sig(M, sk), PK) = 1 holds.

We define security using the code-based games methodology

of Bellare & Rogaway [9]. A game G is a collection of stateful

oracles/functions. Given an adversaryA, the interaction GA refers

to the following: (1) the Initialize function of the game is run,

and its output given as input to A. (2) A may invoke any of the

functions of G. (3) When A terminates, its output is given to the

Finalize function of G. The output of Finalize is the output of the

interaction GA .

Definition 2.2. Existential Unforgeability under Chosen Message
Attack (EU-CMA) [32] (in the random oracle model [8]) is defined in

Algorithm 1 EU-CMA game G[SGN] for a signature scheme SGN, in
the random oracle model. Algorithms of SGN are allowed to query

oracle H .

1: function Initialize

2: (sk, PK) ← SGN.Kg(1κ )
3: return PK
4: function H (q)
5: if L[q] is not defined then
6: a

$

← {0, 1}κ

7: L[q] ← a

8: return L[q]
9: function Sig(M)

10: addM to setM

11: return SGN.Sig(M, sk)
12: function Finalize(M∗,σ ∗)
13: return [M∗ <M] ∧ [SGN.Ver(M∗,σ ∗, PK) = 1]

terms of the game G[SGN] in Algorithm 1. The EU-CMA advantage
of A is defined as

AdvEU-CMA
SGN,A = Pr[G[SGN]A = 1]

We say that A (tA ,qS ,qH , ϵA )-breaks the EU-CMA of SGN if it
makes at most qS and qH signature and hash queries (respectively)
and runs in time at most tA whereAdvEU-CMA

SGN,A ≥ ϵA , and we say that
SGN is (tA ,qS ,qH , ϵA )-secure if no algorithm A (tA ,qS ,qH , ϵA )-
breaks it.

2.2 Forking Lemma
The securitymodel of TACHYON is in RandomOracleModel (ROM) [8],

and also it relies on Generalized Forking Lemma (GFL) [7]. GFL is

a commonly used technique in the security proof of various well-

studied digital signature schemes (e.g., Schnorr [52]). Intuitively,

GFL states that if an adversary can successfully generate a forgery,

then it is possible to rewind the adversary, choose new random

oracle responses after a certain point, and the adversary will still

be able to generate a forgery with polynomially-related probability.

Lemma 2.1. (General Forking Lemma [7]) Fix an integer qF ≥
1 and a set H of size hF ≥ 2. Let A be a randomized algorithm
that returns a pair (J ,σ ) where J ∈ {0, . . . ,hqF } and σ is the side
output, on the input of (x ,h1, . . . ,hqF ) . For IG as a randomized
input generator, the accepting probability of A (ACC) is defined as

the probability that J ≥ 1 in x
$

← IG; (h1, . . . ,hqF )
$

← H ; (J ,σ )
$

←

A(x ,h1, . . . ,hqF ).
The forking algorithm ForkA associated with A is a randomized

algorithm that behaves as in Algorithm 2. For FRK = Pr[b = 1 : x
$

←

IG; (b,σ ,σ ′)
$

← ForkA(x)], then FRK ≥ ACC · ( ACCqF −
1

hF
).

2.3 Generalized Compact Knapsack
Our scheme uses the generalized compact knapsack (GCK) function

family, introduced by Micciancio [44].

Definition 2.3 ([44]). For a ring R, and a small integer µ > 1, the
generalized compact knapsack function family is the set of functions
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Algorithm 2 Forking algorithm ForkA for the forking lemma.

1: Pick coins ρ for A at random.

2: (h1, . . . ,hqF )
$

← H
3: (I ,σ ) ← A(x ,h1, . . . ,hqF ; ρ)
4: If I = 0 then return (0, 0, 0)

5: (h′
1
, . . . ,h′qF )

$

← H

6: (I ′,σ ′) ← A(x ,h1, . . . ,hI−1,h′I , . . . ,h
′
qF ; ρ)

7: If (I = I ′ and hI , h
′
I , return (1,σ ,σ

′)

8: Else, return (0, 0, 0)

of the form FA : Rµ → R, where:

FA(b1, . . . , bµ ) =
µ∑
i=1

bi · ai

An instance of this family is specified by µ fixed elements A =
(a1, . . . , aµ ) ∈ Rµ . These elements are to be chosen randomly and
independently. The inputs b1, . . . , bµ are polynomials over R where
∥bi ∥∞ ≤ β for i ∈ {1, . . . , µ} and some positive integer β .

For the detailed security analysis of GCK function, we refer an

interested reader to [40, 44, 45, 48]. We give the required parameters

to securely instantiate GCK function in TACHYON in Subsection 4.1.

2.4 Bos-Chaum signatures
Since TACHYON is inspired by the construction of Bos and Chaum

(BC) signature scheme which uses a bijective function S(·) and
a one-way function (OWF) f (·) [13], we briefly explain about a

simple generalization of their construction in the following.

Definition 2.4. BC signature scheme consists of three algorithms
BC = (Kg,Sig,Ver) defined as follow.

- (sk, PK) ← BC.Kg(1κ ) Given the security parameter 1
κ
it

sets t ,k and l and generate t random l−bit values for the
private key (x1, . . . , xk ) and compute the public key com-

ponents (yi ) as the image of the private key components xi
with respect to a one-way function f (·), i.e., yi ← f (xi )
where i ∈ {1, . . . , t}. Finally set sk ← (x1, . . . ,xt ) and
PK ← (t ,k, ⟨y1, . . . ,yt ⟩).

- σ ← BC.Sig(M, sk): Given a b-bit messageM and sk, inter-
pretM as an integer between 0 and 2

b − 1 and set (i1 . . . , ik )
as theM−th k−element subset of set (1, 2, . . . , t), computed

as S(M). Output the signature as σ ← (xi1 , . . . ,xik ).
– {0, 1} ← BC.Ver(M,σ , PK): Given a message-signature pair

(M,σ = ⟨x ′
1
,x ′

2
, . . . ,x ′k ⟩), interpretM as an integer between

0 and 2
b−1 and set (i1 . . . , ik ) as theM−th k−element subset

of set (1, 2, . . . , t), computed as S(M). It the checks if {yi j =

f (x ′j )}
j=k
j=1 holds, it outputs 1, else it outputs 0.

3 PROPOSED SCHEME
3.1 TACHYON
Our conceptual starting point is the HORS construction [51], which

itself is a variant of the Bos and Chaum scheme [13]. The private

key consists of many random values xi , and the public key consists

of corresponding images yi = F (xi ), where F is a one-way function.

Of course, the xi values can be derived from a small seed using a

PRF (this feature is preserved by TACHYON, and leads to a minimal

signing key). To sign a messageM , the signer first computes H2(M)
and interprets it as a sequence of indices (i1, . . . , ik ). The signature
then consists of xi1 , . . . , xik . To verify, one can simply compare

F (xj ) to the public key value yj , for each relevant j.
Our novel departure from this paradigm is to use an additively

homomorphic OWF F . Specifically, we choose the generalized

compact knapsack (GCK) function family of Micciancio [44]. This al-

lows the signature to be compressed, as follows. Instead of xi1 , . . . , xik ,
the signature can contain only s =

∑
j xi j . The verifier can then

check that F (s) =
∑
j yi j .

However, this approach leaks a linear combination of the secret

key material. After a moderate number of signatures, it would be

possible to solve for the entire secret key via a system of linear

equations. To thwart this, we add some “noise”. Specifically, the

signature consists of s =
∑
j xi j + r

′
for a suitably distributed r′.

There are two challenges when adding this noise. First, we must

make sure the verifier can still verify such a signature. This can be

achieved by giving out F (r′) in the signature. Since the output of F
is long, we instead give out a short hash H1(F (r′)).

Second, the GCK-OWF is defined over some ring but can only

accept inputs that are “short” — i.e., the inputs come from a sub-

set of the ring that are not closed under the homomorphic opera-

tion. This makes it challenging to mask the sensitive sum

∑
j xi j .

We use the following rejection-sampling approach proposed by

Lyubashevsky [37]. Sample the noise r′ from a suitable uniform

distribution, and restart the entire signing algorithm if the result∑
j xi j + r′ is “too large” or “too small”. More details about this

rejection sampling process are given in Subsection 3.2.

Finally, instead of choosing indices i1, . . . , ik as H2(M) as in
HORS, we choose them as H2(M ∥h) where h = H1(F (r′)). Intu-
itively, this ensures that the value r′ is “committed” before the rest

of the signature is generated. This aspect of the scheme is used in

the security proof, specifically in our use of the generalized forking

lemma (Lemma 2.1). The rewinding argument of the forking lemma

implies that any adversary generating a forgery in our scheme can

be rewound to output two forgeries with the same h. From these

two forgeries, we can break the one-wayness of F .

Details. The formal description of the TACHYON scheme is given

in Algorithm 3.

FA refers to the GCK one-way function discussed in Subsec-

tion 2.3. Its input is a vector from Rµ and its output is a vector

in R, where R is a suitable ring and µ is a small integer. The GCK

function is parameterized by a public value A, which is to be cho-

sen randomly. The random choice of A ensures the one-wayness

of FA [37, 44]. As such, it may be a global parameter (i.e., shared

among all users).

Samp(γ ) samples a uniform distribution over vectors in Rµ with

all entries in the range [−γ ,γ ]. This function can easily be imple-

mented with a PRF or PRG, similar to other lattice-based construc-

tions that uses uniform sampling (e.g., Dilithium [20]).

PRF refers to a pseudorandom function whose output is inter-

preted as a binary (0/1) vector of Rµ (i.e., an input to FA).
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ξ and ρ are parameters related to both the security of the GCK-

OWF (controlling the weight of its inputs) as well as the probabili-

ties surrounding rejection sampling (discussed further in Subsec-

tion 3.2).

H1 is a random oracle with output length l1, used to commit the

signature to r′ before choosing the HORS indices. H2 is a random

oracle with output length l2 = k |t | used to choose HORS indices.

We write ⟨i1∥ · · · ∥ik ⟩ ← H2(M ∥h) to mean that the output of H2

is interpreted as a sequence of k indices, each |t | bits long.

Algorithm 3 TACHYON signature scheme

TACHYON.Kg(1κ ):

1: sk
$

← {0, 1}κ

2: xi ← PRF(sk, i), for i = 1, . . . , t
3: yi ← FA(xi ), for i = 1, . . . , t
4: return sk, PK ← (t ,k, ⟨y1, . . . , yt ⟩)

TACHYON.Sig(M, sk):

1: r′
$

← Samp(ξ − 1), r← FA(r′)
2: h ← H1(r)
3: ⟨i1∥ · · · ∥ik ⟩ ← H2(M ∥h)
4: xi j ← PRF(sk, i j ), for j = 1, . . . ,k

5: s← (
∑k
j=1 xi j ) + r

′

6: if ∥s∥∞ ≥ (ξ − ρ) then goto step 1

7: return σ ← (s,h)

TACHYON.Ver(M,σ , PK):
1: parse σ as (s,h), and PK as (t ,k, ⟨y1, . . . , yt ⟩)
2: if ∥s∥∞ ≥ (ξ − ρ) then return 0

3: ⟨i1∥ · · · ∥ik ⟩ ← H2(M ∥h)

4: r̃← FA(s) −
∑k
j=1 yi j

5: if H1(r̃) = h then return 1 else return 0.

Correctness: TACHYON algorithm is correct in the sense that a

signature generated via TACHYON.Sig(·) will always be verified by

TACHYON.Ver(·). This can be shown as follows:

Given a message-signature pair (M,σ = ⟨s,h⟩), due to the deter-

ministic property of the hash oracle H2(·) the indexes created in

TACHYON.Sig(·) by computing ⟨i1∥ · · · ∥ik ⟩ ← H2(M ∥h) are identi-
cal to those created in TACHYON.Ver(·). Therefore, given the public

key PK ← (t ,k, ⟨y1, . . . , yt ⟩),

FA(s) −
k∑
j=1

yi j = FA((
k∑
j=1

xi j ) + r
′) −

k∑
j=1

yi j

= FA(
k∑
j=1

xi j ) + FA(r
′) −

k∑
j=1

FA(xi j )

= FA(r′)

Therefore, for a valid message-signature pair (M,σ = ⟨s,h⟩), Step
5 in Algorithm 3 will always return 1.

3.2 Rejection Sampling
The idea of rejection sampling in lattices was first proposed by

Lyubashevsky [37] in the construction of identification schemes. In

our scheme, we need to mask the summation of secret keys (

∑
j xi j )

with a random r′. If r′ is uniform over the entire ring (on which

the summation is defined), then clearly all information about the

summation is hidden. However, the verifier must use s =
∑
j xi j +r

′

as input to FA, which is only possible if s is small. Hence, r′ must

be chosen from some bounded distribution. We now discuss how

that distribution is determined.

The xi vectors are chosen with coefficients from {0, 1}. One can

easily compute a bound ρ such that

Pr

[
for all subsets S with |S | ≤ k : ∥

∑
i ∈S xi ∥∞ < ρ

]
is very high, over the choice of the xi values. The rest of the analysis
conditions on this highly likely event, and we assume that each

coefficient a of

∑
j xi j is in the range a ∈ [−(ρ − 1), ρ − 1].

Now we choose r′ uniformly with each coefficient in the range

[−(ξ − 1), ξ − 1] and set s =
∑
j xi j + r

′
. This causes each coefficient

of s to be uniform in a range [a − (ξ − 1),a + ξ − 1] for some a ∈
[−(ρ−1), ρ−1], which depends on the signing key. Nomatter what a
is, the range [a−(ξ−1),a+ξ−1] always contains [−(ξ−ρ−1), ξ−ρ−1]
as a subrange. Therefore if we condition on all coefficients falling

in this subrange, the resulting value is uniform and independent

of the signing key. We can achieve this conditioning by rejection

sampling, and simply retrying if ∥s∥ ≥ ξ − ρ.
The parameter ξ must be chosen carefully, since larger ξ leads to

larger signatures, but smaller ξ leads to more failures/retries during

rejection sampling. We can compute the probability of rejection

by considering each component of s in isolation. The coefficient is

chosen uniformly from some range [a−(ξ −1),a+ξ −1], which has

2ξ−1 values. The “permissible” outcomes are [−(ξ−ρ−1), ξ−ρ−1], a
range of 2(ξ−ρ)−1 values. Hence the probability that this coefficient

is permissible is
2(ξ−ρ)−1
2ξ−1 = 1 −

2ρ
2ξ−1 . With µN coefficients in s,

the sampling success probability is therefore(
1 −

2ρ

2ξ − 1

)µN
≈ e
−N µρ/ξ

3.3 Comparison with the Existing Designs
While the approach in obtaining TACHYON is completely different,

one can see that TACHYON construction is similar to the line of

schemes proposed following the work in [39]. More specifically,

the scheme in [39], and all the following works (e.g., [5, 20, 27]),

are based on the Fiat-Shamir transform (along with a rejection

sampling) while in TACHYON, the goal is to efficiently achieve a

(polynomially-bounded) multiple-time signature from the one-time

scheme proposed in [13]. Here, we highlight a few differences of

TACHYON with the schemes proposed in this line of work.

The user’s public key in [39] consists of a matrix A. To avoid a

larger public key size in [20], this matrix is deterministically regen-

erated during the signature generation and verification algorithms.

In TACHYON this is avoided since this matrix is treated as a system

wide parameter relating to the specification of the one-way function

(i.e., GCK) and it is not user specific. Next, the message encoding

in TACHYON results in a selection of k vectors to be added, however

in [39] this increases to the selection of lc vectors, where lc is the
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domain of the hash function in [20, 39]. Moreover, the challenge in

[20, 39] has coefficients in {−1, 0, 1} while in TACHYON, similar to

conventional hash functions, the output of the hash function has

coefficients in {0, 1}. There has been a number of follow up works

(e.g., [5, 20, 27] ) which significantly improved the efficiency and

storage of the original scheme proposed in [39]. Therefore, we note

that the attempts to further improve TACHYON should consider all

the prior works following [39].

4 SECURITY ANALYSIS
In the random oracle model [8], we prove that TACHYON is EU-CMA
in Theorem 4.1 below. Note that in our proof, we ignore terms that

are negligible in terms of our security parameter.

Theorem 4.1. In the random oracle model, if there exists an ad-
versary A that can (tA ,qS ,qH , ϵA )-break the EU-CMA security of
TACHYON, then one can build another algorithm B, that can break the
one-wayness of the GCK function family (as defined in Definition 2.3)
with success probability of at least

1

t

[(
ϵA −

qH (qS + qH )

2
l1

) (
ϵA
qH
−
qS + qH

2
l1

−
1

2
l2

)
−
qHk!

2
l2

]
and running in time at most

O
(
2tA + t(tRNG + tFA ) + qS (2tRNG + tFA + ktAdd ) + qH tRNG

)
where tRNG , tAdd and tFA are the running time of a random number
generator, vector addition and FA function, respectively.

The intuition behind the reduction is as follows. The reduction

algorithm receives a value y∗ and attempts to find a preimage of y∗

under FA. The reduction algorithm plays the role of the challenger

(EU-CMA game) against A, and uses y∗ as one of the public-key
components yj∗ , for random index j∗. It chooses all other public-key
components yi honestly.

The reduction algorithm does not know the entire signing key

(it does not know xj∗ ), so it uses its ability to program the random

oracle to generate simulated signatures. Specifically, it chooses the

signature (s,h) uniformly at random, and then programs H1 and

H2 so that the signature verifies.

Suppose A successfully constructs a forgery (s,h). Consider
rewinding the adversary to the point where it made the query

H2(M ∥h), then continuing with independent randomness. The fork-

ing lemma states that, with good probability, the adversary will

output a forgery (s′,h) in this case as well. Importantly, the new

forgery will include the same h, hence:

h = H1

©«FA(s) −
∑
j ∈I

yj
ª®¬ = H1

©«FA(s′) −
∑
j ∈I ′

yj
ª®¬

Note that the two summations are over different multisets I , I ′ of
indices.

Conditioning on the absence of a collision in H1, we have

FA(s) −
∑
j ∈I

yj = FA(s′) −
∑
j ∈I ′

yj

Say that I and I ′ are compatible if there is some index that appears

with multiplicity exactly once in I ∪ I ′. Our reduction conditions

on the fact that I and I ′ are always compatible. With independent

probability 1/t , we have that I and I ′ are actually compatible with

respect to our special index j∗. Compatibility implies that we can

solve for y∗. Let’s say j∗ ∈ I \ I ′, then:

y∗ = FA(s′) − FA(s) +
∑

j ∈I\{j∗ }

yj −
∑
j ∈I ′

yj

The reduction algorithm knows the preimages to all yj terms on the

right-hand side. It is therefore possible to apply the homomorphic

property of FA andwrite the right-hand side as FA applied to a value

known to the reduction algorithm. In other words, the reduction

can compute a preimage of y∗.

Compatible index sets. Before describing the reduction in more

detail, we clarify the properties of compatible index sets.

Definition 4.2. Let I , I ′ be strings which encode multisets in the

natural way as I = ⟨i1∥ · · · ∥ik ⟩, etc. We say that I and I ′ are com-
patible with respect to i if i appears with multiplicity 1 in I and
multiplicity 0 in I ′ (or vice-versa). We say that I and I ′ are com-
patible if they are compatible for some value i .

Each I encodes k indices. In the worst case there are at most k!
other strings that encode a multiset that is incompatible with I . If
we have one fixed string I∗ and q other uniformly chosen strings

I1, . . . , Iq (all strings with l2 bits)

Pr[I∗ is compatible with all I1, . . . , Iq ] ≥

(
1 −

k!

2
l2

)q
≥ 1 −

q · k!

2
l2

And hence:

Pr[I∗ is not compatible with all I1, . . . , Iq ] ≤
q · k!

2
l2

We abbreviate the latter probability as Pr[Compat(q,k, l2)].

Reduction algorithm. Given an adversaryA, we define the reduc-

tion algorithm/game B in Algorithm 4. B takes y∗ (an FA-output)
as input, as well as a listH of random oracle responses that it will

use to program H2. This interface is necessary for our usage of the

forking lemma.

B proceeds to simulate the EU-CMA game againstA, implanting

y∗ within the public key and generating simulated signatures as

described above.

If A is successful in generating a forgery, then B outputs it, as

well as the index of the hash call corresponding toH2(M
∗∥h∗). This

indicates to the forking lemma that we wish to rewind to this query

and resume with fresh randomness.

Claim 1. Pr[FORGERY] ≥ ϵA −
qHqS+q2

H
2
l
1

+ negl(κ), where the
negligible quantity is from the security of PRF.

Proof. First, we compare the view of A in the reduction to its

view in the standard EU-CMA game. The only differences are:

(1) The xi values are chosen uniformly rather than pseudoran-

domly. This changes the adversary’s view by a negligible

amount.

(2) The signature is generated in “reverse order”. From the dis-

cussion in Subsection 3.2, real signatures are distributed uni-

formly, hence this difference has no effect on the adversary’s

view.
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Algorithm 4 Reduction algorithm B.

1: function Initialize(y∗,H )

2: j∗
$

← {1, . . . , t}
3: yj∗ ← y∗

4: xi
$

← Samp(1), for i ∈ {1, . . . , t} \ {j∗}
5: yi ← FA(xi ), for i ∈ {1, . . . , t} \ {j∗}
6: return PK ← (t ,k, ⟨y1, . . . , yt ⟩)
7: function H1(q)
8: if L1[q] is not defined then
9: L1[q]

$

← {0, 1}l1

10: return L1[q]

11: function H2(q)
12: if L2[q] is not defined then
13: L2[q] ← next unused value fromH

14: return L2[q]

15: function Sig(M)

16: addM to setM

17: s
$

← Samp(ξ − ρ − 1)

18: h
$

← {0, 1}l1

19: I = ⟨i1∥ . . . ∥ik ⟩ ← next unused value fromH

20: r̃← FA(s) −
∑k
j=1 yi j

21: if L1[r̃] or L2[M ∥h] are defined then BAD1← 1; abort
22: L1[r̃] ← h
23: L2[M ∥h] ← I
24: return (s,h)
25: function Finalize(M∗,σ ∗ = (s∗,h∗))
26: if there is a duplicate value in L1 then BAD2← 1; abort
27: if [M∗ <M] ∧ [SGN.Ver(M∗,σ ∗, PK) = 1] then
28: FORGERY← 1

29: let v be the index such that L2[M
∗∥h∗] = H[v]

30: return (v,σ ∗)
31: else
32: return (0, 0)

Overall, we see that the adversary’s view is indistinguishable.

The only other difference between the reduction and EU-CMA

game is that the reduction may abort in the event of BAD1 or BAD2.

BAD1 happens when the reduction needs to program the random

oracles but they have already been queried on the desired point.

On line 21, the values r̃ and h are uniform, each with at least l1 bits
of entropy. Hence the probability that such a prior query has been

made is at most qH /2
l1
. Taking a union bound over all qS calls to

Sig, the overall probability of BAD1 is bounded by qSqH /2
l1
.

BAD2 happens when a collision is found in H1. This probability

is bounded by q2H /2
l1
. □

Forking lemma. Now, we can consider invoking the forking

lemma (Lemma 2.1) with BA . The result is an algorithm ForkB
that has probability at least

Pr[FORGERY]

(
Pr[FORGERY]

qH
−

1

2
l2

)

of producing two forgeries. Note that these forgeries must be with

respect to the same M∗ and h∗ values because of the way that B

computes the index v of the “special” oracle query, and the fact

that the forking lemma ensures that this index is the same in both

“forks.” Each forgery verifies with respect to a different value of

H2(M
∗∥h∗).

Claim 2. Let σ ∗
1
= (s∗

1
,h∗) and σ ∗

2
= (s∗

2
,h∗) be the two forgeries

output by ForkB , for messageM∗. Let I1 be the value of H2(M
∗∥h∗)

in the first “fork” and I2 be its value in the second “fork.” When I1
and I2 are compatible with respect to j∗, a preimage of y∗ can be
computed efficiently.

Proof. Following the high-level discussion, we can solve for a

preimage of y∗. Write I1 = ⟨i
(1)

1
∥ · · · ∥i

(1)

k ⟩ and I2 = ⟨i
(2)

1
∥ · · · ∥i

(2)

k ⟩.

By symmetry, suppose j∗ appears in I1 but not I2. From the

verification equation for these signatures we have:

h∗ = H1

©«FA(s∗1) −
k∑
j=1

yi (1)j
ª®¬ = H1

©«FA(s∗2) −
k∑
j=1

yi (2)j
ª®¬

Since B aborts if a collision was found in H1 (BAD2 event), we have

FA(s∗1) −
k∑
j=1

yi (1)j
= FA(s∗2) −

k∑
j=1

yi (2)j

Isolating yj∗ = y∗ (which appears in the left summation but not

the right one) and using the homomorphic property of FA gives:

y∗ = FA(s∗1) − FA(s
∗
2
) −

k∑
j=1

i (1)j ,j
∗

yi (1)j
+

k∑
j=1

yi (2)j

= FA(s∗1) − FA(s
∗
2
) −

k∑
j=1

i (1)j ,j
∗

FA(xi (1)j
) +

k∑
j=1

FA(xi (2)j
)

= FA

©«
s∗
1
− s∗

2
−

k∑
j=1

i (1)j ,j
∗

xi (1)j
+

k∑
j=1

xi (2)j

ª®®®®®¬
The final argument to FA is a value that can be computed from

known values, and it is a preimage of y∗. □

Proof of Theorem 4.1. Given an adversary A breaking EU-

CMA security as stated, we first construct the reduction algo-

rithm/game B (Algorithm 4). From Claim 1, the game produces a

forgery with probability (ignoring negligible terms related to the

PRF):

Pr[FORGERY] ≥ ϵA −
qHqS + q

2

H

2
l1

We then apply the forking lemma (Lemma 2.1) to BA . The result is

an algorithm ForkB that generates two forgeries with probability

at least:

Pr[FORGERY]

(
Pr[FORGERY]

qH
−

1

2
l2

)
In the event that ForkB outputs two forgeries, define I1 to be the
value of H2(M

∗∥h∗) in the first “fork” and I2 to be its value in
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the second “fork.” Looking ahead, we would like to bound the

probability that I1 and I2 are compatible. However, we run into

a problem because I2 is not distributed independently of ForkB ’s
success. Intuitively, the adversary gets to “choose” whether the

second fork succeeds after seeing I2.
On the other hand, letH ′ be the set of oracle responses that are

re-sampled uniformly during the second “fork.” Importantly,H ′ is

distributed independently of I1, so we can bound the probability

that I1 is compatible with all elements ofH ′. Since I2 (if it exists) is
guaranteed to be an element ofH ′, this allows us to reason about

the compatibility of I1 and I2.
From these observations, we obtain:

Pr[preimage of y∗ is found]

= Pr[ForkB outputs 2 forgeries and I1, I2 are compatible wrt j∗]

=
1

t
Pr[ForkB outputs 2 forgeries and I1, I2 are compatible]

≥
1

t
Pr[ForkB outputs 2 forgeries and I1,H

′
are compatible]

≥
1

t

(
Pr[ForkB outputs 2 forgeries] − Pr[Compat(qH ,k, l2)]

)
≥

1

t

[
Pr[FORGERY]

(
Pr[FORGERY]

qH
−

1

2
l2

)
−
qHk!

2
l2

]
=

1

t

[(
ϵA −

qH (qS + qH )

2
l1

) (
ϵA
qH
−
qS + qH

2
l1

−
1

2
l2

)
−
qHk!

2
l2

]
Note that the third line follows from the fact that the adversary’s

view in BA is independent of j∗.
The running time of B is that of A to output two forgery sig-

natures with an overwhelming probability plus the time it takes

for the simulation processes. For the sake of convenience, we do

not consider the negligible processes. The setup process takes

t · (tRNG + tFA ), where t is the HORS parameter, for generating

private keys and the corresponding public keys. Each signing pro-

cess would require 2tRNG to generate r′ and I = (i1, . . . , ik ) one
tFA and k · tAdd . Each hash query would require a tRNG . Therefore,

the total running time of B is upper-bounded by

O
(
2tA + t(tRNG + tFA ) + qS (2tRNG + tFA + ktAdd ) + qH tRNG

)
This completes the proof. □

4.1 Parameters
In this section, we discuss parameter choices for our construction

as shown in Table 1.

4.1.1 Collision-freeness of GCK function. For TACHYON, N and µ
are 256 and 8, respectively. As it has been shown in [40, 48], for

the family of GCK functions to admit a strong security reduction,

one needs to ensure that µ >
|q |
2 |d | , q > 4dµN 1.5 |N | for domain

D = {g ∈ R : ∥g∥∞ ≤ d} for some value d . Specifically, based on

the analysis in [40, 45, 48], with these parameters, finding collision

on average (when ai, j ∈ Zq ) with any non-negligible probability is

at least as hard as solving the underlying problem (i.e., SPPγ (I ) [40])
on certain kinds of point lattices, in the worst-case. We note that

our concrete parameter selection, as provided in the following,

meets the requirements stated above to allow for a strong security

reduction.

4.1.2 Lattice Attacks. Given a uniformly random vector

a = (a1, . . . ,aµ ) ∈ Rµ , the SIS problem over a ring asks to find

a non-zero vector x = (x1, . . . ,xµ ) ∈ Z[x ]/(xN +1) such that

m∑
i=1

aixi ≡ 0 mod q, where ∥x∥ ≤ β

An approach to estimate the hardness of this problem is by

measuring the run-time of lattice basis reduction algorithms. These

reduction algorithms aim to find the nice bases which consist of rea-

sonably short and (nearly) orthogonal vectors. Gama and Nguyen

[24] show that such reduction algorithms for a lattice L with di-

mension N can find vectors of length ≤ δN · det(L)
1

N where δ
is the Hermite delta. The BKZ algorithm [52] is the best known

algorithm for finding short (non-zero) vectors in lattices. The BKZ

algorithm starts by reducing a lattice basis using a Shortest Vector
Problem (SVP) oracle in a smaller dimension. As shown in [28], the

number of calls to the SVP oracle remains polynomial, however,

precisely computing the number of calls is an arduous task and

therefore, subject to heuristic approaches (e.g., BKZ 2.0 [17]). BKZ

2.0 requires solving the SVP problem in lattices with dimension at

most b < N , where b is called the block size. Therefore, BKZ 2.0

runs for multiple rounds to find the final output. Given the norm

bound β of an SIS instance, the corresponding δ can be computed

as β = δ det(L)1/N , then an estimate of the run time of BKZ 2.0 to

attain δ is computed. Following [2, 25, 57], we use the following

relation to determine the smallest block size b to achieve δ .

δ =

(
b · (πb)

1

b

2πe

) 1

2(b−1)

The most recent classical solver for SVP [6] runs in time ≈ 2
0.292b

and the best known quantum solver for SVP [34] runs in time

≈ 2
0.265b

.

In the following we discuss our estimation based on the works

in [2, 3, 20, 25].

We consider two types of adversary powers, namely, the classical

and post-quantum. For TACHYON, we proffer three parameter sets

(for three security levels) and analyze the security level of each for

the adversarial types mentioned above. In the classical model, for

our medium security instantiation, we set q = 2
27 − 211 + 1 and

β = 2
16

to achieve δ ≈ 1.00339withb = 502. We setq = 2
30−218+1

and β = 2
17

for recommended instantiation which achieves δ ≈
1.00271 with b = 682. We set q = 2

31 − 2
9 + 1 and β = 2

17
for

the high security instantiation with δ ≈ 1.00203 with b = 1007.

Therefore, based on the analysis in [3, 20], we achieve 146, 199 and

294 classical bit security for the medium, recommended and high

security instantiations of TACHYON against lattice attacks, respec-

tively. For post-quantum security against lattice attacks, we achieve

133, 180 and 266 bit security for the medium, recommended and

high security instantiations, respectively. Similar to Dilithium [20],

our parameter choices are conservative.

4.1.3 k-Element Combinatorial Problem. As captured in our secu-

rity proof, k, t parameters must be selected such that the probability

qH ·k !
2
l
2

is negligible. Considering that l2 = k |t | (since k indexes that
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Table 1: Parameter Selection of TACHYON

Parameter TACHYON-128 TACHYON-192 TACHYON-256
N 256 256 256

µ 8 8 8

q 134215681 1073479681 2147483137

t 1024 2048 3072

k 18 25 32

l1 256 bits 384 bits 512 bits

l2 180 bits 275 bits 384 bits

RS Rate
†

3.08 2.18 2.72

† RS Rate denotes Rejection Sampling Rate.

are |t |-bit long are selected with the hash output), this gives us

qH ·k !
2
k |t | . We further elaborate on some choices of (k, t) along with

their security/performance implications in Section 5.

4.1.4 Quantum Random Oracle Model (QROM). QROM considers

the scenario where the adversary has classical access to the signing

oracle and quantum access to the hash function oracle. TACHYON is

proven to be secure in the random oracle model and we do not

provide the proof for the security of TACHYON in QROM. This trend

is true for a wide range of "efficient" schemes (e.g., [20]), which

are mostly based on Fiat-Shamir framework, since their ROM is

not "history free" due to the forking lemma in the reduction step.

Initial approaches (e.g., [55]) to obtain QROM security for schemes

based on Fiat-Shamir transformation resulted in considerably less

efficient signatures since they needed multiple execution of the

underlying identification scheme. However, recently, in line of pro-

viding QROM security for Dilithium [20], Kiltz et al. [33] provide a

tight reduction in the QROM which incurs less performance/stor-

age penalty as compared to directly applying the method in [55].

This generic framework [33] can be applied to the identification

schemes that admit lossy public keys. We believe it is possible to

prove the security of TACHYON in QROM and therefore, in the line

of Dilithium [20] and its QROM secure instantiation [33], we will

investigate the QROM security of TACHYON in our future work.

5 PERFORMANCE EVALUATION
We first present analytical performance analysis and some of the

potential performance/speed trade-offs for TACHYON. We then pro-

vide our evaluation metrics and experimental setup followed by

a detailed experimental comparison of TACHYON with the state-of-

the-art PQ-secure digital signature schemes.

5.1 Analytical Performance Analysis
Wenow describe the analytical performance of our scheme based on

the parameters. In the computational overhead analysis, we present

our runtime in terms of the total number of PRF, GCK function,

and vector addition calls. We omit the overhead of small-constant

number of hash calls.

• Signer Computation and Storage Overhead: TACHYON only requires
storing a κ-bit random seed number as the private key, which is

used to deterministically generate the required xi components via

PRF calls, where each xi is µ · N bits.

The signature generation cost is significantly affected by the

derivation and summation of k number of xi. This requires k · PRF
calls, extracting the binary vectors from the PRF outputs and vector
additions (whose computational overhead is negligible). For each

PRF call, a κ-bit input is extended to a µ ·N bit output. In addition, a

Samp(ξ − 1) function is required. Samp(ξ − 1) generates a vector of
length µ ·N with components of length |ξ | bits. Therefore, Samp(ξ −
1) can be implemented with a PRF that extends a κ-bit input to a

|ξ | · µ · N bit output. In total, these correspond to the generation of

(|ξ | + k) · µ · N pseudorandom bits via a PRF. Another significant
cost for signature generation is the GCK function call that is made

to compute the image of the randomness r′. A GCK call is basically

composed of two operations: Number Theoretic Transform (NTT)

calculation and a linear combination. In order to compute a GCK call,

µ number of NTT calls and a single linear combination is necessary,

where both of these operations are based on simple multiplications

and additions under mod q. Therefore, in total, TACHYON signature
generation requires storing κ-bit of private key, k PRF invocations,

k vector additions, a single Samp(ξ − 1) and a GCK function call to

compute a signature.

• Signature Size: The signature σ is comprised of the vector s and
a hash output h, where |h | = l1. Rejection sampling enforces s to
satisfy ∥s∥∞ < ξ − ρ. Since s consists of µ · N components, this

vector can be represented with |ξ − ρ | · µ · N bits. The total size of

a signature is |ξ − ρ | · µ · N + l1 bits.

• Verifier Computation and Storage Overhead: The signature verifi-
cation requires only a single GCK call and k vector additions, which

makes it the most verifier computationally efficient scheme among

its current counterparts. On the other hand, the size of public key

is |q | · µ ·N · t bits (i.e., t vectors of length µ ·N ), which is relatively

larger than its counterparts.

• Improved Side-Channel Resiliency: TACHYON only requires a uni-

form sampling Samp(ξ −1) in its signature generation. Since it does

not require Gaussian sampling, it has an improved side-channel

resiliency as compared to some of its lattice-based counterparts

(e.g., BLISS [19]). Moreover, the rejection sampling in BLISS is based

on iterated Bernoulli trials, that is prone to some attacks. As it is

shown in [22], this efficient rejection sampling technique has been

exposed to some side channel attacks. Although, TACHYON requires

rejection sampling to make sure the statistical distribution of the

signatures does not leak information about the private key compo-

nents, similar to [20], since our rejection sampling does not require

any Bernoulli trials, the attack does not apply to our rejection sam-

pling step.

5.2 Performance-vs-Storage Trade-offs
Our design allows several trade-offs between performance and stor-

age that may be suitable for different use-cases.

• Signer Pre-computation: With a basic implementation trick, one

can store the xi’s instead of deterministically generating them at

the signature generation. This enables the signer to avoid the cost

of generating these values (k · PRF calls, and extracting the binary
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vectors) during the signature generation. Since the signer must

store these xi vectors, this adds up to a private key of at least

t · µ · N bits, that is larger than that of TACHYON. However, this
caching strategy offers a faster signature generation and therefore

can be preferred when the signer is able to store such vectors.

Signature generation speed advantages and required private key

size are further explained in Subsection 5.4.

• Selection of t ,k : The parameter t linearly impacts the size of

public key of TACHYON. The parameter k determines the number

of PRF calls, binary vectors to be extracted and vector additions

in TACHYON signing, and also the number of vector additions in

TACHYON signature verification. Note that decreasing t requires an
increase in k (or vice versa) to preserve the desired security level.

We selected (t = 1024, k = 18), (t = 2048, k = 25), and (t = 3072,

k = 32) to provide κ = 128-bit, κ = 192-bit, and κ = 256-bit se-

curity, respectively. However, different parameters for the same

security levels are also possible. For instance t = 256, k = 26 would

also offer κ = 128-bit security level and could be preferred (over

t = 1024, k = 18) for TACHYON medium level security instantiation.

This would provide a 4× smaller public key, where the signature

generation time would be increased.

• Rejection Sampling Parameters: Rejection sampling rate implies

how many times (on average) the signature generation should be

executed to output an “acceptable” signature. Therefore, the in-

crement of the acceptance probability has a linear effect on the

signature generation time. We discuss two parameters that can

be tuned to increase the acceptance probability of the outputted

signatures, (i) increasing ξ − 1 (where ξ − 1 = ∥r′∥∞), and (ii)

decreasing k . While tuning these parameters can result in signifi-

cantly decreasing the average signing time, there are trade-offs to

consider. Increasing ξ − 1 causes an increase on the signature size.

Additionally, this increase incurs a security loss as it directly affects

the hardness of the lattice attacks discussed in Subsection 4.1. On

the other hand, as discussed above, decreasing k would require

increasing t to compensate for the security loss, that increases the

public key size.

5.3 Experimental Evaluation and Setup
Wedescribe our experimental evaluationmetrics and setup, wherein

our scheme and their counterparts are compared with each other.

• Evaluation Metrics:We have evaluated and compared TACHYONwith
its counterparts in terms of signature generation and verification

times, private key, public key and signature sizes and end-to-end

cryptographic delay (i.e., the sum of signature generation and veri-

fication times, excluding the signature transmission time, as it is

network depended).

• Hardware Configurations: We used a laptop equipped with an

Intel i7 6th generation (Skylake) 2.6GHz processor and 12 GB of

RAM for our experiments.

• Implementation Details : Our parameter selection which is based

on [40] - i.e., N is a power-of-two and 1 ≡ q mod (2N ) - allows us
to use NTT to accelerate the GCK function computations. Similar

approach has been done in [20]. Then, to finalize the GCK function,

we computed the linear combination under mod q of input with

random and public matrix A. Since highest |q | selected is just 31,

we did not use any libraries for these calculations. We would like

to note that this operation can be performed very fast with some

assembly level optimizations. However, in this paper, we used a

conservative implementation.

We instantiated H1 and H2 random oracles using BLAKE2b due

to its optimization for commodity hardware, in terms of speed and

security [4]. We used Intel intrinsics to implement our PRF function
and Samp(ξ − 1) (with AES in counter mode). Our implementation

is open-sourced in the following link.

https://github.com/ozgurozmen/TACHYON

For our counterparts, we used the optimized codes (if available,

otherwise the reference codes) that are submitted to the NIST com-

petition and ran them on our processor. Note that among all the

schemes presented in Table 2, only BLISS is not a NIST competi-

tor. For this scheme, we used the open-sourced implementation

provided by the authors.

5.4 Performance Analysis and Comparison
Table 2 shows the experimental performances of TACHYON and its

state-of-the-art counterparts. We selected various schemes that are

submitted to the first NIST post-quantum cryptography standard-

ization conference (except BLISS [19], that is selected since it is

one of the fastest lattice-based signatures). These schemes include

lattice-based constructions (qTESLA [12], pqNTRUsign [29], and

Dilithium [20]), a hash-based construction (SPHINCS+ [30]), a code-

based construction (pqsigRM [36]), a symmetric key cryptography

based construction (PICNIC [16]) and a multivariate-based scheme

(GeMSS [15]).

Table 2 shows that TACHYON has the lowest end-to-end delay and
both its signature generation and verification are the fastest among

its counterparts, for every security level. For instance TACHYON-
192 has the fastest signature generation and the lowest end-to-end

delay among all the schemes with any security level. Moreover,

TACHYON offers the lowest possible private key size (that is the same

with symmetric key based PICNIC). TACHYON has a signature of

slightly more than 4 KB, that is comparable to its lattice-based

counterparts but larger than multivariate and code-based construc-

tions. TACHYON public key is significantly larger than most of their

counterparts (only smaller than GeMSS in high security levels).

Considering the overall efficiency of TACHYON, we believe it can be

preferred when the verifier can tolerate such a storage.

As discussed in Subsection 5.2, one can consider caching the

xi vectors as the private key instead of deterministically deriving

them with a κ-bit seed. When this optimization is considered, it

provides a signature generation that is significantly faster than that

of TACHYON. With the verification being unchanged, this variant

can further improve the end-to-end delay (which is currently the

fastest). On the other hand, when these vectors are cached, the

private key size increases significantly (e.g., 256 − 768 KB), that

is only smaller than pqsigRM, for certain security levels. This can

make caching impractical for some applications where the signer

is memory-limited. In these cases, TACHYON without any caching

should be preferred.
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Table 2: Experimental Performance Comparison of TACHYON with Its Counterparts

Scheme Security
Level (bit)

Signature
Gen Time† (µs)

Private
Key (Byte)

Signature
Size (Byte)

Signature
Ver Time (µs)

Public
Key (Byte)

End-to-End
Delay (µs)

Gaussian
Sampling‡

SPHINCS+ [30]

128 14625 64 16976 617 32 15242

192 18580 96 35664 974 48 19554 N/A

256 42898 128 49216 1015 64 43913

pqsigRM [36]

128 3960 1382118 260 21 336804 3981

192 20260 334006 516 30 501176 20290 N/A

256 406 2105344 1028 138 2144166 544

GeMSS [15]

128 252844 14208 48 39 417408 252883

192 776330 39440 88 109 1304192 776439 N/A

256 1118542 82056 104 326 3603792 1118868

PICNIC [16]

128 1966 16 34000 1335 32 3301

192 6951 24 76740 4804 48 11755 N/A

256 13963 32 132824 9639 64 23602

BLISS [19]

128 141 256 717 28 896 169

160
∗

211 384 768 28 896 239 ✓
192
∗

392 384 813 31 896 423

qTESLA [12]

128 650 1856 2720 133 2976 783

192 2524 4160 5664 272 6176 2796 ×
256 6793 4128 5920 334 6432 7127

pqNTRUsign [29] 128 14516 1024 576 304 1024 14820 ×

Dilithium[20]

100
∗

166 2800 2044 53 1184 219

138
∗

272 3504 2701 76 1472 348 ×

176
∗

219 3856 3366 103 1760 322

TACHYON
128 138 16 4416 18 884736 156
192 124 24 4672 21 1966080 145 ×
256 198 32 4672 28 3047424 226

† TACHYON requires rejection sampling in its signature generation (similar to BLISS [19], Dilithium [20]). The number of required signature

generation repetitions due to rejection sampling are 3.08, 2.18 and 2.72 for medium, recommended and high security levels, respectively.

‡ Gaussian sampling requirement is same for the all security levels, and therefore, it is represented with a single value.

✓Denotes the scheme requires Gaussian sampling, that can be considered unfavorable due to the side-channel attacks.

∗ Denotes security level other than standard 128, 192, 256 bits.

We also dissected the cost of TACHYON, for future optimizations.

GCK function computation corresponds to the ≈ 40% of the total

cost for TACHYON-128 signature generation, that slightly decreases

on higher security levels. The highest cost is identified as the PRF
calls and the extraction of the binary vectors from this PRF output,

made to deterministically generate the vectors (xi’s). This can be

further confirmed with the improvements observed by caching the

xi vectors, where this cost is eliminated and replaced with only

vector additions. For the signature verification, over 80% of the total

cost is due to the GCK function.

Discussions. The GCK function calculations can be further accel-

erated with assembly instructions on NTT function as in Dilithium

[20]. In this paper, we presented our benchmark results with a ref-

erence implementation, without any assembly level instructions.

Therefore, we believe that there is still a significant room for perfor-

mance improvement for our scheme, especially in the verification

algorithm, where the dominative cost is the GCK function. On the

other hand, since we implemented the PRF functions of our scheme

using Intel intrinsics, TACHYON might face a performance penalty

on other platforms. Therefore, light-weight symmetric ciphers or

hash functions should be preferred to implement the PRF calls in
TACHYON on other platforms.

6 CONCLUSION
In this paper, we proposed a new digital signature scheme with a

post-quantum promise, which we refer to as TACHYON. Our unique
algorithmic design leverages the well-known HORS construction

and additively homomorphic GCK functions to extend one-time sig-

natures to (polynomially bounded)many-time signatures. TACHYON of-
fers several desirable properties: (i) It achieves the lowest end-to-end

delay with the fastest signature generation and verification among

its counterparts in every security level. (ii) TACHYON has the smallest

private key size (i.e.,κ-bit) among its counterparts. (iii) TACHYON has
highly tunable parameters, which offer various speed and storage

trade-offs. (iv) TACHYON does not require any Gaussian sampling,

and therefore it is immune to the side-channel attacks targeting

this function. All these desirable properties of TACHYON come with

a larger public key than most of its counterparts.
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