
Reusable Non-Interactive Secure Computation

Melissa Chase∗

Microsoft Research, Redmond
Yevgeniy Dodis†

New York University

Yuval Ishai‡

Technion
Daniel Kraschewski§

TNG Technology Consulting

Tianren Liu¶

MIT
Rafail Ostrovsky‖

UCLA

Vinod Vaikuntanathan∗∗

MIT

Abstract

We consider the problem of Non-Interactive Secure Computation (NISC), a 2-message “Sender-
Receiver” secure computation protocol that retains its security even when both parties can be
malicious. While such protocols are easy to construct using garbled circuits and general non-
interactive zero-knowledge proofs, this approach inherently makes a non-black-box use of the
underlying cryptographic primitives and is infeasible in practice.

Ishai et al. (Eurocrypt 2011) showed how to construct NISC protocols that only use parallel
calls to an ideal oblivious transfer (OT) oracle, and additionally make only a black-box use of
any pseudorandom generator. Combined with the efficient 2-message OT protocol of Peikert et
al. (Crypto 2008), this leads to a practical approach to NISC that has been implemented in
subsequent works. However, a major limitation of all known OT-based NISC protocols is that
they are subject to selective failure attacks that allows a malicious sender to entirely compromise
the security of the protocol when the receiver’s first message is reused.

Motivated by the failure of the OT-based approach, we consider the problem of basing
reusable NISC on parallel invocations of a standard arithmetic generalization of OT known as
oblivious linear-function evaluation (OLE). We obtain the following results:

• We construct an information-theoretically secure reusable NISC protocol for arithmetic
branching programs and general zero-knowledge functionalities in the OLE-hybrid model.
Our zero-knowledge protocol only makes an absolute constant number of OLE calls per
gate in an arithmetic circuit whose satisfiability is being proved. As a corollary, we get
reusable NISC/OLE for general Boolean circuits using any one-way function.

• We complement this by a negative result, showing that reusable NISC/OT is impossi-
ble to achieve, and a more restricted negative result for the case of the zero-knowledge
functionality. This provides a formal justification for the need to replace OT by OLE.

∗E-mail: melissac@microsoft.com
†E-mail: dodis@cs.nyu.edu
‡E-mail: yuvali@cs.technion.ac.il
§E-mail: kraschew@ira.uka.de. Work mostly done while at Technion.
¶E-mail: liutr@mit.edu
‖E-mail: rafail@cs.ucla.edu
∗∗E-mail: vinodv@csail.mit.edu

1

melissac@microsoft.com
dodis@cs.nyu.edu
yuvali@cs.technion.ac.il
kraschew@ira.uka.de
liutr@mit.edu
rafail@cs.ucla.edu
vinodv@csail.mit.edu

• We build a universally composable 2-message OLE protocol in the CRS model that can
be based on the security of Paillier encryption and requires only a constant number of
modular exponentiations. This provides the first arithmetic analogue of the 2-message OT
protocols of Peikert et al. (Crypto 2008).

• By combining our NISC/OLE protocol and the 2-message OLE protocol, we get protocols
with new attractive asymptotic and concrete efficiency features. In particular, we get
the first (designated-verifier) NIZK protocols where following a statement-independent
preprocessing, both proving and verifying are entirely “non-cryptographic” and involve
only a constant computational overhead.

1 Introduction

Non-interactive secure computation (NISC) refers to the problem where Rachel wishes to publish
an encryption of her input x, in such a way that Sam, who holds an input y, can send her a single
message conveying the value f(x, y) and nothing more. In the semi-honest setting, there are several
solutions to this problem including (i) garbled circuits [Yao86, LP09] combined with two-message
oblivious transfer (OT) protocols (e.g., [NP01, AIR01, PVW08]) and (ii) fully homomorphic encryp-
tion [RAD78, Gen09]. One could compile these protocols to be secure against malicious parties by
using general non-interactive zero-knowledge (NIZK) proofs in the common reference string (CRS)
model [BFM88]; however, this requires making non-black-box use of the underlying cryptographic
primitives, and is generally infeasible in practice. A recent line of work [IKO+11, AMPR14] has
come up with efficient maliciously secure NISC protocols in the OT-hybrid model (which we re-
fer to as NISC/OT protocols) that make black-box use of efficiently implementable cryptographic
primitives such as a pseudorandom generator.

In general, the paradigm of designing protocols in the OT-hybrid model that are either uncondi-
tionally secure or make use of symmetric cryptographic primitives, and plugging in fast implemen-
tations of OT, has paid great dividends in cryptography for several reasons. First, we have efficient
OT implementations under standard assumptions; and secondly, OT is self-reducible, so the cryp-
tographic cost of implementing it can be pushed to an offline phase, and it can be implemented with
information-theoretic security given correlated randomness. In short, combining efficient NISC/OT
protocols with efficient 2-message OT implementations, we can get efficient “public-key” non-
interactive variants of secure computation, as was recently accomplished in [IKO+11, AMPR14].
This approach is beneficial even in simpler special cases such as (designated-verifier) NIZK. For
such cases (and more generally for functionalities computed by log-depth circuits or polynomial-size
branching programs) such NISC/OT protocols can be made information-theoretic.

The starting point of this work is that this rosy picture belies a major defect of all known
NISC/OT protocols. To see this, imagine that Rachel wants to publish a reusable encryption of
her input x, obtain messages from anyone in the world with inputs yi, conveying to her the value
of f(x, yi). In the semi-honest setting, all the old NISC/OT protocols work just fine. However,
in all known NISC/OT protocols (including [IKO+11, AMPR14]), a malicious Sam can mount
a “selective failure attack”, feeding malformed OT messages to Rachel and checking whether she
aborts or not, and using this information to violate both the secrecy of her input and the correctness
of her output. Indeed, we show that this is inherent: our first result is that there is no information-
theoretic reusably secure implementation of NISC/OT for general functions. We also prove a similar
result for zero-knowledge functionalities, though in a more restricted “black-box” framework.

Our key observation is that this inherent limitation of OT-based protocols can be overcome

2

if we replace OT by an arithmetic extension of OT known as oblivious linear function evaluation
(OLE). The OLE functionality maps sender inputs (a, b) and receiver input x to receiver output
ax + b, where a, b, x are taken from some (typically large) field or ring. The main result of this
paper is a general-purpose reusable non-interactive secure computation protocol that only makes
parallel OLE calls over a large ring. We denote such a protocol by rNISC/OLE.

Our rNISC/OLE protocol is information-theoretic and does not rely on any cryptographic as-
sumptions. Its complexity is polynomial in the size of an arithmetic branching program being
computed. This is sufficient to capture arithmetic log-depth (NC1) circuits. However, in the im-
portant special case of zero-knowledge functionalities, where verification can always be done by a
shallow circuit, our NISC/OLE protocol is still information-theoretic and only makes a constant
number of OLE calls per gate in an arithmetic circuit whose satisfiability is being proved. (Minimiz-
ing this constant, which we did not attempt to optimize, is an interesting future research direction
that can be motivated by practical implementations.) As a corollary, we can also get reusable
NISC/OLE (beyond zero-knowledge) for general boolean circuits using any one-way function.

We complement our rNISC/OLE protocol by proposing an efficient secure implementation of
the OLE oracle which is compatible with our efficiency goals. Concretely, assuming the security
of Paillier’s encryption scheme [Pai99], we construct a universally secure 2-message OLE protocol
in the CRS model (over the ring ZN for an RSA modulus N). The communication cost of the
protocol involves a constant number of group elements and its computational cost is dominated by
a constant number of exponentiations. This protocol provides the first arithmetic analogue of the
2-message OT protocol of PVW [PVW08], which is commonly used in implementations of secure
two-party computation (in particular, it is used by the non-interactive ones from [AMPR14]). Our
efficient OLE protocol is independently motivated by other applications of OLE in cryptography;
see [ADI+17, GNN17] and references therein.

The switch from OT to OLE has some unexpected efficiency benefits. Beyond the reusability
issue, OT-based protocols in the malicious security model use a “cut and choose” approach that
has considerable (super-constant) overhead in communication and computation. While there are
effective techniques for amortizing the communication overhead (cf. [IPS08]), these come at the
expense of a super-constant computational overhead and apply only in the boolean setting. Other
approaches that employ OLE and apply to the arithmetic setting, such as the ones from [GIP+14,
DGN+17], are inherently interactive.

The combination of our information-theoretic rNISC/OLE and the Paillier-based OLE im-
plementation yields NISC and designated-verifier NIZK protocols with attractive new efficiency
features. As discussed above, for general NISC there was no previous approach that could offer
reusable security, even for the case of boolean circuits, without applying general-purpose NIZK on
top of a semi-honest secure NISC protocol.

Even for the special case of zero-knowledge, where many other competing approaches are known,
our approach is quite unique. In particular, we are the first to construct any kind of (reusable-setup)
NIZK protocol where one can push all of the cryptographic operations to an offline phase; using the
self-reducibility of OLE, we can have an online phase that involves only arithmetic computations
in the “plaintext domain” and its security (given the preprocessed information) is unconditional.
Moreover, the online phase satisfies a strong notion of constant computational overhead in the
sense that both the prover and verifier only need to perform a constant number of addition and
multiplication operations for each gate of the arithmetic verification circuit, in the same ring ZN
over which the circuit is defined. As a bonus feature, the preprocessing required for implementing

3

this highly efficient online phase consists only of a constant number of exponentiations per gate,
and its security relies on a conservative, “20th century” assumption.

To summarize, the main positive results we prove about reusable NISC in the OLE-hybrid
model are the following.

Theorem 1. There exists a statistically secure rNIZK/OLE protocol (i.e., rNISC for zero-knowledge
functionalities) with O(1) OLE calls per gate.

Theorem 2. There exists a statistically secure rNISC/OLE protocol for (arithmetic or boolean)
branching programs and NC1 circuits.

Theorem 3. If one-way functions exist, there exists an rNISC/OLE protocol for circuits.

We optimize the concrete efficiency of our rNIZK/OLE protocol in Section 5.6, so that proving
knowledge of a satisfying assignment of an arithmetic circuit costs 7 OLE calls per addition gate
and 44 OLE calls per multiplication gate. We stress that since the protocol is information-theoretic
in the OLE-hybrid model, each OLE involves only a small number of field operations (without any
exponentiations) in the online phase.

1.1 Related Work

We briefly discuss several recent works that are relevant to the asymptotic efficiency features of
our protocol. As discussed above, a distinctive efficiency feature of our rNIZK/OLE protocol for
arithmetic verification circuits (more generally, rNISC/OLE for constant-depth arithmetic circuits)
is that, in an offline-online setting, its online phase is non-cryptographic and has a constant compu-
tational overhead. Moreover, the offline phase only requires a constant number of exponentiations
per arithmetic gate.

Bootle et al. [BCG+17] construct zero-knowledge protocols for arithmetic verification circuits
with constant computational overhead in the plain model, i.e., without any offline phase. However,
this protocol relies on constant-overhead implementations of cryptographic primitives (a plausible
but non-standard assumption), it requires multiple rounds of interaction (but can be made non-
interactive via the Fiat-Shamir heuristic) and, most importantly in the context of our work, the
cryptographic work in this protocol cannot be preprocessed. Finally, this protocol does not directly
apply in the more general setting of secure computation.

Applebaum et al. [ADI+17] obtain (again, under plausible but non-standard assumptions) secure
two-party protocols for evaluating arithmetic circuits that have constant computational overhead
in the plain model. However, these protocols are inherently interactive (even when restricted to
constant-depth circuits) and are only secure against semi-honest parties.

Finally, Chaidos and Couteau [CC18] construct an alternative Paillier-based designated-verifier
(reusable) NIZK protocol with a constant number of exponentiations per arithmetic gate. The
constant from [CC18] is significantly smaller than ours and the protocol can be based on more
general assumptions. However, whereas for NIZK there are several other competing approaches,
including succinct and publicly verifiable protocols, our NISC protocol provides the first reusable
solution for NISC that is efficient enough to be implemented. Moreover, the NIZK protocol from
[CC18] (which is based on Σ-protocols) does not have the feature of a non-cryptographic online
phase that our protocol inherits from the underlying information-theoretic OLE-based protocol.

4

2 Overview of the Techniques

In this section we provide a high level overview of the proofs of our main results.

2.1 Impossibility of rNISC/OT

We show several negative results, which highlight the hardness of reusable secure computation.
The first negative result shows that: for non-interactive two-party computation protocols, prefect
security against malicious sender does not imply reusable security. In particular, previous works
about NISC/OT do not immediately implies rNISC/OT.

We further show that OLE is strictly stronger than OT in the sense that there exists no
information-theoretic rNISC/OT protocol for OLE functionality with composable security. Fi-
nally, assuming the existence of one-way functions, in the OT hybrid model, there are no general
resettably sound, non-interactive zero-knowledge proofs with black-box simulation.

Standard security does not imply reusability. Reusable security is not free. A perfectly
secure, 2-party computation protocol can be totally broken if the receiver uses the same randomness
in two protocol runs. A counter example functionality is easy to find. Assume the sender’s input
domain has to special symbols >, ⊥, such that the receiver will output a random string if the
sender’s input is either > or ⊥. Thus if the receiver use fresh randomness in each protocol run no
information about his input will be leaked when the sender’s input is either > or ⊥.

In one possible secure implement, the receiver samples a random string r, and outputs r if the
sender’s input is >, outputs x⊕ r if the sender’s input is ⊥. Here x is the receiver’s input. If the
receiver uses the same input x and randomness r in at least two protocol runs, then a malicious
sender can make him output r and x⊕ r, which together reveal the receiver’s secret input x.

OT is not sufficient for reusability. We show the impossible of reusable non-interactive two-
party computation protocol under OT hybrid model for two different problems and settings, while
such protocols exist if we switch to OLE hybrid model. The weakness of OT is that a malicious
sender can learn the receiver’s choice bits if the receiver uses the same randomness in different
protocol runs. Consider the following scenario: The receiver uses the same randomness and input
in two protocol runs. This means that the receiver’s secret OT choice bits have been fixed in a
set-up phase. In the first protocol run, a malicious sender feeds (a[i], b[i]) to the i-th OT instance.
In the second protocol run, the malicious sender feeds (a′, b′) to the OT instances such that (a′, b′)
and (a, b) are identical except for one bit. Say a[j] 6= a′[j] is the only index where they differs. If
the receiver outputs differently in these two protocol runs, the malicious sender can deduce that in
the receiver’s choice bit in the j-th OT instance equals 1.

Moreover, if the receiver outputs differently in two protocol where the sender chooses OT-input
strings (a, b) and (a′, b′) respectively. The malicious sender modifies (a, b) to equal (a′, b′) by a
sequence of single-bit modifications. By observing the receiver’s output when the sender feeds
these intermediate OT-input strings, the malicious sender can always learn the sender’s j-th choice
bit for some j such that (a[j], b[j]) 6= (a′[j], b′[j]).

Note that in OLE hybrid model, such attack will not work. Consider a similiar scenario: The
receiver uses the same randomness and input in two protocol runs, let x[i] be the receiver’s input
in the i-th OLE instance. The malicious sender feed (a[i], b[i]) and (a′[i], b′[i]) to the i-th OLE
instance in these two protocol runs respectively. Say the (a[j], b[j]) 6= (a′[j], b′[j]) is the only

5

difference between (a, b) and (a′, b′) and the receiver outpus differently in these two protocol runs.

Given the above information, the malicious sender can only deduce that x[j] 6= − b[j]−b′[j]
a[j]−a′[j] . Such

knowledge contains little information if x[j] has large min entropy.
For example, in Section 4.2 we show the impossibility of an information-theoretic non-interactive

reusable OLE/OT protocol. The intuition behind our impossibility proof relies on a commitment
protocol (Figure 3). There is a statistically reusable commitment protocol in OLE hybrid model:
The receiver first samples a random x ∈ F as his OLE-input. To commit si ∈ F, the sender
samples random ri ∈ F and feed (si, ri) to rOLE, so that the receiver gets rOLE-output yi =
si ·x+ri. To unveil the i-th commitment, send (si, ri) to the receiver. Such a protocol is statistically
reusable secure in OLE hybrid model. We show that in an OT-based implementation of the rOLE-
primitive, a corrupted sender can recover the receiver’s secret input x after polynomially many
rounds. The corrupted sender repeats the following so that either he recovers x or he learns more
about receiver’s OT choice bits. The sender samples an honest run in which the sender chooses
(s, r, a, b), then samples (s′, r′, a′, b′) from the same distribution subject to the condition that (a′, b′)
agrees with (a, b) on the known receiver’s choice bits. The sender can test whether (s′, r′) and (s, r)
are consistent with the same x, i.e. whether s′x + r′ = sx + r, by testing whether the receiver
accepts (s′, r′) as an unveil message when the sender’s OT-input stirngs are a, b. If so, the sender
recovers x = − r−r′

s−s′ and thus finish the attack (s 6= s′ with high probability because s is statistically
hidden in the receiver’s view). Otherwise, the receiver would reject (s′, r′) as an unveil message
when the sender’s OT-input strings are a, b, while accept it when the sender’s OT-input strings are
a′, b′. The sender will be able to learn at least one more receiver’s choice bit from such difference.

In Section 4.3 we show that there is no UC secure rNISC/OT protocol for genearl zero-knowledge
proof functionality (Figure 4). Suppose such protocol exists. This means the sender can prove
statements x ∈ L just by transforming a corresponding witness w into sender’s OT-input strings.
By assuming the existence of one-way functions, we can define the language such that it is easy
to sample a random no instance y /∈ L or to sample a random yes instance x ∈ L together with
a witness w, while it’s computational hard to distinguish a random yes instance with no instance.
Now how can a malicious sender (prover) find some y /∈ L but still convince the receiver to accept
y? He just samples a true statement (x,w) and starts off flipping bits in the corresponding OT-
input strings, then checks each time if the receiver still accepts. Of course, the sender only flips
the part of OT-input strings where he does not know the receiver’s choice bits yet. As soon as the
receiver starts rejecting, the malicious prover find out one more receiver’s choice bit. This process
can be repeated until the malicious prover has learned sufficiently many of the receiver’s choice bits.
There are so few indexes where the malicious prover doesn’t know the choice bits — denote these
indexes by U — such that even if the OT-input strings are replaced with random bits on indexes
in U , the receiver will still accept with high probability. Then by the UC security, if the sender
instead samples y /∈ L, generates OT-input strings using the black-box simulator, and replaces the
generated OT-input strings with random bits on indexes in U , the receiver will also accept with
high probability.

2.2 Construction of Information-Theoretic rNISC/OLE

Semi-honest NISC/OLE Our rNISC/OLE construction is a complicated object with many
intermediate steps. Let us start with a warm-up question, how to construct NISC with semi-honest
security? As a starting point we present a construction for the semi-honest model from [IK02].

6

Then we will outline how to obtain security against malicious parties.
Let x denote the receiver’s input and let y denote the sender’s input. We consider arithmetic

functionalities, i.e. both x,y are vectors over a given finite ring, the functionality is also arithmetic
over this ring. We describe the construction for an arithmetic functionality defined by an arithmetic
branching programs, which is described as follows (see [IK02] for a more formal description). A
t-node arithmetic branching program is specified by affine functions g1,1, g1,2, . . . , gt,t; the branching
program maps input vectors x,y to the determinant of

g1,1(x,y) · · · g1,t(x,y)

−1
. . .
. . .

. . .
...

−1 gt,t(x,y)

 .
Let G(x,y) denote the matrix. Branching programs can efficiently simulate arithmetic formulas
and arithmetic NC1 circuits. E.g. the formula x1y1 + x2y2 + x3y3 can be computed by branching
program

x1y1 + x2y2 + x3y3 = det

x1 x2 x3

−1 y1

−1 y2

−1 y3

 .
The technique for securely reducing a branching program computation to parallel OLE can be

viewed as an arithmetic analogue of Yao’s garbled circuit technique [AIK14]. Sample two random
upper triangular matrixesR1, R2 with diagonal all one, then the matrixR1G(x,y)R2 is a randomized
encoding of detG(x,y) as

• detG(x,y) can be computed from R1G(x,y)R2 as multiplying R1, R2 doesn’t change deter-
minant;

• the distribution of R1G(x,y)R2 merely depends on detG(x,y).

Therefore, if the receiver gets R1G(x,y)R2, he will learn no information other than detG(x,y).
In the semi-honest NISC/OLE construction, the OLE allows secure evaluation of affine func-

tions, so the receiver chooses x as its input, then the sender feed the affine function x 7→ R1G(x,y)R2

to the OLE oracle. Let us denote this affine function by G′, i.e. G′(x) := R1G(x,y)R2. Eventually,
the receiver gets R1G(x,y)R2, which leaks detG(x,y) but perfectly hides all other information.

This NISC/OLE based on randomized encoding is actually perfectly secure against malicious
receivers, as the protocol doesn’t leave the receiver with any room for cheating. Thus the receiver
is effectively forced to be semi-honest.

But the protocol is not secure against malicious senders. Instead, the sender can choose any
affine G′ so that the receiver will output detG′(x). For the security against malicious senders,
the sender need to prove that G′, the affine function he feed into OLE, satisfies an arithmetic
constraint: the sender knows two upper triangular matrixes R1, R2 and input vector y such that
G′(·) ≡ R1G(·,y)R2.

7

Intermediate Primitive: Certified OLE Based on the above discussion about semi-honest
NISC/OLE, a perfectly secure NISC can be built upon a specialized OLE. In such a specialized
OLE, the sender can prove that the coefficients she chose satisfies some arithmetic conditions. We
name this specialized OLE as certified OLE and it is exactly what we are going to construct as an
intermediate primitive. More precisely, we define certified OLE as a primitive that allows

• the receiver to learn the outputs of affine functions, where the inputs in chosen by the receiver
and the coefficients is chosen by the sender;

• the sender to convince the receiver that the sender-chosen coefficients satisfy arbitrary arith-
metic constraints.

We implement a CertifiedOLE/OLE construction, whose security is both information-theoretic and
reusable.

Intermediate Primitive: Replicated OLE Certified OLE allows the sender to prove that her
coefficients satisfy arbitrary arithmetic constraints. In particular, the sender can prove an equality
constraint, i.e., to prove two of the coefficients she choose are equal. We isolated this ability as
another primitive called replicated OLE. More precisely, we define replicated OLE as a primitive
that allows

• the receiver to learn the outputs of affine functions, where the inputs in chosen by the receiver
and the coefficients is chosen by the sender;

• the sender to convince the receiver that some of the sender-chosen coefficients are equal.

Be definition, replicated OLE is not as powerful as certified OLE. In section 5, we first construct
replicated OLE directly from OLE1, then construct certified OLE from replicated OLE. For now,
let us assume that we already have reusable replicated OLE, and we will construct certified OLE
by using replicated OLE as a black box.

It’s sufficient for certified OLE to only support the following atomic operations.

1. Reveal ax+ b to the receiver, where a, b ∈ F are coefficients chosen by the sender, x ∈ F is an
input chosen by the receiver, F is a finite field.

In this overview, all coefficients chosen by the sender will be denoted by the first a few letters
in the alphabet such as a, b, c and inputs chosen by the receiver will be denoted by the last a
few letters in the alphabet such as x, y, z.

2. Allow the sender to convince the receiver that two coefficients are equal.

3. Allow the sender to convince the receiver that three coefficients a, b, c satisfies a+ b = c.

4. Allow the sender to convince the receiver that three coefficients a, b, c satisfies ab = c.

The first two atomic operations are already offered by replicated OLE. The later two atomic
operations are translated into replicated OLE calls.

The third atomic operation, i.e. proving a+b = c, is implemented as the following. The receiver
samples an random x ∈ F and chooses it as an extra input. The sender samples random a′, b′ ∈ F

1The actual roadmap is different, and will be gradually revealed in the overview.

8

and let c′ = a′ + b′. The replicated OLE is used to reveal ax + a′, bx + b′, cx + c′ to the receiver.
Finally, the receiver is convinced if and only if (ax + a′) + (bx + b′) = (cx + c′). In case a + b 6= c
(or a′ + b′ 6= c′), the receiver can detect with overwhelming probability.

The last atomic operation, i.e. proving ab = c, is implemented using similar idea. The receiver
samples random x, y ∈ F, let z = xy and choose x, y, z as extra inputs. Notate that a malicious
receiver might choose z 6= xy and the sender can never detect. Therefore, we design a mechanism
that can “enforce” honest receiver behavior. More precisely, our mechanism will prevent the receiver
from learning any information in case he choose z 6= xy. The detail of such mechanism will be
explained later. For now, let us simply assume the receiver chooses z = xy.

The sender samples random a′, b′, c′ ∈ F, chooses d = ab′, e = a′b and samples d′, e′ ∈ F such
that d′+e′ = a′b′−c′. The replicated OLE is used to reveal ax+a′, by+b′, cz+c′, dx+d′, ey+e′ to
the receiver. The receiver is convince if and only if (ax+a′)(by+b′)−(cz+c′) = (dx+d′)+(ey+e′).
Notice that if both sender and receiver are honest, then

(ax+ a′)(by + b′)− (cz + c′) = a′by + b′ax+ a′b′ − c′ = (dx+ d′) + (ey + e′).

In case the sender behaves maliciously, either c 6= ab or the values of d, e, d′, e′ deviate the protocol,
the receiver can detect with overwhelming probability.

Intermediate Primitive: Half-Replicated OLE Our replicated OLE is constructed on top
of what we called half-replicated OLE. In each OLE calls, the sender chooses two coefficients. We
distinguish them by calling them multiplicative coefficient and additive coefficient respectively.
Half-replicated OLE only supports two operations:

1. Reveal ax + b to the receiver, where x ∈ F is an input chosen by the receiver, a ∈ F is a
multiplicative coefficient chosen by the sender, b ∈ F is an additive coefficient chosen by the
sender.

2. Allow the sender to convince the receiver that two multiplicative coefficients are equal.

By definition, half-replicated OLE is even weaker than replicated OLE. We construct replicated
OLE on top of half-replicated OLE as the following: The receiver samples random y and chooses
it as an extra input. For each receiver-chosen input x, the receiver let x′ = xy and chooses it as
an extra input. Notice that the sender cannot detect whether x′ is generated honestly, we design
a mechanism that can enforce x′ = xy which will be explained later. For now, just assume the
receiver chooses x′ = xy honestly. Then the sender uses the replicated OLE to reveal ax + b and
ax′ + by to the receiver. (More precisely, the sender should also samples random c and reveals
ax+ b, ax′ + c, by− c to the receiver.) The receiver then uses the equation (ax+ b) · y = (ax′ + by)
to check whether the sender behaves honestly.

Intermediate Primitive: Half-Replicated OLE Allowing CDS Operations Our repli-
cated OLE and certified OLE require the receiver to choose three input x, y, z such that z = xy,
while there is no mean for the sender to detect whether the receiver behaves honestly. In partic-
ular, if the underly OLE is ideal (e.g. implement by a trusted third party), then the sender will
learn absolutely nothing about the receiver-chosen inputs. Thus instead, we design a mechanism
called conditional disclosure of secrets (CDS), in which the sender can disclosure a message to the
receiver if and only if the receiver-chosen inputs satisfy some arithmetic constraints. For example,

9

in certified OLE, the sender can encrypt his messages using one-time pad, and disclose the pad if
and only if the receiver chooses z = xy honestly.

As a first trial, in order to disclose secret a ∈ F to the receiver if and only if z = xy, the sender
samples random b, c ∈ F and uses the half-replicated OLE to disclose[

y z
1 x

] [
b
c

]
+

[
a
0

]
to the receiver. (More precisely, this means the sender should also sample random b′, c′ that
b′+ c′ = a, and use the half-replicated OLE to disclose by+ b′, cz+ c′, cx+ b.) If z = xy is satisfied,
then the receiver can recover a as

(1,−y) ·
([
y z
1 x

] [
b
c

]
+

[
a
0

])
= a.

It’s easy to verify the security against malicious receiver. When z 6= xy, matrix [y z1 x] is invertible,
in which case all information about a is erased by one-time padding. But this protocol is not secure
against malicious sender: As the protocol is built on top of half-replicated OLE, the sender can
deviate the protocol by changing the additive coefficients. In particular, the sender can choose a
non-zero d ∈ F and uses the half-replicated OLE to disclose [y z1 x][bc] + [ad] to the receiver. Then the
receiver will recover (1,−y) · ([y z1 x][bc] + [ad]) = a− dy, which is a function of the receiver’s inputs.
An easy way to solve this problem is to rely on the fact that the receiver samples y ∈ F uniformly
at random2. The sender samples a random a′ as an extra coefficient and the above insecure CDS
protocol to disclose a′ if z = xy. If the sender is malicious, then the receiver gets a′ − d′y. But the
receiver can detect any malicious behaviour, by sampling a random w ∈ F as an extra input and
asking the sender to disclose aw + a′ using OLE.

Back to Half-Replicated OLE The last missing piece is how to construct half-replicated OLE
in OLE hybrid model. The key idea of the construction is the followings.

The receiver samples a random w ∈ F and chooses w as an input. For each multiplicative
coefficient a ∈ F, the sender has to sample a random a′ ∈ F and use OLE to disclose aw+ a′. This
OLE call works essentially as a commitment of a, this idea can be used to build a statistically secure
commitment protocol (Figure 3). For each half-replicated OLE input x ∈ F, the receiver translates
it into two OLE inputs y, z ∈ F such that y is sampled uniformly at random, and z = x− wy.

For each half-replicated OLE call ax + b, it can be translated into three OLE calls using the
idea from equation

ax+ b = a(wy + x− wy) + b

= awy + az + b

= y(aw + c)− (cy + d) + (az + b+ d),

(1)

where c, d are arbitrary numbers. More precisely, the sender should sample random c, d ∈ F and
use the OLE to disclose aw+ c, cy+d and az+ b+d to the receiver. Finally, the receiver computes
the right output using equation 1.

Such a half-replicated OLE protocol is correct and enforces the receiver to be honest. When the
sender deviates the protocol, the receiver will output a random number. The randomness comes

2In the main body, y doesn’t need to be random. Moreover, we consider the general case where the arithmetic
condition doesn’t have to be z = xy.

10

Primitive Operations Supported

OLE 1

Half-Replicated OLE 1,2

Half-Replicated OLE allowing CDS 1,2,3

Certified OLE 1,2,3,5,6

Replicated OLE 1,2,3,4,5,6

Table 1: Primitives and Their Supporting Operations

from w and y, i.e., in case the sender deviates the protocol, even conditioned on the sender’s view
and x, the receiver’s output is statistically close to uniform distribution. Therefore it is not too
hard embed a mechanism to detect any malicious sender with overwhelming probability. We leave
the detail to Section 5.2.

Roadmap Starting from reusable OLE, we define and construct a sequence of increasingly more
powerful primitives, the last of which eventually supports all of the following operations.

1. Reveal ax + b to the receiver, where x ∈ F is an input chosen by the receiver, a ∈ F is a
multiplicative coefficient chosen by the sender, b ∈ F is an additive coefficient chosen by the
sender.

2. Convince the receiver that two multiplicative coefficients are equal.

3. Disclose a message to the receiver if receiver-chosen inputs x, y, z satisfies z = xy.

4. Convince the receiver that two coefficients are equal.

5. Convince the receiver that three multiplicative coefficients a, b, c satisfies a+ b = c.

6. Convince the receiver that three multiplicative coefficients a, b, c satisfies ab = c.

Such a primitive readily implies reusable NIZK and reusable NISC. The intermediate primitives
are sorted in Table 1 by dependence. Each of them only supports a subset of the operations.

2.3 Paillier-based 2-Message OLE Protocol

Consider a simplified OLE scheme as follows: The CRS will contain an ElGamal public key (b, B0 =
bsk0) in a Paillier group. (Paillier allows us to get additive homomorphism, while ElGamal means
that the receiver will be able to construct related key pairs.) On input α, the receiver forms another
related public key b, B1, such that it knows the secret key corresponding to (b, B1B

α
0). It sends

this key pair to the sender. On input z0, z1, the sender encrypts z0 under (b, B0) and z1 under
(b, B1), using the same randomness, and sends both ciphertexts to the receiver. The receiver can
then combine the ciphertexts to obtain an encryption of αz0 + z1 under (b, B1B

α
0), which it can

decrypt.
Recall that in a Paillier group for N = (2p + 1)(2q + 1) all elements can be decomposed into

a component in a subgroup of order 2p′q′, and a component of order N , call them G2p′q′ and GN ;
the ElGamal encryption will encode the message in the order N component. Intuitively, we can
argue the scheme is secure against a corrupt receiver as follows: First the CRS is indistinguishable

11

from one where b is only in G2p′q′ , but B0 has a component in GN . Then suppose that the receiver
chooses B1 whose GN component is (1 +N)α (and note that a simulator can recover this α using
the factorization of N). The GN components of the resulting ciphertexts can be shown information
theoretically to depend only on z0α+ z1, while the G2p′q′ components are independent of z0, z1.3

Security against a corrupt sender is more challenging, because it could send invalid ciphertexts
(i.e., ciphertexts in which decryption produces an element not in GN). In particular, an adversarial
sender could form a pair of ciphertexts that decrypt correctly under a specific α and incorrectly
otherwise, and thus perform a selective failure attack. To prevent this, we need a way for the
receiver to identify bad ciphertext pairs that can’t be predicted based on α. Suppose the receiver
runs the scheme twice, once with a random input γ, and once with input 2α− γ, while the sender
uses inputs z0, w for random w in the first instance and z0, z1 − w in the second; combining the
results of the two schemes would allow the receiver to decrypt z0γ+w+z0(α−γ)+z1−w = z0α+z1.
This would prevent the selective failure attack: we argue that (under appropriate, indistinguishable
CRS) B1 information theoretically hides γ, so the probability that the resulting linear combination
of two invalid ciphertexts decrypts correctly is negligible.4 Of course, we must ensure that the
malicious sender uses the same z0 in both instances; thus we require that all the ciphertexts are
related, using the same randomness.

3 Preliminaries

We consider sender-receiver functions that take inputs from a sender Sam and a receiver Rachel
and deliver the output to Rachel. Two simple but useful examples for such functions are OT and
OLE. In this work, we consider the reusable extension of such sender-receiver functions, allowing
Sam to invoke the function on polynomially many inputs, where Rachel’s input is fixed. In each
such invocation, Rachel obtains a separate output. We will sometimes use an r-prefix (as in rOT,
rOLE, or rNISC) to stress that we consider the reusable variant.

3.1 Sender-receiver Functions & Reusable Two-party Computation

In this section we give a generic definition of reusable non-interactive secure computation (rNISC).
Our complete rNISC construction for arbitrary functions is quite complex. To make it as modular as
possible, we define intermediate functionalities, namely rNISC for arithmetic circuits (see Section A)
and linear functions (see Section 3.2).

Notation 4 (Sender-receiver functions). A sender-receiver function is specified by three sets Rin, Sin,
Rout and a mapping f : Rin×Sin → Rout. The intuition is that we have two parties: a receiver
Rachel and a sender Sam. Rachel chooses an input x ∈ Rin, Sam chooses an input y ∈ Sin, and
Rachel learns the corresponding output z := f(x, y) ∈ Rout.

We emphasize that it is not enforced that the receiver’s input x is fixed before the sender chooses
an input y for a corresponding send phase. Neither do we forbid that the receiver provides an input
(sid′, x) after having learned an output (sid, z, i), as long as sid 6= sid′. Our main application just

3This is because the first component of the ciphertext, br contains no information about r mod N .
4There is a minor subtlety here, where because G2p′q′ has an order 2 subgroup an extra component in this

subgroup might not be detected; to prevent this, we actually square all the elements during decryption to eliminate
this subgroup, and then decrypt the final result divided by 2.

12

Functionality F (F)
rNISC

Parametrized by a sender-receiver function F = (Rin, Sin, Rout, f) in the sense of Notation 4.

Choice phase:

• Upon receiving input (sid, x) from Rachel where x ∈ Rin and sid is a session identifier, store (sid, x),
send (sid, initialized) to the adversary, and ignore any further inputs (sid, x̃) from Rachel with
the same session identifier sid.

Send phases:

• Upon receiving input (sid, y, i) from Sam where (y, i) ∈ Sin×N and sid is a session identifier, record
(sid, y, i), send (sid, sent, i) to the adversary, and ignore any further inputs (sid, ỹ, i) from Sam with
the same session identifier sid and the same value of i.

• Upon receiving a message (sid, Delivery, i) from the adversary, verify that there are stored inputs
(sid, x) from Rachel and (sid, y, i) from Sam; else ignore that message. Next, compute z := f(x, y),
send (sid, z, i) to Rachel, and ignore further messages (sid, Delivery, i) from the adversary with the
same session identifier sid and the same value of i.

Figure 1: Generic ideal functionality for reusable non-interactive secure computation.

provides a setting where all receiver inputs are chosen before the sender takes any action, but this
is not required for the security proofs of our protocols.

The ideal functionality for reusable NISC tailored to arithmetic circuit evaluation is in Ap-
pendix A.

3.2 Reusable Oblivious Linear Function Evaluation

We aim at an OLE-based implementation of F (Φ)
rNISC for arbitrary arithmetic circuits Φ over a given

ring R, where the ring size |R| is determined by a statistical security parameter. More particularly,
the security parameter is log |R|. However, we will need to restrict ourself to circuits Φ that are
given as collections of formulas (i.e., the underlying graph G is a forest).

The primitive we take for granted lets Rachel pick an input x ∈ R and then Sam send her tuples
(a, b) ∈ R×R, such that she learns the corresponding OLE-outputs a ·x+ b. In particular, Sam can
send several tuples (a, b) for the same receiver input x. In other words, the ideal functionality for
oblivious linear function evaluation with reusable receiver input (see Figure 18) is another special

instance of the functionality F (F)
rNISC from Figure 1, namely with Sin = R×R, Rin = Rout = R, and

f : Rin×Sin → Rout, (x, (a, b)) 7→ a · x+ b.

4 Separations and Impossibility Results

In this section we show several negative results, which highlight the hardness of reusable secure
computation. Our first negative result is motivated by the following seemingly self-evident but
misleading chain of thoughts: If we have a protocol for non-interactive two-party computation with
perfect security against a malicious sender, then the security does not depend on the receiver’s
random choices and therefore the protocol can be used for reusable secure computation. Actually,

13

Functionality F (R)
rOLE

Parametrized by a finite ring R.

Setup/choice phase:

• Upon receiving input (sid, x) from Rachel where x ∈ R and sid is a session identifier, store (sid, x),
send (sid, initialized) to the adversary and ignore any further inputs from Rachel with the same
session identifier sid.

Send phases:

• Upon receiving input (sid, a, b, i) from Sam where (a, b, i) ∈ R×R×N and sid is a session identifier,
store (sid, a, b, i), send (sid, sent, i) to the adversary, and ignore any further inputs from Sam with
the same session identifier sid and the same value of i.

• Upon receiving a message (sid, Delivery, i) from the adversary where i ∈ N and sid is a session
identifier, verify that there are stored inputs (sid, x) from Rachel and (sid, a, b, i) from Sam; else
ignore that message. Next, compute z := a · x + b, send (sid, z, i) to Rachel, and ignore further
messages (sid, Delivery, i) from the adversary with the same session identifier sid and the same
value of i.

Figure 2: Ideal functionality for reusable oblivious linear function evaluation over a ring R.

this is not true, because a corrupted sender could still cause some relations between the receiver’s
outputs that reveal secret information (see Section 4.1).

We further show that OLE is strictly stronger than OT in the sense that there exists no
rNISC/OT protocol for the OLE functionality with composable security (see Section 4.2). Fi-
nally, assuming that one-way functions exist, we show that in the OT hybrid model there are no
general resettably sound zero-knowledge proofs with black-box simulatability of malicious verifiers
(see Section 4.3). In contrast, our certified OLE construction (see Section 5.4) immediately implies
such zero-knowledge proofs in the (reusable) OLE hybrid model.

4.1 Standard Security (even if Perfect) does not Imply Reusability

We show now that reusing the receiver’s messages in a general solution for secure computation can
cause severe security problems. More particularly, we show that any protocol for general secure
computation can be turned into a protocol with the following property: If the receiver uses fresh
randomness in each protocol run, than the transformed scheme is still secure, but if the receiver uses
the same input and randomness in two protocol runs with a malicious sender, then his complete
input can be efficiently reconstructed from his corresponding outputs. The transformed scheme
achieves the same level of security (computational, statistical, or perfect) as the original scheme,
as long as the receiver uses fresh randomness in every protocol run.

Let any protocol scheme of the following form be given. The scheme is parametrized by two
input domains X,Y , an output domain Z, and a mapping f : X×Y → Z. On input x ∈ X from
the receiver and y ∈ Y from the sender, the receiver will learn and output z := f(x, y). W.l.o.g., all
inputs and outputs are encoded as bit-strings, i.e. X = Y = Z = {0, 1}∗. Now we turn this scheme
into a scheme with the abovementioned insecurity. The basic idea is to enlarge the sender’s input
domain by two special symbols > and ⊥, and let the receiver output a share of his input if the sender

14

Protocol Π
(F)
COM

Parametrized by a finite field F, which is also the base field of the underlying rOLE-primitive. The security
parameter is ` := log |F|.

Setup phase:

• Receiver: Pick x ∈ F uniformly at random and input it into the underlying rOLE-primitive.

Commit phases:

1. Sender: Let si ∈ F be the sender’s i-th input. Pick ri ∈ F uniformly at random and input (si, ri)
into the underlying rOLE-primitive.

2. Receiver: Record the corresponding rOLE-output yi = si · x+ ri.

Unveil phases:

1. Sender: To unveil the i-th commitment, send (si, ri) to the receiver.

2. Receiver: If yi = si · x+ ri, output si; otherwise reject (i.e., output a special symbol ⊥).

Figure 3: Protocol for statistically secure commitments in the reusable OLE (rOLE) hybrid model.

uses one of these special input symbols. The resulting protocol takes input (x, r) ∈ {0, 1}∗×{0, 1}∗
with |x| = |r| from the receiver and y ∈ {0, 1}∗ ∪{>,⊥} from the sender, and the receiver’s output
z is defined as:

z =

f(x, y) if y ∈ {0, 1}∗
r if y = >

x⊕ r if y = ⊥

For secure evaluation of f(x, y), the receiver just needs to input (x, r) with some uniformly random
r of appropriate length, and the sender is supposed to input y. Obviously, the modified protocol
is as secure as the original scheme as long as the receiver uses fresh randomness for each protocol
run. If, however, the receiver uses the same (x, r) in at least two protocol runs, then a malicious
sender can make him output r and x⊕ r, which together reveals the receiver’s secret input x.

4.2 Impossibility of Composable rNISC/OT for the OLE Functionality

We show that reusable OLE cannot be implemented from reusable OT, if the sender can learn
certain predicates about the receiver’s OLE-output. The intuition behind our impossibility proof
relies on the commitment protocol of Figure 3. We want this construction to be secure even
if a corrupted sender learns whether an unveil was accepted by the receiver or not. This can
be formulated as the following game. The receiver first fixes his rOLE-input x ∈ F uniformly at
random. The sender then picks tuples (si, ri), (s̃i, r̃i) ∈ F×F and learns whether si ·x+ri = s̃i ·x+r̃i.
The intuition is here that (si, ri) stands for the sender’s rOLE-input in a commit phase and (s̃i, r̃i)
stands for the corresponding unveil message. We show now that in an OT-based implementation of
the rOLE-primitive a corrupted sender can after polynomially many rounds recover the receiver’s

secret input x (and thereby break the binding property of Π
(F)
COM), which is impossible with an ideal

rOLE. In particular, we assume an rOLE-protocol that is correct, provides sender privacy, and is

15

based on polynomially many (reusable) OT-instances. For a concise presentation we denote the
i-th element of a string s by s[i] and a corresponding substring indexed by I as s[I]. A malicious
sender can recover x by the following attack.

1. Initialize Q0, R0 := ∅ and j := 1. The intuition is that Qj will contain indices where the
receiver’s choice bits are 0 and Rj will contain indices where the receiver’s choice bits are 1.

2. Sample an rOLE-input (sj , rj) ∈ F×F uniformly at random. According to the presumed
rOLE-protocol, generate corresponding OT-input strings aj , bj in the sense that

(
aj [i], bj [i]

)
is the input for the i-th OT-instance. Sample (s̃j , r̃j , ãj , b̃j) with the same distribution but
subject to the condition that ãj [Qj−1] = aj [Qj−1] and b̃j [Rj−1] = bj [Rj−1].

3. Test whether sj · x+ rj = s̃j · x+ r̃j , i.e., the receiver accepts (sj , rj) as well as (s̃j , r̃j) as an
unveil message for a commitment where the sender’s OT-input strings are aj , bj . If so and

moreover sj 6= s̃j , recover x = − rj−r̃j
sj−s̃j and thus finish the attack.

4. Repeat the following two sub-steps until there are no more changes of aj and bj .
(a) If there exists an index i /∈ Qj−1 such that aj [i] 6= ãj [i] and the receiver still accepts

(sj , rj) as an unveil message for a commitment where the sender’s OT-input strings are
aj , bj with aj [i] replaced by ãj [i], change the value of aj [i] to the value of ãj [i].

(b) If there exists an index i /∈ Rj−1 such that bj [i] 6= b̃j [i] and the receiver still accepts
(sj , rj) as an unveil message for a commitment where the sender’s OT-input strings are
aj , bj with bj [i] replaced by b̃j [i], change the value of bj [i] to the value of b̃j [i].

5. Set Qj := Qj−1 ∪
{
i
∣∣ aj [i] 6= ãj [i]

}
and Rj := Rj−1 ∪

{
i
∣∣ bj [i] 6= b̃j [i]

}
, increase j by 1, and go

to step 2.

We just have to show now that the attack finishes (on average) after polynomially many iterations
over j. For every possible tuple (sj , rj , aj , bj) let Vaj ,bj (sj , rj) = > denote that the verifier would
accept (sj , rj) as an unveil message for a commitment where the sender’s OT-input strings are aj , bj
and let Vaj ,bj (sj , rj) = ⊥ denote that the verifier would reject. Our estimation of the expected
number of iterations over j is based on the following two observations.

• Due to the completeness of the commitment scheme (i.e., correctness of the underlying rOLE-
protocol) it happens in each iteration over j only with small probability that Vaj ,bj (sj , rj) = ⊥.
Thus we can condition the whole attack to the event that always Vaj ,bj (sj , rj) = >, as this
changes the expected number of iterations over j only by a small factor.

• In each iteration over j we have only a small probability ρj := Pr[sj = s̃j]. The reason
for this is that − log2(ρj) is an upper bound for the collision entropy of sj conditioned on

the receiver’s view in the corresponding commit phase of Π
(F)
COM. If ρj was not small, the

commitment would not be hiding (or in other words, the underlying rOLE-protocol had no
sender privacy). Thus we can condition the whole attack to the event that always sj 6= s̃j , as
this changes the expected number of iterations over j only by a small factor.

We are now ready to estimate the probability that the j-th iteration of the attack yields nothing,
meaning that the attack is not finished in this iteration and afterwards it still holds that Qj = Qj−1

and Rj = Rj−1. Note that Vaj ,bj (sj , rj) = > and sj 6= s̃j by assumption. Hence, the event that
the attack is not finished means that Vaj ,bj (s̃j , r̃j) = ⊥. The event that Qj = Qj−1 and Rj = Rj−1

means that Vãj ,b̃j (sj , rj) = >. However, (sj , rj , aj , bj) and (s̃j , r̃j , ãj , b̃j) are identically distributed

by construction. Hence, Pr
[
Vaj ,bj (s̃j , r̃j)=⊥ ∧ Vãj ,b̃j (sj , rj)=>

]
≤ 1

2 .

16

Putting things together, it finally follows that the expected number of iterations over j is upper
bounded polynomially in the number of OT-instances used in the presumed rOLE-protocol.

4.3 Impossibility of rNISC/OT for General Black-Box Zero-Knowledge

The impossibility result presented in this section consists of two parts. We first show that certain
probabilistically checkable proofs (PCPs) do not exist. Then we derive from this the aimed at
impossibility result for the OT hybrid model. We give only a very weak definition for zero-knowledge
PCPs in this section, because this yields the strongest possible impossibility result we can come
up with. In particular, we require soundness, completeness, and the zero-knowledge property only
to hold with respect to PPT-adversaries (i.e., adversaries that have probabilistic polynomial time
complexity).

Notation 5. Given any domain D and any subset S ⊆ D, we set SC := D\S. By x← D we denote
that x is sampled uniformly at random from the domain D. Given some probabilistic algorithm A,
we denote by x← A(y) that x is generated by running A on input y with fresh internal randomness;
the distribution of x in this case is denoted {A(y)}. Given any bit-string s, we denote its i-th bit
as s[i] and its substring indexed by some index set I as s[I].

Definition 6 (Problems that are hard on average). The membership problem of any given language
L ⊆ {0, 1}n is hard on average, if ∅ 6= L 6= {0, 1}n and for every PPT-distinguisher D it holds:

Pr
[
D(x)=accept

∣∣x← L] ≤ Pr
[
D(x)=accept

∣∣x← LC
]

+ n−ω(1)

Or in other words, the uniform distributions over L and LC are computationally indistinguishable.

Definition 7 (Zero-knowledge PCPs). A zero-knowledge PCP (ZK-PCP) scheme for an NP-
language L ⊆ {0, 1}n consists of a prover P and a verifier V, both PPT-algorithms. Given any
word x ∈ L and a corresponding witness w, the prover generates a proof π ∈ {0, 1}m, which we
denote π ← P(x,w). The proof length m is a parameter of the scheme. The verifier takes as input
any x ∈ {0, 1}n and π ∈ {0, 1}m and either accepts or rejects, which we denote as V(x, π) = accept

or V(x, π) = reject respectively. The following conditions must hold.

Completeness: For every PPT-computable tuple (x,w) where x ∈ L and w is a corresponding
witness, we have that Pr

[
V(x, π)=accept

∣∣π ← P(x,w)
]
≥ 1− n−ω(1).

Soundness: For all PPT-computable (x, π) ∈ LC×{0, 1}m we have Pr
[
V(x, π)=accept

]
≤ n−ω(1).

PCP property: The verifier V reads only some part of π: Once x and V’s internal randomness are
fixed, we have a sequence of queries q1, . . . , qt ∈ {1, . . . , n} such that each qi deterministically
depends on (x, π[q1, . . . , qi−1]) and it holds that V(x, π) = V(x, π′) for all π, π′ ∈ {0, 1}m with
π[q1, . . . , qt] = π′[q1, . . . , qt]. The number t of queries is a parameter of the PCP scheme.
If the query set Q := {q1, . . . , qt} is independent of π, we say that the scheme is nonadaptive.
If Q is independent of x, we say that the scheme is input-oblivious.

Zero-knowledge property: For every corrupted PPT-algorithm V∗ there exists a PPT-simulator S
such that for every PPT-computable tuple (x,w) where x ∈ L and w is a corresponding
witness, the distributions specified by S(x) and V∗(x,P(x,w)) are computationally indistin-
guishable.
If there exists a universal PPT-simulator S that works for all corrupted receivers V∗ and
just needs black-box access to V∗ in the sense that V∗ successively outputs queries qi which

17

are answered by S with proof bits π̃[qi] computed from (x, q1, . . . , qi−1), then we say that the
scheme has black-box simulatability.
If it is assumed that a corrupted verifier V∗ still respects the aforementioned query bound t
(i.e., V∗ reads at most t bits of π := P(x,w)), we speak of bounded-query zero-knowledge.

Definition 8 (Resettable soundness). A ZK-PCP scheme is resettably sound, if no PPT-adversary
P∗ with oracle access to the verifier functionality V (with randomly fixed internal randomness) can
compute with non-negligible success probability some x̂ ∈ LC and π̂ ∈ {0, 1}m such that V(x̂, π̂) =
accept.

Theorem 9. Let L ⊆ {0, 1}n be an NP-language such that one can PPT-sample from L as well
as from LC with computationally close to uniform distribution. Moreover, let the sampling in the
former case be constructive in the sense that it also provides a witness. If the membership problem
of L is hard on average, then L has no resettably sound input-oblivious nonadaptive bounded-query
ZK-PCP scheme with black-box simulatability.

Proof. Assume that L is hard on average and has an input-oblivious nonadaptive bounded-query
ZK-PCP scheme with black-box simulatability. We show that this scheme cannot be resettably
sound. Before we can present an attack, we have to construct a basic building block for it. Let S∗

denote the following functionality, which takes as input any x ∈ L and Q ⊆ {1, . . . ,m} with |Q| ≤ t
and outputs some π ∈ {0, 1}m.

1. Construct the black-box simulator S for a corrupted verifier that queries the proof bits indexed
by Q and then just outputs π[Q].

2. Sample π[Q]← S(x), fill π[QC] with uniform randomness, and output π.

We argue that due to the hardness of L the algorithm S∗ must still have polynomial runtime for
input x← LC and the distributions

{
S∗(x,Q)

}
x←L and

{
S∗(x,Q)

}
x←LC must be computationally

indistinguishable for any PPT-computable Q ⊆ {1, . . . ,m} of size at most t. We further argue that{
S∗(x,Q)[Q∩Q′]

}
x←L and

{
S∗(x,Q′)[Q∩Q′]

}
x←L must be computationally indistinguishable for

any PPT-computable Q,Q′ ⊆ {1, . . . ,m} of size at most t, as they are both indistinguishable from{
P(x,w)[Q ∩Q′]

}
x←L where w is an arbitrary witness for x ∈ L.

We are now ready to present our efficient (in the sense of PPT) attack, by which a malicious
prover P∗ can break resettable soundness. It works as follows.

1. Initialize Q0 := ∅ and j := 1.
2. Sample x̂j ← LC and π̂j ← S∗(x̂j , Qj). If V(x̂j , π̂j) = accept, output (x̂j , π̂j) and terminate.
3. Sample xj ← L together with a corresponding witness wj and sample πj ← P(xj , wj) and
π̃j ← {0, 1}m. If V(xj , πj) = reject, give up.

4. As long as there exists some index i /∈ Qj−1 such that πj [i] 6= π̃j [i] and V(xj , ·) still accepts
πj with the i-th bit flipped, flip πj [i]. Then set Qj := Qj−1 ∪

{
i∈{1, . . . ,m}

∣∣πj [i] 6= π̃j [i]
}

,
increase j by 1, and go to step 2.

Due to the the completeness property, we have for each iteration over j that P∗ gives up in Step 3
only with negligible probability. Therefore it suffices to show that the attack needs only polynomi-
ally many iterations over j before it terminates. Consider the following sequence of experiments.
Experiment 1: This is the attack as stated above.
Experiment 2: The same as Experiment 1, except that the sampling of x̂j in Step 2 is replaced

by x̂j ← L. It follows by the hardness of L that this changes the runtime complexity of
the attack only up to some negligible statistical distance, at least if either Experiment 1 or
Experiment 2 has polynomial runtime complexity.

18

Functionality FZK

Implicitly parametrized by an NP -language L ⊆ {0, 1}n, where n is a security parameter.

1. Await an input (x,w) from the sender. Store (x,w) and send (sent) to the adversary.

2. Await a message (verify) from the adversary. Then, if w is a witness for x ∈ L, send (x, accept)
to the verifier; else send (x, reject).

Figure 4: Ideal functionality for zero-knowledge proofs.

Experiment 3: The same as Experiment 2, except that the sampling of πj in Step 3 is replaced
by πj ← S∗(xj , Q), where Q denotes the actual set of V’s queries. Note that Q is well-defined,
because the assumed ZK-PCP scheme is input-oblivious and nonadaptive. Since V reads only
bits indexed by Q and the new distribution of these bits is computationally indistinguishable
from their original distribution, this changes the runtime complexity of the attack only up
to some negligible statistical distance, at least if either Experiment 2 or Experiment 3 has
polynomial runtime complexity.

We show now that Experiment 3 actually has polynomial runtime complexity, which concludes the
proof. In Experiment 3 we have the following situation:

x̂j ← L π̂j ← S∗(x̂j , Qj)

xj ← L πj ← S∗(xj , Q)

Recall that π̂j [Qj] and πj [Qj] are computationally indistinguishable by the properties of S∗. More-
over, π̂j [Q

C
j] is uniformly random by construction of S∗ and in Step 4 of our attack we replace the bits

of πj [Q
C
j] successively with uniform randomness. Let π̄j denote the bit-string that equals πj on all

entries indexed by Qj and equals π̃j on all other entries, i.e., π̄j [Qj] = πj [Qj] and π̄j [Q
C
j] = π̃j [Q

C
j].

Hence, the event that the j-th iteration of the attack yields nothing (meaning, V(x̂j , π̂j) = reject

and Qj = Qj−1) implies that V(x̂j , π̂j) = reject and V(xj , π̄j) = accept. Since (x̂j , π̂j) and
(xj , π̄j) are computationally indistinguishable, this may happen at most with probability 1

2 + o(1).
It follows that Experiment 3 terminates with overwhelming probability after polynomially many
iterations.

Corollary 10. If one-way functions exist, then there are instantiations of the functionality FZK

(see Figure 4) that have no rNISC/OT protocol with black-box simulation of a corrupted receiver.

Proof. Since one-way functions imply pseudorandom number generators (PRGs), we can define
L as the set of all length-n pseudorandom strings that can be generated from length-bn2 c seeds
(with respect to some given family of PRGs). One can close to uniformly sample from LC just
by sampling uniformly from {0, 1}n and the average hardness of L’s membership problem is just
a reformulation of the defining property of a PRG. Now, if we had an rNISC/OT protocol for the
corresponding FZK-functionality with black-box simulation of a corrupted receiver, then this would
be a contradiction to Theorem 9. The receiver’s OT-queries would correspond to the queried bits
of a proof π. The resulting PCP scheme would be resettably sound, input-oblivious, and non-
adaptive by construction. A caveat is in place with respect to the bounded-query zero-knowledge
property, because in the presumed rNISC/OT protocol even a corrupted receiver cannot request
both sender inputs in one of the underlying OT instances. However, Theorem 9 directly carries
over to ZK-PCPs where such a limit is put on malicious verifiers.

19

5 Reusable NISC via Parallel Reusable OLE

In this section, we describe our main constructions, namely protocols for reusable (designated
verifier) NIZK and NISC for branching programs, both information-theoretically secure in the
reusable OLE hybrid model.We also show how to obtain a reusable secure computation protocol
for arbitrary functions in the reusable OLE hybrid model, in addition making black-box use of a
pseudorandom generator.

Our construction proceeds bottom-up, starting from reusable OLE and building stronger and
stronger primitives, leading up to reusable non-interactive zero-knowledge first (in Theorem 5.6)
and reusable secure computation right after (in Theorems 5.8 and 5.9). A general theme that runs
through our constructions is that each functionality builds on the previous one by restricting the
“cheating space” of either the sender or the receiver; in doing so, it introduces some room for
cheating by the other party. The next one reverses the role, and so forth. We converge in a small
number of such steps and first construct our reusable NIZK protocol. Secure computation follows
suit with some more work.

We first proceed to describe our functionalities, and realizing them shortly after.

5.1 Our Ideal Functionalities

We describe, in a high level, the sequence of our functionalities. The full functionality is somewhat
complex and is described in Figure 15.

Half-replicated OLE F 1
2
repOLE. The reusable OLE functionality allows the receiver to commit to

a number x ∈ F and allow a sender to transmit values aix+bi to the receiver for arbitrary ai, bi ∈ F.
By the definition of the functionality, the sender is assured that the receiver uses the same x in all
these iterations (just because he used the same receiver message to compute his response); however,
there are no restrictions on the sender side.

Our final stop is zero-knowledge where the sender has to prove some relation among a set of
number he chooses. There are two major gaps in getting there: (1) forcing consistency on the
sender as opposed to the receiver; and (2) allowing for complex predicates on the sender input,
instead of just replication constraints (which say that certain subsets of the sender’s numbers are
the same).

Our first functionality, F 1
2
repOLE, takes one step in this direction. Namely, it allows the receiver

to commit to a set of numbers {xi} and also the sender to commit to a set {aj}. In each invocation
subsequently, the sender can “point to” two of these numbers (i, j) and produce a new number
b ∈ F and transmit to the receiver aixj + b. “Half replicated” because there are constraints on the
sender’s choice of “a” but no constraints on the “b”.

Half-replicated OLE with CDS F 1
2
repOLE,CDS. It is intuitively clear that it is easier to check

the consistency of the receiver’s input than the sender’s. Roughly speaking, the receiver sends her
input along without even having to see anything from the sender; however, the sender necessarily
has to see the receiver’s commitment to compute his response.

Our next functionality ups the ante by additionally allowing the sender to disclose a secret
s ∈ F to the receiver if and only if the receiver’s input {xj} satisfies a condition (thus, conditional
disclosure of secrets or CDS) encoded as an arithmetic branching program. Recall that our final
goal is to check the sender’s input, not the receiver’s, but this is a step along the way. Thus, the

20

consistency condition is more than mere replication, but it is the receiver’s input whose consistency
is being checked.

Half-replicated OLE with CDS and Proof F 1
2
repOLE,CDS,proof. Our next functionality flips this

around and shows what is necessary for zero-knowledge. Namely, it gives a way for the sender to
prove that his chosen input satisfies a given predicate encoded as an arithmetic branching program.
Realizing this functionality already proves Theorem 5.6. Throughout this process, we keep track
of the number of (reusable) OLE calls made and show that at the end, the overhead is an absolute
constant for every gate of the verification circuit. This is the type of guarantee you get for NISC/OT
except we additionally achieve reusability.

Replicated OLE (+CDS+Proof) FrepOLE,CDS,proof. Our final step closes the loop and con-
structs a fully replicated OLE where the receiver can commit to {ai} and at any time, point to
(i, i′, j) and transmit to the receiver aixj + ai′ ∈ F. This closes the last bit cheating space the
sender has, and combined with randomized encodings for arithmetic branching programs, allows
us to achieve reusable NISC/OLE for arithmetic NC1. Additionally, using garbled circuits, we can
also obtain such a protocol for all of P at the cost of a computational assumption, namely making
black-box use of a PRG.

A final remark is in order. Our implementation of reusable OLE in the next section will work
over Z∗N which is not a field. Fortunately, it is a pseudo-field, in the sense that either (a) any
protocol will work just as well over Z∗N as over a field; or (b) the protocol will stumble upon the
factorization of N . Since (b) is computationally hard, we obtain protocols that work well over the
ring.

Functionality F 1
2
repOLE

Choice phase: Upon receiving input (sid, x) from the receiver where x ∈ F and sid ∈ N is a session
identifier, store (sid, x), send (sid, input-init) to the adversary and ignore any further input from the
receiver with the same sid.

Send phase (choose coefficients): Upon receiving input (cid, a) from the sender where a ∈ F and
cid ∈ N is a coefficient identifier, store (cid, a), send (cid, coeff-init) to the adversary and ignore any
further input from Sam with the same cid.

Send phase (half replicated OLE):

• Upon receiving input (1
2repOLE, sid, cid, b, i) from Sam, record (1

2repOLE, sid, cid, b, i), send
(1

2repOLE, sid, cid, send, i) to the adversary, and ignore any further inputs from Sam with the same
(sid, cid, i).

• Upon receiving a message (1
2repOLE, sid, cid, Delivery, i) from the adversary, verify that there are

stored inputs (1
2repOLE, sid, cid, b, i), (cid, a) from Sam and (sid, x) from Rachel; else ignore that

message. Next, compute z = ax + b, send (1
2repOLE, sid, cid, z, i) to Rachel, and ignore further

messages (1
2repOLE, sid, cid, Delivery, i) from the adversary with the same (sid, cid, i).

Figure 5: ideal functionality of half-replicated OLE

21

5.2 Constructing Half-Replicated OLE from Reusable OLE

Functionality F 1
2
repOLE

Choice phase: Upon receiving input (sid, x) from the receiver where x ∈ F and sid ∈ N is a session
identifier, store (sid, x), send (sid, input-init) to the adversary and ignore any further input from the
receiver with the same sid.

Send phase (choose coefficients): Upon receiving input (cid, a) from the sender where a ∈ F and
cid ∈ N is a coefficient identifier, store (cid, a), send (cid, coeff-init) to the adversary and ignore any
further input from Sam with the same cid.

Send phase (half replicated OLE):

• Upon receiving input (1
2repOLE, sid, cid, b, i) from Sam, record (1

2repOLE, sid, cid, b, i), send
(1

2repOLE, sid, cid, send, i) to the adversary, and ignore any further inputs from Sam with the same
(sid, cid, i).

• Upon receiving a message (1
2repOLE, sid, cid, Delivery, i) from the adversary, verify that there are

stored inputs (1
2repOLE, sid, cid, b, i), (cid, a) from Sam and (sid, x) from Rachel; else ignore that

message. Next, compute z = ax + b, send (1
2repOLE, sid, cid, z, i) to Rachel, and ignore further

messages (1
2repOLE, sid, cid, Delivery, i) from the adversary with the same (sid, cid, i).

Figure 6: ideal functionality of half-replicated OLE

We start with the definition of the half-replicated OLE functionality F 1
2
repOLE in Figure 6. In

reusable OLE, the receiver commits to values xi ∈ F, and the sender can transfer to the receiver
a tuple (i, ajxi + bj) for any aj , bj ∈ F of his choice. In other words, all the transmissions of the
sender with the same i are guaranteed to be consistent with a single xi, but the sender’s coefficients
aj and bj are completely unconstrained.

Roughly speaking, half-replicated OLE allows the receiver to commit to values xi ∈ F (just as
in reusable OLE) but in addition, also has a mechanism for the sender to commit to values aj ∈ F.
The sender can later transfer to the receiver a tuple (i, j, ajxi + b) for an arbitrary choice of b ∈ F,
simply by “pointing to” an appropriate i and j. In other words, when the receiver obtains two
tuples (i1, j, z1) and (i2, j, z2), he will be sure that both executions used the same multiplicative
factor aj .

We construct a protocol that achieves this functionality F 1
2
repOLE in the FrOLE-hybrid model.

Our construction proceeds in two steps.

A First Try: The Protocol Πα- 1
2
repOLE. Protocol Πα- 1

2
repOLE (Figure 7) is a protocol attempting

to implement half replicated OLE (Figure 6). As a first trial, Πα- 1
2
repOLE is only secure against

malicious receiver. Note that reusable OLE can also be viewed as an implementation of Π 1
2
repOLE

that is secure against malicious receiver, and secure against semi-honest sender if we simply believe
that the sender use the same multiplicative factors! What makes Πα- 1

2
repOLE useful is that it also

limits the cheating space of a malicious sender. In each evaluation, either the sender is honest such
that a extractor can extracts (sid, cid, b) from the sender’s messagese such that the receiver will
outputs acidxsid+b. Otherwise, the sender deviates from the protocol, and the receiver will outputs
a uniform random value. The randomness should comes from the honest receiver so that it stays

22

random even conditioned on sender’s view and environment’s view.
In protocol Πα- 1

2
repOLE, the receiver inputs to the underlying reusable OLE an extra number α

that is sampled uniformly random from F. Whenever the sender want to choose a new coefficient
a, a rOLE evaluation of aα+ r is required, where r is a fresh random number chosen by the sender.
Such an evaluation serves as a commitment on the coefficient chosen by the sender.

Implementing F 1
2
repOLE (First Try): Protocol Πα- 1

2
repOLE

Choice phase:
The receiver, at the outset, samples α ∈ F and send the pair (sidalpha, α) to FrOLE. Then, upon receiving
input (sid, x) from the environment, it samples h ∈ F and sends (sid||0, h), (sid||1, x− αh) to FrOLE.

Send phase (choose coefficients):
Upon receiving input (cid, a) from the environment, the sender samples a uniformly random r ∈ F, and
sends (sidalpha, a, r, cid) to FrOLE.

Upon receiving a message (sidalpha, â, cid) from FrOLE, the receiver stores (sidalpha, â, cid).

Send phase (half replicated OLE):
Upon receiving input (sid, cid, b, i) from the environment, the sender verifies that (sidalpha, a, r, cid) was sent
to FrOLE. If yes, send (sid, cid, i) to the receiver, and send both (sid||0, r, w, i) and (sid||1, a, b + w, i) to
FrOLE.

Upon receiving (sid, cid, i) from the sender and receiving (sid||0, z0, i), (sid||1, z1, i) from FrOLE, the receiver
verifies that there is a stored message (sidalpha, â, cid) from FrOLE. Next, compute z = âh − z0 + z1 and
output (sid, cid, z, i) to the environment.

Figure 7: Protocol Πα- 1
2
repOLE for half-replicated OLE in the FrOLE-hybrid model, secure against

malicious receiver and “half-secure” against malicious sender (see Lemma 5.1, Lemma 5.2 for the
formal definition of “half-security”)

Lemma 5.1. The protocol Πα- 1
2
repOLE implements the functionality F 1

2
repOLE in the FrOLE-hybrid

model against a malicious receiver and a semi-honest sender.

Proof. Correctness follows directly from the fact that

ax+ b = a(αh+ x− αh) + b

= aαh+ a(x− αh) + b

= (aα+ r)h− rh+ a(x− αh) + b

= (aα+ r)︸ ︷︷ ︸
â

h− (rh+ w)︸ ︷︷ ︸
z0

+ a(x− αh) + w + b︸ ︷︷ ︸
z1

.

There is a straight-line simulator for any (potentially malicious) receiver R̂:

• Store α when the receiver outputs (sidalpha, α). Whenever the receiver has outputted (sid‖0, hsid)
and (sid‖1, ysid), store hsid and send (sid, αhsid + ysid) to ideal functionality F 1

2
repOLE. Note

that the receiver has no malicious strategy: any sequence of output can comes from honest
strategy for appropriate input and randomness.

23

• Whenever the simulator saw a new coefficient identifier cid, sample random âcid and send
(sidalpha, âcid, cid) to R̂. In real world, âcid is uniform random because it’s one-time padded
by fresh randomness sampled by sender.

• For any evaluation indexed by (sid, cid, i), upon receiving (sid, cid, z, i) from functionality
F 1

2
repOLE, send (sid||0, z0, i), (sid||1, z1, i) to R̂ such that z0 is uniform random and z1 = z −

âcidhsid + z0. In real world, z0 is uniform random because it’s one-time padded by fresh
randomness sampled by sender, and z1 can be determined from z0, âcid, receiver’s randomness
hsid and functionality’s output.

We now define the notion of a well-formed sender, towards describing a nice property that our
first attempt achieves. For a given (potentially malicious) sender, say a coefficient identifier cid is
valid if the sender inputs (sidalpha, a, r, cid) for some a, r to FrOLE; say a tuple (sid, cid, i) is valid
if cid is valid and the sender’s messages include (sid, cid, i), (sid‖0, r′, b0, i), (sid‖1, a′, b1, i) for some
a′, r′, b0, b1. It’s clear that the honest receiver will output tuple (sid, cid, zsid,cid,i, i) for some zsid,cid,i
for each valid (sid, cid, i).

Lemma 5.2. The protocol Πα- 1
2
repOLE implements the functionality F 1

2
repOLE in the FrOLE-hybrid

model such that for every (potentially malicious) sender Ŝ there is a p.p.t. straight-line extractor
E which outputs a sequence of tuples the form (cid, âcid) where âcid ∈ F for each valid cid and a
sequence of tuples of the form (sid, cid, b̂, i) where b̂ ∈ F ∪ {⊥} for each valid (sid, cid, i), such that
for any sequence of tuples of the form (sid, xsid) that the receiver chooses as its input, the following
two properties hold:

• Completeness: For every extracted tuple (sid, cid, b̂, i) where b̂ ∈ F, the receiver output contains
(sid, cid, âcid · xsid + b̂, i).

• Soundness: For every extracted tuple (sid, cid, b̂, i) where b̂ = ⊥, the receiver output con-
tains (sid, cid, zsid,cid,i, i) such that conditioned on the sender’s view, ẑsid,cid,i is 1

|F| -close
to the uniform distribution over F. Moreover, for any k ∈ N and any sequence of tuples
(sid1, cid1, b̂1, i1), . . . , (sidk, cidk, b̂k, ik) such that b̂j = ⊥ and the sidj are distinct, the joint
distribution of zsid1,cid1,i1 , . . . , zsidk,cidk,ik is k

|F| -close to uniform conditioned on the sender’s
view.

Proof. The straight-line extractor E does the following

• When the sender sends (sidalpha, acid, rcid, cid) to FrOLE, store (acid, rcid) and output (cid, acid).

• When the sender sends (sid, cid, i) to receiver and inputs (sid‖0, r′, b0, i), (sid‖1, a′, b1, i) to
FrOLE, the extractor E outputs (sid, cid,⊥, i) if a′ 6= acid or r′ 6= rcid, outputs (sid, cid, b1−b0, i)
otherwise.

For any (sid, cid, i) that index an evaluation, the sender sends (sid, cid, i) to receiver and inputs
(sid‖0, r′, b0, i), (sid‖1, a′, b1, i) to FrOLE, the sender also sends (sidalpha, acid, rcid, cid) to FrOLE. The
honest receiver has sampled random α, hsid and inputs (sidalpha, α), (sid‖0, hsid), (sid‖1, x− αhsid)
to FrOLE, thus the honest receiver will gets (sidalpha, â, cid), (sid‖0, z0, i), (sid‖1, z1, i) from FrOLE
such that

â = acidα+ rcid, z0 = r′hsid + b0, z1 = a′(x− αhsid) + b1.

24

The honest receiver then compute zsid,cid,i = âhsid − z0 + z1 and output (sid, cid, zsid,cid,i, i), such
that

zsid,cid,i = âhsid − z0 + z1

= (acidα+ rcid)hsid − (r′hsid + b0) + a′(x− αhsid) + b1

= a′x+ b1 − b0 + ((acid − a′)α+ rcid − r′)hsid.

• Completeness: When a′ = acid and r′ = rcid, the extractor will extract (sid, cid, b1 − b0, i) for
this evaluation and zsid,cid,i = acidx+ b1 − b0.

• Soundness: When a′ 6= acid or r′ 6= rcid, the extractor will extract (sid, cid,⊥, i) for this
evaluation. Condition on very likely event (acid− a′)α+ rcid− r′ 6= 0, whose probability is at
least 1− 1

|F| , the distribution of zsid,cid,i is uniform as it’s randomized by hsid.

Moreover, consider the sequence zsid1,cid1,i1 , . . . , zsidk,cidk,ik where for each j ∈ [k], the extrac-
tor outputs (sid, cid,⊥, i) and the honest receiver outputs (sid, cid, zsid1,cid1,i1 , i). If all sidj are
distinct, then the joint distribution of zsid1,cid1,i1 , . . . , zsidk,cidk,ik is close to uniform random
as it’s randomized by (hsid1 , . . . , hsidk).

Protocol Π 1
2
repOLE (Figure 8) implements F 1

2
repOLE and it is built on top of Πα- 1

2
repOLE. Note that

Πα- 1
2
repOLE is close to a secure implementation of half-replicated OLE F 1

2
repOLE: it’s secure against

malicious receiver, and the sender has limited cheating room — in any single evaluation, the honest
receiver will output a random value if the sender misbehaves.

To detect whenever the sender misbehaves, the receiver duplicates its input and sends the
same value to Πα- 1

2
repOLE under different session identifier. Say for each (sid, xsid) picked by the

environment, the receiver feeds both (sid‖0, xsid) and (sid‖1, xsid) to Πα- 1
2
repOLE. Later when each

(sid, cid, b, i) picked by the environment, the sender is asked to send both (sid‖0, cid, b, i) and
(sid‖1, cid, b, i) to Πα- 1

2
repOLE. The honest receiver expects to receive same evaluation values. With

a redundant evaluation, misbehaved sender will be caught immediately.
The counter effect of a redundant evaluation is that the receiver is able to learn extra informa-

tion. A malicious receiver can choose (sid‖0, xsid), (sid‖1, x′sid) such that xsid 6= x′sid. To prevent
such attack, the sender samples a random s1 ∈ F, encrypts one of the evaluation resulting using
s1 as a one-time pad, and leaks s1 to the receiver if and only if xsid = x′sid. The general way
to disclose a secret in F to the receiver if the receiver’s chosen input satisfies some condition is
discussed in Section 5.3. In this case, sender disclose s to the receiver by sample random r ∈ F as
a new coefficient, and sends r(xsid − x′sid) + s1 to the receiver via 2 Πα- 1

2
repOLE evaluations. So that

s1 is hidden from the receiver if xsid 6= x′sid.
So far, it seems that we fall into a deadloop. As the sender is again able to behave mali-

ciously. We jump out from this deadloop using a hash-and-check trick. The sender samples a
larger randomness s = (s1, s2) ∈ F2 and sends s to the receiver by sample random r ∈ F2 and sends
(xsid − x′sid)r + s to the receiver via 4 Πα- 1

2
repOLE evaluations. In addition, sends s1γ + s2 to the

receiver, where random γ ∈ F is sampled by the receiver, via 1 FrOLE evaluations. Then from a
malicious receiver’s view, if the malicious receiver sets xsid 6= x′sid, then (xsid − x′sid)r + s leaks no
information about s and s1γ+ s2 doesn’t leaks enough information to recover s1. From a malicious
sender’s view, the random γ essentially picks a hash function s 7→ s1γ+s2. If the sender misbehave,
then it’s very likely caught by an honest receiver because the hash values don’t match.

As for the concrete efficiency of Π 1
2
repOLE: the receiver chooses 2 extra FrOLE inputs at the outset;

each chosen input corresponds to 2 inputs in Πα- 1
2
repOLE, which correspond to 4 FrOLE inputs; each

25

Implementing F 1
2
repOLE (Second and Final Try): Protocol Π 1

2
repOLE

Choice phase:
The receiver, at the outset, samples γ ∈ F and sends the pair (sidgamma, γ) to FrOLE. Then, upon receiving
input (sid, x) from the environment, inputs (sid‖0, x), (sid‖1, x) to Πα- 1

2
repOLE.

Send phase (choose coefficients): Upon receiving input (cid, a) from environment, the sender
forwards (cid, a) to Πα- 1

2
repOLE.

Send phase (half replicated OLE):
Sender: Upon receiving input (sid, cid, b, i) from the environment, sample s1, r1, w1, s2, r2, w2 ∈ F, pick
unused coefficient identifier cid1, cid2, send (sid, cid, i, cid1, cid2) to receiver and send the queries (cid1, r1)
and (cid2, r2) to Πα- 1

2
repOLE, send

(sid‖0, cid, b, i), (sid‖1, cid, b+ s1, i),
(sid‖0, cid1, s1 + w1), (sid‖1, cid1, w1),
(sid‖0, cid2, s2 + w2), (sid‖1, cid2, w2)

to Πα- 1
2
repOLE, and send (sidgamma, s1, s2, i) to FrOLE.

Receiver: Upon receiving (sid, cid, i, cid1, cid2) from sender, receiving (sidgamma, h, i) from FrOLE and receiv-
ing (sid‖0, cid, z, i), (sid‖1, cid, ẑ, i), (sid‖0, cid1, v1), (sid‖1, cid1, u1), (sid‖0, cid2, v2), (sid‖1, cid2, u2) from
Πα- 1

2
repOLE. Abort if either γ(v1−u1) + (v2−u2) 6= h or z 6= ẑ− (v1−u1). Otherwise, output (sid, cid, z, i)

to environment.

Figure 8: Protocol Π 1
2
repOLE for half-replicated OLE in the FrOLE-hybrid model, using Πα- 1

2
repOLE as

a sub-protocol

chosen coefficient corresponds to 1 coefficient in Πα- 1
2
repOLE, which corresponds to 1 FrOLE evaluation

call; each evaluation corresponds to 6 Πα- 1
2
repOLE evaluations + 1 FrOLE evaluation, which correspond

to 13 FrOLE evaluation calls.

Theorem 5.3. The protocol Π 1
2
repOLE (Figure 8) implements the functionality F 1

2
repOLE in the FrOLE-

hybrid model.

Proof. Correctness: Consider one evaluation indexed by (sid, cid, i), assume (sid, cid, b, i), (sid, x), (cid, a)
are the corresponding messages from environment. When sender and receiver are honest, re-
ceiver will receive (sid‖0, cid, z, i), (sid‖1, cid, ẑ, i), (sid‖0, cid1, v1), (sid‖1, cid1, u1), (sid‖0, cid2, v2),
(sid‖1, cid2, u2) from Πα- 1

2
repOLE and (sidgamma, h, i) from FrOLE, such that

z = ax+ b, ẑ = ax+ b+ s1,
v1 = r1x+ s1 + w1, u1 = r1x+ w1,
v2 = r2x+ s2 + w2, u2 = r2x+ w2,
h = γs1 + s2,

where s1, s2, r1, r2, w1, w2, γ are random values sampled by either the sender or the receiver. The
receiver won’t abort as γ(v1 − u1) + (v2 − u2) = γs1 + s2 = h and ẑ − (v1 − u1) = ẑ − s1 = z. The
receiver will output (sid, cid, z, i) for z = ax+ b which agrees with the ideal functionality.

Security against malicious receiver is ensured by a straight-line simulator. For any (potentially
malicious) receiver R̂, the simulator does the following

26

• In choice phase, store γ when the receiver outputs (sidgamma, γ) to FrOLE. When the receiver
has outputted (sid‖0, xsid), (sid‖1, x′sid) to underlying Πα- 1

2
repOLE protocol, store (sid, xsid, x

′
sid)

and sends (sid, xsid) to ideal functionality F 1
2
repOLE.

• Consider one evaluation in send phase, upon receiving (sid, cid, z, i) from F 1
2
repOLE in ideal

world, receiver R̂ should receives corresponding message (sid‖0, cid, z, i), (sid‖1, cid, ẑ, i),
(sid‖0, cid1, v1), (sid‖1, cid1, u1), (sid‖0, cid2, v2), (sid‖1, cid2, u2) in the real world such that

z = axsid + b, ẑ = ax′sid + b+ s1,
v1 = r1xsid + s1 + w1, u1 = r1x

′
sid + w1,

v2 = r2xsid + s2 + w2, u2 = r2x
′
sid + w2,

h = γs1 + s2,

where a, b are coefficients hidden from the simulator, and r1, s1, w1, r2, s2, w2 are fresh ran-
domness sampled by the sender. Then the receiver’s view can be simulated by considering
whether xsid = x′sid. In the case when xsid = x′sid,

– z is given by ideal functionality;

– the joint distribution of v1, u1, v2, u2 is uniform random as it’s one-time padded by
(s1, w1, s2, w2);

– given z, v1, u1, v2, u2 and the receiver’s view, the value of ẑ, h are uniquely determined
by h = γ(v1 − u1) + (v1 − u2), ẑ = z + v1 − u1.

Otherwise, in the case when xsid 6= x′sid,

– z is given by ideal functionality;

– the joint distribution of v1, u1, v2, u2 is uniform random as it’s one-time padded by
(r1, w1, r2, w2);

– given z, v1, u1, v2, u2 and the receiver’s view, the joint distribution of ẑ, h is uniformly
random as it’s one-time padded by (s1, s2).

Security against malicious sender is ensured by a straight-line simulator which can simu-
late any (potentially malicious) sender Ŝ. Notice that protocol Πα- 1

2
repOLE is the secure against

malicious sender, thus the simulator is built on top of the straight-line extractor for protocol
Πα- 1

2
repOLE. For each evaluation labeled by (sid, cid, i), the sender outputs (sidgamma, s1, s2, i) to

FrOLE for some s1, s2 ∈ F, and from the sender’s outputs to Πα- 1
2
repOLE, a straight-line extrac-

tor extracts (cid, a), (cid1, r1), (cid2, r2) for some a, r1, r2 ∈ F and (sid‖0, cid, b, i), (sid‖1, cid, b̂, i),
(sid‖0, cid1, ŵ1), (sid‖1, cid1, w1), (sid‖0, cid2, ŵ2), (sid‖1, cid2, w2) for some b, b̂, ŵ1, w1, ŵ2, w2 ∈
F ∪ {⊥}.

In one case, the sender might follows the protocol in this evaluation. The sender is considered
honest if none of b, b̂, ŵ1, w1, ŵ2, w2 equals ⊥ and b̂ = b + s1, ŵ1 = s1 + w1, ŵ2 = s2 + w2. In such
case, it’s simulatable by sending (cid, a), (sid, cid, b, i) to ideal functionality F 1

2
repOLE.

In the other case where the sender deviates from the protocol, the honest receiver will abort with
overwhelming probability 1− O(1

|F|). In such case, the receiver will receives message (sid, cid, z, i)

from F 1
2
repOLE and messages (sid‖0, cid, z, i), (sid‖1, cid, ẑ, i), (sid‖0, cid1, v1), (sid‖1, cid1, u1), (sid‖0, cid2, v2),

27

(sid‖1, cid2, u2) from underlying Πα- 1
2
repOLE such that

z = ax+ b if b 6= ⊥, ẑ = ax+ b̂ if b̂ 6= ⊥,
v1 = r1x+ ŵ1 if ŵ1 6= ⊥, u1 = r1x+ w1 if w1 6= ⊥,
v2 = r2x+ ŵ2 if ŵ2 6= ⊥, u2 = r2x+ w2 if w2 6= ⊥,
h = γs1 + s2,

where x is hidden from the simulator, γ is a random number sampled by the receiver.

• Case I, if ŵ1 = ⊥ or w1 = ⊥ or ŵ1 6= w1 + s1: When ŵ1 = w1 = ⊥, the joint distribution of
v1, u1 is 2

|F| -close to uniform, thus s1 = (v1− u1) with probability at most 3
|F| . Otherwise, the

probability that s1 = (v1 − u1) is even smaller. Condition on s1 6= (v1 − u1), the probability
γ(v1 − u1) − (v2 − u2) = h is no more than 1

|F| as γ is uniform random. In summary, the

honest receiver will abort with probability at least (1− 4
|F|) in such case.

• Case II, if ŵ2 = ⊥ or w2 = ⊥ or ŵ2 6= w2 + s2: Similarly, the honest receiver will abort with
probability at least (1− 4

|F|) in such case.

• Case III, otherwise if b = ⊥ or b̂ = ⊥ or b̂ 6= b+s1: We can assume s1 = ŵ1−w1 as it doesn’t
fall into case I. When b = b̂ = ⊥, the joint distribution of z, ẑ is 2

|F| -close to uniform, thus

z = ẑ−(v1−u1) with probability at most 3
|F| . Otherwise the probability that z = ẑ−(v1−u1)

is even smaller. In summary, the honest receiver will abort with probability at least (1− 3
|F|)

in such case.

5.2.1 Syntactic sugar: Oblivious Multi-variant Linear Function Evaluation

To simplify the proofs, it’s worth bringing some syntactic sugar into F 1
2
repOLE functionality. Right

now, in each evaluation, the sender can pick (sid, cid, b) so that the receiver learns (sid, cid, acidxsid+
b). This is a powerful functionality that almost immediately supports the oblivious evaluation of
a multi-variant linear function, where the sender picks (sid1, cid1, c1, . . . , sid`, cid`, c`, b) for some
c1, . . . , c`, b ∈ F and receiver gets (sid1, cid1, c1, . . . , sid`, cid`, c`, z) that z =

∑`
j=1 acidjcjxsidj + b

(as formalized in Figure 9).
There is a simple protocol implementing this enhanced functionality in F 1

2
repOLE-hybrid model

and it’s UC-secure. W.l.o.g. we can assume cj 6= 0 for all j ∈ [`].

• Upon receiving (1
2
repOLE, (sidj , cidj , cj)

`
j=1, b, i) from the environment, the sender samples

b1, . . . , bn ∈ F such that
∑`

j=1 cjbj = b. The sender picks appropriate i1, . . . , i`, sends

((sidj , cidj , cj)
`
j=1, i, (ij)

`
j=1) to the receiver, and then inputs (1

2
repOLE, sidj , cidj , bj , ij) to

F 1
2
repOLE for all j ∈ [`].

• Upon receiving ((sidj , cidj , cj)
`
j=1, i, (ij)

`
j=1) from the sender and receiving (1

2
repOLE, sidj , cidj , zj , ij)

from F 1
2
repOLE for all j ∈ [`], the receiver computes z =

∑`
j=1 cjzj outputs ((sidj , cidj , cj)

`
j=1, z, i).

Correctness follows directly from the fact that

∑̀
j=1

cjzj =
∑̀
j=1

cj(acidjxsidj + bj) =
∑̀
j=1

cjacidjxsidj + b.

28

Functionality Fsugar- 1
2
repOLE

Choice phase (the same as F 1
2
repOLE in Figure 6): Upon receiving input (sid, x) from the receiver

where x ∈ F and sid ∈ N is a session identifier, store (sid, x), send (sid, input-init) to the adversary and
ignore any further input from the receiver with the same sid.

Send phase (choose coefficients, the same as F 1
2
repOLE in Figure 6): Upon receiving in-

put (cid, a) from the sender where a ∈ F and cid ∈ N is a coefficient identifier, store (cid, a), send
(cid, coeff-init) to the adversary and ignore any further input from Sam with the same cid.

Send phase (half replicated OLE):

• Upon receiving input (1
2repOLE, (sidj , cidj , cj)

`
j=1, b, i) from Sam, record it, send

(1
2repOLE, (sidj , cidj , cj)

`
j=1, send, i) to the adversary, and ignore any further inputs from Sam

with the same (1
2repOLE, (sidj , cidj , cj)

`
j=1, i).

• Upon receiving a message (1
2repOLE, (sidj , cidj , cj)

`
j=1, Delivery, i) from the adversary, verify

that there are stored inputs (1
2repOLE, (sidj , cidj , cj)

`
j=1, b, i) and (cidj , aj) for j ∈ [`] from

Sam and (sidj , xj) for j ∈ [`] from Rachel; else ignore that message. Next, compute z =∑`
j=1 acidjcjxsidj + b, send (1

2repOLE, (sidj , cidj , cj)
`
j=1, z, i) to Rachel, and ignore further messages

(1
2repOLE, (sidj , cidj , cj)

`
j=1, Delivery, i) from the adversary with the same ((sidj , cidj , cj)

`
j=1, i).

Figure 9: ideal functionality of half replicated OLE with syntactic sugar

The (potentially malicious) receiver’s view is a additive secret sharing of the functionality out-
put, thus it is easily simulatable: get ((sidj , cidj , cj)

`
j=1, z, i) from ideal functionality, sample (zj)

`
j=1

such that z =
∑`

j=1 cjzj and sends (1
2
repOLE, sidj , cidj , zj , ij) for all j ∈ [`] to the receiver.

If the (potentially malicious) sender feeds F 1
2
repOLE with tuples (1

2
repOLE, sidj , cidj , bj , ij) for

j ∈ [`], it can be simulated as sending (1
2
repOLE, (sidj , cidj , cj)

`
j=1, b, i) for b =

∑`
j=1 cjbj to the

ideal functionality.

5.3 Allowing CDS operations in Half-Replicated OLE

In Section 5.2, the construction of Π 1
2
repOLE implicitly contains a CDS protocol that disclose a

secret to the receiver if and only if the receiver has chosen same value under two different session
identifiers. In this section, we allow the sender to disclose a secret to the receiver under more
complex conditions (formally defined as F 1

2
repOLE,CDS in Figure 10). Denote the receiver’s chosen

input by xsid if the receiver has sent (sid, xsid).
First consider how to disclose a secret condition on an affine constraint. An affine constraint on

` variables is specified by pair (f, {sidj}`j=1), where f is an affine function defined by a sequence of

non-zero coefficients c0, c1, . . . , c` such that f(v1, . . . , v`) = c0 +
∑`

j=1 cjvj . The sender would like
to disclose a secret s ∈ F to the receiver if and only if f(xsid1 , . . . , xsid`) = 0. To do so, it samples

random r ∈ F sends (c0 +
∑`

j=1 cjxsidj)r + s to the receiver via ` 1
2
repOLE evaluations.

Then consider more general arithmetic constraints, which can be modeled by branching pro-
grams.

29

Functionality F 1
2
repOLE,CDS

Parametrized by a finite field F, and C a class of functions.

Choice phase, part I (the same as Figure 6): Upon receiving input (sid, x) from the receiver
where x ∈ F and sid ∈ N is a session identifier, store (sid, x), send (sid, input-init) to the adversary and
ignore any further input from the receiver with the same sid.

Choice phase, part II (CDS): Upon receiving input (CDS, f, {sidj}`j=1) from Rachel where f : F` →
F is a function in C, verify that there are stored input (sidj , xj) from Rachel for all j ∈ [`]; else ignore that
message. Next, record (CDS, f, {sidj}`j=1), send (CDS, f, {sidj}`j=1, sent) to the adversary, and ignore any

further inputs from Rachel with the same (f, {sidj}`j=1).

Send phase (choose coefficients, the same as Figure 6): Upon receiving input (cid, a) from
the sender where a ∈ F and cid ∈ N is a coefficient identifier, store (cid, a), send (cid, coeff-init) to the
adversary and ignore any further input from Sam with the same cid.

Send phase, part I (half replicated OLE, the same as Figure 6):

• Upon receiving input (1
2repOLE, sid, cid, b, i) from Sam, record (1

2repOLE, sid, cid, b, i), send
(1

2repOLE, sid, cid, send, i) to the adversary, and ignore any further inputs from Sam with the same
(sid, cid, i).

• Upon receiving a message (1
2repOLE, sid, cid, Delivery, i) from the adversary, verify that there are

stored inputs (1
2repOLE, sid, cid, b, i), (cid, a) from Sam and (sid, x) from Rachel; else ignore that

message. Next, compute z = ax + b, send (1
2repOLE, sid, cid, z, i) to Rachel, and ignore further

messages (1
2repOLE, sid, cid, Delivery, i) from the adversary with the same (sid, cid, i).

Send phase, part II (CDS):

• Upon receiving input (CDS, f, {sidj}`j=1, s, i) from Sam where f : F` → F is a function in C, verify

that there are stored input (CDS, f, {sidj}`j=1) from Rachel; else ignore that message. Next, record

(CDS, f, {sidj}`j=1, s, i), send (f, {sidj}`j=1, send, i) to the adversary, and ignore any further inputs

from Sam with the same (f, {sidj}`j=1, i).

• Upon receiving a message (CDS, f, {sidj}`j=1, Delivery, i) from the adversary, verify that there are

stored input (CDS, f, {sidj}`j=1, s, i) from Sam and (sidj , xj) from Rachel for all j ∈ [`]; else ignore that

message. Next, send to Rachel (f, {sidj}`j=1, s, i) if f(x1, . . . , x`) = 0 otherwise (f, {sidj}`j=1,⊥, i),
and ignore further messages (CDS, f, {sidj}`j=1, Delivery, i) from the adversary with the same

(f, {sidj}`j=1, i).

Figure 10: ideal functionality of half replicated OLE + CDS

30

Branching programs Before formalizing branching programs, for convenience, define affine
function labeled with session identifiers, or labeled affine function in short, as pairs of the form
f = (f, {sidj}`j=1), where f is an affine function on F`. Let x = (xsid)sid denotes all the inputs
chosen by receiver and use convenient notation f(x) to denote f(x) := f(xsid1 , . . . , xsid`).

A (t+ 1)-node branching program can be formalized as a mapping G from the input vector to
matrix in Ft×t such that

G(x) :=

g1,1(x) · · · g1,t(x)

−1
. . .
. . .

. . .
...

−1 gt,t(x)

where each of g1,1, . . . , gt,t is a labeled affine function. Then G is explicitly labeled with a sequence
of session identifiers. The value of the branching program on input x is defined as detG(x).

Define a square matrix to be canonical if and only if it is of the form
v1,1 · · · v1,t

−1
. . .
. . .

. . .
...

−1 vt,t

Clearly, G(x) is canonical for all branching program G and vector x. For any canonical matrix M ,
define its top row as its head, denoted by headM ; define the rest part of the matrix as its body,
denoted by BodyM . The body of a canonical matrix is always full row-rank. Therefore, a canonical
matrix is not full rank if and only if its head can be spanned by its body. More precisely, for a
canonical matrix M ∈ Ft×t, matrix M is non-invertible if and only if there exists an (unique) vector
keyM ∈ Ft−1 such that headM = keyTM · BodyM .

As a first trial to disclose a secret s ∈ F to the receiver iff detG(x) = 0 for some public
branching program G, the sender samples random r ∈ Ft and sends z := G(x)r + (−s, 0, . . . , 0) to
the receiver via F 1

2
repOLE. From a (potentially malicious) receiver’s view, if detG(x) 6= 0, then z

leaks no information about s as it’s one-time padded by r; if detG(x) = 0, then the receiver can
recover secret s by

〈(−1, keyG(x)), z〉 = 〈(−1, keyG(x)),G(x)r〉+ 〈(−1, keyG(x)), (−s, 0, . . . , 0)〉 = s.

Such a protocol is secure against malicious receiver, but insecure against malicious sender.
In order to protect against malicious sender, upon receiving (CDS,G) in choice phase, the receiver

samples k1,k2 ∈ Ft−1 satisfying k1 + k2 = keyG(x). Then the receiver computes canonical matrix
M1,M2 such that

BodyM1
= BodyM2

= BodyG(x), headM1 = kT1 · BodyG(x), headM2 = kT2 · BodyG(x),

and inputs all the values in M1,M2 into underlying F 1
2
repOLE. Then when the sample is asked to

disclose a secret s ∈ F conditioned on detG(x) = 0, the sampler additively shares the secret as
s = s1 + s2 + s3, discloses s3 conditioned on affine constraints

BodyM1
= BodyM2

= BodyG(x), headM1 + headM2 = headG(x).

31

Next, samples r1, r2 ∈ Ft, and sends z1 := M1r1 + (−s1, 0, . . . , 0), z2 := M2r2 + (−s2, 0, . . . , 0) to
receiver via F 1

2
repOLE. Then the honest receiver recovers s1, s2 by 〈(−1,kj), zj〉 = sj . So far, the

protocol is still insecure against malicious sender. A malicious sender can pick arbitrary b1,b2 ∈ Ft
and sends z∗j := Mjrj+bj to the receiver via F 1

2
repOLE. In such case, the honest receiver will recovers

s∗1, s
∗
2 such that 〈(−1,kj),bj〉 = s∗j . Notice that either the sender picked bj = (−sj , 0, . . . , 0) for

some sj ∈ F so that s∗j = sj , or s∗j is uniformly random due to the randomness of kj . We’ve resolved
a similar situation using hash-and-check trick, and we will apply the trick once more.

Theorem 5.4. The protocol Π 1
2
repOLE,CDS (Figure 11) implements the functionality F 1

2
repOLE,CDS(C)

in the F 1
2
repOLE-hybrid model, when C is the class of all arithmetic branching programs.

Proof. First consider affine constraints. Whenever the CDS is conditioning on affine constraint
f, {sidj}`j=1, let c0, c1, . . . , c` be the coefficients of f . When the sender is semi-honest, the (poten-

tially malicious) receiver gets (1
2
repOLE, (sidj , cid, cj)

`
j=1, z, i) from F 1

2
repOLE such that

z =
∑̀
j=1

ccidcjxsidj + (rc0 + s) =
∑̀
j=1

rcjxsidj + rc0 + s = s.

This ensures both correctness and security against malicious receiver.
Assume a (potentially malicious) sender outputs (cid, r) and (1

2
repOLE, (sidj , cid, cj)

`
j=1, b, i).

Then a honest receiver will output (CDS, f, {sidj}`j=1, z, i) such that

z =
∑̀
j=1

ccidcjxsidj + b =
∑̀
j=1

rcjxsidj + b = b− rc0.

Therefore, the sender can be simulated by inputing (CDS, f, {sidj}`j=1, b− rc0, i) to the ideal func-
tionality.

Then consider more general arithmetic constraints modeled by branching programs. Let G be
the corresponding (t+ 1)-node branching program.

For completeness, assume detG(x) = 0 and both sender and receiver are honest. The receiver
chooses canonical matrixs M1,M2 such that

BodyM1
= BodyM2

= BodyG(x), (2)

headM1 + headM2 = headG(x), (3)

det(M1) = det(M2) = 0. (4)

As both (2) and (3) are satisfied, the receiver gets (sh,w)1≤h≤w≤t from recursive CDS calls. The
receiver also receives z1, z2, z3, z4, u1, u2 such that

z1 = M1r1 + (−s1, 0, . . . , 0), z2 = M2r2 + (−s2, 0, . . . , 0),

z3 = M1r3 + (−s3, 0, . . . , 0), z4 = M2r4 + (−s4, 0, . . . , 0),

u1 = s1γ + s3, u2 = s2γ + s4.

(5)

where r1, r2, r3, r4 ∈ Ft, s3, s4 ∈ F are sampled by sender, s1, s2 are parts of the additive secret
sharing of s and γ is sampled by receiver. The receiver then computes

ŝ1 := 〈(−1,k1), z1〉 = 〈(−1, keyM1
), z1〉 = s1, ŝ2 := 〈(−1,k2), z2〉 = 〈(−1, keyM2

), z2〉 = s2,

ŝ3 := 〈(−1,k1), z3〉 = 〈(−1, keyM1
), z3〉 = s3, ŝ4 := 〈(−1,k2), z4〉 = 〈(−1, keyM2

), z4〉 = s4.

32

Implementing F 1
2
repOLE,CDS: Protocol Π 1

2
repOLE,CDS

When C is the class of all arithmetic branching programs.

Choice phase:
The receiver, at the outset, samples γ ∈ F and sends the pair (sidgamma, γ) to FrOLE. (If the underlaying F 1

2
repOLE is

implemented by Π 1
2
repOLE, it’s fine to reuse sidgamma, γ sampled by Π 1

2
repOLE.) Then, upon receiving any (sid, x) from

the environment, forward it to underlying F 1
2
repOLE.

Choice phase, part (CDS):
Receiver: Upon receiving input (CDS, f, {sidj}`j=1) from environment,

- If f is an affine function, ignore this input.

- Otherwise, let G be the corresponding (t + 1)-node branching program. Compute canonical matrix M =

G(x), i.e. if the (h,w) location of G is gh,w = (g, (sidj)
`′
j=1), let M [h,w] = gh,w(x) = g(xsid1 , . . . , xsid`′).

Additively share keyM as keyM = k1 + k2, and store (CDS,G,k1,k2). Compute matrixes M1,M2 such that
BodyM1

= BodyM2
= BodyM , headM1 = kT

1 · BodyM , headM2 = kT
2 · BodyM . Send (G‖0‖h‖w,M [h,w]) for all

2 ≤ h ≤ w ≤ t, (G‖1‖1‖w,M1[1, w]) for all 1 ≤ w ≤ t, (G‖2‖1‖w,M2[1, w]) for all 1 ≤ w ≤ t to F 1
2
repOLE.

Send phase (choose coefficients, half replicated OLE):
Sender: Upon receiving any (cid, c) from the environment, forward it to underlying F 1

2
repOLE.

Sender: Upon receiving (1
2
repOLE, sid, cid, b, i) from environment, forward it to underlying F 1

2
repOLE.

Receiver: Upon receiving (1
2
repOLE, sid, cid, z, i) from underlying F 1

2
repOLE, outputs it.

Send phase, part (CDS):
Sender: Upon receiving input (CDS, f, {sidj}`j=1, s, i) from environment,

- If f is an affine function: Let c0, c1, . . . , c` be the coefficients that f(v1, . . . , v`) = c0 +
∑

j cjvj . The sender

picks a new coefficient identifier cid and sends (CDS, f, {sidj}`j=1, i, cid) to receiver, samples random r ∈ F,
and inputs (cid, r), (1

2
repOLE, (sidj , cid, cj)

`
j=1, rc0 + s, i) to underlying F 1

2
repOLE.

- (outlined) Otherwise, let G be the corresponding (t + 1)-node branching program. Additively share s as
s = s1+s2+

∑
1≤h≤w≤t sh,w. For 2 ≤ h ≤ w ≤ t, disclose sh,w to the receiver conditioned on gh,w(x) = M [h,w]

via a recursive call to the CDS functionality for affine constraints. For 1 ≤ w ≤ t, disclose s1,w to the receiver
conditioned on g1,w(x) = M1[1, w]+M2[1, w] via a recursive call to the CDS functionality for affine constraints.
Sample random s3, s4 ∈ F, input (sidgamma, s1, s3,G‖i‖1), (sidgamma, s2, s4,G‖i‖2) to FrOLE. Sample random
r1, r2, r3, r4 ∈ Ft, sends z1 := M1r1+(−s1, 0, . . . , 0), z2 := M2r2+(−s2, 0, . . . , 0), z3 := M1r3+(−s3, 0, . . . , 0),
z4 := M2r4 + (−s4, 0, . . . , 0) to the receiver via F 1

2
repOLE.

Receiver: Upon receiving messages from sender corresponds to CDS operation indexed by (f, {sidj}`j=1, i),

- If f(xsid1 , . . . , xsid`) 6= 0, outputs (CDS, f, {sidj}`j=1,⊥, i).
- If f is an affine function, when (CDS, f, {sidj}`j=1, i, cid), (1

2
repOLE, (sidj , cid, cj)

`
j=1, z, i) was received from

F 1
2
repOLE, outputs (CDS, f, {sidj}`j=1, z, i).

- (outlined) Otherwise, let G be the corresponding (t+ 1)-node branching program, verify that there is stored
(CDS,G,k1,k2). (sh,w)1≤h≤w≤t is recovered from recursive calls. (sidgamma, u1,G‖i‖2), (sidgamma, u2,G‖i‖1)
are received from FrOLE, and z1, z2, z3, z4 from F 1

2
repOLE. Compute ŝ1 = 〈(−1,k1), z1〉, ŝ2 = 〈(−1,k2), z2〉,

ŝ3 = 〈(−1,k1), z3〉, ŝ4 = 〈(−1,k2), z4〉, and abort if either ŝ1γ + ŝ3 6= u1 or ŝ2γ + ŝ4 6= u2. Otherwise, output
(CDS, f, {sidj}`j=1, ŝ1 + ŝ2 +

∑
1≤h≤w≤t sh,w, i).

Figure 11: Protocol Π 1
2
repOLE,CDS for half-replicated OLE allowing CDS in the F 1

2
repOLE-hybrid model

33

Thus the receiver will not abort as ŝ1γ+ ŝ3 = s1γ+s3 = u1, ŝ2γ+ ŝ4 = s2γ+s4 = u2. The receiver
recovers the secret s by ŝ1 + ŝ2 +

∑
1≤h≤w≤t sh,w = s1 + s2 +

∑
1≤h≤w≤t sh,w = s.

For security against (potentially malicious) receiver, assume G(x) 6= 0 i.e. the condition is
not satisfied. Because otherwise the simulator gets the secret s from ideal functionality and can
simulate by emulating an honest sender. The malicious receiver chooses canonical matrixs M1,M2

and outputs them as extra input.

• If either (2) or (3) is not satisfied by M1,M2, let (h,w) be one location where M1,M2 don’t
satisfy (2), (3). Then receiver’s view leaks no information about s because s is hidden by
one-time pad sh,w and sh,w is hidden by a recursive CDS call. For this reason, the receiver’s
view is simluatable by emulating the honest sender on any s.

• Otherwise M1,M2 satisfy (2) and (3), then detM1 + detM2 = detG(x) 6= 0. Thus one of
detM1, detM2 is non-zero. W.l.o.g. assume detM1 6= 0. In real world, receiver receives
(sh,w)1≤h≤w≤t from recursive CDS calls, also receives z1, z2, z3, z4, u1, u2 such that (5) holds,
where r1, r2, r3, r4 ∈ Ft, s3, s4 ∈ F are sampled by sender and s1, s2 are parts of the additive
secret sharing of s. Then (z1, z3, u1) hides s1 as it’s one-time padded by (r1, r2, s3). Thus
receiver’s view, together with hidden variable s2, s4, can be simulated as the following:

– The joint distribution s2, (sh,w)1≤h≤w≤t is uniform random because they are parts of a
additive secret sharing.

– The joint distribution z1, z3, u1 is uniform random as it’s one-time padded by (r1, r2, s3).

– Given, s2, (sh,w)1≤h≤w≤t, z1, z3, u1, the remaining z2, z4, u2 are determined as in (5).

For security against (potentially malicious) sender, assume detG(x) = 0, as otherwise the honest
receiver will always output ⊥. The sender can choose numbers s1, s2, s3, s4, (sh,w)1≤h≤w≤t ∈ F and
vectors r1, r2, r3, r4,b1,b2,b3,b4 ∈ Ft so that the honest receiver gets z1, z2, z3, z4, u1, u2 and
(sh,w)1≤h≤w≤t where

z1 = M1r1 + b1, z2 = M2r2 + b2,

z3 = M1r3 + b3, z4 = M2r4 + b4,

u1 = s1γ + s3, u2 = s2γ + s4,

(6)

γ ∈ F is sampled by the receiver from uniform and canonical matrix M1,M2 are sampled by the
receiver such that each of k1 := keyM1

,k2 := keyM2
is unifromly random. (The joint distribution of

k1,k2 forms a additive secure sharing of keyG(x).)

ŝ1 := 〈(−1,k1), z1〉 = 〈(−1,k1),b1〉, ŝ2 := 〈(−1,k2), z2〉 = 〈(−1,k2),b2〉,
ŝ3 := 〈(−1,k1), z3〉 = 〈(−1,k1),b3〉, ŝ4 := 〈(−1,k2), z4〉 = 〈(−1,k2),b4〉.

• If there exists y ∈ {1, 2, 3, 4} such that zy 6= (−sy, 0, . . . , 0). W.o.l.g. assume one of such y
lays in {1, 3}. Then ŝy 6= sy with probabiliy at least 1 − 1

|F| , due to the randomness of k1.
Conditioned on ŝy 6= sy, the receiver will found ŝ1γ + ŝ3 6= s1γ + s3 = u1 with probabiliy at
least 1− 1

|F| , due to the randomness of γ. In summary, the receiver will abort with probabiliy

at least 1− 2
|F| .

• Otherwise, zy = (−sy, 0, . . . , 0) for all y ∈ {1, 2, 3, 4}. Then ŝy = sy for all y ∈ {1, 2, 3, 4}.
The receiver will not abort and will output reconstructed secret ŝ1 + ŝ2 +

∑
1≤h≤w≤t sh,w =

s1 +s2 +
∑

1≤h≤w≤t sh,w. Thus this sender can be simulated as sending the condition together
with secret s = s1 + s2 +

∑
1≤h≤w≤t sh,w to the ideal functionality.

34

5.3.1 Syntactic sugar: Conditional Disclosure of Coefficients

To simplify the construction of rNIZK protocol, it’s useful to redefine F 1
2
repOLE,CDS slightly by adding

some syntactic sugar. Right now, the sender can disclose a secret in F to the receiver if the receiver’s
input satisfies a chosen predicate. An easy extension allow the sender to disclose a coefficient which
the sender have committed to, instead of an arbitrarily chosen field element (Figure 12).

Functionality F 1
2
repOLE,sugar-CDS

Parametrized by a finite field F, and C a class of functions.

Choice phase: the same as F 1
2
repOLE,CDS in Figure 10.

Send phase (choose coefficients, half replicated OLE): the same as F 1
2
repOLE,CDS in Figure 10.

Send phase (CDS):

• Upon receiving input (CDS, f, {sidj}`j=1, cid) from Sam where f : F` → F is a function in C, verify that

there are stored input (CDS, f, {sidj}`j=1) from Rachel and stored input (cid, a) from Sam; else ignore

that message. Next, record (CDS, f, {sidj}`j=1, cid), send (f, {sidj}`j=1, cid, send) to the adversary,

and ignore any further inputs from Sam with the same (f, {sidj}`j=1, cid).

• Upon receiving a message (CDS, f, {sidj}`j=1, cid, Delivery) from the adversary, verify that there are

stored input (CDS, f, {sidj}`j=1, s, cid), (cid, a) from Sam and (sidj , xj) from Rachel for all j ∈ [`];

else ignore that message. Next, send to Rachel (f, {sidj}`j=1, cid, a) if f(x1, . . . , x`) = 0 otherwise

(f, {sidj}`j=1, cid,⊥), and ignore further messages (CDS, f, {sidj}`j=1, cid, Delivery) from the adver-

sary with the same (f, {sidj}`j=1, cid).

Figure 12: ideal functionality of F 1
2
repOLE,CDS with syntactic sugar

There is a simple protocol that implements such an enhanced functionality in F 1
2
repOLE,CDS-hybrid

model and it’s UC-secure. The main idea is to disclose a pair (acid, b) conditionally, where b ∈ F
is sampled by the sender. Then convince the receiver that acid is sent by evaluating acidγ + b
obliviously using half-replicated OLE.

• In choice phase: The receiver, at the outset, samples γ ∈ F and sends the pair (sidgamma, γ)
to FrOLE. Then forward all message from environment to F 1

2
repOLE,CDS. If the underlying

F 1
2
repOLE,CDS is implemented by Π 1

2
repOLE,CDS, the sender can reuse the (sidgamma, γ) picked by

Π 1
2
repOLE,CDS.

• Upon receiving (CDS, f, {sidj}`j=1, cid) from the environment, the sender samples random b ∈
F, chooses a new index i and inputs (CDS, f, {sidj}`j=1, acid, i), (CDS, f, {sidj}`j=1, b, i+ 1) and
(sidgamma, cid, b, i) to F 1

2
repOLE,CDS.

• Upon receiving (sidgamma, cid, z, i), (CDS, f, {sidj}`j=1, ŝ1, i), (CDS, f, {sidj}`j=1, ŝ2, i + 1) from

F 1
2
repOLE,CDS, the receiver outputs (CDS, f, {sidj}`j=1, cid, ŝ1) if ŝ1γ + ŝ1 = z; and aborts other-

wise.

35

Functionality F 1
2
repOLE,CDS,proof

Parametrized by a finite field F, and C,F classes of functions.

Choice phase, part I (the same as Figure 6): Upon receiving input (sid, x) from the receiver where
x ∈ F and sid ∈ N is a session identifier, store (sid, x), send (sid, input-init) to the adversary and ignore any
further input from the receiver with the same sid.

Choice phase, part II (CDS, the same as Figure 10): Upon receiving input (CDS, f, {sidj}`j=1)
from Rachel where f : F` → F is a function in C, verify that there are stored input (sidj , xj) from Rachel for all
j ∈ [`]; else ignore that message. Next, record (CDS, f, {sidj}`j=1), send (CDS, f, {sidj}`j=1, sent) to the adversary,
and ignore any further inputs from Rachel with the same (f, {sidj}`j=1).

Send phase (choose coefficients, the same as Figure 6): Upon receiving input (cid, a) from the
sender where a ∈ F and cid ∈ N is a coefficient identifier, store (cid, a), send (cid, coeff-init) to the adversary and
ignore any further input from Sam with the same cid.

Send phase, part I (half replicated OLE, the same as Figure 6):

• Upon receiving input (repOLE, sid, cida, cidb) from Sam, record (repOLE, sid, cida, cidb), send
(repOLE, sid, cida, cidb, sent) to the adversary, and ignore any further inputs from Sam with the
same session identifier sid and same coefficient identifiers cida, cidb.

• Upon receiving a message (repOLE, sid, cida, cidb, Delivery) from the adversary, verify that there are stored
inputs (repOLE, sid, cidb, cidb), (cida, a), (cidb, b) from Sam and (sid, x) from Rachel; else ignore that mes-
sage. Next, compute z = ax + b, send (repOLE, sid, cida, cidb, z) to Rachel, and ignore further messages
(repOLE, sid, cida, cidb, Delivery) from the adversary with the same session identifier sid and same coefficient
identifiers cida, cidb.

Send phase, part II (CDS, the same as Figure 10):

• Upon receiving input (CDS, f, {sidj}`j=1, s, i) from Sam where f : F` → F is a function in C, verify that there are
stored input (CDS, f, {sidj}`j=1) from Rachel; else ignore that message. Next, record (CDS, f, {sidj}`j=1, s, i),
send (f, {sidj}`j=1, send, i) to the adversary, and ignore any further inputs from Sam with the same
(f, {sidj}`j=1, i).

• Upon receiving a message (CDS, f, {sidj}`j=1, Delivery, i) from the adversary, verify that there are stored
input (CDS, f, {sidj}`j=1, s, i) from Sam and (sidj , xj) from Rachel for all j ∈ [`]; else ignore that message.
Next, send to Rachel (f, {sidj}`j=1, s, i) if f(x1, . . . , x`) = 0 otherwise (f, {sidj}`j=1,⊥, i), and ignore further
messages (CDS, f, {sidj}`j=1, Delivery, i) from the adversary with the same (f, {sidj}`j=1, i).

Send phase, part III (certified OLE):

• Upon receiving input (proof, f, {cidj}`j=1) from Sam where f : F` → F is a function in F, record
(proof, f, {cidj}`j=1), send (f, {cidj}`j=1, send) to the adversary, and ignore any further inputs from Sam
with the same function (f, {cidj}`j=1).

• Upon receiving a message (proof, f, {cidj}`j=1, Delivery) from the adversary, verify that there are stored
inputs (proof, f, {cidj}`j=1) from Sam and (cidj , aj) from Rachel for all j ∈ [`]; else ignore that mes-
sage. Next, compute v = f(a1, . . . , a`), send to Rachel (proof, f, {cidj}`j=1, v), and ignore further messages
(proof, f, {cidj}`j=1, Delivery) from the adversary with the same function (f, {cidj}`j=1).

Figure 13: ideal functionality of half replicated, certified OLE

36

5.4 Embedding a Zero-Knowledge Proof System

The new feature introduce in certified OLE (Figure 13) is to allow the sender to prove that the
coefficients it chose satisfy certain equations. For technical reason, the functionality is defined as:
sender inputs (f, {cidj}`j=1) to ideal functionality, where f is an arithmetic function and {cidj}
are coefficient identifiers corresponding to coefficients that the sender has already chosen; receiver
gets (f, {cidj}`j=1, f(acid1 , . . . , acid`)). But it’s actually constructed and used as a proof system: the
sender transforms the argument to prove into an equation y = f(acid1 , . . . , acid`) (or a system of
equations), then send y and convinces the receiver that the coefficients satisfies f(acid1 , . . . , acid`) =
y.

By adding certificates as extra coefficients, it’s sufficient that the sender can convince the receiver
of two atomic types of arguments:

• Affine arguments c0 +
∑`

j=1 cjacidj = 0, specified by constants c0, c1, . . . , c` ∈ F and coefficient
identifiers cid1, . . . , cid`.

• Multiplicative arguments: acid1acid2 = acid3 , specified by three coefficient identifiers cid1, cid2, cid3.

In order to convince the receiver an satisfying affine argument c0+
∑`

j=1 cjacidj = 0, the receiver

should have sampled a random input µ. The sender sends (
∑`

j=1 cjacidj)µ to the receiver using
(the syntactic sugar of) half-replicated OLE functionality. The receiver expects to receive −c0µ.

In order to convince the receiver a multiplicative argument acid1acid2 = acid3 , the receiver should
have sampled random input µ, ν, ξ satisfying µν = ξ. The sender then sends acid1µ + b1, acid2ν +
b2, acid3ξ + b3, b2µ + b4, a1ν + b5 using half-replicated OLE functionality for appropriate b1, . . . , b5
such that

(acid1µ+ b1)(acid2ν + b2) = (acid3ξ + b3) + (b2µ+ b4) + (a1ν + b5)

for any µ, ν, ξ that µν = ξ. And to protect against malicious receiver, sender encrypts these
evaluations using one-time pad and discloses the pad conditioning on µν = ξ.

Theorem 5.5. The protocol Π 1
2
repOLE,CDS,proof (Figure 14) implements the functionality F 1

2
repOLE,CDS,proof

in the F 1
2
repOLE,CDS-hybrid model.

Proof. It’s sufficient to construct proof system proving arguments of the two atomic operations.
First consider the protocol verifying an affine argument c0 +

∑`
j=1 cjacidj = 0:

When the sender is honest and the argument holds, the receiver will receive (1
2
repOLE, (sidmu, cidj , cj)

`
j=1, z)

from underlying F 1
2
repOLE,CDS such that z =

∑`
j=1 cjacidjµ = −c0µ. For completeness, z = −c0µ

ensures an honest receiver will accept. For security against malicious receiver, the view of the (po-
tentially malicious) receiver can be simulated by public knowledge and the receiver’s randomness
µ.

When the receiver is honest, a (potentially malicious) sender outputs (1
2
repOLE, (sidmu, cidj , cj)

`
j=1, b)

to F 1
2
repOLE,CDS for some b ∈ F. Then the honest receiver gets (1

2
repOLE, (sidmu, cidj , cj)

`
j=1, z) from

F 1
2
repOLE,CDS such that z =

∑`
j=1 cjacidjµ+ b. Unless the argument c0 +

∑`
j=1 cjacidj = 0 is satisfied

and b = 0, the receiver would find z 6= −c0µ with probability at least 1− 1
|F| as

c0µ+ z = (c0 +
∑̀
j=1

cjacidj)µ+ b.

37

Implementing F 1
2
repOLE,CDS,proof: Protocol Π 1

2
repOLE,CDS,proof

Choice phase:
The receiver, at the outset, samples µ, ν ∈ F compute ξ = µν and sends the pairs (sidmu, µ),
(sidnu, ν), (sidxi, ξ) to F 1

2
repOLE,CDS, let function fmult(v1, v2, v3) := v1v2 − v3 and send tuple

(CDS, fmult, (sidmu, sidnu, sidxi)) to F 1
2
repOLE,CDS. Then, upon receiving any (sid, x) or (CDS, f, {sidj}`j=1) from

the environment, forward it to underlying F 1
2
repOLE,CDS.

Send phase (choose coefficients, half replicated OLE, CDS):
Sender: Upon receiving any (cid, c) or (1

2repOLE, sid, cid, b, i) or (CDS, f, {sidj}`j=1, s, i) from the environ-
ment, forward it to underlying F 1

2
repOLE,CDS.

Receiver: Upon receiving (1
2repOLE, sid, cid, z, i), (CDS, f, {sidj}`j=1, s, i) from underlying F 1

2
repOLE,CDS, out-

put it.

Send phase (certified OLE): All operations are decomposed into proving affine arguments and
multiplicative arguments.

For any affine argument c0 +
∑`
j=1 cjacidj

= 0: The sender inputs (1
2repOLE, (sidmu, cidj , cj)

`
j=1, 0) to un-

derlying F 1
2
repOLE,CDS.

The receiver, upon receiving (1
2repOLE, (sidmu, cidj , cj)

`
j=1, z) from underlying F 1

2
repOLE,CDS, accepts

the proof if z = −c0µ, otherwise rejects (aborts).

For any multiplicative argument acid1acid2 = acid3 : The sender samples random b1, b2, b3, b4, b5 ∈ F, picks
two new coefficient identifiers cid4 = cid1‖cid2‖cid3‖2and cid5 = cid1‖cid2‖cid3‖1,computes s =
b1b2 − b3 − b4 − b5, and inputs (cid4, b2acid1

), (cid5, b1acid2
),

(1
2repOLE, sidmu, cid1, b1), (1

2repOLE, sidnu, cid2, b2), (1
2repOLE, sidxi, cid3, b3),

(1
2repOLE, sidmu, cid4, b4), (1

2repOLE, sidnu, cid5, b5), (CDS, fmult, (sidmu, sidnu, sidxi), s)

to F 1
2
repOLE,CDS.

The receiver, upon receiving

(1
2repOLE, sidmu, cid1, z1), (1

2repOLE, sidnu, cid2, z2), (1
2repOLE, sidxi, cid3, z3),

(1
2repOLE, sidmu, cid4, z4), (1

2repOLE, sidnu, cid5, z5), (CDS, fmult, (sidmu, sidnu, sidxi), s)

from F 1
2
repOLE,CDS, accepts the proof if s = z1z2 − z3 − z4 − z5 otherwise rejects (aborts).

Figure 14: Protocol Π 1
2
repOLE,CDS,proof for half-replicated, certified OLE in the F 1

2
repOLE,CDS-hybrid

model

38

This ensures completeness and security against malicious sender.

Then consider the protocol verifying any multiplicative arguments acid1acid2 = acid3 :
When sender is honest, the (potential malicious) receiver gets z1, . . . , z5 from messages from

F 1
2
repOLE,CDS that

z1 = acid1µ+ b1, z2 = acid2ν + b2, z3 = acid3ξ + b3, z4 = b2acid1µ+ b4, z5 = b1acid2ν + b5,

where µ, ν, ξ are chosen by the receiver and b1, . . . , b5 ∈ F are random numbers sampled by the
sender. Moreover, the receiver receives s from message from F 1

2
repOLE,CDS that s = b1b2− b3− b4− b5

if µν = ξ and s = ⊥ otherwise. Thus we have

z1z2 − z3 − z4 − z5

= (acid1µ+ b1)(acid2ν + b2)− (acid3ξ + b3)− (b2µ+ b4)− (b1ν + b5)

= acid3(µν − ξ) + b1b2 − b3 − b4 − b5,

from which correctness directly follows. For security against malicious receiver, the (potential
malicious) receiver’s view can be simulated as

• the joint distribution of z1, . . . , z5 is uniformly random as it’s one-time padded by (b1, . . . , b5);

• s is determined, as s = z1z2 − z3 − z4 − z5 if µν = ξ and s = ⊥ otherwise.

When receiver is honest, it gets z1, . . . , z5, s from messages received from F 1
2
repOLE,CDS that

z1 = acid1µ+ b1, z2 = acid2ν + b2, z3 = acid3ξ + b3, z4 = b′2µ+ b4, z5 = b′1ν + b5,

where µ, ν are random numbers sampled by the receiver, ξ = µν and b1, . . . , b5, b
′
1, b
′
2 ∈ F are chosen

by the (potential malicious) sender. The honest receiver will accept if and only z1z2−z3−z4−z5 = s.

z1z2 − z3 − z4 − z5 − s
= (acid1µ+ b1)(acid2ν + b2)− (acid3ξ + b3)− (b′2µ+ b4)− (b′1ν + b5)− s
= (acid1acid2 − acid3)µν + (b2acid1 − b′2)µ+ (b1acid2 − b′1)ν + (b1b2 − b3 − b4 − b5 − s)

Unless acid3 = acid1acid2 is satisfied and the sender picks coefficients such that b′2 = b2acid1 , b′1 =
b1acid2 , s = b1b2 − b3 − b4 − b5, the receiver would find z1z2 − z3 − z4 − z5 6= s with probability at
least 1− 2

|F| due the randomness of µ, ν.

5.4.1 Constructing Reusable NIZK from F 1
2
repOLE,CDS,proof

A reusable non-interactive zero-knowledge proof already lays inside of F 1
2
repOLE,CDS,proof. Thus

constructing a rNIZK in F 1
2
repOLE,CDS,proof-hybrid model is simply wiring.

Theorem 5.6. There exists a statistically secure rNIZK protocol in F (F)
rOLE-hybrid model. When the

argument is presented as a boolean circuits or arithmetic circuits, proving the prover’s knowledge
of a satisfying assignment need O(1) OLE queries per gate.

Any 2-message implementation of F 1
2
repOLE,CDS,proof can be used as a rNIZK proof system. The

receiver is the verifier and the sender is the prover. The sender (prover) simply feeds the certificate
into F 1

2
repOLE,CDS,proof as coefficients, then F 1

2
repOLE,CDS,proof will convince the receiver (verifier) that

the sender knows one certificate that satisfies the predicate they care about.

39

Proof of Theorem 5.6. rNIZK protocol can be easily built in F 1
2
repOLE,CDS,proof-hybrid model. Then

replace F 1
2
repOLE,CDS,proof with its secure implementation in FrOLE-hybrid model.

Setup: The receiver (verifier) initialize F 1
2
repOLE,CDS,proof without feeding any input.

Prove: In order to prove knowledge of a satisfying assignment (y1, . . . , y`) of C(y1, . . . , y`) =
0, where C is an arithmetic circuits with m gates. Let y`, . . . , y`+m be the intermediate
wires’ values when evaluating circuit C(y1, . . . , y`). Let Gt(y1, . . . , y`+m) = 0 be the equation
representing if the t-th gate is correctly evaluated, i.e. if the t-th gate is an addition gate, then
Gt is an affine function; if the t-th gate is a multiplication gate, then Gt(y1, . . . , y`+m) is of the
form ycid1ycid2 − ycid3 . The sender (prover) commit y1, . . . , y`+m by choosing y1, . . . , , y`+m as
coefficients in F 1

2
repOLE,CDS,proof. Then sends (proof, G1), . . . , (proof, Gm) to F 1

2
repOLE,CDS,proof.

(Coefficient identifiers are omitted in this description.)

Verify: Upon receiving (proof, G1, z1), . . . , (proof, Gm, zm) from F 1
2
repOLE,CDS,proof, the receiving

(verifier) accepts if z1 = . . . = zm = 0.

If the argument to prove is specified by a boolean circuit C. Note that C can be transformed into
an arithmetic cirucuit C∗ of proportionately the same size, such that C∗ computed the same function
as C in any field. Then proving the knowledge of binary (y1, . . . , y`) such that C(y1, . . . , y`) = 0,
can be transformed into proving the knowledge of (y1, . . . , y`) ∈ F such that C∗(y1, . . . , y`) =
y1(y1 − 1) = . . . = y`(y` − 1) = 0.

5.5 Constructing Replicated OLE

Assume the receiver has chosen x as one of its input by sending (sid, x) to the F 1
2
repOLE,CDS,proof,

and the sender has chosen coefficients a, b by sending (cid1, a), (cidb, b) to F 1
2
repOLE,CDS,proof. Now

they are looking for a secure protocol that leaks ax+ b to the receiver. An naive trial is a bare half-
replicated OLE, i.e. the sender sends (1

2
repOLE, sid, cida, b, i) to underlying functionality so that the

receiver gets (1
2
repOLE, sid, cida, ax+ b, i). But a malicious sender might deviates from the protocol

by choosing some additive factor other than b.
In order to catch such misbehavior, the receiver samples random β and sends β, βx as two extra

input. The sender is asked to send

ax+ b and a(βx) + bβ

via F 1
2
repOLE,CDS,proof so that the receiver can check whether the latter is β times the former. If the

sender deviates from the protocol, the receiver will get

ax+ b1 and a(βx) + bβ + b2

for some b1, b2 picked by the sender that (b1, b2) 6= (b, 0). In such case, the latter doesn’t equal β
times the former with high probability.

Then, the receiver can try to cheat, by choosing β as the first extra input, and something other
than βx as the second extra input. Such cheating space is eliminated by a CDS protocol: sender
encrypts the transmissions using one-time pad, and discloses the pad if and only if the receiver is
honest, i.e. if the two extra input are β and βx.

Theorem 5.7. The protocol ΠrepOLE,CDS,proof (Figure 16) implements the functionality FrepOLE,CDS,proof
in the F 1

2
repOLE,CDS,proof-hybrid model.

40

Functionality FrepOLE,CDS,proof

Parametrized by a finite field F, and C,F classes of functions.

Choice phase, part I (the same as Figure 6): Upon receiving input (sid, x) from the receiver where
x ∈ F and sid ∈ N is a session identifier, store (sid, x), send (sid, input-init) to the adversary and ignore any
further input from the receiver with the same sid.

Choice phase, part II (CDS, the same as Figure 10): Upon receiving input (CDS, f, {sidj}`j=1)
from Rachel where f : F` → F is a function in C, verify that there are stored input (sidj , xj) from Rachel for all
j ∈ [`]; else ignore that message. Next, record (CDS, f, {sidj}`j=1), send (CDS, f, {sidj}`j=1, sent) to the adversary,
and ignore any further inputs from Rachel with the same (f, {sidj}`j=1).

Send phase (choose coefficients, the same as Figure 6): Upon receiving input (cid, a) from the
sender where a ∈ F and cid ∈ N is a coefficient identifier, store (cid, a), send (cid, coeff-init) to the adversary and
ignore any further input from Sam with the same cid.

Send phase, part I (half replicated OLE): Skipped because it’s dominated by replicated OLE.

Send phase, part II (CDS, the same as Figure 10):

• Upon receiving input (CDS, f, {sidj}`j=1, s, i) from Sam where f : F` → F is a function in C, verify that there are
stored input (CDS, f, {sidj}`j=1) from Rachel; else ignore that message. Next, record (CDS, f, {sidj}`j=1, s, i),
send (f, {sidj}`j=1, send, i) to the adversary, and ignore any further inputs from Sam with the same
(f, {sidj}`j=1, i).

• Upon receiving a message (CDS, f, {sidj}`j=1, Delivery, i) from the adversary, verify that there are stored
input (CDS, f, {sidj}`j=1, s, i) from Sam and (sidj , xj) from Rachel for all j ∈ [`]; else ignore that message.
Next, send to Rachel (f, {sidj}`j=1, s, i) if f(x1, . . . , x`) = 0 otherwise (f, {sidj}`j=1,⊥, i), and ignore further
messages (CDS, f, {sidj}`j=1, Delivery, i) from the adversary with the same (f, {sidj}`j=1, i).

Send phase, part III (certified OLE, the same as Figure 13):

• Upon receiving input (proof, f, {cidj}`j=1) from Sam where f : F` → F is a function in F, record
(proof, f, {cidj}`j=1), send (f, {cidj}`j=1, send) to the adversary, and ignore any further inputs from Sam
with the same function (f, {cidj}`j=1).

• Upon receiving a message (proof, f, {cidj}`j=1, Delivery) from the adversary, verify that there are stored
inputs (proof, f, {cidj}`j=1) from Sam and (cidj , aj) from Rachel for all j ∈ [`]; else ignore that mes-
sage. Next, compute v = f(a1, . . . , a`), send to Rachel (proof, f, {cidj}`j=1, v), and ignore further messages
(proof, f, {cidj}`j=1, Delivery) from the adversary with the same function (f, {cidj}`j=1).

Send phase, part IV (replicated OLE):

• Upon receiving input (repOLE, sid, cida, cidb) from Sam, record (repOLE, sid, cida, cidb), send
(repOLE, sid, cida, cidb, sent) to the adversary, and ignore any further inputs from Sam with the
same session identifier sid and same coefficient identifiers cida, cidb.

• Upon receiving a message (repOLE, sid, cida, cidb, Delivery) from the adversary, verify that there are stored
inputs (repOLE, sid, cidb, cidb), (cida, a), (cidb, b) from Sam and (sid, x) from Rachel; else ignore that mes-
sage. Next, compute z = ax + b, send (repOLE, sid, cida, cidb, z) to Rachel, and ignore further messages
(repOLE, sid, cida, cidb, Delivery) from the adversary with the same session identifier sid and same coefficient
identifiers cida, cidb.

Figure 15: ideal functionality of replicated, certified OLE

41

Implementing FrepOLE,CDS,proof: Protocol ΠrepOLE,CDS,proof

Choice phase: The receiver does to following:
At the outset, samples β ∈ F and sends the pair (sidbeta, β) to F 1

2
repOLE,CDS.

Upon receiving (sid, x) from the environment, (sid, x), (sid‖beta, βx), (CDS, fmult, (sid, sidbeta, sid‖beta))
to F 1

2
repOLE,CDS,proof, where fmult denotes the muliplication condition fmult(v1, v2, v3) := v1v2 − v3.

Upon receiving any (CDS, f, {sidj}`j=1) from the environment, forward it to underlying F 1
2
repOLE,CDS,proof.

Send phase (choose coefficients, CDS, certified OLE):
Sender: Upon receiving any (cid, c) or (CDS, f, {sidj}`j=1, s, i) or (proof, f, {cidj}`j=1) from the environment,
forward it to underlying F 1

2
repOLE,CDS,proof.

Receiver: Upon receiving (CDS, f, {sidj}`j=1, s, i), (proof, f, {cidj}`j=1, v) from underlying F 1
2
repOLE,CDS,proof,

output it.

Send phase (replicated OLE):
Sender: Upon receiving input (repOLE, sid, cida, cidb) from environment, verify that there are stored
(cida, a), (cidb, b) from environment. Pick a new index i, sample random s ∈ F and input

(1
2repOLE, sid, cida, b, i),

(1
2repOLE, ((sid‖beta, cida, 1), (sidbeta, cidb, 1)), s, i),

(CDS, fmult, (sid, sidbeta, sid‖beta), s, i)

to F 1
2
repOLE,CDS,proof.

Receiver: Upon receiving messages

(1
2repOLE, sid, cida, z, i),

(1
2repOLE, ((sid‖beta, cida, 1), (sidbeta, cidb, 1)), ẑ, i),

(CDS, fmult, (sid, sidbeta, sid‖beta), ŝ, i)

from F 1
2
repOLE,CDS,proof, abort if βz 6= ẑ − ŝ. Otherwise, output (repOLE, sid, cida, cidb, z).

Figure 16: Protocol ΠrepOLE,CDS,proof for replicated, certified OLE in the F 1
2
repOLE,CDS,proof-hybrid

model

42

Proof. Consider an evaluation indexed by (sid, cida, cidb). Say the receiver gets

(1
2
repOLE, sid, cida, z, i),

(1
2
repOLE, ((sid‖beta, cida, 1), (sidbeta, cidb, 1)), ẑ, i),

(CDS, fmult, (sid, sidbeta, sid‖beta), ŝ, i)

from F 1
2
repOLE,CDS,proof.

For correctness, assume both sender and receiver are honest. The receiver gets z, ẑ, ŝ such that
z = axsid + b, ẑ = aβxsid + bβ + s, ŝ = s, where s is sample by the sender. Then the receiver will
not abort as ẑ − ŝ = aβxsid + bβ = zβ. And the receiver outputs (repOLE, sid, cida, cidb, z) for
z = axsid + b.

For security against receiver, assume the (potentially malicious) receiver choose β, x̂ and outputs
(sidbeta, β), (sid‖beta, x̂), to functionality F 1

2
repOLE,CDS,proof. The when the sender is honest, the

receiver will get z, ẑ, ŝ such that z = axsid + b, ẑ = ax̂ + bβ + s, and ŝ =

{
s, if x̂ = βxsid

⊥, otherwise
,

where s ∈ F is sample by the sender. The simulator gets z = axsid + b from ideal functionality. If
x̂ = βxsid, the receiver’s view (z, ẑ, ŝ) is simulated as ŝ is uniform random and ẑ is determined by
ẑ = βz + ŝ. Otherwise x̂ 6= βxsid, the receiver’s view (z, ẑ, ŝ) is simulated as ẑ is uniform random
and ŝ = ⊥.

For security against sender, assume the (potentially malicious) sender chooses b′, s1, s2 and sends

(1
2
repOLE, sid, cida, b

′, i),

(1
2
repOLE, ((sid‖beta, cida, 1), (sidbeta, cidb, 1)), s1, i),

(CDS, fmult, (sid, sidbeta, sid‖beta), s2, i)

to F 1
2
repOLE,CDS,proof. Then the honest receiver gets z, ẑ, ŝ such that z = axsid+b′, ẑ = aβxsid+bβ+s1,

ŝ = s2, where β ∈ F is sample by the receiver. Then receiver will abort when βz 6= ẑ − ŝ and

βz − (ẑ − ŝ) = β(axsid + b′)− (aβxsid + bβ + s1) + s2 = β(b′ − b)− (s1 − s2).

Therefore, due to the randomness of β, the receiver will abort which probability 1 − 1
|F| unless

b′ = b, s1 = s2. This enforces the sender to behave honestly.

5.5.1 Constructing Reusable NISC from FrepOLE,CDS,proof based on Randomized Encod-
ings

Theorem 5.8. There exists a statistically secure rNISC protocol (Figure 17) for arbitrary NC1

circuits in F (F)
rOLE-hybrid model. Securely evaluating an NC1 circuit over n input variables with

t gates need O(nt3) OLE queries. The protocol works for boolean circuits as well as arithmetic
circuits.

In order to construct rNISC from FrepOLE,CDS,proof, we requires randomizing encoding techniques
that transforms the evaluation of an arbitrary (arithmetic) function to a affine function [IK02,
AIK14]. In a high level, for any arithmetic functionality Φ : Fn×Fm → Fl, there is random encoder
encΦ: encΦ is a randomized algorithm, given any sender’s input y, it outputs (M,b) ← encΦ(y)
such that the distribution of Mx + b only depends on Φ(x,y), and leaks no information about y.

43

Implementing F (Φ)
rNISC: Protocol Π

(Φ)
rNISC

Parametrized by an arithmetic circuit Φ over a finite field F, with input variables divided into two disjoint
sets X1, . . . , Xn and Y1, . . . , Ym, and output variables Z1, . . . , Zl.

Setup/choice phases:
Upon receiving input (sid,x) from environment, the receiver sends (sid‖j, xj) to underlying FrepOLE,CDS,proof

for all 1 ≤ j ≤ n.

Send phase (for arithmetic function, outlined):
Sender: Upon receiving (sid,y) from environment, compute (M,b) ← encΦ(y) using randomness
R1,R2. Commits M,b,y,R1,R2 to FrepOLE,CDS,proof as coefficients. Convince the receiver that (M,b) =
encΦ(y; R1,R2).

Receiver: Once received z = Mx + b from FrepOLE,CDS,proof and was convince that the sender’s coefficients
are honestly generated, output (sid, decΦ(z), i)

Send phase (for boolean function, outlined):
Sender: Upon receiving (sid,y) from environment, compute (M,b)← encΦ(y) using randomness R1,R2,

samples random s and compute b̂ = b + s. Commits M,b, b̂, ~s,y,R1,R2 to FrepOLE,CDS,proof as coefficients.

Convince the receiver that (M,b) = encΦ(y; R1,R2) and b̂ = b + s and y ∈ {0, 1}m. Disclose s to the
receiver if x ∈ {0, 1}n.

Receiver: Once received z = Mx+ b̂, s from FrepOLE,CDS,proof and was convince that the sender’s coefficients
are honestly generated, output (sid, decΦ(z− s), i)

Figure 17: Protocol for NISC in the FrepOLE,CDS,proof-hybrid model

44

Moreover, there is also and decoder decΦ, such that decΦ(Mx + b) = Φ(x,y) as long as M,b is
generated by encΦ(y).

Randomized encoding is already sufficient for rNISC in FrOLE-hybrid model, when only requires
one-side security against malicious receiver. The sender generates (M,b) ← encΦ(y) using ran-
domized encoding, and obliviously evaluates Mx + b using underlying rOLE. Then receiver can
recover Φ(x,y) using the decoder, but no more information is leaked. To make the protocol secure
against a malicious sender, the receiver needs a guarantee that M,b are honestly generated. Such
“proof of honest behavior” is captured by FrepOLE,CDS,proof.

For concreteness, consider an explicit randomized encoding scheme. Given any NC1 arithmetic
circuit Φ of t gates, there exists an t-node branching program G such that Φ(x,y) := detG(x,y).
The encoder samples random triangular matrixes R1, R2 with diagonal all one, i.e. R1,R2 are of
the form

1 $ · · · $

1
. . .

...
. . . $

1

 ,
then outputs the factor matrix and the shift vector of the affine mapping

x 7→ R1 · G(x,y) ·R2.

Correctness for this randomized encoder follows directly from det(R1 ·G(x,y) ·R2) = detG(x,y) =
Φ(x,y). This randomized encoding is also private, because the distribution of R1 · G(x,y) · R2

only depends on detG(x,y) = Φ(x,y). For efficiency, note M,b is determined by y,R1,R2, with
computation complexity O(nt3 + mt2). Thus argument that (M,b,y,R1,R2) is consistent can
be written as arithmetic circuits of O(nt3 +mt2) gates in total.

Finally, in the case of evaluating boolean circuits. Convert the circuit as a arithmetic circuit, and
each party should feed input in {0, 1}n. The functionality FrepOLE,CDS,proof allows the enforcement
of such constraints. These leads us to Theorem 5.8.

5.5.2 Constructing Reusable NISC from FrepOLE,CDS,proof based on Garbled Circuits

Theorem 5.9. If one-way functions exist, there is a computationally secure rNISC protocol in

F (F)
rOLE-hybrid model for arbitrary polynomial size circuits. Such that securely evaluating an NC1

circuit over n input variables with t gates need poly(λ) · O(n + t) OLE queries, where λ is the
security parameter.

Using one-way function, we can embed garbled circuit in rNISC for better efficience. As a high
level view of the protocol:

• In the choice phase, the receiver sends its input (sid,x) to F 1
2
repOLE,CDS,proof. As ensuring

(using CDS) that x ∈ {0, 1}n.

• In the send phase, upon receiving (sid,y, i) from environment. The sender prepares the
garbled circuit computing x → Φ(x,y), then sends its input, the garbled circuit together
with all intermediate variable to FrepOLE,CDS,proof. And convince the receiver that the garbled
circuit is honestly generated using FrepOLE,CDS,proof.

45

• For each input wire, discloses appropriate tag is disclosed according to receiver’s input. E.g.
for input xi, the receiver gets ti,0 + xi(tt,1 − tt,0) where ti,0, ti,1 are the tags for this input
wire. Moreover, use CDS functionality to ensure the receiver gets no information if he feeds
xi /∈ {0, 1} to FrepOLE,CDS,proof.

5.6 Efficiency Optimization

So far, we’ve implemented F 1
2
repOLE,CDS,proof, which directly implies a rNIZK protocol in FrOLE-hybrid

model. To order to prove knowledge of a satisfying assignment of an arithmetic circuit, the cost is
no more than 300 FrOLE evaluations gate. In this section, we point out how to reduce the cost.

Along this chain of functionalities FrOLE, F 1
2
repOLE, F 1

2
repOLE,CDS, F 1

2
repOLE,CDS,proof, we present a

black-box implementation of the next functionality in the hybrid model of the previous functionality.
This approach ensures that the final result is combination of several well-separated steps. If we
instead allow more entanglement, the efficiency can be dramatically improved.

Trick 1: Using Πα- 1
2
repOLE. Protocol Πα- 1

2
repOLE implements F 1

2
repOLE but it is not fully secure

against a malicious sender. So we wrap it in the final construction Π 1
2
repOLE, which eliminate the

cheating space of a malicious sender but also increase the cost by more than 6 times. Therefore
if we replace the occurrence of Π 1

2
repOLE in later constructions by Πα- 1

2
repOLE, efficiency would be

improved. We notice that in many cases, this actually does not hurt the security.

Trick 2: Amortization. In Π 1
2
repOLE,CDS, the sender discloses secret to the receiver if the input

chosen by the receiver satisfies some constraints. The current constraint only consider the case when
the secret is a single field element. The amortized cost can be improved if we consider longer secret.
This amortization is particularly useful, because all the secret are actually disclosed conditioning
on the same constraint.

For example in Π 1
2
repOLE,CDS, when the sender discloses secrets s1, . . . , sk ∈ F conditioning on an

affine constraint c0 +
∑`

j=1 cjxsidj = 0, the following protocol combines trick 1, trick 2 and has a
cheaper cost:

• In the chosen phase, the receiver samples γ1, . . . , γk ∈ F, and chooses γt as input under session
id sidgamma-t.

• The sender samples r1, . . . , rk+1 ∈ F, chooses new coefficient id cid1, . . . , cidk+1 and sends
(cid1, r1), . . . , (cidk+1, rk+1) to Πα- 1

2
repOLE. Then samples sk+1, b1, . . . , bk satisfying sk+1 =∑

t bt, and sends (sidgamma-t, st, bt, cidt) to FrOLEfor t ∈ [k]. Then samples w1,1, . . . , wk+1,` ∈ F
satisfying

∑
j cjwt,j = rtc0 + st for all t ∈ [k+ 1] and sends (sidj , cidt, wt,j , t) to Πα- 1

2
repOLE for

t ∈ [k + 1], j ∈ [`]

• The receiver, upon receiving (sidgamma-t, st, ut, cidt) from FrOLEfor t ∈ [k], and (sidj , cidt, zt,j , t)

from Πα- 1
2
repOLE for t ∈ [k + 1], j ∈ [`], computes ŝt =

∑
j cjzt,j , then aborts if

∑k
t=1 γtŝt +

ŝk+1 6=
∑

t ut, outputs ŝ1, . . . , ŝk otherwise.

The amortized cost for disclosing one field element is (2 + 1
k)` + 2 FrOLE evaluation calls. In

comparison, the cost for disclosing one field element in the unoptimized construction (Figure 11)
is 13` FrOLE evaluation calls.

Trick 3: Relaying on external randomness. In our construction, the CDS functionality is only
used when the sender need to disclose secrets conditioning on µν = ξ, where µ, ν, ξ ∈ F are inputs

46

sampled by the receiver that (µ, ν) is uniformly random. The protocol Π 1
2
repOLE,CDS can be simplified

by making use of this external randomness.
Let M :=

[
µ ξ
−1 ν

]
, then the constraint µν = ξ is equivalent to detM = 0. In section 5.3, we

first generate matrices M1,M2 from M so that each of keyM1
, keyM2

is uniformly random. These
randomness helps protect the protocol against malicious senders. But by the external randomness,
we already have keyM = (−µ) is uniformly random. Therefore the process of generating M1,M2

and “proving” headM1 + headM2 = headM can be skipped, which at least halves the cost.
By combining with trick 1 and trick 2, the amortized cost for disclosing one field element

conditioning on µν = ξ, is 9 + O(1
k) FrOLE evaluation calls. In comparison, the unoptimized

construction (Figure 11) requires 245 FrOLE evaluations for the same thing.

In Π 1
2
repOLE,CDS,proof, trick 1 can be used when proving that the coefficients satisfy an affine

constraint. The cost of proving an `-variant affine argument is 2` FrOLE evaluation calls.
To improve the cost of proving a multiplicative argument, notice that 3 of out the 5 F 1

2
repOLE

evaluation calls can be safely handled using Πα- 1
2
repOLE. The cost of proving such a multiplicative

argument is 43 +O(1
k) FrOLE evaluation calls.

As for the concrete efficiency of our rNIZK protocol: each fan-in-2 addition gate corresponds to
a F 1

2
repOLE,CDS,proof proof of 3-variant affine argument, which costs 6 FrOLE evaluation calls; each fan-

in-2 multiplication gate corresponds to a F 1
2
repOLE,CDS,proof proof of some acid1acid2 = acid3 , which

costs 43 + O(1
k) FrOLE evaluation calls; in addition, each input wire and each intermediate wire

corresponds to a coefficient chosen by the sender, which costs 1 FrOLE evaluation call.

6 A Reusable OLE Construction based on Paillier

In this section, we show a reusable OLE construction ΠrOLE based on the Paillier assumption. Our
construction proceeds as follows.

• CRSSetup(1k): Let N = pq be such that p = 2p′ + 1 and q = 2q′ + 1 for primes p′, q′ of the
appropriate length for security parameter k. All operations will be mod N2 unless otherwise
specified. Choose b, B0 ← Z∗N2 , and let h = 1 +N . Let T = 2kN2.

Output crs = (N,h, b,B0, T)

• ReceiverRequest(crs, α): Parse crs = (N,h, b,B0, T). Choose random sk , sk ′, γ from [T]. Let
B = bsk and B′ = bsk

′
. Send B1 = BB−γ0 and B′1 = B′B−α+γ

0 to the sender, and output state
sk , sk ′, α, γ.

• SenderResponse(crs, (B1, B
′
1), z0, z1): Parse crs = (N,h, b,B0, T). Chooose random r, w from

[T]. Compute c = br, C0 = B0
rhz0 , C1 = B1

rhw, and C ′1 = B′1
rhz1−w. Send c, C0, C1, C

′
1 to

the receiver.

• ReceiverReceive(crs, (c, C0, C1, C
′
1), (sk , sk ′, α, γ)): ComputeX = C0

γC1/c
sk andX ′ = C0

α−γC ′1/c
sk ′ .

If it is not the case that X2 and X ′2 are of the form 1 + xN and 1 + x′N for some x, x′, then
output ⊥. Otherwise output z = (x+ x′)/2 mod N .

47

We first show correctness. If both parties are honest, then the response is computed as follows:

X = C0
γC1/c

sk (from ReceiverReceive)

= (B0
rhz0)γBr

1h
w/(br)sk (from SenderResponse)

= (B0
γB1/b

sk)rhz0γ+w

= (B0
γBB−γ0 /bsk)rhz0γ+w (from ReceiverRequest)

= (B/bsk)rhz0γ+w

= (bsk/bsk)rhz0γ+w (from ReceiverRequest)

= hz0γ+w

and similarly, X ′ = hz0(α−γ)+z1−w

Next, note that (hz0γ+w)2 = (1+N)2(z0γ+w) = 1+2(z0γ+w)N mod N2, and (hz0(α−γ)+z1−w)2 =
1 + 2(z0(α − γ) + z1 − w)N mod N2 so the receiver will output z = (x + x′)/2 = (z0γ + w) +
(z0(α− γ) + z1 − w) = z0α+ z1 mod N .

Theorem 6.1. ΠrOLE is a UC-secure realization of the reusable OLE functionality FrOLE over the
ring Z∗N .

6.1 Security Against Dishonest Receiver

Let G2p′q′ be the subgroup of Z∗N2 of elements of the form x = x′N for x′ ∈ Z∗N2 . Consider the
following simulator S.

To generate the CRS, the simulator generates N,h, T as above, but stores the factorization of N . It
then chooses random b, Y0 ← G2p′q′ , computes B0 = Y0h, and outputs crs = (N,h, b,B0, T).

When the adversary sends (B1, B
′
1), the simulator proceeds as follows: First, use the factorization

of N to compute Y1, Y
′

1 ∈ G2p′q′ and δ, δ′ ∈ ZN such that B1 = Y1h
δ and B′1 = Y ′1h

δ′ . Send
−(δ + δ′) to F .

When F sends z: Choose random u← Z2p′q′ , v0, v1 ← ZN , and compute

c = bu

C0 = Y u
0 h

v0

C1 = Y u
1 h

v1

C ′1 = Y u
1 h

z+v0(δ+δ′)−v1

Send (c, C0, C1, C
′
1) to A.

Claim 1. The CRS generated above is indistinguishable from the CRS generated by CRSSetup
under the decisional composite residuosity assumption (DCRA).

Proof. First consider an intermediate CRS generated by sampling b← G2p′q′ and B0 ← ZN2 . This
is indistinguishable from the real CRS by DCRA. Then, note that we obtain an idential distribution
if we choose Y0 ← ZN2 and output B0 = Y0h. Finally, sampling Y0 ← ZN2 is indistinguishable
from sampling Y0 ← G2p′q′ again by DCRA.

48

Claim 2. Consider an intermediate game in which the environment and A interact with the hon-
est sender, but where the CRS is generated as above. The environment’s view in this game is
statistically close to it’s view when interacting with S and F as defined above.

Proof. To see this, first consider a game where the CRS is generated as described above, but the
sender’s response is generated according to SenderResponse with the exception that r, w are chosen
at random from Z2p′q′N rather than [T]. Note that since T/2p′q′N is exponential in the security
parameter, this will be statistically close to the original distribution.

Now we will argue that the environment’s view in this game is identical to its view when
interacting with S and F . To see this, consider an experiment where the CRS is generated as
described above, and when running SenderResponse, we choose u,w′ ← Z2p′q′ and v0, v1 ← ZN ,
and set r, w ∈ Z2p′q′N such that r = u mod 2p′q′ and r = v0 − z0 mod N , and w = w′ mod 2p′q′

and w = v1 − δ(v0 − z0) mod N . Note that the resulting r, w are uniform over Z2p′q′N , so this is
identical to the previous game. Given B1, B

′
1, let Y1, Y

′
1 ∈ G2p′q′ and δ, δ′ ∈ ZN such that B1 = Y1h

δ

and B′1 = Y ′1h
δ′ .

The resulting c, C0, C1, C
′
1 are as follows:

c = br = bu

C0 = B0
rhz0 = (Y0h)rhz0 = Y0

uhv0−z0hz0 = Y0
uhv0

C1 = B1
rhw = (Y1h

δ)rhw = Y1
uhδ(v0−z0)hv1−δ(v0−z0) = Y1

uhv1

C ′1 = B′1
r
hz1−w = (Y ′1h

δ′)rhz1−w = Y ′1
u
hδ
′(v0−z0)hz1−v1+δ(v0−z0)

= Y ′1
u
h−(δ+δ′)z0+z1+(δ+δ′)v0−v1 = Y ′1

u
hz+(δ+δ′)v0−v1 for z = −(δ + δ′)z0 + z1.

Finally, note that this is exactly the distribution that would be produced by S and F , since S
would send −(δ + δ′) to F and F would return z = −(δ + δ′)z0 + z1.

6.2 Security Against Dishonest Sender

Let Gp′q′ be the subgroup of Z∗N2 of the form x = x′2N for x′ ∈ Z∗N2 .
Consider the following simulator S.

To generate the CRS, the simulator generates N,h, T as above. It then chooses random b← Gp′q′

and sk0 ← [T], computes B0 = bsk0 , and outputs crs = (N,h, b,B0, T).

The simulator then generates B1, B
′
1 as follows: choose random sk1, sk ′1 ← [T] and send B1 = bsk1

and B′1 = bsk
′
1 .

When the adversary sends (c, C0, C1, C
′
1), proceed as follows: Compute X0 = C0/c

sk0 , X1 =
C1/c

sk1 , and X ′1 = C ′1/c
sk ′1 . If it is not the case that X2

0 , X1
2, and X ′1

2 are of the form
1 + x0N , 1 + x1N and 1 + x′1N for some x0, x1, x

′
1, then send ⊥ to F . Otherwise send x0/2

and (x1 + x′1)/2 to F .

Claim 3. The CRS generated above is indistinguishable from the CRS generated by CRSSetup
as long as the decisional composite residuosity assumption (DCRA) and the quadratic residuosity
assumption (QRA) hold in ZN2 .

49

Proof. Recall that in the real game b, B0 are sampled uniformly from ZN2 . We first consider a
modification where we compute b = x′N for random x′; this is indistinguishable by DCRA. Then
we change to computing b = (x′2)N ; this will be indistinguishable by QRA. Note that this is
equivalent to sampling b ← Gp′q′ . Next, we argue similarly that by DCRA, QRA, we can choose
B0 ← Gp′q′ instead of B0 ← ZN2 . Then observe that if we instead choose sk0 ← Zp′q′ and set
B0 = bsk0 , the resulting distribution will be statistically close (because with all but negligible
probability b← Gp′q′ is a generator). Finally, we note that choosing sk0 ← T and then computing
B0 = bsk0 is statistically close to choosing sk0 ← Zp′q′ , because T/p′q′ is exponential.

Claim 4. Consider an intermediate game in which the environment and A interact with the hon-
est receiver, but where the CRS is generated as above. The environment’s view in this game is
statistically close to it’s view when interacting with S and F as defined above.

Proof. To see this, first consider a variation on the intermediate game, where sk0 and the random
values sk , sk ′, γ used in ReceiverRequest are chosen at random from Z2p′q′N rather than [T]. Note
that since T/2p′q′N is exponential in the security parameter, this will be statistically close to the
original distribution.

Next, we modify the game slightly, so that instead of choosing sk , sk ′ directly, we choose random
sk1, sk ′1 ← Z2p′q′N and set sk = sk1 + γsk0 and sk ′ = sk ′1 + (α − γ)sk0. Note that the resulting
distribution will be identical.

Now, we modify the conditions under which the receiver outputs ⊥, as follows: First, suppose
in addition to running ReceiverReceive, we also compute X0, X1, X

′
1 as described above, and output

⊥ if X2, X ′2, X0
2, X1

2, X ′1
2 are not of the form 1 + vN for some values of v. Now we argue that

for any environment, this game will be statistically indistinguishable from the previous one. To see
this, note that the only way that these games will be distinguishable is if X2, X ′2 are of the form
1 + vN , but at least one of X0

2, X1
2, X ′1

2 is not. (If we are considering the re-usable functionality,
then this requires that on at least one of the sender’s messages, this is true - consider the first such
message.) We will argue that this happens with negligible probability. First, by our computation
of X0, X1, X

′
1, X,X

′, we have

X = C0
γC1/c

sk

= C0
γC1/c

sk1+γsk0 by our choice of sk , sk ′

= (C0/c
sk0)γC1/c

sk1

= X0
γX1 by definition of X0, X1.

and similarly X ′ = Xα−γ
0 X ′1.

Now, let Y0, Y1, Y
′

1 ∈ Gp′q′ and δ0, δ1, δ
′
1 ∈ ZN be such that X0

2 = Y0h
δ0 , X1

2 = Y1h
δ1 , and

X ′1 = Y1h
δ′1 . If these values allow the environment to distinguish, then at least one of Y0, Y1, Y

′
1

is not 1. Because X = Xγ
0X1 and X ′ = Xα−γ

0 X ′1, and both X2, X ′2 have no Gp′q′ component,
it must be the case that Y0

γY1 = 1 and Y0
α−γY ′1 = 1. However, we observe that γ is completely

independent of the environment’s view so far. Now, suppose Y0 6= 1; then the probability that
Y0
γY1 = 1 is 1/p′q′, which is negligible. If Y0 = 1, then Y0

γY1 = 1 and Y0
(α−γ)Y ′1 = 1 implies that

Y1, Y ′1 are both 1 as well. Thus, the probability that X,X ′ do not cause ⊥, but X0, X1, X
′
1 do is

negligible.
Next, consider the honest receiver’s output when it is not ⊥. In the above game, the receiver

gets c, C0, C1, C
′
1 from the sender, computes X,X such that X2 = (1 + xN) and X ′2 = (1 + x′N),

50

and outputs (x + x′)/2. However, as we have argued above, by the way we have defined sk , sk ′,
X = X0

γX1 and X ′ = X0
α−γX ′1, so we could instead compute X0, X1, X

′
1 which assuming we

don’t abort will be such that X0
2 = 1 + x0N , X1

2 = 1 + x1N , and X ′1
2 = 1 + x′1N , Then

X2 = X0
2X1 = (1+x0N)γ(1+x1N) = 1+(x0γ+x1)N and similarly X ′2 = 1+(x0(α−γ)+x′1)N ,

so we could equivalently compute x = x0γ + x1 mod N and x′ = x0(α − γ) + x′1 mod N and
output (x+ x′)/2 = (x0γ + x1 + x0(α− γ) + x′1)/2 = (x0/2)α+ (x1 + x′1)/2 mod N .

Finally, we change to a game where we output ⊥ only if X0, X1, or X ′1 is not of the correct
form. As we argued above, we will have X = X0

γX1 and X ′ = X0
α−γX ′1, so if X2 or X ′2 has a

non-trivial component in Gp′q′ , then it must be the case that at least one of X0
2, X1

2, X ′1
2 also has

a non-trivial component in Gp′q′ , so this is identical to the previous game. We then observe that
this game is identical to an interaction with S and F , which concludes the proof.

References

[ADI+17] Benny Applebaum, Ivan Damg̊ard, Yuval Ishai, Michael Nielsen, and Lior Zichron.
Secure arithmetic computation with constant computational overhead. In Jonathan
Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science, pages
223–254. Springer, 2017.

[AIK14] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits.
SIAM J. Comput., 43(2):905–929, 2014.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to
sell digital goods. In Birgit Pfitzmann, editor, Advances in Cryptology - EUROCRYPT
2001, International Conference on the Theory and Application of Cryptographic Tech-
niques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes
in Computer Science, pages 119–135. Springer, 2001.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. In Advances in Cryptology - EUROCRYPT 2014
- 33rd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages 387–
404, 2014.

[BCG+17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi,
and Sune K. Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit sat-
isfiability. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part III, volume 10626 of Lecture Notes in Computer Science, pages 336–365.
Springer, 2017.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In Janos Simon, editor, Proceedings of the 20th

51

Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 103–112. ACM, 1988.

[CC18] Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In Advances in Cryptology - EUROCRYPT 2018 -
37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III, pages 193–
221, 2018.

[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Tri-
filetti. Tinyole: Efficient actively secure two-party computation from oblivious linear
function evaluation. In CCS 2017, pages 2263–2276, 2017.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 169–178, 2009.

[GIP+14] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Cir-
cuits resilient to additive attacks with applications to secure computation. In STOC
2014, pages 495–504, 2014.

[GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivious
linear function evaluation with constant overhead. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International Con-
ference on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes
in Computer Science, pages 629–659. Springer, 2017.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales
Bueno, Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo, editors, Au-
tomata, Languages and Programming, 29th International Colloquium, ICALP 2002,
Malaga, Spain, July 8-13, 2002, Proceedings, volume 2380 of Lecture Notes in Com-
puter Science, pages 244–256. Springer, 2002.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai.
Efficient non-interactive secure computation. In Kenneth G. Paterson, editor, Advances
in Cryptology, Proceedings of EUROCRYPT 2011, volume 6632 of Lecture Notes in
Computer Science, pages 406–425. Springer, 2011.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David A. Wagner, editor, Advances in Cryptology - CRYPTO
2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science,
pages 572–591. Springer, 2008.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, 2009.

52

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of
the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washing-
ton, DC, USA., pages 448–457, 2001.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech
Republic, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Sci-
ence, pages 223–238. Springer, 1999.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In Advances in Cryptology - CRYPTO 2008, 28th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2008. Proceedings, pages 554–571, 2008.

[RAD78] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and pri-
vacy homomorphisms. In Richard A. DeMillo, David P. Dobkin, Anita K. Jones, and
Richard J. Lipton, editors, Foundations of Secure Computation, pages 165–179. Aca-
demic Press, 1978.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
Proceedings of FOCS 1986, pages 162–167. IEEE Computer Society, 1986.

A Reusable Secure Arithmetic Circuit Evaluation

Definition 11 (Arithmetic Circuits and Formulas). An arithmetic circuit Φ over a given ring R
with input variables X1, . . . , Xn and output variables Z1, . . . , Zl is defined by:

(1) a directed acyclic graph G = (V,E) that has exactly l vertices with out-degree 0 and
(2) a labeling which assigns

• to every vertex with in-degree 0 a label from {X1, . . . , Xn} ∪ R,
• to every other vertex a label from {+,×},
• and additionally to every vertex with out-degree 0 a unique label from {Z1, . . . , Zl}.

If G is a tree (and thus m = 1), then Φ is called an arithmetic formula.
The circuit Φ computes a function ϕ : Rn → Rl in a natural way. Each input gate (vertex

with some label Xi) and each constant gate (vertex with label in R) computes the polynomial it
is labeled with. Each addition gate (vertex labeled +) computes the sum of its children, and each
multiplication gate (vertex labeled ×) computes the product of its children. The function ϕ is then
defined by the polynomials computed by the output gates (vertices with additional label Zi).

We refer to the number of gates |Φ| := |V | as the size of Φ, and to the length of the longest
directed path in G as the depth of Φ. We restrict ourself to the case that all gates have in-degree 2,
so that any formula of depth d has size O(2d).

Remark A.1. Every arithmetic circuit with l output variables can be written as a collection of l
arithmetic formulas of the same depth. The size of these formulas can grow exponentially in their
depth even for linear size circuits. Still, NC1 circuits can be written as polynomial size formulas,
since we require that all gates have in-degree 2.

53

The ideal functionality for secure arithmetic circuit evaluation with reusable receiver inputs (see

Figure 18) is a special instance of F (F)
rNISC from Figure 1.

Functionality F (Φ)
rNISC

Parametrized by an arithmetic circuit Φ over a finite commutative ring R, with input variables divided
into two disjoint sets X1, . . . , Xn and Y1, . . . , Ym, and output variables Z1, . . . , Zl.

Setup/choice phases:

• Upon receiving input (sid, x1, . . . , xn) from Rachel where (x1, . . . , xn) ∈ Rn and sid is a session
identifier, store (sid, x1, . . . , xn), send (sid, initialized) to the adversary and ignore any further
inputs from Rachel with the same session identifier sid.

Send phases:

• Upon receiving input (sid, y1, . . . , ym, i) from Sam where (y1, . . . , ym, i) ∈ Rm×N and sid is a session
identifier, record (sid, y1, . . . , ym, i), send (sid, sent, i) to the adversary, and ignore any further inputs
from Sam with the same session identifier sid and the same value of i.

• Upon receiving a message (sid, Delivery, i) from the adversary, verify that there are stored inputs
(sid, x1, . . . , xn) from Rachel and (sid, y1, . . . , ym, i) from Sam; else ignore that message. Next, com-
pute (z1, . . . , zl) according to Φ’s functionality from (x1, . . . , xn, y1, . . . , ym), send (sid, z1, . . . , zl, i)
to Rachel, and ignore further messages (sid, Delivery, i) from the adversary with the same session
identifier sid and the same value of i.

Figure 18: Ideal functionality for secure arithmetic circuit evaluation with reusable receiver inputs.

We will henceforth omit the superscripts F and Φ when they are clear from the context. Other
functionalities such as the zero knowledge functionality can be defined as a special case of the
rNISC functionality.

54

	Introduction
	Related Work

	Overview of the Techniques
	Impossibility of rNISC/OT
	Construction of Information-Theoretic rNISC/OLE
	Paillier-based 2-Message OLE Protocol

	Preliminaries
	Sender-receiver Functions & Reusable Two-party Computation
	Reusable Oblivious Linear Function Evaluation

	Separations and Impossibility Results
	Standard Security (even if Perfect) does not Imply Reusability
	Impossibility of Composable rNISC/OT for the OLE Functionality
	Impossibility of rNISC/OT for General Black-Box Zero-Knowledge

	Reusable NISC via Parallel Reusable OLE
	Our Ideal Functionalities
	Constructing Half-Replicated OLE from Reusable OLE
	Syntactic sugar: Oblivious Multi-variant Linear Function Evaluation

	Allowing CDS operations in Half-Replicated OLE
	Syntactic sugar: Conditional Disclosure of Coefficients

	Embedding a Zero-Knowledge Proof System
	Constructing Reusable NIZK from F12repOLE,CDS,proof

	Constructing Replicated OLE
	Constructing Reusable NISC from FrepOLE,CDS,proof based on Randomized Encodings
	Constructing Reusable NISC from FrepOLE,CDS,proof based on Garbled Circuits

	Efficiency Optimization

	A Reusable OLE Construction based on Paillier
	Security Against Dishonest Receiver
	Security Against Dishonest Sender

	Reusable Secure Arithmetic Circuit Evaluation

