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Abstract. Lightweight block ciphers are today of paramount importance to provide security
services in constrained environments. Recent studies have questioned the security properties of
Present, which makes it evident the need to study alternative ciphers. In this work we pro-
vide hardware architectures for Midori and GIFT, and compare them against implementations
for Present and Gimli under fair conditions. The hardware description for our designs is made
publicly available.
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1 Introduction

A decade has elapsed since the term “lightweight” was first used to describe a block cipher. Back
in 2007, the discourse of efficient implementation of cryptographic architectures was centered
around AES. However, a new proposal would set the benchmark for encryption in constrained
applications. The Present block cipher [2] promised to fill a niche “for extremely constrained
environments such as RFID tags and sensor networks” that AES couldn’t. In the following
years several lightweight cryptographic algorithms, design strategies, and architectures were
proposed with similar goals. These developments contributed to consolidate the research line
denominated lightweight cryptography [3]. Nowadays, Present can be considered as the most
widespread lightweight block cipher.

The idea of lightweightness was so enticing that a new branch of cryptography was set
to study these primitives (lightweight cryptography) and many such proposals have been pub-
lished since then. However, even after ten years from the first contact and five years after the
first standardization efforts [4] several questions remain without a definitive answer: what does
lightweight mean? why use a lightweight block cipher? what is the best lightweight block cipher?

Over the past ten years, different lightweight block ciphers have been proposed. As new
design goals became necessary, the concept of lightweight gradually evolved. Initially, in what we
call the first generation of lightweight primitives, the lightweight property was associated with
small implementation size. Present is an example of such proposals, being mainly optimized
for “security and hardware efficiency.” The idea that low area is synonymous of lightweightness
was posteriorly contested [5]. These new ideas promoted that “lightweight” also include low
processing latencies. Works that consider area and processing latency as key aspects to achieve
lightweightness can be denominated of second generation. Later on, power efficiency and low
energy consumption requirements became the central focus for designers, thus leading to what
we consider the third generation of lightweight primitives. Midori [6] is a block cipher from
the third era. In recent years, the security of lightweight algorithms has regained interest. This
has started what might be considered a new wave of lightweight cryptographic algorithms.
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Proposals like GIFT [7] and Gimli [8] exemplify this trend. It is in this way that hardware
usage, latency, power/energy, and security became key aspects for any lightweight cryptographic
design. Nowadays the designers must be aware of the application constraints in each of these
fields in order to conceive a lightweight security solution.

In 2015, a possible NIST standard for lightweight cryptography was first mentioned. Over
the course of two years NIST published a report detailing the scope and state of the art in
lightweight cryptography [9] and the standardization works seem to be in progress. This hints
to the fact that lightweight cryptographic primitives are key components in the development of
future technologies and applications. Generating solid and reproducible implementation results
and benchmarking is undoubtedly primordial for any future standards.

For years, the lightweight block cipher Present [2] has been in the spotlight as the most
ideal solution for providing confidentiality under constrained environments. However, recent
findings [10–13] call into question the security properties of the scheme. It is clear that the
study of alternatives which offer resilience against birthday attacks and linear or differential
cryptanalysis is necessary.

In this work we evaluate hardware realizations of the cryptographic algorithms Midori and
GIFT, which are believed to be secure. We compare these implementations against State of the
Art architectures for Gimli and PRESENT. Our main contributions are:

1. Novel architectural designs for the Midori and GIFT block ciphers following area-reduction
strategies.

2. The benchmark of the proposed architectures against the most relevant results from the
literature under fair conditions.

3. The first implementation results for GIFT and the first area-oriented results for Midori in
FPGA.

4. All the proposed designs (VHDL) are available at
https://www.tamps.cinvestav.mx/~hardware/

The rest of the paper is structured as follows. In Section 2 we discuss the implications of
novel attack strategies on the lightweight ciphers under study. Section 3 describes the different
architectures for the selected lightweight algorithms, which are implemented and evaluated.
Section 4 describes our experimental setup. Section 5 presents our findings. Section 6 concludes
this work.

2 On the security of Lightweight Block Ciphers

2.1 The Birthday Bound

For quite some time the research community has been aware of the possible attacks on encryption
systems which use states of 64-bits or smaller [14]. As explained in [11], whereas block ciphers
with keys of k-bits and states of n-bits are expected to resist attacks with spatial and temporal
complexities up to O(2n) and O(2k), respectively, most operation modes offer security under
the assumption that no more than 2n/2 blocks are encrypted under a single key. This upper
limit for the operation modes is called the birthday bound [14] and affects all the basic operation
modes: CBC, CFB, OFB, CTR, OCB, GCM.

With this bound in mind, a 128-bits block cipher like AES can, under any of the aforemen-
tioned encryption modes, process “safely” up to 264 blocks or 268 bytes. According to Cisco [15],
“in 2016, the annual run rate for global IP traffic was 1.2 ZB per year” that is approximately
270 bytes. These figures evidence that the scenario where an operation mode outlives its use is
not out of the realm of reality. For the 64-bits ciphers the threshold is even lower, allowing only
232 “safe” blocks or 236 bytes; that is 32 GB. The impact of this attack model on 64-bit block
ciphers was first identified in [14].

https://www.tamps.cinvestav.mx/~hardware/
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For many years this attack was considered as impractical since it “requires known plaintext,
and reveals only a few bits of a large datastream” [11]. Nonetheless, the authors in [11] managed
to apply it successfully to Blowfish in OpenVPN and 3DES in TLS; in both cases to secure
HTTP and using the CBC operation mode. They employed the Beastly attack to generate the
required traffic in each case. These demonstrations required 785GB data each and took 19 and
38 hours, respectively. A success probability of 0.39 for n/2 blocks is reported. This case set a
precedent in regards to the feasibility of theoretical attacks empowered with the availability of
big data.

Although on first sight it might looks like the use of block ciphers with states of 64-bits
or smaller should be avoided, there are countermeasures that can be taken. The following are
identified in [11]:

– Stop using legacy 64-bit block ciphers.
– Implement rekeying strategies that swap the key well before the n/2 blocks.
– Use operation modes that are not vulnerable to the birthday bound. The CTR mode is

unaffected if the underlying block cipher behaves like a pseudo-random function (PRF); and
if the underlying cipher is not a PRF, the attack has the same cost but the attacker must
perform significant additional work to recover any plaintext.

Both GIFT and Midori offer variants with state size of 64 and 128 bits. Whereas the latter
can be considered secure, the former should be used under the appropriate operation mode or
with the adequate rekeying strategies.

2.2 Distinguisher Attacks

In 2015, Blondeau et al. proposed an attack for Present under the known-key model [10]. This
attack is unhindered by the key length and thus can be applied to Present-80 and Present-
128. The authors made two significant contributions in that work: they first extended the
differential cryptanalysis of the cipher to reach the linear analysis in terms of attacked rounds,
then introduced a Meet-in-the-Middle layer (MtM) to propagate the differential properties for
the known-key distinguisher. This attack requires to store 48GB and took a time corresponding
to 256 encryptions with a success probability of 0.51 for the full Present.

While authors of [10] concede that their attack is “very generous with the attacker”, they
provide as application example the case where Present is used to construct hash functions.

Blondeau’s work was extended in [12] where the authors generalized the attack method for
a kind of permutations that share similar characteristics with Present’s. They used as case
study attacking the hash function spongent. The main breakthrough on that work is that
they extended the MtM layers on a 64-bit state to states with any size. The so called Present-
like permutations are iterated applications of a substitution-permutation function with a key
addition layer (a particular case of an SPN). The distinguisher exploited in [12] and previous
work [16, 17] is related to the “capacity of a multidimensional linear approximation”, which in
the targeted permutations benefits from the bit-permutation linear layer.

The generalization from [12] and their definition for a “Present-like permutation” implies
that both GIFT-64 and GIFT-128 are vulnerable to this attack. Even though this is a known-
key attack it should not be dismissed on light that the use of the ciphers in combination with
operation modes for providing different security services can lead to unexpected vulnerabilities
such as the case of the birthday attacks.

Both variants of Midori are unaffected by this attack since the composition used in their
round functions differ from a “Present-like permutation.”

2.3 Side-channel Attacks

Lightweight block ciphers are often implemented on physically reachable areas. Since an attacker
has direct access to the hardware, it gains greater advantages from the information leaked by
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the device through “side channels.” In [13] the authors present “the first practically realizable
side-channel assisted fault attack on Present”, that attack can retrieve the last round key with
4 random nibble faults in the best case, and 7-8 faults in the average case.

The authors describe that their attack exploits the fact that Present uses bit-permutations
instead of Maximum-Distance-Separable (MDS) layers to generate diffusion. As mentioned in
[13], the attack should also be applicable to GIFT-64 and GIFT-128. The silver lining is that
the nibble-based permutations used affects a single non-overlapping nibble, this is a pattern
used for reducing the width of these permutations [18–20].

The authors in [13] claim that their attack would fail against AES or LED since they use a
MDS layer. Although Midori employs an “Almost MDS” layer, its designers claim that by using
additional “optimal cell-permutation layers” they can improve the diffusion speed and increase
the number of active S-boxes per round. The use of these two layers should provide resilience
against the described attack.

2.4 Keynotes

The creation of secure lightweight block ciphers is a challenging task. Designers must be aware
of the application requirements and the improvements of attack models. We can reflect on the
following notes:

– State sizes of 64-bits should be avoided and deprecated gradually.
– Key sizes of 128-bits should be used for providing long-term security [21].
– The design of the diffusion layer should not be taken lightly as it can provide much infor-

mation for attackers.
– Involutive designs are interesting, but decryption is seldom used. In practical scenarios

forward modes such as CTR offer greater efficiency with little cost.
– Although side channel countermeasures are costly, they should be considered for any design

expected to be deployed in unprotected environments.

3 Methods

In this section we focus on encryption functions since these can be used to encrypt and decrypt
data under the CTR mode of operation [22]. We use 128-bit key sizes for all the block ciphers.

For each lightweight block cipher we study its iterative and serial architectures [23]. We
define two types of serial architectures. The first type (serial-1) targets a reduction in the
number of 4-bit substitution boxes (SBOX) from n/4 to two. The second type of architecture
(serial-2) seeks to reduce not only the number of substitution boxes, but also the width of other
transformations when possible.

3.1 Preliminaries

A block cipher uses as input an n-bit data block, which is a fragment of a message or plaintext
(P), and stores it in a register denominated state (S). A k-bit secret information denominated
key (K) is used in the processing of S. A round-based function which iterates r rounds over S is
applied to encrypt the input data block. The result of this processing is a new n-bit data block
(C) which is a fragment of an encrypted message or ciphertext.

In this paper, for each selected lightweight block cipher we study its iterative and serial
architectures [23]. For the former, each round takes one cycle and all the internal transformations
are applied over the state on parallel. For the latter, one or multiple internal transformations are
serialized. This means that the word in S is divided in nibbles, which are then processed serially.
While iterative architectures are close implementations of the specification algorithm, their serial
counterparts explore area/performance trade-offs to reduce the hardware resources required. We
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define two types of serial architectures. The first type (serial-1) targets a reduction in the number
of 4-bit substitution boxes (SBOX) from n/4 to two. These SBOX are substitutions applied to
every four bits of the state. Since SBOX require the most resources in a block cipher [2], reducing
the number of SBOX should yield the greatest improvement to the implementation size. The
second type of architecture (serial-2) seeks to reduce not only the number of substitution boxes,
but also the width of other transformations when possible. This design philosophy was used
in [20] to achieve smaller designs for Present.

In regards to the processing cycles of an architecture, we define two types of latency. The
first one is related with the input and output (IO) ports of the data blocks. Since the number
of IO ports available in constrained devices is often limited, we use reduced IO ports in our
implementations. This strategy is also employed in [8,20,23]. Since to the IO ports are smaller
than the state, the input/output data blocks must be divided into d-bit nibbles which are
then taken/produced serially. The second type of latency is associated with the data processing
(DP). For iterative architectures, the DP latency equals the number of rounds in the algorithm
specification. For serial architectures, the DP latency accounts for the cycles required to serialize
certain steps of the datapath and the cycle required to apply any parallel transformations
remaining.

3.2 Present

The Present block cipher follows a Substitution-Permutation Network (SPN) construction. It
has a block size of 64-bit and supports key sizes of 80-bit and 128-bit. The specification for its
encryption function is presented in Alg. 1.

Algorithm 1 Encryption in the Present cipher [2] where n = 64, k = 128, and r = 31.
Input: A 64-bit plaintext P, a k-bit secret key K.
Output: A 64-bit ciphertext C.
S ← P
Ki ← generateRoundKeys(K)
for i = 1 to r do
S ← addRoundKey(S,Ki)
S ← sBoxLayer(S)
S ← pLayer(S)

end for
C ← addRoundKey(S,Kr+1)
return C

We first study the basic implementation of the block cipher with IO ports of 8-bit shown
in Fig. 1. That hardware realization of Present requires 17 substitution boxes (SBOX), 77
XOR gates, and 192 Flip-Flops (FF). In regards to latency, 16 cycles are required to input the
plaintext and the cipher key, 31 cycles to encrypt the data, and 8 cycles to produce the output.
In total this sums 55 cycles.

In the serial-1 architecture for Present shown in Fig. 2, the the main optimization involves
reducing the number of substitution boxes to two. The substitution boxes used in the key
generation are also removed and the number of XOR gates is reduced. The trade-off is an
increment in the number of cycles required to encrypt the data. The implementation of this
design requires 2 SBOX, 21 XOR gates, and 192 FF. The number of cycles needed to take
the input and to produce the output are 16 and 8, respectively. Each iteration of the round
function uses 8 cycles due to the reduced number of SBOX and an additional cycle to apply the
permutation over the state and to update the key register, which is 31× 9 = 279 cycles. With
this design 303 latency cycles are needed to encrypt a data block.

The serial-2 Present architecture under study is the one reported in [20]. In that design the
main strategy was outlined as reducing the whole datapath to 16-bit, which is a quarter of its



6 Lara-Nino, Diaz-Perez, and Morales-Sandoval

Fig. 1. Iterative architecture for Present as proposed in [23].

Fig. 2. Serial-1 architecture for Present as proposed in [23].

block size. The hardware realization for this design involves the use of 6 SBOX, 21 XOR gates,
and 192 FF. In this case the input and output processes use 8 and 4 cycles, respectively. The
data processing takes 4 cycles per iteration of the round function, which amounts to 31×4 = 124
cycles. The total latency of the design is of 136 cycles. This architecture is illustrated in Fig. 3.

Fig. 3. Serial-2 architecture for Present.
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3.3 Midori

Midori is a lightweight block cipher “that is optimized with respect to the energy consumed
by the circuit per bit in encryption or decryption operation” [6]. Alg. 2 presents the Midori
specification, which can operate over data blocks of 64 or 128 bits. A key size of 128-bit is used
in both versions of the algorithm. Midori also has an SPN structure. More details about Midori
can be found in [6]. This block cipher operates over data blocks of 64 or 128 bits. A key size of
128-bit is used in both versions of the algorithm. Midori also has an SPN structure.

Algorithm 2 Encryption procedure for Midori as described in [6] where n = {64, 128}, k = 128,
and r = {16, 20} for {Midori-64, Midori-128}, respectively.
Input: An n-bit plaintext P, a 128-bit secret key K.
Output: An n-bit ciphertext C.
WK,RKi ← f(K)
S ← KeyAdd(P,WK)
for i = 0 to r − 2 do
S ← SubCell(S)
S ← ShuffleCell(S)
S ← MixColumn(S)
S ← KeyAdd(S,RKi)

end for
S ← SubCell(S)
C ← KeyAdd(S,WK)
return C

The iterative architecture for Midori created in this work is presented in Fig. 4. This design
can describe both Midori-64 and Midori-128 realizations. It follows the algorithm specification
closely but uses 8-bit IO ports. In hardware, this architecture requires 16 SBox (which are of 4-
bit for Midori-64 and of 8-bit for Midori-128), an n−bit transformation which can be simplified
as n/2 XOR gates (MixColumn), an n-bit XOR layer, 16 XOR gates for the key mechanism,
r − 2 16-bit round constants, and n + 128 FF. To take the input block and the cipher key
16 cycles are used in both Midori-64 and Midori-128. For the former, 17 cycles are required to
process the data and 8 cycles are used to produce the output. For the latter, the data processing
takes 21 cycles and producing the output requires 16 cycles. In total the iterative architectures
for Midori-64 and Midori-128 have a latency of 41 and 53 cycles, respectively.

Fig. 4. Iterative architecture for Midori-64 and Midori-128.
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Fig. 5 illustrates the serial-1 architecture created in this work for Midori-64 and Midori-
128. This version focuses on reducing the SBOX count. For Midori-64, the SBox illustrated
represents two 4-bit SBOX. For Midori-128, eight 8-bit permutations are also allocated inside
the SBox. These permutations work together with two 4-bit SBOX to produce the output of
the substitution layer. Two of the four permutations are selected depending on the position in
the state of the data nibble being processed. The hardware realization of this design uses two
4-bit SBOX, the n/2 XOR gates simplification of MixColumn, an n-bit XOR layer, the 16 XOR
gates used in the key generation, r − 2 16-bit round constants, and 128 + n FF. In regards to
latency, for both instances of Midori, 16 cycles are requires to take the input data. For Midori-
64 the data processing takes an initial cycle for the first key addition and 9 cycles per round,
thus 1 + (16 × 9) = 145 total cycles. To produce the output 8 cycles are used. This Midori-64
architecture has a latency of 169 cycles. For Midori-128 the data processing requires the key
addition cycle and 16 cycles for each iteration of the round function, this is 1 + (20× 17) = 341
cycles. Producing the output has a cost of 16 cycles, thus the Midori-128 design requires a total
of 373 cycles.

Fig. 5. Serial architecture for Midori-64 and Midori-128 with reduced number of substitution boxes (serial-1).

The serial-2 architecture developed in this work for Midori is shown in Fig. 4 (right). In
this design the datapath width d is reduced to 16-bit for Midori-64 and 32-bit for Midori-128.
In both cases the operations which can be serialized are the substitution layer, the MixColumn
step, and the key addition. The n-bit permutation is performed during an extra cycle in the
round. In order to achieve this design we modified the Midori algorithm so that the SubCell and
ShuffleCell operations are swapped. This allows pushing the ShuffleCell step from the i iteration
back to the i−1 iteration. From this, the serializable steps of the algorithm are now grouped at
the beginning of the round and can be processed together in 4 cycles. The non serializable part
is left at the end of the round and performed in the extra cycle. The cost of this modification
only affects Midori-128 due to the 8-bit permutations used inside the SBox which have to be
shuffled. For implementing Midori-64 this design requires four 4-bit SBOX, an 8 XOR gates
version of MixColumn, 32 XOR gates, 14 16-bit round constants, and 192 FF. The latency of
this design amounts to 96 cycles, detailed as eight cycles to input the data, (16 × 5) + 4 = 84
cycles for the data processing, and four cycles to produce the output. For implementing Midori-
128 the hardware requirements are four 8-bit SBox, a 16 XOR gates version of MixColumn,
48 XOR gates, 18 16-bit round constants, and 256 FF. Four cycles are used to input the data,
(20× 5) + 4 = 104 cycles are used for the data processing, and four cycles are used to produce
the output, which sums a latency of 112 cycles to encrypt the data with this architecture.
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Fig. 6. Serial architecture for Midori-64 and Midori-128 with generalized reduction of the datapath width (serial-
2).

3.4 GIFT

The block cipher GIFT is said to be a direct improvement to Present “that provides a much
increased efficiency in all domains (smaller and faster)” and also patches security weaknesses of
the latter (in regards to linear cryptanalysis). Two specifications of the algorithm were presented
in [7] for block sizes of 64 and 128-bit, these are shown in Alg. 3. A key size of 128-bit is used
in both versions of the algorithm.

Algorithm 3 Encryption procedure for GIFT as described in [7] where n = {64, 128}, k = 128,
and r = {28, 40} for {GIFT-64, GIFT-128}, respectively.
Input: An n-bit plaintext P, a 128-bit secret key K.
Output: An n-bit ciphertext C.
S ← P
K ← K
C0 ← 0
for i = 1 to r do
S ← SubCells(S)
S ← PermBits(S)
Ci ← f(Ci−1)
S ← AddRoundKey(S,K,Ci)
K ← g(K)

end for
C ← S
return C

In Alg. 3 the function f represents updating the round constant, which is generated using
a LFSR. The function g represents a permutation which updates the key register in order to
generate the next round key.

The iterative architecture created for GIFT is presented in Figure 7 (left). This design is a
direct implementation of the specification with 8-bit IO ports. For GIFT-64 or GIFT-128 the
design requires n/4 4-bit SBOX, n/2 + 6 XOR gates, a NOT gate, and n+ 134 FF. The latency
for GIFT-64 is of 24 cycles for the data input and output and 28 cycles for the data processing,
which sums 52 cycles. The latency for GIFT-128, 16 cycles are spent in the data input, 40
cycles are used in the data processing, and 16 cycles are required to produce the output, which
amounts to a total latency of is 72 cycles.

Fig. 8 presents our serial-1 architecture for GIFT. This design uses 8-bit IO ports and
has a serialized application of the substitution layer based on two 4-bit SBOX. The architecture
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Fig. 7. Iterative architecture for GIFT-64 and GIFT-128.

illustrated describes both GIFT-64 and GIFT-128. In the case of GIFT-64 the implementation
requires two 4-bit SBOX, 38 XOR gates, a NOT gate, and 198 FF. For this version 16 cycles
are needed to take in the data block and the cipher key, and 8 cycles are used to produce
the output. Due to the serialization of the substitution layer, 8 cycles are used per round plus
1 extra cycle for the processing of the rest of the round operations. This sums a latency of
16 + (9∗28) + 8 = 276 cycles. For GIFT-128, two 4-bit SBOX, 70 XOR gates, a NOT gate, and
262 FF are used. In this case the latency is of 16 + (17 ∗ 40) + 16 = 712 cycles, which includes
the data input, processing, and output steps.

Fig. 8. Serial-1 architecture for GIFT-64 and GIFT-128 with reduced number of substitution boxes.

Our serial-2 architecture for GIFT, shown in Fig. 9, was created by serializing the substi-
tution, permutation, and key addition layers. in Alg. 3. The datapath width d was adjusted
to 16-bit for GIFT-64 and to 32-bit for GIFT-128. The reduction of the substitution layer
is straightforward for GIFT. We used a regular pattern found in the original permutation to
reduce the permutation layer width to a quarter of its original width. However, by using this
reduction an additional transposition of the state is required. Let us use a 2-D representation of
the state as described in [7]. The new reduced permutation will yield a transposed version of the
2-D state, arranged in 16 n/16-bit nibbles. Thus, the additional permutation is a shuffling of the
state in 4-bit nibbles for GIFT-64 and 8-bit nibbles for GIFT-128. This strategy is similar to
that used in [20] for Present. The small permutation is applied on a serialized manner while
the transposition is applied over the state during an additional cycle. The round key also needs
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to be shuffled to accommodate for this intermediate result. In order to serialize the key addition
step, we separated the addition of the keying materials and the addition of the round constants.
The keying materials are derived from the key register, shuffled, and serialized, before being ap-
plied to the state. The round constants are applied to the state during the additional cycle while
the key register is updated. Based on this architecture, the implementation of GIFT-64 requires
four 4-bit SBOX, 14 XOR gates, a NOT gate, and 198 FF. The implementation of GIFT-128
uses eight 4-bit SBOX, 22 XOR gates, a NOT gate, and 262 FF. In this design, the data input
takes 128/d cycles and producing the output takes four cycles. The data processing uses four
cycles for the serialized steps and a fifth cycle for completing the round processing and updating
the key register. The total latency for GIFT-64 and GIFT-128 is of 8+(5∗28)+4 = 152 cycles
and 4 + (5 ∗ 40) + 4 = 208 cycles, respectively.

Fig. 9. Serial-2 architecture for GIFT-64 and GIFT-128 with generalized reduction of the datapath. The value
d equals n/4.

3.5 Gimli

Gimli is a 384-bit permutation “designed to achieve high security with high performance across a
broad range of platforms”. According to its creators, this permutation can be easily used to build
high-security block ciphers. We have included this algorithm into our review since its authors
claim it was designed for “energy-efficient hardware” and “compactness”. The specification for
this function is presented in Alg. 4. Since the implementations provided in [8] do not implement
a block cipher, a secret key is not used.

The design shown in Fig. 10 is the iterative implementation for Gimli as presented in [8].
In this instance a block size of 384-bit is used. The application of the parallel SP-box requires
two 384-bit permutations, 768 XOR gates, 256 AND gates, and 128 OR gates. The Big-Swap
and the Small-Swap can be seen as 384-bit permutations. Finally, 37 XOR gates are used for
the addition of the round constants. Since this architecture uses 8-bit IO ports, a latency of 48
cycles is needed to input a 384-bit message. The data processing takes 24 cycles. Lastly another
48 cycles are required to produce a 384-bit output block. In total, this architecture has a latency
of 120 cycles.

The serial-1 architecture for Gimli is shown in Fig. 11, this design was retrieved from [8].
The main strategy for reducing resources consists on serializing the application of the SP-box
layer. In this instance, 96-bit of the state are processed in parallel so that four cycles are required
for each application of the SP-box layer. The other transformations are applied to the state in
a fifth cycle, which is present for half of the rounds. The application of the serialized SP-box
requires two 96-bit permutations, 192 XOR gates, 64 AND gates, and 32 OR gates. The Big-
Swap and the Small-Swap can still be represented as 384-bit permutations and 37 XOR gates
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Algorithm 4 The permutation Gimli as presented in [8].
Input: An r-bit block P.
Output: A r-bit block C.
S

⊕←− P
for i = 24 to 1 do
S ← SP-box(S)
if i mod 4 = 0 then
S ← Small-Swap(S)

else if i mod 4 = 2 then
S ← Big-Swap(S)

end if
if i mod 4 = 0 then
S ← Add-Constant(S, 0x9e377900, i)

end if
end for
C ← S
return C

Fig. 10. Iterative architecture for Gimli provided in [8].

are also used for the addition of the round constants. A latency of 48 cycles is required for the
data input and also for the data output. In the data processing half of the rounds only apply
the SP-box layer which takes 4 cycles, the other half takes 5 cycles. The total latency for this
architecture is of 48 + (12 ∗ 4) + (12 ∗ 5) + 48 = 204 cycles.

Fig. 11. Serial architecture for Gimli as presented in [8] (serial-1).
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3.6 Summary

Table 1 provides a summary of the different architectures discussed in this section.

Table 1. Summary of the different designs reviewed in this section.

Label Alg.
State
(bits)

Key
(bits)

Rounds Ref. Arch.
Latency
(cycles)

Hardware resources
SBOX Gates Const. FFs

C01
Present 64 128 31

[23] Iterative 55 17 77 1 192
C02 [23] Serial-1 303 2 21 1 192
C03 [20] Serial-2 136 6 21 1 192

C04
Midori-64 64 128 16

Ours Iterative 41 16 112 14 192
C05 Ours Serial-1 169 2 112 14 192
C06 Ours Serial-2 96 4 40 14 192
C07

Midori-128 128 128 20
Ours Iterative 53 32 208 18 256

C08 Ours Serial-1 373 2 208 18 256
C09 Ours Serial-2 112 8 64 18 256

C10
GIFT-64 64 128 28

Ours Iterative 52 16 39 0 198
C11 Ours Serial-1 276 2 39 0 198
C12 Ours Serial-2 152 4 15 0 198
C13

GIFT-128 128 128 40
Ours Iterative 72 32 71 0 262

C14 Ours Serial-1 712 2 71 0 262
C15 Ours Serial-2 208 8 23 0 262

C16
Gimli 384 - 24

[8] Iterative 120 0 1189 2 384
C17 [8] Serial-1 204 0 325 2 384

4 Experimental Evaluation

The different designs in Table 1 are used as configurations for our experimental evaluation.
The VHDL description for the Present implementations is the one used in [23] and [20]. The
hardware descriptions for the different Midori and GIFT architectures were created in this
work. Lastly, the VHDL description for the Gimli architectures is the one used in [8].

All the configurations were implemented for the xc6slx16-3csg324 FPGA using ISE Design
Suite 14.2 and for the xc7a15t-1cpg236c FPGA using Vivado Design Suite 2017.3 Version. The
synthesis process was configured with Area as optimization goal in both instances. The use of
RAM/ROM elements was disabled for all the implementations. We provide Post-Place & Route
area results in terms of slices (SLC), Look-Up-Tables (LUT), and Flip-Flops (FF) for all the
configurations in the two implementation platforms.

In regards to performance, we report the total latency (LAT), the maximum achievable
frequency (Fmax) from the Post-Place & Route report, the runtime (Time), and the throughput
(Thr) for each configuration. The throughput was calculated for operational frequencies of
100KHz and Fmax as Thr = ( state size × Freq ) / LAT.

A power analysis for the xc6slx16-3csg324 FPGA was performed using the Xilinx XPower
Analyzer tool version 14.2 for operational frequencies of 100KHz and Fmax. The power esti-
mations were obtained after place and route using Xilinx XPower Analyzer 14.3 with HIGH
overall confidence level. This analysis used the Post-Place & Route Design file (ncd), a Physical
Constraints file (pcf) specific for the evaluation target, and a Simulation Activity file (saif)
generated from a Post-Place & Route simulation in Isim. The Simulation Run Time was of
100ms for all the 100KHz instances and of 100µs for all the Fmax instances. From this evalu-
ation we report the quiescent and dynamic power for each design. The power dissipation and
the performance at 100KHz and Fmax were then used to calculate the energy consumption for
each configuration.

We use three efficiency (EFF) metrics to evaluate the different configurations. The first
figure represents the relation between performance and area and is given in Kbps per SLC.
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The second figure represents the relation between energy and area and is given in µJ per SLC.
Lastly, the third efficiency indicator represents the relation between the energy spent and the
bits processed and is expressed in nJ per bit. These metrics are expected to indicate the prowess
of the configurations for different trade offs, which might be attractive for different application
scopes.

5 Results

The area and performance results for the implementations in the xc6slx16-3csg324 FPGA are
presented in Table 2.

Table 2. Area and performance results for the xc6slx16-3csg324 FPGA using operational frequencies of 100KHz
and Fmax.

Cipher Ref. Conf.
Size (bits) Resources LAT

(Cycles)
Fmax
(MHz)

Time (µs) Thr (Mbps) EFF (Kbps/SLC)
State Key IO DP FF LUT SLC 100KHz Fmax 100KHz Fmax 100KHz Fmax

Present
[23]

C01 64 128 8 64 200 202 56 55 145.35 550 0.38 0.12 169.13 2.08 3020.24
C02 64 128 8 8 203 157 45 303 131.87 3030 2.30 0.02 27.85 0.47 618.99

[20] C03 64 128 16 16 201 220 61 148 159.21 1480 0.93 0.04 68.85 0.71 1128.65

Midori-64 Ours
C04 64 128 8 64 200 356 118 41 166.17 410 0.25 0.16 259.38 1.32 2198.17
C05 64 128 8 8 203 262 109 169 141.56 1690 1.19 0.04 53.61 0.35 491.83
C06 64 128 16 16 202 268 96 96 157.80 960 0.61 0.07 105.20 0.69 1095.86

Midori-128 Ours
C07 128 128 8 128 264 549 157 53 157.95 530 0.34 0.24 381.47 1.54 2429.75
C08 128 128 8 8 269 390 115 373 139.31 3730 2.68 0.03 47.81 0.30 415.72
C09 128 128 32 32 267 482 155 112 86.07 1120 1.30 0.11 98.37 0.74 634.64

GIFT-64 Ours
C10 64 128 8 64 205 189 58 52 218.10 520 0.24 0.12 268.43 2.12 4628.17
C11 64 128 8 8 209 151 44 276 225.53 2760 1.22 0.02 52.30 0.53 1188.56
C12 64 128 16 16 208 235 67 152 219.44 1520 0.69 0.04 92.40 0.63 1379.06

GIFT-128 Ours
C13 128 128 8 128 270 290 93 72 189.93 720 0.38 0.18 337.66 1.91 3630.75
C14 128 128 8 8 275 286 81 712 144.15 7120 4.94 0.02 25.92 0.22 319.94
C15 128 128 32 32 273 256 66 208 217.63 2080 0.96 0.06 133.92 0.93 2029.16

Gimli [8]
C16 384 - 8 384 394 587 174 120 121.34 1200 0.99 0.32 388.30 1.84 2231.62
C17 384 - 8 32 397 493 164 204 148.88 2040 1.37 0.19 280.24 1.15 1708.76

Figures 12 and 14 offer graphic representation for some results from Table 2.

Fig. 12. Area results of lightweight block ciphers using the xc6slx16-3csg324 FPGA. Results obtained after place
and route. Plots are divided between iterative (left), serial-1 (center), and serial-2 (right) architectures.

The results for the power analysis and energy consumption calculations for the different
configurations implemented in the xc6slx16-3csg324 FPGA are provided in Table 3.

Figure ?? shows a graphic representation for some results from Table 3.
The area results in the xc7a15t-1cpg236c FPGA are shown in Fig. 15.
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Fig. 13. Performance results of lightweight block ciphers using the xc6slx16-3csg324 FPGA for operational fre-
quencies of 100KHz and Fmax. Results obtained after place and route. Plots are divided between iterative (left),
serial-1 (center), and serial-2 (right) architectures.

Table 3. Power and energy results for the xc6slx16-3csg324 FPGA using operational frequencies of 100KHz and
Fmax.

Cipher Ref. Conf.
POW@100KHz (mW) ENE@100KHz

(nJ)
EFF@100KHz POW@Fmax (mW) ENE@Fmax

(nJ)
EFF@Fmax

Quiescent Dynamic (nJ/SLC) (nJ/bit) Quiescent Dynamic (nJ/SLC) (nJ/bit)

Present
[23]

C01 21.51 0.50 12105.50 216.17 189.15 21.82 31.22 20.07 0.36 0.31
C02 21.51 0.55 66841.80 1485.37 1044.40 21.68 17.48 89.98 2.00 1.41

[20] C03 21.51 0.49 32560.00 533.77 508.75 21.89 37.67 55.37 0.91 0.87

Midori-64 Ours
C04 21.51 0.50 9024.10 76.48 141.00 22.00 48.36 17.36 0.15 0.27
C05 21.51 0.48 37163.10 340.95 580.67 21.69 18.07 47.47 0.44 0.74
C06 19.90 0.47 19555.20 203.70 305.55 20.14 24.72 27.29 0.28 0.43

Midori-128 Ours
C07 21.51 0.52 11675.90 74.37 91.22 22.28 75.15 32.69 0.21 0.26
C08 21.51 0.49 82060.00 713.57 641.09 21.76 24.98 125.14 1.09 0.98
C09 19.90 0.53 22881.60 147.62 178.76 20.38 48.13 89.15 0.58 0.70

GIFT-64 Ours
C10 21.51 0.49 11440.00 197.24 178.75 21.94 42.29 15.31 0.26 0.24
C11 21.51 0.46 60637.20 1378.12 947.46 21.68 17.63 48.11 1.09 0.75
C12 19.90 0.46 30947.20 461.90 483.55 20.10 20.99 28.46 0.42 0.44

GIFT-128 Ours
C13 21.51 0.49 15840.00 170.32 123.75 22.03 51.32 27.81 0.30 0.22
C14 21.51 0.48 156568.80 1932.95 1223.19 21.65 14.24 177.27 2.19 1.38
C15 19.90 0.46 42348.80 641.65 330.85 20.20 30.79 48.73 0.74 0.38

Gimli [8]
C16 21.51 0.58 26508.00 152.34 69.03 21.74 23.39 44.63 0.26 0.12
C17 21.51 0.57 45043.20 274.65 117.30 21.73 21.99 59.91 0.37 0.16

Fig. 14. Power and energy results of lightweight block ciphers using the xc6slx16-3csg324 FPGA for operational
frequencies of 100KHz and Fmax. Results obtained after place and route. Plots are divided between iterative
(left), serial-1 (center), and serial-2 (right) architectures.
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Fig. 15. Area results of lightweight block ciphers using the xc7a15t-1cpg236c FPGA. Results obtained after place
and route. Plots are divided between iterative (left), serial-1 (center), and serial-2 (right) architectures.

5.1 Discussion

The iterative architectures presented for Midori and GIFT offer a good balance between area
and performance. While iterative implementations are generally more efficient, serial architec-
tures can be used in cases where further area reduction is needed.

The first type of serial architectures described (S1: reduction of the SBOX count) offers a
reduction in the hardware resources over the iterative architectures for all the block ciphers
reviewed. But the latency is the least favorable for every instance. The second type of serial
architectures (S2: general reduction of the datapath) offers better performance than the S1
type. The hardware profile seems to vary from design to design. For Present, the serial-2
architecture (C03) appears to be ineffective compared to C01 in the xc6slx16-3csg324 FPGA.
However, the improvement for this design (C03) is palpable when implemented on the xc7a15t-
1cpg236c FPGA. Other instances where the serial-2 architecture is advantageous for area occur
for Midori-64 and GIFT-128 in the xc6slx16-3csg324 FPGA and for Midori-64 in the xc7a15t-
1cpg236c FPGA.

The iterative architectures consistently achieved the smaller energy consumption figures.
However, the second type of serial architectures dissipated the least power for Midori and
GIFT at low operational frequencies (100KHz). While low energy consumption is a desirable
trait for extending the lifetime of battery-powered applications such as WSN motes, low power
dissipation is required in passive devices such as RFID tags.

Even though high operational frequencies lead to increased power dissipation, the execution
times obtained from the frequency increment, and the resulting energy consumption, are greatly
improved. For throughput, the variation from 100KHz to Fmax is generally of three orders of
magnitude, which coincides with the reduction of the execution time. The frequency increment
causes the power dissipation to double for all the configurations, but due to the delay reduction
the final energy consumption is also reduced three orders of magnitude for almost all the con-
figurations. This experiment presents evidence that constrained devices can benefit from high
operational frequencies, however, the application scope shall ultimately dictate the operational
frequency to be used.

From the results it is possible to note how small IO buffers can be a burden for an implemen-
tation. It is known that most constrained devices can not afford to implement wide interfaces.
But if the IO width selected is too small, the port interfacing will take longer than the data
processing itself. This is more evident with primitives with large block sizes such as Midori-128,
GIFT-128 and Gimli.

The efficiency results allow drawing specific comparisons among the different configurations.
From the performance per slice comparison of Fig. 16, it is possible to note that the iterative
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architectures (C01, C04, C07, C10, C13, C16) are consistently more efficient compared to the
serial realizations. From this set, the iterative implementations of the GIFT block cipher, in
both 64 (C10) and 128 bits (C13) instances, resulted to be the most efficient. The results are
consistent for both operational frequencies used.

Fig. 16. Efficiency in terms of performance per slice for the different configurations using the xc7a15t-1cpg236c
FPGA. Plots are divided between iterative (left), serial-1 (center), and serial-2 (right) architectures.

In terms of energy per slice, Fig. 17, the minimal energy expenditure per slice is observed
for the iterative realization of Midori-64 (C04) and Midori-128 (C07). The maximum energy
per slice was observed for the serial architectures of GIFT (C14) and Present (C02), these
designs both follow the approach of reducing the number of substitution boxes in the design. In
this case the behavior for both operational frequencies is similar even though the difference of
three orders of magnitude is noticeable.

Fig. 17. Efficiency in terms of energy per slice for the different configurations using the xc7a15t-1cpg236c FPGA.
Plots are divided between iterative (left), serial-1 (center), and serial-2 (right) architectures.

Both implementations for the Gimli permutation (C16, C17) obtained the smaller expen-
ditures in the energy per bit efficiency results, as shown in Fig. 18. These were followed by the
iterative implementations of GIFT-128 (C13) and GIFT-64 (C10). The same pattern can be
discerned for both operational frequencies used.
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Fig. 18. Efficiency in terms of energy per bit for the different configurations using the xc7a15t-1cpg236c FPGA.
Plots are divided between iterative (left), serial-1 (center), and serial-2 (right) architectures.

5.2 Comparison with the State of the Art

In the literature we found one work which implements the Midori block cipher in FPGA [24].
In that reference the authors propose fault-diagnosis schemes for Midori-128 and compare them
with the “Original Midori128 Encryption” in an xc7vx330t FPGA. Results in SLC, maximum
frequency, power, and throughput are provided for four Midori-128 implementations. Since a
different FPGA platform is used and not all the information is available (latency, synthesis
criteria) it is difficult to have a fair comparison. In regards to area, the implementations in [24]
cost from 155 to 171 SLC while our designs for Midori-128 in the xc6slx16-3csg324 FPGA cost
from 112 to 162 SLC. In performance, our fastest implementation of Midori-128 can reach up
to 433 Mbps while the range in [24] is 42.52 to 47.41 Gbps. The power requirements for our
designs range from 20.42 mW to 22.02 mW while the more modest design in [24] requires 340
mW. Its clear that our implementations were created following different design goals. While the
results in [24] were obtained for improved security and high performance, our implementations
seek to provide low implementation size and energy consumption.

No FPGA implementations for GIFT were found in our review.

6 Conclusions

In this paper we have studied cryptographic algorithms which can substitute the use of Present
and might be considered for future standardization. Even though the modern constructions are
efficient, they can not improve the resource requirements of Present for secure state sizes.

We have provided lightweight hardware architectures for the Midori and Gimli block ci-
phers. The proposed designs exhibit varying trade-offs which can be attractive for different
applications. In order to increase the usability of our work the hardware descriptions for these
architectures are made public.

To the best of our knowledge, we have obtained the first FPGA results for the GIFT block
cipher and the first area-optimized implementations for Midori.

Extension statement

This paper is an extension of the work presented in [1]. In this version we have expanded on the
background and motivation for our research. We have provided further detail of the architectures
reviewed. The provided results are now accompanied by graphs for improving the readability of
our findings. And lastly, we have included insights on the security of the reviewed block ciphers
in relation to modern attacks.
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