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Abstract

We present a construction of an adaptively single-key secure constrained PRF (CPRF) for NC1

assuming the existence of indistinguishability obfuscation (IO) and the subgroup hiding assumption over a
(pairing-free) composite order group. This is the first construction of such a CPRF in the standard model
without relying on a complexity leveraging argument.

To achieve this, we first introduce the notion of partitionable CPRF, which is a CPRF accommodated
with partitioning techniques and combine it with shadow copy techniques often used in the dual system
encryption methodology. We present a construction of partitionable CPRF for NC1 based on IO and the
subgroup hiding assumption over a (pairing-free) group. We finally prove that an adaptively single-key
secure CPRF for NC1 can be obtained from a partitionable CPRF for NC1 and IO.
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1 Introduction

1.1 Background

Constrained pseudorandom function (CPRF) [BW13]1 is a PRF with an additional functionality to “constrain”
the ability of a secret key. A constrained key associated with a boolean function f enables us to compute a
PRF value on inputs x such that f(x) = 0.2 Security of CPRF roughly requires that for a “challenge input” x∗
such that f(x∗) = 1, the PRF value on x∗ remains pseudorandom given skf . There are many applications of
CPRFs including broadcast encryption [BW13], attribute-based encryption (ABE) [AMN+18], identity-based
non-interactive key exchange [BW13], and policy-based key distribution [BW13].

Since the proposal of the concept of CPRF, there have been significant progresses in constructing CPRFs
[BW13, KPTZ13, BGI14, BZ14, BFP+15, BV15, DKW16, AFP16, Bit17, GHKW17, BLW17, BKM17,
CC17b, BTVW17, PS18, AMN+18]. However, most known collusion-resistant3 CPRFs (e.g., [BW13]) only
satisfy weaker security called “selective-challenge” security, where an adversary must declare a challenge
input at the beginning of the security game. In the single-key setting where an adversary is given only one
constrained key (e.g., [BV15]), we often consider “selective-constraint” security where an adversary must
declare a constraint for which it obtains a constrained key at the beginning of the security game whereas it
is allowed to choose a challenge input later.4 In a realistic scenario, adversaries should be able to choose a
constraint and a challenge input in an arbitrary order. We call such security “adaptive security”.

An easy way to obtain an adaptively secure CPRF is converting selective-challenge secure one into
adaptively secure one by guessing a challenge input with a standard technique typically called complexity
leveraging. However, this incurs an exponential security loss, and thus we have to rely on sub-exponential
assumptions. We would like to avoid this to achieve better security. In the random oracle model, Hofheinz,
Kamath, Koppula, and Waters [HKKW19] constructed an adaptively secure collusion-resistant CPRF for all
circuits without relying on complexity leveraging based on indistinguishability obfuscation (IO) [BGI+12,
GGH+16], and Attrapadung et al. [AMN+18] constructed an adaptively single-key secure CPRF for NC1 on
pairing-free groups. However, the random oracle model has been recognized to be problematic [CGH04].

There are a few number of adaptively secure CPRFs in the standard model. Hohenberger, Koppula, and
Waters [HKW15] constructed an adaptively secure puncturable PRF based on IO and the subgroup hiding
assumption on a composite order group.5 Very recently, Davidson et al. [DKNY18] constructed an adaptively
secure CPRF for bit-fixing functions secure against a constant number of collusion based on one-way functions.
However, these schemes only support puncturing functions or bit-fixing functions which are very limited
functionalities, and there is no known construction of adaptively secure CPRF for a sufficiently expressive
function class (e.g., NC1 or all polynomial-size circuits) even in the single-key setting and even with IO.

1It is also known as delegatable PRF [KPTZ13] and functional PRF [BGI14].
2We note that the role of the constraining function f is “reversed” from the definition by Boneh and Waters [BW13], in the sense

that the evaluation by a constrained key skf is possible for inputs x with f(x) = 1 in their definition, while it is possible for inputs x
for f(x) = 0 in our paper. Our treatment is the same as Brakerski and Vaikuntanathan [BV15].

3A CPRF is called collusion-resistant if it remains secure even if adversaries are given polynomially many constrained keys.
4In previous works, both selective-challenge and selective-constraint security are simply called selective security. We use different

names for them for clarity.
5More precisely, they also generalized their construction to obtain a CPRF for t-puncturing functions, which puncture the input

space on t points for a polynomial t (rather than a single point).
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1.2 Our Contribution

In this study, we achieve an adaptively single-key secure CPRF for NC1 assuming the existence of IO and the
subgroup hiding assumption over a (pairing-free) composite order group. This is the first construction of such
a CPRF in the standard model without relying on the complexity leveraging technique.

We emphasize that using IO is not an easy solution to achieve adaptive security even in the single-key
setting, although IO is a strong cryptographic tool (a.k.a. “heavy hammer”). All CPRFs for a sufficiently
expressive class based on IO in the standard model do not achieve adaptive security if we do not rely on
complexity leveraging [BZ14, BLW17, AFP16, DKW16, DDM17].

1.3 Design Idea and Technical Overview

In this section, we give an overview of our design idea and technique.

Toward adaptive security: partitioning technique. Our construction is based on a technique called the
partitioning technique, which has been widely used to achieve adaptive security in the context of signature,
identity-based encryption, verifiable random function etc. [BB04, Wat05, CHKP12, Jag15, Yam17]. Roughly
speaking, in the partitioning technique, a reduction algorithm partitions the input space into two disjoint
spaces, the challenge space and the simulation space, so that it can compute PRF values on all inputs in
the simulation space whereas it cannot compute it on any input in the challenge space. More specifically,
the input space is partitioned via an admissible hash function denoted by h : {0, 1}n → {0, 1}m and a
partitioning policy u ∈ {0, 1,⊥}m where {0, 1}n is the input space.6 We partition the input space {0, 1}n so
that x ∈ {0, 1}n is in the challenge space if Pu(h(x)) = 0 and it is in the simulation space if Pu(h(x)) = 1,
where Pu is defined by

Pu(y) =
{

0 If for all i ∈ [m], ui = ⊥ ∨ yi = ui

1 Otherwise
,

where yi and ui are the i-th bit of y and u, respectively. If we choose u according to an appropriate
distribution (depending on the number of evaluation queries), the probability that all evaluation queries fall
in the simulation space and a challenge query falls in the challenge space is noticeable, in which case, a
reduction algorithm works well. The crucial feature of this technique is that a reduction algorithm need not
know a challenge query at the beginning of its simulation.

Though it may seem easy to construct adaptively secure CPRFs based on the above idea, it is
not the case because we also have to simulate constrained keys in security proofs of CPRFs. Indeed,
Hofheinz et al. [HKKW19] observed that the partitioning technique does not seem to work for constructing
collusion-resistant CPRFs. Nonetheless, we show that it works in the case of single-key secure CPRFs by
using a partitionable CPRF which we introduce in this study.

Partitionable CPRF. Intuitively, a partitionable CPRF is a CPRF with an additional functionality that
enables us to generate a “merged” key from two independent master keys and a partitioning policy u. The
behavior of a merged key depends on whether an input is in the challenge space or in the simulation space.
Namely, if we merge msk0 and msk1 with a partitioning policy u to generate a merged key k[msk0,msk1, u],
then it works similarly to msk0 for inputs x in the challenge space, and msk1 for inputs x in the simulation
space. We often call msk0 a real master key, and msk1 a “shadow” master key because the former is the real

6Actually, we use an extended notion called a balanced admissible hash function. (See Section 2.2.)
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master secret key used in actual constructions and the latter is an artificial key that only appears in security
proofs.

For a partitionable CPRF, we require two properties. First, we require that it satisfy selective-constraint
no-evaluation security as a CPRF, where an adversary must declare its unique constraining query at the
beginning of the security game and does not make any evaluation queries. Here, it is important that in
this security notion, an adversary is allowed to adaptively choose a challenge query. Second, we require
a property called the partition-hiding, which means that k[msk0,msk1, u] does not reveal u. In particular,
k[msk0,msk1,⊥m], which works exactly the same as msk0, is computationally indistinguishable from
k[msk0,msk1, u].

Adaptively secure CPRF from partitionable CPRF. Now, we take a closer look at how we construct an
adaptively single-key secure CPRF based on a partitionable CPRF and IO. Master secret keys and PRF values
of the CPRF are defined to be exactly the same as those of the underlying partitionable CPRF. The only
difference between them is the way of generating constrained keys. In the proposed CPRF, a constrained key
for a function f is an obfuscated program that computes PRF values on all inputs x such that f(x) = 0 with a
real master secret key.

The security proof proceeds as follows. First, we remark that if a challenge query is made before the
constraining query, then the proof is easy by the standard puncturing technique [SW14, BZ14]. Thus, in
the following, we assume that a challenge query is made after the constraining query. First, we modify the
security game so that we use k[msk0,msk1,⊥m] instead of msk0 where msk1 is a “shadow” master secret
key that is independent from msk0. This modification causes a negligible difference by the security of
IO because k[msk0,msk1,⊥m] works exactly the same as msk0. Then we replace k[msk0,msk1,⊥m] with
k[msk0,msk1, u] for a partitioning policy u chosen from an appropriate distribution. This modification causes
a negligible difference by the partition-hiding of the underlying partitionable CPRF. Here, suppose that all
evaluation queries are in the simulation space, and the challenge query x∗ is in the challenge space. Such an
event occurs with noticeable probability by the way we choose u. In this case, all evaluation queries can be
simulated by using the shadow master secret key msk1 whereas a challenge value is computed by using the
real secret key msk0. Then we modify a constrained key skf associated with a function f so that we hardwire
skreal
f , which is a constrained key associated with the function f derived from msk0 by the constraining

algorithm of the underlying partitionable CPRF, instead of msk0. This modification causes a negligible
difference by the security of IO since skreal

f and msk0 work similarly on inputs x such that f(x) = 0. At this
point, a PRF value on x∗ such that f(x∗) = 1 is pseudorandom by the selective-constraint no-evaluation
security of the underlying partitionable CPRF (Recall that msk0 is not used for simulating the evaluation
oracle now). This completes the proof of the adaptive single-key security of the CPRF.

Partitionable CPRF for puncturing [HKW15]. What is left is a construction of a partitionable CPRF.
First, we observe that the construction of adaptively secure puncturable PRF by Hohenberger et al. [HKW15]
can be seen as a construction of a partitionable CPRF for puncturing functions. Their construction is a variant
of the Naor-Reingold PRF [NR04] on a composite order group G = Gp ×Gq of an orderN = pq. Namely, a
master secret key mskhkw consists of si,b ∈ ZN for i ∈ [m] and b ∈ {0, 1}, and their PRF Fhkw is defined as

Fhkw(mskhkw, x) := g
∏m

i=1 si,yi .

Here, g is a generator of G and yi is the i-th bit of y := h(x), where h is an admissible hash function. A
punctured key on the challenge input x∗ is an obfuscated program that computes Fhkw(msk, x) on all inputs
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x 6= x∗. They implicitly proved that the above construction is a partitionable CPRF for puncturing if we
define k[msk0,msk1, u] to be an obfuscation of a program that computes Fhkw(mskPu(x), x) on an input x.

We remark that we cannot directly reduce the partition-hiding property to the security of IO because the
functionality of k[msk0,msk1,⊥m] and k[msk0,msk1, u] differ on exponentially many inputs. They overcome
this problem by sophisticated use of the subgroup hiding assumption on a composite order group. Namely, we
can prove that this construction satisfies the partition-hiding under the security of IO and the subgroup hiding
assumption, which claims that random elements of Gp and G are computationally indistinguishable. Then
if we can prove the above construction is a selective-constraint no-evaluation secure CPRF for a function
class F , then we obtain an adaptively single-key secure CPRF for the function class F as discussed in the
previous paragraph. One may think that it is easy to prove that the above construction is selective-constraint
no-evaluation secure for all circuits by using the standard puncturing technique with IO [SW14, BZ14].
However, it is not the case because the selective-constraint security requires security against an adversary that
makes a challenge query after making a constraining query. Though IO is quite powerful when considering
selective-challenge security where an adversary declares a challenge query at the beginning, it is almost
useless for selective-constraint security where an adversary may adaptively choose a challenge query. For the
case of puncturable PRF, a challenge input is automatically determined when a constraining query is made,
and thus selective-constraint security is equivalent to selective-challenge security. This is why they achieved
adaptive security only for a puncturable PRF.

Partitionable CPRF for NC1. Finally, we explain how to construct a partitionable CPRF for NC1. Our
idea is to combine Hohenberger et al.’s construction as described above and the selective-constraint no-
evaluation secure CPRF for NC1 recently proposed by Attrapadung et al. [AMN+18]. The construction of
Attrapadung et al.’s CPRF Famnyy (instantiated on a composite order group G = Gp ×Gq) is described as
follows.

Famnyy(mskamnyy, x) = gU(~b,x)/α

wheremskamnyy = (~b ∈ ZzN , α ∈ ZN ) is a master secret key andU(·) is a polynomial that works as a universal
circuit for NC1. We omit a description of constrained keys for this CPRF since this is not important in this
overview (See Section 3.2 for details). They proved that Famnyy satisfies selective-constraint no-evaluation
security under the L-DDHI assumption7, which can be reduced to the subgroup hiding assumption (See
Lemma 2.3). An important fact is that their CPRF is secure against adversaries that adaptively make a
challenge query as long as a constraining query is declared at the beginning and they do not make any
evaluation queries.

Then we combine Famnyy and Fhkw to define Fours as follows:

Fours(mskours, x) = g(
∏m

i=1 si,yi )·U(~b,x)/α,

where x is an input, yi is the i-th bit of h(x), h is an admissible hash function, and mskours =
(~b, α, {si,b}i∈[m],b∈{0,1}) is a master secret key. A constrained key for a predicate f consists of that of Famnyy
and {si,b}i∈[m],b∈{0,1}. It is easy to see that this constrained key can be used to evaluate Fours(mskours, x) for
all x such that f(x) = 0 since we have

Fours(mskours, x) = Famnyy(mskamnyy, x)
∏m

i=1 si,yi

7It assumes that {(G, g, (gβ
i

)i∈[L], g
1/β)} ≈c {(G, g, (gβ

i

)i∈[L], ψ1)} holds, where G = (N,G,Gp,Gq, g1, g2), G, Gp, and
Gq are groups of order N , p, and q, respectively, g, g1, and g2 are generators of G, Gp, and Gq , respectively, and ψ1

R← G.
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where mskamnyy := (~b, α). By this equation, it is also easy to see that the selective-constraint no-evaluation
security of Fours can be reduced to that of Famnyy. A merged key is an obfuscated circuit that computes
Eval(mskPu(h(x)), x) where msk0 = (~b, α, {si,b}i∈[m],b∈{0,1}) and msk1 = (~̂b, α̂, {ŝi,b}i∈[m],b∈{0,1}) are two
independent master secret keys and u is a partitioning policy embedded into the merged key.

Now, we look at why the construction satisfies partition-hiding. Intuitively, a partitioning policy u is
hidden because it is hardwired in an obfuscated circuit. However, since the functionality of k[msk0,msk1,⊥m]
and k[msk0,msk1, u] differ on exponentially many inputs, we cannot directly argue indistinguishability of
them based on the security of IO. In the following, we explain how to prove it relying on the subgroup hiding
assumption. Roughly speaking, this consists of two parts. In the first part, we modify the way of computing
PRF values inside a merged key (which is an obfuscated program) so that it uses a different way to compute
them on inputs in the challenge space and on those in the simulation space. In the second step, we make a
shadow copy of the real master key by using the Chinese remainder theorem.

First, to modify the way of computing PRF values inside a merged key, we use the (m − 1)-DDH
assumption, which claims that we have {(G, g, (gβi)i∈[m−1], g

βm)} ≈c {(G, g, (gβ
i)i∈[m−1], ψ1)}, where

G = (N,G,Gp,Gq, g1, g2), G, Gp, and Gq are groups of order N , p, and q, respectively, g, g1, and g2 are
generators of G, Gp, and Gq, respectively, and ψ1

R← G. As shown in Lemma 2.3, this assumption can be
reduced to the subgroup hiding assumption. Recall that the partitioning policy Pu(y) outputs 0 (i.e., x is
in the challenge space) if for all i, ui = yi ∨ ui = ⊥. Here, we set si,η := βs′i,η ∈ ZN for all (i, η) such
that ui = ⊥ or η = ui, where s′i,η is a uniformly random and β comes from the (m − 1)-DDH instance.
The distributions of si,η set as above are statistically close to the original ones. Now, a merged key uses
the (m− 1)-DDH challenge w ∈ G (which is gβm or random) for simulating a PRF value on an input x in
the challenge space. That is, it computes the PRF value on x as w(

∏m

i=1 s
′
i,yi

)·U(~b,x)/α. On the other hand,
on inputs x in the simulation space, it uses the values (g, gβ, . . . , gβm−1) in the (m − 1)-DDH problem
instances as (gβr)(

∏m

i=1 s
′
i,yi

)·U(~b,x)/α, where r := |{i ∈ [m] | ui = yi}| ≤ m − 1. If w = gβ
m , then a

merged key as modified above correctly computes PRF values on all inputs. Thus, this modification causes a
negligible difference by the security of IO. Then we can replace w with a random element in G by using the
(m− 1)-DDH assumption.

Now, we use the subgroup hiding assumption to make a shadow copy of the real master key. By the
subgroup hiding assumption, we can replace w ∈ G and g ∈ G with w ∈ Gp and g ∈ Gq, respectively,
where G (resp. Gp, Gq) is a group of order N = pq (resp. p, q) and p, q are primes.8. Then, we
can set msk0 := {s′i,b mod p}i,b and msk1 := {s′i,b mod q}i,b. Since w ∈ Gp and gβj ∈ Gq where
j ∈ {1, . . . ,m− 1}, it holds that

w
(
∏
s′i,yi

)·U(~b,x)/α = w
((
∏
s′i,yi

)·U(~b,x)/α mod p)

(gβj )(
∏
s′i,yi

)·U(~b,x)/α = (gβj )((
∏
s′i,yi

)·U(~b,x)/α mod q)

and this change is indistinguishable due to the security of IO. Lastly, by the Chinese remainder theorem, msk0
and msk1 are independently and uniformly random (that is, msk1 can be changed into {ŝi,b mod q}i,b where
ŝi,b are independent of s′i,b and uniformly random). Now, the shadow master secret key is used for evaluating
PRF values on inputs in the challenge space whereas the real master secret key is used for evaluating those on
inputs in the simulation space as desired.

By these techniques, we can obtain a partitionable CPRF for NC1 based on IO and the subgroup hiding
assumption in pairing-free groups though we omit many details for simplicity in this overview.

8Note that being given both g1 ∈ Gp and g2 ∈ Gq does not lead to a trivial attack since we use “pairing-free” groups.
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In summary, we can obtain an adaptively single-key secure CPRF for NC1 by combining the above
partitionable CPRF for NC1 based on IO and the subgroup hiding assumption with the transformation from a
partitionable CPRF into an adaptively secure CPRF explained in the paragraph of “Adaptively secure CPRF
from partitionable CPRF”.

1.4 Discussion

Why subgroup-hiding needed? One may wonder why we need the subgroup hiding assumption as an extra
assumption though we rely on IO, which is already a significantly strong assumption. We give two reasons
for this below. The first reason is that we do not know how to construct a CPRF with selective-constraint
security (even in the single-key setting) from IO though we can construct collusion-resistant CRPF with
selective-challenge security from IO [BZ14]. In the CPRF based on IO, a constrained key is an obfuscated
program that evaluates the PRF on inputs that satisfy the constraint. In the security proof, we puncture the
obfuscated program on the challenge input by using the security of IO. This argument is crucially based on the
fact that the challenge is given before all constraining queries, and cannot be used in the selective-constraint
setting where the challenge is chosen after a constrained key is given. Since our security definition of
partitionable CPRF requires selective-constraint security, it seems difficult to construct it from IO.We note that
selective-constraint security (rather than selective-challenge security) of partitionable CPRF is crucial to prove
the adaptive security of our final CPRF. The second reason is specific to the security proof of our partitionable
CPRF. Namely, in the proof of the partition-hiding property of our partitionable CPRF, we have to modify
outputs of an obfuscated circuit (which is a constrained key) on exponentially many inputs. Since the security
of IO only enables us to modify an obfuscated circuit only on one input, it would need an exponential number
of hybrids to modify outputs on exponentially many inputs if we just use the security of IO. We overcome this
issue by sophisticated use of the subgroup hiding assumption in a similar way to the work by Hohenberger et
al. [HKW15]. We note that in this technique, the Chinese remainder theorem is essential, and we cannot
replace the assumption with the decisional linear (DLIN) assumption on a prime-order group, though there
are some known prime-to-composite-order conversions in some settings [Fre10, SC12, Lew12, HHH+14].

Why single-key security for NC1? One may wonder why our adaptive CPRF only achieves single-key
security rather than collusion-resistance and supports NC1 rather than all polynomial-size circuits (P/poly)
though there seems to be no obvious attack against our CPRF even if an adversary is given multiple constrained
keys for constraints possibly outside NC1.9 In fact, we can prove that our CPRF is collusion-resistant and
supports P/poly in the selective-challenge setting by the puncturing technique similarly to [BZ14]. However,
in the security of adaptive security, we crucially rely on the selective-constraint security of the underlying
partitionable CPRF, which stems from the CPRF by Attrapadung et al. [AMN+18]. Since their CPRF
only achieves single-key security and supports NC1, our CPRF inherits them. Possible alternatives to
their CPRF are lattice-based CPRFs [BV15, BTVW17, PS18] which satisfy selective-constraint single-key
security and supports P/poly. If we could use these CPRFs instead of Attrapadung et al.’s scheme, we would
obtain adaptively single-key secure CPRFs for P/poly. However, since we use techniques based on the
subgroup-hiding assumption in the proof of the partition-hiding property of our partitionable CPRF, we have
to rely on group-based CPRFs for compatibility to the technique, and this is the reason why we cannot use
lattice-based CPRFs.

9We note that even if the underlying partitionable CPRF only supports NC1, we can naturally define a constrained key for a
function outside NC1 in the CPRF given in Section 4 because a function class supported by the partitionable CPRF matters only in
the security proof and does not matter for the correctness.
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Relation with private CPRF. Partitionable CPRF and private CPRF [BLW17] share a similarity that
both enable one to modify functionality of a PRF key without revealing inputs on which outputs were
manipulated. Actually, a partitionable CPRF can be seen as a private CPRF for the “admissible hash friendly”
functionality [GHKW17]. On the other hand, the inverse is not true. Private CPRF does not put any restriction
on behaviors of a constrained key on inputs that do not satisfy the constraint except that they look random.
On the other hand, partitionable CPRF requires behaviors on these inputs should be consistent in the sense
that they are PRF values evaluated on another master secret key. This difference makes it more difficult to
construct a partitionable CPRF than constructing a private CPRF.

1.5 Other Related Work

Here, we discuss two additional related works that are relevant to adaptively secure CPRFs.
Fuchsbauer, Konstantinov, Pietrazk, and Rao [FKPR14] proved that the classical GGM PRF [GGM86]

is an adaptively secure puncturable PRF if the underlying PRG is quasi-polynomially secure. We note that
quasi-polynomially-secure PRG is a super-polynomial hardness assumption.

Canetti and Chen [CC17a] proposed a lattice-based construction of (constraint-hiding) single-key secure
CPRF for NC1 that achieves a weaker form of adaptive security where adversaries are allowed to send
logarithmically many evaluation queries before a constraining query as long as it correctly declares if the
evaluation query satisfies the constraint to be queried as a constraining query. We note that in the proceedings
version [CC17b], they claimed security against adversaries that make an unbounded number of evaluation
queries before a constraining query, but they retracted the claim [CC17a, footnotes 1 and 2]. We remark that
the adaptive security defined in this paper does not put any restriction on the number of evaluation queries
before a constraining query nor require adversaries to declare if the evaluation query satisfies the constraint to
be queried as a constraining query.

Organization. The rest of the paper is organized as follows. After introducing notations, security
definitions, and building blocks in Section 2, we present the definition of partitionable CPRF, our construction
of partitionable CPRF for NC1, and its security proofs in Section 3, and our adaptively single-key secure
CPRFs for NC1 and its security proofs in Section 4.

2 Preliminaries

In this section, we review the basic notation and the definitions for complexity assumptions, tools, and
cryptographic primitives.

Basic notation. We denote by N the set of all natural numbers. If n ∈ N, then “[n]” denotes the set
{1, . . . , n}. We denote by “x := y” that y is deterministically assigned to x. If S is a finite set, then “x R← S”
denotes that x is chosen uniformly at random from S. If D and D′ are distributions (over some set), then
“x R← D” denotes that x is chosen according to the distribution D, and “D ≈c D′” denotes that the two
distributions are computationally indistinguishable. If x and y are bit-strings, then we denote by “x‖y” the
concatenation of x and y, and “(x ?= y)” is defined to be 1 if x = y and 0 otherwise. “PPT” stands for
probabilistic polynomial time. If A is a probabilistic algorithm, then “y R← A(x)” denotes that A computes
and outputs y by taking x as input and using an internal randomness that is chosen uniformly at random. If
furthermore O is a (possibly probabilistic) function, then “AO” denotes that A has oracle access to O. A
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function f(·) : N→ [0, 1] is said to be negligible if for all polynomials p(·) and all sufficiently large λ ∈ N,
we have f(λ) < 1/p(λ). The function f is noticeable when there exists a polynomial p(·) such that we
have f(λ) ≥ |1/p(λ)| for all sufficiently large λ. Throughout the paper, we use “λ” to denote a security
parameter (which is given to algorithms always in the unary form 1λ). We denote by “poly(·)” an unspecified
integer-valued positive polynomial of λ and by “negl(λ)” an unspecified negligible function of λ. For sets D
andR, “Func(D,R)” denotes the set of all functions with domain D and rangeR.

2.1 Composite Order Group

In this paper, in a similar manner to Hohenberger et al. [HKW15], we will use a group of composite order in
which the subgroup hiding assumption holds. We recall it here.

Let GGen be a PPT algorithm (called the group generator) that takes a security parameter 1λ as input,
and outputs (N, p, q,G,Gp,Gq, g1, g2), where p, q ∈ Ω(2λ), N = pq, G is a cyclic group of order N , Gp

and Gq are the subgroups of G of orders p and q respectively, and g1 and g2 are generators of Gp and Gq

respectively. The subgroup hiding assumption with respect to GGen is defined as follows:

Definition 2.1 (Subgroup Hiding Assumption). Let GGen be a group generator. We say that the subgroup
hiding assumption holds with respect to GGen, if for all PPT adversaries A, the advantage Advsgh

GGen,A(λ)
defined below is negligible:

Advsgh
GGen,A(λ) :=

∣∣∣Pr[A(G, ψ0) = 1]− Pr[A(G, ψ1) = 1]
∣∣∣,

where (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), G := (N,G,Gp,Gq, g1, g2), ψ0
R← G, and ψ1

R← Gp.

For our purpose in this paper, it is convenient to introduce the following L-DDH10 and L-DDHI
assumptions with respect to GGen. These are not additional assumptions since they are implied by the
subgroup hiding assumption. For completeness, we give a proof sketch of the implications (using a reduction
shown by Hohenberger et al. [HKW14]).

Definition 2.2 (L-DDH&L-DDHIAssumptions). LetGGen be a group generator andL = L(λ) = poly(λ).
We say that the L-decisional Diffie-Hellman (L-DDH) assumption holds with respect to GGen, if for all PPT
adversaries A, the advantage AdvL-ddh

GGen,A(λ) defined below is negligible:

AdvL-ddh
GGen,A(λ) :=

∣∣∣Pr[A(G, g, (gαi)i∈[L], ψ0) = 1]− Pr[A(G, g, (gαi)i∈[L], ψ1) = 1]
∣∣∣,

where (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), G := (N,G,Gp,Gq, g1, g2), g R← G, α R← Z∗N , ψ0 :=
gα

L+1 , and ψ1
R← G.

The L-decisional Diffie-Hellman inversion (L-DDHI) assumption with respect to GGen is defined in the
same way as the above, except that “ψ0 := gα

L+1” is replaced with “ψ0 := g1/α”.

Lemma 2.3. Let GGen be a group generator. If the subgroup hiding assumption holds with respect to GGen,
then the L-DDH and L-DDHI assumptions hold with respect to GGen for all polynomials L = L(λ).

Proof Sketch of Lemma 2.3. Let GGen be a group generator. Firstly, it was shown by Hohenberger et
al. [HKW14, Theorem B.1] that the subgroup hiding assumption implies the L-DDH assumption for all
polynomials L = L(λ).

10The L-DDH assumption was called Assumption 2 by Hohenberger et al. [HKW14].

8



Secondly, it is straightforward to see that for all L = L(λ) = poly(λ), the L-DDH assumption
and the L-DDHI assumption are equivalent. Specifically, given an instance of the L-DDHI assumption
(G, g, (gαi)i∈[L], ψ) where ψ is either g1/α or a random element in G, let h := gα

L and β := 1/α. Then, we
have the correspondence hβi = gα

L−i for every i ∈ [L + 1]. Thus, (G, g, (gαi)i∈[L], ψ) can be rearranged
as (G, h, (hβi)i∈[L], ψ) with an appropriate reordering, which is distributed identically to an instance of the
L-DDH assumption. Note that ψ equals to g1/α or a random group element, and we have ψ = hβ

L+1 if the
former is the case. Hence, an adversary that can break the L-DDHI assumption can be directly used as an
adversary that can break the L-DDH assumption. The opposite implication can be established in a similar
way.

Hence, combining the above two arguments, we can conclude that the subgroup hiding assumption implies
the L-DDH and L-DDHI assumptions for all L = L(λ) = poly(λ).

2.2 Balanced Admissible Hash Functions and Related Facts

Here, we describe the definition of a balanced admissible hash function (AHF) introduced by Jager [Jag15].
A balanced AHF is an extension of an ordinary AHF [BB04, CHKP12], but with some more properties.
Similarly to an ordinary AHF, it partitions the input space in a security proof so that the simulation is possible
with a noticeable probability. The reason why we use a balanced AHF instead of an ordinary AHF is that the
former simplifies our security proof. We note that the following formalization of a balanced AHF is slightly
different from that by Jager [Jag15] and corresponds to a special case of the general notion of “a partitioning
function" introduced by Yamada [Yam17].

Definition 2.4 ([Jag15, Yam17]). Let n(λ) andm(λ) be polynomials. Furthermore, for u ∈ {0, 1,⊥}m, let
Pu : {0, 1}m → {0, 1} be defined as

Pu(y) =
{

0 If for all i ∈ [m], ui = ⊥ ∨ yi = ui

1 Otherwise
,

where yi and ui are the i-th bit of y and u, respectively. We say that an efficiently computable function
h : {0, 1}n → {0, 1}m is a balanced admissible hash function (balanced AHF), if there exists an efficient
algorithm AdmSample(1λ, Q, δ), which takes as input (Q, δ) whereQ = Q(λ) ∈ N is polynomially bounded
and δ = δ(λ) ∈ (0, 1] is noticeable, and outputs u ∈ {0, 1,⊥}m such that:

1. There exists λ0 ∈ N such that

Pr
[
u

R← AdmSample(1λ, Q(λ), δ(λ)) : u ∈ {0, 1}m
]

= 1

for all λ > λ0. Here, λ0 may depend on functions Q(λ) and δ(λ).

2. For λ > λ0 (defined in Item 1), there exist γmax(λ) and γmin(λ) that depend on Q(λ) and δ(λ) such
that for all x1, ..., xQ, x

∗ ∈ {0, 1}n with x∗ 6∈ {x1, ..., xQ},

γmax(λ) ≥ Pr [Pu(h(x1)) = ... = Pu(h(xQ)) = 1 ∧ Pu(h(x∗)) = 0] ≥ γmin(λ)

where γmax(λ) and γmin(λ) satisfy that the function τ(λ) defined as

τ(λ) = γmin(λ) · δ(λ)− γmax(λ)− γmin(λ)
2

is noticeable. We note that the probability is taken over the choice ofuwhereu R← AdmSample(1λ, Q(λ), δ(λ)).

9



Remark 2.5. The term τ(λ) defined above may appear very specific. However, as discussed by Jager [Jag15],
such a term appears typically in security analyses that follow the approach of Bellare and Ristenpart [BR09].
See also Lemma 2.6 below.

As shown by Jager [Jag15], who extended previous works that gave simple constructions of AHF
[Lys02, FHPS13], a family of codes h : {0, 1}n → {0, 1}m with minimal distancemc for a constant c is a
balanced AHF. Explicit constructions of such codes are known [SS96, Zém01, Gol08]. The following lemma
is adapted from Lemma 8 in the paper by Katsumata et al. [KY16] (see also Lemma 28 in the full version
of the paper by Agrawal et al. [ABB10]), and is implicit in many previous works [BR09, Jag15, Yam16].
The lemma encapsulates the change of the advantage of an adversary when there is an abort in the security
proof. Note that although the lemma is shown only in the specific case of IBE in the paper by Katsumata et
al. [KY16], the same proof works in the following slightly generalized setting as well.

Lemma 2.6. Let us consider a random variable coin R← {0, 1} and a random distribution D that takes as
input a bit b ∈ {0, 1} and outputs (X, ĉoin) such that X ∈ X and ĉoin ∈ {0, 1}, where X is some domain.
For D, we define ε0 as

ε0 :=
∣∣∣∣Pr

[
coin R← {0, 1}, (X, ĉoin) R← D(coin) : ĉoin = coin

]
− 1

2

∣∣∣∣
Let us define a map γ that maps an element in X to a real value in [0, 1]. We then further consider the
following modified distribution D′ that takes as input a bit b ∈ {0, 1} and outputs (X, ĉoin). To sample
from D′(b), we first sample (X, ĉoin) R← D(b). Then, with probability 1 − γ(X), we re-sample ĉoin as
ĉoin R← {0, 1}. With probability γ(X), the value of ĉoin is unchanged. The final output of D′(b) is (X, ĉoin).
Then, the following holds.∣∣∣∣Pr

[
coin R← {0, 1}, (X, ĉoin) R← D′(coin) : ĉoin = coin

]
− 1

2

∣∣∣∣ ≥ γmin · ε0 −
γmax − γmin

2
where γmin and γmax are the maximum and the minimum of γ(X) taken over all possibleX ∈ X , respectively.

2.3 Constrained Pseudorandom Functions

Here, we recall the syntax and security definitions for a CPRF. We use the same definitions as Attrapadung et
al. [AMN+18].

Syntax. Let F = {Fλ,k}λ,k∈N be a class of functions11 where each Fλ,k is a set of functions with domain
{0, 1}k and range {0, 1}, and the description size (when represented by a circuit) of every function in Fλ,k is
bounded by poly(λ, k).

A CPRF for F consists of the five PPT algorithms (Setup,KeyGen,Eval,Constrain,CEval) with the
following interfaces:

Setup(1λ) R→ pp: This is the setup algorithm that takes a security parameter 1λ as input, and outputs
a public parameter pp,12 where pp specifies the descriptions of the key space K, the input-length
n = n(λ) = poly(λ) (that defines the domain {0, 1}n), and the rangeR.

11In this paper, a “class of functions” is a set of “sets of functions”. Each Fλ,k in F considered for a CPRF is a set of functions
parameterized by a security parameter λ and an input-length k.

12For clarity, we will define a CPRF as a primitive that has a public parameter. However, this treatment is compatible with
the standard syntax in which there is no public parameter, because it can always be contained as part of a master secret key and
constrained secret keys.
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KeyGen(pp) R→ msk: This is the key generation algorithm that takes a public parameter pp as input, and
outputs a master secret key msk ∈ K.

Eval(pp,msk, x) =: y: This is the deterministic evaluation algorithm that takes a public parameter pp, a
master secret key msk ∈ K, and an element x ∈ {0, 1}n as input, and outputs an element y ∈ R.

Constrain(pp,msk, f) R→ skf : This is the constraining algorithm that takes as input a public parameter pp,
a master secret key msk, and a function f ∈ Fλ,n, where n = n(λ) = poly(λ) is the input-length
specified by pp. Then, it outputs a constrained key skf .

CEval(pp, skf , x) =: y: This is the deterministic constrained evaluation algorithm that takes a public
parameter pp, a constrained key skf , and an element x ∈ {0, 1}n as input, and outputs an element
y ∈ R.

Whenever clear from the context, we will drop pp from the inputs of Eval, Constrain, and CEval, and the
executions of them are denoted as “Eval(msk, x)”, “Constrain(msk, f)”, and “CEval(skf , x)”, respectively.

Correctness. For correctness of a CPRF for a function class F = {Fλ,k}λ,k∈N, we require that for all
λ ∈ N, pp R← Setup(1λ) (which specifies the input length n = n(λ) = poly(λ)), msk R← KeyGen(pp),
functions f ∈ Fλ,n, and inputs x ∈ {0, 1}n satisfying f(x) = 0, we have

CEval
(

Constrain(msk, f), x
)

= Eval(msk, x).

We stress that a constrained key skf can compute the PRF if f(x) = 0. (This treatment is reversed from the
original definition by Boneh and Waters [BW13].)

Security. Here, we give the security definitions for a CPRF. We only consider CPRFs that are secure in the
presence of a single constrained key, for which we consider two flavors of security: adaptive single-key security
and selective-constraint no-evaluation security.13 The former notion captures security against adversaries
A that may decide the constraining function f any time during the experiment. (That is, A can specify the
constraining function f even after seeing some evaluation results of the CPRF.) In contrast, the latter notion
captures security against adversaries that declare a constraining query at the beginning of the security game
and have no access to the evaluation oracle. The definition below reflects these differences.

Formally, for a CPRF CPRF = (Setup,KeyGen,Eval,Constrain,CEval) (with input-length n = n(λ))
for a function class F = {Fλ,k}λ,k∈N and an adversary A = (A1,A2), we define the single-key security
experiment Exptcprf

CPRF,F ,A(λ) as described in Figure 1.
In the security experiment, the adversary A’s single constraining query is captured by the function f

included in the first-stage algorithm A1’s output. Furthermore, A1 and A2 have access to the challenge
oracle OChal(·) and the evaluation oracle Eval(msk, ·), where the former oracle takes x∗ ∈ {0, 1}n as input,
and returns either the actual evaluation result Eval(msk, x∗) or the output RF(x∗) of a random function,
depending on the challenge bit coin ∈ {0, 1}.

We say that an adversary A = (A1,A2) in the experiment Exptcprf
CPRF,F ,A(λ) is admissible if A1 and A2

are PPT and respect the following restrictions:

• f ∈ Fλ,n.

13selective-constraint no-evaluation security was simply called no-evaluation security in [AMN+18].
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Exptcprf
CPRF,F ,A(λ) :

coin R← {0, 1}
pp R← Setup(1λ)
msk R← KeyGen(pp)
RF(·) R← Func({0, 1}n,R)

OChal(·) :=
{

Eval(msk, ·) if coin = 1
RF(·) if coin = 0

(f, stA) R← AOChal(·),Eval(msk,·)
1 (pp)

skf
R← Constrain(msk, f)

ĉoin R← AOChal(·),Eval(msk,·)
2 (skf , stA)

Return (ĉoin ?= coin).

Figure 1: The experiment for defining single-key security for a CPRF.

• A1 and A2 never make the same query twice.

• All challenge queries x∗ made by A1 and A2 satisfy f(x∗) = 1, and are distinct from any of the
evaluation queries x that they submit to the evaluation oracle Eval(msk, ·).

Furthermore, we say that A is a selective-constraint no-evaluation adversary if A1 and A2 are PPT, and
they do not make any queries, except that A2 is allowed to make only a single challenge query x∗ such that
f(x∗) = 1.

Definition 2.7 (Single-Key Security of CPRF).We say that a CPRF CPRF for a function class F is
adaptively single-key secure, if for all admissible adversaries A, the advantage Advcprf

CPRF,F ,A(λ) := 2 ·
|Pr[Exptcprf

CPRF,F ,A(λ) = 1]− 1/2| is negligible.
We define selective-constraint no-evaluation security of CPRF analogously, by replacing the phrase “all

admissible adversaries A” in the above definition with “all selective-constraint no-evaluation adversaries
A”.

Remark 2.8. As noted by Boneh and Waters [BW13], without loss of generality we can assume that A makes
a challenge query only once, because security for a single challenge query can be shown to imply security for
multiple challenge queries via a standard hybrid argument. Hence, in the rest of the paper we only use the
security experiment with a single challenge query for simplicity.

2.4 Indistinguishability Obfuscation

Here, we recall the definition of indistinguishability obfuscation (iO) (for all circuits) [BGI+12, GGH+16].

Definition 2.9 (Indistinguishability Obfuscation).We say that a PPT algorithm iO is a secure indistin-
guishability obfuscator (iO), if it satisfies the following properties:

Functionality: iO takes a security parameter 1λ and a circuit C as input, and outputs an obfuscated circuit
Ĉ that computes the same function as C. (We may drop 1λ from an input to iO when λ is clear from
the context.)
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Security: For all PPT adversaries A = (A1,A2), the advantage function Advio
iO,A(λ) defined below is

negligible:

Advio
iO,A(λ) := 2 ·

∣∣∣∣∣Pr
[

(C0, C1, st)
R← A1(1λ); coin← {0, 1};

Ĉ
R← iO(1λ, Cb); ĉoin R← A2(st, Ĉ)

: ĉoin = coin
]
− 1

2

∣∣∣∣∣ .
where it is required that C0 and C1 compute the same function and have the same description size.

3 Partitionable Constrained Pseudorandom Function

In this section, we introduce a concept of Partitionable Constrained Pseudorandom Function (PCPRF), which
is used as a building block for constructing our adaptively single-key secure CPRF. Then we construct a
PCPRF for NC1 based on iO and the subgroup hiding assumption.

3.1 Definition

A PCPRF for F w.r.t. a function h : {0, 1}n → {0, 1}m consists of (Setup,KeyGen,Eval,Constrain,
CEval,Merge,MEval) where (Setup,KeyGen,Eval,Constrain,CEval) forms a CPRF for F . Two additional
algorithms Merge and MEval work as follows.

Merge(msk0,msk1, u): This is the merging algorithm that takes two master keys (msk0,msk1) and a
partitioning policy u ∈ {0, 1,⊥}m, and outputs a merged key k[msk0,msk1, u].

MEval(k[msk0,msk1, u], x): This is the evaluation algorithm that takes a merged key k[msk0,msk1, u] and
x ∈ {0, 1}n as input, and outputs y.

Correctness. In addition to the correctness as a CPRF, we require the following. For all λ ∈ N,
pp R← Setup(1λ) (which specifies the input length n = n(λ) = poly(λ)), msk0,msk1

R← KeyGen(pp),
u ∈ {0, 1,⊥}m, k[msk0,msk1, u] R← Merge(msk0,msk1, u) and inputs x ∈ {0, 1}n we have

MEval(k[msk0,msk1, u], x) = Eval(mskPu(h(x)), x)

where we recall that Pu is as defined in Definition 2.4.

Security. We define two security requirements for PCPRFs. The first one is the security as a CPRF, and
the second one is partition-hiding, which roughly means that a merged key hides the partition policy u with
which the merged key is generated.

CPRF security. We say that a PCPRF is selective-constraint no-evaluation secure if (Setup,KeyGen,
Eval,Constrain,CEval) is selective-constraint no-evaluation secure as a CPRF.14

14Though it is possible to define the adaptive security for PCPRFs in the similar way, we only define the selective-constraint
no-evaluation security since we only need it.
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Partition-hiding. For all PPT adversaries A = (A1,A2), the advantage Advph
PCPRF,A(λ) defined below is

negligible:

Advph
PCPRF,A(λ) :=

2 ·

∣∣∣∣∣∣∣∣∣∣∣∣
Pr


pp R← Setup(1λ); msk0,msk1

R← KeyGen(pp);
(u, st) R← A1(pp);
k0

R← Merge(msk0,msk1,⊥m);
k1

R← Merge(msk0,msk1, u);
coin← {0, 1}; ĉoin R← A2(st, kcoin)

: ĉoin = coin

−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
.

We note that k0 generated by Merge(msk0,msk1,⊥m) works completely identically to msk0, albeit
in the sense that MEval(k0, x) = Eval(msk0, x). This is since we have P⊥m(h(x)) = 0 for all
x ∈ {0, 1}n.

3.2 Construction

Here, we construct a partition-hiding and selective-constraint no-evaluation secure PCPRF for NC1 based
on iO and the subgroup hiding assumption. Before describing our scheme, we prepare some notations and
describe class of functions our scheme supports. Since the function class our scheme supports is exactly the
same as that of [AMN+18], the following two paragraphs are taken from [AMN+18].

Notations.

In the following, we will sometimes abuse notation and evaluate a boolean circuit C(·) : {0, 1}` → {0, 1}
on input y ∈ R` for some ring R. The evaluation is done by regarding C(·) as the arithmetic circuit
whose AND gates (y1, y2) 7→ y1 ∧ y2 being changed to the multiplication gates (y1, y2) 7→ y1y2, NOT
gates y 7→ ¬y changed to the gates y 7→ 1− y, and the OR gates (y1, y2) 7→ y1 ∨ y2 changed to the gates
(y1, y2) 7→ y1 + y2 − y1y2. It is easy to observe that if the input is confined within {0, 1}` ⊆ R`, the
evaluation of the arithmetized version of C(·) equals to that of the binary version. (Here, we identify ring
elements 0, 1 ∈ R with the binary bit.) In that way, we can regard C(·) as an `-variate polynomial over R.
The degree of C(·) is defined as the maximum of the total degree of all the polynomials that appear during
the computation.

Class of Functions.

Let n = poly(λ), z(n) = poly(n), and d(n) = O(logn) be parameters. The function class that will be dealt
with by the scheme is denoted by FNC1 = {FNC1

λ,n(λ)}λ∈N, where F
NC1

λ,n consists of (Boolean) circuits f whose
input size is n(λ), the description size is z(n), and the depth is d(n). We can set the parameters arbitrarily
large as long as they do not violate the asymptotic bounds above, and thus the function class corresponds to
NC1 circuits with bounded size. The following lemma will be helpful when describing our scheme.

Lemma 3.1. ([CH85, AMN+18]) Let n = poly(λ). There exists a family of universal circuit {Un}n∈N of
degree D(λ) = poly(λ) such that Un(f, x) = f(x) for any f ∈ FNC1

λ,n(λ) and x ∈ {0, 1}
n.

14



Construction.

Let FNC1 = {FNC1

λ,n }λ,n∈N be the family of the circuit defined as above and {Un}n∈N be the family of
the universal circuit defined in Lemma 3.1. Let the parameter D(λ) be the degree of the universal circuit
(chosen as specified in Lemma 3.1). Since we will fix n in the construction, we drop the subscripts and just
denote FNC1 and U in the following. Let h : {0, 1}n → {0, 1}m be any efficiently computable function.15
The description of our PCPRF PCPRF = (Setup,KeyGen,Eval,Constrain,CEval,Merge,MEval) is given
below.

Setup(1λ): It obtains the group description G = (N, p, q,G,Gp,Gq, g1, g2) by running G R← GGen(1λ). It
then outputs the public parameter pp := (N,G).

KeyGen(pp): It chooses g R← G, (s1,0, s1,1), ..., (sm,0, sm,1) R← Z2
N , and (b1, ..., bz)

R← ZzN , α
R← Z∗N .16 It

outputs msk := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).

Eval(msk, x): Given input x ∈ {0, 1}n, it computes y := h(x) and outputs

X := g
∏m

i=1 si,yi ·U((b1,...,bz),(x1,...,xn))/α.

Constrain(msk, f): It first parses (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α)← msk. Then it sets

b′i := (bi − fi)α−1 mod N for i ∈ [z]

where fi is the i-th bit of the binary representation of f . It then outputs

skf := ((s1,0, s1,1), ..., (sm,0, sm,1), f, b′1, . . . , b′z, g, gα, . . . , gα
D−1).

CEval(skf , x): It parses ((s1,0, s1,1), ..., (sn,0, sn,1), f, b′1, . . . , b′z, g, gα, . . . , gα
D−1)← skf . It can be shown

that, from (b′1, ..., b′z), f and x, it is possible to efficiently compute {ci}i∈[D] that satisfies

U((b1, . . . , bz), (x1, . . . , xn)) = f(x) +
D∑
j=1

cjα
j . (1)

(We state this as Lemma 3.2 below.)

If f(x) = 0, it computes y = h(x) and X := (
∏D
j=1(gαj−1)cj )

∏m

i=1 si,yi and outputs X . Otherwise it
outputs ⊥.

Merge(msk0,msk1, u): Let MergedKey[msk0,msk1, u] be a program as described in Figure 2. It computes
and outputs

k[msk0,msk1, u] R← iO(MergedKey[msk0,msk1, u]).

MEval(k[msk0,msk1, u], x): It computes and outputs y := k[msk0,msk1, u](x).
15The construction will be partition-hiding with respect to h. Looking ahead, we will show that PCPRF that is partition-hiding

with respect to a balanced AHF is adaptively single-key secure in Section 4. There, we will set h to be a balanced AHF. However, in
this section, h can be any efficiently computable function.

16 This can be done by sampling in ZN ; if it is not in Z∗N , sampling again until it is. This will succeed with an overwhelming
probability since N is a composite with two large prime factors.
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MergedKey[msk0,msk1, u]
Input: x ∈ {0, 1}n
Constants: pp = (N,G)

msk0 = (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α)
msk1 = (ĝ, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂)
u ∈ {0, 1,⊥}m

Output Eval(mskPu(h(x)), x)

Figure 2: Description of Program MergedKey[msk0,msk1, u]

Correctness.

Here, we prove the correctness of our PCPRF given in Section 3. Correctness of MEval is easy to see. In the
following, we prove the correctness of CEval. For proving the correctness, we rely on the following lemma.
Though this can be proven similarly to [AMN+18, Lemma 2], we include the proof for completeness.

Lemma 3.2. (Variant of [AMN+18, Lemma 2]) Given (b′1, ..., b′z), f and x, one can efficiently compute
{ci}i∈[D] satisfying Equation (1).

Proof. The algorithm evaluates the circuit U(·) on input (b′1Z + f1, . . . , b
′
zZ + fz, x1, . . . , xn) to obtain

{ci}i∈{0,1,...,D} such that

U(b′1Z + f1, . . . , b
′
zZ + fz, x1, . . . , xn) = c0 +

∑
i∈[D]

ciZi (2)

where Z denotes the indeterminant of the polynomial ring ZN [Z]. Note that the computation is done over
the ring ZN [Z] and can be efficiently performed, since we have D = poly(λ). We prove that {ci}i∈[D]
actually satisfies Equation (1). To see this, we first observe that by setting Z = 0 in Equation (2), we
obtain c0 = U(f1, . . . , fz, x1 . . . , xn) = f(x). To conclude, we further observe that by setting Z = α in
Equation (2), we recover Equation (1), since we have bj = b′jα+ fj by the definition of b′j . This completes
the proof of the lemma.

Suppose that we have Equation (1) and f(x) = 0. Then we have

(
D∏
j=1

(gαj−1)cj )
∏m

i=1 si,yi = (g
∑D

j=1 cjα
j−1

)
∏m

i=1 si,yi

= g
∏m

i=1 si,yi ·U((b1,...,bz),(x1,...,xn))/α.

Therefore CEval correctly evaluate the PRF if f(x) = 0.

Theorem 3.3. If iO is a secure indistinguishability obfuscator and the subgroup hiding assumption holds
for GGen, then PCPRF is selective-constraint no-evaluation secure PCPRF for F and partition-hiding with
respect to h.

3.3 Security of Our Partitionable CPRF

We present the proof of Theorem 3.3 in this section.
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Proof sketch of Theorem 3.3. We have to prove that the construction satisfies the selective-constraint no-
evaluation security and partition-hiding. From high level, the selective-constraint no-evaluation security is
proven similarly to [AMN+18], and the partition-hiding is proven similarly to [HKW15].

CPRF security. Here, we prove PCPRF is selective-constraint no-evaluation secure. Namely, what we
have to prove is that (Setup,KeyGen,Eval,Constrain,CEval) is selective-constraint no-evaluation secure
CPRF for F . The proof is very similar to the proof for selective-constraint no-evaluation secure CPRF in
[AMN+18]. We note that we only use (D − 1)-DDHI assumption, which holds under the subgroup hiding
assumption, in this part, iO is irrelevant.

Proof. Let A = (A1,A2) be any selective-constraint no-evaluation adversary that attacks the selective-
constraint no-evaluation security of PCPRF. We prove the above theorem by considering the following
sequence of games.

Game 0: This is the real single-key security experiment Exptcprf
PCPRF,FNC1 ,A

(λ) against the selective-constraint
no-evaluation adversary A = (A1,A2). Namely,
coin R← {0, 1}
pp R← Setup(1λ)
msk R← KeyGen(pp)
X∗

R← G
(f, stA) R← A1(pp)
skf

R← Constrain(msk, f)
ĉoin R← AOChal(·)

2 (skf , stA)
Return (ĉoin ?= coin)

where the challenge oracle OChal(·) is described
below.

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it returns
Eval(msk, x∗) if coin = 1 and X∗ if coin =
0.

We recall that OChal(·) is queried at most once
during the game.

Game 1: In this game, we change theway skf is sampled. In particular, we change theway of choosing {bi}i∈[z]

and {b′i}i∈[z]. Namely, given the constraining query f from A1, the game picks (b′1, . . . , b′z)
R← ZzN ,

α
R← Z∗N , and sets bi := b′iα+ fi mod N for i ∈ [z].

Game 2 In this game, we change the challenge oracle OChal(·) as follows:

OChal(x∗): Given x∗ ∈ {0, 1}n as input, if coin = 1, then it does the following. It first computes
{ci}i∈[D] that satisfies

U((b1, . . . , bz), (x∗1, . . . , x∗n)) = 1 +
D∑
j=1

cjα
j

from (b′1, ..., b′z), f and x by using Lemma 3.2, and returns (g1/α ·
∏D
j=1(gαj−1)cj )

∏m

i=1 si,y∗i

where y∗ = h(x∗). If coin = 0, then it returns X∗.

Game 3: In this game, the challenge oracle use a uniformly random ψ
R← G instead of g1/α. Namely, it

works as follows.

OChal(x∗): Given x∗ ∈ {0, 1}n as input, if coin = 1, then it does the following. It first computes
{ci}i∈[D] as in the previous game, picks ψ R← G and returns (ψ ·

∏D
j=1(gαj−1)cj )

∏m

i=1 si,y∗i where
y∗ = h(x∗). If coin = 0, then it returns X∗.
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Game 4 In this game, the oracle is changed as follows.

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it returns X∗ regardless of the value of coin.

Let Ti be the event that Game i returns 1.

Lemma 3.4. Pr[T1] = Pr[T0]

Proof. It can be seen that the distributions of skf are exactly the same in these games. Since the change is
only conceptual, the lemma follows.

Lemma 3.5. Pr[T2] = Pr[T1]

Proof. We have

(g1/α
D∏
j=1

(gαj−1)cj )
∏m

i=1 si,yi = (g1/α+
∑D

j=1 cjα
j−1

)
∏m

i=1 si,yi

= g
∏m

i=1 si,yi ·U((b1,...,bz),(x1,...,xn))/α.

Therefore outputs byOChal in Game 1 and Game 2 are identical. Thus the change is only conceptual and thus
the lemma follows.

Lemma 3.6. If the (D − 1)-DDHI assumption holds, then |Pr[T3]− Pr[T2]| = negl(λ).

Proof. For the sake of the contradiction, let us assume that |Pr[T3]− Pr[T2]| is non-negligible. We then
construct an adversary B that breaks the (D − 1)-DDHI assumption using A = (A1,A2).

B((G, N), g, gα, gα2
, ..., gα

D−1
, ψ): Given the problem instance, B first gives the group description pp :=

(G, N) to A1. Then, A1 outputs a constraining query f along with its state stA. Then, the
adversary B picks coin R← {0, 1}, (s1,0, s1,1), ..., (sm,0, sm,1) R← Z2m

N , (b′1, . . . , b′z)← ZzN , and gives
skf := ((s1,0, s1,1), ..., (sm,0, sm,1), f, b′1, . . . , b′z, g, gα, . . . , gα

D−1) and the state stA to A2. When
A2 makes a challenge query x∗ for OChal(·), B then returns (ψ ·

∏D
j=1(gαj−1)cj )

∏m

i=1 si,y∗i if coin = 1
where {ci}i∈[D] is computed as in Game 2 and 3 and y∗ = h(x∗), and X∗ if coin = 0 to A2. Finally,
A2 outputs its guess ĉoin. B then outputs (coin ?= ĉoin) as its guess.

It can easily be seen that B simulates Game2 if ψ = g1/α and Game3 if ψ R← G. The lemma readily
follows.

Lemma 3.7. Pr[T3] = Pr[T4]

Proof. In Game 3, the response to the challenge query is a random group element of G regardless of the
value of coin. Therefore, the change is only conceptual.

Lemma 3.8. We have |Pr[T4]− 1/2| = 0.

Proof. In Game 4 everything A sees is independent from coin, and thus there is no way to guess it with
non-zero advantage.

Therefore, the advantage of A is 2 · |Pr[T0]− 1/2| = negl(λ). Finally, we complete the proof by noting
that the (D − 1)-DDHI assumption holds under the subgroup hiding assumption.
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MergedKey-Zero[msk0]
Input: x ∈ {0, 1}n
Constants: pp = (N,G)

msk0 = (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α)
Compute y := h(x)
Output g

∏m

i=1 si,yi ·U((b1,...,bz),(x1,...,xn))/α.

Figure 3: Description of Program MergedKey-Zero[msk0]

Partition-hiding. We want to prove that k generated by iO(MergedKey[msk0,msk1,⊥m]) and gen-
erated by iO(MergedKey[msk0,msk1, u]) are computationally indistinguishable. The difficulty is that
MergedKey[msk0,msk1,⊥m] and MergedKey[msk0,msk1, u] do not have the same functionality, and thus
we cannot simply use the security of iO to conclude it.17 Actually, this can be proven by using the subgroup
hiding assumption in a sophisticated way as in the work by Hohenberger, Koppula and Waters [HKW15].
Let A = (A1,A2) be a PPT adversary against the partition-hiding property. We prove the above theorem
by considering the following sequence of games. We underline modifications from the previous one in
descriptions of games.

Game 0: This game corresponds to the case of coin = 0 in the experiment defining the partition-hiding.
More precisely,

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).

3. Choose g R← G, (b1, ..., bz)
R← ZzN , and α

R← Z∗N . Then choose (s1,0, s1,1), ..., (sm,0, sm,1) R←
Z2m
N . Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).

Choose ĝ R← G, (b̂1, ..., b̂z)
R← ZzN and α̂ R← Z∗N . Then choose (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R←

Z2m
N . Set msk1 := (ĝ, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey[msk0,msk1,⊥m])

5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 1: In this game, we set k as an obfuscation of MergedKey-Zero[msk0], which is described in Figure 3.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).

3. Choose g R← G, (b1, ..., bz)
R← ZzN , and α

R← Z∗N . Then choose (s1,0, s1,1), ..., (sm,0, sm,1) R←
Z2m
N . Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).

4. Compute k R← iO(MergedKey-Zero[msk0])

5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 2: In this game, we generate (s1,0, s1,1), ..., (sm,0, sm,1) in a different way.

17If one relies on the technique of “exponential number of hybrids” (e.g., [CLTV15]), then we can prove the indistinguishability of
these two cases without relying on subgroup hiding. However, the technique requires sub-exponentially secure iO, which we want to
avoid.
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MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w]
Input: x ∈ {0, 1}n
Constants: pp = (N,G)

v0, ..., vm−1, w ∈ Gm+1

msk′0 = ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α)
u ∈ {0, 1,⊥}m

Compute y := h(x)
If Pu(y) = 0
Output w

∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α

.
Else
Compute r := |{i ∈ [m]|ui = yi}|

Output v
∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α

r .

Figure 4: Description of Program MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w]

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g R← G, (b1, ..., bz)

R← ZzN , and α
R← Z∗N .

Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m
N . Set

si,η :=
{
β · s′i,η If ui = ⊥ ∨ η = ui

s′i,η Otherwise
.

Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).

4. Compute k R← MergedKey-Zero[msk0]
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 3: In this game, we set k as an obfuscation of MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w]), which is
described in Figure 4.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g R← G, (b1, ..., bz)

R← ZzN , and α
R← Z∗N .

Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m
N .

Set vj := gβ
j for j ∈ {0, ...,m− 1} and w := gβ

m .
Set msk′0 := ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α).

4. Compute k R← iO(MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w])

5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 4: In this game, we randomly choose w from G, which was set to be gβm in the previous game.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).
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2. Compute (u, stA) R← A1(pp).

3. Choose g R← G, (b1, ..., bz)
R← ZzN , and α

R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Set vj := gβ

j for j ∈ {0, ...,m− 1}. Choose w R← G.
Set msk′0 := ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α).

4. Compute k R← iO(MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w])

5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 5: In this game, we randomly choose g and w from Gq and Gp, respectively, which are randomly
chosen from G in the previous game.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).

3. Choose g R← Gq, (b1, ..., bz)
R← ZzN , and α

R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Set vj := gβ

j for j ∈ {0, ...,m− 1}. Choose w R← Gp.
Set msk′0 := ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α).

4. Compute k R← iO(MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w])

5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 6: In this game, we set k as an obfuscation of MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w], which
is described in Figure 5.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).

3. Choose g R← Gq, (b1, ..., bz)
R← ZzN , and α

R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Set s′i,η,p := s′i,η mod p and s′i,η,q := s′i,η mod q for i ∈ [m] and η ∈ {0, 1}.
Set bi,p := bi mod p and bi,q := bi mod q for i ∈ [m].
αp := α mod p and αq := α mod q.
Set vj := gβ

j for j ∈ {0, ...,m− 1}. Choose w R← Gp.
Set msk′0 := ((s′1,0,p, s′1,1,p), ..., (s′m,0,p, s′m,1,p), b1,p, . . . , bz,p, αp).
Set msk′1 := ((s′1,0,q, s′1,1,q), ..., (s′m,0,q, s′m,1,q), b1,q, . . . , bz,q, αq).

4. Compute k R← iO(MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w]).

5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 7: In this game, we modify how to generate s′i,η,q, bi,q and αq.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
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MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w]
Input: x ∈ {0, 1}n
Constants: pp = (N,G)

v0, ..., vm−1, w ∈ Gm+1

msk′0 = ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α)
msk′1 = ((ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂)
u ∈ {0, 1,⊥}m

Compute y := h(x)
If Pu(y) = 0
Output w

∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α

.
Else
Compute r := |{i ∈ [m]|ui = yi}|

Output v
∏m

i=1 ŝi,yi ·U((̂b1,...,̂bz),(x1,...,xn))/α̂
r .

Figure 5: Description of Program MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w]

3. Choose g R← Gq, (b1, ..., bz)
R← ZzN , and α

R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Choose (b̂1, ..., b̂z)

R← ZzN , α̂
R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R← Z2m

N .
Set s′i,η,p := s′i,η mod p and s′i,η,q := ŝi,η mod q for i ∈ [m], η ∈ {0, 1}.
Set bi,p := bi mod p and bi,q := b̂i mod q for i ∈ [m].
Set αp := α mod p and αq := α̂ mod q.
Set vj := gβ

j for j ∈ {0, ...,m− 1}. Choose w R← Gp.
Set msk′0 := ((s′1,0,p, s′1,1,p), ..., (s′m,0,p, s′m,1,p), b1,p, . . . , bz,p, αp).
Set msk′1 := ((s′1,0,q, s′1,1,q), ..., (s′m,0,q, s′m,1,q), b1,q, . . . , bz,q, αq).

4. Compute k R← iO(MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w]).

5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 8: In this game, we modify the way to set msk′0 and msk′1.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).

3. Choose g R← Gq, (b1, ..., bz)
R← ZzN , and α

R← Z∗N .
Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m

N .
Choose (b̂1, ..., b̂z)

R← ZzN , α̂
R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R← Z2m

N .
Set vj := gβ

j for j ∈ {0, ...,m− 1}. Choose w R← Gp.
Set msk′0 := ((s′1,0, s′1,1), ..., (s′m,0, s′m,1), b1, . . . , bz, α).
Set msk′1 := ((ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w]).

5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.
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MergedKey[msk0,msk1, u]
Input: x ∈ {0, 1}n
Constants: pp = (N,G)

v0, ..., vm−1, w ∈ Gm+1

msk′0 = (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α)
msk′1 = (ĝ, (ŝ1,0, ŝ1,1), ..., (ŝ′m,0, ŝm,1), b̂1, . . . , b̂z, α̂)
u ∈ {0, 1,⊥}m

Compute y := h(x)
If Pu(y) = 0
Output g

∏m

i=1 si,yi ·U((b1,...,bz),(x1,...,xn))/α.
Else
Output ĝ

∏m

i=1 ŝi,yi ·U((̂b1,...,̂bz),(x1,...,xn))/α̂.

Figure 6: Description of Program MergedKey[msk0,msk1, u], more concretely

Game 9: In this game, we set k to be an obfuscation of MergedKey[msk0,msk1, u], which is described in
Figure 2. For clarity, we give more concrete description of MergedKey[msk0,msk1, u] in Figure 6.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g R← Gq, (b1, ..., bz)

R← ZzN , and α
R← Z∗N .

Choose β R← Z∗N and (s′1,0, s′1,1), ..., (s′m,0, s′m,1) R← Z2m
N .

Set

si,η :=
{
β · s′i,η If ui = ⊥ ∨ η = ui

s′i,η Otherwise
.

Choose (b̂1, ..., b̂z)
R← ZzN , α̂

R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R← Z2m
N .

Choose w R← Gp.
Set msk0 := (w, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (g, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey[msk0,msk1, u]).

5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 10: In this game, we modify the way to set si,η.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g R← Gq, (b1, ..., bz)

R← ZzN , and α
R← Z∗N .

Choose β R← Z∗N and (s1,0, s1,1), ..., (sm,0, sm,1) R← Z2m
N .

Choose (b̂1, ..., b̂z)
R← ZzN , α̂

R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R← Z2m
N .

Choose w R← Gp.
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Set msk0 := (w, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (g, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey[msk0,msk1, u]).
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 11: In this game, we randomly choose g and w from G, which are chosen from Gq and Gp in the
previous game.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose g R← G, (b1, ..., bz)

R← ZzN , and α
R← Z∗N .

Choose β R← Z∗N and (s1,0, s1,1), ..., (sm,0, sm,1) R← Z2m
N .

Choose (b̂1, ..., b̂z)
R← ZzN , α̂

R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R← Z2m
N .

Choose w R← G.
Set msk0 := (w, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (g, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey[msk0,msk1, u]).
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

Game 12: This game is the same as the previous game except that we rename g and w by ĝ and g.

1. Let G = (N, p, q,G,Gp,Gq, g1, g2) R← GGen(1λ), and set pp := (N,G).

2. Compute (u, stA) R← A1(pp).
3. Choose ĝ R← G, (b1, ..., bz)

R← ZzN , and α
R← Z∗N .

Choose β R← Z∗N and (s1,0, s1,1), ..., (sm,0, sm,1) R← Z2m
N .

Choose (b̂1, ..., b̂z)
R← ZzN , α̂

R← Z∗N , and (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1) R← Z2m
N .

Choose g R← G.
Set msk0 := (g, (s1,0, s1,1), ..., (sm,0, sm,1), b1, . . . , bz, α).
Set msk1 := (ĝ, (ŝ1,0, ŝ1,1), ..., (ŝm,0, ŝm,1), b̂1, . . . , b̂z, α̂).

4. Compute k R← iO(MergedKey[msk0,msk1, u]).
5. Compute ĉoin R← A2(stA, k). The game returns ĉoin.

This game corresponds to the case of coin = 1 in the experiment defining the partition-hiding.

Let Ti be the event that Game i returns 1. What we should prove is that |Pr[T0]− Pr[T12]| = negl(λ).
We prove this by the following lemmas.

Lemma 3.9. If iO is a secure indistinguishability obfuscator, then |Pr[T1]− Pr[T0]| = negl(λ).

Proof. Since P⊥m(h(x)) = 0 for all x ∈ {0, 1}n, MergedKey[msk0,msk1,⊥m] outputs Eval(msk0, x) for
all x. Therefore, we have that MergedKey[msk0,msk1,⊥m] and MergedKey-Zero[msk0] have identical
functionality. Therefore |Pr[T1]− Pr[T0]| is negligible by the security of iO.

Lemma 3.10. Pr[T2] = Pr[T1].
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Proof. The only difference between Game 1 and Game 2 is how to choose si,η. Namely, we choose si,η
uniformly from ZN in Game 1, whereas we set them to be β · s′i,η or s′i,η depending on if η = ui by using
uniformly chosen s′i,η

R← ZN . In Game 2, in both cases, si,η is uniformly distributed because β ∈ Z∗N .
Therefore these games are identical from the view of A.

Lemma 3.11. If iO is a secure indistinguishability obfuscator, then |Pr[T3]− Pr[T2]| = negl(λ).

Proof. We claim that MergedKey-Zero[msk0] and MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w] have identical
functionality. From this claim, the lemma easily follows from the security of iO. We prove the claim as
follows. MergedKey-Zero[msk0] computes g

∏m

i=1 si,yi ·U((b1,...,bz),(x1,...,xn))/α where y = h(x) for all inputs
x ∈ {0, 1}n. Since we have

si,η :=
{
β · s′i,η If ui = ⊥ ∨ η = ui

s′i,η Otherwise
,

if Pu(y) = 0 (i.e., ui = ⊥ or yi = ui holds for all i ∈ [m]), then we have

g
∏m

i=1 si,yi ·U((b1,...,bz),(x1,...,xn))/α = g
βm
∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α

= w
∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α

where w := gβ
m as defined in Game 3. On the other hand, if Pu(y) = 1, then we have

g
∏m

i=1 si,yi ·U((b1,...,bz),(x1,...,xn))/α = g
βr
∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α

= v

∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α

r

where r := |{i ∈ [m]|ui = yi}| ≤ m− 1 and vr := gβ
r as defined in Game 3. This means that an output for

input x of MergedKey-Zero[msk0] is identical to that of MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w].

Lemma 3.12. If the (m− 1)-DDH assumption holds, then |Pr[T4]− Pr[T3]| = negl(λ).

Proof. The only difference between these games is that how to set w. Namely, that is set to be gβm in
Game 3 and that is uniformly chosen from G in Game 4. Since all other parts of these two games can be
simulated by using pp = (N,G), (g, gβ, ..., gβm−1) and other elements that are independent from them,
if |Pr[T4] − Pr[T3]| is non-negligible, then we can construct an adversary that breaks the (m − 1)-DDH
assumption. Thus it is negligible under the (m− 1)-DDH assumption.

Lemma 3.13. If the subgroup hiding assumption holds w.r.t. GGen, then |Pr[T5]− Pr[T4]| = negl(λ).

Proof. The only difference between these games is that how to choose g and w. Namely, they are uniformly
chosen from G in Game 4, and they are uniformly chosen from Gq and Gp, respectively in Game 5. First, we
consider a hybrid game Game 4.5 where g is chosen from G and w is chosen from Gp. Since all elements
used in Game 4 and Game 4.5 exceptw can be simulated by using (N,G) (especially without knowing (p, q)),
A cannot distinguish these two games under the subgroup hiding assumption. Similarly, all elements used
in Game 4.5 and Game 5 except g can be simulated by using (N,G, g2 ∈ Gq) (especially without knowing
(p, q) again), A cannot distinguish these two games under the subgroup hiding assumption. Thus by the
triangle inequality, A cannot distinguish Game 4 and Game 5 under the subgroup hiding assumption.
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Lemma 3.14. If iO is a secure indistinguishability obfuscator, then |Pr[T6]− Pr[T5]| = negl(λ).

Proof. If we can prove that MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w] and MergedKey-Alt[msk′0,msk′1, u,
v0, ..., vm−1, w] have identical functionality, then the lemma easily follows from the security of iO. In the
following, we prove it. Since we have w ∈ Gp, we have

w
∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α = w

(
∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α mod p)

.

Therefore w
∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α does not change even if we take modulo p of (s′1,0, s′1,1), ...,

(s′m,0, s′m,1), b1, . . . , bz, α) before computing it. Similarly, since we have g ∈ Gq, we have vr ∈ Gq, and thus

v

∏m

i=1 s
′
i,yi
·U((b1,...,bz),(x1,...,xn))/α

r does not change even if we take modulo q of (s′1,0, s′1,1), ..., (s′m,0, s′m,1),
b1, . . . , bz, α) before computing it. This means that two circuits MergedKey-Zero′[msk′0, u, v0, ..., vm−1, w]
and MergedKey-Alt[msk′0,msk′1, u, v0, ..., vm−1, w] have identical functionality.

Lemma 3.15. Pr[T7] = Pr[T6].

Proof. The difference between these games is how to generate s′i,η,q, bi,q, and αq. Namely, they are derived
from s′i,η, bi and α that are also used for generating s′i,η,p, bi,p, and αp in Game 6 whereas they are derived
from ŝi,η, b̂i and α̂ that are independent random values of s′i,η, bi and α. By the Chinese remainder theorem,
s′i,η,q, bi,q, and αq are uniform on Zq and independent from s′i,η,p, bi,p, and αp. Therefore the joint distribution
of s′i,η,p, bi,p, αp, s′i,η,q, bi,q, and αq is identical in these two games.

Lemma 3.16. If iO is a secure indistinguishability obfuscator, then |Pr[T8]− Pr[T7]| = negl(λ).

Proof. This can be proven similarly to Lemma 3.14.

Lemma 3.17. If iO is a secure indistinguishability obfuscator, then |Pr[T9]− Pr[T8]| = negl(λ).

Proof. This can be proven similarly to Lemma 3.11.

Lemma 3.18. Pr[T10] = Pr[T9].

Proof. This can be proven similarly to Lemma 3.10.

Lemma 3.19. If the subgroup hiding assumption holds w.r.t. GGen, then |Pr[T11]− Pr[T10]| = negl(λ).

Proof. This can be proven similarly to Lemma 3.13.

Lemma 3.20. Pr[T11] = Pr[T12].

Proof. From Game 11 to Game 12, we just renamed g and w by ĝ and g, respectively.

By Lemma 2.3, the (m − 1)-DDH assumption can be reduced to the subgroup hiding assumption.
Therefore if iO is a secure indistinguishability obfuscator and the subgroup hiding assumption holds, then
Pr[T0]−Pr[T12] = negl(λ). Thus, we complete the proof of the partition-hiding property of PCPRF. This
completes the proof of Theorem 3.3.
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ConstrainedKey[msk, f ]
Input: x ∈ {0, 1}n
Constants:pp, msk, f
If f(x) = 0
Output Eval(msk, x)

Else
Output ⊥

Figure 7: Description of Program ConstrainedKey[msk, f ]

4 Adaptively Single-key Secure CPRF

In this section, we construct an adaptively single-key secure CPRF based on iO and a partition-hiding
no-evaluation secure PCPRF. By instantiating the latter with our construction of PCPRF in Section 3.2, we
obtain the first adaptively single-key secure CPRF for NC1 in the standard model.

4.1 Construction

Let PCPRF = (Setup,KeyGen,Eval,Constrain,CEval,Merge,MEval) be a partition-hiding and selective-
constraint no-evaluation secure PCPRF for function classF . Thenwe constructCPRFCPRF = (Setup′,KeyGen′,
Eval′,Constrain′,CEval′) for the same function class as follows.

Setup′(1λ): This algorithm is completely identical to Setup(1λ).

KeyGen′(pp): This algorithm is completely identical to KeyGen(pp).

Eval′(msk, x): This algorithm is completely identical to Eval(msk, x).

Constrain′(msk, f): It computes and outputs skf
R← iO(ConstrainedKey[msk, f ])whereConstrainedKey[msk, f ]

is a program described in Figure 7.

CEval′(skf , x): It computes and outputs skf (x).

We note that the program ConstrainedKey[msk, f ] is padded so that the size of it is the same size as the
programs that appear in the security proof. See also Remark 4.11.

The following theorem addresses the security of the above construction. We require F to contain some
basic functions in the theorem. However, this restriction is very mild. Indeed, the requirement for the function
class is satisfied in our construction of PCPRF in Section 3.2.

Theorem 4.1. Let F be a function class that contains constant functions and punctured function gy :
{0, 1}n → {0, 1} defined as gy(x) = (x ?= y) for all y ∈ {0, 1}n. If iO is a secure indistinguishability
obfuscator and PCPRF is both partition-hiding with respect to a balanced AHF h : {0, 1}n → {0, 1}m
and selective-constraint no-evaluation secure PCPRF for F , then CPRF constructed above is an adaptively
single-key secure CPRF for F .

By combining Theorems 3.3 and 4.1, we obtain the following theorem.

Theorem 4.2. If there exists a secure indistinguishability obfuscator and a group generator for which the
subgroup hiding assumption holds, then there exists an adaptively single-key secure CPRF for the function
class FNC1 , which is defined in Section 3.
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4.2 Security of Our CPRF

We present the proof of Theorem 4.1 in this section.

Proof. We prove the theorem by following steps. We denote the master secret key of the scheme by msk0
for notational convenience. Let A be a PPT adversary that breaks adaptive single-key security of the
scheme. In addition, let ε = ε(λ) and Q = Q(λ) be its advantage and the upper bound on the number of
evaluation queries, respectively. By assumption, Q(λ) is polynomially bounded and there exists a noticeable
function ε0(λ) such that ε(λ) ≥ ε0(λ) holds for infinitely many λ. By the property of the balanced AHF
(Definition 2.4, Item 1), Pr[u R← AdmSample(1λ, Q(λ), ε0(λ)) : u ∈ {0, 1}m] = 1 for all sufficiently large
λ. Therefore, in the following, we assume that this condition always holds. We show the security of the
scheme via the following sequence of games.

Game 0: This is the real single-key security experiment Exptcprf
CPRF,F ,A(λ) against an admissible adversary

A = (A1,A2). Namely,
coin R← {0, 1}
pp R← Setup(1λ)
msk0

R← KeyGen(pp)
X∗

R← R
(f, stA) R← AOChal(·),Eval(msk0,·)

1 (pp)
skf

R← iO(ConstrainedKey[msk, f ])
ĉoin R← AOChal(·),Eval(msk0,·)

2 (skf , stA)
Return (ĉoin ?= coin)

where the challenge oracle OChal(·) is described
below.

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it returns
Eval(msk0, x

∗) if coin = 1 andX∗ if coin =
0.

We recall that OChal(·) is queried at most once
during the game.

Game 1: In this game, we change Game 0 so that the game performs the following additional step at the
end of the experiment. First, the game samples u R← AdmSample(1λ, Q, ε0) and checks whether the
following condition holds:

Pu(h(x1)) = · · · = Pu(h(xQ)) = 1 ∧ Pu(h(x∗)) = 0, (3)

where x1, . . . , xQ are inputs to the PRF for which A called the evaluation oracle Eval(msk0, ·). If
it does not hold, the game ignores the output ĉoin of A, and replace it with a fresh random coin
ĉoin R← {0, 1}. In this case, we say that the game aborts.

Game 2: In this game, we change the way skf is generated and the oracles return answers. At the
beginning of the game, we sample msk0

R← KeyGen(pp) and msk1
R← KeyGen(pp), and compute

k[msk0,msk1,⊥m] R← Merge[msk0,msk1,⊥m]. We then set C := MEval(k[msk0,msk1,⊥m], ·).
Furthermore, skf given to A2 is generated as skf

R← iO(ConstrainedKeyAlt[C, f ]) instead of skf
R←

iO(ConstrainedKey[msk, f ]), where the circuit ConstrainedKeyAlt[C, f ] is depicted in Figure 8. We
also replace the evaluation oracle Eval(msk0, ·) and the challenge oracle ÕChal(·) with the following
oracles.

Ẽval(C, ·): Given x ∈ {0, 1}n as input, it returns C(x).
ÕChal(C, ·): Given x∗ as input, it returns C(x∗) if coin = 1 and X∗ if coin = 0.
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ConstrainedKeyAlt[C, f ]
Input: x ∈ {0, 1}n
Constants: pp, C, and f
If f(x) = 0
Output C(x)

Else
Output ⊥

Figure 8: Description of Program ConstrainedKeyAlt[C, f ]

C̃[sk0,g,msk1, f, u]
Input: x ∈ {0, 1}n
Constants: pp, sk0,g, msk1, f , u
If f(x) = 0 ∧ Pu(h(x)) = 0
Output CEval(sk0,g, x)

If f(x) = 0 ∧ Pu(h(x)) = 1
Output Eval(msk1, x)

Else
Output ⊥

Figure 9: Description of Program C̃[sk0,g,msk1, f, u]

Game 3: Recall that in Game 2, it is checked whether the abort condition Eq. (3) holds or not at the end of
the game. In this game, we change the game so that it samples u at the beginning of the game and
aborts and outputs a random bit as soon as the abort condition becomes true.

Game 4: In this game, we further change the way C is generated. At the beginning of the game, the game
samples k[msk0,msk1, u] R← Merge[msk0,msk1, u] and then set C := MEval(k[msk0,msk1, u], ·)
instead of C := MEval(k[msk0,msk1,⊥m], ·).

Game 5: In this game, we replace Ẽval(C, ·) and ÕChal(C, ·) with the following oracles.

Eval(msk1, ·): Given x ∈ {0, 1}n as input, it returns Eval(msk1, x).
ŌChal(msk0, ·): Given x∗ ∈ {0, 1}n as input, it returns Eval(msk0, x

∗) if coin = 1 andX∗ if coin = 0.

Game 6: In this game, we change the way skf is generated when A1 makes the call to OChal (namely, the
challenge query is made before f is chosen by A). Let x∗ be the challenge query made by A1. We
set the function gx∗ : {0, 1}n → {0, 1} as gx∗(x) = (x ?= x∗). To generate skf , we first sample
sk0,gx∗

R← Constrain(msk0, gx∗) and set skf
R← iO(C̃[sk0,gx∗ ,msk1, f, u]), where C̃[sk0,g,msk1, f, u]

is depicted in Figure 9. Note that if A1 does not make the challenge query, we do not change the way
skf is generated.

Game 7: In this game, we change the way skf is generated when A1 stops without making challenge
query (namely, the challenge query will be made after A chooses f ). In such a case, we first sample
sk0,f

R← Constrain(msk0, f) and set skf
R← iO(C̃[sk0,f ,msk1, f, u]).

Let Ti be the event that Game i returns 1. We prove this by the following lemmas.
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Lemma 4.3. If h is a balanced AHF and |Pr[T0]− 1/2| is non-negligible, so is |Pr[T1]− 1/2|.

Proof. We apply Lemma 2.6 to evaluate |Pr[T1]− 1/2|. To apply the lemma, we set the input to D and D′
to be coin used in the game, the output of D(coin) to be (X = (x∗, x1, . . . , xQ), ĉoin) in Game 0, the output
of D′(coin) to be that in Game 1, and γ(X) to be the probability that Eq. (3) holds forX = (x∗, x1, . . . , xQ)
when randomness is taken over the choice of u R← AdmSample(1λ, Q, ε0). Then,∣∣∣∣Pr[T1]− 1

2

∣∣∣∣ ≥ γminε−
γmax − γmin

2 ≥ γminε0 −
γmax − γmin

2︸ ︷︷ ︸
:=τ

holds for infinitely many λ by the lemma, where γmin = minX γ(X) and γmax := maxX γ(X). By the
property of the balanced AHF h (Definition 2.4, Item 2), we have that τ is a noticeable function. This implies
that |Pr[T1]− 1/2| is noticeable for infinitely many λ, and thus the term is non-negligible.

Lemma 4.4. If iO is a secure indistinguishability obfuscator, then |Pr[T2]− Pr[T1]| = negl(λ).

Proof. We first observe that C(x) = MEval(k[msk0,msk1,⊥m], x) = Eval(msk0, x) since P⊥m(h(x)) = 0
for all x ∈ {0, 1}n. Therefore, the change for the evaluation and the challenge oracles is only conceptual. Fur-
thermore, ConstrainedKey[msk0, f ] and ConstrainedKeyAlt[C, f ] with C = MEval(k[msk0,msk1,⊥m], ·)
have identical functionalities. Therefore |Pr[T2]− Pr[T1]| is negligible by the security of iO.

Lemma 4.5. We have Pr[T3] = Pr[T2].

Proof. Since the change is only conceptual, the lemma trivially follows.

Lemma 4.6. If PCPRF is partition-hiding with respect to h, we have |Pr[T4]− Pr[T3]| = negl(λ).

Proof. For the sake of the contradiction, let us assume that |Pr[T4]− Pr[T3]| is non-negligible. We then
construct an adversary B = (B1,B2) that breaks the partitioning hiding of PCPRF using A = (A1,A2). In
the following, we differentiate two random variables coin and coin′. The former denotes the random variable
that A tries to guess in the adaptive single key security game, while the latter denotes the random variable
that B tries to guess in the partition-hiding game.

B1(pp): Given pp, B1 first samples u R← AdmSample(1λ, Q, ε0), coin R← {0, 1}, and X∗ R← G. It then sets
stB = (pp, u,X∗, coin) and outputs (u, stB).

B2(k, stB): Given k, B2 first parses stB → (pp, u,X∗, coin) and sets C := MEval(k, ·). Here, k R←
iO[msk0,msk1,⊥m] if coin′ = 0 and k R← iO[msk0,msk1, u] if coin′ = 1. It then runs A1 on input
pp. When A1 makes the query for ÕChal(C, ·) on input x∗, B2 first checks whether Pu(h(x∗)) = 0
holds. If it holds, B2 returns C(x) if coin = 1 and X∗ otherwise. If it does not hold, B2 stops the
experiment and outputs a random coin as its guess. When A1 makes a query for Ẽval(C, ·) on input
x, B2 first checks whether Pu(h(x)) = 1 holds. If it holds, it returns C(x). Otherwise, B2 stops the
experiment and outputs a random coin as its guess. At some point, A1 outputs (f, stA). B2 then
computes skf

R← iO(ConstrainedKeyAlt[C, f ]) and gives (skf , stA) to A2. The oracle queries made
by A2 are handled similarly to the case of A1. At last, A2 outputs ĉoin as its guess for coin. Then, B2

outputs (ĉoin ?= coin) as its guess.

It can easily be seen that B simulates Game4 if coin′ = 1 and Game3 otherwise. The lemma readily
follows.
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Lemma 4.7. We have Pr[T5] = Pr[T4].

Proof. We observe that for any x ∈ {0, 1}n, we have C(x) = MEval(k[msk0,msk1, u], x) = Eval(mskb, x)
for b = Pu(h(x)). By the change made in Game 3, the experiment stops and outputs a random bit as soon
as A makes an evaluation query for x such that Pu(h(x)) = 0. Therefore, from the view point of A, the
response of Ẽval(C, ·) and Eval(msk1, ·) are completely the same. Similarly, since the experiment aborts
as soon as A makes the challenge query for x∗ such that Pu(h(x∗)) = 1, the response of ÕChal(C, ·) and
ŌChal(msk0, ·) are completely the same. Therefore, the change made in Game 5 is only conceptual and the
lemma follows.

Lemma 4.8. If iO is a secure indistinguishability obfuscator, then |Pr[T6]− Pr[T5]| = negl(λ).

Proof. We first observe that skf is sampled as skf
R← iO(ConstrainedKeyAlt[C, f ]) for C = MEval(k[msk0,

msk1, u], ·) in Game 5, whereas it is sampled as skf
R← iO(C̃[sk0,gx∗ ,msk1, f, u]) in Game 6 if A1 makes

the challenge query. We prove that the programs ConstrainedKeyAlt[C, f ] and C̃[sk0,gx∗ ,msk1, f, u] are
functionally equivalent. First, it is easy to see that both circuits output ⊥ for an input x such that f(x) = 1.
For x such that f(x) = 0 and Pu(h(x)) = 1, it is also easy to see that both circuits output Eval(msk1, x).
In the case of f(x) = 0 and Pu(h(x)) = 0, ConstrainedKeyAlt[C, f ] outputs Eval(msk0, x) whereas
C̃[sk0,gx∗ ,msk1, f, u] outputs CEval(sk0,gx∗ , x). Since f(x∗) = 1, we have x 6= x∗ and thus gx∗(x) = 0. By
the correctness of PCPRF, this implies CEval(sk0,gx∗ , x) = Eval(msk0, x). Therefore, |Pr[T6]− Pr[T5]| is
negligible by the security of iO.

Lemma 4.9. If iO is a secure indistinguishability obfuscator, then |Pr[T7]− Pr[T6]| = negl(λ).

Proof. Wefirst observe that skf is sampled as skf
R← iO(ConstrainedKeyAlt[C, f ]) forC = k[msk0,msk1, u]

in Game 6, whereas it is sampled as skf
R← iO(C̃[sk0,f ,msk1, f, u]) in Game 6 if A1 has not made the

challenge query. We prove that ConstrainedKeyAlt[C, f ] and C̃[sk0,f ,msk1, f, u] are functionally equivalent.
First, it is easy to see that both circuits output ⊥ for an input x such that f(x) = 1. For x such that
f(x) = 0 and Pu(h(x)) = 1, it is also easy to see that both output Eval(msk1, x). In the case of f(x) = 0
and Pu(h(x)) = 0, ConstrainedKeyAlt[C, f ] outputs Eval(msk0, x) whereas C̃[sk0,f ,msk1, f, u] outputs
CEval(sk0,f , x). Since f(x) = 0, we have CEval(sk0,f , x) = Eval(msk0, x) by the correctness of PCPRF.
Therefore, |Pr[T7]− Pr[T6]| is negligible by the security of iO.

Lemma 4.10. If PCPRF is selective-constraint no-evaluation secure, |Pr[T7]− 1/2| = negl(λ).

Proof. For the sake of the contradiction, let us assume that |Pr[T7] − 1/2| is non-negligible. We then
construct an adversary B = (B1,B2) that breaks the selective-constraint no-evaluation security of PCPRF
using A = (A1,A2). In the following, we denote the random coin that B should guess by coin. Looking
ahead, the random coin that A has to guess in the simulation of Game 7 will be set as the same bit.

B1(pp): Given pp, B1 first samples u R← AdmSample(1λ, Q, ε0), msk1
R← KeyGen(pp). It then runs A1 on

input pp. When A1 makes the evaluation query for Eval(msk1, ·) on input x, B1 first checks whether
Pu(h(x)) = 1 holds. If it holds, it returns Eval(msk1, x). Otherwise, B1 sets stB = abort and outputs
(g=1, stB), where g=1 is the constant function that always outputs 1. IfA1 makes the challenge query for
x∗, B1 first checks whether Pu(h(x∗)) = 0 holds. If it holds, B1 sets stB := (postchal,msk1, u, x

∗)
and outputs (gx∗ , stB). Otherwise, it sets stB = abort and outputs (g=1, stB). IfA1 stops and outputs
(f, stA) without having made the challenge query, B1 sets stB := (prechal,msk1, u, stA) and outputs
(f, stB).
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Given the output fromB1, the selective-constraint no-evaluation security game forB runsmsk0
R← KeyGen(pp)

and sk R← Constrain(msk0, g) where g is either f or g=1 or gx∗. Then, sk is given to B2.

B2(sk, stB): It is given a constrained key sk for some function and the state stB as input. By the way
we defined B1, these should be in the form of (sk = skg=1 , stB = abort) or (sk = sk0,f , stB :=
(prechal,msk1, u, stA)) or (sk = sk0,gx∗ , stB := (postchal,msk1, u, x

∗)).

- In the case of (sk = skg=1 , stB = abort), B2 immediately aborts and outputs a random bit.
- In the case of (sk = sk0,gx∗ , stB := (postchal,msk1, u, x

∗)), B2 first makes the challenge query
for its own challenge oracle on input x∗ and is given the challenge term, which isX∗ if coin = 0 and
Eval(msk0, x

∗) if coin = 1. It then gives the challenge term to A1. When A1 makes an evaluation
query on input x, B2 first checks whether Pu(h(x)) = 1 holds. If it holds, it returns Eval(msk1, x).
Otherwise, B2 aborts and outputs a random bit. At some point, A1 outputs (f, stA). B2 then sets
skf

R← iO(C̃[sk0,gx∗ ,msk1, f, u]) and runs A2(skf , stA). The evaluation queries that A2 makes are
handled as above. Eventually, A2 outputs its guess ĉoin. Then, B2 outputs ĉoin as its guess.

- In the case of (sk = sk0,f , stB := (prechal,msk1, u, stA)), B2 first computes skf
R← iO(C̃[sk0,f ,

msk1, f, u]) and runs A2 on input (skf , stA). When A2 makes an evaluation query for x, B2 first
checks whether Pu(h(x)) = 1 holds. If it holds, it returns Eval(msk1, x). Otherwise, B1 aborts and
outputs a random bit. When A2 makes the challenge query for OChal(msk0, ·) on input x∗, it first
checks whether Pu(h(x∗)) = 0 and aborts and outputs a random bit if it does not hold. On the other
hand, if Pu(h(x∗)) = 0 holds, it then makes the challenge query for its own challenge oracle on input
x∗ and is given the challenge term, which isX∗ or Eval(msk0) depending on the value of coin. Then
it gives the challenge term to A2. Eventually, A2 outputs its guess ĉoin. Then, B2 outputs ĉoin as its
guess.

It can be seen that B defined above perfectly simulates Game 7 for A, where coin in the game is set as the
same bit as the random coin that B has to guess. Therefore, the lemma readily follows.

From Lemma 4.3, we have that |Pr[T1]− 1/2| is non-negligible. Then, by Lemma 4.4, 4.5, 4.6, 4.7, 4.8,
and 4.9, we have that |Pr[T7]− 1/2| is non-negligible as well. However, this contradicts Lemma 4.10. This
concludes the proof of the theorem.

Remark 4.11. As one may notice, in the hybrids, we obfuscate a program that contains a merged key
k[msk0,msk1, u] that itself is also an obfuscation of some program in our construction. Therefore when
generating a constrained key, ConstrainedKey[msk, f ] should be padded to the maximum size of an obfuscated
program that appears in the hybrids, and thus the size of skf is the size of an obfuscation of an obfuscation.
Actually, this “obfuscation of obfuscation” blowup could be avoided if we directly construct an adaptively
secure CPRF based on iO and the subgroup hiding assumption. However, we believe that the abstraction of
PCPRF makes it easier to understand our security proof, and there should be further applications of it.
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